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Abstract

Understanding the 3D geometry and semantics of real environments is in critically

high demand for many applications, such as autonomous driving, robotics, and aug-

mented reality. However, it is extremely challenging due to imperfect and noisy mea-

surements from real sensors, limited access to ground truth data, and cluttered scenes

exhibiting heavy occlusions and intervening objects. To address these issues, this the-

sis introduces a series of works that produce a geometric and semantic understanding

of the scene in both pixel-wise and holistic 3D representations. Starting from estimat-

ing a depth map, which is a fundamental task in many approaches for reconstructing

the 3D geometry of the scene, we introduce a learning-based active stereo system

that is trained in a self-supervised fashion and reduces the disparity error to 1/10th

of other canonical stereo systems. To handle a more common case where only one

input image is available for scene understanding, we create a high-quality synthetic

dataset facilitating pre-training of data-driven approaches, and demonstrating that

we can improve the surface normal estimation and improve raw depth measurements

from commodity RGBD sensors. Lastly, we pursue holistic 3D scene understanding

by estimating a 3D representation of the scene, in which objects and room layout

are represented using 3D bounding box and planar surfaces respectively. We propose

methods to produce such a representation from either a single color panorama or a

depth image, leveraging scene context. On the whole, these proposed methods pro-

duce understanding of both 3D geometry and semantics from the most fine-grained

pixel level to the holistic scene scale, building foundations that support future work

in 3D scene understanding.
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Chapter 1

Introduction

Understanding the surrounding environment is a fundamental function of human

vision. In daily life, humans process visual information from the surrounding envi-

ronment and process it to produce higher-level semantic understanding of the envi-

ronment [82, 244]. For example, when we enter a new hotel room, we understand the

room layout and furniture arrangement together with their shape and functionality

from a single glance. Similarly, when we drive, we recognize and interpret traffic signs

even while moving at great speed. This capability of human scene understanding con-

tinuously provides us essential information, enables us to perform complex tasks, and

is critical to our survival.

Granting computers the potential of scene understanding from visual inputs is an

important goal of computer vision [209] and useful in many applications. For the

outdoor environment, recognizing roads, traffic signs, moving pedestrians, and vehi-

cles supports the control and decision-making of autonomous driving systems [118];

whereas, recognizing furniture, objects, as well as room layout in an indoor environ-

ment is critical for a robot to successfully explore the building and perform useful

tasks [68]. Scene understanding also builds the foundation for augmented/virtual
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reality systems to generate and remove virtual contents in a consistent way relative

to the the real scene [3, 182, 147, 4].

Driven by this huge demand, scene understanding has drawn attention from both

academia and industry, and has been studied for decades. However, current com-

putational systems are far from comparable with human performance, mostly due to

brittleness in uncontrolled real-world scenarios that exhibit the high complexity of the

scene understanding task in three different aspects. First, scene understanding needs

to deal with highly variant input data. Scenes are usually cluttered with multiple

objects undergoing occlusions and interactions. Scenes also vary largely in scale and

style, leading to different requirements depending on the specific domain involved in

a task. For example, depth estimation for the indoor environment usually deals with

distances of up to 10 meters, whereas distances of up to hundreds of meters are com-

mon in the outdoor environment, thus requiring the use of different techniques [127].

Second, beyond the data variance, scene understanding tasks themselves involve many

analysis along many different aspects of the environment. Scenes exhibit information

like 3D geometry, semantics, materials, physics, and potential human interactions,

which require fundamentally different models. In practice, understanding multiple

aspects might be necessary to function real applications. Assuming that a robot is

asked to bring a cup of water from the kitchen, it needs to understand: a) the scene

and object categories to find the kitchen and the cup, b) the 3D room and object ge-

ometry to navigate through the house and successfully grasp objects, and c) physics

and material properties to safely fill the cup with water. Last but not least, even

within each specific vision task, there often exist variant formulations which capture

different scales of the understanding. These formulations usually require implementa-

tion with different data structures and are thus handled with different model designs.

For example, 3D geometry can be represented as surface normal maps, depth maps,

point clouds, or meshes [96], and semantics can be represented in category labels,
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bounding boxes, and segmentation masks [177]. Due to this high variance over the

characteristics of data, tasks, and formulations, scene understanding is still an open

research area, requiring much additional work.

In this thesis, we present a series of works to understand the 3D geometry and

the semantics of indoor environments [295, 297, 294, 296, 293]. Compared to outdoor

scenes, indoor scenes are small in scale but exhibit more complicated geometry and

patterns of clutter, which are usually more challenging to process. Moreover, most

human activities occur indoors, so understanding indoor scenes has direct impact on

a large fraction of daily life activities. Two of the most fundamental tasks, knowing

geometry and semantics are in high demand by many applications, such as robotics,

intelligent home applications, AR/VR, and can potentially have high impact for other

related academic communities.

We first studied scene understanding using a pixel-wise representation, which di-

rectly encodes the predicted information in 2D arrays. Such a representation is in

direct pixel-level alignment with the widely used 2D image representation, and thus

the vision tasks can be straightforwardly formulated into learning a mapping function

from image to image. It can also make use of advanced machine learning techniques

running on 2D regular grids, like convolutional neural networks [140]. Some typical

vision tasks formulated in pixel-wise representation are semantic segmentation, stereo

matching, and depth estimation from a single color image, which will all be addressed

in this thesis.

We started with stereo matching, in which the depth is estimated through trian-

gulation between two views obtained from a dual camera system. Traditional stereo

matching suffers in texture-less regions where there are no discriminative features

that can be found to establish correspondences [220]. One way to handle this is to

have an IR projector casting random dot patterns into the scene as additional texture,

and such a setting is typically called an active stereo system [193]. To achieve more
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accurate depth measurements, we proposed a deep learning-based solution which is

fully self-supervised, avoiding the need for ground truth data [295]. We fixed the

problems in traditional self-supervised training such that the model handles distant

and occluded areas better. The self-supervised model produces precise disparity with

sharper boundaries.

Since dual camera systems are not practical in many scenarios, single view-based

understanding is a more practical problem statement addressing the low cost and

widely available internet images datasets. As a result of the limited information from

the single view, some problems are ill-posed, like depth from a single RGB image, and

therefore require more advanced learning techniques which greatly rely on training

data [107, 218]. However, obtaining precise and dense pixel-wise ground truth is very

labor intensive and sometimes infeasible to scale up [270]. To address this problem,

one way is to use synthetic data, which however may suffer from a domain gap between

the rendered and real images. Attempting to fill in this gap, we proposed a large-scale

synthetic dataset with 500K physically-based rendered images from 45K realistic 3D

indoor scenes [297]. We studied the effects of rendering methods and scene lighting

on training for three computer vision tasks: surface normal estimation, semantic

segmentation, and object boundary detection. We then provided insights into best

practices for training with synthetic data, with the key takeaway point being that

more expensive but realistic rendering is worth the extra cost.

Single view scene understanding helps to provide a compromised and lower-quality

prediction when more expensive sensor systems are unavailable or impractical, but

it also helps to refine results from such more complex systems. As an example,

we demonstrated that 3D surface normals learned from a single color image can

greatly improve an aligned depth image [294]. This is useful for commodity-grade

depth cameras which often fail to sense depth for highly specular, transparent, or

distant surfaces. Even though other information can be estimated from the color
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image as well, like the absolute depth [51, 146], we found in practice that it is more

stable to estimate normals and solve depth from them, which outperforms many

straightforward end-to-end systems.

Even though the pixel-wise representation is convenient for algorithm design and

allows for predicting fine-grained information at the image resolution or even at sub-

pixel accuracy, it does not provide complete 3D information since images are 2D

projections of the real 3D world from a certain viewing direction. The pixel-wise

representation is also frequently redundant and expensive to store in cases where

only high-level representations are necessary for the task. For example a 3D plane

can be represented with four parameters in a planar equation and capture millions of

depth values in a depth map. Conceptually, a complete and compact representation

for scene understanding would be desirable if it consists of high-level abstractions

and resides in 3D space, preferably integrating multiple kinds of information. Such a

representation is readier to use for applications like AR and robotics. Therefore, we

next investigated how to produce 3D holistic representation for scene understanding.

We picked a bounding box representation where the whole scene was composed of a

set of 3D cuboids and planes [101] aligned in three mutually orthogonal directions, i.e.

the Manhattan World Assumption [34]. Each 3D cuboid represents the location and

rough size of a furniture object with a label representing its semantic category.ach

plane represents a wall, ceiling, or floor. Even though cuboids and planes are unable to

fully incorporate all possible complicated indoor environments at a fine-grained level,

they are compact and enough to support applications that do not require precise

interaction with the objects.

We first use this holistic bounding box representation to study the impact of con-

textual relationships between objects and rooms for scene understanding. Context

had been well studied in many previous work (Sec. 4.1.2) and demonstrated to be

useful for scene understanding, but its relative importance compared to local evi-
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dence was not well studied. Tempting to address this question, we proposed a system

that produces bounding box predictions for whole room understanding from a single

color full-view panorama [296]. Since a full-view panorama has a full field of view it

can observe the greatest number of objects in a single image. Thus, using it as the

input enables us to fully exploit the scene context. Our model first produces a set

of hypotheses of the scene, and then picks the best according to both primitive local

evidence and global scene context. An empirical study shows that the model can

achieve comparable or even better performance when heavily relying on context com-

pared to traditional object detection systems that mainly make use of local evidence.

Combining the two further improves performance, which indicates that local evidence

and scene context capture different aspects of information for scene understanding.

Although the context is important for scene understanding, it can be hard to learn

since by nature it involves multiple objects and therefore requires reliable extraction

of bottom-up information (e.g. object level) and may exhibit complex high-order re-

lations. So, advanced machine learning techniques are necessary to learn complicated

context, and we investigated how to learn context using a deep learning framework.

To make the problem easier and focus on context, we choose to use a regular depth

image as the input and design a deep learning model to produce the bounding box

representation of the scene. Instead of learning a black-box model and hoping that

the context is learned automatically, we impart the network architecture with in-

sights such that context can be encoded explicitly [293]. To do so, we proposed to

divide scenes into sub-areas, where each is associated with a certain functionality.

The furniture layout is usually similar for each functional area, and thus a box-like

representation, namely a scene template, can be learned by clustering beforehand to

encode prior context information for the sub-area. The deep learning model then only

needs to learn which sub-area should be used and how to make local adjustments of
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the scene template. By doing so, the network is fully aware of the prior context and

can make more reliable and context-viable results compared to local object detectors.

The remainder of this thesis is organized as follows. Chapter 2 provides a general

overview of the related previous work in scene understanding. Chapter 3 and 4

introduce a series of scene understanding projects using pixel-wise representation

[295, 297, 294] and holistic 3D representations [296, 293] respectively. Chapter 5

concludes our work and makes discussion on remaining challenges and potential future

work.
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Chapter 2

Background

Scene understanding is one of the central research topics in computer vision. Due to

its highly complex nature, numerous efforts have been made to address related vision

tasks isolating different aspects into separate problem statements. The following

sections briefly discuss some of these aspects in the domain of indoor environments.

2.1 Scene Understanding Tasks

There are two fundamental types of tasks for scene understanding: geometric under-

standing and semantic understanding.

2.1.1 Geometry

The purpose of geometric estimation is to capture the 3D shape of objects and en-

vironments [96]. In the scope of computer vision, one family of approaches rely on

triangulation between multiple images, inspired by the fact that the human visual

system relies on two eyes to measure distance. In a typical structure from motion set-

ting, correspondences between two images are established, and then camera poses and

3D sparse points are solved by a global optimization, i.e. bundle adjustment [251].
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Depending on the output representation, post process might be required to produce

dense a point cloud or mesh model. Sharing the same idea with triangulation, the

stereo system assumes calibrated known camera poses and focuses on building dense

correspondences across images for high-resolution depth. Similar approaches have also

been adapted to work in the infrared domain, with one of the images being a prede-

fined pattern from a projector, i.e. structured light [75], which typically works more

reliably and is a technique adopted widely by commercial depth sensors [115, 194].

Alternatively, 3D geometry can be estimated by data-driven approaches, where

mapping functions between the input and the 3D geometry, like depth or surface

normals, are learned. In the simplest case, geometry can be estimated from a single

image even though it is ill-posed in theory. For a long time, the performance of

data-driven approaches was far from comparable to the triangulation-based methods

as it heavily relied on the capacity of machine learning models, the availability of

sufficient training data, and required making assumptions about the input [107, 218].

Thanks to the recently emerging deep learning technologies, data-driven approaches

have been significantly improved and can now handle challenging cases better than

traditional approaches [51, 146]. Meanwhile, large-scale RGBD datasets have been

proposed to serve in training data-hungry algorithms.he problems of missing and

error-prone depth estimates is however still an unsolved problem [24, 35, 229].

2.1.2 Semantics

On the other hand, semantic understanding focuses on retrieving information about

object category [249], scene type [282], and room layout [100], etc. Semantic under-

standing involves a series of tasks including scene classification, object detection, and

semantic segmentation. Compared to algorithms that work on individual objects,

scene understanding algorithms are more challenging but also benefit from the fact

that scenes consist of multiple objects interacting with each other [159, 17, 15, 6, 302].
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These interactions create challenging patterns such as occlusions, deformations, and

inter-relations between objects, which imply that the computer vision algorithm must

handle partial observation, additional variation, and noise. On the way to solve these

problems, external knowledge, such as scene context, physics, and semantic knowledge

bases, which are external to the image data can be leveraged. In terms of methodol-

ogy, these external knowledge sources are often considered as top-down constraints,

which are applied on results from bottom-up approaches [265, 91].

Specifically, scene context has drawn a lot of attention from the research commu-

nity over decades to measure the relationships between objects [159, 249]. It has been

formulated into co-occurrence rates [145, 63], pairwise relative distributions [67], tree

hierarchies [31], or general graphs [265, 91]. Ideally, context is not limited in these

formulations and may appear as higher-order relationships among multiple objects in

an arbitrary format, which can be extremely hard to encode by handcrafted methods.

Recently, data-driven approaches also provide new avenues for learning context. Neu-

ral networks are capable of learning context automatically due to a large receptive

field [166]. However, simple expansion of receptive fields is impractical or ineffective

in many scenarios, therefore further model design is required.

2.2 Representation

Representation is the core of research in scene understanding and highly variant

depending on the application. For 3D geometry estimation, the 3D shape can be

represented as a point cloud, depth map, surface normal map, 3D volume, or mesh.

Triangulation-based methods (e.g., structure from motion and SLAM [247, 48]) tend

to generate sparse point clouds as a first stage since correspondences can only be

reliably built between a few feature points. Dense correspondences can be further

created through optimization to produce dense measurements of geometry, such as
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depth and surface normal maps from stereo systems [220, 264]. Volumetric representa-

tions encode the concept of occupancy but can be extremely memory expensive when

the resolution is high, and they also lack surface details [36, 232]. Comparatively,

the mesh representation is lightweight and encodes surface detail but requires extra

effort to create through handcrafted post-processing or special design of data-driven

approaches [260].

Depending on the task, there are also many representations for semantic scene un-

derstanding . Well defined in benchmarks, classification uses a label set for categories.

Detection uses bounding boxes for object instance indication. Semantic segmenta-

tion uses pixel-wise representation for fine-grained details [40, 158, 52]. Recently, the

emerging 3D scene understanding work further extends these representations into 3D

space, such as the 3D bounding box for detection [293, 206] and 3D per-voxel/point la-

bels for segmentation [36, 232]. Beyond vision tasks transferred from the object level,

representations can be extended to support more complete scene-specific problems.

For example, room layout, i.e., walls, floor, and ceiling, can be represented as planar

surfaces and placed with object 3D bounding boxes in the same world coordinate

[206, 293].

2.3 Data

Early researches about scene understanding mainly focused on model design for small

datasets [62, 61, 139], which overlooks the complexity of real-world data. Although

small-scale semantic ground truth can be annotated in a well-controlled environment

by a few researchers, obtaining accurate 3D geometry is extremely hard even with

a lot of efforts and expensive scanning devices. To bypass this problem, synthetic

data has been used, where the geometric ground truth can be obtained easily and

accurately from virtual environments [220] . However, the input side often suffers
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from the domain shift as the rendered images are inevitably visually different from

real photos such that what has been learned in the synthetic domain may not easily

transfer to the real domain.

Recently, data started to draw more attention due to the emergence of powerful

data-driven methods equipped with deep learning [40, 140]. Large-scale real geometry

can be collected using commodity-level RGBD sensors but is still far from perfect and

requires some post-processing to remove noise and failure cases [35, 24]. At the same

time, the scale of synthetic data is also significantly larger than before with the help

of the virtual indoor 3D shapes and scenes available on the internet [232, 266, 25]. For

obtaining semantics, crowd-sourcing platforms enable large-scale human annotation

but require effort to verify the annotation quality of inexperienced workers online [1].

Further increasing the scale of datasets is expensive and often involves impractical

amounts of human labor, thus requiring algorithms that are directly involved in the

labeling process, such as active learning [282].
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Chapter 3

Pixel-wise Scene Understanding

In this chapter, we introduce a series of works using pixel-wise representation for scene

understanding. In Chapter 3.1, we present a self-supervise deep learning system to

estimate depth for active stereo system [295]. In Chapter 3.2, we target on more

challenging single view dense pixel-wise scene understanding and leverage synthetic

to improve their performance [297]. In Chapter 3.3, we focus on depth completion as

an example to show that single view scene understanding can practically improve the

quality of the depth images from RGBD sensors [294].
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3.1 ActiveStereoNet: End-to-End Self-Supervised

Learning for Active Stereo Systems

3.1.1 Introduction

Estimating the 3D geometry is one of the most fundamental tasks in scene under-

standing [177, 96]. After years of efforts from academia and industry, depth sensors

have become widely available and are revolutionizing computer vision by providing

additional 3D information for many hard problems, such as non-rigid reconstruction

[47, 46], action recognition [55, 60] and parametric tracking [242, 243] . Although

there are many types of depth sensor technologies, they all have significant limita-

tions. Time of flight systems suffer from motion artifacts and multi-path interference

[14, 13, 187]. Structured light is vulnerable to ambient illumination and multi-device

interference [58, 57]. Passive stereo struggles in texture-less regions, where expensive

global optimization techniques are required - especially in traditional non-learning

based methods.

Active stereo offers a potential solution: an infrared stereo camera pair is used,

with a pseudorandom pattern projectively texturing the scene via a patterned IR light

source. (Fig. 3.1). With a proper selection of sensing wavelength, the camera pair

captures a combination of active illumination and passive light, improving quality

above that of structured light while providing a robust solution in both indoor and

outdoor scenarios. Although this technology was introduced decades ago [193], it has

only recently become available in commercial products (e.g., Intel R200 and D400

family [116]). As a result, there is relatively little prior work targeted specifically at

inferring depths from active stereo images, and large scale training data with ground

truth is not available yet.

Several challenges must be addressed in an active stereo system. Some are com-

mon to all stereo problems – for example, it must avoid matching occluded pixels,
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which causes oversmoothing, edge fattening, and/or flying pixels near contour edges.

However, other problems are specific to active stereo – for example, it must process

very high-resolution images to match the high-frequency patterns produced by the

projector; it must avoid the many local minima arising from alternative alignments

of these high frequency patterns; and it must compensate for luminance differences

between projected patterns on nearby and distant surfaces. Additionally, of course,

it cannot be trained with supervision from a large active stereo dataset with ground

truth depths, since none is available.

This chapter proposes the first end-to-end deep learning approach for active stereo

that is trained fully self-supervised [295]. It extends recent work on self-supervised

passive stereo [304] to address problems encountered in active stereo. First, we pro-

pose a new reconstruction loss based on local contrast normalization (LCN) that

removes low frequency components from passive IR and re-calibrates the strength of

the active pattern locally to account for fading of active stereo patterns with distance.

Second, we propose a window-based loss aggregation with adaptive weights for each

pixel to increase its discriminability and reduce the effect of local minima in the stereo

cost function. Finally, we detect occluded pixels in the images and omit them from

loss computations. These new aspects of the algorithm provide significant benefits to

the convergence during training and improve depth accuracy at test time. Extensive

experiments demonstrate that our network trained with these insights outperforms

previous work on active stereo and alternatives in ablation studies across a wide range

of experiments.

3.1.2 Related Work

Depth sensing is a classic problem with a long history of prior work. Among the

active sensors, Time of Flight (TOF), such as Kinect V2, emits a modulated light

source and uses multiple observations of the same scene (usually 3-9) to predict a
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Figure 3.1: ActiveStereoNet (ASN) produces smooth, detailed, quantization free re-
sults using a pair of rectified IR images acquired with an Intel Realsense D435 camera.
In particular, notice how the jacket is almost indiscernible using the sensor output,
and in contrast, how it is clearly observable in our results.

single depth map. The main issues with this technology are artifacts due to motion

and multipath interference [14, 13, 187]. Structure light (SL) is a viable alternative,

but it requires a known projected pattern and is vulnerable to multi-device inference

[58, 57]. Neither approach is robust in outdoor conditions under strong illumination.

Passive stereo provides an alternative approach [220, 90]. Traditional methods

utilize hand-crafted schemes to find reliable local correspondences [19, 279, 111, 18,

105] and global optimization algorithms to exploit context when matching [12, 64,

134, 136]. Recent methods address these problems with deep learning. Siamese

networks are trained to extract patch-wise features and/or predict matching costs

[171, 288, 286, 287]. More recently, end-to-end networks learn these steps jointly,

yielding better results [225, 180, 128, 114, 195, 156, 76]. However all these deep

learning methods rely on a strong supervised component. As a consequence, they

outperform traditional handcrafted optimization schemes only when a lot of ground-

truth depth data is available, which is not the case in active stereo settings.

Self-supervised passive stereo is a possible solution for absence of ground-

truth training data. When multiple images of the same scene are available, the images

can warp between cameras using the estimated/calibrated pose and the depth, and

the loss between the reconstruction and the raw image can be used to train depth

16



estimation systems without ground truth. Taking advantage of spatial and temporal

coherence, depth estimation algorithms can be trained unsupervised using monocular

images [79, 73, 144], video [275, 305], and stereo [304]. However, their results are

blurry and far from comparable with supervised methods due to the required strong

regularization such as left-right check [79, 304]. Also, they struggle in textureless and

dark regions, as do all passive methods.

Active stereo is an extension of the traditional passive stereo approach in which

a texture is projected into the scene with an IR projector and cameras are augmented

to perceive IR as well as visible spectra [137]. Intel R200 was the first attempt of com-

mercialize an active stereo sensor, however its accuracy is poor compared to (older)

structured light sensors, such as Kinect V1 [57, 58]. Very recently, Intel released the

D400 family [115, 116], which provides higher resolution, 1280 × 720, and therefore

has the potential to deliver more accurate depth maps. The build-in stereo algorithm

in these cameras uses a handcrafted binary descriptor (CENSUS) in combination with

a semi-global matching scheme [129]. It offers reasonable performance in a variety of

settings [241], but still suffers from common stereo matching issues addressed in this

paper (edge fattening, quadratic error, occlusions, holes, etc.).

Learning-based solutions for active stereo are limited. Past work has em-

ployed shallow architectures to learn a feature space where the matching can be per-

formed efficiently [58, 59, 261], trained a regressor to infer disparity [57], or learned

a direct mapping from pixel intensity to depth [56]. These methods fail in general

scenes [56], suffer from interference and per-camera calibration [57], and/or do not

work well in texture-less areas due to their shallow descriptors and local optimization

schemes [58, 59]. Our paper is the first to investigate how to design an end-to-end

deep network for active stereo.
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Figure 3.2: ActiveStereoNet architecture. We use a two stage network where a low
resolution cost volume is built and infers the first disparity estimate. A bilinear
upsampling followed by a residual network predicts the final disparity map. An
“Invalidation Network” (bottom) is also trained end-to-end to predict a confidence
map.

3.1.3 Method

In this section, we introduce the network architecture and training procedure for

ActiveStereoNet. The input to our algorithm is a rectified, synchronized pair of

images with active illumination (see Fig. 3.1), and the output is a pair of disparity

maps at the original resolution. For our experiments, we use the recently released

Intel Realsense D435 that provides synchronized, rectified 1280×720 images at 30fps.

The focal length f and the baseline b between the two cameras are assumed to be

known. Under this assumption, the depth estimation problem becomes a disparity

search along the scan line. Given the output disparity d, the depth is obtained via

Z = bf
d

.

Since no ground-truth training data is available for this problem, our main chal-

lenge is to train an end-to-end network that is robust to occlusion and illumination

effects without direct supervision. The following details our algorithm.

3.1.3.1 Network Architecture

Nowadays, in many vision problems, the choice of the architecture plays a crucial role,

and most of the efforts are spent in designing the right network. In active stereo, in-
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stead, we found that the most challenging part is the training procedure for a given

deep network. In particular, since our setting is unsupervised, designing the optimal

loss function has the highest impact on the overall accuracy. For this reason, we

extend the network architecture proposed in [130], which has shown superior perfor-

mances in many passive stereo benchmarks. Moreover, the system is computationally

efficient and allows us to run on full resolution at 60Hz on a high-end GPU, which

is desirable for real-time applications.

The overall pipeline is shown in Fig. 3.2. We start from the high-resolution images

and use a siamese tower to produces feature map in 1/8 of the input resolution. We

then build a low resolution cost volume of size 160×90×18, allowing for a maximum

disparity of 144 in the original image, which corresponds to a minimum distance of

∼ 30 cm on the chosen sensor.

The cost volume produces a downsampled disparity map using the soft argmin

operator [128]. Differently from [128] and following [130] we avoid expensive 3D de-

convolution and output a 160 × 90 disparity. This estimation is then upsampled

using bi-linear interpolation to the original resolution (1280 × 720). A final residual

refinement retrieves the high-frequency details such as edges. Different from [130],

our refinement block starts with separate convolution layers running on the upsam-

pled disparity and input image respectively, and merge the feature later to produce

residual. This in practice works better to remove dot artifacts in the refined results.

Our network also simultaneously estimates an invalidation mask to remove uncer-

tain areas in the result, which will be introduced in Sec. 3.1.3.4.

3.1.3.2 Loss Function

The architecture described is composed of a low resolution disparity and a final re-

finement step to retrieve high-frequency details. A natural choice is to have a loss

function for each of these two steps. Unlike [130], we are in an unsupervised setting
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Figure 3.3: Comparisons between photometric loss (left), LCN loss (middle), and the
proposed weighted LCN loss (right). Our loss is more robust to occlusions, it does
not depend on the brightness of the pixels and does not suffer in low texture regions.

due to the lack of ground truth data. A viable choice for the training loss L then

is the photometric error between the original pixels on the left image I lij and the

reconstructed left image Î lij, in particular L =
∑

ij ‖I lij − Î lij‖1. The reconstructed

image Î l is obtained by sampling pixels from the right image Ir using the predicted

disparity d, i.e. Î lij = Iri,j−d. Our sampler uses the Spatial Transformer Network

(STN) [117], which uses a bi-linear interpolation of 2 pixels on the same row and is

fully differentiable.

However, as shown in previous work [299], the photometric loss is a poor choice for

image reconstruction problems. This is even more dramatic when dealing with active

setups. We recall that active sensors flood the scenes with texture and the intensity

of the received signal follows the inverse square law I ∝ 1
Z2 , where Z is the distance

from the camera. In practice this creates an explicit dependency between the intensity

and the distance (i.e. brighter pixels are closer). A second issue, that is also present

in RGB images, is that the difference between two bright pixels is likely to have a

bigger residual when compared to the difference between two dark pixels. Indeed if we

consider image I, to have noise proportional to intensity [69], the observed intensity
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for a given pixel can be written as: Iij = I?ij +N (0, σ1I
?
ij + σ2), where I?ij is the noise

free signal and the standard deviations σ1 and σ2 depend on the sensor [69]. It is

easy to show that the difference between two correctly matched pixels I and Î has a

residual: ε = N (0,
√

(σ1I?ij + σ2)2 + (σ3Î?ij + σ4)2), where its variance depends on the

input intensities. This shows that for brighter pixels (i.e. close objects) the residual

ε will be bigger compared to one of low reflectivity or farther objects.

In the case of passive stereo, this could be a negligible effect, since in RGB images

there is no correlation between intensity and disparity, however in the active case

the aforementioned problem will bias the network towards closeup scenes, which will

have always a bigger residual. The architecture will learn mostly those easy areas and

smooth out the rest. The darker pixels, mostly in distant, requiring higher matching

precision for accurate depth, however, are overlooked. In Fig. 3.3 (left), we show the

the reconstruction error for a given disparity map using the photometric loss. Notice

how bright pixels on the pillow exhibits high reconstruction error due to the input

dependent nature of the noise.

An additional issue with this loss occurs in the occluded areas: indeed when the

intensity difference between background and foreground is severe, this loss will have

a strong contribution in the occluded regions, forcing the network to learn to fit those

areas that, however, cannot really be explained in the data.

Weighted Local Contrast Normalization. We propose to use a Local Con-

trast Normalization (LCN) scheme, that not only removes the dependency between

intensity and disparity, but also gives a better residual in occluded regions. It is

also invariant to brightness changes in the left and right input image. In particular,

for each pixel, we compute the local mean µ and standard deviation σ in a small

9 × 9 patch. These local statistics are used to normalize the current pixel intensity

ILCN = I−µ
σ+η

, where η is a small constant. The result of this normalization is shown
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Figure 3.4: Cost volume analysis for a textured region (green), textureless patch
(orange) and occluded pixel (red). Notice how the window size helps to resolve
ambiguous (textureless) areas in the image, whereas in occluded pixels the lowest
cost will always lead to the wrong solution. However large windows oversmooth the
cost function and they do not preserve edges, where as the proposed Adaptive Support
Weight loss aggregates costs preserving edges.

in Fig. 3.3, middle. Notice how the dependency between disparity and brightness is

now removed, moreover the reconstruction error (Fig. 3.3, middle, second row) is not

strongly biased towards high intensity areas or occluded regions.

However, LCN suffers in low texture regions when the standard deviation σ is

close to zero (see the bottom of the table in Fig. 3.3, middle). Indeed these areas

have a small σ which will would amplify any residual together with noise between

two matched pixels. To remove this effect, we re-weight the residual ε between two

matched pixel Iij and Î lij using the local standard deviation σij estimated on the

reference image in a 9× 9 patch around the pixel (i, j). In particular our reconstruc-

tion loss becomes: L =
∑

ij ‖σij(I lLCNij − Î lLCNij)‖1 =
∑

ij Cij. Example of weights

computed on the reference image are shown in Fig. 3.3, top right and the final loss is

shown on the bottom right. Notice how these residuals are not biased in bright areas

or low textured regions.

3.1.3.3 Window-based Optimization

We now analyze in more details the behavior of the loss function for the whole search

space. We consider a textured patch (green), a texture-less one (orange) and an
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occluded area (red) in an LCN image (see Fig. 3.4). We plot the loss function for

every disparity candidate in the range of [5, 144]. For a single pixel cost (blue curve),

notice how the function exhibits a highly non-convex behavior (w.r.t. the disparity)

that makes extremely hard to retrieve the ground truth value (shown as purple dots).

Indeed a single pixel cost has many local minima, that could lie far from the actual

optimum. In traditional stereo matching pipelines, a cost aggregation robustifies the

final estimate using evidence from neighboring pixels. If we consider a window around

each pixel and sum all the costs, we can see that the loss becomes smoother for both

textured and texture-less patch and the optimum can be reached (see Fig. 3.4, bottom

graphs). However as a drawback for large windows, small objects and details can be

smooth out by the aggregation of multiple costs and cannot be recovered in the final

disparity.

Traditional stereo matching pipelines aggregate the costs using an adaptive sup-

port (ASW) scheme [280], which is very effective, but also slow hence not practical for

real-time systems where approximated solutions are required [138]. Here we propose

to integrate the ASW scheme in the training procedure, therefore it does not affect

the runtime cost. In particular, we consider a pixel (i, j) with intensity Iij and in-

stead of compute a per-pixel loss, we aggregate the costs Cij around a 2k×2k window

following: Ĉij =
∑i+k−1

x=i−k

∑j+k−1
y=j−k wx,yCij∑i+k−1

x=i−k

∑j+k−1
y=j−k wx,y

, where wxy = exp(− |Iij−Ixy |
σw

), with σw = 2. As

shown in Fig. 3.4 right, this aggregates the costs (i.e. it smooths the cost function),

but it still preserves the edges. In our implementation we use a 32 × 32 during the

whole training phase. We also tested a graduated optimization approach [189, 98],

where we first optimized our network using 64× 64 window and then reduce it every

15000 iterations by a factor of 2, until we reach a single pixel loss. However this

solution led to very similar results compared to a single pixel loss during the whole

training.
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3.1.3.4 Invalidation Network

So far the proposed loss does not deal with occluded regions and wrong matches (i.e.

textureless areas). An occluded pixel does not have any useful information in the cost

volume even when brute-force search is performed at different scales (see in Fig. 3.4,

bottom right graph). To deal with occlusions, traditional stereo matching methods

use a so called left-right consistency check, where a disparity is first computed from

the left view point (dl), then from the right camera (dr) and invalidate those pixels

with |dl − dr| > θ. Related work use a left-right consistency in the loss minimization

[79], however this leads to oversmooth edges which become flying pixels (outliers) in

the pointcloud. Instead, we propose to use the left-check as a hard constraint by

defining a mask for a pixel (i, j): mij = |dl − dr| < θ, with θ = 1 disparity. Those

pixels with mij = 0 are ignored in the loss computation. To avoid a trivial solution

(i.e. all the pixels are invalidated), similarly to [305], we enforce a regularization on

the number of valid pixels by minimizing the cross-entropy loss with constant label 1

in each pixel location. We use this mask in both the low-resolution disparity as well

as the final refined one.

At the same time, we train an invalidation network (fully convolutional), that

takes as input the features computed from the Siamese tower and produces first a

low resolution invalidation mask, which is then upsampled and refined with a similar

architecture used for the disparity refinement. This allows, at runtime, to avoid

predicting the disparity from both the left and the right viewpoint to perform the

left-right consistency, making the inference significantly faster.

3.1.4 Experiments

We performed a series of experiments to evaluate ActiveStereoNet (ASN). In addition

to analyzing the accuracy of depth predictions in comparison to previous work, we

also provide results of ablation studies to investigate how each component of the
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proposed loss affects the results. In the supplementary material we also evaluate the

applicability of our proposed self-supervised loss in passive (RGB) stereo, showing

improved generalization capabilities and compelling results on many benchmarks.

3.1.4.1 Dataset and Training Schema

We train and evaluate our method on both real and synthetic data.

For the real dataset, we used an Intel Realsense D435 camera [116] to collect 10000

images for training in an office environment, plus 100 images in other unseen scenes

for testing (depicting people, furnished rooms and objects).

For the synthetic dataset, we used Blender to render IR and depth images of

indoor scenes such as living rooms, kitchens, and bedrooms, as in [58]. Specifically, we

render synthetic stereo pairs with 9 cm baseline using projective textures to simulate

projection of the Kinect V1 dot pattern onto the scene. We randomly move the

camera in the rendered rooms and capture left IR image, right IR image as well as

ground truth depth. Examples of the rendered scenes are showed in Fig. 3.8, left.

The synthetic training data consists of 10000 images and the test set is composed of

1200 frames comprehending new scenes.

For both real and synthetic experiments, we trained the network using RMSprop

[248]. We set the learning rate to 1e−4 and reduce it by half at 3
5

iterations and to a

quarter at 4
5

iterations. We stop the training after 100000 iterations, that are usually

enough to reach the convergence. Although our algorithm is self-supervised, we did

not fine-tune the model on any of the test data since it reduces the generalization

capability in real applications.
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Figure 3.5: Quantitative Evaluation with state of the art. We achieve one order of
magnitude less bias with a subpixel precision of 0.03 pixels with a very low jitter
(see text). We also show the predicted pointclouds for various methods of a wall at
3000mm distance. Notice that despite the large distance (3m), our results is the less
noisy compared to the considered approaches.

3.1.4.2 Stereo Matching Evaluation

In this section, we compare our method on real data with state of the art stereo

algorithms qualitatively and quantitatively using traditional stereo matching metrics,

such as jitter and bias.

Bias and Jitter. It is known that a stereo system with baseline b, focal length f ,

and a subpixel disparity precision of δ, has a depth error ε that increases quadratically

with respect to the depth Z according to ε = δZ2

bf
[240]. Due to the variable impact

of disparity error on the depth, naive evaluation metrics, like mean error of disparity,

does not effectively reflect the quality of the estimated depth. In contrast, we first

show error of depth estimation and calculate corresponding error in disparity.

To assess the subpixel precision of ASN, we recorded 100 frames with the camera

in front of a flat wall at distances ranging from 500 mm to 3500 mm, and also 100

frames with the camera facing the wall at an angle of 50 deg to assess the behavior on

26



Figure 3.6: Qualitative Evaluation with state of the art. Our method produces
detailed disparity maps. State of the art local methods [19, 59] suffer from textureless
regions. The semi-global scheme used by the sensor [129] is noisier and it oversmooths
the output.

slanted surfaces. In this case, we evaluate by comparing to “ground truth” obtained

with robust plane fitting.

To characterize the precision, we compute bias as the average `1 error between the

predicted depth and the ground truth plane. Fig. 3.5 shows the bias with regard to

the depth for our method, sensor output [129], the state of the art local stereo methods

(PatchMatch [19], HashMatch [59]), and our model trained using the state of the art

unsupervised loss [79], together with visualizations of point clouds colored by surface

normal. Our system performs significantly better than the other methods at all

distances, and its error does not increase dramatically with depth. The corresponding

subpixel disparity precision of our system is 1/30th of a pixel, which is obtained by

fitting a curve using the above mentioned equation (also shown in Fig. 3.5). This

is one order of magnitude lower than the other methods where the precision is not

higher than 0.2 pixel.

To characterize the noise, we compute the jitter as the standard deviation of the

depth error. Fig. 3.5 shows that our method achieves the lowest jitter at almost every

depth in comparison to other methods.
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Comparisons with State of the Art. More qualitative evaluations of ASN in

challenging scenes are shown in Fig. 3.6. As can be seen, local methods like Patch-

Match stereo [19] and HashMatch [59] do not handle mixed illumination with both

active and passive light, and thus produce incomplete disparity images (missing pix-

els shown in black). The sensor output using a semi-global scheme is more suitable

for this data [129], but it is still susceptible to image noise (note the noisy results in

the fourth column). In contrast, our method produces complete disparity maps and

preserves sharp boundaries.

More examples on real sequences are shown in Fig. 3.8 (right), where we show

point clouds colored by surface normal. Our output preserves all the details and ex-

hibits a low level of noise. In comparison, our network trained with the self-supervised

method by Godard et al. [79] over-smooths the output, hallucinating geometry and

flying pixels. Our results are also free from the texture copying problem, most likely

because we use a cost volume to explicitly model the matching function rather than

learn directly from pixel intensity. Even though the training data is mostly captured

from office environment, we find ASN generalize well to various testing scenes, e.g.

living room, play room, dinning room, and objects, e.g. person, sofas, plants, table,

as shown in figures.

3.1.4.3 Ablation Study

In this section, we evaluate the importance of each component in the ASN system.

Due to the lack of ground truth data, most of the results are qualitative – when

looking at the disparity maps, please pay particular attention to noise, bias, edge

fattening, flying pixels, resolution, holes, and generalization capabilities.

Self-supervised vs Supervised. Here we perform more evaluations of our self-

supervised model on synthetic data when supervision is available as well as on real
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Figure 3.7: Ablation study on reconstruction loss. Same networks, trained on 3
different reconstruction losses. Notice how the proposed WLCN loss infers disparities
that better follow the edges in these challenging scenes. Photometric and Perceptual
losses have also a higher level of noise. On the right, we show how our loss achieves
the lowest reconstruction error for low intensity pixels thanks to the proposed WLCN.

data using the depth from the sensor as supervision (together with the proposed

loss). Quantitative evaluation on synthetic data (Fig. 3.8, left bottom), shows that

the supervised model (blue) achieves a higher percentage of pixels with error less

than 5 disparity, however for more strict requirements (error less than 2 pixels) our

self-supervised loss (red) does a better job. This may indicate overfitting of the

supervised model on the training set. This behavior is even more evident on real

data: the model was able to fit the training set with high precision, however on test

images it produces blur results compared to the self-supervised model (see Fig. 3.6,

ASN Semi Supervised vs ASN Self-Supervised).

Reconstruction Loss. We next investigate the impact of our proposed WLCN

loss (as described in Sec. 3.1.3.2) in comparison to a standard photometric error (L1)

and a perceptual loss [122] computed using feature maps from a pre-trained VGG

network. In this experiment, we trained three networks with the same parameters,

changing only the reconstruction loss: photometric on raw IR, VGG conv-1, and the

proposed WLCN, and investigate their impacts on the results.

To compute accurate metrics, we labeled the occluded regions in a subset of our

test case manually (see Fig. 3.9). For those pixels that were not occluded, we com-

puted the photometric error of the raw IR images given the predicted disparity image.
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Figure 3.8: Evaluation on Synthetic and Real Data. On synthetic data (left), no-
tice how our method has the highest percentage of pixels with error smaller than 1
disparity. We also produce sharper edges and less noisy output compared to other
baselines. The state of the art self-supervised method by Godard et al. [79] is very
inaccurate near discontinuities. On the right, we show real sequences from an Intel
RealSense D435 where the gap between [79] and our method is even more evident:
notice flying pixels and oversmooth depthmaps produced by Godard et al. [79]. Our
results has higher precision than the sensor output.

In total we evaluated over 10M pixels. In Fig. 3.7 (right), we show the photometric

error of the raw IR images for the three losses with respect to the pixel intensities.

The proposed WLCN achieves the lowest error for small intensities, showing that

the loss is not biased towards bright areas. For the rest of the range the losses get

similar numbers. Please notice that our loss achieves the lowest error even we did not

explicitly train to minimize the photometric reconstruction. Although the numbers

may seem similar, the effect on the final disparity map is actually very evident. We

show some examples of predicted disparities for each of the three different losses in

Fig. 3.7 (left). Notice how the proposed WLCN loss suffers from less noise, produces

crisper edges, and has a lower percentage of outliers. In contrast, the perceptual loss

highlights the high frequency texture in the disparity maps (i.e. dots), leading to

noisy estimates. Since VGG conv-1 is pre-trained, we observed that the responses are

30



high on bright dots, biasing the reconstruction error again towards close up scenes.

We also tried a variant of the perceptual loss by using the output from our Siamese

tower as the perceptual feature, however the behavior was similar to the case of using

the VGG features.

Invalidation Network. We next investigate whether excluding occluded region

from the reconstruction loss is important to train a network – i.e., to achieve crisper

edges and less noisy disparity maps. We hypothesize that the architecture would try

to overfit occluded regions without this feature (where there are no matches), leading

to higher errors throughout the images. We test this quantitatively on synthetic

images by computing the percentage of pixels with disparity error less than x ∈ [1, 5].

The results are reported in Fig. 3.8. With the invalidation mask employed, our

model outperforms the case without for all the error threshold (Red v.s Purple curve,

higher is better). We further analyze the produced disparity and depth maps on both

synthetic and real data. On synthetic data, the model without invalidation mask

shows gross error near the occlusion boundary (Fig. 3.8, left top). Same situation

happens on real data (Fig. 3.8, right), where more flying pixels exhibiting when no

invalidation mask is enabled.

As a byproduct of the invalidation network, we obtain a confidence map for the

depth estimates. In Fig. 3.9 we show our predicted masks compared with the ones

predicted with a left-right check and the photometric error. To assess the perfor-

mances, we used again the images we manually labeled with occluded regions and

computed the average precision (AP). Our invalidation network and left right check

achieved the highest scores with an AP of 80.7% and 80.9% respectively, whereas the

photometric error only reached 51.3%. We believe that these confidence maps could

be useful for many higher-level applications.
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Figure 3.9: Invalidation Mask prediction. Our invalidation mask is able to detect
occluded regions and it reaches an average precision of 80.7% (see text).

Figure 3.10: Comparison between single pixel loss and the proposed window based
optimization with adaptive support scheme. Notice how the ASW is able to recover
more thin structures and produce less edge fattening.

Window based Optimization. The proposed window based optimization with

Adaptive Support Weights (ASW) is very important to get more support for thin

structures that otherwise would get a lower contribution in the loss and treated as

outliers. We show a comparison of this in Fig. 3.10. Notice how the loss with ASW

is able to recover hard thin structures with higher precision. Moreover, our window

based optimization also produces smoother results while preserving edges and details.

Finally, despite we use a window-based loss, the proposed ASW strategy has a reduced

amount of edge fattening.
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3.1.5 Conclusion

We presented ActiveStereoNet (ASN) [295] the first deep learning method for ac-

tive stereo systems, which produce pixel-wise dense depth from a pair of active IR

images. We designed a novel loss function to cope with high-frequency patterns,

illumination effects, and occluded pixels to address issues of active stereo in a self-

supervised setting. We showed that our method delivers very precise reconstructions

with a subpixel precision of 0.03 pixels, which is one order of magnitude better than

other active stereo matching methods. Compared to other approaches, ASN does

not oversmooth details, and it generates complete depthmaps, crisp edges, and no

flying pixels. As a byproduct, the invalidation network is able to infer a confidence

map of the disparity that can be used for high level applications requiring occlusions

handling. Numerous experiments show state of the art results on different challenging

scenes with a runtime cost of 15ms per frame using an NVidia Titan X.
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3.2 Physically-Based Rendering for Indoor Scene

Understanding Using Convolutional Neural

Networks

3.2.1 Introduction

Multiple images usually enables more reliable scene understanding such as stereo

matching from two images for depth estimation, however multiple calibrated cam-

eras/images require additional hardware and algorithm support, which may not be

available all the time. On the other hand, single image based scene understanding is

extremely useful as it can be run under simple setting and the widely existing inter-

net photos. Apparently, the performance of single image based scene understanding

may not be on par with the multiple image case, and vision tasks sometimes are even

ill-posed, e.g. depth estimation from a single color image. One of the most promising

approaches to tackle this is to use a data-driven method. However, real world data is

very limited for most of these tasks, such as the widely used indoor RGBD dataset

for normal prediction introduced by Silberman et al. [227], which contains a mere

1449 images. Such datasets are not trivial to collect due to various requirements such

as sensing technology for depth and normal [227, 229] and excessive human effort for

semantic segmentation [158, 53]. Moreover, current datasets lack pixel level accuracy

due to sensor noise or labeling error (Fig. 3.11).

This has recently led to utilizing synthetic data in the form of 2D render pairs

(RGB image and per-pixel label map) from digital 3D models [2, 45, 94, 293, 233, 185].

However, there are two major problems that have not been addressed: (1) studies of

how indoor scene context affect training have not been possible due to the lack of large

scene datasets, so training is performed mostly on repositories with independent 3D
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Figure 3.11: Real data (top) vs. synthetic data (bottom). For the real data, note
the noise in normal map and the diminishing accuracy at object boundaries in the
semantic labels.

objects [25]; and (2) systematic studies have not been done on how such data should

be rendered; unrealistic rendering methods often are used in the interest of efficiency.

To address these problems, we introduce a large scale (400K images) synthetic

dataset that is created from 45K 3D houses designed by humans [297]. Using such

realistic indoor 3D environments enable us to create 2D images for training in realistic

context settings where support constructs (e.g. such as walls, ceilings, windows) as

well as light sources exist together with common household objects. Since we have

access to the source 3D models, we can generate dense per-pixel training data for all

tasks, virtually with no cost.

Complete control over the 3D scenes enables us to systematically manipulate

both outdoor and indoor lighting, sample as many camera viewpoints as required,

use the shapes in-context or out-of-context, and render with either simple shading

methods, or physically based based rendering. For three indoor scene understanding

tasks, namely normal prediction, semantic segmentation, and object edge detection,

we study how different lighting conditions, rendering methods, and object context

effects performance.
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OpenGL-DL MLT-IL/OLOpenGL-IL OpenGL-DL MLT-IL/OLOpenGL-IL

Figure 3.12: Render output examples with OpenGL-DL, OpenGL-IL, and MLT-
IL/OL. The physically based rendering with proper illumination provides the best
rendering quality with soft shadow and realistic material, highlighted in the zoomed
in view. First two rows show four typical examples in our dataset, last two rows show
two examples with zoomed in views.

We use our data to train deep convolutional neural networks for per-pixel predic-

tion of semantic segmentation, normal prediction, and object boundary prediction,

followed by finetuning on real data. Our experiments show that for all three indoor

scene understanding tasks, we improve over the state of the art performance. We also

demonstrate that physically based rendering with realistic lighting and soft shadows

(which is not possible without context) is superior to other rendering methods.

In summary, our main contributions are as follows:

• We introduce a dataset with 400K synthetic image instances where each in-

stance consists of three image renders with varying render quality, per-pixel

accurate normal map, semantic labels and object boundaries. The dataset will

be released.
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• We demonstrate how different rendering methods effect normal, segmentation,

and edge prediction tasks. We study the effect of object context, lighting and

rendering methodology on performance.

• We provide pretrained networks that achieve the state of the art on all of the

three indoor scene understanding tasks after fine-tuning.

3.2.2 Related Work

Using synthetic data to increase the data density and diversity for deep neural network

training has shown promising results. To date, synthetic data have been utilized to

generate training data for predicting object pose [233, 185, 86], optical flow [45],

semantic segmentation [93, 94, 293, 207], and investigating object features [2, 125].

Su et al. [233] used individual objects rendered in front of arbitrary backgrounds

with prescribed angles relative to the camera to generate data for learning to pre-

dict object pose. Similarly, Dosovitskiy et al. [45] used individual objects rendered

with arbitrary motion to generate synthetic motion data for learning to predict op-

tical flow. Both works used unrealistic OpenGL rendering with fixed lights, where

physically based effects such as shadows, reflections were not taken into account.

Movshovitz et al. [185] used environment map lighting and showed that it benefits

pose estimation. However, since individual objects are rendered in front of arbitrary

2D backgrounds, the data generated for these approaches lack correct 3D illumina-

tion effects due to their surroundings such as shadows and reflections from nearby

objects with different materials. Moreover, they also lack realistic context for the

object under consideration.

Handa et al. [93, 94] introduced a laboriously created 3D scene dataset and

demonstrated the usage on semantic segmentation training. However, their data

consisted rooms on the order of tens, which has significantly limited variation in

context compared to our dataset with 45K realistic house layouts. Moreover, their
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dataset has no RGB images due to lack of colors and surface materials in their scene

descriptions, hence they were only able to generate depth channels. Zhang et al. [293]

proposed to replace objects in depth images with 3D models from ShapeNet [25].

However, there is no guarantee whether replacements will be oriented correctly with

respect to surrounding objects or be stylistically in context. In contrast, we take

advantage of a large repository of indoor scenes created by human, which guarantees

the data diversity, quality, and context relevance.

Xiang et al. [268] introduced a 3D object-2D image database, where 3D objects

are manually aligned to 2D images. The image provides context, however the 3D

data contains only the object without room structures, it is not possible to extract

per-pixel ground truth for the full scene. The dataset is also limited with the number

of images provided (90K). In contrast, we can provide as many (rendered image,

per-pixel ground truth) pairs as one wants.

Recently, Richter et al. [207] demonstrated collecting synthetic data from realis-

tic game engine by intercepting the communication between game and the graphics

hardware. They showed that the data collected can be used for semantic segmenta-

tion task. Their method ensures as much context as there is in the game (Although

it is limited to only outdoor context, similar to the SYNTHIA [210] dataset). How-

ever they largely reduced the human labor in annotation by tracing geometric entities

across frames, the ground truth (i.e. per-pixel semantic label) collection process is not

completely automated and error prone due to the human interaction: even though

they track geometry through frames and propagate most of the labels, a person needs

to label new objects emerging in the recorded synthetic video. Moreover, it is not

trivial to alter camera view, light positions and intensity, or rendering method due to

lack of access to low level constructs in the scene. On the other hand, our data and

label generation process is automated, and we have full control over how the scene is

lit and rendered.
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Figure 3.13: Typical camera samples in our dataset, and corresponding images
rendered from these viewpoints.

3.2.3 Data

We use a collection of 3D scene models downloaded from the Planner5D website [201].

In total there are 45622 scenes with over 5000K instances of 2644 unique objects

among 84 object categories. Objects are provided with surface materials, including

reflectance, texture, and transparency, which are used to obtain photo-realistic ren-

derings. One of the important aspects of this dataset is the fact that indoor layouts,

furniture/object alignment, and surface materials are designed by people to replicate

existing settings, or to plan for new upgrades for current homes. We will release our

version of this data, together with minor improvements we have made (such as adding

indoor light source labels, as explained later in this section), as well as our camera

settings in order to facilitate repeatability.
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3.2.3.1 Camera Sampling.

For each scene, we select a set of cameras with a process that seeks a diverse set

of views seeing many objects in context. Our process starts by selecting the “best”

camera for each of six horizontal view direction sectors in every room. For each of the

six views, we sample a dense set of cameras on a 2D grid with 0.25 resolution, choosing

a random viewpoint within each grid cell, a random horizontal view direction within

the 60 degree sector, a random height 1.5-1.6m above the floor, and a downward

tilt angle of 11 degrees, while excluding viewpoints within 10cm of any obstacle to

simulate typical human viewing conditions. For each of these cameras, we render

an item buffer and count the number of pixels covered by “objects” in the image

(everything except wall, ceiling, and floor), and select the one with the highest pixel

count amongst those seeing at least three different objects covering at least 1% of the

pixels. This process yields 6N candidate cameras for N rooms. Fig. 3.13 shows the

cameras sampled from an example house.

3.2.3.2 Image Rendering

We render images from these selected cameras using four combinations of rendering

algorithms and lighting conditions, ranging from fast/unrealistic rendering with di-

rectional lights using the OpenGL pipeline to physically-based rendering with local

lights using Mitsuba.

OpenGL with Directional Lights (OpenGL-DL). Our first method renders

images with the OpenGL pipeline. The scene is illuminated with three lights: a single

directional headlight pointing along the camera view direction and two directional

lights pointing in nearly opposite diagonal directions with respect to the scene. No

local illumination, shadows, or indirect illumination is included.
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Figure 3.14: Quality and running time of different rendering techniques. Path tracer
does not converge well and introduce white dots artifacts. Bidirectional path tracer
works well but is very slow. Metropolis Light Transport (MLT) with low sampler rate
for direct illumination still occasionally introduce white dot artifacts. We take MLT
with high sampler rate for direct illumination.

OpenGL with Indoor Lights (OpenGL-IL). Our second method also uses the

OpenGL pipeline. However, the scene is augmented with local lights approximating

the emission of indoor lighting appliances. For each object emitting light, we create a

set of OpenGL point lights and spot lights approximating its emission patterns. We

then render the scene with these lights enabled (choosing the best 8 lights sources for

each object based on illumination intensity), and no shadows or indirect illumination

is included.

Physically Based Rendering with Outdoor Lights (MLT-OL). Our third

method replicates the physics of correct lighting as much as possible to generate

photo-realistic rendering. In order to do so, we setup outdoor illumination which

is in the form of an environment mapping with real high-definition spherical sky

panoramas. The environment map that replicates outdoor lighting is cast through

windows and contributes to the indoor lighting naturally. All windows are set as

fully transparent to prevent artifacts on glasses and facilitate the outdoor lights to

pass through. We use Mitsuba [184] for physically based rendering. We use Path
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Space Metropolis Light Transport (MLT) integrator [257] since it handles complicate

structure and materials more efficiently. A comparison of rendering quality versus

time with different integrators is shown in Fig. 3.14. We can see that MLT integrator

with direct illumination sampler rate 512 produces almost artifact-free renderings

with affordable computation time.

Physically Based Rendering with Indoor Lights (MLT-IL/OL). We also

setup indoor illumination for light resulting from lighting appliances in the scene.

However, the 3D dataset is labeled at the object level (e.g. lamp), and the specific

light generating parts (e.g. bulb) is unknown. Therefore, we manually labeled all

light generating parts of objects in order to generate correct indoor lighting. For light

appliances that do not have a bulb, representing geometry in cases where bulb is

deemed to be not seen, we manually added a spherical bulb geometry at the proper

location. The bulb geometries of the lighting appliances are set as area emitter to

work as indoor lights. As an efficient approximation of the translucent lamp shade,

we set lamp shade geometries to be area emitter as well with very low radiance value.

Similar to the outdoor lighting, we use Mitsuba and MLT integrator for physically

based indoor lights. Fig. 3.12 shows several examples of images generated by different

rendering techniques under the same camera. We can see, especially from the zoomed

in view, that MLT-IL/OL produces soft shadow and natural looking materials.

3.2.3.3 Image Selection

The final step of our image synthesis pipeline is to select a subset of images to use

for training. Ideally, each of the images in our synthetic training set will be similar

to ones found in a test set (e.g., NYUv2). However not all of them are good due to

insufficient lighting or atypical distributions of depths (e.g., occlusion by a close-up

object). We perform a selection procedure to keep only the images that are similar to
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those in NYUv2 dataset in terms of color and depth distribution. Specifically, we first

compute a normalized color histogram for each real image in the NYUv2 dataset. For

each image rendered by MLT-IL/OL, we also get the normalized color histograms

and calculate the histogram similarity with those from NYUv2 as the sum of minimal

value of each bin (Fig. 3.15). Then for each synthesized image, we assign it the

largest similarity compared with all NYUv2 images as the score and do the same for

the depth channel. Finally, we select all the images with color score and depth score

both larger than 0.75. This process selects 391,522 images from the original 681,660

rendered images. Those images form our synthetic training set, and is referred as

MLT in the latter part of this paper.

3.2.3.4 Ground Truth Generation

We generate per-pixel ground truth images encoding surface normal, semantic seg-

mentation, and object boundary for each image. Since we have the full 3D model and

camera viewpoints, generating these ground images can be done via rendering with

OpenGL (e.g., with an item buffer).

3.2.4 Indoor Scene Understanding Tasks

We investigate three most critical scene understanding tasks: (1) surface normal

estimation, (2) semantic segmentation, and (3) object boundary detection. For all

tasks we show how our method and synthetic data compares with state of the art

works in the literature. Specifically, we compare with Eigen et al. [50] for normal

estimation, with Long et al. [166] and Yu et al. [281] for semantic segmentation, and

with Xie et al. [276] for object boundary detection. We perform these comparisons

systematically using different rendering conditions introduced in Section 3.2.3. In

addition, for normal estimation, we also add object without context rendering, which

allows us to investigate the importance of context when using synthetic data as well.
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Figure 3.15: Histogram similarity between synthetic data and real data from NYUv2,
based on which we do the image selection.

3.2.4.1 Normal Estimation

Method. We utilize a fully convolutional network [166] (FCN) with skip-layers for

normal estimation, by combining multi-scale feature maps in VGG-16 network [228]

to perform normal estimation. Specifically, the front-end encoder remains the same

as conv1-conv5 in VGG-16, and the decoder is symmetric to the encoder with con-

volution and unpooling layers. To generate high resolution results and alleviate the

vanishing gradient problems, we use skip links between each pair of corresponding

convolution layers in downstream and upstream parts of the network. To further

compensate the loss of spatial information with max pooling, the network remembers

pooling switches in downstream, and uses them as unpooling switches at upstream in

the corresponding layer. We use the inverse of the dot product between the ground

truth and the estimation as loss function similar to Eigen et al. [50].

Object without Context. To facilitate a systematic comparison with object-

centric synthetic data, where correct context is missing, we use shapes from
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Pre-Train Finetune Selection Mean (◦) ↓ Median(◦) ↓ 11.25◦ (%) ↑ 22.5◦ (%) ↑ 30◦(%) ↑
Eigen et al. [50] 22.2 15.3 38.6 64.0 73.9

NYUv2 27.30 21.12 27.21 52.61 64.72
MLT Object - - 48.78 47.49 3.56 12.79 21.35
MLT-OL - No 49.33 42.30 7.47 23.24 34.09

MLT-IL/OL - No 29.33 22.62 24.00 49.78 61.35
MLT-IL/Ol - Yes 28.59 22.61 25.25 49.80 61.81
OpenGL-DL - Yes 36.89 31.97 15.21 35.32 47.14
OpenGL-IL - Yes 35.93 30.91 15.48 36.67 48.67
OpenGL-IL NYUv2 Yes 23.65 15.71 37.91 62.91 72.59
MLT-IL/OL NYUv2 Yes 22.06 14.78 39.60 65.61 75.25

Table 3.1: Performance of Normal Estimation on NYUv2 with different
training protocols. The first three column lists the dataset for pretraining and
finetuning, and if image selection is done. The evaluation metrics are mean and
median of angular error, and percentage of pixels with error smaller than 11.25◦,
22.5◦, and 30◦.

ShapeNet[25], in addition to the rendering methodologies introduced in Sec. 3.2.3.2.

We randomly pick 3500 models from furniture related categories (e.g. bed, chair,

cabinet, etc.) and set up 20 cameras from randomly chosen distances and viewing

directions. More specifically, we place the model at the center of a 3D sphere

and uniformly sample 162 points on the sphere by subdividing it into faces of an

icosahedron. For each camera a random vertex of the icosachedron is selected. This

point defines a vector together with the sphere center. The camera is placed at

a random distance from the center between 1.5× to 4.5× of object bounding box

diagonal, and points towards the center.

Training. We directly pretrain on our synthetic data, followed by finetuning on

NYUv2 similar to the [5]. We use RMSprop [248] to train our network. The learning

rate is set as 1×10−3, reducing to half every 300K iterations for the pretraining; and

1×10−4 reducing to half every 10K iterations for finetuning. The color image is zero-

centered by subtracting 128. We use the procedure provided by [227] to generate the

ground truth surface normals on NYUv2 as it provides more local details resulting in

more realistic shape representation compared to others [172]. The ground truth also

provides a score for each pixel indicating if the normal converted from local depth is
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Testing Image NYUv2 MLT MLT+NYUv2Ground Truth Error Map

Figure 3.16: Normal estimation results. The pretrained model on MLT provides
more local details, and model further finetuned on NYUv2 provides the best perfor-
mance. The last column shows color image overlaid with angular error map. We can
see a considerable amount of error happens on wall where ground truth is noisy.

reliable. We use only reliable pixels during the training. Refer to our supplementary

material for details on the ground truth generation process.

Experiments. We conduct normal estimation experiments on NYUv2 with differ-

ent training protocols. First, we directly train on NYUv2. Then we pretrain on

various of MLT and OpenGL render settings respectively and finetune on NYUv2.

Table 3.1 shows the performance. We can see that:

• The model pretrained on MLT and finetuned on NYUv2 (the last row) achieves

the best performance, which outperforms the state of the art.

• Without finetuning, pretrained model on MLT significantly outperforms model

pretrained on OpenGL based rendering and achieves similar performance with

the model directly trained on NYUv2. This shows that physically based ren-

dering with correct illumination is essential to encode useful information for

normal prediction task.

46



• The model trained with images after image selection achieves better perfor-

mance than using all rendered images, which demonstrates that good quality of

training image is important for the pretraining.

• The MLT with both indoor and outdoor lighting significantly outperforms the

case with only outdoor lighting, which suggests the importance of indoor light-

ing.

Fig. 3.16 shows visual results for normal estimation on NYUv2 test split. We

can see that the result from the model pretrained on MLT rendering provides sharper

edges and more local details compared to the one from the model further finetuned

on NYUv2, which is presumably because of the overly smoothed and noisy ground

truth. Fig. 3.16 last-column visualizes the angular error of our result compared to the

ground truth, and we can see that a significant portion of the error concentrates on

the walls, where our purely flat prediction is a better representation of wall normals.

On the other hand, the ground truth shows significant deviation from the correct

normal map. Based on this observation, we highlight the importance of high quality

of ground truth. It is clear that training on synthetic data helps our model outperform

and correct the NYUv2 ground truth data at certain regions such as large flat areas.

3.2.4.2 Semantic Segmentation

Method. We use the network model proposed in [281] for semantic segmentation.

The network structure is adopted from the VGG-16 network [228], however using

dilated convolution layers to encode context information, which achieves better per-

formance than [166] on NYUv2 in our experiments. We initialize the weights using

the VGG-16 network [228] trained on ImageNet classification task using the procedure

described in [281]. We evaluate on the same 40 semantic classes as [87].
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Figure 3.17: Semantic Segmentation results. The model pretrained on synthetic
rendering data gives more accurate segmentation result. For example the model
trained only with NYU data mis-labeled the chair and blind in the first column,
while the model pretrained on the synthetic data is able to correctly segment them
out.

Training. To use synthetic data for pretraining, we map our synthetic ground truth

labels to the appropriate class name in these 40 classes1. However, note that there

are several objects that are not present in our synthetic data (e.g. books, papers)

as shown in Fig. 3.18. We first initialize the network with pretrained weights from

ImageNet. We then follow with pretraining on our synthetic dataset, and finally

finetune on NYUv2. We also replicate the corresponding state of the art training

schedules by pretraining on ImageNet, followed directly by finetuning on NYUv2, for

comparison. We use stochastic gradient descent with learning rate of 1 × 10−5 for

training on synthetic data and NYUv2.

Experiments. We use the average pixel-level intersection over union (IoU) to evalu-

ate performance on semantic segmentation. We pretrained the model on our synthetic

data with different rendering method: depth, OpenGL with and without local light,

1Refer to our supplementary material for the exact cross-match.
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Figure 3.18: Distribution of classes in our data.

and with MLT rendering. For the depth based model we encode the depth using

HHA same as [86]. Overall, pretraining on synthetic help improve the performance

in semantic segmentation, compared to directly training on NYUv2 as seen in Fig.

3.17, and Table 3.2.4.2. This shows that the synthetic data helps the network learn

richer high level context information than limited real data.

Handa et al. [94] use only rendered depth to train their 11 class semantic seg-

mentation model due to the lack of realistic texture and material in their dataset

(see HHA results in Table 3.2.4.2). However, our results demonstrate that color in-

formation is critical for more fine gained semantic segmentation task: in the 40 class

task Model trained with color information achieves significantly better performance.

For the color based models, pretraining on physically based rendering images helps

to achieve better performance than pretraining on OpenGL rendering. This find-

ing is consistent with normal estimation experiments. On the other hand, OpenGL

rendering with local lights perform similar to OpenGL rendering without lights.
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Input Pre-train Mean IoU

HHA
ImageNet 4.1
ImageNet+OpenGL 4.3

RGB

Long et al. [166] 31.6
Yu et al. [281] 31.7
ImageNet + OpenGL-DL 32.8
ImageNet + OpenGL-IL 32.9
ImageNet + MLT-IL/OL 33.2

Table 3.2: Performance of Semantic Segmentation on NYUv2 with different
training setting. All models are fine-tuned on NYUv2.

3.2.4.3 Object Boundary Detection

Method. We adopt Xie et al. ’s [276] network architecture for object boundary

detection task as they reported performance on NYUv2. The network starts with

the front end of VGG-16, followed by a set of auxiliary-output layers, which produce

boundary maps in multiple scales from fine to coarse. Each of these boundary maps

are trained under supervision of the ground truth on corresponding scale. A weighted-

fusion layer then learns the weight to combine boundary outputs in multi-scale to

produces the final result (refer to our supplementary material for the detailed network

structure). To evaluate the network, we follow the setting in [87], where the boundary

ground truth is defined as the boundary of instance level segmentation.

Training. Similar to the semantic segmentation, we first initialize the network with

pretrained weights on ImageNet. We then pretrain on our synthetic dataset, and fine-

tune on NYUv2. We also replicate the state of the art training procedure by pretrain-

ing on ImageNet, and directly finetune on NYUv2, for comparison. To highlight the

difference between multiple rendering techniques, we only train on color image with-

out using depth. We follow the same procedure introduced in [276]. The standard

stochastic gradient descend is used for optimization. The learning rate is initially

set to be smaller (2 × 10−7), to deal with larger image resolution of NYUv2, and is

reduced even more, to 1/10 after each 10K iterations on NYUv2. For synthetic data,
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Figure 3.19: Boundary estimation results. The last row shows ground truth over-
laid with the difference between model without (NYUv2) and with (MLT+NYUv2)
synthetic data pretraining. Red and green indicates pixels enhanced and suppressed
by MLT+NYUv2. The model with synthetic data pretraining successfully suppresses
texture and background edges compared to the model without.

Pre-train Finetune OSD↑ OIS↑ AP↑ R50↑
NYUv2 [276] - 0.713 0.725 0.711 0.267
OpenGL-IL - 0.523 0.555 0.511 0.504
MLT-IL/OL - 0.604 0.621 0.587 0.749
OpenGL-IL NYUv2 0.716 0.729 0.715 0.893
MLT-IL/OL NYUv2 0.725 0.736 0.720 0.887

Table 3.3: Performance of boundary detection on NYUv2.

similar to our procedure in like normal estimation task, the learning rate is reduced

every 300k iterations.

Experiments. We train the model proposed in Xie et al. ’s [276] with multiple

different protocols and show our comparison and evaluation on NYUv2 in Table 3.3.

Following the setting of [276], we take the average of the output from 2nd to 4th
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multiscale layers as the final result and perform non-maximum suppression and edge

thinning. We use the ground truth in [87], and evaluation metrics in [43].

We train with the code released by [276] and achieve the performance shown in the

first row of Table 3.3. We could not replicate the exact number in the paper but we

were fairly close, which might be due to the randomized nature of training procedure.

We first finetune the model based on the ImageNet initialization on the synthetic

dataset and further finetune on NYUv2. Table 3.3 shows that the synthetic data

pretraining provides consistent improvement on all evaluation metrics. Consistently,

we see the model pretrained with MLT rendering achieves the best performance.

Fig. 3.19 shows a comparison between results from different models. Pretrained

model on synthetic data, prior to finetuning on real data produces sharper results but

is more sensitive to noise. The last column highlights the difference between model

with and without pretraining on our synthetic data. We can see that edges within

objects themselves as well as the ones in the background (green) are suppressed and

true object boundary (red) are enhanced by the model with pretraining on synthetic.

3.2.5 Conclusion

We investigate the impact of the rendering quality when using synthetic data during

pretraining for single image based scene understanding [297]. We introduce a large-

scale synthetic dataset with 400K rendered images of contextually meaningful 3D

indoor scenes with different lighting and rendering settings, as well as 45K indoor

scenes they were rendered from. We show that pretraining on our physically based

rendering with realistic indoor and outdoor lights boost indoor scene understanding

tasks’ performance. Our experiments show that our approach helps us perform better

than state of the art in surface normal estimation, semantic segmentation, and edge

detection tasks.
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3.3 Deep Depth Completion of a Single RGB-D

Image

3.3.1 Introduction

Not only as a compromised solution when multiple cameras are unavailable, single

image based scene understanding can also benefit and improve other vision tasks. In

this project, we study how to improve the depth map quality for commercial depth

sensor using single image based scene understanding [294].

Despite recent advances in depth sensing technology, commodity-level RGB-D

cameras like Microsoft Kinect, Intel RealSense, and Google Tango still produce depth

images with missing data when surfaces are too glossy, bright, thin, close, or far from

the camera. These problems appear when rooms are large, surfaces are shiny, and

strong lighting is abundant – e.g., in museums, hospitals, classrooms, stores, etc.

Even in homes, depth images often are missing more than 50% of the pixels (Fig.

3.20).

The goal of this work is to complete the depth channel of an RGB-D image cap-

tured with a commodity camera (i.e., fill all the holes). Though depth inpainting has

received a lot of attention over the past two decades [254], it has generally been ad-

dressed with hand-tuned methods that fill holes by extrapolating boundary surfaces

[178] or with Markovian image synthesis [44]. Newer methods have been proposed to

estimate depth de novo from color using deep networks [51]. However, they have not

been used for depth completion, which has its own unique challenges:

Training data. Large-scale training sets are not readily available for captured

RGB-D images paired with ”completed” depth images (e.g., where ground-truth

depth is provided for holes). As a result, most methods for depth estimation are

trained and evaluated only for pixels that are captured by commodity RGB-D cam-
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Figure 3.20: Depth Completion. We fill in large missing areas in the depth channel
of an RGB-D image by predicting normals from color and then solving for completed
depths.

eras [227]. From this data, they can at-best learn to reproduce observed depths, but

not complete depths that are unobserved, which have significantly different character-

istics. To address this issue, we introduce a new dataset with 105,432 RGB-D images

aligned with completed depth images computed from large-scale surface reconstruc-

tions in 72 real-world environments.

Depth representation. The obvious approach to address our problem is to use

the new dataset as supervision to train a fully convolutional network to regress depth

directly from RGB-D. However, that approach does not work very well, especially for

large holes like the one shown in the bottom row of Fig. 3.20. Estimating absolute

depths from a monocular color image is difficult even for people [183]. Rather, we

train the network to predict only local differential properties of depth (surface normals

and occlusion boundaries), which are much easier to estimate [135]. We then solve

for the absolute depths with a global optimization.

Deep network design:
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Figure 3.21: System pipeline. Given an input RGB-D image, we predict surface
normals and occlusion boundaries from color, and then solve for the output depths
with a global linear optimization regularized by the input depth.

Deep network design. There is no previous work on studying how best to design

and train an end-to-end deep network for completing depth images from RGB-D

inputs. At first glance, it seems straight-forward to extend previous networks trained

for color-to-depth (e.g., by providing them an extra depth channel as input). However,

we found it difficult to train the networks to fill large holes from depth inputs – they

generally learn only to copy and interpolate the input depth. It is also challenging

for the network to learn how to adapt for misalignments of color and depth. Our

solution is to provide the network with only color images as input (Figure 3.21). We

train it to predict local surface normals and occlusion boundaries with supervision.

We later combine those predictions with the input depths in a global optimization

to solve back to the completed depth. In this way, the network predicts only local

features from color, a task where it excels. The coarse-scale structure of the scene is

reconstructed through global optimization with regularization from the input depth.

Overall, our main algorithmic insight is that it is best to decompose RGB-D depth

completion into two stages: 1) prediction of surface normals and occlusion boundaries

only from color, and 2) optimization of global surface structure from those predic-

tions with soft constraints provided by observed depths. During experiments we find

with this proposed approach has significantly smaller relative error than alternative
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approaches. It has the extra benefit that the trained network is independent of the

observed depths and so does not need to be retrained for new depth sensors.

3.3.2 Related Work

There has been a large amount of prior work on depth estimation, inpainting, and

processing.

Depth estimation. Depth estimation from a monocular color image is a long-

standing problem in computer vision. Classic methods include shape-from-shading

[292] and shape-from-defocus [239]. Other early methods were based on hand-tuned

models and/or assumptions about surface orientations [107, 217, 218]. Newer meth-

ods treat depth estimation as a machine learning problem, most recently using deep

networks [51, 275]. For example, Eigen et al. first used a multiscale convolutional

network to regress from color images to depths [51, 50]. Laina et al. used a fully

convolutional network architecture based on ResNet [146]. Liu et al. proposed a deep

convolutional neural field model combining deep networks with Markov random fields

[160]. Roy et al. combined shallow convolutional networks with regression forests to

reduce the need for large training sets [211]. All of these methods are trained only

to reproduce the raw depth acquired with commodity RGB-D cameras. In contrast,

we focus on depth completion, where the explicit goal is to make novel predictions

for pixels where the depth sensor has no return. Since these pixels are often missing

in the raw depth, methods trained only on raw depth as supervision do not predict

them well.

Depth inpainting. Many methods have been proposed for filling holes in depth

channels of RGB-D images, including ones that employ smoothness priors [104], fast

marching methods [80, 162], Navier-Stokes [11], anisotropic diffusion [161], back-

ground surface extrapolation [178, 186, 246], color-depth edge alignment [28, 289, 306],
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low-rank matrix completion [278], tensor voting [141], Mumford-Shah functional op-

timization [164], joint optimization with other properties of intrinsic images [7], and

patch-based image synthesis [33, 44, 74]. Recently, methods have been proposed for

inpainting color images with auto-encoders [256] and GAN architectures [198]. How-

ever, prior work has not investigated how to use those methods for inpainting of depth

images. This problem is more difficult due to the absence of strong features in depth

images and the lack of large training datasets, an issue addressed in this paper.

Depth super-resolution. Several methods have been proposed to improve the

spatial resolution of depth images using high-resolution color. They have exploited

a variety of approaches, including Markov random fields [174, 42, 170, 196, 224],

shape-from-shading [92, 283], segmentation [169], and dictionary methods [70, 132,

175, 250]. Although some of these techniques may be used for depth completion, the

challenges of super-resolution are quite different – there the focus is on improving

spatial resolution, where low-resolution measurements are assumed to be complete

and regularly sampled. In contrast, our focus is on filling holes, which can be quite

large and complex and thus require synthesis of large-scale content.

Depth reconstruction from sparse samples. Other work has investigated depth

reconstruction from color images augmented with sparse sets of depth measurements.

Hawe et al. investigated using a Wavelet basis for reconstruction [97]. Liu et al.

combined wavelet and contourlet dictionaries [163]. Ma et al. showed that providing

∼100 well-spaced depth samples improves depth estimation over color-only methods

by two-fold for NYUv2 [173], yet still with relatively low-quality results. These meth-

ods share some ideas with our work. However, their motivation is to reduce the cost

of sensing in specialized settings (e.g., to save power on a robot), not to complete

data typically missed in readily available depth cameras.
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Figure 3.22: Depth Completion Dataset. Depth completions are computed from
multi-view surface reconstructions of large indoor environments. In this example,
the bottom shows the raw color and depth channels with the rendered depth for the
viewpoint marked as the red dot. The rendered mesh (colored by vertex in large
image) is created by combining RGB-D images from a variety of other views spread
throughout the scene (yellow dots), which collaborate to fill holes when rendered to
the red dot view.

3.3.3 Method

In this paper, we investigate how to use a deep network to complete the depth channel

of a single RGB-D image. Our investigation focuses on the following questions: “how

can we get training data for depth completion?,” “what depth representation should

we use?,” and “how should cues from color and depth be combined?.”
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3.3.3.1 Dataset

The first issue we address is to create a dataset of RGB-D images paired with com-

pleted depth images.

A straight-forward approach to this task would be to capture images with a low-

cost RGB-D camera and align them to images captured simultaneously with a higher

cost depth sensor. This approach is costly and time-consuming – the largest public

datasets of this type cover a handful of indoor scenes (e.g., [197, 219, 278]).

Instead, to create our dataset, we utilize existing surface meshes reconstructed

from multi-view RGB-D scans of large environments. There are several datasets of

this type, including Matterport3D [24], ScanNet [35], SceneNN [113], and SUN3D

[89, 273], to name a few. We use Matterport3D. For each scene, we extract a triangle

mesh M with ∼1-6 million triangles per room from a global surface reconstruction

using screened Poisson surface reconstruction [126]. Then, for a sampling of RGB-D

images in the scene, we render the reconstructed mesh M from the camera pose of

the image viewpoint to acquire a completed depth image D*. This process provides

us with a set of RGB-D → D* image pairs without having to collect new data.

Fig. 3.22 shows some examples of depth image completions from our dataset.

Though the completions are not always perfect, they have several favorable properties

for training a deep network for our problem [181]. First, the completed depth images

generally have fewer holes. That’s because it is not limited by the observation of

one camera viewpoint (e.g., the red dot in Fig. 3.22), but instead by the union of

all observations of all cameras viewpoints contributing to the surface reconstruction

(yellow dots in Fig. 3.22). As a result, surfaces distant to one view, but within range

of another, will be included in the completed depth image. Similarly, glossy surfaces

that provide no depth data when viewed at a grazing angle usually can be filled in

with data from other cameras viewing the surface more directly (note the completion
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of the shiny floor in rendered depth). On average, 64.6% of the pixels missing from

the raw depth images are filled in by our reconstruction process.

Second, the completed depth images generally replicate the resolution of the orig-

inals for close-up surfaces, but provide far better resolution for distant surfaces. Since

the surface reconstructions are constructed at a 3D grid size comparable to the res-

olution of a depth camera, there is usually no loss of resolution in completed depth

images. However, that same 3D resolution provides an effectively higher pixel reso-

lution for surfaces further from the camera when projected onto the view plane. As

a result, completed depth images can leverage subpixel antialiasing when rendering

high resolution meshes to get finer resolution than the originals (note the detail in

the furniture in Fig. 3.22).

Finally, the completed depth images generally have far less noise than the originals.

Since the surface reconstruction algorithm combines noisy depth samples from many

camera views by filtering and averaging, it essentially de-noises the surfaces. This

is especially important for distant observations (e.g., >4 meters), where raw depth

measurements are quantized and noisy.

In all, our dataset contains 117,516 RGB-D images with rendered completions,

which we split into a training set with 105,432 images and a test set with 12,084

images.

3.3.3.2 Depth Representation

A second interesting question is “what geometric representation is best for deep depth

completion?”

A straight-forward approach is to design a network that regresses completed depth

from raw depth and color. However, absolute depth can be difficult to predict from

monocular images, as it may require knowledge of object sizes, scene categories, etc.
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Instead, we train the network to predict local properties of the visible surface at each

pixel and then solve back for the depth from those predictions.

Previous work has considered a number of indirect representations of depth. For

example, Chen et al. investigated relative depths [27]. Charkrabarti et al. proposed

depth derivatives [23]. Li et al. used depth derivatives in conjunction with depths

[152]. We have experimented with methods based on predicted derivatives. However,

we find that they do not perform the best in our experiments (see Section 3.3.4).

Instead, we focus on predicting surface normals and occlusion boundaries. Since

normals are differential surface properties, they depend only on local neighborhoods of

pixels. Moreover, they relate strongly to local lighting variations directly observable

in a color image. For these reasons, previous works on dense prediction of surface

normals from color images produce excellent results [5, 50, 150, 262, 297]. Similarly,

occlusion boundaries produce local patterns in pixels (e.g., edges), and so they usually

can be robustly detected with a deep network [49, 297].

A critical question, though, is how we can use predicted surface normals and

occlusion boundaries to complete depth images. Several researchers have used pre-

dicted normals to refine details on observed 3D surfaces [95, 188, 277], and Galliani et

al. [72] used surface normals to recover missing geometry in multi-view reconstruction

for table-top objects. However, nobody has ever used surface normals before for depth

estimation or completion from monocular RGB-D images in complex environments.

Unfortunately, it is theoretically not possible to solve for depths from only surface

normals and occlusion boundaries. There can be pathological situations where the

depth relationships between different parts of the image cannot be inferred only from

normals. For example, in Fig. 3.23(a), it is impossible to infer the depth of the wall

seen through the window based on only the given surface normals. In this case, the

visible region of the wall is enclosed completely by occlusion boundaries (contours)
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Figure 3.23: Using surface normals to solve for depth completion. (a) An
example of where depth cannot be solved from surface normal. (b) The area missing
depth is marked in red. The red arrow shows paths on which depth cannot be
integrated from surface normals. However in real-world images, there are usually
many paths through connected neighboring pixels (along floors, ceilings, etc.) over
which depths can be integrated (green arrows).

from the perspective of the camera, leaving its depth indeterminate with respect to

the rest of the image.

In practice, however, for real-world scenes it is very unlikely that a region of an

image will both be surrounded by occlusion boundaries AND contain no raw depth

observations at all (Fig. 3.23(b)). Therefore, we find it practical to complete even

large holes in depth images using predicted surface normals with coherence weighted

by predicted occlusion boundaries and regularization constrained by observed raw

depths. During experiments, we find that solving depth from predicted surface nor-

mals and occlusion boundaries results in better depth completions than predicting

absolute depths directory, or even solving from depth derivatives (see Section 3.3.4).

3.3.3.3 Network Architecture and Training

A third interesting question is “what is the best way to train a deep network to predict

surface normals and occlusion boundaries for depth completion?”

For our study, we pick the deep network architecture proposed in Zhang et.al be-

cause it has shown competitive performance on both normal estimation and bound-
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ary detection [297]. The model is a fully convolutional neural network built on the

back-bone of VGG-16 with symmetry encoder and decoder. It is also equipped with

short-cut connections and shared pooling masks for corresponding max pooling and

unpooling layers, which are critical for learning local image features. We train the

network with “ground truth” surface normals and silhouette boundaries computed

from the reconstructed mesh.

After choosing this network, there are still several interesting questions regarding

how to training it for depth completion. The following paragraphs consider these

questions with a focus on normal estimation, but the issues and conclusions apply

similarly for occlusion boundary detection.

What loss should be used to train the network? Unlike past work on surface

normal estimation, our primary goal is to train a network to predict normals only

for pixels inside holes of raw observed depth images. Since the color appearance

characteristics of those pixels are likely different than the others (shiny, far from

the camera, etc.), one might think that the network should be supervised to regress

normals only for these pixels. Yet, there are fewer pixels in holes than not, and so

training data of that type is limited. It was not obvious whether it is best to train

only on holes vs. all pixels. So, we tested both and compared.

We define the observed pixels as the ones with depth data from both the raw

sensor and the rendered mesh, and the unobserved pixels as the ones with depth from

the rendered mesh but not the raw sensor. For any given set of pixels (observed,

unobserved, or both), we train models with a loss for only those pixels by masking

out the gradients on other pixels during the back-propagation.

Qualitative and quantitative results comparing the results for different trained

models are shown in supplemental material. The results suggest that the models

trained with all pixels perform better than the ones using only observed or only
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unobserved pixels, and ones trained with rendered normals perform better than with

raw normals.

What image channels should be input to the network? One might think

that the best way to train the network to predict surface normals from a raw RGB-

D image is to provide all four channels (RGBD) and train it to regress the three

normal channels. However, surprisingly, we find that our networks performed poorly

at predicting normals for pixels without observed depth when trained that way. They

are excellent at predicting normals for pixels with observed depth, but not for the ones

in holes – i.e., the ones required for depth completion. This result holds regardless of

what pixels are included in the loss.

We conjecture that the network trained with raw depth mainly learns to compute

normals from depth directly – it fails to learn how to predict normals from color

when depth is not present, which is the key skill for depth completion. In general, we

find that the network learns to predict normals better from color than depth, even

if the network is given an extra channel containing a binary mask indicating which

pixels have observed depth [291]. For example, in Fig. 3.24, we see that the normals

predicted in large holes from color alone are better than from depth, and just as good

as from both color and depth. Quantitative experiments support this finding in Table

3.4.

This result is very interesting because it suggests that we can train a network to

predict surface normals from color alone and use the observed depth only as regular-

ization when solving back for depth from normals (next section). This strategy of

separating “prediction without depth” from “optimization with depth” is compelling

for two reasons. First, the prediction network does not have to be retrained for dif-

ferent depth sensors. Second, the optimization can be generalized to take a variety of
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Figure 3.24: Surface normal estimation for different inputs. The top row shows
an input color image, raw depth, and the rendered normal. The bottom row shows
surface normal predictions when the inputs are depth only, color only, and both. The
middle one performs the best for the missing area, while comparable elsewhere with
the other two models even without depth as input.

Depth Completion Surface Normal Estimation
Input Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252↑ 1.253↑ Mean↓ Median↓ 11.25↑ 22.5↑ 30↑
Depth 0.107 0.165 38.89 48.54 61.12 73.57 80.98 35.08 23.07 27.6 49.1 58.6
Both 0.090 0.124 40.13 51.26 64.84 76.46 83.05 35.30 23.59 26.7 48.5 58.1
Color 0.089 0.116 40.63 51.21 65.35 76.64 82.98 31.13 17.28 37.7 58.3 67.1

Table 3.4: Effect of different inputs to our deep network. We train models
taking depth, color, and both respectively for surface normal estimation and depth
completion. Using only color as input achieves similar performance as the case with
both.

depth observations as regularization, including perhaps sparse depth samples [173].

This is investigated experimentally in Section 3.3.4.

3.3.3.4 Optimization

After predicting the surface normal image N and occlusion boundary image B, we

solve a system of equations to complete the depth image D. The objective function
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is defined as the weighted sum of squared errors with four terms:

E = λDED + λSES + λNENB

ED =
∑
p∈Tobs

||D(p)−D0(p)||2

EN =
∑
p,q∈N

|| < v(p, q), N(p) > ||2

ES =
∑
p,q∈N

||D(p)−D(q))|2

(3.1)

where ED measures the distance between the estimated depth D(p) and the observed

raw depth D0(p) at pixel p, EN measures the consistency between the estimated depth

and the predicted surface normal N(p), ES encourages adjacent pixels to have the

same depths. B ∈ [0, 1] down-weights the normal terms based on the predicted

probability a pixel is on an occlusion boundary (B(p)).

In its simplest form, this objective function is non-linear, due to the normalization

of the tangent vector v(p, q) required for the dot product with the surface normal

in EN . However, we can approximate this error term with a linear formation by

foregoing the vector normalization, as suggested in [188]. In other settings, this

approximation would add sensitivity to scaling errors, since smaller depths result in

shorter tangents and potentially smaller EN terms. However, in a depth completion

setting, the data term ED forces the global solution to maintain the correct scale by

enforcing consistency with the observed raw depth, and thus this is not a significant

problem.

Since the matrix form of the system of equations is sparse and symmetric positive

definite, we can solve it efficiently with a sparse Cholesky factorization (as imple-

mented in cs cholsol in CSparse [37]). The final solution is a global minimum to the

approximated objective function.

This linearization approach is critical to the success of the proposed method.

Surface normals and occlusion boundaries (and optionally depth derivatives) capture
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only local properties of the surface geometry, which makes them relatively easy to

estimate. Only through global optimization can we combine them to complete the

depths for all pixels in a consistent solution.

3.3.4 Experimental Results

We ran a series of experiments to test the proposed methods. Unless otherwise

specified, networks were pretrained on the SUNCG dataset [232, 297] and fine-tuned

on the training split of the our new dataset using only color as input and a loss

computed for all rendered pixels. Optimizations were performed with λD = 103,

λN = 1, and λS = 10−3. Evaluations were performed on the test split of our new

dataset.

We find that predicting surface normals and occlusion boundaries from color at

320x256 takes ∼0.3 seconds on a NVIDIA TITAN X GPU. Solving the linear equa-

tions for depths takes ∼1.5 seconds on a Intel Xeon 2.4GHz CPU.

3.3.4.1 Ablation Studies

The first set of experiments investigates how different test inputs, training data, loss

functions, depth representations, and optimization methods affect the depth predic-

tion results (further results can be found in the supplemental material).

Since the focus of our work is predicting depth where it is unobserved by a depth

sensor, our evaluations measure errors in depth predictions only for pixels of test

images unobserved in the test depth image (but present in the rendered image). This

is the opposite of most previous work on depth estimation, where error is measured

only for pixels that are observed by a depth camera.

When evaluating depth predictions, we report the median error relative to the ren-

dered depth (Rel), the root mean squared error in meters (RMSE), and percentages of

pixels with predicted depths falling within an interval ([δ = |predicted− true|/true]),
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where δ is 1.05, 1.10, 1.25, 1.252, or 1.253. These metrics are standard among previous

work on depth prediction, except that we add thresholds of 1.05 and 1.10 to enable

finer-grained evaluation.

When evaluating surface normal predictions, we report the mean and median

errors (in degrees), plus the percentages of pixels with predicted normals less than

thresholds of 11.25, 22.5, and 30 degrees.

What data should be input to the network? Table 3.4 shows results of an

experiment to test what type of inputs are best for our normal prediction network:

color only, raw depth only, or both. Intuitively, it would seem that inputting both

would be best. However, we find that the network learns to predict surface normals

better when given only color (median error = 17.28◦ for color vs. 23.07◦ for both),

which results in depth estimates that are also slightly better (Rel = 0.089 vs. 0.090).

This difference persists whether we train with depths for all pixels, only observed

pixels, or only unobserved pixels (results in supplemental material). We expect the

reason is that the network quickly learns to interpolate from observed depth if it is

available, which hinders it from learning to synthesize new depth in large holes.

The impact of this result is quite significant, as it motivates our two-stage system

design that separates normal/boundary prediction only from color and optimization

with raw depth.

What depth representation is best? Table 3.5 shows results of an experiment

to test which depth representations are best for our network to predict. We train

networks separately to predict absolute depths (D), surface normals (N), and depth

derivatives in 8 directions (DD), and then use different combinations to complete

the depth by optimizing Equation 3.1. The results indicate that solving for depths

from predicted normals (N) provides the best results (Rel = 0.089 for normals (N)

as compared to 0.167 for depth (D), 0.100 for derivatives (DD), 0.092 for normals
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and derivatives (N+DD). We expect that this is because normals represent only the

orientation of surfaces, which is relatively easy to predict [135]. Moreover, normals do

not scale with depth, unlike depths or depth derivatives, and thus are more consistent

across a range of views.

B Rep Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252↑ 1.253↑
- D 0.167 0.241 16.43 31.13 57.62 75.63 84.01

No
DD 0.123 0.176 35.39 45.88 60.41 73.26 80.73

N+DD 0.112 0.163 37.85 47.22 61.27 73.70 80.83
N 0.110 0.161 38.12 47.96 61.42 73.77 80.85

Yes
DD 0.100 0.131 37.95 49.14 64.26 76.14 82.63

N+DD 0.092 0.122 39.93 50.73 65.33 77.04 83.25
N 0.089 0.116 40.63 51.21 65.35 76.74 82.98

Table 3.5: Effect of predicted representation on depth accuracy. “DD” repre-
sents depth derivative, and “N” represents surface normal. We also evaluate the effect
of using boundary weight. The first row shows the performance of directly estimating
depth. Overall, solving back depth with surface normal and occlusion boundary gives
the best performance.

Figure 3.25: Effect of occlusion boundary prediction on normals. The 2nd
column shows the estimated surface normal and occlusion boundary. The 3rd and
4th column shows the output of the optimization with/without occlusion boundary
weight. To help understand the 3D geometry and local detail, we also visualize the
surface normal computed from the output depth. The occlusion boundary provides
information for depth discontinuity, which help to maintain boundary sharpness.
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Does prediction of occlusion boundaries help? The last six rows of Table

3.5 show results of an experiment to test whether down-weighting the effect of sur-

face normals near predicted occlusion boundaries helps the optimizer solve for better

depths. Rows 2-4 are without boundary prediction (“No” in the first column), and

Rows 5-7 are with (“Yes”). The results indicate that boundary predictions improve

the results by ∼19% (Rel = 0.089 vs. 0.110). This suggests that the network is on

average correctly predicting pixels where surface normals are noisy or incorrect, as

shown qualitatively in Fig. 3.25.

How much observed depth is necessary? Fig. 3.26 shows results of an exper-

iment to test how much our depth completion method depends on the quantity of

input depth. To investigate this question, we degraded the input depth images by

randomly masking different numbers of pixels before giving them to the optimizer to

solve for completed depths from predicted normals and boundaries. The two plots

shows curves indicating depth accuracy solved for pixels that are observed (left) and

unobserved (right) in the original raw depth images. From these results, we see that

the optimizer is able to solve for depth almost as accurately when given only a small

fraction of the pixels in the raw depth image. As expected, the performance is much

worse on pixels unobserved by the raw depth (they are harder). However, the depth

estimations are still quite good when only a small fraction of the raw pixels are pro-

vided (the rightmost point on the curve at 2000 pixels represents only 2.5% of all

pixels). This results suggests that our method could be useful for other depth sensor

designs with sparse measurements. In this setting, our deep network would not have

to be retrained for each new dense sensor (since it depends only on color), a benefit

of our two-stage approach.

70



1 5 20 100 500 2000 All
Number of Pixels

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
ix

el
s

Matterport3D: Observed 

<1.05
<1.10
<1.25
<1.252

<1.253

1 5 20 100 500 2000 All
Number of Pixels

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
ix

el
s

Matterport3D: Unobserved

<1.05
<1.10
<1.25
<1.252

<1.253

Figure 3.26: Effect of sparse raw depth inputs on depth accuracy. The depth
completion performance of our method w.r.t number of input pixels with depth. The
plot shows that depth estimation on unobserved pixels is harder than the observed.
It also shows that our method works well with only a small number of sparse pixels,
which is desirable to many applications.

3.3.4.2 Comparison to Baseline Methods

The second set of experiments investigates how the proposed approach compares to

baseline depth inpainting and depth estimation methods.

Comparison to Inpainting Methods Table 3.6 shows results of a study compar-

ing our proposed method to typical non-data-driven alternatives for depth inpainting.

The focus of this study is to establish how well-known methods perform to provide

a baseline on how hard the problem is for this new dataset. As such, the methods

we consider include: a) joint bilinear filtering [227] (Bilateral), b) fast bilateral solver

[8] (Fast), and c) global edge-aware energy optimization [65] (TGV). The results in

Table 3.6 show that our method significantly outperforms these methods (Rel=0.089

vs. 0.103-0.151 for the others). By training to predict surface normals with a deep

network, our method learns to complete depth with data-driven priors, which are
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stronger than simple geometric heuristics. The difference to the best of the tested

hand-tuned approaches (Bilateral) can be seen in Fig. 3.27.

Method Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252↑ 1.253↑
Smooth 0.151 0.187 32.80 42.71 57.61 72.29 80.15

Bilateral [227] 0.118 0.152 34.39 46.50 61.92 75.26 81.84
Fast [8] 0.127 0.154 33.65 45.08 60.36 74.52 81.79

TGV [65] 0.103 0.146 37.40 48.75 62.97 75.00 81.71
Ours 0.089 0.116 40.63 51.21 65.35 76.74 82.98

Table 3.6: Comparison to baseline inpainting methods. Our method signifi-
cantly outperforms baseline inpainting methods.

Comparison to Depth Estimation Methods. Table 3.7 shows results for a study

comparing our proposed method to previous methods that estimate depth only from

color. We consider comparisons to Chakrabarti et al. [23], whose approach is most

similar to ours (it uses predicted derivatives), and to Laina et al. [146], who recently

reported state-of-the-art results in experiments with NYUv2 [227]. We finetune [23]

on our dataset, but use pretrained model on NYUv2 for [146] as their training code

is not provided.

Of course, these depth estimation methods solve a different problem than ours (no

input depth), and alternative methods have different sensitivities to the scale of depth

values, and so we make our best attempt to adapt both their and our methods to

the same setting for fair comparison. To do that, we run all methods with only color

images as input and then uniformly scale their depth image outputs to align perfectly

with the true depth at one random pixel (selected the same for all methods). In our

case, since Equation 3.1 is under-constrained without any depth data, we arbitrarily

set the middle pixel to a depth of 3 meters during our optimization and then later

apply the same scaling as the other methods. This method focuses the comparison

on predicting the “shape” of the computed depth image rather than its global scale.
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Figure 3.27: Comparison to inpainting with a joint bilateral filter. Our
method learns better guidance from color and produce comparatively sharper and
more accurate results.

73



Figure 3.28: Comparison to deep depth estimation methods. We compare
with the state of the art methods under the depth estimation setting. Our method
produces not only accurate depth value but also large scale geometry as reflected in
the surface normal.

Results of the comparison are shown in Fig. 3.28 and Table 3.7. From the qualita-

tive results in Fig. 3.28, we see that our method reproduces both the structure of the

scene and the fine details best – even when given only one pixel of raw depth. Accord-

ing to the quantitative results shown in Table 3.7, our method is 23-40% better than

the others, regardless of whether evaluation pixels have observed depth (Y) or not

(N). These results suggest that predicting surface normals is a promising approach to

depth estimation as well.
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Obs Meth Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252↑ 1.253↑

Y
[146] 0.190 0.374 17.90 31.03 54.80 75.97 85.69
[23] 0.161 0.320 21.52 35.5 58.75 77.48 85.65

Ours 0.130 0.274 30.60 43.65 61.14 75.69 82.65

N
[146] 0.384 0.572 8.86 16.67 34.64 55.60 69.21
[23] 0.352 0.610 11.16 20.50 37.73 57.77 70.10

Ours 0.283 0.537 17.27 27.42 44.19 61.80 70.90

Table 3.7: Comparison to deep depth estimation methods. We compare with
Laina et al. [146] and Chakrabarti et al.[23]. All the methods perform worse on
unobserved pixels than the observed pixels, which indicates unobserved pixels are
harder. Our method significantly outperform other methods.

3.3.5 Conclusion

This chapter describes an example of leveraging single image based scene understand-

ing to enhance vision tasks. A deep learning framework is proposed to complete the

depth channel of an RGB-D image acquired with a commodity RGB-D camera. It

provides two main research contributions. First, it proposes to complete depth with

a two stage process where surface normals and occlusion boundaries are predicted

from color, and then completed depths are solved from those predictions. Second,

it learns to complete depth images by supervised training on data rendered from

large-scale surface reconstructions. During tests with a new benchmark, we find the

proposed approach outperforms previous baseline approaches for depth inpainting

and estimation.
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Chapter 4

Holistic Scene Understand

In this chapter, we study the scene understanding using holistic representation. In

Chapter 4.1, we show how to produce bounding box scene understanding from a sin-

gle color panorama and demonstrate the importance of scene context for 3D object

detection and room layout estimation [296]. In Chapter 4.2, we propose a deep learn-

ing system that produce bounding box representation directly with context encoded

explicitly [293].
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4.1 PanoContext: A Whole-room 3D Context

Model for Panoramic Scene Understanding

4.1.1 Introduction

Recognizing 3D objects from an image has been a central research topic since the

computer vision field was established [208]. While the past decade witnesses rapid

progress on bottom-up object detection methods [63, 53, 255, 263, 78], the improve-

ment brought by the top-down context cue is rather limited, as demonstrated in

standard benchmarks (e.g. PASCAL VOC[53]). In contrast, there are strong psy-

chophysical evidences that context plays a crucial role in scene understanding for

humans [16, 249].

We believe that one of the main reasons for this gap is because the field of view

(FOV) for a typical camera is only about 15% of that of the human vision system.

The approximate FOV of a single human eye is about 95◦. Two eyes give us almost

180◦ FOV. Considering the movement of eyeballs (head rotation excluded, peripheral

vision included), the horizontal FOV of the human vision system is as high as 270◦.

However, the FOV of a typical camera is much smaller. For example, on standard

full-frame cameras, the horizontal FOV is only 39.6◦ (or 54.4◦) with a standard 50mm

lens (or with a 35mm wide-angle lens). This problem is exemplified in Fig. 4.1. The

narrow FOV hinders the context information in several ways. Firstly, a limited FOV

sees only a small fraction of all scene objects, and therefore, observes little interplay

among them. For example, on average, there is only 1.5 object classes and 2.7 object

instances per image in PASCAL VOC. Secondly, the occurrence of an object becomes

unpredictable with a small FOV. For example, a typically bedroom should have at

least one bed, which can serve as a strong context cue. But in a bedroom picture

of small FOV (Fig. 4.1), there might or might not be a bed, depending on the

direction the camera looks at. Given a much limited FOV, it is unfair to ask computer
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Figure 4.1: Comparison of field-of-view. A camera with narrow FOV might not
see a bed in a bedroom which complicates the context model.

vision algorithms to match the performance of human vision. Therefore, we advocate

the use of panoramic images in scene understanding, which nowadays can be easily

obtained by camera arrays (e.g. Google Streetview), special lenses (e.g. 0-360.com),

smartphones (e.g. cycloramic.com) or automatic image stitching algorithms (e.g.

[168, 20, 21]).

We present a whole-room 3D context model to address the indoor scene under-

standing problem from a single panorama (Fig. 4.2) [296]. In a panorama, char-

acteristic scene objects such as beds and sofas are usually visible despite occlusion,

so that we can jointly optimize the room layout and object detection to exploit the

contextual information in its full strength. Our output is a 3D room layout with

recognized scene objects represented by their 3D bounding boxes. We use context to

decide number of instances, to assign object semantics, to sample objects, to valid

whole-room hypotheses, to extract room model feature, to reconstruct 3D and to

adjust final result. An example of input and output are provided in Fig. 4.2.

Our method consists of two steps: bottom-up hypotheses generation and holistic

hypotheses ranking. It starts by generating hypotheses for the room layout and ob-

ject bounding boxes in a bottom-up fashion using a variety of image evidences, e.g.

edge, segmentation, orientation map and geometric context. 3D scene hypotheses are

formed from these hypothesized room layouts and object bounding boxes. A trained

Support Vector Machine (SVM) [54] ranks these 3D scene hypotheses and chooses

the best one. Finally, we locally refine good hypotheses to further maximize their
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SVM scores. The SVM is trained utilizing both image information and room struc-

ture constrains from our training data, which consists of high-resolution panorama

images with detail object annotations and 3D ground truth reconstructed using the

2D annotations.

The whole-room contextual information is critical in many key steps of our sys-

tem. During hypothesis generation, the object categories are predicted based on its

relative location in the room. We sample the number of object instances according

to the typical distribution of each object category, guided by the pairwise position

relationship among objects. During hypothesis ranking, we firstly align each hypoth-

esis with the 3D rooms from the training set to tell if it is valid. This non-parametric

room alignment captures high order relationship among all objects, which cannot be

represented well by pairwise constraints. Secondly, we also build a room model for

each hypothesis. This room model includes color and texture statistics for the fore-

ground and background. Since we know all the objects and room layout in 3D, we can

calculate these statistics easily from image regions unoccluded by objects.We use this

model to judge how well a hypothesis explains the image evidences. Thirdly, because

we map each hypothesis to 3D space by reconstructing the objects and room layouts,

a wrong room layout hypothesis is typically ranked low by the SVM, since it often

produces unreasonable 3D bounding boxes of objects. This implicit 3D interaction

between objects and room layout enables us to identify many bad hypotheses. Dur-

ing final adjustment, we also use the object number distribution and pairwise context

model to guide the search.

As demonstrated in our experiments, we can recognize objects using only 3D

contextual information (without a classifier to discriminate object categories based

on image feature), and still achieve a comparable performance with the state-of-the-

art object detector [63], which learns a mapping from image region feature to object

category. This shows that context is as powerful as object appearance and much more
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Input: a single-view panorama Output: 3D reconstructionOutput: object detection
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Figure 4.2: Input and output. Taken a full-view panorama as input, our algorithm
detects all the objects inside the panorama and represents them as bounding boxes
in 3D, which also enables 3D reconstruction from a single-view.

useful than we previously thought. The root of context model being under-utilized is

partly because the regular FOVs are too small.

In the following section, we will describe our algorithm in greater details. We will

also talk about the construction of a 3D panorama data set and present experiments

to evaluate the algorithm in Sec. 4.1.4. In Sec. 4.1.2, we will discuss the relation of

our proposed method with existing ones.

4.1.2 Related Work

There are many exceptional works that inspired the design of our algorithm. The

surface orientation and depth estimation from a single image is studied in [39, 34, 106,

218, 107, 110, 109, 108]. The state-of-the-art of single view room layout estimation

can be found in [100, 149, 85, 91, 300, 259, 285, 101, 148, 200, 284, 199, 102, 222,

272, 83, 214, 215, 32, 38, 301, 221, 223, 26, 71]. Our work extends them to full-view

panorama to fully exploit the contextual information. There are also many great

works that model context and object relations [204, 252, 31, 30, 29, 41, 145, 238,

237, 234, 236, 235] and parse a scene [151, 103, 91] in a unified way. Although they

have some success on reasoning about 3D, their main focus is still on 2D, while our

context model is fully in 3D. For scene parsing grammar, several approaches such as

And-Or graph, stochastic grammar, or probabilistic languages have been proposed

[265, 9, 245, 176, 91, 253, 153, 154]. Our data-driven sampling and discriminative
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training provides a simple but powerful way to combine the bottom-up image evidence

and top-down context information. Same with our assumptions, 3D cuboids are also

a popular representation for scene understanding [100, 274, 101, 301, 221, 157, 66,

270]. For object recognition datasets, there are several main-stream datasets that

contain object annotation in regular pictures [53, 269, 213, 271, 10, 40, 226, 212]. Our

panorama dataset is the first annotated panorama dataset for scene understanding,

and we also provide ground truth in 3D. For using panoramas in computer vision

tasks, there are several projects focus on scene viewpoint recognition, localization,

image extrapolation and warping [269, 192, 298, 99]. Recently, the rapid increase of

popularity of RGB-D sensors enables many seminar works on scene understanding

in 3D [230, 266, 84, 87, 227, 120, 133, 290, 119, 303, 157]. We expect our approach

can also be naturally extended into RGB-D panoramas or RGB-D scanned 3D rooms

[273].

4.1.3 Method

As shown in Fig. 4.2, our input is a panorama covering 360◦ horizontal and 180◦

vertical FOV represented in equirectangular projection. Our output is a 3D box

representation of the sceneWe adopt the Manhattan world assumption, assuming

that the scene consists of 3D cuboids aligned with three principle directions1.

Our method first generates whole-room hypotheses and then ranks them holis-

tically. The challenge for hypotheses generation is to maintain high recall using a

managable number of hypotheses, while the challenge for holistic ranking is to have

high precision. To generate hypotheses, we first estimate vanishing points by Hough

Transform based on the detected line segments (Sec. 4.1.3.1). We then generate

3D room layout hypotheses from line detections and verify them with the computed

1We focus on indoor scenes only, although our algorithm may be generalized to outdoor scenes as well. We assume
an object can either stand on the ground, sit on another object, or hang on a wall (i.e. no object floats in space). We
also assume that the height of camera center is 1.6 meters away from the floor to obtain a metric 3D reconstruction.
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Figure 4.3: Hough transform for vanishing point detection. The left image
shows the detected edges and vanishing points. The colors indicate the edge direc-
tions. The right image shows the votes on each bin of the half sphere. The sizes and
colors both indicate the number of votes.

geometric context and orientation map on the panorama (Sec. 4.1.3.2). For objects,

we generate 3D cuboid hypotheses using rectangle detection and image segmenta-

tion (Sec. 4.1.3.3). Next, we use sampling to generate full scene hypotheses, each of

which has a 3D room and multiple 3D objects inside (Sec. 4.1.3.4). To choose the

best hypothesis that is supported by the image evidence and structurally meaningful

(i.e. satisfying all context constraints), we extract various features and train a SVM

to rank these hypotheses holistically (Sec. 4.1.3.5). Finally, we locally adjust the

top hypothesis and search for a solution that maximizes the SVM score by adding,

deleting and swapping an object.

4.1.3.1 Vanishing point estimation for panoramas

We detect line segments on the panorama and use them to vote for the vanishing

directions (Fig. 4.3). To take full advantage of previous line segment detection works

on standard photo,we convert a panorama image to a set of perspective images,

and run the state-of-the-art Line Segment Detection (LSD) algorithm [258] in each

perspective image, and warp all detected line segments back to the panorama.
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A line segment in 3D space corresponds to a section of a great circle on a sphere,

and displays as a curve in panorama. For each line l, we use n to denote the normal

of the plane where its great circle lies in. The vanishing direction v associated with

the line l should be perpendicular to n. We use a hough transform [112] to find all

vanishing directions. We uniformly divide the unit sphere into bins by recursively

dividing triangles of a icosahedron. A line segments l will vote for a bin whose center

nb satisfies nb · n = 0. We then find three mutually orthogonal bins with maximal

sum of votes as three vanishing directions. After that, we snap all line segments to

align with their vanishing directions.

4.1.3.2 Room layout hypothesis generation

Because the room layout is essential to generate good object cuboid hypotheses in 3D,

we first obtain some good room layouts to reduce the burden of 3D object detection

in the next step. We randomly generate many room layout hypotheses and keep those

consistent with a pixel-wise surface normal direction map estimated on panorama.

A 3D room layout can be generated by sampling line segments as room corners

[100]. Geometrically, five lines determine a cuboid in 3D space except some degenera-

tive cases. We classify each line segment with two labels from top/bottom, front/back,

and right/left according to its association to the vanishing directions, and randomly

sample five non-degenerative lines to form a room layout hypothesis. To reduce the

number of hypotheses while keeping the good ones, we use the surface normal con-

sistency with a pixel-wise surface direction estimation from panorama to rank these

hypotheses and choose the top 50 (since the recall starts to saturate around 50 in

Fig. 4.11).

Orientation Map (OM) [149] and Geometric Context (GC) [100] provide pixel-wise

surface normal estimation for ordinary perspective images. We convert a panorama

into several overlapping perspective images, and apply OM and GC on these images
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Orientation Map (OM) Geometric Context (GC)OM is better GC is better

Figure 4.4: OM vs. GC. Here shows the OM and GC for the panorama image in
Fig. 4.1. The curve at the center shows the accuracy comparison between OM and
GC as the vertical view angle changes (data is from all training images). We can
clearly see that OM is better at the upper part while GC is better at the lower part,
and there is a clear threshold to combine them.

respectively and project results back to the panorama. From our training data with

manually marked ground truth wall orientations, we observe that GC provides better

normal estimation at the bottom (probably because the model was trained using

images looking slightly downwards), and OM works better at the top half of an image

(probably less cluttered.), as shown in Fig. 4.4. Therefore, we combine the top part

of OM and the bottom part of GC to evaluate the room layout. As can be seen from

Fig. 4.11(left), the recall rate is significantly improved by combining OM and GC.

Fig. 4.7 shows some good room layout hypotheses, which are generally very close to

the ground truth.

4.1.3.3 3D object hypotheses generation

After generating a set of good 3D room layout hypotheses, the next step is to gen-

erate 3D cuboid hypotheses for major objects in the room. To obtain high recall

for hypotheses generation, we use two complementary approaches: a detection-based

method to apply a 2D rectangle detector to the projections of a panorama along the

three principle directions, and a segmentation-based method to segment the image

and fit a 3D cuboid to each segment by sampling its boundaries.

84



Segmentation Fitted cuboid projection

Rectangle detectionProjected views Rectangle detector

  RANSAC fitting

Se
gm

en
ta

tio
n-

ba
se

d
D

et
ec

tio
n-

ba
se

d

Figure 4.5: Two ways to generate object hypotheses: detection and segmenta-
tion.

Detection-based cuboid generation: We project the input panorama ortho-

graphically to six axis-aligned views, and run a rectangle detector in each projection

respectively (Fig. 4.5(top)). Our rectangle detector is similar as Deformable Part

Model [63] but without spring-like constraints. We define a part at each corner and

the middle of each edge of the rectangle. We use the SUN primitive dataset [274]

containing 382 annotated cuboid images, and transform each cuboid surface to an

axis aligned rectangle to train each part detector independently. During testing, we

first compute the response maps of all part detectors, and sum up them according

to the models. We set a low threshold to ensure high recall.We then generate cuboid

hypotheses from the 3D rectangles.

Segmentation-based cuboid generation: Some scene objects, such beds and

sofas, do not have strong edges, and cannot be reliably detected by the rectangle

detection. Therefore, we generate additional cuboid hypotheses from image segmen-

tation (Fig. 4.5(bottom)) by selective search [255]. Specifically, for each segment,

we evaluate how well its shape can be explained by the projection of a cuboid. We

create many cuboids by randomly sampling 6 rays at the segment boundary passing
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through the three vanishing points. Among these cuboids, we choose the best one

whose projection has the largest intersection over union score with the segment.

4.1.3.4 Whole-room scene hypotheses generation

After obtain a hypothesis pool for room layout and objects, we generate a pool of

whole-room hypotheses, each consisting of a room layout with several cuboid objects

inside. To achieve high recall with a manageble number of hypotheses, we classify

the semantic meaning of each cuboid and use pairwise context constraints to guide

our sampling.

Semantic label: Intuitively, the semantic object type is strongly correlated with

the cuboid shape and its 3D locations in the room. We train a random forest classifier

to estimate the semantic type of a cuboid according to its size, aspect ratio and relative

position in the room. And we achieve the multiple-label classification accuracy at

around 70% This shows that the context between room and objects is very strong.

Pairwise constraint: There are strong pairwise context constraints between scene

objects. For instance, nightstands are usually nearby a bed, and a TV set often faces

a bed. For two object types, we collect all instances of the pair {〈p1,p2〉} from our

training database. We register all these instances by a rotation in the ground plane to

ensure the closest wall to p1 is on its left. We then take the displacement vector p1−p2

as a sample, and capture the pairwise location constraint by all collected samples.

Such a set of samples are plotted in Fig. 4.6(a). When testing the validity of a pair of

objects, we compute their displacement vector and search for the K nearest neighbors

in the sample set. The mean distance to the K nearest neighbors will be transferred

to a probability by a sigmoid function.

Whole-room sampling: We generate a complete scene hypothesis as following,
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Figure 4.6: Example sampling pipeline. Here we show an example of sampling a
painting guided by context, given that a bed is already sampled in previous steps. (a)
the bottom-up scores of painting hypotheses, (b) pairwise context statistics to show
how objects of different categories locates around a bed, (c) the pairwise context
constraint from the sampled bed, (d) the scores for merging bottom-up scores and
pairwise context.

1. Randomly select a room layout according to their scores evaluated by GC and

OM (higher score with a higher probability).

2. Decide the number of instances for each object type and the sampling order for

different object types according to statistic prior. Fig. 4.6 shows an example of

order list on left side.

3. Start from the first object. Search for cuboids of the selected object type, and

randomly choose a cuboid according to bottom up score, e.g. rectangle detection

score, semantic classifier score. Hypothesis with higher score would be sampled

with higher probability.

4. Go to the next object, we combine the bottom-up scores and the pairwise con-

text constraint with all the previously selected objects. A new object will be

randomly selected according to merged scores. For example, the unary bottom-

up score is effective in pruning invalid hypotheses (Fig. 4.6(a)), and pairwise

score can further enhance it (Fig. 4.6(c)). As shown in Fig. 4.6(d), the rect-

angles on head of the bed are further highlighted, and those on windows are
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depressed. We can see the hypotheses around the true painting are all with

high score and thus we have a higher chance to get a correct object.

5. Given all the sampled object so far, repeat the previous step until all the in-

stances have been sampled.

Comparing with completely random sampling, our method can avoid obviously

unreasonable scene hypotheses, and thus ensure high recall with a managable number

of samples. Fig. 4.7 shows some sampling results.

4.1.3.5 Data-driven holistic ranking

After generating a large list of whole-room hypotheses, we train a SVM model to rank

them and choose the best hypothesis, holistically for the whole-room.

Linear SVM: Our goal is to learn a mapping from a panorama x to a scene parsing

result y. Because y is a structural output, we formulate the problem as a 0-1 loss

structural SVM [121], i.e. a binary linear SVM2. We define a feature vector f(x,y)

for a panorama x and its hypothesis y. The binary label l indicates whether y is

close enough to the manually annotated ground truth y∗, i.e. l = [∆(y,y∗) < ε].

During training, for each panorama xn, we sample M hypotheses {ymn }m=1,··· ,M . We

use all N panoramic images from our training set to train the binary SVM by MN

pairs of {〈f(xn,y
m
n ), lmn 〉}

m=1,··· ,M
n=1,··· ,N . Since we typically have hundreds of panoramas

and thousands of hypotheses, there are about a million training data for the SVM3.

During testing, the SVM score is used to choose the best hypothesis with maximal

SVM score.

2We use a 0-1 loss structural SVM because the ranking among the bad hypotheses is unimportant, and we only
want to find the best one. Our experiment also shows that it is very slow to train a general structural SVM using the
standard cutting plane algorithm, and the general structural SVM is very sensitive to the loss function. A 0-1 loss
structure SVM is basically a binary linear SVM that can be trained efficiently and is robust to the loss-function.

3To learn the SVM efficiently with less restriction on computation memory, we use all the positive data and
randomly choose a subset of negative data to train an initial version of the SVM. We then repeatedly test the SVM on
the remaining negative samples, and add the false positives into the SVM training, until there are no hard negatives
(similar to hard negative mining in object detection [63]).
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Figure 4.7: Whole-room hypotheses. On the left we show some good hypotheses
selected based on matching cost. At the center we show some random hypotheses to
visualize the hypothesis space.

Matching cost: ∆(y,y∗) measures the difference between a whole-room hypoth-

esis y and its ground truth y∗. We first register the two scenes by matching their

vanishing directions and room centers. We compute the the average 3D distance be-

tween corresponding vertices between pairs of cuboids of the same semantic type, one

from each scene. We search for bipartite matching minimal distance for each seman-

tic label. ∆(y,y∗) is the sum of all bipartite matching distances plus the constant

penalty for unmatched cuboids in both scenes. We use this score to decide the labels

for the data to train the SVM. Because it is hard to find a good threshold, we choose

two conservative thresholds to make sure all positives are good and all negatives are

bad. We drop all other data in between as we cannot tell their quality reliably.

Holistic features: The feature vector f(x,y) is a concatenation of object level fea-

ture fobject and room level feature f room. Thus, it encodes both bottom-up image

evidence and top-down contextual constraints. The relative importance between all

the information is learned by the SVM in a data-driven way using the training data.

fobject measures the reliability of each single object. On each object hypothesis, rect-

angle detector score, segmentation consistency score, sum/mean/std on each channel

of OM and GC, entropy of color name, and 2D projected size (area on panorama
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sphere) will be extracted and concatenated into a column vector. For each object

category, we take the sum/mean/max/min features of all instances in the category

to form the feature vector. For categories with no object, we set the features zeros.

We concatenate the features for all object categories to a single vector as fobject to

form the holistic feature. Since the number of categories is fixed, the total dimension

is also fixed.

Non-parametric room alignment: The room level feature f room checks whether

the hypothesized structure, i.e. the room layout and the arrangement of all objects,

can be found in reality. We propose a non-parametric data-driven brute-force context

model by aligning a hypothesis with the 3D rooms from the training set. Specifically,

for a hypothesis y, we would match it with all manual annotations {y∗1,y∗2, · · · ,y∗N}

in the training set. After registering two scenes, we can efficiently compute the

distances between all pairs of cuboids in the two scenes. The distance is defined as

a combination of center distance, volume intersection over union, and semantic type

consistency. Since our training data has limited size, we apply various transformations

T on the ground truth rooms to increase the database diversity. Specifically, we

increase/decrease the size of the room, while keep the relative positions of all objects

in room unchanged, or keep their absolute distance to a wall fixed. We further allow

a universal scaling on the whole scene. The room level feature f room is defined as the

10 smallest matching costs ∆(y,T(y∗n)) between a hypothsis y and these transformed

rooms from the ground truth {T(y∗n)}, and the accumulated sums and products of

these 10 numbers.

Room-only color model: To consider all the objects together, we divide image

region to foreground (pixels covered by objects) and background (other pixels). In

each regions, we extract the same feature defined in fobject. This provides context
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information integrating both bottom-up and top-down information, and it is part of

f room.

Local adjustment: The top hypothesis returned by the SVM could be limited by

the size of our hypothesis pool. So we apply a local refinement to the SVM returned

hypothesis for a result with higher SVM score. Specifically, we can delete, add, or

swap an object using the pairwise context constraints, or completely re-sample an

object. If this generates a result with higher SVM score, we will accept the new

result and perform local refinement again nearby the new result.

4.1.4 Experiments

4.1.4.1 Annotated 3D panorama dataset

We collected 700 full-view panoramas for home environments from SUN360 database

[269], including 418 bedrooms and 282 living rooms. We split our dataset into two

halves for training and testing respectively.The data is manually annotated in house

by five persons. After that, an author went through each image to correct mistakes

and ensure consistency among the annotation.

To annotate panorama, we designed a WebGL annotation tool in browser, which

renders a 360◦ panorama as a texture wrapped inside a sphere with the camera located

at the center (Fig. 4.8). To annotate an object, the user first chooses one of the nine

predefined viewpoints of a cuboid (shown in the black box in Fig. 4.8), because a

different viewpoint requires a different set of vertices to be specified. When the user

is marking these vertices, the interface will highlight the corresponding vertex on a

3D cuboid on the right. We ask the annotator to mark the 3D bounding box as tight

as possible and align it with major orientations of the object. A key novelty of our

tool is to first let the user to choose one of the nine predefined viewpoints for each

cuboid object, and click each visible vertices guided by the instruction. We found
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Figure 4.8: Panoramic annotation tool. To annotate a 3D cuboid, the user picks
a viewpoint from [Tools], and clicks on the key points of the 3D bounding boxes on
the panorama. The screen displays an indication about what is the next corner to
click on, as shown on the right.

that this interface is much easier to use than [274], where the viewpoint is implicit.

For rectangular objects (e.g. painting), we annotate its four corners using a polygon

tool. To label the room layout, we design a specialized primitive to ask the user to

click the eight corners of the room.

We further convert 2D annotations to 3D scene models. Assuming each object is

a perfect cuboid and can only rotate horizontally around a vertical axis. The task

of generating 3D scene models amounts to find the parameters for each scene object

to minimize the reprojection error between the 3D cuboid and annotations. Further-

more, we enforce each object can only be at one of the following positions, standing

on the ground, sitting on another object, or attaching to a wall. We formulate all

these constraints to a single non-linear optimization to minimize reprojection errors

from all objects.

4.1.4.2 Evaluation

Some results for both bedroom and living rooms are shown in Fig. 4.10, where we

can see that the algorithm performs reasonably.
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Figure 4.9: Evaluation. (a) shows the matching cost distribution for the top hy-
potheses of our results (for bedroom). (b) shows the accuracy for semantic segmenta-
tion. (c) shows the distribution of views across different surface orientation prediction
accuracy (see the supp. material for more).

Matching cost to the ground truth: The most straightforward way for evalua-

tion is to compare the prediction with the ground truth, using the matching cost that

we defined to choose label for the SVM training in Sec. 4.1.3.5. The average matching

cost is 1.23, which is much better than the pure bottom-up hypotheses generation

(average cost is 1.55). We show the histogram for the distributions of the matching

cost in Fig. 4.9(a).

Semantic image segmentation: We also covert the 3D understanding results

into a semantic segmentation mask on the panorama images and compare the results

with the ground truth as in PASCAL VOC segmentation challenge [53]. During

conversion, we use the 3D bounding boxes of the objects to create a mask with

occlusion testing. To avoid the artifact of panorama projection, instead of comparing

panorama segmentation results, we uniformly sample rays of different orientation on

the sphere and compare the label of the prediction and ground truth. Fig. 4.9(b)

shows the accuracy.

4.1.5 How important is larger FOV and context?

To justify the importance of FOV for context model, we conduct five types of com-

parison. First, we show that a larger FOV provides stronger context to recover room
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Figure 4.10: Example results. The first column is the input panorama and the
output object detection results. The second column contains intermediate steps for
generating cuboid hypotheses from bottom-up sampling as well as the combination
of OM and GC. The third column is the results visualized in 3D. (Best view in color.
More results are available in the supplementary material.)
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layout.Second, we show that full-room context provides stronger cue for recognizing

objects than an object detector, which classifies an image patch (i.e. small FOV).

Third, we decompose our system and disable some key usages of global context infor-

mation, to see the importance of context during sampling and ranking. Fourth, we

vary the effective range of FOV in the context model to demonstrate the larger FOV

enables stronger context. Finally, we combine our context model with standard ob-

ject detectors, to demonstrate the complementary natural of context and local object

appearance.

Is larger FOV helpful for room layout estimation? To demonstrate the im-

portance of panorama, we compare our algorithm with [149] and [100] on regular

field-of-view images. We warp the panorama images into perspective images using

54.4◦ FOV, run [149] and [100] on these images to obtain surface orientation esti-

mation for regular FOV images. We warp our result and the ground truth to these

perspective views for comparison. From the comparison shown in Fig. 4.9(c), we can

see that by using panorama, our algorithm significantly outperforms these results on

regular FOV images.

Is context as powerful as local image appearance for object detection?

Using only our top 1 prediction for each panorama images, we can compute the

precision and recall for each object category. Therefore, we compare with the state-

of-the-art object detector. We train DPM [63] using the SUN database [271]. To test

it on panorama images, we warp a panorama into many regular perspective images

and run the trained DPM on it. Fig. 4.12(a) shows the result of the comparison.

We can see that our model performs better than DPM at many object categories.

This demonstrates that by using only 3D contextual information without any image

feature for categorization, we can still achieve a comparable performance with object

detectors using image features.
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Figure 4.11: Recall. Left: The room recall verse the number of top room hypotheses
ranked by the OM, GC and our combination of OM and GC, which shows that
merging OM and GC significantly improves the result and justifies that 50 is a good
threshold. Right: The object recall w.r.t. the rectangle detection score (horizontal
axes) and random forest score (vertical axes).

Is context important in sampling and ranking? We disable the pairwise con-

text model for sampling and the room alignment matching cost for ranking respec-

tively and together to show the power of each one. In Fig. 4.12(a), the detection

performances for nightstand and tv keep on decreasing when disabling more context

model. These objects are usually in a common size and shape, and thus cannot be

discriminated easily with bottom up image evidence. Context information can be es-

pecially useful under this situation. However, for painting and door, the performance

does not change much. It could be that these objects usually have strong relations

with the walls, and we didn’t turn off the wall-object context, so the pairwise or high

level context doesn’t matter much. Such strong context between wall and objects fur-

ther shows the advantage of using panorama, in which all the wall, floor, and ceiling

are visible.

Is larger FOV better for context? We narrow down the FOV that is allowed

to for pairwise context model. Pair of cuboids far in term of FOV cannot affect each

other by pairwise context model during the whole-room hypothesis sampling. Fig.
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4.12(b) shows the F-score (
√

precision× recall) of object detection w.r.t. different

FOVs. We can see that the F-score curves are all in a decreasing tendency when the

FOV is getting smaller. It shows that the big FOV is essential in providing more

context information.

Is context complementary with local object appearance? We combine to

our model with object detector to answer this question. We run DPM on each object

hypothesis, and prune those with low score during the scene hypothesis sampling.

The result is shown in Fig. 4.12(a). We can see that for categories on which both

DPM and context perform well, merging them will achieve higher performance, like

bed, tv, painting. It proves that the context information is complementary to image

evidence. For categories that DPM does not work well, the improvement benefit from

merging is very limited as expected, like mirror, desk. For the objects without much

context, e.g. chair, though the performance is improved, it is still not comparable

with DPM. Maybe this shows that context can hurt the detection performance for

objects with flexible locations. Note that this is just a simple test to show the effect

of merging DPM with our system, there are actually many parts in our model which

can be improved by a strong image feature based detector. The confidence score from

detector can be used as a power bottom up feature of object hypotheses during the

sampling and holistic ranking.

4.1.6 Conclusion

We propose a whole-room 3D context model that takes a 360◦ panorama as input and

outputs a 3D bounding box of the room and detects all major objects inside [296].

Experiments show that our model can recognize objects using only 3D contextual

information without any image feature for categorization, and still achieves a compa-

rable performance with the state-of-the-art object detector using image features for
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Figure 4.12: Object detection. (a) the performance of our system by partially
disable some key usage of context, and the comparison with DPM. (b) F-score of our
system with decreasing field of view. The performance becomes worse when the FOV
is getting smaller.

categorization. We showcase that the root of context model being under-utilized is

partly because regular FOVs are too small, and that context is more powerful than

we thought.
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4.2 DeepContext: Context-Encoding Neural Path-

ways for 3D Holistic Scene Understanding

4.2.1 Introduction

Chapter 4.1 introduced a holistic scene context models, which integrates both the

bottom up local evidence and the top down scene context and achieves superior per-

formance. However, it suffers from a severe drawback that the bottom up and top

down stages are run separately. The bottom up stage using only the local evidence

needs to generate a large quantity of noisy hypotheses to ensure a high recall, and

the top down inference usually requires combinatorial algorithms, such as belief prop-

agation or MCMC, which are computationally expensive in a noisy solution space.

Therefore, the whole combined system can hardly achieve a reasonably optimal solu-

tion efficiently and robustly.

Inspired by the success of deep learning, we propose a 3D deep convolutional neural

network architecture that jointly leverages local appearance and global scene context

efficiently for 3D scene understanding [293]. To prevent the difficulty of inferring

depth from color images, in this work we take a single depth image as the input and

focus on the network design to incorporate scene context.

Designing a deep learning architecture to encode context for scene understanding

is challenging. Unlike an object whose location and size can be represented with a

fixed number of parameters, a scene could involve unknown number of objects and

thus requires variable dimensionality to represent, which is hard to incorporate with

convolutional neural network with a fixed architecture. Also, although holistic scene

models allow flexible context, they require common knowledge to manually predefine

relationship between objects, e.g. the relative distance between bed and nightstands.

As a result, the model may unnecessarily encode weak context, ignore important

context, or measure context in an over simplified way.
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Sleeping Area Table & ChairsOffice Area  Lounging Area

bed dresser dresser with mirror lamp garbage bin coffee table
nightstand ottoman table chair endtable speaker monitor

Figure 4.13: Example of canonical scene templates (top view) and the natu-
ral images they represent. We learn four scene templates from SUN-RGBD[229].
Each scene template encodes the canonical layout of a functional area.

To solve these issues, we propose and learn a scene representation encoded in scene

templates. A scene template contains a super set of objects with strong contextual

correlation that could possibly appear in a scene with relatively constrained furniture

arrangements. It allows a prediction of “not present” for the involved objects so that

a variety of scenes can be represented with a fixed dimensionality. A scene can be

considered as a scene template with a subset of objects activated. Scene template

also learns to only consider objects with strong context, and we argue that context-

less objects, such as a chair can be arbitrarily placed, should be detected by a local

appearance based object detector.

Each template represents a functional sub-region of an indoor scene, predefined

with canonical furniture arrangements and estimated 3D anchor positions of possible

objects with respect to the reference frame of the template. We incorporate these

template anchors as priors in the neural architecture by designing a transformation
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network that aligns the input 3D scene (corresponding to the observed depth im-

age) with the template (i.e. the canonical furniture arrangement in 3D space). The

aligned 3D scene is then fed into a 3D context neural network that determines the

existence and location of each object in the scene template. This 3D context neural

network contains a holistic scene pathway and an object pathway using 3D Region Of

Interest (ROI) pooling in order to classify object existence and regress object location

respectively. Our model learns to leverage both global and local information from two

pathways, and can recognize multiple objects in a single forward pass of a 3D neural

network. It is noted that we do not manually define the contextual relationships

between objects, but allow the network to automatically learn context in arbitrary

format across all objects.

Data is yet another challenging problem for training our network. Holistic scene

understanding requires the 3D ConvNet to have sufficient model capacity, which needs

to be trained with a massive amount of data. However, existing RGB-D datasets for

scene understanding are all small. To overcome this limitation, we synthesize training

data from existing RGB-D datasets by replacing objects in a scene with those from

a repository of CAD models from the same object category, and render them in

place to generate partially synthesized depth images. Our synthetic data exhibits a

variety of different local object appearances, while still keeping the indoor furniture

arrangements and clutter as shown in the real scenes. In experiments, we use these

synthetic data to pretrain and then finetune our network on a small amount of real

data, whereas the same network directly trained on real data can not converge.

The contributions of this work are mainly three aspects. 1) We propose a scene

template representation that enables the use of a deep learning approach for scene

understanding and learning context. The scene template only encodes objects with

strong context, and provides a fixed dimension of representation for a family of scenes.

2) We propose a 3D context neural network that learns scene context automatically.
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Figure 4.14: Our deep 3D scene understanding pipeline. Given a 3D volumetric
input derived from a depth image, we first aligns the scene template with the input
data. Given the initial alignment, our 3D context network estimates the existence of
an object and adjusts the object location based on local object features and holistic
scene feature, to produce the final 3D scene understanding result.

It leverages both global context and local appearance, and detects all objects in con-

text efficiently in a single forward pass of the network. 3) We propose a hybrid

data augmentation method, which generates depth images keeping indoor furniture

arrangements from real scenes but containing synthetic objects with different appear-

ance.

4.2.2 Related Work

There are some efforts incorporating holistic context model for scene understanding,

which is closely related to our work. Scene context is usually manually defined as a

unary term on a single object, pairwise term between a pair of objects to satisfy certain

functionality [157, 284], or a more complicated hierarchy architecture [32, 165, 302].

The learned context models are usually applied on a large set of object hypotheses

generated using local evidence, e.g. line segments [302] or cuboid [157], by energy

minimization. Therefore high order context might be ignored or infeasible to optimize.

Context can be also represented in a non-parametric way [296], which potentially

enables high order context but is more computationally expensive to infer during

the testing time. In contrast, our 3D context network does not require any heuristic

intervene on the context and learns context automatically. We also require no object
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hypothesis generation, which is essential in making our method more computationally

efficient.

Deep learning has been applied to 3D data, but most of these works focus on mod-

eling objects [266] and object detection [179, 231]. Recently, some successes have been

made on applying deep learning for inverse graphics [142, 143]. Our approach goes

one step further to embrace the full complexity of real-world scenes to perform holistic

scene understanding. Related to our transformation network, Spatial Transformation

Networks [117] can learn the transformation of an input data to a canonical alignment

in an unsupervised fashion. However, unlike MNIST digits (which were considered in

[117]) or an individual object where an alignment to a canonical viewpoint is quite

natural, it is not clear what transforms are needed to reach a canonical configura-

tion for a 3D scene. We define the desired alignment in template coordinates and

use supervised training by employing the ground truth alignments available from our

training data.

While many works have considered rendering synthetic data for training (a.k.a,

graphics for vision, or synthesis for analysis), these efforts mostly focus on object

rendering, either in color [155, 233] or depth [230]. There is also work rendering

synthetic data from CAD model of complicated scenes for scene understanding [94,

293]. However, the generated depth is overly clean, and the scene layouts generated

by either by algorithm or human artists are not guaranteed to be correct. In contrast,

we utilize both the CAD models and real depth maps to generate more natural data

with appropriate context and real-world clutter.

4.2.3 Method

4.2.3.1 Algorithm Overview

Our approach works by first automatically constructing a set of scene templates from

the training data (see Section 4.2.3.2). Rather than a holistic model for everything
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in the scene, each scene template only represents objects with context in a sub-area

of a scene performing particular functionality. Each template defines a distribution

of possible layouts of one or more instances of different object categories in a fixed

dimensionality.

Given a depth map of a scene as input4, we convert it into a 3D volumetric

representation of the scene and feed it into the neural network. The neural network

first infers the scene template that is suitable to represent the scene, or leaves it to

a local appearance based object detector if none of the predefined scene templates

is satisfied. If a scene template is chosen, the transformation network estimates

the rotation and translation that aligns the scene to the inferred scene template.

With this initial alignment, the 3D context network extracts both the global scene

feature encoding scene context and the local object features pooled for each anchor

object defined in the template, as shown in Fig.4.14. These features are concatenated

together to predict the existence of each anchor object in the template and an offset

to adjust its bounding box for a better object fit. The final result is an understanding

of the scene with a 3D location and category for each object in the scene, as well

as room layout elements including wall, floor, and ceiling, which are represented as

objects in the network.

4.2.3.2 Learning Scene Template

Objects with context in a functional area are usually at relatively fixed locations. For

example, a sleeping area is usually composed of a bed with one or two nightstands

on the side, with optional lamps on the top. Object detection is likely to succeed

by searching around these canonical locations. We learn the categories of object

instances and their canonical sizes and locations in the template, from the training

data. Examples of each template can be seen in Fig. 4.13.

4Note that while all the figures in the paper contain color, our system relies only on depth as
input without using any color information.
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Figure 4.15: 3D context network. The network consists of two pathways. The
scene pathway takes the whole scene as input and extracts spatial feature and global
feature. The object pathway pools local feature from the spatial feature. The network
learns to use both the local and global features to perform object detection, including
wall, ceiling, and floor.

Data-driven Template Definition We learn to create scene templates using the

SUN-RGBD dataset consisting of 10,335 RGB-D images with 3D object bounding

box annotations. These RGB-D images are mostly captured from household environ-

ments with strong context. As a first experiment of combining 3D deep learning with

context, we choose four scene templates: sleeping area, office area, lounging area, and

table & chair set, because they represent commonly seen indoor environments with

relatively larger numbers of images provided in SUN-RGBD. Our approach can be

extended to other functional areas given sufficient training data. For SUN-RGBD,

75% of the images from household scene categories can be described, fully or partially,

using these four scene templates.

Our goal is to learn layouts of the scene, such that each template summarizes

the bounding box location and category of all objects appearing in the training set.

To enable the learning of the template, we select the images that contain a single

functional area, and label them with the scene type they belong to. Other images

containing arbitrary objects or multiple scene templates are not used in learning
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scene templates. The ground truth scene categories are used not only for learning the

aforementioned templates, but also for learning the scene template classification, the

transformation networks, and the 3D context networks in the following sections.

To obtain the anchor positions (i.e. common locations) for each object type in

a template, we take all 3D scenes belonging to this scene template and align them

with respect to the center and orientation of a major object5. After that, we run

k-means clustering for each object type and use the top k cluster centroids as the

anchor positions and size, where k is user-defined. We also include room layout

elements, including wall, floor, ceiling, which are all represented as regular objects

with predefined thickness. Each scene template has tens of object anchors in total

for various object categories (Fig. 4.13).

Generating Template-Based Ground Truth To train a 3D context network

using scene templates, we need to convert the original ground truth data from SUN

RGB-D dataset to a template representation. Specifically, we need to associate each

annotated object in the original ground truth with one of the objects defined in

the scene template. Similar to above, we first align the training images with their

corresponding scene templates using the center and rotation of the major object. For

the rest of the objects, we run a bipartite matching between the dataset annotation

and the template anchors, using the difference of center location and size as the

distance, while ensuring that the objects of the same category are matched.

4.2.3.3 3D Scene Parsing Network

Given a depth image as input, we first convert it into a 3D volumetric representation,

using the Truncated Signed Distance Function (TSDF) [231, 191]. We use a 128 ×

128 × 64 grid for the TSDF to include a whole scene, with a voxel unit size of 0.05

5We manually choose bed for sleeping area, desk for office area, sofa for lounging area, and table
for table&chair set as the major objects.
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meters and a truncation value of 0.15 meters. This TSDF representation is fed into

the 3D neural network such that the model runs naturally in 3D space and directly

produces output in 3D.

Scene Template Classification Network We first train a neural network to esti-

mate the scene template category for the input scene (Fig. 4.15, Scene pathway). The

TSDF representation of the input scene is firstly fed into 3 layers of 3D convolution +

3D pooling + ReLU, and converted to a spatial feature map. After passing through

two fully connected layers, the 3D spatial feature is converted to a global feature vec-

tor that encodes the information from the whole scene. The global feature is used for

scene template classification with a classic softmax layer. During testing, we choose

the scene template with the highest score for the input scene if the confidence is high

enough (> 0.95). Otherwise, we do not run our method because none of the scene

templates fits the input scene. Such scenes are passed to a local appearance based

object detector for object detection. In practice, the four scene templates can match

with more than half of the images in the SUN-RGBD dataset captured from various

of indoor environments.

Transformation Network Given the scene template category, our method esti-

mates a global transformation consisting of a 3D rotation and translation that aligns

the point cloud of the input scene to the target predefined scene-template (Fig. 4.16).

This is essentially a transformation that aligns the major object in the input scene

with that from the scene template. This makes the result of this stage invariant to

rotations in the input, and the wall and bounding box of objects are globally aligned

to three main directions. The next part of our architecture, the 3D context network,

relies on this alignment to obtain the object orientation and the location to pool

feature based on 3D object anchor locations from the scene template.

107



Input Scene Rotation Estimation Translation Estimation Initial Alignment

Figure 4.16: Transformation estimation. Our transformation network first pro-
duces global rotation and then translation to align the input scene with its scene
template in 3D space. Both the rotation and translation are estimated as classifica-
tion problems.

We first estimate the rotation. We assume that the gravity direction is given, e.g.

from an accelerometer. In our case, this gravity direction is provided by the SUN

RGB-D dataset used in our experiments. Therefore, we only need to estimate the

yaw, which rotates the input point cloud in horizontal plane to the scene template

viewpoint shown in Fig.4.13. We divide the 360-degree range of rotation into 36 bins

and cast this problem into a classification task (Fig. 4.16). We train a 3D ConvNet

using the same architecture as the scene template classification network introduced

in Sec. 4.2.3.3 except generating a 36 channel output for softmax. During training,

we align each training input scene to the center of the point cloud and add noise for

rotations (+/- 10 degrees) and translations (1/6 of the range of the point cloud).

For translation, we apply the same network architecture to identify the translation

after applying the predicted rotation. The goal is to predict the 3D offset between

the centers of the major objects of the input point cloud and its corresponding scene

template. To achieve this goal, we discretize the 3D translation space into a grid of

0.5m3 resolution with dimensions of [−2.5, 2.5]× [−2.5, 2.5]× [−1.5, 1], and formulate

this task again as a 726-way classification problem (Fig. 4.16). We tried direct re-

gression with various loss functions, but it did not work as well as classification. We

also tried an ICP-based approach, however it could not produce good results.
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3D Context Network We now describe the context neural network for indoor

scene parsing using scene templates. For each scene template defined in the previous

section, a separate prediction network is trained. As shown in Fig. 4.15, the network

has two pathways. The global scene pathway, given a 3D volumetric input in a

coordinate system that is aligned with the template, produces both a spatial feature

that preserves the spatial structure in the input data and a global feature for the

whole scene. For the object pathway, we take the spatial feature map from the scene

pathway as input, and pool the local 3D Region Of Interest (ROI) based on the

3D scene template for the specific object. The 3D ROI pooling is a max pooling at

6×6×6 resolution, inspired by the 2D ROI pooling from [77]. The 3D pooled features

are then passed through 2 layers of 3D convolution + 3D pooling + ReLU, and then

concatenated with the global feature vector from the scene pathway. After two more

fully connected layers, the network predicts the existence of the object (a binary

classification task) as well as the offset of the 3D object bounding box (3D location

and size) related to the anchor locations learned in Sec. 4.2.3.2 (a regression task using

L1-smooth loss [231]). Including the global scene feature vector in the object feature

vector provides holistic context information to help identify if the object exists and

its location.

Training Schema Our 3D scene parsing network contains a series of components

with a large number of parameters. We perform careful training strategy to avoid

bad local optima. We first train the scene pathway alone to perform a 4-way scene

classification task. After this training converges, we finetune the classification network

to estimate the transformation for each individual scene template. An alternative

approach is to jointly train a network for classification and transformation, however

this does not perform well in practice. The object pathway is then enabled, and the

two pathways are jointly finetuned to perform object detection. We found that this
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Real Depth Point Cloud Find Similar CAD Model Synthetic Depth

Figure 4.17: Hybrid data synthesis. We first search for similar CAD model for
each object. Then, we randomly choose models from good matches, and replace the
points in annotated bounding box with the rendered CAD model.

form of pretraining, from easy to hard task, is crucial in our experiments. Otherwise,

training the four networks independently from scratch cannot produce meaningful

models.

4.2.3.4 Synthesizing Hybrid Data for Pre-training

In contrast to existing deep architectures for 3D [231, 266], our model takes the whole

scene with multiple objects as input. As such, during training, it needs to model

the different variations in the scene layout. We found the RGB-D images from the

existing SUN RGB-D [229] dataset are far from sufficient. Furthermore, capturing

and annotating RGB-D images on the scale of ImageNet [40] was impractical. To

overcome the data deficiency problem, we increase the size of the training data by

replacing the annotated objects from SUN RGB-D with CAD models of same category

from ShapeNetCore dataset [25] (Fig. 4.17). This allows us to generate context-valid

scenes, as the context still comes from a real environment, while changing the shapes

of the objects. By replacing the annotated objects while keeping the full complexity

of the areas outside the annotated bounding boxes, we could generate more realistic

hybrid data partially maintaining sensor noise. This is in contrast to images generated

from purely synthetic models which do not contain clutter caused by the presence of

small objects.
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To search for similar CAD models for annotated objects in RGB-D images, we

need to define the distance between a CAD model M, and the 3D point cloud P

representing the object. In order to get a symmetric definition, we first put the

model in the annotated 3D box, scale it to fit, renderM with the camera parameter

of the depth image, and convert the rendered depth image to a point cloud V . This is

to mimic the partial view due to self occlusion. Then, we define the distance between

P and S as:

D(P ,S) =
1

|P|
∑
p∈P

(
min
q∈V

d(p, q)
)

+
1

|V|
∑
p∈V

(
min
q∈P

d(p, q)
)
, (4.1)

where d(p, q) is the distance between two 3D points p and q. After acquiring a short

list of similar CAD models for each object, we randomly choose one and render the

depth image with the original annotation as training data.

We generate a hybrid training set that is 1,000 times bigger than the original

RGB-D training set. For both of the pathways in the 3D context network, we have

to train the models on this large hybrid dataset first, followed by finetuning on the

real depth maps. Otherwise, the training cannot converge.

4.2.4 Experiments

We use the SUN RGB-D dataset [229] because they provide high quality 3D bounding

box annotations of objects. As described in Section 4.2.3.2, we manually select images

that can be perfectly represented by one of the scene templates, and choose 1,863

RGB-D images from SUN RGB-D. We use 1,502 depth images to learn scene templates

and train the 3D scene parsing network, and the remaining 361 images for testing.

We also evaluate our model for object detection on a testing set containing images

that cannot be perfectly represented, e.g. containing arbitrary objects or multiple
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bed
night-

dresser
coffee mirror end

lamp monitor ottoman sofa chair table
stand table dresser table

COG [205] 79.8 48.1 1.70 - - - - - - 55.8 72.9 58.4
DSS [231] 90.3 52.3 7.60 52.7 4.40 13.3 40.2 15.0 23.7 71.3 79.1 75.2
Ours 89.4 63.3 19.7 40.5 16.8 27.9 41.6 18.2 13.3 50.3 44.5 65.9
Ours + DSS 91.8 66.7 23.4 50.1 10.0 35.3 53.6 23.2 31.5 62.8 80.2 77.4
GT Align 92.4 64.4 19.7 49.3 23.4 25.0 31.4 16.0 15.8 63.6 46.1 70.4
GT Align+Scene 94.1 66.3 19.4 48.9 23.4 21.7 31.4 16.1 15.8 74.6 50.2 74.0
DSS, Full 75.7 30.0 7.14 19.5 0.64 11.7 20.9 1.80 8.49 51.7 52.9 41.1
Ours, Full 75.8 44.1 15.7 25.8 4.99 12.4 22.4 3.47 10.7 49.0 53.2 30.5

Table 4.1: Average precision for 3D object detection. We (row 3) achieve
comparable performance with DSS [231] (row 2). Combining two methods (row 4)
achieves significantly better performance, which shows our model learns context com-
plementary to local appearance. Our model can further achieve better performance
with better alignment and scene classification. The last row shows our superior per-
formance on extended testing set where images might not be perfectly represented by
any single scene template.

scene templates, to demonstrate that our scene templates have a good generalization

capability and a high impact on real scenes in the wild.

Our model uses the half data type, which represents a floating point number by

2 bytes, to reduce the memory usage. We train the model with a mini-batch of 24

depth images requiring 10GB, which nearly fills a typical 12GB GPU. However, this

mini-batch size was too small to obtain reliable gradients for optimization. Therefore,

we accumulate the gradients over four iterations of forward and backward without

weight update, and only update the weights once afterwards. Using this approach,

the effective mini-batch size is 24× 4 or 96.

4.2.4.1 3D object detection.

Our model recognizes major objects in a scene, which can be evaluated by 3D object

detection. Qualitative parsing results are shown in Fig. 4.20. Our model finds most of

the objects correctly and produces decent scene parsing results for challenging cases,

e.g. heavy occlusion and missing depth. 3D context enables long range regression

when initial alignment is far from correct, as shown in the 5th row. The last row

shows a failure case, where our model recognizes it as a sleeping area misled by the
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futon with blankets. Therefore, our model overlooks the coffee table, but still predicts

the wall and floor correctly and find a proper place to sleep.

Table 4.1 shows quantitative comparison to the local appearance based 3D object

detector Deep Sliding Shape (DSS) [231] and also the cloud of gradient feature based

context model from Ren et al. (COG) [205]. Our average precision (3rd row) is

comparable to state-of-the-art, but only takes about 0.5 seconds to process an image

for all object categories, which is about 40 times faster than DSS which takes 20

seconds per image.

Context complements local evidence. Fig. 4.18 shows some qualitative com-

parisons between our context model and the local object detector DSS [231]. We can

see that our context model works significantly better in detecting objects with miss-

ing depth (the monitor in 1st and 3rd examples) and heavy occlusion (the nightstand

in 2nd example). 3D context also helps to remove objects in incorrect arrangements,

such as the table on top of another table, and the nightstand at the tail of the bed or

in office, as shown in the result of DSS. Comparatively, DSS works better for objects

that are not constrained, e.g. chairs on the right of 3rd example.

We integrate the result from DSS and our context model. The combined result

achieves significantly better performance than each of the models individually, in-

creasing the mean average precision from the 43.76% for DSS stand-alone to 50.50%.

This significant improvement demonstrates that our context model provides comple-

mentary information with a local appearance based object detector.

Fig. 4.19 shows the Precision-Recall (PR) curves for some of the object categories.

We can clearly see that our (green) recalls are not as high as DSS (blue) that runs

in a sliding window fashion to exhaustively cover the search space. This is because

our model only detects objects within the context. However, our algorithm maintains

a very high precision, which applies to a broader range of working situations, with
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Figure 4.18: Comparison between our context model and the local object
detector DSS [231]. Our context model works well for objects with missing depth
(monitors in 1st, 3rd row), heavy occlusion (nightstand in 2nd row), and prevents
detections with wrong arrangement (wrong table and nightstand in DSS result).

slightly lower recall. Nevertheless, combining the result of our method and DSS (red)

obtains the best performance in terms of both precision and recall.

Generalization to imperfect scene template images. Our method can work

not only on perfect scene template images, but also images in the wild. Thanks to the

template classification and alignment component, our method can find the right place

in the input scene to apply the context model. To evaluate, we randomly pick 2,000

images that are not used for training from the SUN-RGBD dataset. This uniformly

sampled testing set reflects the scene distribution from the dataset, and contains many

images that cannot be perfectly represented by any of the scene templates. We test
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Figure 4.19: Precision recall curves for some object categories. We compare
our algorithm with the 3D object detector DSS [231] and the cloud of gradient feature
based context model Ren et al. [205].

DSS on this test set and achieve 26.80% mAP (Table 4.1, the 2nd last row), which is

similar to the performance reported in [231]. We further run our method on testing

images with the template classification confidence higher than 0.95, which ends up

choosing 1,260 images. We combine our result with DSS, and the performance is

shown in the last row of Table 4.1. As can be seen, our model successfully wins in 10

out of 12 categories, and improves the mAP to 29.00%. This improvement shows that

our model can be applied to a variety of indoor scenes. It is also extremely effective

in improving the scene understanding result in the aligned sub-area.

4.2.4.2 Room Layout and Total Scene Understanding

Layout estimation. As part of our model, we can estimate the existence and lo-

cation of the ceiling, floor, and the wall directly behind the camera view. Table 4.2

shows quantitative evaluation. We can see that the 3D context network can success-

fully reduce the error and predict a more accurate room layout. Note that for some

scene categories, the ceiling and wall are usually not visible from the images. These

cases are marked as “-”.

Scene understanding. We use the metrics proposed in [229] to evaluate total 3D

Scene Understanding accuracy. These metrics favor algorithms producing correct
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Layout Estimation Sleeping Office Lounging Table
(Mean/Median) Area Area Area &Chair
Ceiling Initial 0.57/0.56 - - 0.84/0.71
Ceiling Estimate 0.45/0.40 - - 0.72/0.44
Floor Initial 0.30/0.25 0.28/0.24 0.25/0.23 0.22/0.20
Floor Estimate 0.10/0.09 0.09/0.06 0.22/0.16 0.08/0.05
Wall Initial 0.40/0.30 0.70/0.60 - -
Wall Estimate 0.22/0.08 0.60/0.21 - -

Table 4.2: Error (in meter) for room layout estimation. Our network reduces
the layout error upon initialization from the transformation network. Note that for
some scene categories, the ceiling and wall may not be visible from the images and
therefore there are no annotations (marked with “-”).

Method Sym.
Sleeping Office Lounging Table

Area Area Area &Chair
ICP No 75.6% 69.2% 58.5% 38.1%
ICP Yes 96.3% 89.0% 92.5% 75.3%

Network No 92.7% 87.9% 71.7% 44.3%
Network Yes 100.0% 93.4% 94.3% 73.2%

(a) Rotation Estimation Accuracy↑

Method Rot.
Sleeping Office Lounging Table

Area Area Area &Chair
ICP - 0.473 0.627 1.019 0.558

Network GT 0.278 0.246 0.336 0.346
Network Est 0.306 0.278 0.606 0.332

(b) Translation Error (in meters) ↓

Table 4.3: Evaluation of the transformation networks. Our transformation
network outperforms direct point cloud matching in the accuracies of both rotation
and translation.

detections for all categories and accurate estimation of the free space. We compare

our model with Ren et al. (COG) [205]. For geometry precision (Pg), geometry recall

(Rg), and semantic recall (Rr), we achieve 71.02%, 54.43%, and 52.96%, which all

clearly outperform 66.93%, 50.59%, and 47.99% from COG. Note that our algorithm

uses only the depth map as input, while COG uses both color and depth.
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4.2.4.3 System Component Analysis

Our 3D context network relies on the initial alignment produced by scene template

classification and transformation estimation model. We also investigate how these

factors affect our performance.

Transformation Prediction. Table 4.3 reports the evaluation of template align-

ment. For rotation, we show the percentage of data within a 10 degree range to the

ground truth. For translation, we show the distance between the estimated transla-

tion and the ground truth.

For rotation, since some scenes (especially for lounging area and table&chair set)

are symmetric with respect to the horizontal plane, a correct estimation of the main

direction would be enough for our purposes. Therefore, we report the accuracies both

with and without symmetry [Sym.].

To compare with our neural network-based approach, we design an ICP approach

based on point cloud alignment as a baseline. Given a point cloud from a testing

depth map, we align it with the point cloud of each image in the training set, by

exhaustively searching for the best rotation and translation, using the measurement

in Section 4.2.3.4. We choose the alignment with the best aligned training depth

map as our transformation. We can see that our neural network based approach

significantly outperforms this baseline.

To see how sensitive our model is to the initial alignment, we evaluate our model

with the ground truth alignment, and the result is shown in Table 4.1 [GT Align].

We can see that the 9 out of 12 categories are improved in terms of AP, compared to

that with estimated transformation, and the overall mAP improves 2.19%.
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Figure 4.20: Visualization of the qualitative results on the testset.

Template Classification. The accuracy of the scene template classification is

89.5%. In addition to the ground truth transformation, we test our model with

truth template category. This further improves the mAP by 1.52%.

4.2.5 Conclusion

We propose a 3D ConvNet architecture that explicitly encodes context and local ev-

idence leveraging scene template and directly outputs holistic understanding [293].

The template is learned from training data to represent the functional area with
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relatively strong context evidence. We show that context model provides comple-

mentary information with a local object detector, which can be easily integrate. Our

system has a fairly high coverage on real datasets, and achieves the state of the art

performance for 3D object detection on the SUN-RGBD dataset.
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Chapter 5

Discussion

This chapter consists of the summary of the findings from the introduced projects,

shortcomings and limitations of the current scene understanding research from a few

aspects, and the potential future directions to strengthen and extend the vision-based

scene understanding.

5.1 Summary

In this thesis, we introduced a series of works for 3D indoor scene understanding.

More specifically, we presented models producing dense pixel-wise representations and

complete holistic representations for 3D geometry estimation and semantic prediction.

We demonstrated that pixel-wise representation enables simple and straightfor-

ward end-to-end model design (Sec. 3.1.3). It supports per-pixel variation in the

output such that it is suitable for vision tasks requiring fine-grained details, such as

instance boundary prediction (Sec. 3.2.4), and depth discontinuity estimation (Sec.

3.3.3.2). It also provides a data-driven framework to tackle some previously ill-posed

problems by leveraging state-of-the-art learning techniques, e.g., neural network (Sec.

3.2.4). With the help of large-scale photo-realistic synthetic data (Sec. 3.2.3) and

real datasets, data-driven approaches produced appealing results, like surface normal
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estimation, and effectively help to deal with challenging and failure cases in other

vision tasks and to improve their overall performance (Sec. 3.3.1).

On the other hand, 3D holistic representation for scene understanding requires

more effort on model design but allows us to leverage top-down prior knowledge,

like scene context (Sec. 4.1.3). We demonstrate that scene context provides com-

plementary information compared to a model based on local evidence and is more

powerful than we expected when being exploited properly for indoor scene parsing

(Sec. 4.1.5). We further integrated scene context with deep learning using an ex-

plicitly context-aware network architecture, which allows effective learning of scene

context and efficient inference with both top-down and bottom-up information (Sec.

4.2.3.3).

5.2 Shortcomings and Future Work

5.2.1 Representation

It is not feasible to draw a conclusion for which representation is the best, as a trade-

off has to be made between the simplicity and capacity of the representation. The

best balancing between the two may vary depending on the applications.

The pixel-wise representation wins for its simplicity but suffers from the inherent

redundancy which limits its capacity when scaled up. Taking a neural network model

as an example, producing high-resolution detailed results needs convolutions to run

on high-resolution input image and feature maps, which is contradicting with the fact

that downsizing the resolution, e.g., through pooling, is necessary for both computa-

tion/memory efficiency and a large receptive field. Some network architectures have

been proposed to encourage fine-grained details, such as shortcut connections (Sec.

3.2.4) and image-guided up-sampling (Sec. 3.1.3). However, the results may still

be blurry as the main components of the neural network, convolution and pooling,
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are essentially low pass filters. Alternatively, standalone post-processing can be ap-

plied to the network output to encourage sharp results (Sec. 3.3.3.4). This however,

may not be optimal overall. An end-to-end network architecture that is friendly to

computational resources and produces good details still remains unavailable.

On the other hand, the holistic 3D model we propose is comparatively more com-

pact and powerful, but requires specific non-trivial model designs for different vision

tasks. Beyond the category, location, and size of an object, there are many other

aspects of the scene which can be investigated and potentially integrated with the

bounding box-based representation. First of all, having a more detailed shape, like a

mesh model or point cloud, for each object in the 3D bounding box would be desir-

able. This can be achieved by running a single object based shape generation model

[260] in each of the detected bounding boxes or an integrated model to output the

shape details together with the upper levels. Second, other aspects of the objects

can be also learned. Textures, materials, and illumination can all greatly change the

appearance of the scene and thus affect the other scene understanding tasks relying

on visual input. Understanding them may help to remove these variances and ben-

efit other tasks. Recently indoor scene dataset provides high dynamic range images

from multiple views [24], which provides great opportunities to study these aspects.

Last but not least, the scene understanding can extend on the temporal dimension

on both the input and the output side. On more and more personal electronics (e.g.,

cellphones and AR goggles) and operating devices (e.g., robots, cars, and surveil-

lance cameras), we have easy access to videos which provide abundant information

for scene understanding. Compared to a single image, a temporal sequence allows us

to leverage coherence across frames, observe motion, and look from multiple view-

points, which together would result in more reliable 3D scene understanding. The

output can also be dynamic and change in time to understand the past, present, and
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future state of the scene. Especially for dynamic outputs, there are some initial trials

[190, 216] but not many works exist in the literature.

5.2.2 Data for Scene Understanding

Due to the effectiveness of the deep learning, the pursuit of large-scale high-quality

training data is always ongoing. Synthetic data allows error-free ground truth, and we

have demonstrated that well-rendered synthetic data can effectively improve the pre-

training stage and further improve the performance after fine-tuning on real data (Sec.

3.2.3). However, high-quality synthetic data can be expensive, and a compromise has

to be made between the rendering quality and the quantity. Therefore, the domain gap

between rendering and real data is still inevitably big. On the other hand, real data

collection is extremely hard especially for 3D geometry. Recent studies have made

efforts to speed up the physically based rendering convergence using a recurrent auto-

encoder [22] or directly generate natural looking images using generative adversarial

networks [81]. The first line of work follows the physics of image rendering but is not

an end-to-end system and is therefore not optimized for a specific task. In contrast,

the second line of work is end-to-end and specifically optimized for natural looking

images, i.e., reducing the domain gap. It is however less physically driven and can

result in structurally incongruent images. It might be promising if the physics insight

and advanced learning techniques could be integrated to generate better synthetic

data. Moreover, a concept of having virtual goggles that bring both real and synthetic

images to the same domain has been proposed, and vision tasks can be done in this

unified virtual domain [267]. However, the concept is only demonstrated to be possible

for image generation, and there is no clear evidence showing if essential information

for vision tasks is still maintained in such a virtual domain.
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5.2.3 Relation between Semantics and Geometry

Intuitively, vision tasks should share information, and joint learning should benefit

each individual task, which also stands for semantic and geometry. On one hand,

geometry carries a lot of semantic information. Knowing the shape of an object may

directly tell the semantic type especially for categories having strong 3D structures,

such as chair, plane, and car [202, 203]; and knowing the size and relative location of an

object in a room can roughly tell us the semantic category (Sec. 4.1.3). One may also

conjecture that geometry provides quite a lot of complementary semantic information

compared to color images, and object recognition on RGB-D images would be easier

and perform better. However, adding depth images as input together with the color

image does not improve the performance much [230, 231], possibly because color-

only baselines are tuned well, or depth images are not an ideal representation for

semantics. More research is still required to fully understand how to extract semantic

information effectively from the geometry.

On the other hand, knowing semantics could also improve geometry estimation.

Boundaries of homogeneous semantic regions often indicate geometric discontinuity,

which helps to predict sharper boundaries in the estimated geometry [88]. The se-

mantic category also provides a strong prior, such that shape estimation for a certain

semantic category (e.g., face, hand, plane, and chair) can leverage prior shape analysis

(e.g., PCA) to simplify the problem and produce better results [123, 167, 131, 124].

Nevertheless, how semantics helps to improve geometry estimation in general is not

clear especially for fine-grained details [36]. One possible argument is that the se-

mantic understanding we have so far is still at a very rough level, which brings in

only a vague shape prior. For example, knowing the object is a chair still leaves large

inter-class shape variation. Ideally, the impact of semantics on geometry should be

studied with fine-grained or instance level semantics.
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