
Data-Driven 3D Scene Understanding

Shuran Song

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Thomas A. Funkhouser

November 2018

c© Copyright by Shuran Song, 2018.

All rights reserved.

Abstract

Intelligent robots require advanced vision capabilities to perceive and interact with

the real physical world. While computer vision has made great strides in recent

years, its predominant paradigm still focuses on analyzing image pixels to infer two

dimensional outputs (e.g. 2D bounding boxes, or labeled 2D pixels.), which remain

far from sufficient for real-world robotics applications.

This dissertation presents the use of amodal 3D scene representations that enable

intelligent systems to not only recognize what is seen (e.g. Am I looking at a chair?),

but also predict contextual information about the complete 3D scene beyond visible

surfaces (e.g. What could be behind the table? Where should I look to find an exit?).

More specifically, it presents a line of work that demonstrates the power of these

representations: First it shows how 3D amodal scene representation can be used to

improve the performance of a traditional tasks such as object detection. We present

SlidingShapes and DeepSlidingShapes for the task of amodal 3D object detection,

where the system is designed to fully exploit the advantage of 3D information provided

by depth images. Second, we introduce the task of semantic scene completion and

our approach SSCNet, whose goal is to produce a complete 3D voxel representation of

volumetric occupancy and semantic labels for a scene from a single-view depth map

observation. Third, we introduce the task of semantic-structure view extrapolation

and our approach Im2Pano3D, which aims to predict the 3D structure and semantic

labels for a full 360◦panoramic view of an indoor scene when given only a partial

observation. Finally, we present two large-scale datasets (SUN RGB-D and SUNCG)

that enable the research on data-driven 3D scene understanding.

This dissertation demonstrates that leveraging a complete 3D scene representa-

tions not only significantly improves algorithm’s performance for traditional computer

vision tasks, but also paves the way for new scene understanding tasks that have pre-

viously been considered ill-posed given only 2D representations.

iii

Acknowledgements

I would like to thank my advisor, Thomas Funkhouser, for being an excellent role

model throughout my years in graduate school. I enjoyed our day-to-day discussions

– from brainstorming high-level ideas to nailing down detailed implementation issues.

More importantly, his work ethic, passion, patience, and wisdom continually demon-

strates what it means to be a great advisor and researcher. I believe his principles

will continue to positively influence and guide me throughout my life.

I would also like to thank my thesis committee members, Szymon Rusinkiewicz,

Adam Finkelstein, Olga Russakovsky and Alberto Rodriguez for their feedback and

comments, and for inspirating by example.

I was fortunate to receive lots of help throughout my PhD. It has been an honor

to work along side with many great researchers including Andy Zeng, Manolis Savva,

Angel Chang, Yinda Zhang, Fisher Yu, Jianxiong Xiao, Matthias Niener, Matthew

Fisher, Zhirong Wu, Linguang Zhang, and Samuel P. Lichtenberg.

I was extremely lucky to be part of Princeton Computer Vision and Graphics

Group. I thank all current and previous group members, especially Maciej Halber,

Elena Balashova, Xinyi Fan, Zeyu Jin, Nora Willett, and Kyle Genova for their

support and suggestions.

I would also like to thank all members of the MIT-Princeton Amazon Robotics

Challenge team. Collaborating with them has been both an incredible and humbling

learning experience.

My graduate studies at Princeton University and this thesis were generously sup-

ported by the Princeton Wallace Fellowship, the Siebel Scholar Fellowship, and the

Facebook Fellowship.

Finally, I would like to thank my family for their continuous love and endless

support.

iv

To my parents.

v

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . ix

List of Figures . xi

1 Introduction 2

1.1 Motivation . 2

1.2 Challenges in 3D Scene Understanding 4

1.3 Dissertation Structure . 6

2 Understanding Amodal 3D Objects 8

2.1 3D Amodal Object Detection . 8

2.2 Related works . 11

2.3 Sliding Shapes . 12

2.4 Deep Sliding Shapes . 14

2.4.1 Data Representation for 3D Deep Learning 15

2.4.2 Multi-scale 3D Region Proposal Network 16

2.4.3 Joint Amodal Object Recognition Network 22

2.4.4 Evaluation . 25

2.5 Summary . 30

vi

3 Understanding Amodal 3D Scenes 33

3.1 Semantic Scene Completion . 33

3.2 Related Work . 36

3.3 Semantic Scene Completion Network 38

3.3.1 Volumetric Data Encoding . 39

3.3.2 Network Architecture . 40

3.4 Synthesizing training data . 43

3.4.1 Synthetic depth map generation 44

3.4.2 Volumetric ground truth generation 45

3.5 Evaluation . 46

3.5.1 Evaluation metric. 46

3.5.2 Experimental results . 47

3.6 Summary . 51

4 Understanding 3D Scenes Beyond the Field of View 54

4.1 Semantic-Structure View Extrapolation 54

4.2 Related Work . 57

4.3 Im2Pano3D Network . 59

4.3.1 Whole Room Panoramic Representation 59

4.3.2 Representing 3D Surfaces with Plane Equations 60

4.3.3 Im2Pano3D Network Architecture 62

4.3.4 Im2Pano3D Network Losses 63

4.4 Evaluation . 65

4.4.1 Datasets . 65

4.4.2 Baseline Methods . 65

4.4.3 Experimental Results . 69

4.5 Summary . 73

vii

5 Datasets and Benchmarks for 3D Scene Understanding 75

5.1 Real-world RGB-D dataset: SUN RGB-D 75

5.1.1 Related Work . 77

5.1.2 Dataset Construction . 78

5.1.3 Ground Truth Annotation . 83

5.1.4 SUN RGB-D Dataset Statistics 85

5.1.5 Benchmark Design . 85

5.2 Synthetic 3D Scene Dataset: SUNCG 94

5.2.1 Related Work . 96

5.2.2 Dataset Construction . 98

5.2.3 SUNCG Dataset Statistics . 98

5.2.4 Tasks Supported by SUNCG 101

5.3 Summary . 103

6 Future Directions 104

7 Conclusion 107

Bibliography 108

viii

List of Tables

2.1 Evaluation for Amodal 3D Object Proposal. [All Anchors] shows

the performance upper bound when using all anchors. 27

2.2 Evaluation of proposal generation on SUN RGB-D test set. . 27

2.3 Control Experiments on NYUv2 Test Set. Not working: box

(too much variance), door (planar), monitor and tv (no depth). . . . 29

2.4 Evaluation of 3D amodal object detection on SUN RGB-D

test set. 29

2.5 Comparison on 3D Object Detection. 31

3.1 Semantic scene completion results on the NYU with kinect depth map. 44

3.2 Scene completion on the rendered NYU test set as [33] . . . 47

3.3 Ablation study on SUNCG testset. First two row shows the eval-

uation on surface segmentation with and without joint training. The

following rows show the evaluation on semantic scene completion task.

D: 3D dilated convolution. M: multi-scale aggregation. 49

4.1 Comparing to baseline methods on Matterport3D. Row 2 to 5 shows

baseline methods. Our models are named by their input output modali-

ties (same as Tab.4.2) and training set (s: SUNCG, m: Matterport3D).

Bold numbers indicate best performances in each group. 71

ix

4.2 Ablation studies on SUNCG. Models are named by their input and

output modalities. rgb: color, s: semantic segmentation, d: depth,

p: plane distance, n: surface normal. A: adversarial loss, S: scene

attribute loss. 71

4.3 Camera configurations. The table shows the average PoG, median

surface and normal error for each configuration. Example inputs for

each configuration can be found in Fig.4.10. For models [rgbpano] and

[rgbpano+1], we evaluate on regions that do not have depth observa-

tion. For all other models, we evaluate on regions with no color and

depth observation. 74

5.1 Semantic segmentation. We evaluate performance for 37 object

categories. Here shows 8 selected ones: floor, ceiling, chair, table, bed,

nightstand, books, and person. The mean accuracy is for all the 37

categories. A full table is in the supp. material. 88

5.2 Evaluation of 2D object detection. We evaluate on 19 popular ob-

ject categories using Average Precision (AP): bathtub, bed, bookshelf,

box, chair, counter, desk, door, dresser, garbage bin, lamp, monitor,

night stand, pillow, sink, sofa, table, tv and toilet. 88

5.3 Evaluation of total scene understanding. With the objects de-

tection result from Sliding Shape and RCNN and Manhattan Box for

room layout estimation, we evaluate four ways to integrate object de-

tection and room layout: (1) directly combine (2) constrain the object

using the room. (3) adjust room base on the objects (4) adjust the

room and objects together. 94

5.4 Cross-sensor bias. 94

x

List of Figures

2.1 Training Data Generation: We use a collection of CG models to

train a 3D detector. For each CG model, we render it from hundreds

of view angles to generate a pool of positive training data. For each

rendering, we train an Exemplar-SVM model. And we ensemble all

SVMs from all renderings of all CG chair models to build a 3D chair

detector. 13

2.2 Sliding Shape: We extract 3D features of point cloud from depth

rendering of Computer Graphics model to train a 3D classifier. And

during testing time, we slide a window in 3D to evaluate the score for

each window using an ensemble of Exemplar-SVMs. 15

2.3 Visualization of TSDF Encoding. We only visualize the TSDF

values when close to the surface. Red indicates the voxel is in front of

surfaces; and blue indicates the voxel is behind the surface. The resolu-

tion is 208×208×100 for the Region Proposal Network, and 30×30×30

for the Object Recognition Network. 16

2.4 3D Amodal Region Proposal Network: Taking a 3D volume from

depth as input, our fully convolutional 3D network extracts 3D pro-

posals at two scales with different receptive fields. 17

xi

2.5 Joint Object Recognition Network: For each 3D proposal, we feed

the 3D volume from depth to a 3D ConvNet, and feed the 2D color

patch (2D projection of the 3D proposal) to a 2D ConvNet, to jointly

learn object category and 3D box regression. 18

2.6 List of All Anchors Types. The subscripts show the width ×

depth × height in meters, followed by the number of orientations for

this anchor after the colon. 19

2.7 Examples for Detection Results. For the proposal results, we

show the heat map for the distribution of the top proposals (red is

the area with more concentration), and a few top boxes after NMS.

For the recognition results, our amodal 3D detection can estimate the

full extent of 3D both vertically (e.g.bottom of a bed) and horizontally

(e.g.full size sofa in the last row). 21

2.8 Distributions of Heights for Amodal v.s Modal Boxes. The

modal bounding boxes for only the visible parts of objects have much

larger variance in box sizes, due to occlusion, truncation, or missing

depth. Representing objects with amodal box naturally enables more

invariance for learning. 21

2.9 2D t-SNE embedding of the last layer features learned from the 3D

ConvNet. Color encodes object category. 24

2.10 Comparision with Sliding Shapes [155]. Our algorithm is able

to better use shape, color and contextual information to handle more

object categories, resolve the ambiguous cases, and detect objects with

atypical size. 30

2.11 Top True Positives. 31

xii

2.12 Top False Positives. (1)-(2) show detections with inaccurate loca-

tions. (3)-(6) show detections with wrong box size for the big bookshelf,

L-shape sofa, bunk bed, and monitor. (7)-(10) show detections with

wrong categories. 31

2.13 Misses. Reasons: heavy occlusion, outside field of view, atypical size

object, or missing depth. 31

3.1 Semantic scene completion. [Left] Input single-view depth map

and visible surface from the depth map; color is for visualization only.

[Right] Semantic scene completion result: our model jointly predicts

volumetric occupancy and object categories for each of the 3D voxels

in the view frustum. Note that the entire volume occupied by the bed

is predicted to have the bed category. 34

3.2 Given a single-view depth observation of a 3D scene the goal of our

SSCNet is to predict both occupancy and object category for the voxels

on the observed surface and occluded regions. 38

3.3 Different encodings for surface (a). The projective TSDF (b) is

computed with respect to the camera and is therefore view-dependent.

The accurate TSDF (c) has less view dependency but exhibits strong

gradients in empty space along the occlusion boundary (circled in

gray). In contrast, the flipped TSDF (d) has the strongest gradient

near the surface. 40

3.4 SSCNet: Semantic scene completion network. Taking a single

depth map as input, the network predicts occupancy and object labels

for each voxel in the view frustum. The convolution parameters are

shown as (number of filters, kernel size, stride, dilation). 41

xiii

3.5 Comparison of receptive fields and voxel sizes between SSC-

Net and prior work. (a) Object-centric networks such as [180] and

[111] scale objects into the same 3D voxel grid thus discarding physical

size information. In (b)-(d), colored regions indicate the effective recep-

tive field of a single neuron in the last layer of each 3D ConvNet. With

the help of 3D dilated convolution SSCNet drastically increases its re-

ceptive field compared to other 3D ConvNet architectures [156, 191]

thus capturing richer 3D contextual information. 42

3.6 Synthesizing Training Data. We collected a large-scale synthetic

3D scene dataset to train our network. For each of the 3D scenes, we

select a set of camera positions and generate pairs of rendered depth

images and volumetric ground truth as training examples. 44

3.7 What 3D context does the network learn? The first figure shows

the input depth map (a desk) and the following figures show the predic-

tions for other objects. Without observing any information for other

objects the SSCNet is able to hallucinate their locations based on the

observed object and the learned 3D context. 50

3.8 Qualitative results. We compare with scene completion results from

Zheng et al. [199] and Firman et al. [33] (on a subset of the test set),

and semantic scene completion results from Lin et al. [99] and Geiger

and Wang [36]. Zheng et al.[33] tested on rendered depth, [99] and [36]

tested on RGB-D frame from kinect, [33] and SSCNet tested on kinect

depth. Overall, SSCNet gives more accurate voxel predictions such as

the lamps and pillows in the first row, and the sofa in the third row. . 52

xiv

4.1 Semantic-structure view extrapolation. Given a partial obser-

vation of the room in the form of an RGB-D image, our Im2Pano3D

predicts both 3D structure and semantics for a full panoramic view of

the same scene. 55

4.2 Whole room representation. We use a sky-box-like multi-channel

panorama to represent 3D scenes. The views are circularly connected,

hence, observing the inner two views is equivalent to observing the

outer two views of its shifted panorama. 60

4.3 3D structure prediction with different encodings. The plane

equation encoding (B) is a better output representation than raw depth

encoding (A); its regularization enables the network to predict higher

quality geometry. 61

4.4 Im2Pano3D network architecture. the network uses a multi-

stream autoencoder structure. A PN-layer is used to ensure consis-

tency between normal and plane distance predictions. 62

4.5 Directly predicting 3D structure and semantics (b) (rgbpn2pns) pro-

vides a more accurate result than predicting the same information from

generated color pixels (d) (inpaint). 66

4.6 Human completion. Left shows the input observations. Middle

shows completion results from different users overlaid on the observa-

tions. Right shows ground truth and our prediction. 67

4.7 Probability distribution of semantics. The first row shows the

average distribution of each semantic category over all training exam-

ples. The following rows show the predicted probability distribution of

semantics from Im2Pano3D overlaid on top of the ground truth testing

images. Red areas on the heat maps indicate higher probabilities. . . 69

xv

4.8 Qualitative Results. For each example, we show semantic segmen-

tations labeled using the highest predicted class probability for each

pixel, and normal maps from 3D structure predictions. We also show

reconstructed 3D point clouds (right column), colored by semantic la-

bels, with bounding boxes around semantically connected components.

More results in supplementary material. 70

4.9 Experiments. (a) shows mean IOU with respect to distance from ob-

servation. (b) shows accuracy of predictions in the unobserved regions

while increasing input horizontal FoV from 5◦ to 350◦. The error bar

shows the error margin across test cases. 72

4.10 Camera configurations. For different camera configurations,

Im2Pano3D provides a unified framework to efficiently filling in

missing 3D structure and semantics of the unobserved scene. The

observation coverage is shown in parentheses. 3D structure is rep-

resented with normals. The data for [RGB-D+motion] comes from

NYUv2 [149]. More examples can be found in supplementary material. 73

5.1 Comparison of RGB-D recognition benchmarks. Apart from

2D annotation, our benchmark provided high quality 3D annotation

for both objects and room layout. 77

5.2 Comparison of the four RGB-D sensors. The raw depth map

from Intel RealSense is noisier and has more missing values. Asus

Xtion and Kinect v1’s depth map have observable quantization effect.

Kinect v2 is more accurate to measure the details in depth, but it is

more sensitive to reflection and dark color. Across different sensors our

depth improvement algorithm manages to robustly improve the depth

map quality. 79

xvi

5.3 Data Capturing Process. (a) RealSense attached to laptop, (b)

Kinect v2 with battery, (c) Capturing setup for Kinect v2. 82

5.4 Example images with annotation from SUN RGB-D dataset. 83

5.5 Statistics of semantic annotation in our dataset. 85

5.6 Confusion matrices for various scene recognition algorithms.

Each combination of features and classifiers is run on RGB, D and

RGB-D. The numbers inside the parentheses are the average accuracy

for classification. 87

5.7 Example results for 3D object detection and orientation pre-

diction. We show the angle difference and IoU between predicted

boxes (blue) and ground truth (red). 89

5.8 Object orientation estimation. Here we show the distribution of

the orientation errors for all true positive detections. 90

5.9 Example visualization to compare the three 3D room layout esti-

mation algorithms. 91

5.10 Free space evaluation. The free space is the gray area inside the

room, outside any object bounding boxes, and within the effective

minimal and maximal range [0.5m-5.5m]. For evaluation, we use IoU

between the gray areas of the ground truth and the prediction as the

criteria. 92

5.11 Visualization of total scene understanding results. 93

5.12 Real data (top) vs. synthetic data (bottom). For the real data, note the

noise in normal map and the diminishing accuracy at object boundaries

in the semantic labels. 96

xvii

5.13 Scene structure statistics. Distribution of number of rooms and

number of floors in our SUNCG dataset. Our dataset contains a large

variety of 3D indoor scenes such as small studios, multi-room apart-

ments, and multi-floor houses. 99

5.14 Distribution of physical sizes (in meters2) per room, floor, and

house of the SUNCG dataset. 100

5.15 Distribution of different room types in the SUNCG dataset (left), and

examples of rooms per room type (right). 100

5.16 Distribution of object categories in the SUNCG dataset. We

have 84 object categories in total. Here we show the top 50 object

categories with highest number of occurrences in our dataset. 101

5.17 Object-Room Relationship. On the left we show the distribution

of number of objects in each room. On average there are more than

14 objects in each room. On the right, we show the object category

distribution conditioned on different room type. Size of the square

shows the frequency of a given object category appears in the certain

room type. The frequency is normalized for each object category. As

expected, object occurrences are tightly correlated with the room type.

For example, kitchen counters have a very high chance to appear in

kitchen, while chairs appear frequently in many room types. 102

xviii

ets us split up the document (and each include starts a new page):

1

Chapter 1

Introduction

1.1 Motivation

Imagine a domestic robot preparing to set a dining table. Which piece of visual

information would it find to be more useful for the task? (info A) I see a table on the

left and chairs on the right, or (info B) I see a table two meters away from me behind

three chairs, the tabletop is one meter above the floor, and there is enough empty space

on the table to place the dishes. While performing complex tasks such as preparing

dining tables, autonomous robotic systems would typically benefit from a complete

3D visual understanding of the object in the scene, their locations and orientations,

spatial relationships, and free space (i.e. info B). However, most computer vision

algorithms will only produce information to the extent of object bounding boxes and

image labels (i.e. info A).

This example highlights a fundamental limitation behind classic 2D image-centric

computer vision tasks: they are targeted at understanding 2D images, but not the 3D

physical world behind them. Moreover, since images are only 2D partial representa-

tions of complete 3D scenes, they can exhibit extreme variations from minor changes

2

to camera viewpoint, materials, lighting, and object arrangements, which continue to

obscure state-of-the-art image recognition algorithms.

The goal of this dissertation is to develop computer vision algorithms that can

understand the visual world in terms of both low-level 3D structure and high-level

semantics. More importantly, the system should not only be able to recognize what it

sees (e.g. Am I looking at a chair?), but also be able to reason contextual information

related to its complete 3D environment - including regions beyond the visible surfaces

in view (e.g. What could be behind the table? Where should I look to find an exit?).

Towards this goal, this thesis aims to develop 3D amodal scene represen-

tations that can harness the power of both color and depth (RGB-Depth) scan

data from 3D sensors such as the Microsoft Kinect, to bypass the aforementioned

challenges, and directly provide useful 3D outputs for real-world applications. My

research is uniquely defined by the following aspects:

• 3D. Explore the direct use of 3D data representations and grounded in real-

world physical metrics, as both input and output for computer vision algorithms,

instead of reasoning over 2D image pixels to infer 3D information.

• Amodal. Leverage and provide complete 3D representations of scenes regard-

less of occlusions and image field of view (amodal), instead of only considering

surfaces visible to the camera (modal).

• Scene. Make use of contextual information beyond single objects to extract

rich information about the scene as a whole.

In contrast to image representations, 3D amodal scene representations provide

a more faithful digital encoding of the world we live in, allowing us to store and

manipulate all kinds of information (e.g., materials, semantics, affordances) in a way

that is more direct and complete. Beyond computer vision, advances in 3D scene

representations will also have a significant impact on many other domains, including

3

graphics, robotics, mechanical engineering, and computational biology, where 3D data

representations serve as a common foundation for data-driven analysis.

This research has been made possible by the recent availability of affordable 3D

scanning devices (e.g., Microsoft Kinect), as well as the dramatic growth of online

3D model repositories (e.g., Trimble Warehouse). The combination of these two

developments changes how we can approach visual scene understanding tasks, there

has never been a more exciting time to explore the idea of how we can achieve robust

3D scene understanding for intelligent systems in real-world applications.

1.2 Challenges in 3D Scene Understanding

While the opportunity is exciting, data-driven 3D scene understanding also presents

unique challenges. The following paragraphs summarize the major questions and

challenges behind 3D scene understanding:

How should we represent a 3D scene? In traditional 2D computer vision, scene

representations are often made up of 2D bounding boxes and/or 2D pixel labels. While

it is possible to produce analogous representations for 3D scene understanding via 3D

bounding boxes and/or 3D point cloud labels for visible surfaces, these representations

may not be sufficient for many real-world applications. For example, to successfully

grasp a 3D object, a robotic system may need to infer the complete 3D shape of the

object rather than just its visible surfaces.

This dissertation studies a set of new tasks which aim to produce various 3D scene

representations that are more useful for supporting real-world applications. These

tasks include amodal 3D object detection, as explained in Chapter 2, semantic scene

completion; as discussed in Chapter 3; and semantic-structure view extrapolation, as

elaborated in Chapter 4.

4

How should we encode 3D information? Color images are naturally encoded as

a 2D array of pixel color values. However, it is unclear how 3D data should be encoded.

Representing 3D information using view-based depth images holds the advantage of

being able to reuse pre-trained deep models from color image datasets (which are

widely available). However, such models are often highly viewpoint-dependent and

can lose valuable information encoded within the 3D spatial locality. On the other

hand, 3D volumetric representations directly encode 3D geometry and preserve 3D

spatial locality, but at the cost of exponential compute.

In this thesis we utilize several different 3D data encodings, and discuss their pros

and cons under various task settings. For example, we use 3D point cloud based

representations in Chapter 2, the 3D volumetric truncated signed distance function

(TSDF) encoding and its variations in Chapters 2 and 3, as well as a 2D plane

equation encoding in Chapter 4.

How should we design an algorithm that best utilizes 3D information?

Many of the algorithms in this thesis have been inspired by recent progress in 2D

computer vision. However, it is critical to continually re-think and re-design these

algorithms so that they can better adapt to the unique aspects of 3D data and its

applications. In this dissertation, we explore how we can design machine learning

algorithms in ways that make them more effective for use with 3D information. For

example, how can we make use of real-world physical metrics for object recognition?

How can we handle data sparsity in 3D volumetric data representations during train-

ing? How can we learn useful long-range contextual priors of 3D scenes without

significantly increasing the computation complexity?

How to obtain the training data. In contrast to the large, well-established

datasets and benchmarks for 2D computer vision, existing datasets for 3D scene

understanding (e.g. the NYU dataset [120]) are significantly smaller. The scarcity

5

of available 3D data is a common bottleneck for research in the field of 3D scene

understanding. As a reaction to the lack of freely available 3D data, this dissertation

introduces two large-scale 3D scene understanding datasets: SUNG RGB-D for real-

world RGB-D data (Section 5.1) and SUNCG (Section 5.2) for synthetic 3D scene

data.

1.3 Dissertation Structure

This dissertation is divided into the following chapters:

Chapter 2: I present two approaches (SlidingShapes [155] and DeepSlidingShapes

[156]) for accomplishing the task of amodal 3D object detection and show how we can

make use of depth information to improve the performance of a traditional computer

vision task.

Chapter 3: I introduce the task of semantic scene completion, a task for producing

a complete 3D voxel representation of volumetric occupancy and semantic labels for a

scene from a single-view depth map observation. I also show how to address this task

by leveraging the coupled nature of 3D geometry and semantic information through

a semantic scene completion network [157].

Chapter 4: I try to push the boundary even further by introducing the task of

semantic-structure view extrapolation, which aims to predict the 3D structure and

semantic labels for a full 360 ◦panoramic view of an indoor scene when given only a

partial observation. Then I present our approach (Im2Pano3D) to address this task

by leveraging strong contextual priors learned from large-scale indoor scenes [158].

6

Chapter 5: I present two large-scale datasets and benchmarks that we constructed

(SUN RGB-D [154] and SUNCG [157]), and how they can support different research

topics in the area of 3D scene understanding.

7

Chapter 2

Understanding Amodal 3D Objects

In this chapter, we focus on the task of amodal 3D object detection in RGB-D images,

which aims to produce a 3D bounding box of an object in metric form at its full

extent regardless of truncation or occlusion. We present two approaches for this

task SlidingShapes [155] in Section 2.3 and its improved version DeepSlidingShapes

[156] in Section 2.4. These 3D detector systems utilize the depth maps captured by

consumer-level RGB-D sensor, and are designed to fully exploit the advantage of 3D

information by directly reasoning on the 3D space.

2.1 3D Amodal Object Detection

Typical object detection predicts the category of an object along with a 2D bounding

box on the image plane for the visible part of the object. While this type of result

is useful for some tasks, such as object retrieval, it is rather unsatisfactory for doing

any further reasoning grounded in the real 3D world. In this chapter, we focus on

the task of amodal 3D object detection in RGB-D images, which aims to produce an

object’s 3D bounding box that gives real-world dimensions at the object’s full extent,

8

regardless of truncation or occlusion. This kind of recognition is much more useful, for

instance, in the perception-manipulation loop for robotics applications. But adding

a new dimension for prediction significantly enlarges the search space, and makes the

task much more challenging. The arrival of reliable and affordable RGB-D sensors

(e.g., Microsoft Kinect) has given us an opportunity to revisit this critical task.

To utilize the depth information for object detection. Depth RCNN [48] takes

a 2D approach: detect objects in the 2D image plane by treating depth as extra

channels of a color image, then fit a 3D model to the points inside the 2D detected

window by using ICP alignment. However direct converting 2D detection results to

3D does not work well (see Table 2.5 and [48]).

Instead, we proposed to formulate this problem directly in 3D in order to fully

exploits the advantage of 3D provided by the depth. In Section 2.3 we first introduce

Sliding Shapes, where the algorithm directly slide a 3D detection window in 3D

space. By exploitng the 3D information in a data driven fashion, the algorithm is

designed to overcome the major difficulties for recognition, namely the variations of

texture, illumination, shape, viewpoint, clutter, occlusion, self occlusion and sensor

noises.

However, the hand-crafted features limit how accurately Sliding Shapes can rec-

ognize objects and its multi-step algorithm makes it quite slow. To address these

problems, in Section 2.4, we introduce Deep Sliding Shapes, a complete 3D formu-

lation to learn object proposals and classifiers using 3D convolutional neural networks

(ConvNets). In this work, We propose the first 3D Region Proposal Network (RPN)

that takes a 3D volumetric scene as input and outputs 3D object proposals (Figure

2.4). It is designed to generate amodal proposals for whole objects at two different

scales for objects with different sizes. We also propose the first joint Object Recogni-

tion Network (PRN) to use a 2D ConvNet to extract image features from color, and

a 3D ConvNet to extract geometric features from depth (Figure 2.5). This network

9

is also the first to regress 3D bounding boxes for objects directly from 3D propos-

als. Extensive experiments show that our 3D ConvNets can learn a more powerful

representation for encoding geometric shapes (Table 2.5), than 2D representations

(e.g.HHA in Depth-RCNN). Our algorithm is also much faster than Depth-RCNN

and the the original Sliding Shapes, as it only requires a single forward pass of the

ConvNets in GPU at test time.

Our design fully exploits the advantage of 3D. Therefore, our algorithm naturally

benefits from the following five aspects: First, we can predict 3D bounding boxes

without the extra step of fitting a model from extra CAD data. This elegantly

simplifies the pipeline, accelerates the speed, and boosts the performance because the

network can directly optimize for the final goal. Second, amodal proposal generation

and recognition is very difficult in 2D, because of occlusion, limited field of view,

and large size variation due to projection. But in 3D, because objects from the same

category typically have similar physical sizes and the distraction from occluders falls

outside the window, our 3D sliding-window proposal generation can support amodal

detection naturally. Third, by representing shapes in 3D, our ConvNet can have a

chance to learn meaningful 3D shape features in a better aligned space. Fourth, in

the RPN, the receptive field is naturally represented in real world dimensions, which

guides our architecture design. Finally, we can exploit simple 3D context priors by

using the Manhattan world assumption to define bounding box orientations.

While the opportunity is encouraging, there are also several unique challenges for

3D object detection. First, a 3D volumetric representation requires much more mem-

ory and computation. To address this issue, we propose to separate the 3D Region

Proposal Network with a low-res whole scene as input, and the Object Recognition

Network with high-res input for each object. Second, 3D physical object bounding

boxes vary more in size than 2D pixel-based bounding boxes (due to photography and

dataset bias) [96]. To address this issue, we propose a multi-scale Region Proposal

10

Network that predicts proposals with different sizes using different receptive fields.

Third, although the geometric shapes from depth are very useful, their signal is usu-

ally lower in frequency than the texture signal in color images. To address this issue,

we propose a simple but principled way to jointly incorporate color information from

the 2D image patch derived by projecting the 3D region proposal.

2.2 Related works

Our work has been inspired by research in object recognition of images, range scans,

depth maps, RGB-D and CAD models, in the following section we will briefly review

the works that are most relevant to this dissertation.

2D Object Detector in RGB Images Deep ConvNets have revolutionized 2D

image-based object detection. RCNN [38], Fast RCNN [37], and Faster RCNN [129]

are three iterations of the most successful state-of-the-art. Beyond predicting only

the visible part of an object, [79] further extended RCNN to estimate the amodal box

for the whole object. But their result is in 2D and only the height of the object is

estimated, while we desire an amodal box in 3D.

2D Object Detector in RGB-D Images 2D object detection approaches for

RGB-D images treat depth as extra channel(s) appended to the color images, using

hand-crafted features [47], sparse coding [14, 15], or recursive neural networks [152].

Depth-RCNN [49, 48] is the first object detector using deep ConvNets on RGB-D

images. They extend the RCNN framework [38] for color-based object detection by

encoding the depth map as three extra channels (with Geocentric Encoding: Dispar-

ity, Height, and Angle) appended to the color images. [48] extended Depth-RCNN to

produce 3D bounding boxes by aligning 3D CAD models to the recognition results.

[52] further improved the result by cross model supervision transfer. For 3D CAD

model classification, [164] and [144] took a view-based deep learning approach by ren-

11

dering 3D shapes as 2D image(s). The main difference is that our algorithm operates

fully in 3D, using 3D sliding windows and 3D features, which can handle occlusion

and other problems naturally.

3D Classification: Classification-based approaches [12, 14, 13, 153, 11, 94, 93, 27,

192, 80, 143, 63, 40, 188, 201, 178] typically consider the whole object at the same

time by extracting a holistic feature for the whole object and classifying the feature

vector via a classifier. But the typical setting is to have the segmented object as the

input (or even a solo 3D model with complete mesh), and classify an object into one

of the fixed categories, which is a much easier task than object detection that needs

to localize the object and tell a non-object window apart.

3D Feature Learning HMP3D [91] introduced a hierarchical sparse coding tech-

nique for unsupervised learning features from RGB-D images and 3D point cloud

data. The feature is trained on a synthetic CAD dataset, and tested on scene la-

beling task in RGB-D video. In contrast, we desire a supervised way to learn 3D

features using the deep learning techniques that are proven to be more effective for

image-based feature learning.

3D Deep Learning 3D ShapeNets [180] introduced 3D deep learning for model-

ing 3D shapes, and demonstrated that powerful 3D features can be learned from a

large amount of 3D data. Several recent works [111, 31, 187, 66] also extract deep

learning features for retrieval and classification of CAD models. While these works

are inspiring, none of them focuses on 3D object detection in RGB-D images.

2.3 Sliding Shapes

As the first attempt to address the amodal 3D object detection task we proposed

Sliding Shapes [2], which slides a three-dimensional window over an RGB-D image to

detect objects in that image. The main idea is to exploit the depth information in

12

a data-driven fashion to overcome the major difficulties in object detection, namely

the variations of texture, illumination, shape, viewpoint, self occlusion, clutter and

occlusion.

The algorithm works as follows: for a given object category (e.g. chair), we

use Computer Graphics (CG) CAD models from the Internet. We render each CG

model from hundreds of viewpoints to obtain synthetic depth maps, as if they are

viewed by a typical RGB-D sensor (Figure 2.1).For each rendering, a feature vector

is extracted from the 3D point cloud corresponding to the rendered depth map to

train an exemplar Support Vector Machine (SVM) [108] using negative data from

a RGB-D data set [149] (Figure 2.2).. During testing or hard-negative mining, we

slide a 3D detection window in the 3D space to match the exemplar shape and each

window. Finally, to make use of the color information, we combine our depth-based

object detector with bottom-up super pixel segmentation [50] to further improve the

performance.

Figure 2.1: Training Data Generation: We use a collection of CG models to train
a 3D detector. For each CG model, we render it from hundreds of view angles to
generate a pool of positive training data. For each rendering, we train an Exemplar-
SVM model. And we ensemble all SVMs from all renderings of all CG chair models
to build a 3D chair detector.

Our design is based on several key insights: To handle texture and illumina-

tion variance, we use depth maps instead of RGB images, which is independent of

appearance. To handle shape variance, we use a data-driven approach to leverage a

collection of CG models that cover the space of shape variance in real world (the data

13

set). We also add a small variance on the size of CG model to make the detector

more robust. Furthermore, in contrast to direct mesh alignment [77], learning the

SVM using both positive and negative data also increases the generalization of the

detector. Because the CG models with complete mesh, to handle viewpoint variance,

we can densely render different viewpoints of an object to cover all typical viewing

angles. To handle depth-sensor error and noise, we use CG models to obtain perfect

rendering and use it as positive training data. To bridge the domain gap between CG

training data and RGB-D testing data, we render the depth map (but not color) as

if the CG model is viewed from a typical RGB-D sensor. To handle clutter (e.g. a

chair’s seat under a table), we use 3D sliding window with a mask to indicate which

parts should be considered during classification. To handle inter-object occlusion, we

make use of the depth map to reason about the source of occlusion and regard the

occluded area as missing data. To make use of self-occlusion, we render the CG model

and compute the Truncated Signed Distance Function (TSDF) [121] as a feature.

Since our generic object detector does not reply on any assumption about the

background or requires a dominant supporting plane [167, 85], and its single-view

nature doesn’t require a (semi-)complete scan of an object [118], it can be used as a

basic building block for general scene understanding tasks.

2.4 Deep Sliding Shapes

While Sliding Shapes algorithm demonstrate promising result that by exploiting depth

information and reasoning in 3D. However, the hand-crafted features limit how ac-

curately Sliding Shapes can recognize objects and its multi-step algorithm makes it

quite slow. To address these problems, we proposed Deep Sliding Shapes [156] to

use state-of-the-art deep learning techniques to learn powerful features from a large

amount of 3D data.

14

(a) Training each 3D exemplar detector independently.

SVM1% SVM2% SVM3%

No# Yes# No#

(b) Testing with exemplars.

Figure 2.2: Sliding Shape: We extract 3D features of point cloud from depth
rendering of Computer Graphics model to train a 3D classifier. And during testing
time, we slide a window in 3D to evaluate the score for each window using an ensemble
of Exemplar-SVMs.

2.4.1 Data Representation for 3D Deep Learning

The first question that we need to answer for 3D deep learning is: how to encode a 3D

space to present to the ConvNets? For color images, naturally the input is a 2D array

of pixel color. For depth maps, Depth RCNN [48, 49] proposed to encode depth as a

2D color image with three channels. Although it has the advantage to reuse the pre-

trained ConvNets for color images [52], we desire a way to encode the geometric shapes

naturally in 3D, preserving spatial locality. Furthermore, compared to methods using

hand-crafted 3D features [31, 187], we desire a representation that encodes the 3D

geometry as raw as possible, and let ConvNets learn the most discriminative features

from the raw data.

To encode a 3D space for recognition, we propose to adopt a directional Truncated

Signed Distance Function (TSDF). Given a 3D space, we divide it into an equally

spaced 3D voxel grid. The value in each voxel is defined to be the shortest distance

between the voxel center and the surface from the input depth map. Figure 2.3 shows

a few examples. To encode the direction of the surface point, instead of a single

distance value, we propose a directional TSDF to store a three-dimensional vector

15

TSDF of a scene for Region Proposal Network TSDF of objects for Object Recognition Network

Figure 2.3: Visualization of TSDF Encoding. We only visualize the TSDF values
when close to the surface. Red indicates the voxel is in front of surfaces; and blue
indicates the voxel is behind the surface. The resolution is 208×208×100 for the
Region Proposal Network, and 30×30×30 for the Object Recognition Network.

[dx, dy, dz] in each voxel to record the distance in three directions to the closest surface

point. The value is clipped by 2δ, where δ is the grid size in each dimension. The

sign of the value indicates whether the cell is in front of or behind the surface.

To further speed up the TSDF computation, as an approximation, we can also

use projective TSDF instead of accurate TSDF where the nearest point is found only

on the line of sight from the camera. The projective TSDF is faster to compute, but

empirically worse in performance compared to the accurate TSDF for recognition (see

Table 5.2). We also experiment with other encodings, and we find that the proposed

directional TSDF outperforms all the other alternatives (see Table 5.2). Note that

we can also encode colors in this 3D volumetric representation, by appending RGB

values to each voxel [177].

2.4.2 Multi-scale 3D Region Proposal Network

Region proposal generation is a critical step in an object detection pipeline [38, 37,

129]. Instead of exhaustive search in the original Sliding Shapes, we desire a region

proposal method in 3D to provide a small set of object agnostic candidates and to

speed up the computation, while still utilizing the 3D information . But there are

several unique challenges in 3D. First, because of an extra dimension, the possible

locations for an object increases by 30 times 1. This makes the region proposal step

145 thousand windows per image in 2D [37] v.s. 1.4 million in 3D.

16

3D
 In

pu
t

Co
nv

 1

Re
LU

 +
 P

oo
l

Conv
Class

Conv
3D Box

Co
nv

 2

Re
LU

 +
 P

oo
l

Co
nv

 3

Co
nv

4

Re
LU

 +
 P

oo
l

Space size: 5.2×5.2×2.5 m3

Receptive field: 0.0253 m3
Level 1 object proposal
Receptive field: 0.43 m3

Level 2 object proposal
Receptive field: 1.03 m3

Softmax

L1
Smooth

Conv
Class Softmax

L1
Smooth

Conv
3D Box

Re
LU

Figure 2.4: 3D Amodal Region Proposal Network: Taking a 3D volume from
depth as input, our fully convolutional 3D network extracts 3D proposals at two scales
with different receptive fields.

much more important and challenging as it need to be more selective. Second, we are

interested in amodal detection that aims to estimate the full 3D box that covers the

object at its full extent. Hence an algorithm needs to infer the full box beyond the

visible parts. Third, different object categories have very different object size in 3D.

In 2D, a picture typically only focuses on the object of interest due to photography

bias. Therefore, the pixel areas of object bounding boxes are all in a very limited

range [129, 96]. For example, the pixel areas of a bed and a chair can be similar in

picture while their 3D physical sizes are very different.

To address these challenges, we propose a multi-scale 3D Region Proposal Network

(RPN) to learn 3D objectness using back-propagation (Figure 2.4). Our RPN takes

a 3D scene as input and output a set of 3D amodal object bounding boxes with

objectness scores. The network is designed to fully utilize the information from 3D

physical world such as object size, physical size of the receptive field, and room

orientation. Instead of a bottom-up segmentation based approach (e.g.[172]) that

17

Co
nv

 1

Re
LU

 +
 P

oo
l

Co
nv

 2

Re
LU

 +
 P

oo
l

Co
nv

 3

Re
LU

FC
 2

2D VGG on ImageNet FC
 1 Co

nc
at

en
at

io
n

FC
 3

FC
 C

la
ss

FC
 3

D
 B

ox

So
ft

m
ax

L1
 S

m
oo

th

Figure 2.5: Joint Object Recognition Network: For each 3D proposal, we feed
the 3D volume from depth to a 3D ConvNet, and feed the 2D color patch (2D pro-
jection of the 3D proposal) to a 2D ConvNet, to jointly learn object category and 3D
box regression.

can only identify the visible part, our RPN looks at all the locations for the whole

object, in a style similar to sliding windows, to generate amodal object proposals. To

handle different object sizes, our RPN targets at two scales with two different sizes

of receptive fields.

Range and resolution For any given 3D scene, we rotate it to align with gravity

direction as our camera coordinate system. Based on the specs. for most RGB-D

cameras, we target at the effective range of the 3D space [−2.6, 2.6] meters hori-

zontally, [−1.5, 1] meters vertically, and [0.4, 5.6] meters in depth. In this range we

encoded the 3D scene by volumetric TSDF with grid size 0.025 meters, resulting in a

208× 208× 100 volume as the input to the 3D RPN.

Orientation We desire a small set of proposals to cover all objects with different

aspect ratios. Therefore, as a heuristic, we propose to use the major directions of the

room for the orientations of all proposals. Under the Manhattan world assumption,

we use RANSAC plane fitting to get the room orientations. This method can give

us pretty accurate bounding box orientations for most object categories. For objects

that do not follow the room orientations, such as chairs, their horizontal aspect ratios

18

tend to be a square, and therefore the orientation doesn’t matter much in terms of

Intersection-Over-Union.

Anchor For each sliding window (i.e.convolution) location, the algorithm will pre-

dict N region proposals. Each of the proposal corresponds to one of the N anchor

boxes. In our case, based on statistics of object sizes, we define a set of N = 19 an-

chors shown in Figure 2.6. For the anchors with non-square horizontal aspect ratios,

we define another anchor with the same size but rotated 90 degrees.

0.6×0.2×0.4: 2

0.5×0.5×0.2: 1

0.3×0.3×0.5: 1

0.95×0.95×0.9: 1 1.6×0.8×0.75: 2 1.2×0.5×0.8: 2 2×1.5×1: 2 0.5×0.25×0.7: 2

Level 1 Level 2

0.55×0.55×0.65: 1 1.25×1.25×0.75: 1 2×2×0.95: 1 0.6×0.6×1: 1 0.7×0.3×1.1: 2

Figure 2.6: List of All Anchors Types. The subscripts show the width × depth
× height in meters, followed by the number of orientations for this anchor after the
colon.

Multi-scale RPN The physical sizes of anchor boxes vary a lot, from 0.3 meters

(e.g.trash bin) to 2 meters (e.g.bed). If we use a single-scale RPN, the network would

have to predict all the boxes using the same receptive fields. This means that the

effective feature map will contain many distractions for small object proposals. To

address this issue, we propose a multi-scale RPN to output proposals at small and big

scales, the big one has a pooling layer to increase receptive field for bigger objects.

We group the list of anchors into two levels based on their physical sizes, and use

different branches of the network to predict them.

19

Fully 3D convolutional architecture To implement a 3D sliding window style

search, we choose a fully 3D convolutional architecture. Figure 2.4 shows our network

architecture. The stride for the last convolution layer to predict objectness score and

bounding box regression is 1, which is 0.1 meter in 3D. The filter size is 2 × 2 × 2

for Level 1 and 5× 5× 5 for Level 2, which corresponds to 0.4 m3 receptive field for

Level 1 anchors and 1 m3 for Level 2 anchors.

Empty box removal Given the range, resolution, and network architecture, the

total number of anchors for any image is 1,387,646 (19× 53× 53× 26). On average,

92.2% of these anchor boxes are empty, with point density less than 0.005 points per

cm3. To avoid distraction, we automatically remove these anchors during training

and testing.

Training sampling For the remaining anchors, we label them as positive if their

3D IOU scores with ground truth are larger than 0.35, and negative if their IOU are

smaller than 0.15. In our implementation, each mini-batch contains two images. We

randomly sample 256 anchors in each image with positive and negative ratio 1:1. If

there are fewer than 128 positive samples we pad the mini-batch with negative samples

from the same image. We select them by specifying the weights for each anchor in

the final convolution layers. We also try to use all the positives and negatives with

proper weighting, but the training cannot converge.

3D box regression We represent each 3D box by its center [cx, cy, cz] and the size

of the box [s1, s2, s3] in three major directions of the box (the anchor orientation for

anchors, and the human annotation for ground truth). To train the 3D box regressor,

we will predict the difference of centers and sizes between an anchor box and its

ground truth box. For simplicity, we do not do regression on the orientations. For

each positive anchor and its corresponding ground truth, we represent the offset of

box centers by their difference [∆cx,∆cy,∆cz] in the camera coordinate system. For

the size difference, we first find the closest matching of major directions between the

20

Input: Color and Depth Level 1 Proposals Level 2 Proposals Final Result

tablesofa chairbed bathtub garbage bin lamp pillow sinknight stand toilet bookshelf

Figure 2.7: Examples for Detection Results. For the proposal results, we show
the heat map for the distribution of the top proposals (red is the area with more con-
centration), and a few top boxes after NMS. For the recognition results, our amodal
3D detection can estimate the full extent of 3D both vertically (e.g.bottom of a bed)
and horizontally (e.g.full size sofa in the last row).

Chair ModalChair Amodal Table ModalTable Amodal
0

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

1000

2000

3000

4000

5000

6000

7000

0 0.5 1 21.5 0 0.5 1 21.5 0 0.5 1 21.5 0 0.5 1 21.5

Figure 2.8: Distributions of Heights for Amodal v.s Modal Boxes. The modal
bounding boxes for only the visible parts of objects have much larger variance in box
sizes, due to occlusion, truncation, or missing depth. Representing objects with
amodal box naturally enables more invariance for learning.

two boxes, and then calculate the offset of box size [∆s1,∆s2,∆s3] in each matched

direction. Similarly to [129], we normalize the size difference by its anchor size.

Our target for 3D box regression is a 6-element vector for each positive anchor t =

[∆cx,∆cy,∆cz,∆s1,∆s2,∆s3].

Multi-task loss Following the multi-task loss in [37, 129], for each anchor, our loss

function is defined as:

21

L(p, p∗, t, t∗) = Lcls(p, p
∗) + λp∗Lreg(t, t∗), (2.1)

where the first term is for objectness score, and the second term is for the box re-

gression. p is the predicted probability of this anchor being an object and p∗ is the

ground truth (1 if the anchor is positive, and 0 if the anchor is negative). Lcls is log

loss over two categories (object v.s. non object). The second term formulates the 3D

bounding box regression for the positive anchors (when p∗ = 1). Lreg is smooth L1

loss used for 2D box regression by Fast-RCNN [37].

3D NMS The RPN network produces an objectness score for each of the non-empty

proposal boxes (anchors offset by regression results). To remove redundant proposals,

we apply 3D Non-Maximum Suppression (NMS) on these boxes with IOU threshold

0.35 in 3D, and only pick the top 2000 boxes to input to the object recognition

network. These 2000 boxes are only 0.14% of all sliding windows, and it is one of

the key factor that makes our algorithm much faster than the original Sliding Shapes

[155].

2.4.3 Joint Amodal Object Recognition Network

Given the 3D proposal boxes, we feed the 3D space within each box to the Object

Recognition Network (ORN). In this way, the final proposal feed to ORN could be

the actual bounding box for the object, which allows the ORN to look at the full

object to increase recognition performance, while still being computationally efficient.

Furthermore, because our proposals are amodal boxes containing the whole objects at

their full extent, the ORN can align objects in 3D meaningfully to be more invariant

to occlusion or missing data for recognition.

3D object recognition network For each proposal box, we pad the proposal

bounding box by 12.5% of the sizes in each direction to encode some contextual

information. Then, we divide the space into a 30× 30× 30 voxel grid and use TSDF

22

(Section 2.4.1) to encode the geometric shape of the object. The network architecture

is shown in Figure 2.5. All the max pooling layers are 23 with stride 2. For the three

convolution layers, the window sizes are 53, 33, and 33, all with stride 1. Between the

fully connected layers are ReLU and dropout layers (dropout ratio 0.5). Figure 2.9

visualizes the 2D t-SNE embedding of 5,000 foreground volumes using their the last

layer features learned from the 3D ConvNet. Color encodes object category.

2D object recognition network The 3D network only makes use of the depth

map, but not the color. For certain object categories, color is a very discriminative

feature, and existing ConvNets provide very powerful features for image-based recog-

nition that could be useful. For each of the 3D proposal box, we project the 3D

points inside the proposal box to 2D image plane, and get the 2D box that contains

all these 2D point projections. We use the state-of-the-art VGGnet [150] pre-trained

on ImageNet [136] (without fine-tuning) to extract color features from the image.

We use a Region-of-Interest Pooling Layer from Fast RCNN [37] to uniformly sample

7× 7 points from conv5 3 layer using the 2D window with one more fully connected

layer to generate 4096-dimensional features as the feature from 2D images.

We also tried the alternative to encode color on 3D voxels, but it performs much

worse than the pre-trained VGGnet (Table 5.2 [dxdydz+rgb] v.s. [dxdydz+img]).

This might be because encoding color in 3D voxel grid significantly lowers the reso-

lution compared to the original image, and hence high frequency signal in the image

get lost. In addition, by using the pre-trained model of VGG, we are able to leverage

the large amount of training data from ImageNet, and the well engineered network

architecture.

2D and 3D joint recognition We construct a joint 2D and 3D network to make

use of both color and depth. The feature from both 2D VGG Net and our 3D ORN

(each has 4096 dimensions) are concatenated into one feature vector, and fed into

23

table
sofa chairbed bathtub garbage bin

lamp
pillow
sinknight stand toilet

bookshelfdesk
doormonitor tvbox

Figure 2.9: 2D t-SNE embedding of the last layer features learned from the 3D
ConvNet. Color encodes object category.

a fully connected layer , which reduces the dimension to 1000. Another two fully

connected layer take this feature as input and predict the object label and 3D box.

Multi-task loss Similarly to RPN, the loss function consists of a classification loss

and a 3D box regression loss:

L(p, p∗, t, t∗) = Lcls(p, p
∗) + λ′[p∗ > 0]Lreg(t, t∗), (2.2)

where the p is the predicted probability over 20 object categories (negative non-

objects is labeled as class 0). For each mini-batch, we sample 384 examples from

different images, with a positive to negative ratio of 1:3. For the box regression, each

target offset t∗ is normalized element-wise with the object category specific mean

and standard deviation. During testing, we 0.1 asthe 3D NMS threshold. For box

regressions, we directly use the results from the network.

Object size pruning When we use amodal bounding boxes to represent objects,

the bounding box sizes provide useful information about the object categories. To

24

make use of this information, for each of the detected box, we check the box size in

each direction, aspect ratio of each pair of box edge. We then compare these numbers

with the distribution collected from training examples of the same category. If any

of these values falls outside 1st to 99th percentile of the distribution, which indicates

this box has a very different size, we decrease its score by 2.

2.4.4 Evaluation

The training of RPN and ORN takes around 10 and 17 hours respectively on a

NVIDIA K40 GPU. During testing, RPN takes 5.62s and ORN takes 13.93s per

image, which is much faster than Depth RCNN (40s CPU + 30s GPU + expensive

post alignment) and Sliding Shapes (25 mins × number of object categories). We

implement our network architecture in Marvin [186], a deep learning framework that

supports N-dimensionalconvolutional neural networks. For the VGG network [150],

we use the weights from [52] without fine tuning.

We evaluate our 3D region proposal and object detection algorithm on the stan-

dard NYUv2 dataset [149] and SUN RGB-D [154] dataset. The amodal 3D bounding

box are obtained from SUN RGB-D dataset. We modified the rotation matrix from

SUN RGB-D dataset to eliminate the rotation on x,y plane and only contains camera

tilt angle. Following the evaluation metric in [155], we assume the all predictions and

ground truth boxes are aligned in the gravity direction. We use 3D volume inter-

section over union between ground truth and prediction boxes, and use 0.25 as the

threshold to calculate the average recall for proposal generation and average precision

for detection.

Object Proposal Evaluation

Evaluation of object proposal on NYU dataset is shown in Table 2.1. On the left, we

show the average recall over different IOUs. On the right, we show the recall for each

25

object category with IOU threshold 0.25, as well as the average best overlap ratio

(ABO) across all ground truth boxes. Table 2.2 shows the evaluation on SUNRGB-D

dataset.

Näıve 2D To 3D Our first baseline is to directly lift 2D object proposal to 3D.

We take the 2D object proposals from [48]. For each of them, we get the 3D points

inside the bounding box (without any background removal), remove those outside 2

percentiles along all three directions, and obtain a tight fitting box around these inlier

points. Obviously this method cannot predict amodal bounding box when the object

is occluded or truncated, since 3D points only exist for the visible part of an object.

3D Selective Search For 2D regoin proposal, Selective Search [172] is one of the

most popular state-of-the-arts. It starts with a 2D segmentation and uses hierarchical

grouping to obtain the object proposals at different scales. We study how well a

similar method based on bottom-up grouping can work in 3D (3D SS). We first use

plane fitting on the 3D point cloud to get an initial segmentation. For each big

plane that covers more than 10% of the total image area, we use the RGB-D UCM

segmentation from [49] (with threshold 0.2) to further split it. Starting with on this

over-segmentation, we hierarchically group [172] different segmentation regions, with

the following similarity measures:

· scolor(ri, rj) measures color similarity between region rt and rj using histogram intersection

on RGB color histograms;

· s#pixels(ri, rj) = 1 − #pixels(ri)+#pixels(rj)
#pixels(im) , where #pixels(·) is number of pixels in this

region;

· svolume(ri, rj) = 1 − volume(ri)+volume(rj)
volume(room) , where volume(·) is the volume of 3D bounding

boxes of the points in this region;

· sfill(ri, rj) = 1− volume(ri)+volume(rj)
volume(ri∪rj) measures how well region ri and rj fit into each other

to fill in gaps.

The final similarity measure is a weighted sum of these four terms. To diversify our

26

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

2D To 3D
3D Selective Search
RPN Single
RPN Multi
RPN Multi + Color
All Anchors

IOU

R
ec

al
l

R
ec

al
l

A
B

O

#B
ox

2D To 3D 41.7 53.5 37.9 22.0 26.9 46.2 42.2 11.8 47.3 33.9 41.8 12.5 45.8 20.7 49.4 55.8 54.1 15.2 50.0 34.4 0.210 2000
3D Selective Search 79.2 80.6 74.7 66.0 66.5 92.3 80.9 53.9 89.1 89.8 83.6 45.8 85.4 75.9 83.1 85.5 80.9 69.7 83.3 74.2 0.409 2000

RPN Single 87.5 98.7 70.1 15.6 95.0 100.0 93.0 20.6 94.5 49.2 49.1 12.5 100.0 34.2 81.8 94.9 93.3 57.6 96.7 75.2 0.425 2000
RPN Multi 100.0 98.7 73.6 42.6 94.7 100.0 92.5 21.6 96.4 78.0 69.1 37.5 100.0 75.2 97.4 97.1 96.4 66.7 100.0 84.4 0.460 2000

RPN Multi Color 100.0 98.1 72.4 42.6 95.0 100.0 93.0 19.6 96.4 79.7 76.4 37.5 100.0 79.0 97.4 97.1 95.4 57.6 100.0 84.9 0.461 2000
All Anchors 100.0 98.7 75.9 50.4 97.2 100.0 97.0 45.1 100.0 94.9 96.4 83.3 100.0 91.2 100.0 97.8 96.9 84.8 100.0 91.0 0.511 107674

1

Table 2.1: Evaluation for Amodal 3D Object Proposal. [All Anchors] shows
the performance upper bound when using all anchors.

R
ec

a
ll

A
B

O

#
B

o
x

3D SS 78.8 87.2 72.8 72.2 65.5 86.1 75.1 65.0 70.0 87.1 67.5 53.1 68.1 82.8 86.8 84.4 85.0 69.2 94.0 72.0 0.394 2000
RPN 98.1 99.1 79.5 51.5 93.3 89.2 94.9 24.0 87.0 79.6 62.0 41.2 96.2 77.9 96.7 97.3 96.7 63.3 100.0 88.7 0.485 2000

Table 2.2: Evaluation of proposal generation on SUN RGB-D test set.

strategies, we run the grouping 5 times with different weights: [1, 0, 0, 0], [0, 1, 0, 0],

[0, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1]. For each of the grouped region, we will obtain two

proposal boxes: one tight box and one box with height extended to the floor. We

also use the room orientation as the box orientation. After that we will remove the

redundant proposals with 3D IOU greater than 0.9 by arbitrary selection. Using both

3D and color, this very strong baseline achieves an average recall 74.2%. But it is slow

because of its many steps, and the handcrafted segmentation and similarity might be

difficult to tune.

Our 3D RPN Row 3 to 5 in Table 2.1 shows the performance of our 3D region

proposal network. Row 3 shows the performance of single-scale RPN. Note that

the recalls for small objects like lamp, pillow, garbage bin are very low. When one

more scale is added, the performance for those small objects boosts significantly.

Adding RGB color to the 3D TSDF encoding slightly improves the performance, and

we use this as our final region proposal result. From the comparisons we can see

that mostly planar objects (e.g.door) are easier to locate using segmentation-based

selective search. Some categories (e.g.lamp) have a lower recall mostly because of

lack of training examples. Table 5.2 shows the detection AP when using the same

ORN architecture but different proposals (Row [3D SS: dxdydz] and Row [RPN:

dxdydz]). We can see that the proposals provided by RPN helps to improve the

detection performance by a large margin (mAP from 27.4 to 32.3).

27

Object Detection Evaluation

We conducted several control experiments to understand the importance of each com-

ponent.

Feature encoding From Row [RPN: dxdydz] to Row [RPN: dxdydz+img] in

Table 5.2, we compare different feature encodings and reach the following conclusions.

(1) TSDF with directions encoded is better than single TSDF distance ([dxdydz] v.s.

[tsdf dis]). (2) Accurate TSDF is better than projective TSDF ([dxdydz+img] v.s.

[proj dxdydz+img]). (3) Directly encoding color on 3D voxels is not as good as using

2D image VGGnet ([dxdydz+rgb] v.s. [dxdydz+img]), probably because the latter

one can preserve high frequency signal from images. (4) Adding HHA does not help,

which indicates the depth information from HHA is already exploited by our 3D

representation ([dxdydz+img+hha] v.s. [dxdydz+img]).

Does bounding box regression help? Previous works have shown that box re-

gression can significantly improve 2D object detection [37]. For our task, although we

have depth, there is more freedom on 3D localization, which makes regression harder.

We turn the 3D box regression on ([3DSS dxdydz], [RPN dxdydz]) and off ([3DSS

dxdydz no bbreg], [RPN dxdydz no bbreg]). Whether we use 3D Selective Search or

RPN for proposal generation, the 3D box regression always helps significantly.

Does size pruning help? Compared with and without the post-processing

([dxdydz] v.s. [dxdydz no size]), we observe that for most categories, size pruning

reduces false positives and improves the AP by the amount from 0.1 to 7.8, showing

a consistent positive effect.

Is external training data necessary? Comparing to Sliding Shapes that uses

extra CAD models, and Depth-RCNN that uses Image-Net for pre-training and CAD

models for 3D fitting, our [depth only] 3D ConvNet does not require any external

training data outside NYUv2 training set, and still outperforms the previous methods,

which shows the power of 3D deep representation.

28

algorithm mAP

3D SS
dxdydz no bbreg 43.3 55.0 16.2 23.1 3.4 10.4 17.1 30.7 10.9 35.4 20.3 41.2 47.2 25.2 43.9 1.9 1.6 0.1 9.9 23.0
dxdydz 52.1 60.5 19.0 30.9 2.2 15.4 23.1 36.4 19.7 36.2 18.9 52.5 53.7 32.7 56.9 1.9 0.5 0.3 8.1 27.4

RPN

dxdydz no bbreg 51.4 74.8 7.1 51.5 15.5 22.8 24.9 11.4 12.5 39.6 15.4 43.4 58.0 40.7 61.6 0.2 0.0 1.5 2.8 28.2
dxdydz no size 59.9 78.9 12.0 51.5 15.6 24.6 27.7 12.5 18.6 42.3 15.1 59.4 59.6 44.7 62.5 0.3 0.0 1.1 12.9 31.5
dxdydz 59.0 80.7 12.0 59.3 15.7 25.5 28.6 12.6 18.6 42.5 15.3 59.5 59.9 45.3 64.8 0.3 0.0 1.4 13.0 32.3
tsdf dis 61.2 78.6 10.3 61.1 2.7 23.8 21.1 25.9 12.1 34.8 13.9 49.5 61.2 45.6 70.8 0.3 0.0 0.1 1.7 30.2
dxdydz+rgb 58.3 79.3 9.9 57.2 8.3 27.0 22.7 4.8 18.8 46.5 14.4 51.6 56.7 45.3 65.1 0.2 0.0 4.2 0.9 30.1
proj dxdydz+img 58.4 81.4 20.6 53.4 1.3 32.2 36.5 18.3 17.5 40.8 19.2 51.0 58.7 47.9 71.4 0.5 0.2 0.3 1.8 32.2
dxdydz+img+hha 55.9 83.0 18.8 63.0 17.0 33.4 43.0 33.8 16.5 54.7 22.6 53.5 58.0 49.7 75.0 2.6 0.0 1.6 6.2 36.2
dxdydz+img 62.8 82.5 20.1 60.1 11.9 29.2 38.6 31.4 23.7 49.6 21.9 58.5 60.3 49.7 76.1 4.2 0.0 0.5 9.7 36.4

Table 2.3: Control Experiments on NYUv2 Test Set. Not working: box (too
much variance), door (planar), monitor and tv (no depth).

mAP
Sliding Shapes - 42.09 - 33.42 - - - - - - - - - - 23.28 25.78 - 61.86 -
Deep Sliding Shapes 44.2 78.8 11.9 1.5 61.2 4.1 20.5 0.0 6.4 20.4 18.4 0.2 15.4 13.3 32.3 53.5 50.3 0.5 78.9 26.9

Table 2.4: Evaluation of 3D amodal object detection on SUN RGB-D test
set.

Comparison to the state-of-the-arts

We evaluate our algorithm on the same test set as [48] (The intersection of the NYUv2

test set and Sliding Shapes test set for the five categories being studied under “3D all”

setting). Table 2.5 shows the comparison with the two state-of-the-arts for amodal 3D

detection: 3D Sliding Shapes [155] with hand-crafted features, and 2D Depth-RCNN

[48] with ConvNets features. Our algorithm outperforms by large margins with or

without colors. Different from Depth-RCNN that requires fitting a 3D CAD model

as post-processing, our method outputs the 3D amodal bounding box directly, and

it is much faster. Table 2.4 shows the amodal 3D object detection results on SUN

RGB-D dataset compared with Sliding Shapes [155].

Figure 2.10 shows side-by-side comparisons to Sliding Shapes. First, the object

proposal network and box regression provide more flexibility to detect objects with

atypical sizes. For example, the small child’s chairs and table in the last row are

missed by Sliding Shapes but detected by Deep Sliding Shape. Second, color helps

to distinguish objects with similar shapes (e.g.bed v.s. table). Third, the proposed

algorithm can extend to many more object categories easily.

29

Depth Sliding Shapes [155] Ours

tablesofa chairbed bathtub garbage bin

Figure 2.10: Comparision with Sliding Shapes [155]. Our algorithm is able to
better use shape, color and contextual information to handle more object categories,
resolve the ambiguous cases, and detect objects with atypical size.

2.5 Summary

In this chapter we introduced the task of Amodal 3D object detection, which aims to

produce a 3D bounding box of an object in metric form at its full extent regardless

of occlusion and image truncation.

We present two approaches for this task SlidingShapes [155] and DeepSliding-

Shapes [156]. DeepSlidingShapes is a complete 3D formulation for learning object

30

Figure 2.11: Top True Positives.

(1)chair (2)tv (3)bookshelf (4)sofa (5)bed (6)monitor (7)desk (8)night. (9)garbage. (10)box

Figure 2.12: Top False Positives. (1)-(2) show detections with inaccurate locations.
(3)-(6) show detections with wrong box size for the big bookshelf, L-shape sofa, bunk
bed, and monitor. (7)-(10) show detections with wrong categories.

bookshelf chair dresser garbage bin sofa box lamp door door tv

Figure 2.13: Misses. Reasons: heavy occlusion, outside field of view, atypical size
object, or missing depth.

Algorithm input mAP
Sliding Shapes [155] d 33.5 29 34.5 33.8 67.3 39.6
[48] on instance seg d 71.0 18.2 30.4 49.6 63.4 46.5
[48] on instance seg rgbd 74.7 18.6 28.6 50.3 69.7 48.4
[48] on estimated model d 72.7 47.5 40.6 54.6 72.7 57.6
[48] on estimated model rgbd 73.4 44.2 33.4 57.2 84.5 58.5
ours [depth only] d 83.0 58.8 68.6 49.5 79.2 67.8
ours [depth + img] rgbd 84.7 61.1 70.5 55.4 89.9 72.3

Table 2.5: Comparison on 3D Object Detection.

proposals and classifiers using 3D convolutional neural networks. It directly operates

over 3D volumetric distance fields projected from input RGB-Depth scans. These

distance fields serve as a 3D data representation that is defined with respect to phys-

ical metrics (e.g., in meters) and does not suffer from the scaling ambiguities caused

by perspective projection. These aspects elegantly simplify the 3D object detection

pipeline, accelerate run-time speeds, and boost overall detection performance.

31

While being useful for many applications, these object-centric recognition frame-

works are characterized by two major limitations: 1) examining each object (or object

proposal) in isolation causes the algorithms to ignore strong statistical relationships

that exist between objects (contextual information) and 2) the resulting bounding

box are often unable to express detailed geometry at the level of granularity required

for applications like precise manipulation.

In the next chapters, we will describe how we are able to produce more detail

scene description of the complete 3D environment beyond single objects through the

task of “semantic scene completion”.

32

Chapter 3

Understanding Amodal 3D Scenes

In this chapter we focus on the task of semantic scene completion – a task for

producing a complete 3D voxel representation of volumetric occupancy and semantic

labels for a scene from a single-view depth map observation. This task will enable us

to produce much a more detailed representation of the complete environment instead

of simple 3D bounding boxes described in the Chapter 2.

Prior work in this space has considered scene completion and semantic labeling

of depth maps separately. However, we observe that these two problems are tightly

intertwined. To leverage the coupled nature of these two tasks, we introduce the se-

mantic scene completion network (SSCNet), an end-to-end 3D convolutional network

that takes a single depth image as input and simultaneously outputs occupancy and

semantic labels for all voxels in the camera view frustum. Our experiments demon-

strated that the joint model outperforms methods addressing each task in isolation

and outperforms alternative approaches on the semantic scene completion task.

3.1 Semantic Scene Completion

We live in a 3D world where empty and occupied space is determined by the physical

presence of objects. To successfully navigate within and interact with the world,

33

we rely on an understanding of both the 3D geometry and the semantics of the

environment. Similarly, for a robot, the ability to infer complete 3D shape from

partial observations is necessary for low-level tasks such as grasping and obstacle

avoidance [173], while the ability to infer the semantic meaning of objects in the

scene enables high-level tasks such as retrieval of objects.

With this motivation, our goal is to have a model that predicts both volumetric

occupancy (i.e., scene completion) and object category (i.e., scene labeling) from

a single depth image of a 3D scene — we refer to this task as semantic scene

completion (Figure 3.1). Prior work is limited to address only part of this problem

as shown in Figure 3.2: RGB-D segmentation approaches consider only visible surfaces

without the full 3D shape [47, 130], while shape completion approaches consider only

geometry without semantics [33] or a single object out of context [169, 180].

Our key observation is that the occupancy patterns of the environment and the

semantic labels of the objects are tightly intertwined. Therefore, the two problems

of predicting voxel occupancy and identifying object semantics are strongly coupled.

In other words, knowing the identity of an object helps us predict what areas of the

scene it is likely to occupy without direct observation (e.g., seeing the top of a chair

Figure 3.1: Semantic scene completion. [Left] Input single-view depth map and
visible surface from the depth map; color is for visualization only. [Right] Semantic
scene completion result: our model jointly predicts volumetric occupancy and object
categories for each of the 3D voxels in the view frustum. Note that the entire volume
occupied by the bed is predicted to have the bed category.

34

behind a table and inferring the presence of a seat and legs). Likewise, having an

accurate occupancy pattern for an object helps us recognize its semantic class.

To leverage the coupled nature of the two tasks we jointly train a deep neural

network using supervision targeted at both tasks. Given a single-view depth map

as input, our semantic scene completion network (SSCNet) produces one of N+1

labels for all voxels in the view frustum. Each voxel is labeled as occupied by one of

N object categories or free space. Most critically, this prediction extends beyond the

projected surface implied by the depth map, thus providing occupancy information

for the entire scene.

To achieve this goal there are several issues that must be addressed. First, how

do we effectively capture contextual information from 3D volumetric data, where

the signal is sparse and lacks high-frequency detail? Second, since existing RGB-D

datasets only provide annotations on visible surfaces, how do we obtain training data

with complete volumetric annotations at scene level?

To address the first issue, we design a 3D dilation-based context module that

effectively expands our network’s receptive field to model the contextual information.

We find that a big receptive field is crucial for the task. As demonstrated in Figure

3.2, looking at the small region of a chair in isolation, it is hard to recognize and

complete the chair. However, if we consider the context due to surrounding objects,

such as the table and floor, the problem is much easier.

To address the second issue, we construct SUNCG, a large-scale synthetic 3D

scene dataset with more than 45622 indoor environments designed by people. All the

3D scenes are composed of individually labeled 3D object meshes, from which we can

compute 3D scene volumes with dense object labels though voxelization.

Our experiments with these solutions demonstrate that a method that jointly pre-

dicts volumetric occupancy and object semantic can outperform methods addressing

35

each task in isolation. Both the 3D context model learned by our network and the

large-scale synthetic training data help to improve performance significantly.

Our main contribution is to formulate an end-to-end 3D ConvNet model (SSCNet)

for the joint task of volumetric scene completion and semantic labeling. In support of

that goal, we design a dilation-based 3D context module that enables efficient context

learning with large receptive fields. To provide the training data for our network, we

introduce SUNCG, a manually created large-scale dataset of synthetic 3D scenes with

dense occupancy and semantic annotations.

3.2 Related Work

In this section, we review the related work on RGB-D segmentation, 3D shape com-

pletion, and voxel space semantic labeling.

RGB-D semantic segmentation. Many prior works focus on RGB-D image seg-

mentation [47, 130, 149, 91]. However, these methods focus on obtaining semantic

labels for only the observed pixels without considering the full shape of the object,

and hence cannot directly perform scene completion or predict labels beyond the

visible surface.

Shape completion. Other prior works focus on single object shape completion

[173, 133, 180, 169]. To apply those methods to scenes, additional segmentation or

object masks would be required. For scene completion, when the missing regions are

relatively small, methods using plane fitting [116] or object symmetry [84, 110] can

be applied to fill in holes. However, these methods heavily rely on the regularity of

the geometry and often fail when the missing regions are big. Firman et al.[33] show

promising completion results on scenes. However, their approach is based purely on

36

geometry without semantics, and thus it produces less accurate results when the scene

structure becomes complex.

3D model fitting. One possible approach to obtain the complete geometry and

semantic labels for a scene is to retrieve and fit instance-level 3D mesh models to the

observed depth map [48, 155, 36, 90, 119, 98, 86]. However, the prediction quality

of this type of approach is limited by the quality and variety of 3D models available

for retrieval. Naturally, observed objects that cannot be explained by the available

models tend to be missed. Or, if the 3D model library is large enough to include all

observations, then a difficult retrieval and alignment problem must be solved. Alter-

natively, it is possible to use 3D primitives such as bounding boxes to approximate

the 3D geometry of objects [76, 99, 156]. However, the bounding box approximation

limits the geometric detail of the output predictions.

Voxel Space Reasoning. Another line of work completes and labels 3D scenes, but

with separate modules for feature extraction and context modeling. Zheng et al. [199]

predict the unobserved voxels by physical reasoning. Kim et al. [83] train a Voxel-CRF

model from labeled floor plans to optimize the semantic labeling and reconstruction

for indoor scenes. Hane et al. [56] and Blaha et al.[10] use joint optimization for

multi-view reconstruction and segmentation for outdoor scenes. However, this line

of work uses predefined features and separates the feature learning from the context

modeling, and it is expensive for CRF-based models to encode long-range contextual

information. In contrast, our model is able to jointly learn the low-level feature

representation and high-level contextual information end-to-end from large-scale 3D

scene data, directly modeling long-range contextual cues through a big receptive field.

37

observed surface
observed free
occluded
outside view
outside room

a) surface labeling b) shape completion c) completion+labeling

table

floor
chair

walltable

floor
chair

wall

Figure 3.2: Given a single-view depth observation of a 3D scene the goal of our SSCNet
is to predict both occupancy and object category for the voxels on the observed surface
and occluded regions.

3.3 Semantic Scene Completion Network

Given a single-view depth map observation of a 3D scene, the goal of our semantic

scene completion network is to map the voxels in the view frustum to one of the

class labels C = {c0, ...cN+1}, where N is number of object classes and c0 represents

empty voxels. During training, we render depth maps from virtual viewpoints of our

synthetic 3D scenes and voxelize the full 3D scenes with object labels as ground truth.

During testing, the observation depth images come from a RGB-D camera.

Figure 3.4 shows an overview of our processing pipeline. We take a single depth

map as input and encode it as a 3D volume. This 3D volume is then fed into a

3D convolutional network, which extracts and aggregates both local geometric and

contextual information. The network produces the probability distribution of voxel

occupancy and object categories for all voxels inside the camera view frustum.

38

The following subsections describe the core issues addressed in the design of the

system: the data encoding (Section 3.3.1), network architecture (Section 3.3.2) and

training data generation (Section 3.4).

3.3.1 Volumetric Data Encoding

The first issue we need to address is how to encode the observed depth as input to the

network. For the semantic scene completion task, the ideal encoding should directly

represent the 2D observation into the same 3D physical space as the output in a way

that is invariant to the viewpoint projection, and provide a meaningful signal for the

network to learn geometry and scene representation. To this end, we adopt Truncated

Signed Distance Function (TSDF) to encode the 3D space, where every voxel stores

the distance value d to its closest surface and the sign of the value indicates whether

the voxel is in free space or in occluded space. To better suit our task, we make the

following modifications to the standard TSDF.

Eliminate view dependency. Most RGB-D reconstruction pipelines speed up

the TSDF computation by using the projective TSDF which finds the closest surface

points only in the line of sight of the camera [70]. This projective TSDF is fast

to compute but is inherently view-dependent. Instead, we choose to compute the

distance to the closest point anywhere on the full observed surface.

Eliminate strong gradients in empty space. Another issue with TSDF is that

strong gradients occur in the empty space along the occlusion boundary between

±dmax. It is possible to eliminate this gradient by removing the sign. However, the

sign is important for completion task since it indicates the occluded regions of the

scene that need to be completed. To solve this problem we flip the TSDF value d

as follows: dflipped = sign(d)(dmax − d). This flipped TSDF has the strong gradient

on the surface, providing a more meaningful signal for the network to learn better

39

Figure 3.3: Different encodings for surface (a). The projective TSDF (b) is
computed with respect to the camera and is therefore view-dependent. The accurate
TSDF (c) has less view dependency but exhibits strong gradients in empty space
along the occlusion boundary (circled in gray). In contrast, the flipped TSDF (d) has
the strongest gradient near the surface.

geometric features. The different encoding is visualized in Figure 3.3, and Table 3.3

shows its impact on performance.

3.3.2 Network Architecture

The network architecture of SSCNet is shown in Figure 3.4. Taking a high-resolution

3D volume as input, the network first uses several 3D convolution layers to learn

a local geometry representation. We use convolution layers with stride and pooling

layers to reduce the resolution to one-fourth of the original input. Then, we use

a dilation-based 3D context module to capture higher-level inter-object contextual

40

ad
d

ad
d

ad
d

ad
d

ad
d

co
nc

at

conv(32,1,1,1)

po
ol

in
g

empty
floor
wall
ceiling
…
chair
…
…

Prediction

Receptive field: 0.02m 0.14m 0.98m 1.62m 2.26m 2.26m 0.3m 0.66m

conv(32,1,1,1)

co
nv

 (1
6,

7,
2,

1)

co
nv

 (3
2,

3,
1,

1)

co
nv

 (3
2,

3,
1,

1)

co
nv

 (6
4,

3,
1,

1)
co

nv
 (6

4,
3,

1,
1)

co
nv

 (6
4,

3,
1,

1)
co

nv
 (6

4,
3,

1,
1)

di
la

te
d

(6
4,

3,
1,

2)
di

la
te

d
(6

4,
3,

1,
2)

di
la

te
d

(6
4,

3,
1,

2)
di

la
te

d
(6

4,
3,

1,
2)

co
nv

 (1
28

,1
,1

,1
)

co
nv

 (1
28

,1
,1

,1
)

co
nv

 (1
2,

1,
1,

1)

Figure 3.4: SSCNet: Semantic scene completion network. Taking a single
depth map as input, the network predicts occupancy and object labels for each voxel
in the view frustum. The convolution parameters are shown as (number of filters,
kernel size, stride, dilation).

information. After that, the network responses from different scales are concatenated

and fed into two more convolution layers to aggregate information from multiple

scales. At the end, a voxel-wise softmax layer is used to predict the final voxel

label. Several shortcut connections are added for better gradient propagation. In

implementing this architecture, we made the following design decisions:

Input volume generation. Given a 3D scene, we rotate it to align with gravity

and room orientation based on Manhattan assumption. The dimensions of the 3D

space we consider are 4.8 m horizontally, 2.88 m vertically, and 4.8 m in depth. We

encode the 3D scene into a flipped TSDF with grid size 0.02 m, truncation value

0.24 m, resulting in a 240× 144× 240 volume as the network input.

Capturing 3D context with a big receptive field. Context can provide valuable

information for understanding the scene, as demonstrated by much prior work in

image segmentation [189]. In the 3D domain, context is more useful due to a lack of

high-frequency signals compared to image textures. For example, tabletops, beds, and

floors are all geometrically similar to flat horizontal surfaces, so it is hard to distinguish

them given only local geometry. However, the relative positions of objects in the scene

are a powerful discriminatory signal. To learn this contextual information, we need

to make sure our network has a big enough receptive field. To this end, we extend

the dilated convolution presented by Yu and Koltun [189] to 3D. Dilated convolution

41

(a) Object centric[180, 111] (b) 3DMatch [191] (c) Deep Sliding Shape [156] (d) SSCNet

RF: 30×30×30 voxels per object
Voxel size: no physical meaning

RF: 0.3m×0.3m×0.3m
Voxel size: 0.01m

RF: 1m×1m×1m
Voxel size: 0.025m

RF: 2.26m×2.26m×2.26m
Voxel size: 0.02m

Figure 3.5: Comparison of receptive fields and voxel sizes between SSCNet
and prior work. (a) Object-centric networks such as [180] and [111] scale objects
into the same 3D voxel grid thus discarding physical size information. In (b)-(d),
colored regions indicate the effective receptive field of a single neuron in the last layer
of each 3D ConvNet. With the help of 3D dilated convolution SSCNet drastically
increases its receptive field compared to other 3D ConvNet architectures [156, 191]
thus capturing richer 3D contextual information.

extends normal convolution by adding a step size when the convolution extracts values

from the input before convolving with the kernel. Thus we can exponentially expand

the receptive field without a loss of resolution or coverage, while still using the same

number of parameters. Figure 3.5 compares the receptive field size of SSCNet with

3D ConvNet architectures from prior work.

Multi-scale context aggregation. Different object categories have very different

physical 3D sizes. This implies that the network will need to capture information

at different scales in order to recognize objects reliably. For example, we need more

local information to recognize smaller objects like TVs, while we need more global

information to recognize bigger objects like beds. In order to aggregate information

at different scales we add a layer that concatenates the network responses with a

different receptive field. We then feed this combined feature map into two 1× 1× 1

convolution layers, which allows us to propagate information across responses from

different scales.

Data balancing. Due to the sparsity of 3D data, the ratio of empty vs. occupied

voxels is around 9:1. To deal with this imbalanced data distribution, we sample the

42

training so that each mini-batch has a balanced set of empty and occupied examples.

For each training volume containing N occupied voxels, we randomly sample 2N

empty voxels from occluded regions for training. Voxels in free space, outside the

field of view, or outside the room are ignored.

Loss: voxel-wise softmax. The loss function of the network is the sum of voxel-

wise softmax loss L(p, y) =
∑
i,j,k

wijkLsm(pijk, yijk), where Lsm is softmax loss, yijk is

the ground truth label, pijk is the predicted probability of the voxel at coordinates

(i, j, k) over the N + 1 classes, where N is the number of object categories and empty

voxels are labeled as class 0. The weight wijk is equal to zero or one based on the

sampling algorithm described above.

Training protocol. We implement our network architecture in Caffe [74]. Pre-

training SSCNet on the SUNCG training set takes around a week on a Tesla K40

GPU, and fine-tuning on the NYU dataset takes 30 hours. During training, each mini-

batch contains one 3D view volume, requiring 11 GB of GPU memory. To obtain more

stable gradient estimates, we accumulate gradients over four iterations and update

the weights once afterward.

3.4 Synthesizing training data

One of the main obstacles of training deep networks for scene-level dense 3D predic-

tions is the lack of large annotated datasets with dense object semantic annotations at

the voxel level. Existing RGB-D datasets with surface reconstructions are subject to

occlusions or partial observations, and cannot provide the volumetric occupancy and

semantic labels for the entire space at the voxel level. To obtain volumetric occupancy

ground truth Firman et al. [33] collect a tabletop dataset with reconstructed RGB-D

video using KinectFusion [70]. However, this data does not provide semantic labels,

43

Figure 3.6: Synthesizing Training Data. We collected a large-scale synthetic 3D
scene dataset to train our network. For each of the 3D scenes, we select a set of
camera positions and generate pairs of rendered depth images and volumetric ground
truth as training examples.

scene completion semantic scene completion
method (train) prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
Lin et al.(NYU) [99] 58.5 49.9 36.4 0 11.7 13.3 14.1 9.4 29 24 6.0 7.0 16.2 1.1 12.0
Geiger and Wang (NYU) [36] 65.7 58 44.4 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6
SSCNet (NYU) 57.0 94.5 55.1 15.1 94.7 24.4 0 12.6 32.1 35 13 7.8 27.1 10.1 24.7
SSCNet (SUNCG) 55.6 91.9 53.2 5.8 81.8 19.6 5.4 12.9 34.4 26 13.6 6.1 9.4 7.4 20.2
SSCNet (SUNCG+NYU) 59.3 92.9 56.6 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5

Table 3.1: Semantic scene completion results on the NYU with kinect depth map.

and only contains simple tabletop scenarios. To address these issues we constructed

and make use of a new large-scale synthetic 3D scene dataset -SUNCG, from which

we obtain a large amount of training data with synthetically rendered depth images

and volumetric ground truth. Details about SUNCG dataset can be found in Section

5.2. Here we focus on describing how we use this dataset to generate training for the

semantic scene completion task, which includes synthetic depth map generation and

volumetric ground truth generation.

3.4.1 Synthetic depth map generation

To generate synthetic depth maps that mimic a typical image capturing process,

we use a set of simple heuristics to pick camera viewpoints. Given a 3D scene, we

start with a uniform grid of locations spaced at 1 m intervals on the floor and not

occupied by objects. We then choose camera poses based on the distribution of the

44

NYU-Depth v2 dataset.1 Then, we render the depth map using the intrinsic and

resolution of the Kinect. After that, we use a set of simple heuristics to exclude bad

viewpoints. Specifically, a rendered view is considered valid if it satisfies the following

three criteria: a) valid depth area (depth values in range of 1 m to 8 m) larger than

70% of image area, b) there are more than two object categories apart from wall,

ceiling, floor, and c) object area apart from wall, ceiling, floor is larger than 30% of

image area. To reduce data redundancy, we pick at most five images from each room.

In total, we generate 130 K valid views for training our SSCNet.

3.4.2 Volumetric ground truth generation

Since the 3D scenes in the SUNCG dataset consist of a limited number of object

instances, we speed up the voxelization process by first voxelizing each individual ob-

ject in the library and then transforming the labels based on each scene configuration

and viewpoint. Specifically, we first voxelize each object to a 128 × 128 × 128 voxel

grid. We set the voxel size s so that the largest dimension of the object is a tight fit

to the object bounding box. Thus, s varies between objects due to the difference in

object dimensions. We use the binvox [114] voxelizer which accounts for both surface

and interior voxels by using a space carving approach.

Given a camera view, we define a 240 × 144 × 240 voxel grid in world coordi-

nates, with scene voxel size equals to 2 cm. Then for each object in the scene, we

transform the object voxel grid by translating, rotating and scaling by the object’s

transformation. We then iterate over each voxel in the scene voxel grid that is in-

side the transformed object bounding box and calculate the distance to the nearest

neighbor object voxel. If the distance is smaller than the object voxel size s, this

scene voxel will be labeled with this object category. Similarly, we label all voxels in

the scene that belong to walls, floors, and ceilings by treating them as planes with

1The camera height is sampled from a Gaussian distribution with µ = 1.5 m and σ = 0.1 m. The
camera tilt angle is sampled from a Gaussian distribution with µ = −10◦ and σ = 5◦.

45

a thickness equal to one scene voxel size. All remaining voxels are marked as empty

space, therefore providing a fully labeled voxel grid for the camera view.

3.5 Evaluation

In this section, we evaluate our proposed methods with a comparison to alternative

approaches and an ablation study to better understand the proposed model. We

evaluate our algorithm on both real and synthetic datasets.

For the real data, we use the NYU dataset [149], which contains 1449 depth maps

captured from Kinect. We obtain the ground truth by voxelizing the 3D mesh anno-

tations from Guo et al. [45], mapping object categories based on Handa et al. [54].

The annotations consist of 33 object meshes in 7 categories, other categories approx-

imated using 3D boxes or planes. In some cases, the mesh annotation is not perfectly

aligned with depth due to labeling error and the limited set of meshes. To deal with

this misalignment, Firman at el. [33] propose to use rendered depth map from the

annotation for testing. However, by rendering the overly simplified meshes, geometric

detail is lost especially in cases where objects are represented as a box. Therefore,

we test with both rendered depth maps and the originals.

For synthetic data, we created a test set from SUNCG which has objects with

detailed geometry, and for which the depth map and ground truth volumes are per-

fectly aligned. The SUNCG test set are rendered from 184 scenes that are not in the

training set.

3.5.1 Evaluation metric.

As our evaluation metric, we use the voxel-level intersection over union (IoU) of

predicted voxel labels compared to ground truth labels. For the semantic scene com-

pletion task, we evaluate the IoU of each object classes on both the observed and

46

method training prec. recall IoU

Zheng et al. [199] NYU 60.1 46.7 34.6
Firman et al. [33] NYU 66.5 69.7 50.8

SSCNet completion NYU 66.3 96.9 64.8
SSCNet joint NYU 75.0 92.3 70.3
SSCNet joint SUNCG+NYU 75.0 96.0 73.0

Table 3.2: Scene completion on the rendered NYU test set as [33]

occluded voxels. For the scene completion task, we treat all non-empty object class

as one category and evaluate IoU of the binary predictions on occluded voxels. Fol-

lowing Firman et al. [33], we do not evaluate on voxels outside the view or the room.

3.5.2 Experimental results

Table 3.2 and Table 3.1 summarize the quantitative results and Figure 3.8 shows

qualitative comparisons.

Comparison to alternative approaches. In Figure 3.1 we compare on the se-

mantic scene completion task with approaches from Lin et al. [99] and Geiger and

Wang [36]. Both these algorithms take an RGB-D frame as input and produce object

labels in the 3D scene. Lin et al.use 3D bounding boxes and planes to approximate all

objects. Geiger and Wang retrieve and fit 3D mesh models to the observed depth map

at test time. The mesh model library used for retrieval is a superset of the models

used for ground truth annotations. Therefore, they can achieve perfect alignments by

finding the exact mesh model in a small database. In contrast, our algorithm is based

on only depth and does not use additional mesh model at test time. Despite this

data disparity, our network produces more accurate voxel-level predictions (30.5%

vs. 19.6%). An example of the difference is shown in the third row of Figure 3.8:

both Lin et al.and Geiger and Wang’s approaches confuse the sofa as a bed while our

47

network correctly recognizes the sofa. Moreover, since our method does not require

the model fitting step it is much faster at 7s compared to 127s per image [36].

Does recognizing objects help scene completion? Previous work has shown

scene completion is possible without semantic understanding. We examine to what

extent the supervision of object semantics benefits the scene completion task. To

do this, we trained a model predicting the occupancy of each voxel by doing binary

classification on each voxel (“empty” vs. “occupied”). We compare the performance

of models trained with occupancy and multi-class labeling (see Figure 3.2 [completion]

vs. [joint]). We also compare with Formal et al. [33] and Zheng et al. [199] which

both predict binary voxel occupancy based on a single depth map without a semantic

understanding of the scene. We use the re-implementation of Zheng et al.’s approach

from Firman et al., which only provides the completion result. We evaluate on the

rendered NYU benchmark with the same test images used by Firman at al. (randomly

picked 200 images from the full test set). While Firman et al.produces good results

for many cases, their approach fails when the scene becomes complex. For instance,

their algorithm fails to complete half of the bed in the first row of Figure 3.8, and

also fails to complete the chairs in the fifth row. In contrast, SSCNet is able to better

complete the geometry by leveraging the semantics of the 3D context. This result

validates the idea that it is beneficial to understand object semantics in order to

achieve better scene completion.

Does scene completion help in recognizing objects? To answer this question,

we trained a model with a loss only accounting for semantic labels evaluated on

the visible surface and compared with the model trained jointly with labeling and

completion (see Table 3.3 [no completion] vs. [joint]). Even when only evaluating

on the visible surface, the model trained with the added supervision of the scene

completion task outperforms the model trained only on surface labeling (54.2% vs.

48

scene completion semantic scene completion
method encoding prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
no completion flipped - - - 97.2 95.5 61.9 24.6 30.1 55.3 58.9 48.7 14.8 42.1 34.5 51.2
joint flipped - - - 97.7 94.5 66.4 30.0 36.9 60.2 62.5 56.3 12.1 46.7 33.0 54.2
no balancing flipped 73.1 95.8 70.8 96.4 85.3 52.1 25.8 16.5 47.1 45.7 28.1 15.3 37.1 19.8 42.7
Basic flipped 73.4 95.0 70.7 94.6 83.8 47.0 24.0 15.1 38.2 37.2 26.0 0.0 34.8 17.3 38.0
Basic+D flipped 72.2 96.2 70.4 94.7 85.9 47.5 29.2 21.1 50.9 50.7 29.0 21.3 37.2 20.1 44.3
Basic+D+M proj 72.0 92.3 67.9 91.6 80.9 45.1 14.6 10.2 39.4 29.8 19.8 0.0 27.4 14.3 33.9
Basic+D+M tsdf 74.8 94.0 71.4 95.8 84.4 45.1 17.5 15.2 28.2 37.2 25.6 0.0 28.2 21.9 36.3
Basic+D+M flipped 76.3 95.2 73.5 96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4

Table 3.3: Ablation study on SUNCG testset. First two row shows the evaluation
on surface segmentation with and without joint training. The following rows show
the evaluation on semantic scene completion task. D: 3D dilated convolution. M:
multi-scale aggregation.

51.2%). This demonstrates that understanding complete object geometry and the 3D

context is beneficial for recognizing objects.

Does synthetic data help? To investigate the effect of using synthetic training

data, we compared models trained only with NYU and models pre-trained on SUNCG

and then fine-tuned on NYU (see Table 3.2,3.1 NYU vs. NYU+SUNCG). We see a

performance gain by using additional synthetic data especially for the semantic scene

completion task having a 10.3% improvement in IoU.

Does a bigger receptive field help? In Table 3.3, the networks labeled [Basic]

and [Basic+D] have the same number of parameter, while in [Basic+D] three convo-

lution layers are replaced by dilated convolution, increasing the receptive field from

1.16 m to 2.26 m. Increasing the receptive field gives the network a opportunity to

capture richer contextual information and significantly improve the network perfor-

mance from 38.0% to 44.3%. To visualize the contextual information learned by the

network, we perform the following experiment: given a depth map of a single object

we predict labels for all unobserved voxels. Figure 3.7 shows the input depth and

the predictions. Even without observing depth information for other objects SSCNet

hallucinates plausible contextual object based on the observed object.

49

Figure 3.7: What 3D context does the network learn? The first figure shows
the input depth map (a desk) and the following figures show the predictions for other
objects. Without observing any information for other objects the SSCNet is able to
hallucinate their locations based on the observed object and the learned 3D context.

Does multi-scale aggregation help? Comparing the network performance with

and without the aggregation layer (see Table 3.3 [Basic+D] vs. [Basic+D+M]), we

observe that the model with aggregation yields higher IoU for both the scene com-

pletion and semantic scene completion tasks by 3.1% and 2.1% respectively.

Do different encodings matter? The last three rows in Table 3.3 compare differ-

ent volumetric encodings: projective TSDF [proj.], accurate TSDF [tsdf], and flipped

TSDF [flipped]. We observe that removing the view dependency by using the accu-

rate TSDF gives a 2.4% improvement in IoU. Making the gradients concentrated on

the surface with the flipped TSDF leads to a 10.1% improvement.

50

Is data balancing necessary? To balance the empty and occupied voxel examples,

we proposed to sample the empty voxels during training. In Table 3.3, [no balancing]

shows the performance when we remove the sampling process during training, where

we see a drop in IoU from 46.4% to 42.7%.

Limitations. Firstly, we do not use any color information, so objects missing depth

such as “windows” are hard to handle. This also leads to confusion between objects

with similar geometry or functionality. For example, in the second row of Figure 3.8

the network predicts the desk as the broader furniture category. Secondly, due to the

GPU memory constraints, our network output resolution is lower than that of input

volume. This results in less detailed geometry and missing small objects, such as the

missed objects on the desk of the second row in Figure 3.8.

3.6 Summary

In this chapter, we introduced semantic scene completion, a task for producing a

complete 3D voxel representation of volumetric occupancy and semantic labels for a

scene from a single-view depth map observation.

To address this task, we proposed SSCNet, a 3D ConvNet for the semantic scene

completion task of jointly predicting volumetric occupancy and semantic labels for

full 3D scenes. To train our network, we constructed SUNCG – a manually created

large-scale dataset of synthetic3D scenes with dense volumetric annotations. The

experiment results demonstrate that our joint model outperforms methods addressing

either component task in isolation, and by leveraging the 3D contextual information

and the synthetic training data, we significantly outperform alternative approaches

on the semantic scene completion task.

While SSCNet is powerful for extracting full 3D amodal scene representations

from sparse 3D scans, the algorithm is only able to describe the scene within the

51

RGB-D observed surface GT Zheng et al.[199] Firman et al.[33] Lin et al.[99] Geiger&Wang [36] SSCNet

floor wall window chair bed sofa table tvs furn. objects

Figure 3.8: Qualitative results. We compare with scene completion results from
Zheng et al. [199] and Firman et al. [33] (on a subset of the test set), and semantic
scene completion results from Lin et al. [99] and Geiger and Wang [36]. Zheng et
al.[33] tested on rendered depth, [99] and [36] tested on RGB-D frame from kinect,
[33] and SSCNet tested on kinect depth. Overall, SSCNet gives more accurate voxel
predictions such as the lamps and pillows in the first row, and the sofa in the third
row.

camera field of view (FoV). However, cameras mounted on most robots and wearable

devices have restricted FoVs. Hence, extrapolating useful 3D information beyond the

FoV plays an important role in applications such as scene parsing [195], goal-driven

navigation, and next-best-view approximation, where estimating the complete 3D

environment naturally improves preemptive planning for these systems.

In the next chapter, we will explore the task of inferring the information of the

3D environment beyond camera field of view by leveraging the strong contextual

52

information presented in the typical indoor environments – semantic-structure view

extrapolation.

53

Chapter 4

Understanding 3D Scenes Beyond

the Field of View

Extrapolating useful information outside the camera’s field of view (FOV) is impor-

tant for robotic tasks such as goal-driven navigation, where a full representation of the

environment can improve high-level planning. In this chapter, we focus on semantic-

structure view extrapolation – a task to infer the complete surrounding environment

in the form of 3D structure and semantic information, given a partial observation. To

address this task, we present Im2Pano3D, a convolutional neural network that gen-

erates a dense prediction of 3D structure and a probability distribution of semantic

labels for a full 360◦ panoramic view of an indoor scene when given only a partial

observation (≤ 50%) in the form of an RGB-D image.

4.1 Semantic-Structure View Extrapolation

People possess an incredible ability to infer contextual information from a single

image [67]. Whether it is by using prior experience or by leveraging visual cues

[6, 107], people are adept at reasoning about what may lie beyond the field of view

and make use of that information for building a coherent perception of the world [65].

54

Similarly, in robotics and computer vision, extrapolating useful information outside a

camera’s field of view (FOV) plays an important role for many applications, such as

goal-driven navigation[202, 16] or next-best-view approximation [73], where a global

representation of the environment can improve preemptive planning for intelligent

systems.

However, prior work in view extrapolation typically only predicts the color pixels

beyond the image boundaries [124, 197, 142]. While inspiring, these methods do not

predict 3D structure or semantics, and hence cannot be used directly for high-level

reasoning tasks in robotics applications.

In this chapter, we explore the task of directly extrapolating 3D structure and

semantics for a full panoramic view of a scene when given a view covering 50% or less

as input. We refer to this task as semantic-structure view extrapolation. Our

method, Im2Pano3D, takes in a partial view of an indoor scene (e.g., a few RGB-D

images) and uses a convolutional neural network to generate dense predictions for 3D

structure and a probability distribution of semantic labels for a full 360◦ panoramic

view of that same scene.

Figure 4.1: Semantic-structure view extrapolation. Given a partial observation
of the room in the form of an RGB-D image, our Im2Pano3D predicts both 3D
structure and semantics for a full panoramic view of the same scene.

55

This is a very challenging task. However, by learning the statistics of many typical

room layouts, we can train a data-driven model to leverage contextual cues to predict

what is beyond the field of view for typical indoor environments. For example, as

shown in Fig.4.1, given half of a bedroom (180 ◦horizontal field of view), the system

can predict the 3D structure and semantics for the other half. This requires it not

only to extend the partially observed room structures (walls, floor, ceiling, etc.), but

also to predict the existence and locations of objects that are not directly observed in

the input (bed, window and cabinet) using statistical properties learned from data.

Semantic-structure view extrapolation poses three main challenges, which we ad-

dress with corresponding key ideas shaping our approach to the task:

· How to leverage strong contextual priors for indoor environments.

· How to represent the 3D structure in a way that is good not only for recognition

but also for reconstruction.

· How to design meaningful loss functions when the possible solution is not unique

– a small change to object locations may still result in a valid solution.

To leverage strong contextual priors for indoor environments, we represent 3D

scenes in a single panorama image with channels encoding 3D structure and semantics.

We train our model over a large-scale synthetic (SUNCG [157]) and real-world indoor

scenes (Matterport3D [20]) encoded in this representation to learn the contextual

prior.

To leverage strong geometric priors for indoor environments, we represent the 3D

structure for each pixel with a 3D plane equation, rather than raw depth value at

each pixel. By doing so, we take advantage of the fact that indoor environments are

often comprised largely of planar surfaces. Since all pixels on the same planar surface

have the same plane equation, the 3D structure is piecewise constant in a typical

56

scene, which makes dense predictions of plane equations more robust than alternative

representations.

To provide meaningful supervision for the network to cover the large solution

space, we make use of multiple loss functions that account for both pixel level accuracy

(pixel-wise reconstruction loss) and global context consistency (adversarial loss, and

scene attribute loss).

The primary contribution of our paper is to propose the task of semantic-structure

view extrapolation and present Im2Pano3D, a unified framework able to produce a

complete room structure and semantic labeling when given a partial observation of

a scene. This unified framework is able to handle different camera configurations

and input modalities. The experimental results show that direct prediction of the

3D structure and semantics for the unobserved scene provides a more accurate result

than alternative methods. Both the plane equation encoding and the context model

learned from multi-level supervision with large scale indoor scenes help to improve

prediction quality.

4.2 Related Work

The general scene understanding problem focuses on understanding what is present in

an image, including scene classification [97, 182], semantic segmentation [104], depth

and normal estimation [35, 176], etc. In this section, we review prior work on these

tasks beyond the visible scene.

Texture synthesis and image inpainting. Texture synthesis methods can be

used for image hole filling and image extrapolation [25, 62]. For example, Barnes

et al. [8] fills holes by cloning structures from similar patches. Pathak et. al [124]

train an autoencoder network. These methods can achieve very impressive inpainting

results for holes in color images. However, it is challenging for them to predict image

57

content far outside the field of view, since they don’t explicitly model structure and

semantics.

Stitching images from the Internet. Methods have also been proposed to ex-

trapolate images drastically beyond the field of view using collections of Internet

images. For example, Shan et al. [142] produce “uncropped images” by stitching

together collections of images captured in the same scene. Hays and Efros [57] fill

large holes by copying content from similar images in a large collection. While these

methods produce impressive results, they only work for scenes where collections are

available with many images from nearby viewpoints.

User-guided view extrapolation. FrameBreak [197] performs dramatic view ex-

trapolation. However, it uses a “guide image” provided by a person to constrain the

image synthesis process. The guide image is chosen from a collection of panorama

images, aligned with the input image, and then used to guide a patch-based tex-

ture synthesis algorithm. In this work, we aim to produce an image extrapolation

framework that can be used for any common indoor environment without human

intervention.

Predicting 3D structure in occluded regions. Recently there have been many

works addressing the problem of shape completion for individual objects [173, 133,

180] or scenes [174, 157, 33]. Given a partial observation of an object or scene, the

task is to complete the shape of object in the occluded regions within the field of

view. Unlike these methods, Im2Pano3D needs to predict the 3D structure outside

the field of view, where there is no direct observation, which makes the problem much

harder.

58

Predicting semantic concepts beyond the visible scene. Khosla et al.[82]

propose a framework to predict the locations of semantic concepts outside the visible

scene, e.g., answering questions like “where can I find a restaurant” given a street-view

image without direct sight of any restaurant. Although related, their work focuses on

outdoor street view scenes and provides only high-level sparse semantic predictions. In

contrast, we produce dense pixel-wise predictions for both 3D structure and semantics

for pixels outside the observed view for indoor scenes.

4.3 Im2Pano3D Network

We formulate the semantic-structure view extrapolation problem as an image in-

painting task by representing both the input observation and output prediction as

multi-channel panoramic images. The goal of Im2Pano3D is to predict the 3D struc-

ture and semantics for all missing regions in the input panorama. For the semantic

prediction, instead of representing it as a discrete category, we model it as a proba-

bility distribution over all semantic categories as shown in Fig.4.7, which explicitly

models the prediction uncertainty.

4.3.1 Whole Room Panoramic Representation

Traditional view synthesis works [141, 140] represent observations and new views

using a set of disjoint images with their camera parameters. However this requires

the network to handle arbitrary numbers of input views, infer spatial relationships

between them, and reason about how scene elements cross image boundaries.

In contrast, we propose to represent the 3D scene using a single panorama where

each pixel is labeled with multiple channels of information (color, 3D structure, and

semantic) or marked as unobserved. This data representation allows the network

to learn a consistent whole-room context model by describing both the observed and

59

unobserved parts of the entire scene from a single viewpoint. It is particularly efficient

for deep learning because the observations and predictions are resampled in a regular

2D parameterization suitable for convolution. Meanwhile, it can naturally support

different input camera configurations through reprojection (see Fig.4.10). Given an

observation of a 3D scene reconstructed from registered RGB-D images, we pick a

virtual camera center and render the mesh onto four perspective image planes in a

sky-box like fashion (see Fig.4.2). Each image plane has a 90◦ horizontal FoV and

a 116◦ vertical FoV with a image size 256 × 160. Virtual camera centers are chosen

depending on the dataset: for the Matterport3D dataset, we use tripod locations; for

the SUNCG dataset, we randomly select locations in empty space; for short RGB-D

videos, we use the median of all camera centers.

1 2 3 4

1

2

3

4

Sem
antic

Color

Plane dist.
N

orm
al

3D Scene + Virtual Camera

3 4 1 2

Equivalent

Figure 4.2: Whole room representation. We use a sky-box-like multi-channel
panorama to represent 3D scenes. The views are circularly connected, hence, observ-
ing the inner two views is equivalent to observing the outer two views of its shifted
panorama.

4.3.2 Representing 3D Surfaces with Plane Equations

While deep networks have been shown to perform well for predicting color pixels and

semantic labels, they continue to struggle at predicting high-quality 3D structure.

Current methods for direct regressing raw depth values produce blurred results [168,

95, 26], partly due to the viewpoint-dependent nature of depth maps and the large

60

Observation

Prediction

(A) Depth encoding (B) Plane equation encoding (C) Plane fitting on (B)

Figure 4.3: 3D structure prediction with different encodings. The plane equa-
tion encoding (B) is a better output representation than raw depth encoding (A); its
regularization enables the network to predict higher quality geometry.

value variance of depth values even for nearby pixels on the same 3D plane. Surface

normal predictions are generally higher quality; however, solving depth from normals

is under-constrained and sensitive to noise. Other more complicated encodings, such

as HHA [49], are designed for recognition, but cannot be used directly to recover the

3D structure.

In response to these issues, we propose to represent 3D surfaces with their plane

equations: surface normal n and plane distance p to the virtual camera origin. We

expect this representation to be easier to predict in indoor environments composed

of large planar surfaces because all pixels on the same planar surface share the same

plane equation – i.e., the representation is mostly piecewise constant. Moreover, the

3D location of each pixel can be solved trivially from its plane equation by intersection

with a camera ray.

Our network is trained to optimize the predicted plane equations. We find this

representation of 3D structure to be more effective than raw depth values. Fig.4.3

shows the qualitative comparison. We also have a post-processing step to further

improve visual quality of the predicted geometry using plane-fitting on the predicted

parameters (this step is not included in our quantitative evaluations).

61

4.3.3 Im2Pano3D Network Architecture

Our network architecture follows an encoder-decoder structure (Fig.4.4), where the

encoder produces a latent vector from an input panorama with missing regions, and

the decoder uses that latent vector to produce an output panorama where the miss-

ing regions are filled. In this section, we discuss the key features of our network

architecture.

rgb

p
n

s
s’

p’

n’

(o
pt

io
na

l)

softmax

L1

cosine

3D
 points

L1

real or fake
real

G: generator

D: discriminator

PNlayer

scene classification

object distribtion

Figure 4.4: Im2Pano3D network architecture. the network uses a multi-stream
autoencoder structure. A PN-layer is used to ensure consistency between normal and
plane distance predictions.

Multi-stream network. Since our panoramic data representation consists of mul-

tiple channels (e.g.color, normal, plane distance to the origin, and probability distri-

bution of semantics), we structured our network to process each channel with disjoint

streams before merging into and after splitting from the middle layers. In the en-

coder, each stream is made up of three convolutional layers. The features produced

from each stream are merged together by concatenation across channels and then

passed through six joint convolutions layers to produce the latent vector. Mirroring

this structure, the decoder passes the latent vector through six joint convolutions lay-

ers before splitting into multiple streams. This multi-stream structure provides the

62

network a balance of learning both channel-specific parameters within each stream,

and joint information through shared layers.

Reconstructing 3D surfaces with PN-Layer Although our network architec-

ture predicts the parameters of the plane equation as separate channels (surface nor-

mals n and plane distances p), there is no explicit supervision to enforce the consis-

tency between these two outputs. As a result, we find that with only the individual

supervision, the 3D surfaces reconstructed from the predicted parameters tend to be

noisy. To address this issue, we designed an additional layer in the network (called the

PN-Layer) which takes the normal and plane distances as input, and uses the plane

equation to produce a dense map of 3D point locations (x, y, z) for each pixel based

on its respectively predicted n, p, and pixel location. This layer is fully differentiable,

and therefore an additional regression loss can be added on the predicted 3D point

locations in order to enforce the consistency between the surface normal and plane

distance predictions.

4.3.4 Im2Pano3D Network Losses

When predicting the scene content for the unobserved regions, the plausible solution

might not be unique. For example, a valid prediction with slight changes to its loca-

tions could still represent an valid solution. To provide the supervision that reflects

this flexibility, we use multiple losses to capture three levels of information: pixel-wise

accuracy, mid-level contextual consistency using Patch-GAN (adversarial) loss [69],

and global scene consistency measured by scene category and object distributions.

The final loss for each channel is a weighted sum of the three level losses:

Pixel-wise reconstruction loss. As part of network supervision, we backprop-

agate gradients based on the pixel-level reconstruction loss between the prediction

and the ground truth panoramas. The loss differs for each output channel. We use

63

softmax loss for semantic segmentation s, cosine loss for normal n, and L1 loss for

plane distance p and final 3D point locations (x, y, z).

Adversarial loss. Following the recent success of generative adversarial networks,

we model supervision for generating high-frequency structures in the output panora-

mas by using a discriminator network [41] adapt from PatchGAN [69]. Similar to the

generator, the discriminator network processes each channel with disjoint streams be-

fore merging features into shared layers. For the real semantic examples, we converted

them into a probabilistic distribution over C classes of size H×W ×C before feeding

them into the discriminator. We adopt the method proposed by Luc et al.[106]: For

each pixel i, given its ground-truth label l, we set the probability for that pixel and

that label to be yil = max(γ, s(x)il), where s(x)il is the corresponding prediction from

netwotk, and γ = 0.8. For all other classes we set yic = s(x)ic(1 − yil)/(1 − s(x)il),

so that the label probabilities in y sum to one for each pixel.

Scene attribute loss. We add additional supervision to the network in order to

regularize high level scene attributes such as scene category and overall object dis-

tributions. To make the network aware of different scene categories, we added two

fully connected layers that predict the room category (over 8 scene categories) of the

input panorama from its latent code generated by the encoder. We backpropagate

gradients directly through the encoder from the softmax classification loss on the

scene category predictions. Furthermore, we added another auxiliary network that

computes the pixel-level distribution of different object classes from its semantic pre-

diction, and backpropagates gradients from comparing this distribution to the ground

truth distribution through an L1 loss. Our ablation studies in Sec.4.4 demonstrate

that these additional losses help to improve the semantic predictions, especially for

small objects.

64

4.4 Evaluation

In this section, we present a set of experiments to evaluate Im2Pano3D. We not only

investigate how well it predicts semantics and structure for unseen parts of a scene,

but also study the impact of each algorithmic components through ablation studies.

In most of our experiments, we consider the case where the input observation has a

180◦ horizontal and 116◦ vertical FoV, resulting in 50% partial observation (Fig.4.8).

In later experiments, we demonstrate our approach on other camera configurations.

All evaluations are performed on unobserved regions only.

4.4.1 Datasets

For our experiments, we use both synthetic (SUNCG [157]) and real (Matterport3D

[20]) datasets. The former is used for pre-training and ablation studies. The latter is

used for final evaluation on real data.

· SUNCG [157]: This dataset contains synthetically rendered panoramic images

with color, depth and semantic of synthetic 3D indoor rooms. In total, we use

58,866 panoramas for training, and 480 for testing.

· Matterport3D [20]: This dataset contains real-word RGB-D panoramas cap-

tured with a tripod-mounted Matterport camera. We use color, depth and se-

mantics provided by the dataset, but re-rendered them to form our panoramic

representation (Sec. 4.3.1). In total, we use 5,315 panoramas for training, and

480 for testing.

4.4.2 Baseline Methods

To our knowledge, there is currently no prior work that performs this task exactly. To

provide baselines for comparison, we consider the following extensions to prior work:

65

(b) Im2Pano3D

(c) Image inpainting (d) Semantic and structure predictions on (c)

(a) Input

Figure 4.5: Directly predicting 3D structure and semantics (b) (rgbpn2pns) provides
a more accurate result than predicting the same information from generated color
pixels (d) (inpaint).

· Average distribution (avg) computes a per pixel average of all images within

the training set.

· Average distribution by scene category (avg-type) computes a per pixel

average of all training images within the scene category. The prediction is

chosen by the testing images’ ground truth scene categories.

· Nearest neighbor (nn) retrieves the nearest neighbor image based on Im-

ageNet features, and uses its semantic segmentation and depth map as the

prediction.

· Image inpainting (inpaint) uses the context encoder of [69] to directly pre-

dict the color pixels in the unobserved regions, followed by a segmentation and

plane equation estimation network with the same architecture as Im2Pano3D.

Fig.4.5 shows an example result.

· Human completion (human) asks people to complete the 3D scene using a

3D design tool [1], where users can define room layouts and furniture arrange-

ments. Fig.4.6 shows a few example completions, and Tab.4.1 shows the average

performance across four users.

Tab.4.2 and 4.1 summarize the quantitative results. Models are labeled by their

input and output modality acronyms; rgb: color, s: semantics, d: depth, p: plane dis-

66

Observation Completion by different users Ground truth

Im2Pano3D

ceiling wall floor bedwindow objectdoor cabinet chair furnituresofa tv table

Figure 4.6: Human completion. Left shows the input observations. Middle shows
completion results from different users overlaid on the observations. Right shows
ground truth and our prediction.

tance, n: surface normal. For example, model [d2d] takes in a depth map as input and

predicts the raw depth values of the unobserved regions. To evaluate the algorithm’s

performance independent of segmentation accuracy over the observed regions, for the

[pns2pns] models, we assume ground truth segmentation for the observed region as

input.

Evaluation Metrics. We measure the quality of the predicted 3D geometric struc-

ture with the following metrics:

· Normal angle: the mean and median angles (in degrees) between prediction

and the ground truth, and the percentage of pixels with error less than three

thresholds (11.25◦, 22.5◦, 30◦).

· Surface distance: the mean and median L2 distances (in meters) between

final predicted 3D point locations and the ground truth, and the percentage of

pixels with error less than three thresholds (0.2m, 9.5m, 1m).

We measure the quality of the predicted semantic with the following metrics:

67

· Probability over ground truth (PoG): the pixelwise probability predic-

tion of the ground truth labels averaged within each class then averaged across

categories.

· Class existence (exist): the F1 score of object class existence predictions

averaged across all classes (where existence defined as ≥ 400 pixels).

· Class size (size): the pixel size difference between ground truth and predic-

tions divided by the ground truth size. Evaluated on the object categories with

correct existence predictions only.

· Earth Mover’s Distance (EMD): the average Earth Mover’s Distance [135]

between the predicted and ground truth 3D points for the categories with correct

existence prediction. The weight of each 3D point is assigned with its predicted

probability. The probability is normalized to sum up to one for each category.

We use k-center clustering (k=50) to cluster the 3D points before calculating

the EMD.

· IoU: the intersection over union of the most likely predicted pixel label, aver-

aged across all classes.

· Accuracy (acc): the percentage of correctly predicted pixels across all pixels.

· Inception score (incept.): the scene classification score on the generated

semantic map using an off-the-shelf image classification network (ResNet50[58])

trained on ground truth semantic maps, similar to the FCN scores that are

normally used to measure the generated image quality [138].

The first four metrics of semantic evaluation are newly introduced for this task. Unlike

most semantic segmentation tasks, where predictions are made for pixels directly

observed with a camera, our task is to predict semantics for large regions of unobserved

pixels. For this task, predicting the existence and size of unseen objects is already

very difficult and useful for many applications, and thus we include the existence and

size metrics, which are invariant to precise object locations. We also introduce metrics

68

Ceiling Floor Wall Window Table Door Chair

Figure 4.7: Probability distribution of semantics. The first row shows the aver-
age distribution of each semantic category over all training examples. The following
rows show the predicted probability distribution of semantics from Im2Pano3D over-
laid on top of the ground truth testing images. Red areas on the heat maps indicate
higher probabilities.

based on the predicted probability distribution (PoG and EMD), which account for

soft errors in position. We use PoG to rank algorithms in our comparisons.

4.4.3 Experimental Results

Tab.4.2 and 4.1 summarize the quantitative results and Fig.4.8 shows qualitative

results. More results and visualizations can be found in the supplementary material.

Comparing to Baseline Methods. Comparing our model [rgbpn2pns (s+m)] to

all baseline methods (Tab.4.1 row 2-5), our proposed model produces better predic-

tions in terms of both semantics and 3D structure. In particular, compared to the

two-step process of predicting semantic labels over predicted color images in the un-

observed regions [inpaint], directly predicting semantic labels in a one-step process

can generate a more accurate result (+13% in PoG and -0.24m in surface distance).

Fig.4.5 shows a qualitative comparison.

69

OutputGround truth

model: [rgbpn2pns (s)]
IoU: ceiling: 0.905 floor: 0.785
wall: 0.352 window: 0.450
bed: 0.897 tv: 0.063 cabinet: 0.782

Input Output

IoU: ceiling: 0.835 floor: 0.309
wall: 0.474 chair: 0.125 bed: 0.703
furn: 0.008 objs: 0.211 window:0.0
cabinet:0.0

IoU: ceiling: 0.495 floor: 0.564
wall: 0.329 door: 0.091
objs: 0.119 cabinet:0.0 bed:0.0

Input

ceiling wall floor bedwindow objectdoor cabinet chair furnituresofa tv table

Full view

dataset: SUNCG

dataset: Matterport3D

dataset: Matterport3D

dataset: Matterport3D

IoU: ceiling: 0.861 floor: 0.373
wall: 0.553 window: 0.194
table: 0.089 door: 0.072 objs: 0.082

model: [rgbpn2pns (s+m)]

model: [rgbpn2pns (s+m)]

model: [rgbpn2pns (s+m)]

Figure 4.8: Qualitative Results. For each example, we show semantic segmenta-
tions labeled using the highest predicted class probability for each pixel, and normal
maps from 3D structure predictions. We also show reconstructed 3D point clouds
(right column), colored by semantic labels, with bounding boxes around semantically
connected components. More results in supplementary material.

Does synthetic data help? Comparing our models [pns] and [rgbpn2pns] trained

with and without the SUNCG dataset and testing on the Matterport3D dataset, we

observe that pre-training on SUNCG significantly improves the model’s performance,

9% and 4% improvement in PoG respectively. In particular, when the input is a seg-

mentation map instead of a color image [pns2pns], the model trained only on SUNCG

can even achieve better performance than the model trained on Matterport3D alone

(+1.3% in PoG and -0.08m in surface distance). This result demonstrates that train-

ing on synthetic data is critical for this task, as it enables the network to learn a rich

whole-room contextual prior from a large variety of indoor scenes, which is extremely

expensive to obtain with real data.

70

models semantics 3D surface (m) normals (◦)
type train PoG↑ exist↑ size↓ emd↓ IoU↑ acc. ↑ incept. ↑ mean med. ↓ 0.2 0.5 1%↑ mean med. ↓ 11.25 22.5 30%↑

human - 0.303 0.650 1.474 0.943 0.203 0.522 - 0.661 0.449 29.1 57.7 78.7 49.9 17.4 51.2 58.2 60.8

avg all m 0.131 0.228 1.574 2.007 0.098 0.498 - 0.925 0.685 12.6 37.8 67.9 46.2 41.8 3.1 17.5 31.4
avg type m 0.155 0.260 1.265 2.089 0.107 0.508 - 0.905 0.668 13.8 39.6 69.6 45.8 40.4 4.5 20.7 34.0
nn m 0.126 0.531 1.901 2.820 0.078 0.302 - 1.286 0.898 15.8 33.6 56.4 65.1 58.1 23.8 31.2 34.9
inpaint s+m 0.145 0.488 1.407 1.984 0.082 0.347 0.183 0.867 0.591 19.3 46.3 72.3 59.5 50.4 23.3 32.8 37.9
rgbpn2pns s 0.185 0.56 1.589 1.729 0.129 0.378 0.233 0.609 0.365 32.3 63.4 82.5 47.2 20.8 43.6 54.7 59.4
rgbpn2pns m 0.245 0.542 0.933 1.535 0.174 0.566 0.394 0.603 0.361 37.4 63.7 82.1 39.1 22.4 34.9 52.6 60.4
rgbpn2pns s+m 0.275 0.616 0.936 1.487 0.208 0.566 0.402 0.524 0.280 43.6 69.5 85.5 43.6 19.0 42.9 57.2 62.8

pns2pns s 0.317 0.658 0.858 1.507 0.256 0.603 0.365 0.581 0.367 32.3 65.0 84.4 44.1 15.5 52.1 61.8 65.4
pns2pns m 0.304 0.618 0.854 1.526 0.243 0.61 0.406 0.610 0.373 32.6 63.4 83.2 42.3 20.0 37.9 57.3 63.6
pns2pns s+m 0.355 0.665 0.881 1.425 0.282 0.623 0.427 0.563 0.321 38.5 67.6 84.6 41.2 19.7 40.3 56.9 63.2

Table 4.1: Comparing to baseline methods on Matterport3D. Row 2 to 5 shows
baseline methods. Our models are named by their input output modalities (same
as Tab.4.2) and training set (s: SUNCG, m: Matterport3D). Bold numbers indicate
best performances in each group.

models semantics 3D surface (m) normals (◦)
type+loss PoG↑ exist↑ size↓ emd↓ IoU↑ acc. ↑ incept.↑ mean med.↓ 0.2 0.5 1%↑ mean med.↓ 11.25 22.5 30%↑

pn2pn+A - - - - - - - 0.320 0.119 67.6 81.4 91 38.5 5.5 70.3 74.5 76
d2d+A - - - - - - - 0.353 0.148 63.1 79.6 90.1 59.0 41.2 12.7 29.3 38.9
rgbpn2pns+A+S 0.376 0.688 0.702 1.204 0.321 0.721 0.446 0.306 0.124 67.1 82.4 92.1 36.0 4.6 72.5 76.5 78.2
pns2pns+S 0.379 0.613 0.653 1.184 0.313 0.728 0.375 0.416 0.227 51.8 74.3 88.9 32.5 7.6 62.3 72.2 76.0
pns2pns+A 0.370 0.681 0.750 1.269 0.318 0.719 0.452 0.343 0.15 63.3 80.4 90.9 37.7 4.4 72.2 76.0 77.4
pns2pns+A+S 0.382 0.710 0.754 1.204 0.330 0.716 0.463 0.339 0.151 64.0 80.8 91.1 36.9 4.6 73.0 76.4 77.8

Table 4.2: Ablation studies on SUNCG. Models are named by their input and
output modalities. rgb: color, s: semantic segmentation, d: depth, p: plane distance,
n: surface normal. A: adversarial loss, S: scene attribute loss.

Do different surface encodings matter? Comparing the model using raw depth

values [d2d] to the model using the plane equation encoding [pn2pn] (Tab.4.2 and

Fig.4.3), we can see that the plane equation encoding provides a strong regulariza-

tion allowing the network to predict higher quality 3D geometry with lower surface

distance and normal error, 0.03m and 21◦ less respectively.

What are the effects of different losses? Comparing the model trained with

adversarial loss [pns2pns+S+A] and without [pns2pns+S] in Tab.4.2, we can see

that the adversarial loss improves the prediction accuracy for small objects, which

is reflected in higher IoU (+2%). Meanwhile the adversarial loss reduces recall for

objects with big pixel area, which is reflected in lower total pixel accuracy (-1.2%).

Similarly, the scene attribute loss also improves IoU (+2%), with a small compromise

on total pixel accuracy (-0.3%).

71

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25
human
nn
avg-type
inpant
Im2Pano3D
[rgbpn2pns]

(a) Pixel distance from observation
5 50 100 150 200 250 300 350

(b) Observation FoV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Human Eye FoV

m
Io

U

Figure 4.9: Experiments. (a) shows mean IOU with respect to distance from obser-
vation. (b) shows accuracy of predictions in the unobserved regions while increasing
input horizontal FoV from 5◦ to 350◦. The error bar shows the error margin across
test cases.

How is accuracy influenced by distance to observation? Fig.4.9 (a) shows the

average IoU with respect to its distance to the nearest observed pixel. As expected,

the performance for Im2Pano3D decreases for pixels that are further from the input

observation. However, the performance is still much higher than other baselines when

the region is far from the observation or completely behind the camera, yet still not

as high as human performance.

How is accuracy influenced by input FoV? To investigate how the input FoV

affects the prediction accuracy, we do the following experiment: we keep the vertical

FoV of the input image at 116◦ while steadily increasing the horizontal FoV from

5◦ to 350◦, and ask the network to predict the structure and semantics for the full

panorama. Fig.4.9 (b) shows prediction accuracy in the unobserved regions with

respect to input FoV, which shows that the prediction accuracy improves as the

input FoV increases.

72

In
pu

t C
ol

or
St

ru
ct

ur
e

O
ut

pu
t

Se
m

an
tic

St
ru

ct
ur

e

(c) middle6 (32%)(b) middle3 (16%) (e) one rgbd+motion (14%) (f) rgbpano (100%) (g) rgbpano+1(100%)(d) top6 (40%)

Not Available

(a) middle1 (5.3%)

ceiling wall floor bedwindow objectdoor cabinet chair furnituresofa tv table

Figure 4.10: Camera configurations. For different camera configurations,
Im2Pano3D provides a unified framework to efficiently filling in missing 3D structure
and semantics of the unobserved scene. The observation coverage is shown in paren-
theses. 3D structure is represented with normals. The data for [RGB-D+motion]
comes from NYUv2 [149]. More examples can be found in supplementary material.

Generalizing to different camera configurations. In most of our evaluations,

we consider the case where the input observation has a 180◦ horizontal FoV. However,

in real robotic applications, systems may be equipped with different types of cameras

resulting in different observation FoV patterns. Here we demonstrate how Im2Pano3D

can generalize to other cases. The camera configurations we consider includes: single

or multiple registered RGB-D cameras such as Matterport cameras (Fig.4.10 (a-d)),

single RGB-D camera capturing a short video sequence (e), color-only panoramic

camera (f), and color panoramic cameras paired with a single depth camera (g).

To improve the ability of the network to generalize to different input observation

patterns, we use a random view mask during training. Tab.4.3 shows the qualitative

evaluation. For all of these camera configurations, Im2Pano3D provides a unified

framework that effectively fills in the missing 3D structure and semantic information

of the unobserved scene.

4.5 Summary

In this chapter, we introduce the task of semantic-structure view extrapolation and

present Im2Pano3D, a unified framework to produce a complete room structure and

73

middle1 middle3 top6 bottom6 middle6 rgbpano rgbpano+1
camera obs.(%) 5.3 16.7 40.4 40.1 32.7 100 100

PoG 0.188 0.304 0.269 0.286 0.392 0.393 0.425
normal 29.0 13.4 14.3 14.0 8.8 11.3 9.5
surface 0.454 0.238 0.237 0.322 0.148 0.290 0.250

Table 4.3: Camera configurations. The table shows the average PoG, median sur-
face and normal error for each configuration. Example inputs for each configuration
can be found in Fig.4.10. For models [rgbpano] and [rgbpano+1], we evaluate on
regions that do not have depth observation. For all other models, we evaluate on
regions with no color and depth observation.

semantic estimation conditioned on a partial observation of the scene. Experiments

demonstrate that the direct prediction of structure and semantics for the unobserved

scene provides more accurate results than alternative approaches. However, while

Im2Pano3D explores the possibilities of whole-room contextual reasoning for 3D scene

understanding, the proposed system is still far from perfect. Possible future direc-

tions may include: explicitly modeling semantics at the instance-level as opposed to

category-level, and exploring alternative data representations that consider occluded

regions.

74

Chapter 5

Datasets and Benchmarks for 3D

Scene Understanding

Data-driven 3D scene understanding is still a young field. Compared to many research

areas in 2D computer vision, where there are many well-established datasets and

benchmarks, the existing datasets for 3D datasets such as NYU dataset [120] are

much smaller. We believe the limited scale of 3D scene understanding dataset is now

becoming the critical common bottleneck in advancing research to the next level.

Besides causing overfitting of the algorithm during evaluation, they cannot support

training data-hungry algorithms. Therefore, one of the major contribution of this

dissertation is to build up infrastructure for its community, which includes creating

several major datasets and benchmarks in the area. In this chapter, I will introduce

a real-world RGB-D dataset, SUN RGB-D [154]; and a synthetic 3D scene dataset,

SUNCG [157].

5.1 Real-world RGB-D dataset: SUN RGB-D

The recent arrival of affordable depth sensors in consumer markets enabled us to

acquire reliable depth maps at a very low cost, stimulating breakthroughs in several

75

vision tasks, such as body pose recognition [145, 147], intrinsic image estimation [9],

3D modeling [70] and SfM reconstruction [185]. RGB-D sensors have also enabled

rapid progress for scene understanding (e.g. [50, 47, 130, 100, 75, 43, 76, 120]). How-

ever, while we can crawl color images from the Internet easily, it is not possible to

obtain large-scale RGB-D data online. Consequently, the existing RGB-D recognition

benchmarks, such as NYU Depth v2 [120], are an order-of-magnitude smaller than

modern recognition datasets for color images (e.g. PASCAL VOC [29]). Although

these small datasets successfully bootstrapped initial progress in RGB-D scene un-

derstanding in the past few years, the size limit is now becoming the critical common

bottleneck in advancing research to the next level. Besides causing overfitting of the

algorithm during evaluation, they cannot support training data-hungry algorithms

that are currently the state-of-the-art in color-based recognition (e.g. [39, 89]). If a

large-scale RGB-D dataset were available, we could borrow the same success to the

RGB-D domain as well. Furthermore, although the RGB-D images in these datasets

contain depth maps, the annotation and evaluation metrics are mostly in 2D image

domain, but not directly in 3D (Figure 5.1). Scene understanding is much more use-

ful in the real 3D space for most applications. We desire to reason about scenes and

evaluate algorithms in 3D.

To this end, we introduced SUN RGB-D, a dataset containing 10,335 RGB-D

images with dense annotations in both 2D and 3D, for both objects and rooms.

Based on this dataset, we focus on six important recognition tasks towards total

scene understanding, which recognizes objects, room layouts and scene categories.

For each task, we propose metrics in 3D and evaluate baseline algorithms derived

from the state-of-the-art. Since there are several popular RGB-D sensors available,

each with different size and power consumption, we constructed our dataset using

four different kinds of sensors to study how well the algorithms generalize across

sensors. By constructing a PASCAL-scale dataset and defining a benchmark with

76

(a) NYU Depth v2 (b) UW Object Dataset

(c) SUN3D (d) Ours

Figure 5.1: Comparison of RGB-D recognition benchmarks. Apart from 2D
annotation, our benchmark provided high quality 3D annotation for both objects and
room layout.

3D evaluation metrics, we hope to lay the foundation for advancing RGB-D scene

understanding in the coming years.

5.1.1 Related Work

There are many existing RGB-D datasets available [132, 113, 2, 64, 109, 148, 120,

110, 72, 163, 146, 127, 112, 42, 53, 190, 88, 166, 7, 103, 30, 160, 105, 162, 161, 115,

77

34, 81, 28, 122, 68, 19]. Figure 5.1 shows some of them. Here we will briefly describe

and compare to several most relevant ones1.

There are datasets [151, 92] that capture objects on a turntable instead of real-

world scenes. For natural indoor scene datasets, NYU Depth v2 [120] is probably

the most popular one. They labeled 1,449 selected frames from short RGB-D videos

using 2D semantic segmentation on the image domain. [44] annotates each object

by aligning a CAD model with the 3D point cloud. However, the 3D annotation is

quite noisy, and in our benchmark we reuse the 2D segmentation but recreate the

3D annotation by ourselves. Although this dataset is very good, the size is still

small compared to other modern recognition datasets, such as PASCAL VOC [29] or

ImageNet [136]. B3DO [71] is another dataset with 2D bounding box annotations on

the RGB-D images. But its size is smaller than NYU and it has many images with

an unrealistic scene layouts (e.g. snapshot of a computer mouse on the floor). The

Cornell RGBD dataset [3, 87] contains 52 indoors scenes with per-point annotations

on the stitched point clouds. SUN3D [185] contains 415 RGB-D video sequence with

2D polygon annotation on some keyframes. Although they stitched the point cloud

in 3D, the annotation is still purely in the 2D image domain, and there are only 8

annotated sequences.

5.1.2 Dataset Construction

The goal of our dataset construction is to obtain an image dataset captured by various

RGB-D sensors at a similar scale as the PASCAL VOC object detection benchmark.

To improve the depth map quality, we take short videos and use multiple frames to

obtain a refined depth map. For each image, we annotate the objects with both 2D

polygons and 3D bounding boxes and the room layout with 3D polygons.

1 A full list with brief descriptions is available at http://www0.cs.ucl.ac.uk/staff/M.Firman/
RGBDdatasets/.

78

http://www0.cs.ucl.ac.uk/staff/M.Firman/RGBDdatasets/
http://www0.cs.ucl.ac.uk/staff/M.Firman/RGBDdatasets/

Kinect v1 Kinect v2Asus XtionIntel Realsense
co

lo
r

ra
w

 d
ep

th
re

�n
ed

 d
ep

th
ra

w
 p

oi
nt

s
re

�n
ed

 p
oi

nt
s

Figure 5.2: Comparison of the four RGB-D sensors. The raw depth map from
Intel RealSense is noisier and has more missing values. Asus Xtion and Kinect v1’s
depth map have observable quantization effect. Kinect v2 is more accurate to measure
the details in depth, but it is more sensitive to reflection and dark color. Across
different sensors our depth improvement algorithm manages to robustly improve the
depth map quality.

Sensors

Since there are several popular sensors available, with different size and power con-

sumption, we construct our dataset using four kinds – Intel RealSense 3D Camera

for tablets, Asus Xtion LIVE PRO for laptops, and Microsoft Kinect versions 1 and

2 for desktop. Figure 5.2 shows the example color and depth images captured.

79

Intel RealSense is a lightweight, low power consuming depth sensor designed for

tablets. It will soon reach consumers; we obtained two pre-release samples from Intel.

It projects an IR pattern to the environment and uses stereo matching to obtain the

depth map. For outdoor environments, it can switch automatically to stereo matching

without IR pattern; however, we visually inspect the 3D point cloud and believe the

depth map quality is too low for use inaccurate object recognition for outdoors. We

thus only use this sensor to capture indoor scenes. Figure 5.2 shows its raw depth is

worse than that of other RGB-D sensors, and the effective range for reliable depth is

shorter (depth gets very noisy around 3.5 meters). But this type of lightweight sensor

can be embedded in portable devices and be deployed at a massive scale in consumer

markets, so it is important to study algorithm performance with it.

Asus Xtion and Kinect v1 use a near-IR light pattern. Asus Xtion is much lighter

and powered by USB only, with worse color image quality than Kinect v1’s. However,

Kinect v1 requires an extra power source. The raw depth maps from both sensors

have an observable quantization effect.

Kinect v2 is based on time-of-flight and also consumes significant power. The raw

depth map captured is more accurate, with high fidelity to measure the detailed

depth difference, but fails more frequently for black objects and slightly reflective

surfaces. The hardware supports long-distance depth range, but the official Kinect

for Windows SDK cuts the depth off at 4.5 meters and applies some filtering that

tends to lose object details. Therefore, we wrote our own driver and decoded the

raw depth in GPU (Kinect v2 requires software depth decoding) to capture real-time

video without depth cutoffs or additional filtering.

Sensor calibration

For RGB-D sensors, we must calibrate the camera intrinsic parameters and the trans-

formation between the depth and color cameras. For Intel RealSense, we use the

80

default factory parameters. For Asus Xtion, we rely on the default parameters re-

turned by OpenNI library without modeling radial distortion. For Kinect v2, the

radial distortion is very strong. So we calibrate all cameras with standard calibration

toolbox [17]. We calibrate the depth cameras by computing the parameters with the

IR image which is the same with the depth camera. To see the checkerboard without

overexposure on IR, we cover the emitter with a piece of paper. We use the stereo

calibration function to calibrate the transformation between the depth (IR) and the

color cameras.

Depth map improvement

The depth maps from these cameras are not perfect, due to measurement noise, view

angle to the regularly reflective surface, and occlusion boundary. Because all the

RGB-D sensors operate as a video camera, we can use nearby frames to improve the

depth map, providing redundant data to denoise and fill in missing depth.

We propose a robust algorithm for depth map integration from multiple RGB-D

frames. For each nearby frame in a time window, we project the points to 3D, get the

triangulated mesh from nearby points, and estimate the 3D rotation and translation

between this frame and the target frame for depth improvement. Using this estimated

transformation, we render the depth map of the mesh from the target frame camera.

After we obtain aligned and warped depth maps, we integrate them to get a robust

estimation. For each pixel location, we compute the median depth and 25% and 75%

percentiles. If the raw target depth is missing or outside the 25%−75% range and the

median is computed from at least 10 warped depth maps, we use the median depth

value. Otherwise, we keep the original value to avoid over-smoothing. Examples

are shown in Figure 5.2. Our depth map improvement algorithm, compared to [185]

which uses a 3D voxel-based TSDF representation, requires much less memory and

runs faster at equal resolution, enabling much high-resolution integration.

81

(a) (b) (c)

Figure 5.3: Data Capturing Process. (a) RealSense attached to laptop, (b) Kinect
v2 with battery, (c) Capturing setup for Kinect v2.

Robust estimation of an accurate 3D transformation between a nearby frame and

target frame is critical for this algorithm. To do this, we first use SIFT to obtain point-

to-point correspondences between the two color images, obtain the 3D coordinates for

the SIFT keypoints from the raw depth map, and then estimate the rigid 3D rotation

and translation between these two sparse 3D SIFT clouds using RANSAC with three

points. To obtain a more accurate estimation, we would like to use the full depth

map to do dense alignment with ICP, but depending on the 3D structure, ICP can

have severe drifting. Therefore, we first use the estimation from SIFT+RANSAC to

initialize the transformation for ICP, and calculate the percentage of points for ICP

matching. Using the initialization and percentage threshold, we run point-plane ICP

until convergence, then check the 3D distances with the original SIFT keypoint inliers

from RANSAC. If the distances significantly increase, it means ICP makes the result

drift away from the truth; we will use the original RANSAC estimation without ICP.

Otherwise, we use the ICP result.

Data Acquisition

To construct a dataset at the PASCAL VOC scale, we capture a significant amount

of new data by ourselves and combine some existing RGB-D datasets. We capture

3,784 images using Kinect v2 and 1,159 images using Intel RealSense. We included

82

be
dr

oo
m

cl
as

sr
oo

m

di
ni

ng
 ro

om
ba

th
ro

om
of

fic
e

ho
m

e
of

fic
e

co
nf

er
en

ce
 ro

om

ki
tc

he
n

2D segmentation 3D annotaion 2D segmentation 3D annotaion

Figure 5.4: Example images with annotation from SUN RGB-D dataset.

the 1,449 images from the NYU Depth V2 [120], and also manually selected 554

realistic scene images from the Berkeley B3DO Dataset [71], both captured by Kinect

v1. We manually selected 3,389 distinguished frames without significant motion blur

from the SUN3D videos [185] captured by Asus Xtion. In total, we obtain 10,335

RGB-D images.

As shown in Figure 5.3, we attach an Intel RealSense to a laptop and carry it

around to capture data. For Kinect v2 we use a mobile laptop harness and camera

stabilizer. Because Kinect v2 consumes a significant amount of power, we use a 12V

car battery and a 5V smartphone battery to power the sensor and the adaptor circuit.

The RGB-D sensors only work well for indoors. And we focus on universities, houses,

and furniture stores in North America and Asia. Some example images are shown in

Figure 5.4.

5.1.3 Ground Truth Annotation

For each RGB-D image, we obtain LabelMe-style 2D polygon annotations, 3D bound-

ing box annotations for objects, and 3D polygon annotations for room layouts. To

ensure annotation quality and consistency, we obtain our own ground truth labels for

83

images from other datasets; the only exception is NYU, whose 2D segmentation we

use as our 2D annotation.

For 2D polygon annotation, we developed a LabelMe-style [137] tool for Ama-

zon Mechanical Turk. To ensure high label quality, we add automatic evaluation in

the tool. To finish the HIT, each image must have at least 6 objects labeled; the

union of all object polygons must cover at least 80% of the total image. To prevent

workers from cheating by covering everything with big polygons, the union of the

small polygons (area < 30% of the image) must cover at least 30% of the total image

area. Finally, the authors visually inspect the labeling result and manually correct

the layer ordering when necessary. Low-quality labelings are sent back for relabeling.

We paid $0.10 per image; some images required multiple labeling iterations to meet

our quality standards.

For 3D annotation, the point clouds are first rotated to align with the gravity

direction using an automatic algorithm. We estimate the normal direction for each

3D point with the 25 closest 3D points. Then we accumulate a histogram on a 3D

half-sphere and pick the maximal count from it to obtain the first axis. For the second

axis, we pick the maximal count from the directions orthogonal to the first axis. In

this way, we obtain the rotation matrix to rotate the point cloud to align with the

gravity direction. We manually adjust the rotation when the algorithm fails.

We design a web-based annotation tool and hire oDesk workers to annotate objects

and room layouts in 3D. For objects, the tool requires drawing a rectangle on the top

view with an orientation arrow, and adjusting the top and bottom to inflate it to 3D.

For room layouts, the tool allows arbitrary polygon on the top view to describe the

complex structure of the room (Figure 5.4). Our tool also shows the projection of the

3D boxes to the image in real time, to provide intuitive feedback during annotation.

We hired 18 oDesk workers and trained them over Skype. The average hourly rate is

$3.90, and they spent 2,051 hours in total. Finally, all labeling results are thoroughly

84

bathroom(6.4%)

others(8.0%)

classroom
(9.3%)

office
(11.0%)

furniture store
(11.3%)

bedroom(12.6%)
computer room(1.0%)
lecture theatre(1.2%)

library(1.4%)
study space(1.9%)
home office(1.9%)

discussion area(2.0%)

dining area(2.4%)
conference room(2.6%)

lab(3.0%)
corridor(3.8%)
kitchen(5.6%)

living room(6.0%)
rest space(6.3%)

dining room(2.3%)

0

1250

2500

3750

5000

 ch
air

 ta

ble
 des

k

 pillo
w
 so

fa
 bed

 ca
bine

t
 box

 ga
rbag

e_
bin

 la
mp

 sh
elf

 m
on

ito
r

 so
fa

ch
air

 draw
er

 fra
me

 sin
k

 pap
er

 tra
sh

 ca
n

 sid
e t

ab
le

 boo
k

 doo
r

 ni
gh

t s
tan

d

 boo
k s

he
lf

 ke
yb

oa
rd

 co
mpute

r
 to

ilet

 dres
se

r
 ra

ck

 cu
rta

in
 cp

u
 bag

 cu

p tv

 ki
tch

en
 ca

bine
t

 fri
dge

 w
hit

e b
oa

rd
 bott

le

 prin
ter

 co
ffe

e t
ab

le

 dinin
g t

ab
le

 st
oo

l

 un
kn

ow
n

 to
wel
 plan

t

 pain
tin

g

 co
mpute

r m
on

ito
r

 m
irro

r

 ha
ng

ing
 ca

bine
t

 la
ptop

 bow

l

 boa
rd
 tra

y
 ov

en

 st
ee

l c
ab

ine
t

 ben
ch

 ch
air

s

 m
ou

se

 cl
oth

es

 ki
tch

en

 ca
rto

n b
ox

 te
lep

ho
ne

 port
rai

t

 bath
tub

Kinect v2 SUN3D (ASUS Xtion) NYUv2 (Kinect v1)

B3DO (Kinect v1)Intel RealSense

(a) object distribution (b) scene distribution19959

Figure 5.5: Statistics of semantic annotation in our dataset.

checked and corrected by the authors. For scene categories, we manually classify the

images into basic-level scene categories.

5.1.4 SUN RGB-D Dataset Statistics

For the 10,335 RGB-D images, we have 146,617 2D polygons and 64,595 3D bounding

boxes (with accurate orientations for objects) annotated. Therefore, there are 14.2

objects in each image on average. In total, there are 47 scene categories and about

800 object categories. Figure 5.5 shows the statistics for the semantic annotation of

the major object and scene categories.

5.1.5 Benchmark Design

To evaluate the whole scene understanding pipeline, we select six tasks, including

both popular existing tasks and new but important tasks, both single-object based

tasks and scene tasks, as well as a final total scene understanding task that integrates

everything.

We choose some state-of-the-art algorithms to evaluate each task. For the tasks

without existing algorithm or implementation, we adapt popular algorithms from

other tasks. For each task, whenever possible, we try to evaluate algorithms using

color, depth, as well as RGB-D images to study the relative importance of color and

depth, and gauge to what extent the information from both is complimentary. Various

85

evaluation results show that we can apply standard techniques designed for color (e.g.

handcraft features, deep learning features, detector, sift flow label transfer) to depth

domain and it can achieve comparable performance for various tasks. In most of cases,

when we combining these two source of information, the performance get improved.

For evaluation, we carefully split the data into training and testing set, ensuring

each sensor has around half for training and half for testing, Since some images are

captured from the same building or house with similar furniture styles, to ensure

fairness, we carefully split the training and testing sets by making sure that those

images from the same building either all go into the training set or the testing set

and do not spread across both sets. For data from NYU Depth v2 [120], we use the

original split.

Scene Categorization Scene categorization is a very popular task for scene un-

derstanding [183]. In this task, we are given an RGB-D image, classify the image into

one of the predefined scene categories, and use the standard average categorization

accuracy for evaluation.

We use the 19 scene categories with more than 80 images. We choose GIST

[123] with a RBF kernel one-vs-all SVM as the baseline. We also choose the state-

of-the-art Places-CNN [200] scene feature, which achieves the best performance in

color-based scene classification on the SUN database [183]. This feature is learned

using a Deep Convolutional Neural Net (AlexNet [89]) with 2.5 million scene images

[200]. We use both linear SVM and RBF kernel SVM with this CNN feature. Also,

empirical experiments [51] suggest that both traditional image features and deep

learning features for color image can be used to extract powerful features for depth

maps as well. Therefore, we also compute the GIST and Places-CNN on the depth

images. We also evaluate the concatenation of depth and color features. The depth

image is encoded as HHA image as in [51] before extract the feature. Figure 5.6 reports

86

the accuracy for these experiments. We can see that the deep learning features indeed

perform much better, and the combination of color and depth features also helps.

RGB (19.7) D (20.1) RGB-D (23.0) RGB (35.6) D (25.5) RGB-D (37.2) RGB (38.1) D (27.7) RGB-D (39.0)

bathroom
bedroom

classroom
computer room

conference room
corridor

dining area
dining room

discussion area
furniture store

home o�ce
kitchen

lab
lecture theatre

library
living room

o�ce
rest space

study space

(a) GIST[123]+kernel SVM (b) Places-CNN+Linear SVM (c) Places-CNN+kernel SVM

Figure 5.6: Confusion matrices for various scene recognition algorithms.
Each combination of features and classifiers is run on RGB, D and RGB-D. The
numbers inside the parentheses are the average accuracy for classification.

Semantic Segmentation Semantic segmentation in the 2D image domain is cur-

rently the most popular task for RGB-D scene understanding. In this task, the

algorithm outputs a semantic label for each pixel in the RGB-D image. We use the

standard average accuracy across object categories for evaluation.

We run the state-of-the-art algorithm for semantic segmentation [130] on our

benchmark and report the result on Table 5.1. Since our dataset is quite large, we

expect non-parametric label transfer to work well. We first use Places-CNN features

[200] to find the nearest neighbor and directly copy its segmentation as the result.

We surprisingly found that this simple method performs quite well, especially for big

objects (e.g. floor, bed). We then adapt the SIFT-flow algorithm [102, 101], on both

color and depth to estimation flow. But it only slightly improves performance.

Object Detection Object detection is another important step for scene under-

standing. We evaluate both 2D and 3D approaches by extending the standard evalu-

ation criteria for 2D object detection to 3D. Assuming the box aligns with the gravity

direction, we use the 3D intersection over union of the predicted and ground truth

boxes for 3D evaluation. With 0.25 as the threshold, we calculate the precision-recall

curve.

For 2D object detection, we evaluate four state-of-the-art algorithms for object

detection: DPM [32], Exemplar SVM [108], RGB-D RCNN [51], and Sliding Shapes

87

mean
RGB NN 45.03 27.89 16.89 18.51 21.77 1.06 4.07 0 8.32
Depth NN 42.6 9.65 21.51 12.47 6.44 2.55 0.6 0.3 5.32

RGB-D NN 45.78 35.75 19.86 19.29 23.3 1.66 6.09 0.7 8.97
RGB [102] 47.22 39.14 17.21 20.43 21.53 1.49 5.94 0 9.33
Depth [102] 43.83 13.9 22.31 12.88 6.3 1.49 0.45 0.25 5.98

RGB-D [102] 48.25 49.18 20.8 20.92 23.61 1.83 8.73 0.77 10.05
RGB-D [130] 78.64 84.51 33.15 34.25 42.52 25.01 35.74 35.71 36.33

Table 5.1: Semantic segmentation. We evaluate performance for 37 object cate-
gories. Here shows 8 selected ones: floor, ceiling, chair, table, bed, nightstand, books,
and person. The mean accuracy is for all the 37 categories. A full table is in the
supp. material.

[155]. For DPM and Exemplar SVM, we use the depth as another image channel

and concatenate HOG computed from that and from color images. To evaluate the

first three 2D algorithms, we use 2D IoU with a threshold of 0.5 and the results are

reported in Table 5.2. The 2D ground truth box is obtained by projecting the points

inside the 3D ground truth box back to 2D and finding a tight box that encompasses

these 2D points.

For 3D detection, please refer to Chapter 2 for more detailed experiment and

evaluation on 3D object detection.

RGBD mAP
ESVM 7.3 12.9 7.4 0.0 12.4 0.02 0.8 0.5 1.8 6.0 6.1 0.4 6.0 1.6 6.1 14.0 11.8 0.8 14.8 5.8
DPM 34.2 54.7 14.4 0.45 29.3 0.8 4.7 0.4 1.8 13.2 23.3 11.9 23.3 9.3 15.5 21.6 24.0 8.7 23.7 16.6

RCNN[51] 49.6 75.9 34.9 5.7 41.2 8.1 16.5 4.2 31.3 46.8 21.9 10.7 37.2 16.5 41.9 42.2 43.02 32.9 69.8 35.2

Table 5.2: Evaluation of 2D object detection. We evaluate on 19 popular object
categories using Average Precision (AP): bathtub, bed, bookshelf, box, chair, counter,
desk, door, dresser, garbage bin, lamp, monitor, night stand, pillow, sink, sofa, table,
tv and toilet.

Object Orientation Besides predicting the object location and category, another

important vision task is to estimate its pose. For example, knowing the orientation

of a chair is critical to sit on it properly. Because we assume that an object bounding

88

box is aligned with gravity, there is only one degree of freedom in estimating the yaw

angle for orientation.

We evaluate two exemplar-based approaches: Exemplar SVM [108] and Sliding

Shapes [155].The prediction is evaluated by the angle difference between the prediction

and the ground truth. We transfer the orientations from the training exemplars to

the predicted bounding boxes. Some categories (e.g. roundtable) do not have well-

defined orientations and are not included for evaluation. Figure 5.7 shows example

results, and Figure 5.8 shows the distribution of prediction error.

Angle: 12.6 IoU: 0.7 Angle: 87.4 IoU: 0.4 Angle: 31.4 IoU: 0.24

Angle: 8.6 IoU: 0.7Angle: 3.54 IoU: 0.66

Angle: 49.5 IoU: 0.6

Angle: 1.6 IoU: 0.6 Angle: 2.4 IoU: 0.7

Figure 5.7: Example results for 3D object detection and orientation pre-
diction. We show the angle difference and IoU between predicted boxes (blue) and
ground truth (red).

Room Layout Estimation The spatial layout of the entire space of the scene al-

lows more precise reasoning about free space (e.g., where can I walk?) and improved

object reasoning. It is a popular but challenging task for color-based scene under-

standing (e.g. [59, 60, 61]). With the extra depth information in the RGB-D image,

this task is considered to be much more feasible [193]. We evaluate the room layout

estimation in 3D by calculating the Intersection over Union (IoU) between the free

space from the ground truth and the free space predicted by the algorithm output.

89

0 20 40 60 80 100 120 140 160 180
0

100

200

300

angle difference in degree

co
un

t

sofa

9 27 45 63 81 99 117 135 153 171
0

1000

2000

3000

angle difference in degree

co
un

t

chair

Sliding Shapes
Examplar SVM

0 20 40 60 80 100 120 140 160 180
0

20

40

angle difference in degree

toilet

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

angle difference in degree

bed

Figure 5.8: Object orientation estimation. Here we show the distribution of the
orientation errors for all true positive detections.

As shown in Figure 5.10, the free space is defined as the space that satisfies four

conditions: 1) within the camera field of view, 2) within the effective range, 3) within

the room, and 4) outside any object bounding box (for room layout estimation, we

assume empty rooms without objects). In terms of implementation, we define a voxel

grid of 0.1 × 0.1 × 0.1 meter3 over the space and choose the voxels that are inside

the field of view of the camera and fall between 0.5 and 5.5 meters from the camera,

which is an effective range for most RGB-D sensors. For each of these effective voxels,

given a room layout 3D polygon, we check whether the voxel is inside. In this way,

we can compute the intersection and the union by counting 3D voxels.

This evaluation metric directly measures the free space prediction accuracy. How-

ever, we care only about the space within a 5.5-meter range; if a room is too big,

all effective voxels will be in the ground truth room. If an algorithm predicts a huge

room beyond 5.5 meters, then the IoU will be equal to one, which introduces bias:

algorithms will favor a huge room. To address this issue, we only evaluate algorithms

on the rooms with a reasonable size (not too big), since none of the RGB-D sensors,

can see very far either. If the percentage of effective 3D voxels in the ground truth

room is bigger than 95%, we discard the room in our evaluation.

Although there exists an algorithm for this task [193], we could not find an open

source implementation. Therefore, we design three baselines: the simplest baseline

90

Manhattan Box (0.99)Ground Truth Geometric Context (0.27)Convex Hull (0.90)

Convex Hull (0.85)

Geometric Context (0.61)Convex Hull (0.43)Manhattan Box (0.72)

Geometric Context (0.57)Ground Truth

Ground Truth

Manhattan Box (0.811)

Figure 5.9: Example visualization to compare the three 3D room layout estimation
algorithms.

(named Convex Hull) computes the floor and ceiling heights by taking the 0.1 and

99.9 percentiles of the 3D points along the gravity direction, and computes the convex

hull of the point projection onto the floor plane to estimate the walls. Our stronger

baseline (named Manhattan Box) uses plane fitting to estimate a 3D rectangular room

box. We first estimate the three principal directions of the point cloud based on the

histogram of normal directions (see Section 5.1.3). We then segment the point cloud

based on the normal orientation and look for the planes with the furthest distance

from the center to form a box for the room layout. To compare with the color-based

approach, we run Geometric Context [59] on the color image to estimate the room

layout in 2D. We then use the camera tilt angle from gravity direction estimation

and the focal length from the sensor to reconstruct the layout in 3D with single-view

geometry, using the estimated floor height to scale the 3D layout properly. Figure

5.9 shows examples of the results of these algorithms. Average IoU for Geometric

Context is 0.442, Convex Hull is 0.713, and Manhattan Box is 0.734 performs best.

Total Scene Understanding The final task for our scene understanding bench-

mark is to estimate the whole scene including objects and room layout in 3D [100].

This task is also referred to “Basic Level Scene Understanding” in [184]. We propose

91

Effective free space
Outside the room
Inside some objects
Beyond cutoff distance

Figure 5.10: Free space evaluation. The free space is the gray area inside the room,
outside any object bounding boxes, and within the effective minimal and maximal
range [0.5m-5.5m]. For evaluation, we use IoU between the gray areas of the ground
truth and the prediction as the criteria.

this benchmark task as the final goal to integrate both object detection and room

layout estimation to obtain a total scene understanding, recognizing and localizing

all the objects and the room structure.

We evaluate the result by comparing the ground truth objects and the predicted

objects. To match the prediction with ground truth, we compute the IoU between

all pairs of predicted boxes and ground truth boxes, and we sort the IoU scores in

a descending order. We choose each available pair with the largest IoU and mark

the two boxes as unavailable. We repeat this process until the IoU is lower than a

threshold τ (τ = 0.25 in this case). For each matched pair between ground truth and

prediction, we compare their object label in order to know whether it is a correct

prediction or not. Let |G| be the number of ground truth boxes, |P| be the number

of prediction boxes, |M| be the number of matched pairs with IoU> τ , and |C| be

the number of matched pairs with a correct label. We evaluate the algorithms by

computing three numbers: Rr = |C| / |G| to measure the recall of recognition for both

semantics and geometry, Rg = |M|/|G| to measure the geometric prediction recall,

and Pg = |M|/|P| to measure the geometric prediction precision. We also evaluate

the free space by using a similar scheme as for room layout: counting the visible

3D voxels for the free space, i.e. inside the room polygon but outside any object

92

IoU 50.7 Rr: 0.333 Rg: 0.333 Pg : 0.375IoU: 53.1 Rr: 0.333 Rg: 0.333 Pg: 0.125 IoU: 57.3 Rr :0.33 Rg: 0.667 Pg:0.125

IoU: 53.1 Rr: 0.111 Rg : 0.111 Pg: 0.5IoU 72.9 Rr: 0.333 Rg: 0.667 Pg: 0.667 IoU 63.9 Rr: 0.333 Rg: 0.667 Pg:1IoU: 77.0 Rr: 0.25 Rg: 0.25 Pg: 0.5

IoU: 78.8 Rr: 1 Rg: 1 Pg: 0.5

G
ro

un
d

tru
th

Sl
id

in
g

Sh
ap

es
3D

 R
C

N
N

IoU: 54.6 Rr : 0.333 Rg : 0.333 Pg: 0.125

IoU:60 Rr: 0.50 Rg : 0.0.50 Pg: 0.5

 bathtub bed bookshelf box chair counter desk door dresser garbage bin lamp monitor night stand pillow sink sofa table tv toilet

Figure 5.11: Visualization of total scene understanding results.

bounding box. Again, we compute the IoU between the free space of ground truth

and prediction.

We use RGB-D RCNN and Sliding Shapes for object detection and combine them

with Manhattan Box for room layout estimation. We do non-maximum suppression

across object categories. For RGB-D RCNN, we estimate the 3D bounding boxes of

objects from the 2D detection results. To get the 3D box we first project the points

inside the 2D window to 3D. Along each major direction of the room we build a

histogram of the point count. Starting from the median of the histogram, we set the

box boundary at the first discontinuous location. We also set a threshold of detection

confidence and maximum number of objects in a room to further reduce the number

of detections. With the objects and room layout in hand we propose four simple

ways to integrate them: (1) directly combines them; (2) remove the object detections

that fall outside the estimated room layout; (3) adjust room to encompass 90 % the

objects; (4) adjust the room according to the majority of objects and remove the

out-of-room objects. Figure 5.11 and Table 5.3 show the results.

93

RGB-D RCNN Sliding Shapes
(1) (2) (3) (4) (1) (2) (3) (4)

Pg 21.5 21.7 21.4 22.3 33.2 37.7 33.2 37.8
Rg 38.2 39.4 40.8 39.0 32.5 32.4 32.5 32.3
Rr 21.5 32.6 20.4 21.4 23.7 23.7 23.7 23.7
IoU 59.5 60.5 59.5 59.8 65.1 65.8 65.2 66.0

Table 5.3: Evaluation of total scene understanding. With the objects detection
result from Sliding Shape and RCNN and Manhattan Box for room layout estimation,
we evaluate four ways to integrate object detection and room layout: (1) directly
combine (2) constrain the object using the room. (3) adjust room base on the objects
(4) adjust the room and objects together.

Cross sensor Because real data likely come from different sensors, it is essential

that an algorithm can generalize across them. Similar to dataset bias [170], we study

sensor bias for different RGB-D sensors. We conduct an experiment to train a DPM

object detector using data captured by one sensor and test on data captured by

another to evaluate the cross-sensor generality. To separate out the dataset biases,

we do this experiment on a subset of our data, where an Xtion and a Kinect v2 are

mounted on a rig with large overlapping views of the same places. From the result

in Table 5.4, we can see that sensor bias does exist. Both color and depth based

algorithms exhibit some performance drop. We hope this benchmark can stimulate

the development of RGB-D algorithms with better sensor generalization ability.

Test
Train Kinect v2 Xtion Percent drop (%)

rgb d rgbd rgb d rgbd rgb d rgbd

ch
ai

r Kinect v2 18.07 22.15 24.46 18.93 22.28 24.77 -4.76 -0.60 -1.28
Xtion 12.28 16.80 15.31 15.86 13.71 23.76 29.22 -18.39 55.23

ta
b

le Kinect v2 15.45 30.54 29.53 16.34 8.74 18.69 -5.78 71.38 36.70
Xtion 8.13 24.39 28.38 14.95 18.33 24.30 45.64 -33.05 -16.79

Table 5.4: Cross-sensor bias.

5.2 Synthetic 3D Scene Dataset: SUNCG

While the real-world 3D scene datasets like SUNRGB-D are useful for training and

validating algorithm, the high cost of the real-world data collection still limits the

94

scale of the data that we can obtain. Moreover, current datasets lack pixel level

accuracy due to sensor noise or labeling error (Fig. 5.12).

This has led to utilizing synthetic 3D data for training our data-driven 3D scene

understanding model. We introduced SUNCG, a large-scale synthetic 3D scene

dataset with more than 45622 indoor environments designed by people. All the3D

scenes are composed of individually labeled 3D object meshes. Using such realistic

indoor 3D environments enable us to create 2D images for training data-driven mod-

els. This dataset provides the following unique properties that open up new research

opportunities:

• Realistic context settings that enable us to study contextual information beyond

a single object.

• Complete 3D environment, which enables us to study problem like scene com-

pletion that predicts information beyond the visible 3D surfaces.

• Full control over the 3D scenes, which enables us to systematically manipulate

objects or the lighting condition in the scene to generate more variety of data.

• Full control of camera viewpoints, which is not limited to the camera viewpoints

during data capture.

• Precise and accurate label. Since we have access to the source 3D models, we

can generate dense per-pixel or per-voxel labeled training data with little cost.

Because of these unique properties, dataset can support a wide range of applica-

tions that includes not only traditional computer vision tasks but also new tasks that

were not possible before.

95

Annotated BoundaryReal Photo Sensor Normal Annotated Seg.

Sync Color Image Sync Normal Sync Seg. Sync Boundary

Figure 5.12: Real data (top) vs. synthetic data (bottom). For the real data, note
the noise in normal map and the diminishing accuracy at object boundaries in the
semantic labels.

5.2.1 Related Work

Using synthetic data to increase the data density and diversity for deep neural network

training has shown promising results. To date, synthetic data have been utilized to

generate training data for predicting object pose [165, 117, 46], optical flow [24],

semantic segmentation [53, 55, 194, 131], and investigating object features [5, 78].

Su et al. [165] used individual objects rendered in front of arbitrary backgrounds

with prescribed angles relative to the camera to generate data for learning to pre-

dict object pose. Similarly, Dosovitskiy et al. [24] used individual objects rendered

with arbitrary motion to generate synthetic motion data for learning to predict op-

tical flow. Both works used unrealistic OpenGL rendering with fixed lights, where

physically based effects such as shadows, reflections were not taken into account.

Movshovitz et al. [117] used environment map lighting and showed that it benefits

pose estimation. However, since individual objects are rendered in front of arbitrary

2D backgrounds, the data generated for these approaches lack correct 3D illumination

effects due to their surroundings such as shadows and reflections from nearby objects

96

with different materials. Moreover, they also lack a realistic context for the object

under consideration.

Handa et al. [53, 55] introduced a laboriously created 3D scene dataset and demon-

strated the usage of semantic segmentation training. However, their data consisted of

rooms on the order of tens, which has significantly limited variation in context com-

pared to our dataset with 45K realistic house layouts. Moreover, their dataset has no

RGB images due to lack of colors and surface materials in their scene descriptions,

hence they were only able to generate depth channels. Zhang et al. [194] proposed

to replace objects in depth images with 3D models from ShapeNet [21]. However,

there is no guarantee whether replacements will be oriented correctly with respect

to surrounding objects or be stylistically in context. In contrast, we take advantage

of a large repository of indoor scenes created by human, which guarantees the data

diversity, quality, and contextual relevance.

Xiang et al. [181] introduced a 3D object-2D image database, where 3D objects

are manually aligned to 2D images. The image provides context, however, the 3D

data contains only the object without room structures, it is not possible to extract

per-pixel ground truth for the full scene. The dataset is also limited by the number

of images provided (90K). In contrast, we can provide as many (rendered image,

per-pixel ground truth) pairs as one wants.

Recently, Richter et al. [131] demonstrated collecting synthetic data from a real-

istic game engine by intercepting the communication between game and the graphics

hardware. They showed that the data collected can be used for semantic segmenta-

tion task. Their method ensures as much context as there is in the game (Although

it is limited to only outdoor context, similar to the SYNTHIA [134] dataset). How-

ever they largely reduced the human labor in annotation by tracing geometric entities

across frames, the ground truth (i.e. per-pixel semantic label) collection process is not

completely automated and error-prone due to the human interaction: even though

97

they track geometry through frames and propagate most of the labels, a person needs

to label new objects emerging in the recorded synthetic video. Moreover, it is not

trivial to alter camera view, light positions, and intensity, or rendering method due

to lack of access to low-level constructs in the scene. On the other hand, our data and

label generation process is automated, and we have full control over how the scene is

lit and rendered.

Moreover, most of the work only use rendered image pairs of the dataset as training

data, while the 3D aspect of such data has not been fully utilized.

5.2.2 Dataset Construction

Our SUNCG dataset contains 45, 622 different scenes with realistic room and furniture

layouts that are manually created through the Planner5D platform [126]. Planner5D

is an online interior design interface that allows users to create multi-floor room

layouts, add furniture from an object library, and arrange them in the rooms. After

removing duplicated and empty scenes, we ensured the quality of the data with a

pure Mechanical Turk cleaning task. During the task, we showed a set of top view

renderings of each floor and asked workers to vote whether this is a valid apartment

floor. We collected three votes for each floor and consider a floor valid when it has at

least two positive votes. In the end, we have 49, 884 valid floors, containing 404, 058

rooms and 5, 697, 217 object instances from 2644 unique object meshes covering 84

categories. We manually labeled all the objects in the library to assign category

labels. Figure 3.6 shows example scenes from the resulting SUNCG dataset.

5.2.3 SUNCG Dataset Statistics

In this section, we present several statistics related to our SUNCG dataset. We start

by providing the basic statistics of scene structure and physical size for 3D scenes in

98

our dataset and then move on to talk about higher-level statistics regarding object

categories, room types, and object-room relationships.

Scene Structure Statistics Figure 5.13 illustrates the distribution of the number

of rooms and number of floors per scene in the SUNCG dataset. The 3D scenes

in our dataset range from single room studio to multi-floor houses. The average

and the median number of rooms per-house was found to be 8.9 and 7 respectively.

The average and the median number of floors per-house was found to be 1.3 and 1

respectively.

Figure 5.13: Scene structure statistics. Distribution of number of rooms and
number of floors in our SUNCG dataset. Our dataset contains a large variety of 3D
indoor scenes such as small studios, multi-room apartments, and multi-floor houses.

Physical Size Statistics All object meshes and 3D scenes in the SUNCG dataset

are measured in real-world spatial dimensions (units are in meters). Figure 5.14 shows

statistics related to physical size over three levels: rooms, floors, and houses.

Room Type Statistics Figure 5.15 shows the room type distribution and several

example rooms per type from our dataset. In total, we have 24 room types that

99

Figure 5.14: Distribution of physical sizes (in meters2) per room, floor, and
house of the SUNCG dataset.

are labeled by the user during creation. These labels include: living room, kitchen,

bedroom, child room, dining room, bathroom, toilet, hall, hallway, office, guest room,

wardrobe, room, lobby, storage, boiler room, balcony, loggia, terrace, entryway, pas-

senger elevator, freight elevator, aeration, and garage. The four most common room

types in our dataset are the bedroom, living room, kitchen and toilet, which agrees

with the distribution in real-world living spaces.

Kitchen

Living Room Bedroom Balcony

Bathroom Child Room

Office

Figure 5.15: Distribution of different room types in the SUNCG dataset (left), and
examples of rooms per room type (right).

Object Category Statistics Figure 5.16 shows overall object category occurrence

in the SUNCG dataset. Object models from the object library contain a diverse set

of common furniture and objects for common living spaces. Furthermore, during the

creation of the 3D scenes, users have the flexibility to reshape, resize, and re-apply

100

texture to objects to better fit the room style, which further improves the dataset

diversity.

0

1

2

3

4

dinning ta
ble

dresse
r

bath
tu

b

sh
ower

arch

bath
ro

om st
uff

table and ch
airca

r

o
ce

 ch
airs

tv bench
vase

s

oor la
mps

music

mirr
or

double bed

otto
man

table la
mp

outd
oor r

est
desk

hanging ca
binet

 applia
nce

co
mputer

sw
itc

h

parti
tio

ns

wash
 basin

s
sta

nd

wall l
amp

people
to

ile
t

co
ee ta

ble

co
lumn

kitc
hen applia

nce

arm
ch

airtvs

outd
oor la

mp
so

fa

cu
rta

in

paintin
gs

ru
g

to
ys

ward
ro

bes

kitc
henware

sh
elves

kitc
hen ca

binet

fence
s g

ate

ch
andelie

r
ch

air
door

windows

plants

Occurence× 10
5

Figure 5.16: Distribution of object categories in the SUNCG dataset. We
have 84 object categories in total. Here we show the top 50 object categories with
highest number of occurrences in our dataset.

Object-Room Relationships With complete object and room type annotations,

we can further study the object-room relationships in our dataset. Figure 5.17 (a)

shows the distribution of the objects per room. Figure 5.17 (b) shows the distribution

of object categories conditioned on different room types. On average there are more

than 14 objects in each room. The occurrence and arrangements of these objects in

rooms provide rich contextual information that we can learn from.

5.2.4 Tasks Supported by SUNCG

Because of the richness of the dataset, SUNCG has been used for a wide range of

applications that includes not only traditional computer vision tasks but also new

tasks which was not possible before. The rest of this section discusses some example

tasks that are supported and enabled by SUNCG dataset, ranging from computer

vision and computer graphics to robotics.

Computer Vision Tasks. In computer vision, SUNCG has been used for gener-

ating image data and their per-pixel ground truth annotation though rendering. For

example, studies have used SUNCG to train models for normal prediction, semantic

101

RoomType

ModelCategory

ki
tc
he
n_
ca
bi
ne
t

ch
ai
r

so
fa

ki
tc
he
n_
ap
pl
ia
nc
e

to
ile
t

tv
s

co
m
pu
te
r

ar
m
ch
ai
r

co
!
ee
_t
ab
le

de
sk

do
ub
le
_b
ed

ba
th
ro
om

_s
tu
!

ba
th
tu
b

di
ni
ng
_t
ab
le

si
ng
le
_b
ed

dr
es
si
ng
_t
ab
le

bo
ok
sh
el
f

w
or
kp
la
ce

ki
tc
he
n_
se
t

Living_Room
Kitchen
Bedroom
Dining_Room
Toilet
O"ce
Bathroom
Child_Room

10 20 30 40 50 60 70 80 90 100
Number of Objects

0K

2K

4K

6K

8K

10K

12K

14K

N
um

be
r o

f R
oo

m
s

Object Category

(b) Object Category Distribution Conditioned on Room Type(a) Number of Objects per Room

Number of Object

Figure 5.17: Object-Room Relationship. On the left we show the distribution of
number of objects in each room. On average there are more than 14 objects in each
room. On the right, we show the object category distribution conditioned on different
room type. Size of the square shows the frequency of a given object category appears
in the certain room type. The frequency is normalized for each object category. As
expected, object occurrences are tightly correlated with the room type. For example,
kitchen counters have a very high chance to appear in kitchen, while chairs appear
frequently in many room types.

segmentation and object edge detection [196, 125]. Beyond traditional computer vi-

sion task, SUNCG also enables new tasks such as semantic scene completion [157, 22]

(Chapter 3) by generating per-voxel ground truth and semantic-structure view ex-

trapolation (Chapter 4) by generating full-view panorama of the environment, and

3D scene parsing [171] by providing the complete 3D scene information on the object’s

shape, pose and scene layout.

SUNCG can also be used to study problems in the intersection of computer vision

and natural language processing. For example, Abhishek et al. [23] used SUNCG to

train an embodied for the task of visual question answering, and Anderson et al. [4]

used it to learn visually-grounded navigation instructions.

Computer Graphics Tasks. In computer graphics, the vast variety of realistic

indoor environment configuration provided by SUNCG naturally served as a useful

data source for the task of indoor scene synthesis. For example, Jian et al. [128] used

SUNCG to learn a human-centric stochastic grammar for 3D scene generation. On the

102

other hand, Wang et al. [175] proposed to use SUNCG to learn Deep convolutional

priors for indoor scene synthesis. Similarly, Zhang et al. [198] learned a hybrid

representation from SUNCG for scene generation.

Robotics Tasks. Apart from providing training data for image understanding and

scene synthesis, SUNCG can also be used as simulation environments for training

robotics task, such as navigation, object interaction, and high-level task planning.

The popular simulation environments that uses SUNCG dataset includes, MINOS

simulator [139], HOME simulator [18], and House3D simulator [179]. The realistic,

complex and diverse scene configurations provided by SUNCG make it easier for

the robotic agent to learn from different complex scenarios and adapt to real-world

settings.

5.3 Summary

In this chapter, we introduced a real-world RGB-D dataset SUN RGB-D and a syn-

thetic 3D scene dataset SUNCG. Apart from constructing these large-scale datasets,

we also propose a set of 3D metrics and evaluate algorithms for all major tasks to-

wards total 3D scene understanding. Beyond computer vision, these datasets have

also been widely used as training data and simulation environments for robotics appli-

cations such as manipulation, navigation, and reinforcement learning. We hope that

our benchmarks will help enable progress for data-driven 3D scene understanding in

the coming years.

103

Chapter 6

Future Directions

Most computer vision algorithms are built to enable intelligent systems to understand

the physical world. Yet, these algorithms continue to assume the system’s role to be

that of a passive observer - without the ability to interact with its environment. This

assumption becomes a fundamental limitation for applications in robotics, where sys-

tems are intrinsically built to actively engage with the environment that it perceives.

The future research direction will include developing a new class of self-improving

perception algorithms built on 3D amodal scene representations that not only enable

the active exploration, but also make use of the interactions to achieve better percep-

tion. In the following section, we will discuss several possible future directions that

are worth exploring in the field of data-driven 3D scene understanding.

Learning Interaction Strategies to Facilitate 3D Scene Understanding.

Methods of active perception should expand beyond isolating objects from clutter

to improve recognition, and next-best-view techniques [180] (e.g. selecting the next

best viewing angle that best reduces recognition uncertainty). Inspired by the extent

of humans’ abilities that actively explore environments to retrieve information (i.e.

flipping over a book to see its title), it is interesting to investigate how learning can

be used to endow intelligent systems with the ability to autonomously acquire more

104

complex behaviors in order to facilitate the perception task. Rather than heuristi-

cally instructing the system which strategy to use (e.g. our ARC approach), the robot

should be able to autonomously select its own strategy when it deems possible and

necessary. Interaction strategies might include: controlling the system’s own light-

ing to reduce recognition ambiguity, intelligently manipulating a pile of objects to

determine the identities of occluded objects underneath, and autonomously navigat-

ing through complex and unstable environments to improve the mapping of obscured

regions. This research ties closely with applications that involve complex and uncom-

mon scenarios such as emergency response robotics, which may require the system to

determine it own strategies on the spot without any pre-defined instructions from an

operator.

Leveraging Interactions to Optimize 3D Scene Data Collection. Apart from

using interaction strategies to facilitate perception during test time, it is also possible

to leverage interactions for collecting massive amounts of training data for perception.

In 3DMatch [191], I make use of large-scale unlabeled video motion data to self-

supervise the training of a powerful geometric descriptor. To take this idea one step

further, instead of just using a simple mobile robot to wander around while collecting

data, I plan to develop algorithms that leverage precise movement and manipulation

in order to collect the most effective training data.

More specifically, given a task, an existing training dataset, and a machine learning

model, the system’s goal should be to autonomously collect new training images of the

environment that can “best benefit” the learning algorithm. This process may involve

exploring and capturing images of the scene from unfamiliar perspectives, collecting

more data for uncommon scenarios (e.g. under rainy or snowy weather for outdoor

applications), or interacting with the scene (e.g. opening/closing the curtains, turning

on/off the TV) to create variations of the scene that can improve the robustness of

105

the learning-based algorithms. I believe this interactive learning schema is especially

important for the robustness of data-driven perception systems operating in diverse

real-world environments, where no single dataset can cover all aspects of the scene.

Building Persistent 3D Scene Representations Across Time and Devices.

As the number of smart devices, vehicles, and robots equipped with 3D scanners

increases exponentially, it is important to explore how these systems could collectively

contribute to a shared, persistent, and consistent 3D scene representation of the world

that continually updates over time. With this representation, an agent making repeat

visits to the same environment can leverage information about the static parts of scene

learned from previous visits and focus on understanding the dynamic parts of the

scene; likewise a mobile agent could optimize its own navigation routes by accounting

for the information observed from separate cameras embedded in the environment.

As an initial step in this direction, in “Robot in a room” [159] I built a system

featuring a mobile household robot in a single agent scenario. The system effectively

tracks the changes that occur over time in a scene even without direct observation

of the changes as they occur. The system then leverages the tracking to efficiently

re-localize itself in the dynamic environment. Moving forward, it will be interesting to

expand this idea into a distributed mutli-agent system, where all agents collectively

contribute to a global understanding of 3D scenes via updates over time. These up-

dates can be efficiently aggregated into a unified 3D amodal representation, which

can be easily shared and utilized by all agents for complex tasks. As part of this

direction, one of the possible long term goals is to enable a world-scale RGB-Depth

device networks (e.g. robots, wearable devices, smart phones) to distributively cap-

ture data, understand their environments, and contribute their learned models to

a global persistent 3D scene representation, to collectively improve their perceptual

understanding of the world as a whole.

106

Chapter 7

Conclusion

The goal of this dissertation is to build computer systems that can see and understand

our physical world in a way that they are able to safely interact with this world and

assist us in our daily lives. We believe that this requires machines to understand

the complete 3D scenes around them, including the 3D geometry, semantics, and

contextual information, which is a task far beyond just labeling 2D pixels.

This dissertation work demonstrates that leveraging these 3D representations in

data-driven models not only significantly outperforms analogous algorithms using

image representations, but also paves the way for new scene understanding tasks

(e.g. 3D scene completion) that have previously been considered ill-posed given only

2D representations.

Moving forward, I think it is also important to rethink the role of computer vision

systems. Rather than treating them as passive observers, we should consider them as

active explorers of our 3D world, and make use of this to improve their understanding

of the environment continuously. By reconnecting interaction with perception, we will

be able to create more powerful and intelligent AI systems.

107

Bibliography

[1] Scene toolkit: https://github.com/smartscenes/stk.

[2] Aitor Aldoma, Federico Tombari, Luigi Di Stefano, and Markus Vincze. A
global hypotheses verification method for 3d object recognition. In ECCV.
2012.

[3] Abhishek Anand, Hema Swetha Koppula, Thorsten Joachims, and Ashutosh
Saxena. Contextually guided semantic labeling and search for three-dimensional
point clouds. The International Journal of Robotics Research, 2012.

[4] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko
Sünderhauf, Ian Reid, Stephen Gould, and Anton van den Hengel. Vision-and-
language navigation: Interpreting visually-grounded navigation instructions in
real environments. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 2, 2018.

[5] Mathieu Aubry and Bryan C Russell. Understanding deep features with
computer-generated imagery. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2875–2883, 2015.

[6] Moshe Bar. Visual objects in context. Nature reviews. Neuroscience, 5(8):617,
2004.

[7] B. I. Barbosa, M. Cristani, A. Del Bue, L. Bazzani, and V. Murino. Re-
identification with rgb-d sensors. In First International Workshop on Re-
Identification, 2012.

[8] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman.
Patchmatch: A randomized correspondence algorithm for structural image edit-
ing. ACM Trans. Graph., 28(3):24–1, 2009.

[9] Jonathan T Barron and Jitendra Malik. Intrinsic scene properties from a single
rgb-d image. CVPR, 2013.

[10] Maroš Bláha, Christoph Vogel, Audrey Richard, Jan D Wegner, Thomas Pock,
and Konrad Schindler. Large-scale semantic 3d reconstruction: an adaptive
multi-resolution model for multi-class volumetric labeling.

108

[11] Manuel Blum, Jost Tobias Springenberg, Jan Wulfing, and Martin Riedmiller.
A learned feature descriptor for object recognition in rgb-d data. In ICRA,
2012.

[12] Liefeng Bo, Kevin Lai, Xiaofeng Ren, and Dieter Fox. Object recognition with
hierarchical kernel descriptors. In CVPR, 2011.

[13] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Depth kernel descriptors for object
recognition. In IROS, 2011.

[14] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Unsupervised feature learning for
RGB-D based object recognition. In ISER, 2013.

[15] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Learning hierarchical sparse features
for RGB-(D) object recognition. IJRR, 2014.

[16] Johann Borenstein and Yoram Koren. Real-time obstacle avoidance for fast mo-
bile robots. IEEE Transactions on Systems, Man, and Cybernetics, 19(5):1179–
1187, 1989.

[17] Jean-Yves Bouguet. Camera calibration toolbox for matlab. 2004.

[18] Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti,
Florian Strub, Jean Rouat, Hugo Larochelle, and Aaron Courville. Home: A
household multimodal environment. arXiv preprint arXiv:1711.11017, 2017.

[19] Cristian Sminchisescu Catalin Ionescu, Fuxin Li. Latent structured models for
human pose estimation. In ICCV, 2011.

[20] Angel X. Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias
Nießner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matter-
port3d: Learning from rgb-d data in indoor environments. In 3DV, 2017.

[21] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[22] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed, Jürgen Sturm, and
Matthias Nießner. Scancomplete: Large-scale scene completion and semantic
segmentation for 3d scans. In Proc. Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[23] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and
Dhruv Batra. Embodied question answering. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2018.

109

[24] Alexey Dosovitskiy, Philipp Fischery, Eddy Ilg, Caner Hazirbas, Vladimir
Golkov, Patrick van der Smagt, Daniel Cremers, Thomas Brox, et al. Flownet:
Learning optical flow with convolutional networks. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 2758–2766. IEEE, 2015.

[25] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric
sampling. In Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, volume 2, pages 1033–1038. IEEE, 1999.

[26] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from
a single image using a multi-scale deep network. In Advances in neural infor-
mation processing systems, pages 2366–2374, 2014.

[27] Tarek El-Gaaly and Marwan Torki. Rgbd object pose recognition using local-
global multi-kernel regression. In ICPR, 2012.

[28] Nesli Erdogmus and Sébastien Marcel. Spoofing in 2d face recognition with 3d
masks and anti-spoofing with kinect. In BTAS, 2013.

[29] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes (voc) challenge. IJCV, 2010.

[30] Gabriele Fanelli, Matthias Dantone, Juergen Gall, Andrea Fossati, and Luc
Van Gool. Random forests for real time 3d face analysis. IJCV, 2013.

[31] Yi Fang, Jin Xie, Guoxian Dai, Meng Wang, Fan Zhu, Tiantian Xu, and Edward
Wong. 3D deep shape descriptor. In CVPR, 2015.

[32] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part based models. PAMI, 2010.

[33] Michael Firman, Oisin Mac Aodha, Simon Julier, and Gabriel J. Brostow. Struc-
tured prediction of unobserved voxels from a single depth image. In CVPR,
2016.

[34] Simon Fothergill, Helena M. Mentis, Pushmeet Kohli, and Sebastian Nowozin.
Instructing people for training gestural interactive systems. In CHI, 2012.

[35] Ravi Garg, Gustavo Carneiro, and Ian Reid. Unsupervised cnn for single view
depth estimation: Geometry to the rescue. In European Conference on Com-
puter Vision, pages 740–756. Springer, 2016.

[36] Andreas Geiger and Chaohui Wang. Joint 3D object and layout inference from a
single RGB-D image. In German Conference on Pattern Recognition (GCPR),
2015.

[37] Ross Girshick. Fast R-CNN. ICCV, 2015.

110

[38] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In CVPR,
2014.

[39] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In CVPR,
2014.

[40] Aleksey Golovinskiy, Vladimir G. Kim, and Thomas Funkhouser. Shape-based
recognition of 3D point clouds in urban environments. ICCV, 2009.

[41] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[42] David Gossow, David Weikersdorfer, and Michael Beetz. Distinctive texture
features from perspective-invariant keypoints. In ICPR, 2012.

[43] Ruiqi Guo and Derek Hoiem. Support surface prediction in indoor scenes. In
ICCV, 2013.

[44] Ruiqi Guo and Derek Hoiem. Support surface prediction in indoor scenes. In
ICCV, 2013.

[45] Ruiqi Guo, Chuhang Zou, and Derek Hoiem. Predicting complete 3D models
of indoor scenes. ICCV, 2015.

[46] Saurabh Gupta, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Aligning
3d models to rgb-d images of cluttered scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4731–4740,
2015.

[47] Saurabh Gupta, Pablo Arbelaez, and Jitendra Malik. Perceptual organization
and recognition of indoor scenes from RGB-D images. In CVPR, 2013.

[48] Saurabh Gupta, Pablo Andrés Arbeláez, Ross B. Girshick, and Jitendra Malik.
Aligning 3D models to RGB-D images of cluttered scenes. In CVPR, 2015.

[49] Saurabh Gupta, Ross Girshick, Pablo Arbelaez, and Jitendra Malik. Learning
rich features from RGB-D images for object detection and segmentation. In
ECCV, 2014.

[50] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning
rich features from RGB-D images for object detection and segmentation. In
Computer Vision–ECCV 2014, pages 345–360. Springer, 2014.

[51] Saurabh Gupta, Ross Girshick, Pablo Arbelaez, and Jitendra Malik. Learning
rich features from RGB-D images for object detection and segmentation. In
ECCV, 2014.

111

[52] Saurabh Gupta, Judy Hoffman, and Jitendra Malik. Cross modal distillation
for supervision transfer. arXiv, 2015.

[53] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A benchmark for
RGB-D visual odometry, 3D reconstruction and SLAM. In ICRA, 2014.

[54] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and
Roberto Cipolla. SceneNet: Understanding real world indoor scenes with syn-
thetic data. CoRR, abs/1511.07041, 2015.

[55] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and
Roberto Cipolla. Scenenet: Understanding real world indoor scenes with syn-
thetic data. arXiv preprint arXiv:1511.07041, 2015.

[56] Christian Hane, Christopher Zach, Andrea Cohen, Roland Angst, and Marc
Pollefeys. Joint 3D scene reconstruction and class segmentation. In CVPR,
pages 97–104. IEEE Computer Society, 2013.

[57] James Hays and Alexei A Efros. Scene completion using millions of photographs.
In ACM Transactions on Graphics (TOG), volume 26, page 4. ACM, 2007.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[59] Varsha Hedau, Derek Hoiem, and David Forsyth. Recovering the spatial layout
of cluttered rooms. In ICCV, 2009.

[60] Varsha Hedau, Derek Hoiem, and David Forsyth. Thinking inside the box:
Using appearance models and context based on room geometry. In ECCV.
2010.

[61] Varsha Hedau, Derek Hoiem, and David Forsyth. Recovering free space of
indoor scenes from a single image. In CVPR, 2012.

[62] David J Heeger and James R Bergen. Pyramid-based texture analysis/synthesis.
In Proceedings of the 22nd annual conference on Computer graphics and inter-
active techniques, pages 229–238. ACM, 1995.

[63] Günter Hetzel, Bastian Leibe, Paul Levi, and Bernt Schiele. 3d object recogni-
tion from range images using local feature histograms. In CVPR, 2001.

[64] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Brad-
ski, Kurt Konolige, and Nassir Navab. Model based training, detection and pose
estimation of texture-less 3d objects in heavily cluttered scenes. In ACCV. 2013.

[65] JE Hochberg. Perception (2nd edn), 1978.

112

[66] Haibin Huang, Evangelos Kalogerakis, and Benjamin Marlin. Analysis and
synthesis of 3D shape families via deep-learned generative models of surfaces.
Computer Graphics Forum, 2015.

[67] Helene Intraub and Michael Richardson. Wide-angle memories of close-up
scenes. Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 15(2):179, 1989.

[68] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Hu-
man3.6m: Large scale datasets and predictive methods for 3d human sensing
in natural environments. PAMI, 2014.

[69] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-
to-image translation with conditional adversarial networks. arXiv preprint
arXiv:1611.07004, 2016.

[70] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard New-
combe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, An-
drew Davison, and Andrew Fitzgibbon. Kinectfusion: Real-time 3d reconstruc-
tion and interaction using a moving depth camera. In UIST, 2011.

[71] Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T. Barron, Mario
Fritz, Kate Saenko, and Trevor Darrell. A category-level 3-d object dataset:
Putting the kinect to work. In ICCV Workshop on Consumer Depth Cameras
for Computer Vision, 2011.

[72] Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T Barron, Mario Fritz,
Kate Saenko, and Trevor Darrell. A category-level 3d object dataset: Putting
the kinect to work. 2013.

[73] Dinesh Jayaraman and Kristen Grauman. Learning to look around. arXiv
preprint arXiv:1709.00507, 2017.

[74] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[75] Zhaoyin Jia, Andy Gallagher, Ashutosh Saxena, and Tsuhan Chen. 3d-based
reasoning with blocks, support, and stability. In CVPR, 2013.

[76] Hao Jiang and Jianxiong Xiao. A linear approach to matching cuboids in RGBD
images. In CVPR, 2013.

[77] Andrew E. Johnson and Martial Hebert. Using spin images for efficient object
recognition in cluttered 3d scenes. PAMI, 1999.

[78] Biliana Kaneva, Antonio Torralba, and William T Freeman. Evaluation of image
features using a photorealistic virtual world. In 2011 International Conference
on Computer Vision, pages 2282–2289. IEEE, 2011.

113

[79] Abhishek Kar, Shubham Tulsiani, João Carreira, and Jitendra Malik. Amodal
completion and size constancy in natural scenes. In ICCV, 2015.

[80] Andrej Karpathy, Stephen Miller, and Li Fei-Fei. Object discovery in 3d scenes
via shape analysis. In ICRA, 2013.

[81] Michal Kepski and Bogdan Kwolek. Fall detection using ceiling-mounted 3d
depth camera.

[82] Aditya Khosla, Byoungkwon An, Joseph J. Lim, and Antonio Torralba. Looking
beyond the visible scene. In CVPR, Ohio, USA, June 2014.

[83] Byungsoo Kim, Pushmeet Kohli, and Silvio Savarese. 3D scene understand-
ing by Voxel-CRF. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1425–1432, 2013.

[84] Young Min Kim, Niloy Mitra, Dongming Yan, and Leonidas Guibas. Acquisition
of 3D indoor environments with variability and repetition. ACM Trans. Gr,
2012.

[85] Young Min Kim, Niloy J Mitra, Dong-Ming Yan, and Leonidas Guibas. Ac-
quiring 3d indoor environments with variability and repetition. TOG, 2012.

[86] Young Min Kim, Niloy J. Mitra, Dongming Yan, and Leonidas Guibas. Ac-
quiring 3D indoor environments with variability and repetition. ACM Trans.
Graph. (Proc. SIGGRAPH Asia), 31(6), 2012.

[87] Hema S Koppula, Abhishek Anand, Thorsten Joachims, and Ashutosh Saxena.
Semantic labeling of 3D point clouds for indoor scenes. In Advances in neural
information processing systems, pages 244–252, 2011.

[88] Hema Swetha Koppula, Rudhir Gupta, and Ashutosh Saxena. Learning human
activities and object affordances from rgb-d videos. ijrr, 2013.

[89] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In NIPS, 2012.

[90] K. Lai and D. Fox. Object recognition in 3D point clouds using web data and
domain adaptation. In IJRR, 2010.

[91] Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised feature learning for 3D
scene labeling. In ICRA. IEEE, 2014.

[92] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical
multi-view rgb-d object dataset. In ICRA, 2011.

[93] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A scalable tree-based
approach for joint object and pose recognition. In AAAI, 2011.

114

[94] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Sparse distance learning
for object recognition combining rgb and depth information. In ICRA, 2011.

[95] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and
Nassir Navab. Deeper depth prediction with fully convolutional residual net-
works. In 3D Vision (3DV), 2016 Fourth International Conference on, pages
239–248. IEEE, 2016.

[96] Karel Lenc and Andrea Vedaldi. R-CNN minus R. bmvc, 2015.

[97] Li-Jia Li, Hao Su, Li Fei-Fei, and Eric P Xing. Object bank: A high-level
image representation for scene classification & semantic feature sparsification.
In Advances in neural information processing systems, pages 1378–1386, 2010.

[98] Yangyan Li, Angela Dai, Leonidas Guibas, and Matthias Nießner. Object de-
tection and classification from large-scale cluttered indoor scans. In Computer
Graphics Forum, 2015.

[99] Dahua Lin, Sanja Fidler, and Raquel Urtasun. Holistic scene understanding for
3D object detection with RGBD cameras. In ICCV, 2013.

[100] Dahua Lin, Sanja Fidler, and Raquel Urtasun. Holistic scene understanding for
3D object detection with RGBD cameras. In ICCV, 2013.

[101] Ce Liu, Jenny Yuen, and Antonio Torralba. Nonparametric scene parsing: Label
transfer via dense scene alignment. In CVPR, 2009.

[102] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense correspondence
across scenes and its applications. PAMI, 2011.

[103] Li Liu and Ling Shao. Learning discriminative representations from rgb-d video
data. In IJCAI, 2013.

[104] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[105] Matthias Luber, Luciano Spinello, and Kai Oliver Arras. People tracking in
rgb-d data with on-line boosted target models. In IROS, 2011.

[106] Pauline Luc, Natalia Neverova, Camille Couprie, Jakob Verbeek, and Yann
Lecun. Predicting Deeper into the Future of Semantic Segmentation. In ICCV
2017, 2017.

[107] Keith Lyle and Marcia Johnson. Importing perceived features into false mem-
ories. Memory, 14(2):197–213, 2006.

[108] Tomasz Malisiewicz, Abhinav Gupta, and Alexei A Efros. Ensemble of
exemplar-svms for object detection and beyond. In ICCV, 2011.

115

[109] Julian Mason, Bhaskara Marthi, and Ronald Parr. Object disappearance for
object discovery. In IROS, 2012.

[110] Oliver Mattausch, Daniele Panozzo, Claudio Mura, Olga Sorkine-Hornung, and
Renato Pajarola. Object detection and classification from large-scale cluttered
indoor scans. In Computer Graphics Forum. Wiley Online Library, 2014.

[111] Daniel Maturana and Sebastian Scherer. VoxNet: A 3D convolutional neural
network for real-time object recognition. In IROS, 2015.

[112] Stephan Meister, Shahram Izadi, Pushmeet Kohli, Martin Hämmerle, Carsten
Rother, and Daniel Kondermann. When can we use kinectfusion for ground
truth acquisition? In Proc. Workshop on Color-Depth Camera Fusion in
Robotics, 2012.

[113] Ajmal Mian, Mohammed Bennamoun, and R Owens. On the repeatability and
quality of keypoints for local feature-based 3d object retrieval from cluttered
scenes. IJCV, 2010.

[114] Patrick Min. Binvox http://www.patrickmin.com/binvox/.

[115] Rui Min, Neslihan Kose, and J-L Dugelay. Kinectfacedb: A kinect database for
face recognition.

[116] Aron Monszpart, Nicolas Mellado, Gabriel J Brostow, and Niloy J Mitra.
Rapter: Rebuilding man-made scenes with regular arrangements of planes.
TOG, 34(4):103, 2015.

[117] Yair Movshovitz-Attias, Takeo Kanade, and Yaser Sheikh. How useful is photo-
realistic rendering for visual learning? arXiv preprint arXiv:1603.08152, 2016.

[118] Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify approach for
cluttered indoor scene understanding. TOG, 2012.

[119] Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify approach for
cluttered indoor scene understanding. ACM Trans. Graph. (Proc. SIGGRAPH
Asia), 31(6), 2012.

[120] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor
segmentation and support inference from rgbd images. In ECCV, 2012.

[121] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and
Andrew Fitzgibbon. KinectFusion: Real-time dense surface mapping and track-
ing. In ISMAR, 2011.

[122] Bingbing Ni, Gang Wang, and Pierre Moulin. Rgbd-hudaact: A color-depth
video database for human daily activity recognition. 2011.

116

[123] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. IJCV, 2001.

[124] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei
Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016.

[125] Benjamin Planche, Ziyan Wu, Kai Ma, Shanhui Sun, Stefan Kluckner, Oliver
Lehmann, Terrence Chen, Andreas Hutter, Sergey Zakharov, Harald Kosch,
et al. Depthsynth: Real-time realistic synthetic data generation from cad models
for 2.5 d recognition. In 3D Vision (3DV), 2017 International Conference on,
pages 1–10. IEEE, 2017.

[126] Planner5D. https://planner5d.com/.

[127] François Pomerleau, Stéphane Magnenat, Francis Colas, Ming Liu, and Roland
Siegwart. Tracking a depth camera: Parameter exploration for fast icp. In
IROS, 2011.

[128] Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu.
Human-centric indoor scene synthesis using stochastic grammar. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5899–5908, 2018.

[129] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards real-time object detection with region proposal networks. NIPS, 2015.

[130] Xiaofeng Ren, Liefeng Bo, and Dieter Fox. RGB-(D) scene labeling: Features
and algorithms. In CVPR, 2012.

[131] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing
for data: Ground truth from computer games. In European Conference on
Computer Vision, pages 102–118. Springer, 2016.

[132] Andreas Richtsfeld, Thomas Morwald, Johann Prankl, Michael Zillich, and
Markus Vincze. Segmentation of unknown objects in indoor environments.
In IROS, 2012.

[133] Jason Rock, Tanmay Gupta, Justin Thorsen, JunYoung Gwak, Daeyun Shin,
and Derek Hoiem. Completing 3D object shape from one depth image. In
CVPR, 2015.

[134] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Anto-
nio M Lopez. The synthia dataset: A large collection of synthetic images for
semantic segmentation of urban scenes. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3234–3243, 2016.

[135] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distribu-
tions with applications to image databases. In Computer Vision, 1998. Sixth
International Conference on, pages 59–66. IEEE, 1998.

117

[136] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
ImageNet large scale visual recognition challenge. IJCV, 2014.

[137] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.
Labelme: a database and web-based tool for image annotation. IJCV, 2008.

[138] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. In Advances in Neural
Information Processing Systems, pages 2234–2242, 2016.

[139] Manolis Savva, Angel X Chang, Alexey Dosovitskiy, Thomas Funkhouser, and
Vladlen Koltun. Minos: Multimodal indoor simulator for navigation in complex
environments. arXiv preprint arXiv:1712.03931, 2017.

[140] Steven M Seitz and Charles R Dyer. Physically-valid view synthesis by image
interpolation. In Representation of Visual Scenes, 1995.(In Conjuction with
ICCV’95), Proceedings IEEE Workshop on, pages 18–25. IEEE, 1995.

[141] Steven M Seitz and Charles R Dyer. View morphing. In Proceedings of the
23rd annual conference on Computer graphics and interactive techniques, pages
21–30. ACM, 1996.

[142] Qi Shan, Brian Curless, Yasutaka Furukawa, Carlos Hernandez, and Steven M
Seitz. Photo uncrop. In European Conference on Computer Vision, pages 16–31.
Springer, 2014.

[143] Tianjia Shao, Weiwei Xu, Kun Zhou, Jingdong Wang, Dongping Li, and Baining
Guo. An interactive approach to semantic modeling of indoor scenes with an
rgbd camera. TOG, 2012.

[144] Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. DeepPano: Deep
panoramic representation for 3-D shape recognition. Signal Processing Letters,
2015.

[145] Jamie Shotton, Ross Girshick, Andrew Fitzgibbon, Toby Sharp, Mat Cook,
Mark Finocchio, Richard Moore, Pushmeet Kohli, Antonio Criminisi, Alex Kip-
man, et al. Efficient human pose estimation from single depth images. PAMI,
2013.

[146] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Crim-
inisi, and Andrew Fitzgibbon. Scene coordinate regression forests for camera
relocalization in rgb-d images. In CVPR, 2013.

[147] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finoc-
chio, Andrew Blake, Mat Cook, and Richard Moore. Real-time human pose
recognition in parts from single depth images. Communications of the ACM,
2013.

118

[148] N. Silberman and R. Fergus. Indoor scene segmentation using a structured light
sensor. In Proceedings of the International Conference on Computer Vision -
Workshop on 3D Representation and Recognition, 2011.

[149] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor
segmentation and support inference from RGBD images. In ECCV, 2012.

[150] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv, 2014.

[151] Arjun Singh, James Sha, Karthik S Narayan, Tudor Achim, and Pieter Abbeel.
Bigbird: A large-scale 3d database of object instances. In ICRA, 2014.

[152] Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, and An-
drew Y. Ng. Convolutional-recursive deep learning for 3D object classification.
In NIPS. 2012.

[153] Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, and An-
drew Y. Ng. Convolutional-recursive deep learning for 3d object classification.
In NIPS. 2012.

[154] Shuran Song, Samuel Lichtenberg, and Jianxiong Xiao. SUN RGB-D: A RGB-D
scene understanding benchmark suite. In CVPR, 2015.

[155] Shuran Song and Jianxiong Xiao. Sliding Shapes for 3D object detection in
depth images. In ECCV, 2014.

[156] Shuran Song and Jianxiong Xiao. Deep sliding shapes for amodal 3D object
detection in rgb-d images. In CVPR, 2016.

[157] Shuran Song, Fisher Yu, Andy Zeng, Angel Chang, Manolis Savva, and Thomas
Funkhouser. Semantic scene completion from a single depth image. In CVPR,
2017.

[158] Shuran Song, Andy Zeng, Angel X. Chang, Manolis Savva, Silvio Savarese, and
Thomas Funkhouser. Im2pano3d: Extrapolating 360 structure and semantics
beyond the field of view. In CVPR, 2018.

[159] Shuran Song, Linguang Zhang, and Jianxiong Xiao. Robot In a Room: Toward
perfect object recognition in closed environments. In arXiv, 2015.

[160] Luciano Spinello and Kai Oliver Arras. People detection in rgb-d data. In
IROS, 2011.

[161] S. Stein and S. J. McKenna. User-adaptive models for recognizing food prepa-
ration activities. 2013.

119

[162] Sebastian Stein and Stephen J McKenna. Combining embedded accelerometers
with computer vision for recognizing food preparation activities. In Proceedings
of the 2013 ACM international joint conference on Pervasive and ubiquitous
computing, 2013.

[163] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. A benchmark for the evaluation of rgb-d slam systems. In IROS,
2012.

[164] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller.
Multi-view convolutional neural networks for 3D shape recognition. In ICCV,
2015.

[165] Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas. Render for cnn:
Viewpoint estimation in images using cnns trained with rendered 3d model
views. In Proceedings of the IEEE International Conference on Computer Vi-
sion, pages 2686–2694, 2015.

[166] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. Human activ-
ity detection from rgbd images. Plan, Activity, and Intent Recognition, 2011.

[167] Jie Tang, Stephen Miller, Arjun Singh, and Pieter Abbeel. A textured object
recognition pipeline for color and depth image data. In ICRA, 2012.

[168] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. Cnn-slam:
Real-time dense monocular slam with learned depth prediction. arXiv preprint
arXiv:1704.03489, 2017.

[169] Duc Thanh Nguyen, Binh-Son Hua, Khoi Tran, Quang-Hieu Pham, and Sai-Kit
Yeung. A field model for repairing 3D shapes. In CVPR, June 2016.

[170] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR,
2011.

[171] Shubham Tulsiani, Saurabh Gupta, David Fouhey, Alexei A Efros, and Jitendra
Malik. Factoring shape, pose, and layout from the 2d image of a 3d scene. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 302–310, 2018.

[172] Jasper RR Uijlings, Koen EA van de Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. IJCV, 2013.

[173] Jacob Varley, Chad DeChant, Adam Richardson, Avinash Nair, Joaqun Ruales,
and Peter Allen. Shape completion enabled robotic grasping. arXiv, 2016.

[174] Kentaro Wada, Kei Okada, and Masayuki Inaba. Fully convolutional object
depth prediction for 3d segmentation from 2.5 d input.

120

[175] Kai Wang, Manolis Savva, Angel X Chang, and Daniel Ritchie. Deep convolu-
tional priors for indoor scene synthesis. ACM Transactions on Graphics (TOG),
37(4):70, 2018.

[176] Xiaolong Wang, David Fouhey, and Abhinav Gupta. Designing deep networks
for surface normal estimation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 539–547, 2015.

[177] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J Leonard, and
John McDonald. Robust real-time visual odometry for dense RGB-D mapping.
In ICRA, 2013.

[178] Walter Wohlkinger and Markus Vincze. Ensemble of shape functions for 3d
object classification. In ROBIO, 2011.

[179] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building gen-
eralizable agents with a realistic and rich 3d environment. arXiv preprint
arXiv:1801.02209, 2018.

[180] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3D ShapeNets: A deep representation for volumetric
shapes. In CVPR, 2015.

[181] Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher Choy, Hao Su,
Roozbeh Mottaghi, Leonidas Guibas, and Silvio Savarese. Objectnet3d: A large
scale database for 3d object recognition. In European Conference on Computer
Vision, pages 160–176. Springer, 2016.

[182] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Tor-
ralba. Sun database: Large-scale scene recognition from abbey to zoo. In
Computer vision and pattern recognition (CVPR), 2010 IEEE conference on,
pages 3485–3492. IEEE, 2010.

[183] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Tor-
ralba. SUN database: Large-scale scene recognition from abbey to zoo. In
CVPR, 2010.

[184] Jianxiong Xiao, James Hays, Bryan C. Russell, Genevieve Patterson, Krista
Ehinger, Antonio Torralba, and Aude Oliva. Basic level scene understanding:
Categories, attributes and structures. Frontiers in Psychology, 4(506), 2013.

[185] Jianxiong Xiao, Andrew Owens, and Antonio Torralba. SUN3D: A database of
big spaces reconstructed using SfM and object labels. In ICCV, 2013.

[186] Jianxiong Xiao, Shuran Song, Daniel Suo, and Fisher Yu. Marvin: A minimalist
GPU-only N-dimensional ConvNet framework. 2016. Accessed: 2015-11-10.

[187] Jin Xie, Yi Fang, Fan Zhu, and Edward Wong. DeepShape: Deep learned shape
descriptor for 3D shape matching and retrieval. In CVPR, 2015.

121

[188] Xuehan Xiong, Daniel Munoz, J. Andrew (Drew) Bagnell, and Martial Hebert.
3-d scene analysis via sequenced predictions over points and regions. In ICRA,
2011.

[189] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated con-
volutions. In ICLR, 2016.

[190] Bernhard Zeisl, Kevin Koser, and Marc Pollefeys. Automatic registration of
rgb-d scans via salient directions. In ICCV, 2013.

[191] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao,
and Thomas Funkhouser. 3dmatch: Learning local geometric descriptors from
rgb-d reconstructions. In CVPR, 2017.

[192] Haopeng Zhang, Tarek El-Gaaly, Ahmed Elgammal, and Zhiguo Jiang. Joint
object and pose recognition using homeomorphic manifold analysis. In AAAI,
2013.

[193] Jian Zhang, Chen Kan, Alexander G Schwing, and Raquel Urtasun. Estimating
the 3d layout of indoor scenes and its clutter from depth sensors. In ICCV, 2013.

[194] Yinda Zhang, Mingru Bai, Pushmeet Kohli, Shahram Izadi, and Jianxiong
Xiao. Deep-context: Context-encoding neural pathways for 3d holistic scene
understanding. CoRR, 2016.

[195] Yinda Zhang, Shuran Song, Ping Tan, and Jianxiong Xiao. PanoContext: A
whole-room 3D context model for panoramic scene understanding. In ECCV,
2014.

[196] Yinda Zhang, Shuran Song, Ersin Yumer, Manolis Savva, Joon-Young Lee,
Hailin Jin, and Thomas Funkhouser. Physically-based rendering for indoor
scene understanding using convolutional neural networks. In CVPR, 2017.

[197] Yinda Zhang, Jianxiong Xiao, James Hays, and Ping Tan. Framebreak: Dra-
matic image extrapolation by guided shift-maps. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1171–1178,
2013.

[198] Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo, Alexander Huth,
Etienne Vouga, and Qixing Huang. Deep generative modeling for scene synthesis
via hybrid representations. arXiv preprint arXiv:1808.02084, 2018.

[199] Bo Zheng, Yibiao Zhao, Joey C. Yu, Katsushi Ikeuchi, and Song-Chun Zhu.
Beyond point clouds: Scene understanding by reasoning geometry and physics.
In CVPR, pages 3127–3134. IEEE Computer Society, 2013.

[200] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude
Oliva. Learning deep features for scene recognition using places database. In
NIPS, 2014.

122

[201] Xiaolong Zhu, Huijing Zhao, Yiming Liu, Yipu Zhao, and Hongbin Zha. Seg-
mentation and classification of range image from an intelligent vehicle in urban
environment. In IROS, 2010.

[202] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta,
Li Fei-Fei, and Ali Farhadi. Target-driven visual navigation in indoor scenes
using deep reinforcement learning. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pages 3357–3364. IEEE, 2017.

123

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Challenges in 3D Scene Understanding
	1.3 Dissertation Structure

	2 Understanding Amodal 3D Objects
	2.1 3D Amodal Object Detection
	2.2 Related works
	2.3 Sliding Shapes
	2.4 Deep Sliding Shapes
	2.4.1 Data Representation for 3D Deep Learning
	2.4.2 Multi-scale 3D Region Proposal Network
	2.4.3 Joint Amodal Object Recognition Network
	2.4.4 Evaluation

	2.5 Summary

	3 Understanding Amodal 3D Scenes
	3.1 Semantic Scene Completion
	3.2 Related Work
	3.3 Semantic Scene Completion Network
	3.3.1 Volumetric Data Encoding
	3.3.2 Network Architecture

	3.4 Synthesizing training data
	3.4.1 Synthetic depth map generation
	3.4.2 Volumetric ground truth generation

	3.5 Evaluation
	3.5.1 Evaluation metric.
	3.5.2 Experimental results

	3.6 Summary

	4 Understanding 3D Scenes Beyond the Field of View
	4.1 Semantic-Structure View Extrapolation
	4.2 Related Work
	4.3 Im2Pano3D Network
	4.3.1 Whole Room Panoramic Representation
	4.3.2 Representing 3D Surfaces with Plane Equations
	4.3.3 Im2Pano3D Network Architecture
	4.3.4 Im2Pano3D Network Losses

	4.4 Evaluation
	4.4.1 Datasets
	4.4.2 Baseline Methods
	4.4.3 Experimental Results

	4.5 Summary

	5 Datasets and Benchmarks for 3D Scene Understanding
	5.1 Real-world RGB-D dataset: SUN RGB-D
	5.1.1 Related Work
	5.1.2 Dataset Construction
	5.1.3 Ground Truth Annotation
	5.1.4 SUN RGB-D Dataset Statistics
	5.1.5 Benchmark Design

	5.2 Synthetic 3D Scene Dataset: SUNCG
	5.2.1 Related Work
	5.2.2 Dataset Construction
	5.2.3 SUNCG Dataset Statistics
	5.2.4 Tasks Supported by SUNCG

	5.3 Summary

	6 Future Directions
	7 Conclusion
	Bibliography

