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Abstract

Learning algorithms are often analyzed under the assumption their inputs are drawn

from stochastic or adversarial sources. Increasingly, these algorithms are being applied

in strategic settings, where we can hope for stronger guarantees. This thesis aims to

understand the performance of existing learning algorithms in these settings, and to

design new algorithms that perform well in these settings.

This thesis is divided into three parts. In Part I, we address the question of how

agents should learn to bid in repeated non-truthful auctions – and conversely, how

should we design auctions whose participants are learning agents.

In Part II, we study the dynamic pricing problem: the question of how should a

large retailer learn how to set prices for a sequence of disparate goods over time, based

on observing demands for goods at various prices. Previous work has demonstrated

how to obtain O(log T ) regret for this problem. We show how to achieve regret

O(log log T ), which is tight. Our algorithm uses ideas from integral geometry (most

notably the concept of intrinsic volumes).

Finally, in Part III, we study how to learn the ranking of a set of N items from

pairwise comparisons that may be strategic or noisy. In particular, we design mech-

anisms for a variety of settings (choosing the winner of a round-robin tournament,

aggregating the top-K items under the strong stochastic transitivity noise model)

which outperform the naive rule of ranking items according to the total number of

pairwise comparisons won.

iii



Acknowledgements

First and foremost, I would like to thank my advisor, Mark Braverman. Mark has

been an incredible advisor over the last couple years, always guiding me as a re-

searcher, encouraging me to work on important problems, and always being willing

to discuss anything I find interesting. Mark’s ability to generate insights and new

ideas in many different fields is truly inspirational – without fail, every time I talk

with Mark I walk away understanding something better, regardless of whether we’re

talking about complexity theory, learning algorithms, or the state of healthcare in

the United States.

I would also like to thank Matt Weinberg, who introduced me to the field of

algorithmic mechanism design and acted in many ways as an informal co-advisor to

me. Matt’s insight and intuition guided a lot of the research I’ve done over the last

couple years, and if it were not for Matt’s presence at Princeton, this dissertation

would look very different.

In the Fall of 2017, I did an internship at Google Research in NYC. This ended up

being one of the most enjoyable and most productive research experiences of my PhD.

I’d like to thank Vahab Mirrokni for inviting me to intern in his group, Mohammad

Mahdian for mentoring me over the course of the internship, and Santiago Balseiro,

Negin Golrezaie, and Renato Paes Leme for working with me on interesting research

problems over the course of my internship.

The Computer Science department at Princeton has been an excellent environ-

ment for research over the last five years. I’d like to thank the broader research

community at Princeton, including all professors whose classes I took and all my of-

ficemates over the year. I’d especially like to thank Bernard Chazelle, Elad Hazan,

Matt Weinberg, and Omri Weinstein for taking time out of their schedules to serve

on my dissertation committee, and all my coauthors that I’ve had the pleasure of

working with over the course of my PhD: Santiago Balseiro, Mark Braverman, Xi

iv



Chen, Sumegha Garg, Negin Golrezaie, Sivakanth Gopi, Mohammad Mahdian, Jiem-

ing Mao, Vahab Mirrokni, Renato Paes Leme, Cristobal Rojas, Ariel Schvartzman,

and Matt Weinberg.

I’m thankful to all my friends and professors from my undergraduate studies at

MIT, who taught me a lot and shaped me into who I am today. I’d especially like to

thank Richard Stanley who mentored me as an undergraduate researcher and really

inspired me to pursue research.

Finally, I am incredibly grateful to my family – Mom, Dad, and Julia – for their

support over the last five years of my PhD and the last twenty six years of my life.

None of this would be possible without their constant encouragement. It is to them

that I dedicate this thesis.

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1

1.1 Online learning, bandit algorithms, and regret . . . . . . . . . . . . . 3

1.2 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Learning how to bid . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Learning how to price . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Learning how to rank . . . . . . . . . . . . . . . . . . . . . . . 9

I Learning how to bid 11

2 Selling to a No-Regret Buyer 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Model and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Bandits and experts . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Welfare and monopoly revenue . . . . . . . . . . . . . . . . . 22

2.2.3 A final note on the model . . . . . . . . . . . . . . . . . . . . 23

2.3 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Mean-Based Learning . . . . . . . . . . . . . . . . . . . . . . . 23

vi



2.3.2 Better Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Mean-Based Learning and Conservative Bidders . . . . . . . . 28

2.3.4 A Final Note on the Example . . . . . . . . . . . . . . . . . . 37

2.4 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . 37

3 Multi-armed bandits with strategic arms 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Our Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Classic Multi-Armed Bandits . . . . . . . . . . . . . . . . . . 47

3.2.2 Strategic Multi-Armed Bandits . . . . . . . . . . . . . . . . . 48

3.3 Negative Results Overview . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Positive Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Good dominant strategy equilibria . . . . . . . . . . . . . . . 57

3.4.2 Good approximate Nash equilbria . . . . . . . . . . . . . . . . 58

3.5 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . 61

II Learning how to price 64

4 Contextual Search via Intrinsic Volumes 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Contextual Search . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Notation and framework . . . . . . . . . . . . . . . . . . . . . 71

4.3 One dimensional case and lower bounds . . . . . . . . . . . . . . . . . 72

4.4 Two dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Symmetric loss . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vii



4.4.2 Pricing loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Interlude: Intrinsic Volumes . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.1 Symmetric loss . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.2 Pricing loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6.3 Proof of the Cone Lemma . . . . . . . . . . . . . . . . . . . . 94

4.6.4 Efficient implementation . . . . . . . . . . . . . . . . . . . . . 103

4.7 Halving algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7.1 Dividing the width in half . . . . . . . . . . . . . . . . . . . . 105

4.7.2 Dividing the volume in half . . . . . . . . . . . . . . . . . . . 108

4.8 General loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . 111

III Learning how to rank 114

5 Condorcet-consistent and approximately strategyproof tournament

rules 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.3 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 123

5.2 Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.1 The Random Single-Elimination Bracket Rule . . . . . . . . . 127

5.3 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.1 Lower bounds for k-SNM-α . . . . . . . . . . . . . . . . . . . 128

5.3.2 Random single elimination brackets are 2-SNM-1/3 . . . . . . 130

5.3.3 Extension to randomized outcomes . . . . . . . . . . . . . . . 135

5.3.4 Other tournament formats . . . . . . . . . . . . . . . . . . . . 136

viii



6 Optimal instance adaptive algorithm for the top-K ranking problem140

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Preliminaries and Problem Setup . . . . . . . . . . . . . . . . . . . . 145

6.2.1 The Top-K problem . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.2 The Domination problem . . . . . . . . . . . . . . . . . . . . . 148

6.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3.1 Main Techniques and Overview . . . . . . . . . . . . . . . . . 151

6.4 Lower bounds on the sample complexity of domination . . . . . . . . 154

6.5 Domination in the well-behaved regime . . . . . . . . . . . . . . . . . 156

6.5.1 Counting algorithm and max algorithm . . . . . . . . . . . . . 157

6.5.2 Õ(
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Chapter 1

Introduction

Increasingly, the fields of algorithmic mechanism design and machine learning are

starting to overlap. Machine learning algorithms are being applied in strategic set-

tings, where rational agents have control over the inputs to these algorithms and have

a vested stake in the outputs of these algorithms. This is evident in applications of

machine learning methods to problems like fraud detection, spam filtering, and uni-

versity admissions – all problems where the providers of the data may have incentives

to misreport their true values. Similarly, machine learning algorithms are increasingly

being used to learn how to participate in specific games and mechanisms. The best

learning algorithms can now easily beat master-level human players in games like

Poker and Go [133, 32], and automated machine-learning algorithms are increasingly

being applied to tasks like trading in stock markets [145].

The goal of this thesis is to understand this overlap and make progress towards

answering the following questions:

• How should we design mechanisms whose participants are learning

agents?

• How should we design learning agents to participate in specific mech-

anisms?

1



For example, how should we design a repeated auction if we know that all the

participants are learning over time how to optimally bid? Or, alternatively, how

should we design a learning algorithm to learn how to optimally bid over time in this

auction?

A priori, it may not seem obvious that these questions are any different from the

central questions studied in mechanism design or machine learning. For example,

if we design an “optimal” (in some sense) mechanism for some problem under the

assumption that the participants are rational, self-interested agents, then one might

surmise that such a mechanism would also be optimal if the participants were agents

learning to play over time. Likewise, we might assume that if we design learning

agents with theoretically guaranteed good behavior even under adversarial inputs,

these agents will also perform well in strategic settings. One of the recurring morals

of this thesis is that this is not necessarily the case.

Partly this occurs when the problems we consider have more structure to exploit

than the most general adversarial problems. For instance, in Chapter 4 we con-

sider a pricing problem where a standard low-regret bandit algorithm obtains regret

Õ(
√
T ) over T rounds, but where we propose a learning algorithm that obtains regret

O(log log T ). This is a significant improvement, but not very surprising, no differ-

ent than an improvement we should expect when specializing any general learning

algorithm to a specific task.

More surprising is the following phenomenon: there are situations where learning

algorithms with strong adversarial guarantees (e.g. algorithms for the multi-armed

bandit problem that achieve sublinear regret) perform as badly as possible in strategic

settings. We show in Chapter 2 that if bidders use common low-regret algorithms

to learn how to bid over time (e.g. EXP3), then the seller can design a mechanism

which extracts maximum revenue leaving the bidders with zero net utility. In Chapter

3, which studies a variant of the multi-armed bandit problem where the arms are

2



strategic agents that can withhold rewards, we show that any adversarial low-regret

bandit algorithm leads to bad equilibria where the algorithm receives asymptotically

zero total reward (yet there exist other algorithms which receive positive total reward).

In the remainder of this introduction, we describe the results of this thesis in

further detail. We begin with a quick introduction to the multi-armed bandit problem

(Section 1.1) and then briefly describe the main results of each chapter (Section 1.2).

1.1 Online learning, bandit algorithms, and regret

With the exception of Part III of this thesis where we look at rank-aggregation mech-

anisms, all of the learning agents we consider learn over time and can be thought of as

instances of algorithms for the multi-armed bandits problem (or one of its variants).

In this section, we provide a brief introduction to the multi-armed bandits problem.

Additional details will be presented in the individual chapters as necessary. For a

more detailed overview, we recommend the reader consult the survey by Bubeck and

Cesa-Bianchi [34].

The classic multi-armed bandit problem is a problem where a learner must choose

one of K actions (‘arms’) per round, over T rounds. On round t, the learner receives

some reward ri,t ∈ [0, 1] for choosing (‘pulling’) arm i, where the values ri,t are possi-

bly drawn stochastically from some arm-specific distribution or chosen adversarially,

depending on the specific problem setup. The learner’s goal is to maximize their total

reward.

We measure the quality of an algorithm for the multi-armed bandits problem in

terms of its regret ; the difference between the total reward it obtains, and the total

reward obtained by the best individual arm (or in some cases, some other appropri-

ately chosen benchmark). More formally, let It denote the arm pulled by the principal

at round t. The regret of an algorithm A for the learner is then given by the random
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variable Reg(A) = maxi
∑T

t=1 ri,t−
∑T

t=1 rIt,t. We say an algorithm A is no-regret (al-

ternatively “low-regret”) if E[Reg(A)] ≤ o(T ) (that is, its expected regret is sublinear

in T ).

A seminal result in online learning is that there exist simple no-regret algorithms

for the multi-armed bandits problem. The best known of these algorithms, UCB1

and EXP3 both achieve Õ(
√
KT ) regret (when rewards are drawn stochastically and

adversarially, respectively).

In some settings, a learner additionally receives some information per round, and

can use this information to influence their choice of action. This is captured by

the contextual bandit problem. In the contextual bandit problem, the learner now

begins by receiving some context ct (belonging to some finite set C of cardinality C)

at the beginning of round t. Based on this context, the learner must choose one

of K actions. If the learner chooses action i on round t in context c, they receive

reward ri,t(c) (where again, these rewards might be chosen adversarially or generated

stochastically). The learner once again wants to maximize their total reward.

As before, it is possible to define a notion of regret for contextual bandits, where

the regret of a contextual bandit algorithm is the difference between the reward

it obtains and the best reward obtained by an algorithm in some class of policies.

Throughout this thesis, we will only be concerned with the case where this class

of policies is the set of all stationary policies; that is, functions mapping the set of

contexts to the set of actions. In this case there again exist algorithms with regret

sublinear in T ; one simple construction is to just run a separate instance of EXP3 for

every different context. This obtains expected regret Õ(
√
CKT ).
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1.2 Organization of this thesis

The remainder of this thesis is organized into chapters, each chapter focusing on a

specific problem somewhere in the intersection of algorithmic mechanism design and

learning. Each chapter is self-contained and can be read out of order.

Very broadly, the chapters can be divided into three themes: learning how to bid

(Part I), learning how to price (Part II), and learning how to rank (Part III). We

summarize each part in further detail below.

1.2.1 Learning how to bid

Imagine participating in an auction for an item. How should you decide how much to

bid? If the auction is truthful (e.g., a second price auction), then bidding is easy: in

such auctions, simply bidding your own value is a dominant strategy. Unfortunately,

many auctions commonly used in practice – first price auctions, generalized second

price auctions – are not truthful. How should you bid in these more complex auctions?

Traditional economic wisdom states that you should establish priors for other

participants’ value for the item, compute the Bayes-Nash equilibrium of the result-

ing game, and play according to this equilibrium. There are many difficulties with

this approach. Estimating priors can be difficult, computation of equilibria can be

intractable [49], and other participants in the auction may not even be playing ratio-

nally.

On the other hand, if this auction is repeated, a much simpler option is to learn

how to bid over time by employing online learning algorithm – indeed, this can nat-

urally be thought of as a contextual bandits problem, where the bidder receives a

context (their value) every round, must choose an action (a bid), and receives a cor-

responding reward (their net utility). This leads to a couple natural questions. What

sort of learning algorithm should a learner use to learn how to bid in a complicated
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auction? Conversely, as an auctioneer, how should you design an auction if you expect

that bidders will learn how to bid over time (in say, a low-regret manner)?

In Chapter 2, we study this problem in the setting of a seller selling a single

item every round to a learning buyer. Interestingly, even in this simplified setting,

a wealth of interesting phenomena emerge. For example, if the buyer is using a

low-regret algorithm in a class of algorithms we call “mean-based” (which includes

a variety common learning algorithms, such as EXP3, Multiplicative Weights, and

Follow the Perturbed Leader), we show that there is a mechanism for the seller which

can extract the full expected utility of the buyer. Even when we restrict the seller to

more restricted classes of “reasonable mechanisms” (e.g. auctions where overbidding

is a dominated strategy), we show it is possible for the seller to achieve average

revenue significantly larger than Myerson revenue (the best they can hope to achieve

in the one-shot strategic variant of this problem).

The issue with existing learning algorithms in this setting is that they are almost

all “mean-based”: with high probability, they always pick one of the best historically

performing actions. While intuitively this may seem like a useful property to have,

our results show it can be exploited in strategic settings. Indeed, we also demonstrate

a (non-mean-based) low-regret learning algorithm for the buyer which guarantees that

the seller receives no more than the Myerson revenue per round.

One can also flip this setting around and examine learning from the perspective

of the auctioneer. Faced with a collection of strategic bidders with unknown value

distributions and structure, how should the auctioneer adapt their mechanism over

time?

In Chapter 3 we consider a very simplified model of this problem which we call

bandits with strategic arms. In this model, the auctioneer does not solicit bids, but

instead simply selects one of the bidders every round to give the item to. The bidder

then receives the item and pays the auctioneer some amount of the bidder’s choosing.

6



A bidder is allowed to pay zero for the item, but the auctioneer may react by picking

the bidder less in future rounds. What sort of mechanism should the auctioneer run

to maximize their revenue?

Since every round the auctioneer chooses one of K choices (which bidder to select),

this is a type of multi-armed bandit problem for the auctioneer but where the arms

are strategic – instead of passing on their full reward (their value for the item), they

instead get to choose what fraction of reward to pass on. One reasonable choice of

mechanism for the auctioneer is to run some no-regret algorithm for the multi-armed

bandits problem, like EXP3.

In this chapter, we show that adversarial no-regret algorithms (like EXP3) are

far from strategyproof ; if the auctioneer uses such an algorithm, then there is an

ε-approximate Nash equilibrium for the arms where the auctioneer receives 0 total

revenue. Unlike many other collusive equilibria, this equilibrium requires no explicit

communication between bidders, and can arise from bidders simply trying to maintain

an equal market share (i.e. being picked equally often). In contrast, there are simple

mechanisms for the auctioneer (similar to auctioning off the right to be played for

all T rounds) that are not no-regret which guarantee the auctioneer positive revenue

(approximately the second highest average value per round over all the bidders).

1.2.2 Learning how to price

How should large retailers set prices for the items they sell? One approach is to learn

prices over time – set a price for an item, observe the demand for the item at that

price, and use that information when setting prices in the next time period or for

similar items. This is the core of the problem of dynamic pricing.

Consider the following very simple model of dynamic pricing, where a retailer tries

to repeatedly sell an item to a single consumer. Every round t (for T rounds), the

retailer must set a price for a new item. This item has some collection of relevant
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features, which are observed by the retailer can be described as a vector ut ∈ Rd.

Based on these features, the retailer must set a price pt for this item. Now, the

consumer has a fixed valuation vector θ ∈ Rd, where θi represents the value they

assign to the ith feature. The consumer is willing to pay up to 〈θ, ut〉 for this item.

If pt is less than this inner product, the consumer will purchase the item at price pt,

and if pt is greater, the consumer will refuse to purchase the item. The goal of the

retailer is to maximize their revenue.

Note that again, this can be thought of as a special case of the contextual bandits

problem for the retailer. Every round the retailer receives a context (the features

ut of the item), must take an action (setting a price pt) and receives a reward (pt if

the consumer buys the item, 0 otherwise). Indeed, it is possible to apply standard

bandits algorithms to this problem and obtain Õ(
√
T ) regret.

In [44] and [99], the authors showed how to obtain O(log T ) regret by using geo-

metric approaches to efficiently narrow down the set of possible values of the valuation

vector θ. In Chapter 4, we demonstrate an algorithm for this problem which achieves

O(log log T ) regret, which is tight due to a lower bound of Kleinberg and Leighton

[90].

Our algorithm relies heavily on ideas from integral geometry, notably the concept

of intrinsic volumes. Many people are familiar with two common “measures” of a

d-dimensional convex body that are invariant under rigid motions – its volume and

surface area (or more accurately, the higher-dimensional analogues of these concepts).

One of the fundamental results in integral geometry is there are in fact d “distinct”

invariant measures of a d-dimensional convex body S, one for each dimension from 1

to d (of which surface area and volume are just 2). These invariant measures are the

intrinsic volumes of S and have many nice mathematic properties (for example, they

occur as the coefficients of Steiner’s formula).
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1.2.3 Learning how to rank

Consider the following scenario. You have N items, and you are given some number

of pairwise comparisons between each pair of items, with the caveat that these com-

parisons might be noisy, or non-transitive, or strategically chosen in some way. How

should you, from the information you have, decide which item is the “best” item (or

which K items are the “best” K items)?

Such problems arise naturally in fields like crowdsourcing, recommendation sys-

tems, and tournament design. A commonly used strategy in practice (known as the

Copeland strategy in social choice theory) is to simply choose the item that wins the

largest proportion of pairwise comparisons. In the simplest models, this algorithm

can be shown to perform well (and even optimally) [132].

In Chapter 5, we consider the problem of deciding the winner of a round-robin

tournament. This is a strategic variant of this problem, where the items themselves

are strategic agents and they have some incentive to be chosen as the “best item”.

In tournament design, if one player beats all other players, that player should

definitely be chosen as the winner. In addition, you want to design a tournament rule

that is manipulation-proof; in particular, it should be hard for two players to increase

the chance that one of them wins the tournament by fixing the outcome of the match

between them.

The Copeland mechanism is often used in practice to decide the winner of such

tournaments. But the Copeland mechanism is manipulable; there are situations where

collusion can increase the probability of a pair of players winning from near 0 to almost

1. In this chapter we examine tournament structures that minimize the incentive for

pairs of players to collude, and show that random single-elimination tournaments

are optimal. In future work, we hope to understand which tournament structures

minimize the incentive for larger coalitions of players to collude (in this case, we

know that random single-elimination tournaments are not optimal).
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In Chapter 6, we study the top-K problem under a model for noisy pairwise

comparisons known as the Strong Stochastic Transitivity (SST) model, which assumes

there is an underlying ordering of the items, and asserts that the probability pik of i

beating k in a pairwise comparision is larger than pjk if i occurs above j in the true

ordering of items. This SST model subsumes many parametric models commonly

used in practice. In this chapter we develop new O(
√
N)-competitive algorithms for

identifying the top K items in this model (i.e. our algorithm requires at most O(
√
N)

times as many samples to correctly identify the top K as any algorithm, even one

especially tailored to the instance). Previous algorithms for this problem, including

the Copeland mechanism, were all Ω(N)-competitive at best.
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Part I

Learning how to bid
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Chapter 2

Selling to a No-Regret Buyer

This chapter is joint work with Mark Braverman, Jieming Mao, and Matthew Wein-

berg [30].

2.1 Introduction

Consider a bidder trying to decide how much to bid in an auction (for example, a

sponsored search auction). If the auction happens to be the truthful Vickrey-Clarke-

Groves auction [142, 42, 70], then the bidder’s decision is easy: simply bid your

value. If instead, the bidder is participating in a Generalized First-Price (GFP) or

Generalized Second-Price (GSP) auction, the optimal strategy is less clear. Bidders

can certainly attempt to compute a Bayes-Nash equilibrium of the associated game

and play accordingly, but this is unrealistic due to the need for accurate priors and

extensive computation.

Alternatively, the bidders may try to learn a best-response over time (possibly

offloading the learning to commercial bid optimizers). We specifically consider bidders

who no-regret learn, as empirical work of [115] shows that bidder behavior on Bing

is largely consistent with no-regret learning (i.e. for most bidders, there exists a per-

click value such that their behavior guarantees no-regret for this value). From the
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perspective of a revenue-maximizing auction designer, this motivates the following

question: If a seller knows that buyers are no-regret learning over time,

how should they maximize revenue?

This question is already quite interesting even when there is just a single item for

sale to a single buyer. We consider a model where in every round t, the seller solicits a

bid bt ∈ [0, 1] from the buyer, then allocates the item according to some allocation rule

xt(·) and charges the bidder according to some pricing rule pt(·) (satisfying pt(b) ≤

b · xt(b) for all t, b).1 Note that the allocation and pricing rules (henceforth, auction)

can differ from round to round, and that the auction need not be truthful. Each

round, the bidder has a value vt drawn independently from D, and uses some no-regret

learning algorithm to decide which bid to place in round t, based on the outcomes in

rounds 1, . . . , t−1 (we will make clear exactly what it means for a buyer with changing

valuation to play no-regret in Section 2.2, but one can think of vt as providing a

“context” for the bidder during round t). The same mathematical model can also

represent a population D of many indistinguishable buyers with fixed values who each

separately no-regret learn - see Section 2.2.3 for further details.

One default strategy for the seller is to simply to set Myerson’s revenue-optimal

reserve price for D, r(D), in every round (that is, xt(bt) = I(bt ≥ r(D)), pt(bt) =

r(D) · I(bt ≥ r(D)) for all t, where I(·) is the indicator function). It’s not hard to

see that any no-regret learning algorithm will eventually learn to submit a winning

bid during all rounds where vt > r(D), and a losing bid whenever vt < r(D). Note

that this observation appeals only to the fact that the buyer guarantees no-regret,

and makes no reference to any specific algorithm the buyer might use. So if Rev(D)

denotes the expected revenue of the optimal reserve price when a single buyer is

drawn from D, the default strategy guarantees the seller revenue T · Rev(D) − o(T )

1Of course, the pricing rule can be implemented by charging pt(b)/xt(b) whenever the item is
awarded if ex-post individual rationality is desired.
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over T rounds. The question then becomes whether or not the seller can beat this

benchmark, and if so by how much.

The answer to this question isn’t a clear-cut yes or no, so let’s start with the

following instantiation: how much revenue can the seller extract if the buyer runs

EXP3 [16]? In Theorem 2.3.1, we show that the seller can actually do much better

than the default strategy: it’s possible to extract revenue per round equal to (almost)

the full expected welfare! That is, if Val(D) = Ev←D[v], there exists an auction that

extracts revenue T ·Val(D)−o(T ) for all D.2 It turns out this result holds not only for

EXP3, but for any learning algorithm with the following (roughly stated) property: if

at time t, the mean reward of action a is significantly larger than the mean reward of

action b, the learning algorithm will choose action b with negligible probability. We

call a learning algorithm with this property a “mean-based” learning algorithm and

note that many commonly used learning algorithms - EXP3, Multiplicative Weights

Update [12], and Follow-the-Perturbed-Leader [73, 83, 84] - are ‘mean-based’ (see

Section 2.2 for a formal definition).

We postpone all intuition until Section 2.3.1 with a worked-through example, but

just note here that the auction format is quite unnatural: it “lures” the bidder into

submitting high bids early on by giving away the item for free, and then charging

very high prices (but still bounded in [0, 1]) near the end. The transition from “free”

to “high-price” is carefully coordinated across different bids to achieve the revenue

guarantee.

This result motivates two further directions. First, do there exist other no-regret

algorithms for which full surplus extraction is impossible for the seller? In The-

orem 2.3.2, we show that the answer is yes. In fact, there is a simple no-regret

algorithm A, such that when the bidder uses algorithm A to bid, the default strategy

(set the Myerson reserve every round) is optimal for the seller. We again postpone a

2The order of quantifiers in this sentence is correct: it is actually the same auction format that
works for all D.
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formal statement and intuition to Section 2.3.2, but just note here that the algorithm

is a natural adaptation of EXP3 (or in fact, any existing no-regret algorithm) to our

setting.

Finally, it is reasonable to expect that bidders might use off-the-shelf no-regret

learning algorithms like EXP3, so it is still important to understand what the seller

can hope to achieve if the buyer is specifically using such a “mean-based” algorithm

(formal definition in Section 2.2). Theorem 2.3.1 is perhaps unsatisfying in this regard

because the proposed auction is so unnatural. It turns out that the key property

separating natural untruthful auctions (e.g. GSP/GFP) from the unnatural auction

above is whether overbidding is a dominated strategy. That is, in our unnatural

auction, if the bidder truly hopes to guarantee low regret they must seriously consider

overbidding (and this is how the auction lures them into bidding way above their

value). In both GSP and GFP, overbidding is dominated, so the bidder can guarantee

no regret while overbidding with probability 0 in every round.

The final question we ask is the following: if the buyer is using EXP3 (or any

“mean-based” algorithm), never overbids (we call such a bidder conservative), how

much revenue can the seller extract using an auction where overbidding is dominated

in every round? It turns out that the auctioneer can still outperform the default

strategy, but not extract full welfare. Instead, we identify a linear program (as a

function of D) that tightly characterizes the optimal revenue the seller can achieve in

this setting when the buyer’s values are drawn from D. Moreover, we show that the

auction that achieves this guarantee is natural, and can be thought of as a pay-your-

bid auction with decreasing reserves over time. Finally, we show that this “mean-

based revenue” benchmark, MBRev(D) lies truly in between the Myerson revenue

and the expected welfare: for all c, there exists a distribution D over values such that

c · T · Rev(D) < MBRev(D) < 1
c
· T · Val(D). In other words, the seller’s mean-based

revenue may be unboundedly better than the default strategy, yet simultaneously
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unboundedly far from the expected welfare. We provide formal statements and a

detailed proof overview of these results in Section 2.3.3. To briefly recap, our main

results are the following:

1. If the buyer uses a “mean-based” learning algorithm like EXP3, the seller can

extract revenue (1−ε)T ·Val(D)−o(T ) for any constant ε > 0 (Theorem 2.3.1).

2. There exists a natural no-regret algorithm A such that when the buyer bids

according to A, the seller’s default strategy (charging the Myerson reserve every

round) is optimal (Theorem 2.3.2).

3. If the buyer uses a “mean-based” algorithm only over undominated strategies,

the seller can extract revenue MBRev(D) using an auction where overbidding is

dominated in every round. Moreover, we characterize MBRev(D) as the value of

a linear program, and show it can be simultaneously unboundedly better than

T · Rev(D) and unboundedly worse than T · Val(D) (Theorems 2.3.6, 2.3.4 and

2.3.8).

Our plan for the remaining sections is as follows. Below, we overview our con-

nection to related work. Section 2.2 formally defines our model. Section 2.3 works

through a concrete example, providing intuition for all three results. Section 2.4

discusses conclusions and open problems.

2.1.1 Related Work

There are two lines of work that are most related to ours. The first is that of dynamic

auctions, such as [116, 14, 106, 107, 98]. Like our model, there are T rounds where

the seller has a single item for sale to a single buyer, whose value is drawn from some

distribution every round. However, the buyer is fully strategic and processes fully

how their choices today affect the seller’s decisions tomorrow (e.g. they engage with

deals of the form “pay today to get the item tomorrow”). Additional closely related
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work is that of Devanur et al. studying the Fishmonger problem [55, 75]. Here, there

is again a single buyer and seller, and T rounds of sale. Unlike our model, the buyer

draws a value from D once during round 0 and that value is fixed through all T rounds

(so the seller could try to learn the buyer’s value over time). Also unlike our model,

they study perfect Bayesian equilibria (where again the buyer is fully strategic, and

reasons about how their actions today affect the seller’s behavior tomorrow).

In contrast to these works, while buyers in our model do care about the future

(e.g. they value learning), they don’t reason about how their actions today might

affect the seller’s decisions tomorrow. Our model better captures settings where full

information about the auction is not public (and fully strategic reasoning is simply

impossible without the necessary information).

Other related work considers the Price of Anarchy of simple combinatorial auc-

tions when bidders no-regret learn [123, 139, 115, 50]. One key difference between this

line of work and ours is that these all study welfare maximization for combinatorial

auctions with rich valuation functions. In contrast, our work studies revenue maxi-

mization while selling a single item. Additionally, in these works the seller commits

to a publicly known auction format, and the only reason for learning is due to the

strategic behavior of other buyers. In contrast, buyers in our model have to learn

even when they are the only buyer, due to the strategic nature of the seller.

Recent work has also considered learning from the perspective of the seller. In

these works, the buyer’s (or buyers’) valuations are drawn from an unknown distri-

bution, and the seller’s goal is to learn an approximately optimal auction with as few

samples as possible [45, 53, 108, 109, 69, 35, 56]. These works consider numerous

different models and achieve a wide range of guarantees, but all study the learning

problem from the perspective of the seller, whereas the buyer is simply myopic and

participates in only one round. In contrast, it is the buyer in our model who does the
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learning (and there is no information for the seller to learn: the buyer’s values are

drawn fresh in every round).

Finally, no-regret learning in online decision problems is an extremely well-studied

problem. When feedback is revealed for every possible action, one well-known solution

is the multiplicative weight update rule which has been rediscovered and applied

in many fields (see survey [12] for more details). Another algorithmic scheme for

the online decision problem is known as Follow the Perturbed Leader [73, 83, 84].

When only feedback for the selected action is revealed, the problem is referred to

as the multi-armed bandit problem. Here, similar ideas to the MWU rule are used

in developing the EXP3 algorithm [16] for adversarial bandit model, and also for

the contextual bandit problem [95]. Our algorithm in Theorem 2.3.2 bears some

similarities to the low swap regret algorithm introduced in [24]. See the survey [34]

for more details about the multi-armed bandit problem. Our results hold in both

models (i.e. whether the buyer receives feedback for every bid they could have made,

or only the bid they actually make), so we will make use of both classes of algorithms.

In summary, while there is already extensive work related to repeated sales in

auctions, and even no-regret learning with respect to auctions (from both the buyer

and seller perspective), our work is the first to address how a seller might adapt their

selling strategy when faced with a no-regret buyer.

2.2 Model and Preliminaries

We consider a setting with 1 buyer and 1 seller. There are T rounds, and in each

round the seller has one item for sale. At the start of each round t, the buyer’s

value v(t) (known only to the buyer) for the item is drawn independently from some

distribution D (known to both the seller and the buyer). For simplicity, we assume
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D has a finite support3 of size m, supported on values 0 ≤ v1 < v2 < · · · < vm ≤ 1.

For each i ∈ [m], vi has probability qi of being drawn under D.

The seller then presents K options for the buyer, which can be thought of as “pos-

sible bids” (we will interchangeably refer to these as options, bids, or arms throughout

this chapter, depending on context). Each arm i is labelled with a bid value bi ∈ [0, 1],

with b1 < . . . , < bK . Upon pulling this arm at round t, the buyer receives the item

with some allocation probability ai,t, and must pay a price pi,t ∈ [0, ai,t · bi]. These

values ai,t and pi,t are chosen by the seller during time t, but remain unknown to the

buyer until he plays an arm, upon which he learns the values for that arm. All of our

positive results (i.e. strategies for the seller) are non-adaptive (in some places called

oblivious), in the sense that that ai,t, pi,t are set before the first round starts. All of

our negative results (i.e. upper bounds on how much a seller can possibly attain) hold

even against fully adaptive sellers, where ai,t and pi,t can be set even after learning

the distribution of arms the buyer intends to pull in round t.

In order for the selling strategies to possibly represent natural auctions, we require

the allocation/price rules to be monotone. That is, if i > j, then for all t, ai,t ≥ aj,t

and pi,t ≥ pj,t. In other words, bidding higher should result in a (weakly) higher

probability of receiving the item and (weakly) higher expected payment. We’ll also

insist on the existence of an arm 0 with bid b0 = 0 and a0,t = 0 for all t; i.e., an arm

which charges nothing but does not give the item. Playing this arm can be thought

of as not participating in the auction.

2.2.1 Bandits and experts

Our goal is to understand the behavior of such mechanisms when the buyer plays

according to some no-regret strategy for the multi-armed bandit problem. In the

3If D instead has infinite support, all our results hold approximately after discretization to mul-
tiples of ε. If D is bounded in [0, H], then all our results hold after normalizing D by dividing by
H.
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classic multi-armed bandit problem a learner (in our case, the buyer) chooses one

of K arms per round, over T rounds. On round t, the learner receives a reward

ri,t ∈ [0, 1] for pulling arm i (where the values ri,t are possibly chosen adversarially).

The learner’s goal is to maximize his total reward.

Let It denote the arm pulled by the principal at round t. The regret of an algorithm

A for the learner is the random variable Reg(A) = maxi
∑T

t=1 ri,t−
∑T

t=1 rIt,t. We say

an algorithm A for the multi-armed bandit problem is δ-no-regret if E[Reg(A)] ≤ δ

(where the expectation is taken over the randomness of A). We say an algorithm A

is no-regret if it is δ-no-regret for some δ = o(T ).

In the multi-armed bandits setting, the learner only learns the value ri,t for the arm

i which he pulls on round t. In our setting, the learner will learn ai,t and pi,t explicitly

(from which they can compute ri,t). Our results (both positive and negative) also

hold when the learner learns the value ri,t for all arms i (we refer this full-information

setting as the experts setting, in contrast to the partial-information bandits setting).

Simple no-regret algorithms exist in both the experts setting and the bandits setting.

Of special interest in this chapter will be a class of learning algorithms for the bandits

problem and experts problem which we term ‘mean-based’.

Definition 2.2.1 (Mean-Based Learning Algorithm). Let σi,t =
∑t

s=1 ri,s. An al-

gorithm for the experts problem or multi-armed bandits problem is γ-mean-based if

it is the case that whenever σi,t < σj,t − γT , then the probability that the algorithm

pulls arm i on round t is at most γ. We say an algorithm is mean-based if it is

γ-mean-based for some γ = o(1).

Intuitively, ‘mean-based’ algorithms will rarely pick an arm whose current mean is

significantly worse than the current best mean. Many no-regret algorithms, including

commonly used variants of EXP3 (for the bandits setting), the Multiplicative Weights

algorithm (for the experts setting) and the Follow-the-Perturbed-Leader algorithm

(experts setting), are mean-based (Appendix A.4).
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Contextual bandits

In our setting, the buyer has the additional information of their current value for

the item, and hence is actually facing a contextual bandits problem. In (our variant

of) the contextual bandits problem, each round t the learner is additionally provided

with a context ct drawn from some distribution D supported on a finite set C (in our

setting, ct = v(t), the buyer’s valuation for the item at time t). The adversary now

specifies rewards ri,t(c), the reward the learner receives if he pulls arm i on round t

while having context c. If we are in the full-information (experts) setting, the learner

learns the values of ri,t(ct) for all arms i after round t, where as if we are in the

partial-information (bandits) setting, the learner only learns the value of ri,t(ct) for

the arm i that he pulled.

In the contextual bandits setting, we now define the regret of an algorithm A

in terms of regret against the best “context-specific” policy π; that is, Reg(A) =

maxπ:C→[K]

∑T
t=1 rπ(ct),t(ct)−

∑T
t=1 rIt,t(ct), where again It is the arm pulled by M on

round t. As before, we say an algorithm is δ-low regret if E[Reg(M)] ≤ δ, and say an

algorithm is no-regret if it is δ-no-regret for some δ = o(T ).

If the size of the context set C is constant with respect to T , then there is a simple

way to construct a no-regret algorithm M ′ for the contextual bandits problem from

a no-regret algorithm M for the classic bandits problem: simply maintain a separate

instance of M for every different context v ∈ C (in the contextual bandits literature,

this is sometimes referred to as the S-EXP3 algorithm [34]). We call the algorithm

we obtain this way its contextualization, and denote it as cont(M).

If we start with a mean-based learning algorithm, then we can show that its

contextualization satisfies an analogue of the mean-based property for the contextual-

bandits problem (proof in Appendix A.4).

Definition 2.2.2 (Mean-Based Contextual Learning Algorithm). Let σi,t(c) =∑t
s=1 ri,s(c). An algorithm for the contextual bandits problem is γ-mean-based if it
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is the case that whenever σi,t(c) < σj,t(c) − γT , then the probability pi,t(c) that the

algorithm pulls arm i on round t if it has context c satisfying pi,t(c) < γ. We say an

algorithm is mean-based if it is γ-mean-based for some γ = o(1).

Theorem 2.2.3. If an algorithm for the experts problem or multi-armed bandits

problem is mean-based, then its contextualization is also a mean-based algorithm for

the contextual bandits problem.

Finally, we will refer to learning algorithms that never overbid as conservative. We

will sometimes abuse notation and instead refer to a buyer employing a conservative

algorithm as conservative.

2.2.2 Welfare and monopoly revenue

In order to evaluate the performance of our mechanisms for the seller, we will compare

the revenue the seller obtains to two benchmarks from the single-round setting of a

seller selling a single item to a buyer with value drawn from distribution D.

The first benchmark we consider is the welfare of the buyer, the expected value the

buyer assigns to the item. This quantity clearly upper bounds the expected revenue

that the seller can hope to extract per round.

Definition 2.2.4. The welfare, Val(D) is equal to Ev∼D[v].

The second benchmark we consider is the monopoly revenue, the maximum pos-

sible revenue attainable by the seller in one round against a rational buyer. Seminal

work of Myerson [112] shows that this revenue is attainable by setting a fixed price

(“monopoly/Myerson reserve”) for the item, and hence can be characterized as fol-

lows.

Definition 2.2.5. The monopoly revenue (alternatively, Myerson revenue) Mye(D)

is equal to maxp p · Prv∼D[v ≥ p].
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2.2.3 A final note on the model

For concreteness, we chose to phrase our problem as one where a single bidder whose

value is repeatedly drawn independently from D each round engages in no-regret

learning with their value as context. Alternatively, we could imagine a population of

m different buyers, each with a fixed value vi. Each round, exactly one buyer arrives

at the auction, and it is buyer i with probability qi. The buyers are indistinguishable

to the seller, and each buyer no-regret learns (without context, because their value

is always vi). This model is mathematically equivalent to ours, so all of our results

hold in this model as well if the reader prefers this interpretation instead.

2.3 An Illustrative Example

In this section, we overview an illustrative example to show the difference between

mean-based and non-mean-based learning algorithms, and between conservative and

non-conservative learners. We will not prove all claims in this section (nor carry out

all calculations) as it is only meant to illustrate and provide intuition. Throughout

this section, the running example will be when D samples 1/4 with probability 1/2,

1/2 with probability 1/4, and 1 with probability 1/4. Note that Val(D) = 1/2 and

Rev(D) = 1/4.

2.3.1 Mean-Based Learning

Let’s first consider what the seller can do with an auction when the buyer is running

a mean-based (non-conservative) learning algorithm like EXP3. The seller will let

the buyer bid 0 or 1. If the buyer bids 0, they pay nothing but do not receive the

item (recall that an arm of this form is required). If the buyer bids 1 in round t,

they receive the item and pay some price pt as follows: for the first half of the game
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(1 ≤ t ≤ T/2), the seller sets pt = 0. For the second half of the game (T/2 < t ≤ T ),

the seller sets pt = 1.

Let’s examine the behaviour of the buyer, recalling that they run a mean-based

learning algorithm, and therefore (almost) always pull the arm with highest cumula-

tive utility. The buyer with value 1 will happily bid 1 all the way through, since he is

always offered the item for less than or equal to his value for the item. The buyer with

value 1/2 will bid 1 for the first T/2 rounds, accumulating a surplus (i.e., negative

regret) of 1/2 per round. For the next T/2 rounds, this surplus slowly disappears at

the rate of 1/2 per round until it disappears at time T , so the bidder with value 1/2

will bid 1 all the way through. Finally, the bidder with value 1/4 will bid 1 for the

first T/2 rounds, accumulating surplus at a rate of 1/4 per round. After round T/2,

this surplus decreases at a rate of 3/4 per round, until at round 2T/3 his cumulative

utility from bidding 1 reaches 0 and he switches to bidding 0.

Now let’s compute the revenue. From round T/2 through 2T/3, the buyer always

buys the item at a price of 1, so the seller obtains T/6 revenue. Finally, from round

2T/3 through T , the buyer purchases the item with probability 1/2 and pays 1. The

total revenue is 0+T/6+T/6 = T/3. Note that if the seller used the default strategy,

they would extract revenue only T/4.

Where did our extra revenue come from? First, note that the welfare of the buyer

in this example is quite high: the bidder gets the item the whole way through when

v ≥ 1/2, and two-thirds of the way through when v = 1/4. One reason why the

welfare is so high is because we give the item away for free in the early rounds. But

notice also that the utility of the buyer is quite low: the buyer actually has zero

utility when v ≤ 1/2, and utility 1/2 when v = 1. The reason we’re able to keep the

utility low, despite giving the item away for free in the early rounds is because we

overcharge the bidders in later rounds (and they choose to overpay, exactly because

their learning is mean-based).
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In fact, by offering additional options to the buyer, we show that it is possible

for the seller to extract up to the full welfare from the buyer (e.g. a net revenue of

T/2 − o(T ) for this example). As in the above example, our mechanism makes use

of arms which are initially very good for the buyer (giving the item away for free,

accumulating negative regret), followed by a period where they are very bad for the

buyer (where they pay more than their value). The trick in the construction is making

sure that the good/bad intervals line up so that: a) the buyer purchases the item in

every round, no matter their value (this is necessary in order to possibly extract full

welfare) and b) by round T , the buyer has zero (arbitrarily small) utility, no matter

their value.

Getting the intervals to line up properly so that any mean-based learner will

pick the desired arms still requires some work. But interestingly, our constructed

mechanism is non-adaptive and prior-independent (i.e. the same mechanism extracts

full welfare for all D). Theorem 2.3.1 below formally states the guarantees. The

construction itself and the proof appear in Appendix A.2.

Theorem 2.3.1. If the buyer is running a mean-based algorithm, for any constant ε >

0, there exists a strategy for the seller which obtains revenue at least (1−ε)Val(D)T −

o(T ).

Two properties should jump out as key in enabling the result above. The first is

that the buyer only has no regret towards fixed arms and not towards the policy they

would have used with a lower value (this is what leads the buyer to continue bidding 1

with value 1/2 even though they have already learned to bid 0 with value 1/4). This

suggests an avenue towards an improved learning algorithm: have the bidder attempt

to have no regret not only towards each fixed arm, but also towards the policy of play

produced when having different values. This turns out to be exactly the right idea,

and is discussed in the following subsection below.
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The second key property is that we were able to “lure” the bidders into playing

an arm with a free item, then overcharge them later to make up for lost revenue.

This requires that the bidder consider pulling an arm with maximum bid exceeding

their value, which will never happen for a conservative bidder. It turns out it is

still possible to do better than the default strategy against conservative bidders, but

not as well as against non-conservative mean-based bidders. Section 2.3.3 explores

conservative mean-based bidders for this example.

2.3.2 Better Learning

In our bad example above, the buyer with value 1/2 for the item slowly spends the

second half of the game losing utility. While his behaviour is still no-regret (he ends

up with zero net utility, which indeed is at least as good as only bidding 0), he would

have been much happier to follow the actions of the buyer with value 1/4, who started

bidding 0 at 2T/3.

Using this idea, we show how to construct a no-regret algorithm for the buyer

(Algorithm 1) such that the seller receives at most the Myerson revenue every round.

We accomplish this by extending an arbitrary no-regret algorithm (e.g. EXP3) by

introducing “virtual arms” for each value, so that each buyer with value v has low

regret not just with respect to every fixed bid, but also no-regret with respect to the

policy of play as if they had a different value v′ for the item (for all v′ < v). In some

ways, our construction is very similar to the construction of low internal-regret (or

swap-regret) algorithms from low external-regret algorithms. The main difference is

that instead of having low regret with respect to swapping actions, we have low regret

with respect to swapping contexts (i.e. values). Theorem 2.3.2 below states that the

seller cannot outperform the default strategy against buyers who use such algorithms

to learn.
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Theorem 2.3.2. There exists a no-regret algorithm (Algorithm 1) for the buyer

against which every seller strategy extracts no more than Mye(D)T +O(m
√
δT ) rev-

enue.

Algorithm 1 No-regret algorithm for buyer where the seller achieves no more than
Mye(D)T + o(T ) revenue.

1: Let M be a δ-no-regret algorithm for the classic multi-armed bandit problem,
with δ = o(T ). Initialize m copies of M , M1 through Mm.

2: Instance Mi of M will learn over K + i− 1 arms.
3: The first K arms of Mi (“bid arms”) correspond to the K possible menu options
b1, b2, . . . , bK .

4: The last i− 1 arms of Mi (“value arms”) correspond to the i− 1 possible values
(contexts) v1, . . . , vi−1.

5: for t = 1 to T do
6: if buyer has value vi then
7: Use Mi to pick one arm from the K + i− 1 arms.
8: if the arm is a bid arm bj then
9: Pick the menu option j (i.e. bid bj).

10: else if the arm is a value arm vj then
11: Sample an arm from Mj (but don’t update its state). If it is a bid arm,

pick the corresponding menu option. If it is a value arm, recurse.
12: end if
13: Update the state of algorithm Mi with the utility of this round.
14: end if
15: end for

A more further discussion of the algorithm along with a proof of Theorem 2.3.2

appear in Appendix A.1. The key observation in the proof is that “not regretting

playing as if my value were v′” sounds a lot like “not preferring to report value v′

instead of v.” This suggests that the aggregate allocation probabilities and prices paid

by any buyer using our algorithm should satisfy the same constraints as a truthful

auction, proving that the resulting revenue cannot exceed the default strategy (and

indeed the proof follows this approach).

Finally, observe that the following corollary immediately follows. Because the

seller cannot hope to get more than Mye(D)T + o(T ) per round when the buyer is

using Algorithm 1, and the buyer cannot hope to do better than telling the truth
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against a truthful auction, it is in fact a Nash for the buyer to use Algorithm 1 and

the seller to set price equal to the Myerson reserve every round.

Corollary 2.3.3. It is an o(T )-Nash equilibrium for the seller to set the Myerson

reserve p(D) in every round (any bid ≥ p(D) reserve wins the item and pays p(D)),

and the buyer to use Algorithm 1.

2.3.3 Mean-Based Learning and Conservative Bidders

Recall in our example that to extract revenue T/3, bidders with values 1/4 and 1/2

had to consider bidding 1. If bidders are conservative, they will simply never do this.

Although the auction in Section 2.3.1 is no longer viable, consider the following

auction instead: in addition to the zero arm, the bidder can bid 1/4 or 1/2. If they

bid 1/2 in any round, they will get the item with probability 1 and pay 1/2. If they

bid 1/4 in round t ≤ T/3, they get nothing. If they bid 1/4 in round t ∈ (T/3, T ],

they get the item and pay 1/4. Let’s again see what the bidder will choose to do,

remembering that they will always pull the arm that has provided highest cumulative

utility (due to being mean-based).

Clearly, the bidder with value 1/4 will bid 1/4 every round (since they are con-

servative, they won’t even consider bidding 1/2), making a total payment of 2T/3 ·

1/4 · 1/2 = T/12. The bidder with value 1/2 will bid 1/2 for the first T/3 rounds,

and then immediately switch to bidding 1/4, making a total payment of T/3 · 1/2 ·

1/4 + 2T/3 · 1/4 · 1/4 = T/12.

The bidder with value 1 will actually bid 1/2 for the entire T rounds. To see this,

observe that their cumulative surplus through round t from bidding 1/2 is t·1/2·1/4 =

t/8 (t rounds by utility 1/2 per round by probability 1/4 of having value 1). Their

cumulative surplus through round t from bidding 1/4 is instead (t−T/3) ·3/4 ·1/4 =

3t/16 − T/16 ≤ t/8 (for t ≤ T ). Because they are mean-based, they will indeed bid

1/2 for the entire duration due to its strictly higher utility. So their total payment will
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be T · 1/2 · 1/4 = T/8. The total revenue is then 7T/24 > T/4, again surpassing the

default strategy (but not reaching the T/3 achieved against non-conservative buyers).

Let’s again see where our extra revenue comes from in comparison to a truthful

auction. Notice that the bidder receives the item with probability 1 conditioned

on having value 1/2, and also conditioned on having value 1. Yet somehow the

bidder pays an average of 1/3 conditioned on having value 1/2, but an average of

1/2 conditioned on having value 1. This could never happen in a truthful auction, as

the bidder would strictly prefer to pretend their value was 1/2 rather than 1. But it

is entirely possible when the buyer does mean-based learning, as evidenced by this

example.

In Appendix A.3, we define MBRev(D) as the value of the LP in Figure 2.1. In

Theorems 2.3.6 and 2.3.4, we show that MBRev(D)T tightly characterizes (up to

±o(T )) the optimal revenue a seller can extract against a conservative buyer. The

proofs can be found in Appendix A.3.1.

maximize
m∑
i=1

qi(vixi − ui)

subject to ui ≥ (vi − vj) · xj, ∀ i, j ∈ [m] : i > j

ui ≥ 0, 1 ≥ xi ≥ 0, ∀ i ∈ [m]

Figure 2.1: The mean-based revenue LP.

Before stating our theorems, let us parse this LP. qi is a constant representing the

probability that the buyer has value vi (also a constant). xi is a variable representing

the average probability that the bidder gets the item with value vi, and ui is a

variable representing the average utility of the bidder when having value vi. Therefore,

this bidder’s average value is vixi, the average price they pay is vixi − ui, and the

objective function is simply the average revenue. The second constraints are just

normalization, ensuring that everything lies in [0, 1]. The first line of constraints are

29



the interesting ones. These look a lot like IC constraints that a truthful auction must

satisfy, but something’s missing: the LHS is clearly the utility of the buyer with value

vi for “telling the truth,” but the utility of the buyer for “reporting vj instead” is

(vi − vj) · xj + uj (so the uj term is missing on the RHS).

Here is a brief proof outline for why no seller can extract more revenue than

MBRev(D):

1. Since the buyer has no regret conditioned on having value vi, their utility is at

least as high as playing arm j every round, for all j ≤ i.

2. Since the auction never charges arm j more than vj (conditioned on awarding

the item), the buyer’s utility for playing arm j every round is at least yj ·(vi−vj),

where yj is the average probability that arm j awards the item.

3. Since the auction is monotone, and the buyer never considers overbidding, if

the buyer gets the item with probability xj conditioned on having value vj, we

must have yj ≥ xj.

These three facts together show that no seller can extract more than MBRev(D)

against a no-regret buyer who doesn’t overbid. Observe also that step 3 is exactly

the step that doesn’t hold for buyers who consider overbidding (and is exactly what’s

violated in our example in Section 2.3.1): if the buyer ever overbids, then they might

receive the item with higher probability than had they just played their own arm

every round.

Theorem 2.3.4. Any strategy for the seller achieves revenue at most MBRev(D)T +

o(T ) against a conservative buyer.

The full proof of Theorem 2.3.4 appears in the appendix - all of the key ideas have

been overviewed above.

It turns out that the previous theorem is tight; there exists an auction (taking

the form of a first-price auction with descending reserve) which achieves revenue
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MBRev(D)T against a conservative mean-based buyer. More specifically, this auction

is defined by a threshold rt that decreases over time. If at time t you bid bt ≥ rt, then

you receive the item and must pay bt; otherwise, you receive nothing and pay nothing.

Moreover, the threshold function rt which achieves optimal revenue is determined from

the optimal solution to the mean-based LP: the threshold rt drops from vi to vi+1 at

round xi (where the xi belong to some optimal solution).

To show that this is a valid strategy for the seller, we need to show that the values

xi are monotone increasing. Luckily, this follows simply from the structure of the

mean-based revenue LP.

Lemma 2.3.5. Let x1, x2, . . . , xm, u1, u2, . . . , um be an optimal solution to the mean-

based revenue LP. Then for all i < j, xi < xj.

Proof. We proceed by contradiction. Suppose that the sequence of xi are not mono-

tone; then there exists an 1 ≤ i ≤ m− 1 such that xi > xi+1. Now consider another

solution of the LP, where we increase xi+1 to xi, keeping the value of all other vari-

ables the same. This new solution does not violate any constraints in the LP since

for all j > i + 1, uj ≥ (vj − vi) · xi ≥ (vj − vi+1) · xi. However this change increases

the value of the objective by vi+1qi+1(xi − xi+1) > 0, thus contradicting the fact that

x1, . . . , xm, u1, ..., um was an optimal solution of the mean-based revenue LP.

We now show that this strategy indeed achieves MBRev(D)T against a conserva-

tive buyer.

Theorem 2.3.6. For any constant ε > 0, there exists a strategy for the seller gets

revenue at least (MBRev(D) − ε)T − o(T ) against a buyer running a mean-based

algorithm who overbids with probability 0. The strategy sets a decreasing cutoff rt and

for all t awards the item with probability 1 to any bid bt ≥ rt for price bt, and with

probability 0 to any bid bt < rt.
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Proof. We will show that: i) the buyer with value vi receives the item for at least

xiT − o(T ) turns (receiving vixiT − o(T ) total utility from the items), and ii) this

buyer’s net utility is at most (ui + ε)T + o(T ). This implies that this buyer pays

the seller at least xiviT − (ui + ε)T − o(T ) over the course of the T rounds; taking

expectation over all vi completes the proof.

Assume the buyer is running a γ-mean-based learning algorithm. Consider the

buyer when they have value vi. Note that

σj,t(vi) = (vi − vj + ε) ·max(0, t− (1− xj)T ).

We first claim that after round (1−xi)T +γT/ε, the buyer will buy the item (i.e.,

choose an option that results in him getting the item) each round with probability at

least 1 −mγ. To see this, first note that σi,t(vi) ≥ γT when t ≥ (1 − xi)T + γT/ε.

Then, since the cumulative utility of any arm is 0 until it starts offering the item, it

follows from the mean-based condition that the buyer will pick a specific arm that

is not offering the item with probability at most γ, and therefore choose some good

arm with probability at least 1−mγ. It follows that, in expectation, the buyer with

value vi receives the item for at least (1−mγ)(xiT − γT/ε) = xiT − o(T ) turns.

We now proceed to upper bound the overall expected utility of the buyer. For each

index j ≤ i, let Sj be the set of t where σj,t(vi) > σj′,t(vi) for all other j′. Note that

since each σj,t(vi) is a linear function in t (when positive), each Sj is either the empty

set or an interval (yjT, zjT ). Since all the vi are distinct, note that these intervals

partition the interval ((1−xi)T, T ) (with the exception of up to m endpoints of these

intervals); in particular,
∑

j≥i(zj − yj) = xi.

Let ε′ = minj(vj+1 − vj). Note that, if t ∈ (yjT + γT/ε′, zjT − γT/ε′), then for

all j′ 6= j, σj,t(vi) > σj′,t(vi) + γT . This follows since σj,t(vi) − σj′,t(vi) is linear in t

with slope vj − vj′ , and |vj − vj′ | > ε′. It follows that if t is in this interval, then the
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buyer will choose option j with probability at least 1 −mγ (by a similar argument

as before).

Define j(t) = arg maxj σj,t(vi) to be the index of the arm with the current largest

cumulative reward, and let σmax,t(vi) =
∑t

s=1 rj(s),s(vi) be the cumulative utility of

always playing the arm with the current highest cumulative reward for the first t

rounds. The following lemma shows that σmax,T (vi) is close to maxj σj,T (vi). (In

other words, playing the best arm every round and playing the best-at-the-end arm

every round have similar payoffs if the historically best arm does not change often).

Lemma 2.3.7. |σmax,T (vi)−maxj σj,T (vi)| ≤ m.

Proof. Let W = |{t|j(t) 6= j(t+1)}| equal the number of times the best arm switches

values; note that since each σj,t(vi) is linear, W is at most m. Let t1 < t2 < · · · < tW

be the values of t such that j(t) 6= j(t+ 1). Additionally define t0 = 1 and tW+1 = T .

Then, dividing the cumulative reward σmax,t into intervals by these ti, we get that

σmax,t(vi) =
t∑

s=1

rj(s),s(vi)

=
W+1∑
i=1

(σj(ti),ti(vi)− σj(ti),ti−1
(vi))

= σj(T ),T (vi) +
W+1∑
i=1

(σj(ti−1),ti−1
(vi)− σj(ti),ti−1

(vi))

= max
j
σj,t(vi) +

W+1∑
i=1

(σj(ti−1),ti−1
(vi)− σj(ti),ti−1

(vi))

It therefore suffices to show that |σj(ti−1),ti−1
(vi) − σj(ti),ti−1

(vi)| ≤ 1 for all i. To

see this, note that (by the definition of j(t)), σj(ti−1),ti−1
(vi) − σj(ti),ti−1

(vi) > 0, and

that σj(ti−1),ti−1+1(vi)− σj(ti),ti−1+1(vi) < 0. However,

33



(σj(ti−1),ti−1+1(vi)− σj(ti),ti−1+1(vi)) =

(σj(ti−1),ti−1
(vi)− σj(ti),ti−1

(vi)) + (rj(ti−1),ti−1+1(vi)− rj(ti),ti−1+1(vi)) (2.1)

Since 0 ≤ rj,t(u) ≤ 1, it follows that |σj(ti−1),ti−1
(vi) − σj(ti),ti−1

(vi)| ≤ 1. This

completes the proof.

Let σT (vi) =
∑T

t=1 E[rIt,t(vi)] denote the expected cumulative utility of this buyer

at time T . We claim that σT ≤ maxj σj,T (vi) + o(T ). To see this, recall that, for

t ∈ (yjT + γT/ε′, zjT − γT/ε′), Pr[It 6= j] ≤ mγ, and therefore E[rIt,t] ≤ rj,t + mγ.

Furthermore, note that for t ∈ Sj, j(t) = j, so rj,t = rj(t),t and E[rIt,t] ≤ rj(t),t + mγ.

It follows that
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σT (vi) =
T∑
t=1

E[rIt,t(vi)]

≤
T∑

t=(1−xi)T

E[rIt,t(vi)]

=
i∑

j=1

zjT∑
t=yjT

E[rIt,t(vi)]

≤
i∑

j=1

2γT

ε′
+

zjT−γT/ε′∑
t=yjT+γT/ε′

E[rIt,t(vi)]


≤

i∑
j=1

2γT

ε′
+

zjT−γT/ε′∑
t=yjT+γT/ε′

(rj(t),t(vi) +mγ)


≤ 2mγT

ε′
+mγT +

T∑
t=1

rj(t),t(vi)

=
2mγT

ε′
+mγT + σmax,T (vi)

≤ 2mγT

ε′
+mγT +m+ max

j
σj,T (vi)

= max
j
σj,T (vi) + o(T ).

Finally, note that

max
j
σj,T (vi) = max

j<i
(vi − vj + ε)xjT

≤ (max
j<i

(vi − vj)xj + ε)T

= (ui + ε)T

It follows that σT (vi) ≤ (ui + ε)T + o(T ), as desired.
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Finally, we show that this quantity MBRev(D) is in fact significantly different

from both Val(D) and Rev(D); in particular, it is a constant-factor approximation

to neither. In particular, the multiplicative gap between MBRev(D) and Rev(D) can

grow as large as log logH for distributions D supported on [1, H]. In comparison, the

gap between Val(D) and Rev(D) can grow as large as logH on this same interval, and

in fact both gaps are maximized for the same distribution: the equal-revenue curve

DERC truncated at H.

Theorem 2.3.8. For distributions D supported on [1, H], MBRev(D) = O(log logH),

and there exist D supported on [1, H] such that MBRev(D) = Θ(log logH). For this

same D, Val(D) = Θ(logH).

The proof of Theorem 2.3.8 is included in Appendix A.3. The proof is divided

into two parts (after extending the definition of MBRev(D) to hold for continuous

distributions D): 1. showing that MBRev(DERC) ≤ O(log logH), and 2. showing

that MBRev(DERC) ≥ O(log logH).

To show the first part, it suffices to simply demonstrate a solution to the mean-

based LP with value at least O(log logH). We see in Theorem A.3.11 that it suffices to

choose x(v) = log v
logH

(equivalently, the reserve for the associated second-price auction

should exponentially decay over time).

To show the second part, we examine the dual of the LP. Effectively, this involves

rewriting MBRev(D) in the form

MBRev(D) = max
x

Evi∼D
[
vixi −max

j
(vi − vj)xj

]
(in particular, note that for a fixed choice of x, uj = maxj(vi− vj)xj), and finding

an appropriate function j(i) (which corresponds to an assignment to the dual).
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2.3.4 A Final Note on the Example

While reading through our examples, the reader may think that the mean-based

learner’s behavior is clearly irrational: why would you continue paying above your

value? Why would you continue paying more than necessary, when you can safely get

the item for less?

But this is exactly the point: a more thoughtful learner can indeed do better

(for instance, by using the algorithm of Section 2.3.2). It is also perhaps misleading

to believe that the bidder should “obviously” stop overpaying: we only know this

because we know the structure of the example. But in principle, how is the bidder

supposed to know that the overcharged rounds are the new norm and not an anomaly?

Given that most standard no-regret algorithms are mean-based, it’s important to nail

down the seller’s options for exploiting this behavior.

2.4 Conclusion and Future Directions

We consider a revenue-maximizing seller with a single item (each round) to sell to a

single buyer. We show that when the buyer uses mean-based algorithms like EXP3,

the seller can extract revenue equal to the expected welfare with an unnatural auction.

We then provide a modified no-regret algorithm A such that the seller cannot extract

revenue exceeding the monopoly revenue when the buyer bids according to A. Finally,

we consider a mean-based buyer who never overbids. We tightly characterize the

seller’s optimal revenue with a linear program, and show that a pay-your-bid auction

with decreasing reserves over time achieves this guarantee. Moreover, we show that

the mean-based revenue can be unboundedly better than the monopoly revenue while

simultaneously worse than the expected welfare. In particular, for the equal revenue

curve truncated at H, the monopoly revenue is 1, the expected welfare is ln(H), and

the mean-based revenue is Θ(ln(ln(H))).
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While our work has already shown the single-buyer problem is quite interesting,

the most natural direction for future work is understanding revenue maximization

with multiple learning buyers. Of our three main results, only Theorem 2.3.2 extends

easily (that if every buyer uses our modified learning, the default strategy, which

now runs Myerson’s optimal auction every round, is optimal; see Theorem A.1.5 for

details). Our work certainly provides good insight into the multi-bidder problem,

but there are still clear barriers. For example, in order to obtain revenue equal to

the expected welfare, the auction must necessarily also maximize welfare. In our

single-bidder model, this means that we can give away the item for free for Ω(T )

rounds, but with multiple bidders, such careless behaviour would immediately make

it impossible to achieve the optimal welfare. Regarding the mean-based revenue,

while there is a natural generalization of our LP to multiple bidders, it’s no longer

clear how to achieve this revenue against conservative bidders, as all the relevant

variables now implicitly depend on the actions of the other bidders. These are just

examples of concrete barriers, and there are likely interesting conceptual barriers for

this extension as well.

Another interesting direction is understanding the consequences of our work from

the perspective of the buyer. Aside from certain corner configurations (e.g. the seller

extracting the buyer’s full welfare), it’s not obvious how the buyer’s utility changes.

For instance, is it possible that the buyer’s utility actually increases as the seller

switches from the default strategy to the optimal mean-based revenue? Does the

buyer ever benefit from using an “exploitable” learning strategy, so that the seller

can exploit it and make them both happier?
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Chapter 3

Multi-armed bandits with strategic

arms

This chapter is joint work with Mark Braverman, Jieming Mao, and Matthew Wein-

berg [29].

3.1 Introduction

In this chapter, we consider a strategic model for the multi-armed bandit problem

where each arm is an individual strategic agent and each round one arm is pulled by

an agent we refer to as the principal. Each round, the pulled arm receives a private

reward v ∈ [0, 1] and then decides what amount x of this reward gets passed on to

the principal (upon which the principal receives utility x and the arm receives utility

v−x). Each arm therefore has a natural tradeoff between keeping most of its reward

for itself and passing on the reward so as to be chosen more frequently. Our goal is

to design mechanisms for the principal which simultaneously learns which arms are

valuable while also incentivizing these arms to pass on most of their rewards.

This model captures a variety of dynamic agency problems, where at each time

step the principal must choose to employ one of K agents to perform actions on the
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principal’s behalf, where the agent’s cost of performing that action is unknown to

the principal (for example, hiring one of K contractors to perform some work, or

hiring one of K investors with external information to manage some money - the

important feature being that the principal doesn’t know exactly how much they will

pay/receive/etc. until the job is done, and the agent has a lot of freedom to set this

ex-post). In this sense, this model can be thought of as a multi-agent generalization

of the principal-agent problem in contract theory when agents are allowed private

savings (see Section 3.1.2 for references). The model also captures, for instance, the

interaction between consumers (as the principal) and many sellers deciding how steep

a discount to offer the consumers - higher prices now lead to immediate revenue,

but offering better discounts than your competitors will lead to future sales. In all

domains, our model aims to capture settings where the principal has little domain-

specific or market-specific knowledge, and can really only process the reward they get

for pulling an arm and not any external factors that contributed to that reward.

There are two “obvious” approaches to try and solve these problems: Option one

is to treat it like a procurement auction and run a reverse second-price auction. This

doesn’t quite work, however, in the case where the agents don’t initially know how

much reward they’ll generate, so some amount of learning needs to enter the picture

for a solution to be viable. Using the contractor as a toy running example: the

contractor will not initially know how much it costs her to work on your home, but

after working on your home several times they will start to learn how much the next

one will cost (you will only learn how much they charge you). In any case, one cannot

simply treat it like an auctions problem and ignore learning completely.

The second “obvious” approach is just to treat it as a learning problem, and

ignore incentives completely. In fact, one oft-cited motivation for considering ad-

versarial rewards in bandit settings is that arms might be strategic. Indeed, this is

because even if the arms’ rewards are stochastic, the utility they strategically pass on
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to the principal is unlikely to follow any distribution. Algorithms like EXP3 which

guarantee low-regret in adversarial settings then seem like the natural “pure learn-

ing” approach. Interestingly, our main “negative result” shows that any adversarial

learning algorithm admits a really bad approximate Nash equilibrium (more details

below).

It follows that auctions alone cannot solve the problem, nor can learning alone. To

complement our main negative result, we show that the right combination of auctions

and learning yields a positive result: an algorithm such that all approximate Nash

result in good utility for the principal. We now overview our results in more detail.

3.1.1 Our results

Low-regret algorithms are far from strategyproof

Many algorithms for the multi-armed bandit problem are designed to work in worst-

case settings, where an adversary can adaptively decide the value of each arm pull.

Here, algorithms such as EXP3 ([16]) guarantee that the principal receives almost

as much as if he had only pulled the best arm. Formally, such algorithms guarantee

that the principal experiences at most O(
√
T ) regret over T rounds compared to any

algorithm that only plays a single arm (when the adversary is oblivious).

Given these worst-case guarantees, one might naively expect low-regret algorithms

such as EXP3 to also perform well in our strategic variant. It is important to note,

however, that single arm strategies perform dismally in this strategic setting; if the

principal only ever selects one arm, the arm has no incentive to pass along any surplus

to the principal. In fact, we show that the objectives of minimizing adversarial regret

and performing well in this strategic variant are fundamentally at odds.

Theorem 3.1.1 (informal restatement of Theorem B.1.3). Let M be a low-regret

algorithm for the classic multi-armed bandit problem with adversarially chosen values.
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Then there exists an instance of the strategic multi-armed bandit problem and an

o(T )-Nash equilibrium for the arms where a principal running M receives at most

o(T ) revenue.

While not immediately apparent from the statement of Theorem 3.1.1, these in-

stances where low-regret algorithms fail are far from pathological; in particular, there

is a problematic equilibrium for any instance where arm i receives a fixed reward vi

each round it is pulled, as long as the the gap between the largest and second-largest

vi is not too large (roughly 1/#arms).

Here we assume the game is played under a tacit observational model, meaning

that arms can only observe which arms get pulled by the principal, but not how much

value they give to the principal. In particular, this means that arms can achieve this

equilibrium despite not communicating directly with each other and not observing

the actions of the other arms. This rules out various sorts of “grim trigger” collusion

strategies (similar to collusion that occurs in the setting of repeated auctions, see

[135]), where arms agree on a protocol ahead of time and immediately defect as soon

as one arm deviates from this protocol. (Indeed, in an explicit observational model,

where arms can see both which arms get pulled and how much value they pass on,

it is easy to show even stronger results via such strategies; see Appendix B.1.2 for

details).

Instead, the strategies in the equilibrium of Theorem 3.1.1 take the form of market-

sharing strategies, where arms calibrate their actions so that they each get played

some proportion (e.g. 1/K) of the time while passing on little utility to the principal.

For example, consider a simple instance of this problem with two strategic arms,

where the principal is using the low-regret EXP3 algorithm, and where arm 1 always

gets private reward 1 if pulled and arm 2 always gets private reward 0.8. By always

reporting some value slightly larger than 0.8, arm 1 can incentivize the principal to

almost always pull it in the long run. This gains arm 1 roughly 0.2 utility per round
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(and arm 2 nothing). On the other hand, if arm 1 and arm 2 never pass along any

surplus to the principal, they will likely be played equally often, gaining arm 1 roughly

0.5 utility per round and arm 2 0.4 utility per round.

To show such a market-sharing strategy works for general low-regret algorithms,

much more work needs to be done. The arms must be able to enforce an even split of

the principal’s pulls (as soon as the principal starts lopsidedly pulling one arm more

often than the others, the remaining arms can defect and start reporting their full

value whenever pulled). As long as the principal guarantees good performance in the

non-strategic adversarial case (achieving o(T ) regret), we show that the arms can (at

o(T ) cost to themselves, and without explicitly communicating) cooperate so that

they are all played equally often.

Mechanisms for strategic arms with stochastic values

We next show that, in contrast to Theorem 3.1.1, it is in fact possible for the principal

to extract positive values from the arms per round, if we do not restrict the principal to

use an adversarial low-regret algorithm (and hence there is a price to being adversarial

low-regret).

We consider a setting where each arm i’s reward when pulled is drawn indepen-

dently from some distribution Di with mean µi (unknown to the principal). In this

case the principal can extract the value of the second-best arm (which is the best

possible, as we show in Lemma 3.4.3). In the below statement, we are using the term

“truthful mechanism” quite loosely as shorthand for “strategy that induces a game

among the arms where each arm has a dominant strategy.”

Theorem 3.1.2 (restatement of Corollary 3.4.5). Let µ′ be the second largest mean

amongst the set of µis. Then there exists a truthful mechanism for the principal that

guarantees revenue at least µ′T − o(T ) when the arms are playing according to any

o(T )-Nash equlibrium.
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The mechanism in Theorem 3.1.2 can be thought of as a combination of a second-

price auction with the explore-then-exploit strategy from multi-armed bandits. The

principal divides the time horizon into three “phases”. In the first phase (of size

o(T )), the principal begins by asking each arm i to simply report their value each

round, thus allowing the principal to learn which arm is the most valuable. In the

second phase (which comprises the vast majority of the rounds), the principal asks

the most valuable arm (the arm with the highest mean in the first phase) to give

him the second-largest mean worth of value per round. If this arm fails to comply

in any round, the principal avoids picking this arm for the remainder of the rounds.

Finally, in the third phase, the principal uses a proper scoring rule to recompensate

all arms for reporting truthfully in the first phase. (A more detailed description of

the mechanism can be seen in Mechanisms 2 and 3 in Section 3.4).

As an added bonus, we show that this mechanism has similar guarantees in the

setting where some arms are strategic and some arms are non-strategic (and our

mechanism does not know which arms are which).

Theorem 3.1.3 (restatement of Theorem 3.4.7). Let µs be the second largest mean

amongst the means of the strategic arms, and let µn be the largest mean amongst

the means of the non-strategic arms. Then there exists a truthful mechanism for the

principal that guarantees (with probability 1−o(1/T )) revenue at least max(µs, µn)T−

o(T ) when arms play according to any o(T )-Nash equilibrium.

In particular, this implies that Mechanism 3 has low-regret in the classical stochas-

tic multi-armed bandits setting, and so the adversarial aspect of the low-regret guar-

antees is actually essential for the proof of Theorems 3.1.1.

A fair critique of this mechanism is that most of the work of learning the dis-

tributions of the arms is offloaded to the beginning of the game. This is appealing

because it makes it much feasible to “slide in” some auction design and scoring rules

to handle incentives. It is an interesting problem whether learning can still be done
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adaptively over time in this model, as such a procedure would necessitate a much

more sophisticated treatment of incentives; see Section 3.5 for further discussion.

3.1.2 Related work

The study of classical multi-armed bandit problems was initiated by [122], and has

since grown into an active area of study. The most relevant results for this chapter

concern the existence of low-regret bandit algorithms in the adversarial setting, such

as the EXP 3 algorithm ([16]), which achieves regret Õ(
√
KT ). Other important

results in the classical setting include the upper confidence bound (UCB) algorithm

for stochastic bandits ([94]) and the work of [68] for Markovian bandits. For further

details about multi-armed bandit problems, see the survey [34].

One question that arises in the strategic setting (and other adaptive settings for

multi-armed bandits) is what the correct notion of regret is; standard notions of regret

guarantee little, since the best overall arm may still have a small total reward. [11]

considered the multi-armed bandit problem with an adaptive adversary and intro-

duced the quantity of “policy regret”, which takes the adversary’s adaptiveness into

account. They showed that any multi-armed bandit algorithm will get Ω(T ) policy

regret. This indicates that it is not enough to treat strategic behaviors as an instance

of adaptively adversarial behavior; good mechanisms for the strategic multi-armed

bandits problem must explicitly take advantage of the rational self-interest of the

arms.

Our model bears some similarities to the principal-agent problem of contract the-

ory, where a principal employs an more informed agent to make decisions on behalf

of the principal, but where the agent may have incentives misaligned from the prin-

cipal’s interests when it gets private savings (for example [37]). For more details on

principal-agent problem, see the book [93]. Our model can be thought of as a sort

of multi-armed version of the principal-agent problem, where the principal has many
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agents to select from (the arms) and can try to use competition between the agents

to align their interests with the principal.

Our negative results are closely related to results on collusions in repeated auc-

tions. Existing theoretical work [102, 15, 81, 9, 10, 135] has shown that collusive

schemes exist in repeated auctions in many different settings, e.g., with/without side

payments, with/without communication, with finite/infinite typespace. In some set-

tings, efficient collusion can be achieved, i.e., bidders can collude to allocate the good

to the bidders who values it the most and leave 0 asymptotically to the seller. Even

without side payments and communication, [135] showed that tacit collusion exists

and can achieve asymptotic efficiency with a large cartel.

Our truthful mechanism uses a proper scoring rule [31, 103] implicitly. In general,

scoring rules are used to assessing the accuracy of a probabilistic prediction. In our

mechanisms, we use a logarithmic scoring rule to incentivize arms to truthfully report

their average rewards.

Our setting is similar to settings considered in a variety of work on dynamic

mechanism design, often inspired by online advertising. [23] considers the problem

where a buyer wants to buy a stream of goods with an unknown value from two sellers,

and examines Markov perfect equilibria in this model. [18, 54, 17] study truthful pay-

per-click auctions where the auctioneer wishes to design a truthful mechanism that

maximizes the social welfare. [92, 64] consider the scenario where the principal cannot

directly choose which arm to pull, and instead must incentivize a stream of strategic

players to prevent them from acting myopically. [6, 7] consider a setting where a seller

repeatedly sells to a buyer with unknown value distribution, but the buyer is more

heavily discounted than the seller. [82] develops a general method for finding optimal

mechanisms in settings with dynamic private information. [113] develops an ex ante

efficient mechanism for the Cost-Per-Action charging scheme in online advertising.
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3.2 Our Model

3.2.1 Classic Multi-Armed Bandits

We begin by reviewing the definition of the classic multi-armed bandits problem and

associated quantities.

In the classic multi-armed bandit problem a learner (the principal) chooses one of

K choices (arms) per round, over T rounds. On round t, the principal receives some

reward vi,t ∈ [0, 1] for pulling arm i. The values vi,t are either drawn independently

from some distribution corresponding to arm i (in the case of stochastic bandits)

or adaptively chosen by an adversary (in the case of adversarial bandits). Unless

otherwise specified, we will assume we are in the adversarial setting.

Let It denote the arm pulled by the principal at round t. The revenue of an

algorithm M is the random variable

Rev(M) =
T∑
t=1

vIt,t

and the the regret of M is the random variable

Reg(M) = max
i

T∑
t=1

vi,t − Rev(M)

Definition 3.2.1 (δ-Low Regret Algorithm). Mechanism M is a δ-low regret algo-

rithm for the multi-armed bandit problem if

E[Reg(M)] ≤ δ.

Here the expectation is taken over the randomness of M and the adversary.
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Definition 3.2.2 ((ρ, δ)-Low Regret Algorithm). Mechanism M is a (ρ, δ)-low regret

algorithm for the multi-armed bandit problem if with probability 1− ρ,

Reg(M) ≤ δ.

There exist O(
√
KT logK)-low regret algorithms and (ρ,O(

√
KT log(K/ρ)))-low

regret algorithms for the multi-armed bandit problem; see Section 3.2 of [34] for

details.

3.2.2 Strategic Multi-Armed Bandits

The strategic multi-armed bandits problem builds upon the classic multi-armed ban-

dits problem with the notable difference that now arms are strategic agents with the

ability to withhold some payment from the principal. Instead of the principal directly

receiving a reward vi,t when choosing arm i, now arm i receives this reward and passes

along some amount wi,t to the principal, gaining the remainder vi,t − wi,t as utility.

For simplicity, in the strategic setting, we will assume the rewards vi,t are generated

stochastically; that is, each round, vi,t is drawn independently from a distribution Di

(where the distributions Di are known to all arms but not to the principal). While

it is possible to pose this problem in the adversarial setting (or other more general

settings), this comes at the cost of there being no clear notion of strategic equilibrium

for the arms.

This strategic variant comes with two additional modeling assumptions. The first

is the informational model of this game; what information does an arm observe when

some other arm is pulled. We define two possible observational models:

1. Explicit: After each round t, every arm sees the arm played It along with the

quantity wIt,t reported to the principal.

2. Tacit: After each round t, every arm only sees the arm played It.
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In both cases, only arm i knows the size of the original reward vi,t; in particular, the

principal also only sees the value wi,t and learns nothing about the amount withheld

by the arm. Collusion between arms is generally significantly easier in the explicit

observational model than in the tacit observational model, and for this reason we will

assume we are in the tacit observational model unless otherwise stated.

The second modeling assumption is whether to allow arms to go into debt while

paying the principal. In the restricted payment model, we impose that wi,t ≤ vi,t; an

arm cannot pass along more than it receives in a given round. In the unrestricted

payment model, we let wi,t be any value in [0, 1]. We prove our negative results in

the restricted payment model and our positive results in the unrestricted payment

model, but our proofs for our negative results work in both models (in particular, it

is easier to collude and prove negative results in the unrestricted payment model) and

Mechanism 3 can be adapted to work in the restricted payment model (see discussion

in Section 3.4.2).

Finally, we proceed to define the set of strategic equilibria for the arms. We

assume the mechanism M of the principal is fixed ahead of time and known to the

K arms. If each arm i is using a (possibly adaptive) strategy Si, then the expected

utility of arm i is defined as

ui(M,S1, . . . , SK) = E

[
T∑
t=1

(vi,t − wi,t) · 1It=i

]
.

An ε-Nash equilibrium for the arms is then defined as follows.

Definition 3.2.3 (ε-Nash Equilibrium for the arms). Strategies (S1, ..., SK) form an

ε-Nash equilibrium for the strategic multi-armed bandit problem if for all i ∈ [n] and

any deviating strategy S ′i,

ui(S1, . . . , Si, . . . , SK) ≥ ui(S1, . . . , S
′
i, . . . , SK)− ε.
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Similarly as before, the revenue of the principal in this case is the random variable

Rev(M,S1, . . . , SK) =
T∑
t=1

wIt,t.

The goal of the principal is to choose a mechanism M which guarantees large

revenue in any ε-Nash Equilibrium for the arms.

In Section 3.4, we will construct mechanisms for the strategic multi-armed bandit

problem which are truthful for the arms. We define the related terminology below.

Definition 3.2.4 (Dominant Strategy). When the principal uses mechanism M , we

say Si is a dominant strategy for arm i if for any deviating strategy S ′i and any

strategies for other arms S1, .., Si−1, Si+1, ..., SK,

ui(M,S1, . . . , Si, . . . , SK) ≥ ui(M,S1, . . . , S
′
i, . . . , SK).

Definition 3.2.5 (Truthfulness). We say that a mechanism M for the principal is

truthful, if all arms have some dominant strategies.

3.3 Negative Results Overview

In this section we give a sketch of the proof of our main theorem, Theorem B.1.3.

The full list of our negative results and proofs can be found in Appendix B.1.

Theorem 3.3.1. [(restatement of Theorem B.1.3)] Let mechanism M be a (ρ, δ)-

low regret algorithm for the multi-armed bandit problem with K arms, where K ≤

T 1/3/ log(T ), ρ ≤ T−2, and δ ≥
√
T log T . Then in the strategic multi-armed ban-

dit problem under the tacit observational model, there exist distributions Di and an

O(
√
KTδ)-Nash Equilibrium for the arms where the principal gets at most O(

√
KTδ)

revenue.
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Proof Sketch. The underlying idea here is that the arms work to try to maintain an

equal market share, where each of the K arms are each played approximately 1/K of

the time. To ensure this happens, arms collude so that arms that aren’t as likely to

be pulled pass along more than arms that have been pulled a lot or are more likely to

be pulled; this ends up forcing any low-regret algorithm for the principal to choose all

the arms equally often. Interestingly, this collusion strategy is mechanism dependent,

as arms need to estimate the probability they will be pulled in the next round.

More formally, let µi denote the mean of the ith arm’s distribution Di. Without

loss of generality, further assume that µ1 ≥ µ2 ≥ · · · ≥ µK . We will show that as long

as µ1 − µ2 ≤ µ1
K

, there exists some O(
√
KTδ)-Nash equilibrium for the arms where

the principal gets at most O(
√
KTδ) revenue.

We begin by describing the equilibrium strategy S∗ for the arms. Let ci,t denote

the number of times arm i has been pulled up to time t. Set B = 7
√
KTδ and set

θ =
√

Kδ
T

. The equilibrium strategy for arm i at time t is as follows:

1. If at any time s ≤ t in the past, there exists an arm j with cj,s− ci,s ≥ B, defect

and offer your full value wi,t = µi.

2. Compute the probability pi,t, the probability that the principal will pull arm i

conditioned on the history so far.

3. Offer wi,t = θ(1− pi,t).

The main technical challenge in proving that this strategy is an equilibrium in-

volves showing that, if all arms are following this strategy and the principal is using

a low-regret mechanism, then with high probability the arms will not defect. Here

the low-regret property of the mechanism M is essential (indeed, as our positive re-

sults imply, the theorem is not true without this assumption). In particular, by the

construction of wi,t in terms of pi,t, the principal’s expected total regret (here defined

to be the sum of the principal’s regrets with respect to each arm) will increase each
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round by some amount proportional to the variance of the pi,t. Intuitively, this im-

plies that the values pi,t cannot be too far from uniform for too many rounds, and

therefore that each arm should be picked approximately the same proportion of the

time. This is formalized in the following lemma:

Lemma 3.3.2. If all arms are using strategy S∗, then with probability
(
1− 3

T

)
, |ci,t−

cj,t| ≤ B for all t ∈ [T ], i, j ∈ [K].

Proof. As before, assume that all arms are playing the strategy S∗ with the modifica-

tion that they never defect. This does not change the probability that |ci,t− cj,t| ≤ B

for all t ∈ [T ], i, j ∈ [K].

Define Ri,t =
∑t

s=1wi,s −
∑t

s=1 wIs,s be the regret the principal experiences for

not playing only arm i up until time t. We begin by showing that with probability

at least 1− 2
T

, Ri,t lies in [−Kθ
√
T log T − (K − 1)δ, δ] for all t ∈ [T ] and i ∈ [K].

To do this, first note that since the principal is using a (T−2, δ)-low-regret algo-

rithm, with probability at least 1 − T−2 the regrets Ri,t are all upper bounded by δ

at any fixed time t. Via the union bound, it follows that Ri,t ≤ δ for all i and t with

probability at least 1− 1
T

.

To lower bound Ri,t, we will first show that
∑K

i=1Ri,t is a submartingale in t. Note

that, with probability pj,t, Ri,t+1 will equal Ri,t + θ((1 − pj,t) − (1 − pi,t)). We then

have
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E

[
K∑
i=1

Ri,t+1

∣∣∣∣∣
K∑
i=1

Ri,t

]
=

K∑
i=1

Ri,t +
K∑
i=1

pi,t

K∑
j=1

θ((1− pj,t)− (1− pi,t))

=
K∑
i=1

Ri,t +
K∑
i=1

pi,t

K∑
j=1

θ(pi,t − pj,t)

=
K∑
i=1

Ri,t + θ

K∑
i=1

pi,t(Kpi,t − 1)

=
K∑
i=1

Ri,t + θ

(
K

K∑
i=1

p2
i,t −

K∑
i=1

pi,t

)

≥
K∑
i=1

Ri,t

where the last inequality follows by Cauchy-Schwartz. It follows that
∑K

i=1 Ri,t forms

a submartingale.

Moreover, note that (since |pi − pj| ≤ 1) |Ri,t+1 − Ri,t| ≤ θ. It follows that∣∣∣∑K
i=1Ri,t+1 −

∑K
i=1Ri,t

∣∣∣ ≤ Kθ and therefore by Azuma’s inequality that, for any

fixed t ∈ [T ],

Pr

[
K∑
i=1

Ri,t ≤ −2Kθ
√
T log T

]
≤ 1

T 2
.

With probability 1 − 1
T

, this holds for all t ∈ [T ]. Since (with prob-

ability 1 − 1
T

) Ri,t ≤ δ, this implies that with probability 1 − 2
T

, Ri,t ∈[
−2Kθ

√
T log T − (K − 1)δ, δ

]
.

We next proceed to bound the probability that ci,t − cj,t > B for a i, j, and t.

Define

S
(i,j)
t =

(
ci,t − cj,t +

1

θ
(Ri,t −Rj,t)

)
.
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We claim that S
(i,j)
t is a martingale. To see this, we first claim that Ri,t+1−Rj,t+1 =

Ri,t − Rj,t − θ(pi,t − pj,t). Note that, if arm k is pulled, then Ri,t+1 = Ri,t + θ((1 −

pi,t) − (1 − pk,t)) = Ri,t + θ(pk,t − pi,t) and similarly, Rj,t+1 = Rj,t + θ(pk,t − pj,t). It

follows that Ri,t+1 −Rj,t+1 = Ri,t −Rj,t − θ(pi,t − pj,t).

Secondly, note that (for any arm k) E[ck,t+1 − ck,t|pt] = pk,t, and thus E[ci,t+1 −

cj,t+1 − (ci,t − cj,t)|pt] = pi,t − pj,t. It follows that

E[S
(i,j)
t+1 − S

(i,j)
t |pt] = E[(ci,t+1 − cj,t+1)− (ci,t − cj,t)|pt]

+
1

θ
E[(Ri,t+1 −Rj,t+1)− (Ri,t −Rj,t)|pt]

= (pi,t − pj,t)− (pi,t − pj,t)

= 0

and thus that E[S
(i,j)
t+1 |S

(i,j)
t ] = S

(i,j)
t , and thus that S

(i,j)
t is a martingale. Finally,

note that |S(i,j)
t+1 − S

(i,j)
t | ≤ 2, so by Azuma’s inequality

Pr
[
S

(i,j)
t ≥ 4

√
T log(TK)

]
≤ (TK)−2

Taking the union bound, we find that with probability at least 1 − 1
T

, S(i,j) ≤

4
√
T log(TK) for all i, j, and t. Finally, since with probability at least 1 − 2

T
each

Ri,t lies in
[
−2Kθ

√
T log T − (K − 1)δ, δ

]
, with probability at least 1 − 3

T
we have

that (for all i, j, and t)
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ci,t − cj,t = S
(i,j)
t − 1

θ
(Ri,t −Rj,t)

≤ 4
√
T log(TK) +

1

θ
|Ri,t −Rj,t|

≤ 4
√
T log(TK) + 2K

√
T log T +

Kδ

θ

≤ 7Kδ

θ

= 7K
√
Tδ

= B

Lemma 3.3.2 implies that if each arm plays strategy S∗, then each arm i will

receive on average µi/K per round. To finish the proof, it suffices to note that by

deviating and playing a different strategy S from S∗, one of two things can occur. If

playing this different strategy S does not trigger the defect condition in (1), then still

each arm will be played roughly 1/K of the time (and your total utility is unchanged

up to o(T ) additive factors). On the other hand, once the defect condition is triggered,

you can receive at most µ1 − µ2 utility per round (and only if you are arm 1). This

implies that as long as µ1/K > µ1 − µ2, there is no incentive to deviate.

Additional details are provided in Appendix B.1.

While the theorem above merely claims that a bad set of distributions for the

arms exists, the proof shows it is possible to collude in a wide range of instances - in

particular, any collection of distributions which satisfies µ1 − µ2 ≤ µ1/K. A natural

question is whether we can extend the above results to show that it is possible to

collude in any set of distributions.

One issue with the collusion strategy in the above proof is that if µ1−µ2 > µ1/K,

then arm 1 will have an incentive to defect in any collusive strategy that plays all
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the arms evenly (arm 1 can report a bit over µ2 per round, and make µ1 − µ2 every

round instead of µ1 every K rounds). One solution to this is to design a collusive

strategy that plays some arms more than others in equilibrium (for example, playing

arm 1 90% of the time). We show how to modify our result for two arms to achieve

an arbitrary market partition and thus work over a broad set of distributions.

Theorem 3.3.3. Let mechanism M be a (ρ, δ)-low regret algorithm for the multi-

armed bandit problem with two arms, where ρ ≤ T−2 and δ ≥
√
T log T . Then, in

the strategic multi-armed bandit problem under the tacit observational model, for any

distributions D1, D2 of values for the arms (supported on [
√
δ/T , 1]), there exists an

O(
√
Tδ)-Nash Equilibrium for the arms where a principal using mechanism M gets

at most O(
√
Tδ) revenue.

Proof. See Appendix B.1.

Unfortunately, it as not as easy to modify the proof of Theorem B.1.3 to prove

the same result for K arms. It is an interesting open question whether there exist

collusive strategies for K arms that can achieve an arbitrary partition of the market.

3.4 Positive Results

In this section we will show that, in contrast to the previous results on collusion,

there exists a mechanism for the principal that can obtain Θ(T ) revenue from the

arms when they play according to an o(T )-Nash equilibrium.

We begin by demonstrating a simpler version of our mechanism (Mechanism 2)

that guarantees the principal Θ(T ) revenue whenever the arms play according to their

dominant strategies. In Section 3.4.2, we then show how to make this mechanism more

robust (Mechanism 3) so that the principal is guaranteed Θ(T ) revenue whenever the

arms play according to any o(T )-approximate Nash equilibrium (thus showing a sep-

aration between the power of adversarial low-regret algorithms and general learning
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algorithms in this model). As an added bonus, we show that this mechanism also

works for a combination of strategic and non-strategic arms (and therefore achieves

low regret in the classical stochastic multi-armed bandits setting).

Throughout this section we will assume we are working in the tacit observational

model and the unrestricted payment model (unless otherwise specified). We postpone

all the proofs of this section to Appendix B.2.

3.4.1 Good dominant strategy equilibria

This mechanism essentially incentivizes each arm to report the mean of its distribution

and then runs a second-price auction, asking the arm with the highest mean for the

second-highest mean each round.

Define µi as the mean of distribution Di for i = 1, . . . , K, let µmin = mini:µi 6=0(µi),

and u = − log µmin + 1. We assume throughout that u = o(T/K).

Algorithm 2 Truthful mechanism for strategic arms with known stochastic values
in the tacit model
Play each arm once (i.e. play arm 1 in the first round, arm 2 in the second round,
etc.). Let wi be the value arm i reports in round i.
Let i∗ = arg maxwi (breaking ties lexicographically), and let w′ = maxi 6=i∗ wi.
Tell arm i∗ the value of w′. Play arm i∗ for R = T − (u+ 2)K − 1 rounds. If arm i∗

ever reports a value different from w′, stop playing it immediately. If arm i∗ always
gives w′, play it for one bonus round (ignoring the value it reports).
For each arm i such that i 6= i∗, play it for one round.
For each arm i satisfying u + log(wi) ≥ 0, play it bu + log(wi)c times. Then, with
probability u+ log(wi)− bu+ log(wi)c, play arm i for one more round.

We will first show that the dominant strategy of each arm in this mechanism

includes truthfully reporting their mean at the beginning, and then then compute the

principal’s revenue under this dominant strategy.

Lemma 3.4.1. The following strategy is the dominant strategy for arm i in Mecha-

nism 2:
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1. (line 1 of Mechanism 2) Report the mean value µi of Di the first time when arm

i is played.

2. (lines 3,4 of Mechanism 2) If i = i∗, for the R rounds that the principal expects

to see reported value w′, report the value w′. For the bonus round, report 0. If

i 6= i∗, report 0.

3. (line 5 of Mechanism 2) For all other rounds, report 0.

Corollary 3.4.2. Under Mechanism 2, the principal will receive revenue at least

µ′T − o(T ) when arms use their dominant strategies, where µ′ is the second largest

mean in the set of means µi.

We additionally show that the performance of Mechanism 2 is as good as possible;

no mechanism can do better than the second-best arm in the worst case.

Lemma 3.4.3. Let µ and µ′ be the largest and second largest values respectively

among the µi. Then for any constant α > 0, no truthful mechanism can guarantee

(αµ+ (1− α)µ′)T revenue in the worst case.

3.4.2 Good approximate Nash equilbria

One issue with Mechanism 2 is that, while the principal achieves Θ(T ) revenue when

the arms play according to their dominant strategies, there can exist ε-Nash equilibria

for the arms which still leave the principal with negligible revenue. For instance, if

there are two arms with equal means µ1 = µ2 = µ, one possible ε-Nash equilibrium is

for them both to bid µ, and then for arm i∗ to immediately defect after it is chosen.

This is not a dominant strategy, since arm i∗ surrenders its bonus for not defecting,

but since this bonus is at most 1, this is still an ε-Nash equilibrium for any ε = o(T )

which is larger than 1.

We can make Mechanism 3 more robust to strategies like this by increasing the size

of the bonus with ε. If we additionally allow a tiny buffer between the current reported
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average and w′, this mechanism has the added property that it works even when there

are a mixture of strategic and non-strategic arms (and the principal does not know

which are which). In particular, this Mechanism 3 obtains low-regret in the classical

stochastic multi-armed bandits setting, which implies that our negative results in

Section 3.3 are really due to the adversarial nature of the low-regret guarantees.

As before, define µi as the mean of distribution Di for i = 1, ..., K. Our mechanism

takes in two parameters, B (representing the size of the bonus) and M (representing

the size of the buffer). We will set B = 2ε1/4T 3/4/µmin and M = 8B−1/2 ln(KT ). In

addition, we will define u = − log (mini:µi 6=0 µi) + 2 +M . We assume u = o( T
BK

).

Algorithm 3 Truthful mechanism for strategic/non-strategic arms in the tacit model

Play each arm B times (i.e. play arm 1 in the first B rounds, arm 2 in the next B
rounds, etc.). Let w̄i be the average value arm i reported in its B rounds.
Let i∗ = arg max w̄i (breaking ties lexicographically), and let w′ = maxi 6=i∗ w̄i.
Tell arm i∗ the value of w′. Play arm i∗ for R = T − (u + 3)BK rounds. If arm i∗

ever reports values with average less than w′−M in any round after B rounds in this
step, stop playing it immediately. If arm i∗ gives average no less than w′ −M , play
it for B bonus rounds (ignoring the value it reports).
For each arm i such that i 6= i∗, play it for B rounds.
For each arm i satisfying u + log(w̄i −M) ≥ 0, play it Bb(u + log(w̄i −M))c times.
Then, with probability u+ log(w̄i −M)− bu+ log(w̄i −M)c, play arm i for B more
rounds.

We begin by characterizing the dominant strategy for Mechanism 3. Similarly as

in Lemma 3.4.1, we show that this dominant strategy involves each arm reporting

their true mean in the beginning rounds.

Lemma 3.4.4. The following strategy is the dominant strategy for arm i in Mecha-

nism 3:

1. (line 1 of Mechanism 3) For the first B rounds, report a total sum of (µi+M)B.

2. (lines 3,4 of Mechanism 3) If i = i∗, for the R rounds that the principal expects

to see reported value w′, report the value w′ − M . For the B bonus rounds,

report 0. If i 6= i∗, report 0.
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3. (line 5 of Mechanism 3) For all other rounds, report 0.

We use this to show that under any o(T )-Nash equilibrium, the principal receives

µ′T − o(T ) revenue under Mechanism 3.

Corollary 3.4.5. Under Mechanism 3, the principal will receive revenue at least

µ′T − o(T ) whenever arms play according to an ε-Nash equilibrium, where µ′ is the

second largest mean in the set of means µi and ε = o(T ).

The dominant strategy in Lemma 3.4.4, as written, requires the arms to know

their own means µi (in particular for step 1). However, if the arms don’t initially

know their means, they can instead simply report their value (plus M) each round,

and still report a total sum of (µi +M)B in expectation. This no longer results in a

strictly dominant strategy, but instead an o(T )-dominant strategy.

Lemma 3.4.6. The following strategy is a prior-independent o(T )-dominant strategy

for arm i in Mechanism 3:

1. (line 1 of Mechanism 3) For each round t in the first B rounds, report vi,t +M .

2. (lines 3,4 of Mechanism 3) If i = i∗, for the R rounds that the principal expects

to see reported value w′, report the value w′ − M . For the B bonus rounds,

report 0. If i 6= i∗, report 0.

3. (line 5 of Mechanism 3) For all other rounds, report 0.

It is an interesting question whether a more clever stochastic bandit algorithm can

be embedded without destroying dominant strategies, and also whether a solution

exists in exact dominant strategies for this model.

Similarly, the dominant strategy in Lemma 3.4.4 assumes we are in the unre-

stricted payment regime, because sometimes the value you must report (whether it is

µi +M or w′ −M) might be larger than the value received in that round. However,
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again it is possible to adapt the mechanism (by setting M = 0) and dominant strat-

egy in Lemma 3.4.4 to work for arms in the restricted payment regime at the cost of

transforming it into a o(T )-dominant strategy. To do this, arms (as in the previous

paragraph) simply report their value each round in the first phase of the mechanism.

In the second phase of the mechanism, instead of reporting w′ each round, they again

report their full value, until they have reported a total of Rw′ (at which point they

start reporting 0 for the rest of the game).

Finally, we consider the case when some arms are strategic and other arms are

non-strategic. Importantly, the principal does not know which arms are strategic and

which are non-strategic. We show in this case that the principal can get (per round)

the larger of the largest mean of the non-strategic arms and the second largest mean

of the strategic arms.

Theorem 3.4.7. If the strategic arms all play according to in Lemma 3.4.4, then

the principal will get at least max(µs, µn)T − o(T ) with probability 1− o(1/T ). Here

µs is the second largest mean of the strategic arms and µn is the largest mean of the

non-strategic arms.

3.5 Conclusions and Future Directions

We consider the multi-armed bandit problem with strategic arms: arms obtain a re-

ward when pulled and may pass any of it onto the principal. Our first main result

shows that treating this purely as a learning problem results in undesirable approxi-

mate Nash equilibria for the principle (guaranteeing only o(T ) reward over T rounds).

Our second main result shows that a careful combination of auctions, learning, and

scoring rules provides a learning algorithm such that every approximate Nash equi-

librium guarantees the principal Ω(T ) reward (and even better - the arms have a

dominant strategy). Still, we are far from understanding the complete picture of
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multi-armed bandit problems in strategic settings. Many questions remain, both in

our model and related models.

One limitation of our negative results is that they only show there exists some ‘bad’

approximate Nash equilibrium for the arms, i.e., one where any low-regret principal

receives little revenue. This, however, says nothing about the space of all approximate

Nash equilibria. Does there exist a low-regret mechanism for the principal along with

an approximate Nash equilibria for the arms where the principal extracts significant

utility? An affirmative answer to this question would raise hope for the possibility

of a mechanism that can perform well in both the adversarial and strategic setting,

whereas a negative answer would strengthen our claim that these two settings are

fundamentally at odds.

One limitation of our positive results is that all of the learning takes place at the

beginning of the protocol. As a result, our mechanism fails in cases where the arms’

distributions can change over time. Is it possible to design good mechanisms for

such settings? Ideally, any good mechanism should learn the arms’ values continually

throughout the T rounds, but accommodating this would require novel tools to handle

incentives.

Throughout this chapter, whenever we consider strategic bandits we assume their

rewards are stochastically generated. Can we say anything about strategic bandits

with adversarially generated rewards? The key barrier here seems to be defining what

a strategic equilibrium is in this case - arms need some underlying priors to reason

about their future expected utility.

Finally, there are other quantities one may wish to optimize instead of the utility of

the principal. For example, is it possible to design an efficient principal, who almost

always picks the best arm (even if the arm passes along little to the principal)?

Theorem B.1.3 implies the answer is no if the principal also has to be efficient in
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the adversarial case, but are there other models where we can answer this question

affirmatively?
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Part II

Learning how to price
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Chapter 4

Contextual Search via Intrinsic

Volumes

This chapter is joint work with Renato Paes Leme [97].

4.1 Introduction

Consider the classical problem of binary search, where the goal is to find a hidden real

number x ∈ [0, 1], and where feedback is limited to guessing a number p and learning

whether p ≤ x or whether p > x. One can view this as an online learning problem,

where every round t a learner guesses a value pt ∈ [0, 1], learns whether or not pt < x,

and incurs some loss `(x, pt) (for some loss function `(·, ·)). The goal of the learner is

to minimize the total loss
∑T

t=1 `(x, pt) which can alternatively be thought of as the

learner’s regret. For example, for the loss function `(x, pt) = |x− pt|, the learner can

achieve total regret bounded by a constant via the standard binary search algorithm.

In this chapter, we consider a contextual, multi-dimensional generalization of this

problem which we call the contextual search problem. Now, the learner’s goal is to

learn the value of a hidden vector v ∈ [0, 1]d. Every round, an adversary provides

a context ut, a unit vector in Rd, to the learner. The learner must now guess a
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value pt, upon which they incur loss `(〈ut, v〉, pt) and learn whether or not pt ≤

〈ut, v〉. Geometrically, this corresponds to the adversary providing the learner with

a hyperplane; the learner may then translate the hyperplane however they wish, and

then learn which side of the hyperplane v lies on. Again, the goal of the learner is to

minimize their total loss
∑T

t=1 `(〈ut, v〉, pt).

This framework captures a variety of problems in contextual decision-making.

Most notably, it captures the well-studied problem of contextual dynamic pricing

[8, 44, 80]. In this problem, the learner takes on the role of a seller of a large number

of differentiated products. Every round t the seller must sell a new product with

features summarized by some vector ut ∈ [0, 1]d. They are selling this item to a buyer

with fixed values v ∈ [0, 1]d for the d features (that is, this buyer is willing to pay up

to 〈u, v〉 for an item with feature vector u). The seller can set a price pt for this item,

and observes whether or not the buyer buys the item at this price. If a sale is made,

the seller receives revenue pt; otherwise the seller receives no revenue. The goal of the

seller is to maximize their revenue over a time horizon of T rounds.

The dynamic pricing problem is equivalent to the contextual search problem with

loss function ` satisfying `(θ, p) = θ − p if θ ≥ p and `(θ, p) = θ otherwise. The one-

dimensional variant of this problem was first introduced by Kleinberg and Leighton

[90], who presented an O(log log T ) regret algorithm for this problem and showed that

this was tight. Amin, Rostamizadeh and Syed [8] introduce the problem in its contex-

tual, multi-dimensional form, but assume iid contexts. Cohen, Lobel, and Paes Leme

[44] study the problem with adversarial contexts and improve the Õ(
√
T )-regret ob-

tainable from general purpose contextual bandit algorithms [1] to O(d2 log T )-regret,

based on approximating the current knowledge set (possible values for v) with ellip-

soids. This was later improved to O(d log T ) in [99].

In this chapter we present algorithms for the contextual search problem with

improved regret bounds (in terms of their dependence on T ). More specifically:
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1. For the symmetric loss function `(θ, p) = |θ − p|, we provide an algorithm that

achieves regret O(poly(d)). In contrast, the previous best-known algorithms for

this problem (from the dynamic pricing literature) incur regret O(poly(d) log T ).

2. For the dynamic pricing problem, we provide an algorithm that achieves regret

O(poly(d) log log T ). This is tight up to a polynomial factor in d, and improves

exponentially on the previous best known bounds of O(poly(d) log T ).

Both algorithms can be implemented efficiently in randomized polynomial time

(and achieve the above regret bounds with high probability).

Techniques from Integral Geometry Classical binary search involves keeping

an interval of possible values (the “knowledge set”) and repeatedly bisecting it to

decrease its length. In the one-dimensional case length can both be used as a potential

function to measure the progress of the algorithm and as a bound for the loss. When

generalizing to higher dimensions, the knowledge set becomes a higher dimensional

convex set and the natural measure of progress (the volume) no longer directly bounds

the loss in each step.

To address this issue we use concepts from the field of integral geometry, most no-

tably the notion of intrinsic volumes. The field of integral geometry (also known as

geometric probability) studies measures on convex subsets of Euclidean space which

remain invariant under rotations/translations of the space. One of the fundamental

results in integral geometry is that in d dimensions there are d+ 1 essentially distinct

different measures, of which surface area and volume are two. These d + 1 different

measures are known as intrinsic volumes, and each corresponds to a dimension be-

tween 0 and d (for example, surface area and volume are the (d− 1)-dimensional and

d-dimensional intrinsic volumes respectively).
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A central idea in our algorithm for the symmetric loss function is to choose our

guess pt so as to divide one of the d different intrinsic volumes in half. The choice

of which intrinsic volume to divide in half depends crucially on the geometry of the

current knowledge set. When the knowledge set is well-rounded and ball-like, we can

get away with simply dividing the knowledge set in half by volume. As the knowl-

edge set becomes thinner and more pointy, we must use lower and lower dimensional

intrinsic volumes, until finally we must divide the one-dimensional intrinsic volume

in half. By performing this division carefully, we can ensure that the total sum of all

the intrinsic volumes of our knowledge set (appropriately normalized) decreases by

at least the loss we incur each round.

Our algorithm for the dynamic pricing problem builds on top of the ideas de-

veloped for the symmetric loss together with a new technique for charging progress

based on an isoperimetric inequality for intrinsic volumes that can be obtained from

the Alexandrov-Fenchel inequality. This new technique allows us to combine the

doubly-exponential buckets technique of Kleinberg and Leighton with our geometric

approach to the symmetric loss and obtain an Od(log log T ) regret algorithm for the

pricing loss.

One can ask whether simpler algorithms can be obtained for this setting using only

the standard notions of volume and width. We analyze simpler halving algorithms

and show that while they obtain Od(1) regret for the symmetric loss, the dependency

on the dimension d is exponentially worse. While the simple halving algorithms

are defined purely in terms of standard geometric notions, our analysis of them still

requires tools from intrinsic geometry. For the pricing loss case, we are not aware

of any simpler technique just based on standard geometric notions that can achieve

Od(log log T ) regret.

Finally, we would like to mention that to the best of our knowledge this is the

first application of intrinsic volumes to theoretical algorithm design.
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Applications and Other Related Work The main application of our result is

to the problem of contextual dynamic pricing. The dynamic pricing problem has

been extensively studied with different assumptions on contexts and valuation. Our

model is the same as the one in Amin et al [8], Cohen et al [43] and Lobel et al [99]

who provide regret guarantees of O(
√
T ), O(d2 log T ) and O(d log T ) respectively.

The problem was also studied with stochastic valuation and additional structural

assumptions on contexts in Javanmard and Nazerzadeh [80], Javanmard [79] and

Qiang and Bayati [119]. This line of work relies on techniques from statistic learning,

such as greedy least squares, LASSO and regularized maximum likelihood estimators.

The guarantees obtained there also have log T dependency on the time horizon.

The contextual search problem was also considered with the loss function `(θ, p) =

1{|θ − p| > ε}. For this loss function, Lobel et al [99] provide the optimal regret

guarantee of O(d log(1/ε)). The geometric techniques developed in this line of work

were later applied by Gillen et al [67] in the design of online algorithms with an

unknown fairness objective. Another important application of contextual search is

the problem of personalized medicine studied by Bastani and Bayati [22] in which the

algorithms is presented with patients who are described in terms of feature vectors

and needs to decide on the dosage of a certain medication. The right dosage for

each patient might depend on age, gender, medical history along with various other

features. After prescribing a certain dosage, the algorithm only observes if the patient

was underdosed or overdosed.

Chapter organization The remainder of the chapter is organized as follows. In

Section 4.2 we define the contextual search problem and related notions. In Section

4.3 we review what is known about this problem in one dimension (where contexts are

meaningless), specifically the O(log log T ) regret algorithm of Leighton and Kleinberg

for the dynamic pricing problem and the corresponding Ω(log log T ) lower bound. In
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Section 4.4, we present our algorithms for the specific case where d = 2, where the

relevant intrinsic volumes are just the area and perimeter, and where the proofs of

correctness require no more than elementary geometry (and the 2-dimensional isoperi-

metric inequality). In Section 4.5, we define intrinsic volumes formally and introduce

all relevant necessary facts. In Section 4.6, we present our two main algorithms in

their general form, prove upper bounds on their regret, and argue that they can be

implemented efficiently in randomized polynomial time. In Section 4.7, we consider

simple halving algorithms (such as those that always halve the width or volume of

the current knowledge set) and analyze their regret using our tools from integral ge-

ometry. Finally in Section 4.8 we discuss how to generalize our algorithms to other

loss functions.

4.2 Preliminaries

4.2.1 Contextual Search

We define the contextual search problem as a game between between a learner and

an adversary. The adversary begins by choosing a point v ∈ [0, 1]d. Then, every

round for T rounds, the adversary chooses a context represented by an unit vector

ut ∈ Rd and gives it to the learner. The learner must then choose a value pt ∈ R,

whereupon the learner accumulates regret `(〈ut, v〉, pt) (for some loss function `(·, ·))

and learns whether pt ≤ 〈ut, v〉 or pt ≥ 〈ut, v〉. The goal of the learner is to minimize

their total regret, which is equal to the sum of their losses over all time periods:

Reg =
∑

t `(〈ut, v〉, pt).

We primarily consider two loss functions:
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Symmetric loss. The symmetric loss measures the absolute value between the guess

and the actual dot product, i.e,

`(θ, p) = |θ − p|.

Alternatively, `(θ, p) can be thought of as the distance between the learner’s hyper-

plane Ht := {x ∈ Rd; 〈ut, x〉 = pt} and the adversary’s point v.

Pricing loss. The pricing loss corresponds to the revenue loss by pricing an item at

p when the buyer’s value is θ. If a price p ≤ θ the product is sold with revenue p,

so the loss with respect to the optimal revenue θ is θ − p. If the price is p > θ, the

product is not sold and the revenue is zero, generating loss θ. In other words,

`(θ, p) = θ − p1{p ≤ θ}.

The pricing loss function is highly asymmetric: underpricing by ε can only cause the

revenue to decrease by ε while overpricing by ε can cause the item not to be sold

generating a large loss.

4.2.2 Notation and framework

The algorithms we consider will keep track of a knowledge set St ⊆ S1 := [0, 1]d,

which will be the set of vectors v consistent with all observations so far. In step t if

the context is ut and the guess is pt, the algorithm will update St+1 to S+
t (pt;ut) or

S−t (pt;ut) depending on the feedback obtained, where:

S+
t (pt;ut) := {x ∈ St; 〈ut, x〉 ≥ pt} and S−t (pt;ut) := {x ∈ St; 〈ut, x〉 ≤ pt}
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Since S1 is originally a convex set and since St+1 is always obtained from St by

intersecting it with a halfspace, our knowledge set St will remain convex for all t.

Given context ut in round t, we let p
t

and pt be the minimum and maximum

(respectively) of the dot product 〈ut, x〉 that is consistent with St:

p
t

= min
x∈St

〈ut, x〉 and pt = max
x∈St

〈ut, x〉

Finally, given a set S and an unit vector u we will define the width in the direcion

u as

width(S;u) = max
x∈S
〈u, x〉 −min

x∈S
〈u, x〉.

We will consider strategies for the learner that map the current knowledge set St

and context ut to guesses pt. In Algorithm 4 we summarize our general setup.

Algorithm 4 Contextual search framework

1: Adversary selects v ∈ S1 = [0, 1]d

2: for t = 1 to T do
3: Learner receives a unit vector ut ∈ Rd, ‖ut‖ = 1.
4: Learner selects pt ∈ R and incurs loss `(〈ut, v〉, pt).
5: Learner receives feedback and learns the sign of 〈ut, x〉 − pt.
6: Learner updates St+1 to S+

t (pt;ut) or S−t (pt;ut) accordingly.
7: end for

Oftentimes, we will want to think of d as fixed, and consider only the asymptotic

dependence on T of some quantity (e.g. the regret of some algorithm). We will use

the notation Od(·) and Ωd(·) to hide the dependency on d.

4.3 One dimensional case and lower bounds

In the one dimensional case, contexts are meaningless and the adversary only gets

to choose the unknown parameter v ∈ [0, 1]. Here algorithms which achieve optimal

regret (up to constant factors) are known for both the symmetic loss and the pricing
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loss. We review them here both as a warmup for the multi-dimensional version and

as a way to obtain lower bounds for the multi-dimensional problem.

For the symmetric loss function, binary search gives constant regret. If the

learner keeps an interval St of all the values of v that are consistent with the feedback

received and in each step guesses the midpoint, then the loss `t ≤ |St| = 2−t|S1|.

Therefore the total regret Reg =
∑

t `t = O(1).

For the pricing loss, one reasonable algorithm is to perform log T steps of binary

search, obtain an interval containing v of length 1/T and price at the lower end

of this interval. This algorithm gives the learner regret O(log T ). Kleinberg and

Leighton [90] provide a surprising algorithm that exponentially improves upon this

regret. Their policy biases the search towards lower prices to guarantee that if at

some point the price pt is above v, then the length of the interval St decreases by a

large factor.

Kleinberg and Leighton’s algorithm works as follows. At all rounds, they maintain

a knowledge set St = [at, at + ∆t]. If ∆t > 1/T , they choose the price pt = at + 1/22kt

where kt = b1 + log2 log2 ∆−1
t c (this is approximately equivalent to choosing pt =

at + ∆2
t ). Otherwise (if ∆t ≤ 1/T ), they set their price equal to at. (In Appendix C.1

we present their analysis of this algorithm.) Moreover, they show that this bound is

tight up to constant factors:

Theorem 4.3.1 (Kleinberg and Leighton [90]). The optimal regret for the contextual

search problem with pricing loss in one dimension is Θ(log log T ).

Their result implies a lower bound for the d-dimensional problem. If the adversary

only uses coordinate vectors ei = (0 . . . 010 . . . 0) as contexts, then the problem reduces

to d independent instances of the one dimensional pricing problem.

Corollary 4.3.2. Any algorithm for the d-dimensional contextual search problem with

pricing loss must incur Ω(d log log T ) regret.
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4.4 Two dimensional case

We start by showing how to obtain optimal regret for both loss functions in the two

dimensional case. We highlight this special case since it is simple to visualize and

conveys the geometric intuition for the general case. Moreover, it can be explained

using only elementary plane geometry.

4.4.1 Symmetric loss

Our general approach will be to maintain a potential function of the current knowledge

set which decreases each round by an amount proportional to the loss. Since at each

time t, the loss is bounded by the width width(St, ut) of the knowledge St in direction

ut, it suffices to show that our potential function decreases each round by some amount

proportional to the width of the current knowledge set.

What should we pick as our potential function? Inspired by the one-dimensional

case, where one can take the potential function to be the length of the current interval,

a natural candidate for the potential function is the area of the current knowledge

set. Unfortunately, this does not work; if the knowledge set is long in the direction

of ut and skinny in the perpendicular direction (e.g. Figure 4.1a), then it can have

large width but arbitrarily small area.

Ultimately we want to make the width of the knowledge set as small as possible in

any given direction. This motivates a second choice of potential function: the average
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width of the knowledge set, i.e., 1
2π

∫ 2π

0
width(St, uθ)dθ where uθ = (cos θ, sin θ). A

result of Cauchy (see Section 5.5 in [89]) shows that the average width of a convex

2-dimensional shape is proportional to the perimeter, so this potential function can

alternately be thought of as the perimeter of the knowledge set.

Unfortunately, this too does not quite work. Now, if the set St is thin in the

direction ut and long in the perpendicular direction (e.g. Figure 4.1b), any cut will

result in a negligible decrease in perimeter (in particular, the perimeter decreases by

O(w2) instead of Θ(w)).

This motivates us to consider an algorithm that keeps track of two potential

functions: the perimeter Pt, and the square root of the area
√
At. Each iteration, the

algorithm will (depending on the shape of the knowledge set) choose one of these two

potentials to make progress in. If St is long in the ut direction, cutting it through the

midpoint will allow us to decrease the perimeter by an amount proportional to the

loss incurred (Figure 4.1a). If St is thin in the ut direction, then we can charge the

loss to the square root of the area (Figure 4.1b).

In Algorithm 5 we describe how to compute the guess pt from the knowledge set

St and ut. Recall that the full setup together with how knowledge sets are updated

is defined in Algorithm 4.

Algorithm 5 2D-SymmetricSearch

1: w = 1
2
(pt − pt) and pmid

t = 1
2
(pt + p

t
)

2: h = length of the segment St ∩ {x; 〈ut, x〉 = pmid
t }

3: if w ≥ h then
4: set pt = pmid

t

5: else
6: set pt such that Area(S+

t ) = Area(S−t )
7: end if

Theorem 4.4.1. The 2D-SymmetricSearch algorithm (Algorithm 5) has regret

bounded by 8 + 2
√

2 for the symmetric loss.
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Proof. We will keep track of the perimeter Pt and the area At of the knowledge

set St and consider the potential function Φt = Pt +
√
At/C, where the constant

C = (1 −
√

1/2)/2. We will show that every round this potential decreases by at

least the regret we incur that round:

Φt − Φt+1 ≥ |〈ut, v〉 − pt|.

This implies that the total regret is bounded by Reg ≤ Φ1 = 4 + 2/(1 −
√

1/2) =

8+2
√

2. We will write `t as shorthand for the loss `(〈ut, v〉, pt) = |〈ut, v〉−pt| at time

t.

We first note that both Pt and At are decreasing in t. This follows from the fact

that St+1 is a convex subset of St. We will show that when w ≥ h, Pt decreases by

at least `t, whereas when w < h,
√
At decreases by at least `t.

Case w ≥ h. In this case, pt = pmid
t . We claim here that Pt − Pt+1 ≥ w. To see this,

let x1 and x2 be the two endpoints of the line segment St ∩ {x; 〈ut, x〉 = pmid
t } (so

that h = ‖x1 − x2‖). Without loss of generality, assume St+1 = S−t (the other case is

analogous).

Note that the boundary of St+1 is the same as the boundary of St, with the

exception that the segment of the boundary of St in the half-space {x; 〈ut, x〉 ≥ pmid
t }

has been replaced with the line segment x1x2. The part of boundary of St in the

halfspace {〈ut, x〉 ≥ pmid}, reach some point on the line 〈ut, x〉 = pt, and return to

x2. Since pt − pmid
t = w, any such path must have length at least 2w. From the fact

that w ≥ h, it follows that:

Pt − Pt+1 ≥ 2w − h ≥ 2w − w ≥ w ≥ `t.
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Case w < h. We set pt such that At+1 = At/2, so

Φt − Φt+1 ≥ (
√
At −

√
At+1)/C ≥

√
At(1−

√
1/2)/C = 2

√
At.

If we argue that 2
√
At ≥ 2w ≥ `t we are done. To show this, define x1 and x2 as

before, and let xmin be a point in St that satisfies 〈ut, xmin〉 = p
t
, and likewise let xmax

be a point in St that satisfies 〈ut, xmax〉 = pt. Since St is convex, it contains the two

triangles with endpoints (x1, x2, xmax) and (x1, x2, xmin), see Figure 4.1c. But these

two triangles are disjoint and each have area at least 1
2
wh, so At ≥ wh ≥ w2, since

h > w. It follows that
√
At ≥ w.

4.4.2 Pricing loss

To minimize regret for pricing loss, we want to somehow combine our above insight of

looking at both the area and the perimeter with Leighton and Kleinberg’s bucketing

procedure for the 1D case. At first we might try to do this bucketing procedure just

with the area.

That is, if the area of the current knowledge set belongs to the interval [∆2,∆],

choose a price that carves off a subset of total area ∆2. Now, if you overprice, you

incur O(1) regret, but the area of your knowledge set shrinks to ∆2 (and belongs to a

new “bucket”). On the other hand, if you underprice, your area decreases by at most

∆, so you can underprice at most ∆−1 times. If the regret you incurred this round

was at most O(∆), then this means that you would incur at most O(1) total regret

underpricing while your area belongs to this interval.

This would be true if the regret per round was at most the area of the knowledge

set. Unfortunately, as noted earlier, this is not true; the regret per round scales

with the width of the knowledge set, not the area, and you can have knowledge sets
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with large width and small area. The trick, as before, is to look at both area and

perimeter, and argue that at each step the bucketization argument for at least one of

these quantities holds.

More specifically, let Pt again be the perimeter of the knowledge set at time t, At

be the area of the knowledge set at time t, and let A′t = 2
√
πAt be a normalization of

At. Note that by the isoperimetric inequality for dimensions (which says that of all

shapes with a given area, the circle has the least perimeter), we have that Pt ≥ A′t.

Let `k = exp(−1.5k). Our buckets will be the intervals (`k+1, `k]. We will define

the function bkt(x) = k if x ∈ (`k+1, `k]. Our algorithm is described in Algorithm 6.

The analysis follows.

Algorithm 6 2D-PricingSearch

1: w = (pt − pt)
2: hmax = maximum length of a segment of the form St ∩ {x; 〈ut, x〉 = p}
3: if w < 1/T then
4: choose pt = p

t
.

5: else if bkt(A′t) = bkt(Pt) then
6: set pt such that Area(S−t ) = `2

bkt(A′t)+1/4π.

7: else if bkt(A′t) > bkt(Pt) and w < hmax then
8: set pt such that Area(S−t ) = `2

bkt(A′t)+1/4π.

9: else if bkt(A′t) > bkt(Pt) and w ≥ hmax then
10: set pt such that Perimeter(St)− Perimeter(S+

t ) = 1
2
`bkt(Pt)+1.

11: end if

Theorem 4.4.2. The 2D-PricingSearch algorithm (Algorithm 6) has regret bounded

by O(log log T ) for the pricing loss.

Proof. We will divide the behavior of the algorithm into four cases (depending on

which branch of the if statement in Algorithm 6 is taken), and argue the total regret

sustained in each case is at most O(log log T ).

• Case 1: w ≤ 1/T . Whenever this happens, we pick the minimum possible price

in our convex set, so we definitely underprice and sustain regret at most 1/T .

The total regret sustained in this case over T rounds is therefore at most 1.
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• Case 2: bkt(A′t) = bkt(Pt). Let bkt(Pt) = bkt(A′t) = k. Note that k ≤

O(log log T ), or else we would be in Case 1 (if Pt < 1/T , then w < 1/T ).

Therefore, fix k; we will show that the total regret we incur for this value of k

is at most O(1). Summing over all O(log log T ) values of k gives us our upper

bound.

If we overprice and do not make a sale, this contributes regret at most 1, but

then A′t+1 = `k+1 and we leave this bucket. If we underprice, our regret is at

most w ≤ Pt ≤ `k, and the decrease in area At+1−At = `2
k+1/4π. It follows that

we can underprice at most 4π`2
k/`

2
k+1 before leaving this bucket, and therefore

we incur total regret at most

4π
`2
k

`2
k+1

`k = 4π exp(−3 · 1.5k + 2 · 1.5k+1) = 4π = O(1).

• Case 3: bkt(A′t) > bkt(Pt) and w < hmax. Let bkt(A′t) = r and bkt(Pt) = k. As

in case 2, we will fix r and argue that total regret we incur for this r is at most

O(1). As before, if we overprice, A′t+1 becomes `r+1, so we incur total regret at

most O(1) from overpricing.

Now, note that since w < hmax, St contains two disjoint triangles with base hmax

and combined height w (see Figure 4.1c), so At ≥ whmax > w2, and therefore

w <
√
At = A′t/2

√
π. Therefore, if we underprice, we incur regret at most

A′t/2
√
π ≤ `r. As before, the area decreases by at least At+1 − At = `2

r+1/4π if

we underprice, so we underprice at most 4π`2
k/`

2
k+1 before leaving this bucket,

and therefore we incur total regret at most

4π
`2
r

`2
r+1

`r = 4π exp(−3 · 1.5r + 2 · 1.5r+1) = 4π = O(1).
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• Case 4: bkt(A′t) > bkt(Pt) and w ≥ hmax. Let bkt(A′t) = r and bkt(Pt) = k,

and fix k. Now At ≥ whmax ≥ h2
max, so hmax < A′t/2

√
π ≤ `r/2

√
π.

First, note that it is in fact possible to set pt so that Perimeter(St) −

Perimeter(S+
t ) = 1

2
`k+1, since the total perimeter is at least `k+1, so this corre-

sponds to just cutting off a chunk (S+
t ) of St of perimeter Perimeter(St)− 1

2
`k+1

(which is possible since this is nonnegative and less than Perimeter(St)).

If we overprice, then the perimeter of the new region (S−t ) is equal to

Perimeter(St)− Perimeter(S+
t ) = `k+1/2, plus the length of the segment formed

by the intersection of St with {x; 〈ut, x〉 = pt〉. The length of this segment is at

most hmax, so the perimeter is at most `k+1/2+`r/2
√
π ≤ `k+1/2+`k+1/2

√
π ≤

`k+1. This means we can overprice at most once before the perimeter changes

buckets, and we thus incur at most O(1) regret due to overpricing.

If we underprice, then we incur regret at most w ≤ Pt ≤ `k, and the perimeter

of the new region decreases by at least `k+1/2− `r/2
√
π ≥ `k+1/5. This means

we can underprice at most 5`k/`k+1 times before we switch buckets, and we

incur total regret at most

5
`k
`k+1

`k = 4 exp(−2 · 1.5r + 1.5r+1) ≤ 4 = O(1).

4.5 Interlude: Intrinsic Volumes

The main idea in the two dimensional case was to balance between making progress in

a two-dimensional measure of the knowledge set (the area) and in a one-dimensional

measure (the perimeter). To generalize this idea to higher dimensions we will keep
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Figure 4.2: Steiner’s formula for 2D: Area(K + εB) = Area(K) + Perimeter(K) · ε+ πε2

track of d potential functions, each corresponding to a j-dimensional measure of the

knowledge set for each j in {1, 2, . . . d}.

Luckily for us, one of the central objects of study in integral geometry (also

known as geometric probability) corresponds exactly to a j-dimensional measure of

a d-dimensional object. Many readers are undoubtedly familiar with two of these

measures, namely volume (the d-dimensional measure) and surface area (the (d− 1)-

dimensional area) but it is less clear how to define the 1-dimensional measure of a

three-dimensional convex set (indeed, Shanuel [126] jokingly calls his lecture notes

on the topic “What is the length of a potato?”). These measures are known as in-

trinsic volumes and they match our intuition for how a j-dimensional measure of a

d-dimensional set should behave (in particular, reducing to the regular j-dimensional

volume as the set approaches a j-dimensional object).

We now present a formal definition of intrinsic volumes and summarize their most

important properties. We refer to the excellent book by Klain and Rota [89] for a

comprehensive introduction to integral geometry.

Intrinsic volumes can be defined as the coefficients that arise in Steiner’s formula

for the the volume of the (Minkowski) sum of a convex set K ⊆ Rd and an unit ball

B. Steiner [126] shows that the Vol(K + εB) is a polynomial in ε and the intrinsic

volumes Vj(K) are the (normalized) coefficients of this polynomial:

Vol(K + εB) =
d∑
j=0

κd−jVj(K)εd−j (4.1)
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where κd−j is the volume of the (d − j)-dimensional unit ball. An useful exercise to

get intuition about intrinsic volumes is to directly compute the intrinsic volumes of

the parallelotope [0, a1] × [0, a2] × [0, ad]. It is easy to check for d = 2 and 3 (see

Figure 4.2) that Vd = a1a2 . . . ad, V1 = a1 + a2 + . . .+ ad and V0 = 1. More generally

Vj correspnds to the symmetric polynomial of degree j: Vj =
∑

S⊆[d];|S|=j aS where

aS =
∏

s∈S as. In particular for [0, 1]d the j-th intrinsic volume is Vj =
(
d
j

)
.

Definition 4.5.1 (Valuations). Let Convd be the class of compact convex bodies in Rd.

A valuation is a map ν : Convd → R such that ν(∅) = 0 and for every S1, S2 ∈ Convd

satisfying S1 ∪ S2 ∈ Convd it holds that

ν(S1 ∪ S2) + ν(S1 ∩ S2) = ν(S1) + ν(S2).

A valuation is said to be monotone if ν(S) ≤ ν(S ′) whenever S ⊆ S ′. A valuation is

said to be non-negative is ν(S) ≥ 0. Finally, a valuation is rigid if ν(S) = ν(T (S))

for every rigid motion (i.e. rotations and translations) T of Rd.

To define what it means for a valuation to be continuous, we need a notion of

distance betweeen convex sets. We define the Hausdorff distance δ(K,L) between two

sets K,L ∈ Convd to be the the minimum ε such that K + εB ⊆ L and L+ εB ⊆ K

where B is the unit ball. This notion of distance allows us to define limits: a sequence

Kt ∈ Convd converges to K ∈ Convd (we write this as Kt → K) if δ(Kt, K) → 0.

Continuity can now be defined in the natural way.

Definition 4.5.2 (Continuity). A valuation function ν is continuous if whenever

Kt → K then ν(Kt)→ ν(K).

Theorem 4.5.3. The intrinsic volumes are non-negative monotone continuous rigid

valuations.
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In fact the intrinsic volumes are quite special since they form a basis for the set of

all valuations with this property. This constitutes the fundamental result of the field

of integral geometry:

Theorem 4.5.4 (Hadwiger). If ν is a continuous rigid valuation of Convd, then there

are constants c0, . . . , cd such that ν =
∑d

i=0 ciVi.

Next we describe a few important properties of intrinsic valuations that will be

useful in the analysis of our algorithms:

Theorem 4.5.5 (Homogeneity). The map Vj is j-homogenous, i.e., Vj(αK) =

αjVj(K) for any α ∈ R≥0.

Theorem 4.5.6 (Ambient independence). Intrinsic volumes are independent of the

ambient space, i.e, if K ∈ Convd and K ′ is a copy of K embedded in a larger dimen-

sional space

K ′ = T ({(x, 0k);x ∈ K, 0k ∈ Rk} ∈ Convd+k

for a rigid transformation T , then for any j ≤ d, we have Vj(K) = Vj(K
′).

We now provide an inequality between intrinsic volumes which we will use later

to derive an isoperimetric inequality for intrinsic volumes. The following inequality

is a consequence of the Alexandrov-Fenchel inequality due to McMullen [105].

Theorem 4.5.7 (Inequality on intrinsic volumes). If S ∈ Convd and any i ≥ 1 then

Vi(S)2 ≥ i+ 1

i
Vi−1(S)Vi+1(S).

One beautiful consequence of Hadwiger’s theorem is a probabilistic interpretation

of intrinsic volumes as the expected volume of the projection of a set onto a random

subspace. To make this precise, define the Grassmannian Gr(d, k) as the collection

of all k-dimensional linear subspaces of Rd. The Haar measure on the Grassmannian
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is the unique probability measure on Gr(d, k) that is invariant under rotations in Rd

(i.e., SO(Rd)).

Theorem 4.5.8 (Random Projections). For any K ∈ Convd, the j-th intrinsic vol-

ume

Vj(K) = EH∼Gr(d,k)[Vol(πH(K))]

where H ∼ Gr(d, k) is a k-dimensional subspace H sampled according to the Haar

measure, πH is the projection on H and Vol(πH(K)) is the usual (k-dimensional)

volume on H.

A remark on notation: we use Vol to denote the standard notion of volume and Vj

to denote intrinsic volumes. When analyzing an object in a d-dimensional (sub)space,

then Vol = Vd.

4.6 Higher dimensions

In this section, we generalize our algorithms from Section 4.4 from the two-

dimensional case to the general multi-dimensional case.

Both results require as a central component lower bounds on the intrinsic volumes

of high dimensional cones. These bounds relate the intrinsic volume of a cone to the

product of the cone’s height and the intrinsic volume of the cone’s base (a sort of

“Fubini’s theorem” for intrinsic volumes).

More formally, a cone S in Rd+1 is the convex hull of a d-dimensional convex set

K and a point p ∈ Rd+1. If the distance from p to the affine subspace containing K is

h, we say the cone has height h and base K. The lemma we require is the following.
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Lemma 4.6.1 (Cone Lemma). Let K be a convex set in Rd, and let S be a cone in

Rd+1 with base K and height h. Then, for all 0 ≤ j ≤ d,

Vj+1(S) ≥ 1

j + 1
hVj(K).

In the two-dimensional case, this lemma manifests itself when we use the fact that

the perimeter of a convex set with height h is at least h. We note that when j = d,

Lemma 4.6.1 holds with equality and is a simple exercise in elementary calculus. On

the other hand, when 0 ≤ j < d, there is no straightforward formula for the (j+1)-th

intrinsic volume of a set in terms of the j-th intrinsic volume of its cross sections.

We begin by taking the Cone Lemma as true, and discuss how to use it to gen-

eralize our contextual search algorithms to higher dimensions in Sections 4.6.1 (for

symmetric loss) and 4.6.2 (for pricing loss). We then prove the Cone Lemma in Sec-

tion 4.6.3. Finally, in Section 4.6.4, we argue that both algorithms can be implmented

efficiently.

4.6.1 Symmetric loss

In this section we present a Od(1) regret algorithm for the contextual search problem

with symmetric loss in d dimensions. The algorithm, which we call SymmetricSearch,

is presented in Algorithm 7.

Recall that in two dimensions, we always managed to choose pt so that the loss

from that round is bounded by the decrease in either the perimeter or the square root

of the area. The main idea of Algorithm 7 is to similarly choose pt such that the loss

is bounded by the decrease in one of the intrinsic volumes, appropriately normalized.

As before, if the width is large enough, we bound the loss by the decrease in the

average width (i.e. the one-dimensional intrinsic volume V1(S)). As the width gets

smaller, we charge the loss to progressively higher-dimensional intrinsic volumes.
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Constants c0 through cd−1 in Algorithm 7 are defined so that c0 = 1 and ci/ci−1 =

1
2i

. In other words, ci = 1
2i−1i!

. Constant c0 is only used in the analysis.

Algorithm 7 SymmetricSearch

1: w = 1
2
width(St;ut)

2: for i = 1 to d do
3: define pi ∈ R such that Vi(S

+
t (pi;ut)) = Vi(S

−
t (pi;ut)).

4: define Ki = {x ∈ St; 〈ut, x〉 = pi}.
5: define Li = (Vi(Ki)/ci)

1/i (set L0 =∞).
6: end for
7: find j such that Lj−1 ≥ w ≥ Lj
8: set pt = pj.

We first argue that this algorithm is well-defined:

Lemma 4.6.2. SymmetricSearch (Algorithm 7) is well-defined, i.e., there is always

a choice of pi and j that satisfies the required properties.

Proof. We begin by arguing that there exists a pi such that Vi(S
+
t (pi;ut)) =

Vi(S
−
t (pi;ut)). To see this, note that the functions φ+(x) = Vi(S

+
t (x;ut)) and

φ−(x) = Vi(S
−
t (x;ut)) are continuous on [p

t
, pt] since the intrinsic volumes are

continuous with respect to Hausdorff distance (Definition 4.5.2 and Theorem 4.5.3).

Moreover, since intrinsic volumes are monotone (Theorem 4.5.3), φ+(x) is decreasing

and φ− is increasing on this interval. Finally, since φ+(p
t
) = φ−(pt), it follows from

the Intermediate Value Theorem that there exists a pi where φ+(pi) = φ−(pi), as

desired.

To see that there exists a j such that Lj−1 ≥ w ≥ Lj, note that Ld = 0 since Kd

is in a d− 1-dimensional hyperplane, so the segments [Lj, Lj−1) for Lj < Lj−1 cover

the entire [0,∞). It follows that one such interval must contain w.

Before we proceed to the regret bound, we will show the following two lemmas.

The first lemma shows that if we pick j in this manner, then Vj(St)
1/j will be at least

Ω(w).
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Lemma 4.6.3. Vj(St) ≥ 1
j
cj−1w

j.

Proof. For j = 1, note that St contains a segment of length 2w, so V1(St) is at most

the 1-dimensional intrinsic volume of that segment, which is exactly 2w (Theorem

4.5.6).

For j > 1, we known that St contains a cone with base Kj−1 and height w

(since the width of St is 2w, there is a point at least distance w from the plane

Hj−1 = {x; 〈ut, x〉 = pj−1}). By Theorem 4.6.1 and the fact that Vj is monotone, this

implies that:

Vj(St) ≥
1

j
wVj−1(Kj−1).

Since w < Lj−1 = (Vj−1(Kj−1)/cj−1)1/j−1, we have that Vj−1(Kj−1) ≥ cj−1w
j−1.

Substituting this into the previous expression, we obtain the desired result.

The second lemma shows that if we pick j in this manner, then Vj(St+1)/Vj(St)

is bounded above by a constant strictly less than 1.

Lemma 4.6.4. Vj(St+1) ≤ 3
4
Vj(St).

Proof. The set St+1 is equal to either S+ = S+
t (pj;ut) or S− = S−t (pj;ut). Our choice

of pj is such that Vj(S
−) = Vj(S

+). Therefore:

2Vj(St+1) = Vj(S
+) + Vj(S

−) = Vj(S
− ∩ S+) + Vj(S

− ∪ S+) = Vj(Kj) + Vj(St)

To bound Vj(Kj) in terms of Vj(St) we observe that w ≥ Lj = (Vj(Kj)/cj)
1/j so

Vj(Kj) ≤ cjw
j. Plugging the previous lemma we get Vj(Kj) ≤ j

cj
cj−1

Vj(St) = 1
2
Vj(St)

by the choice of constants. Substituting this inequality into the above equation gives

us the desired result.

Together, these lemmas let us argue that each round, the sum of the normalized

intrinsic volumes Vi(St)
1/i decreases by at least Ω(w) (and hence the total regret is

constant).
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Theorem 4.6.5. The SymmetricSearch algorithm (Algorithm 7) has regret bounded

by O(d4) for the symmetric loss.

Proof. We will show that for the potential function Φt =
∑d

i=1 i
2Vi(St)

1/i we can

always charge the loss to the decrease in potential, i.e., Φt − Φt+1 ≥ Ω(w) ≥ Ω(`t)

and therefore, Reg ≤
∑∞

t=1 `t ≤ O(Φ1). The initial potential is

Φ1 =
d∑
i=1

i2Vi([0, 1]d)1/i =
d∑
i=1

i2
(
d

i

)1/i

≤
d∑
i=1

i2O(d) = O(d4)

Since Vj(St) ≥ Vj(St+1) by monotonicity, we can bound the potential change by

Φt − Φt+1 ≥ j2[Vj(St)
1/j − Vj(St+1)1/j]. We now show that this last term is Ω(w):

j2[Vj(St)
1/j − Vj(St+1)1/j] ≥ j2

(
1−

(
3

4

)1/j
)
Vj(St)

1/j

≥ j2

(
1−

(
3

4

)1/j
)(

cj−1

j

)1/j

w

≥ j2 (1− (1− log(4/3)/j))

(
1

2j−2j!

)1/j

w

≥ j2

(
log(4/3)

j

)(
e

2j

)
w

≥ Ω(w).

Here the first inequality follows from Lemma 4.6.4 and the second from Lemma 4.6.3.

4.6.2 Pricing loss

In the 2-dimensional version of the dynamic pricing problem, we decomposed the

range of each potential into O(log log T ) buckets and used the isoperimetric inequality
√

4πAt ≤ Pt to argue that (when suitably normalized), the area always belonged to
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a higher bucket than the perimeter. To apply the same idea here, we will apply our

inequality on intrinsic volumes (Theorem 4.5.7) to obtain an isoperimetric inequality

for intrinsic volumes:

Lemma 4.6.6 (Isoperimetric inequality). For any S ∈ Convd and any i ≥ 1 it holds

that

(i!Vi(S))1/i ≥ ((i+ 1)!Vi+1(S))1/(i+1).

Proof. We proceed by induction. For i = 1, note that Theorem 4.5.7 gives us that

V1(S)2 ≥ 2V0(S)V2(S). Since V0(S) equals 1 for any convex set S, this reduces to

V1(S) ≥
√

2!V2(S).

Now assume via the inductive hypothesis that we have proven the claim for all

j ≤ i. From Theorem 4.5.7 we have that

Vi(S)2 ≥ i+ 1

i
Vi−1(S)Vi+1(S) =

i+ 1

i!
((i− 1)!Vi−1(S))Vi+1(S)

≥ i+ 1

i!
(i!Vi(S))(i−1)/iVi+1(S) =

1

i!(i+1)/i
Vi(S)(i−1)/i(i+ 1)!Vi+1(S).

Rearranging, this reduces to (i!Vi(S))(i+1)/i ≥ (i + 1)!Vi+1(S), and therefore

(i!Vi(S))1/i ≥ ((i+ 1)!Vi+1(S))1/(i+1).

Inspired by the isoperimetric inequality we will keep track of the following “poten-

tials” (these vary with t, but we will omit the subscript for notational convenience):

ϕi = (i!Vi(St))
1/i

Since S1 = [0, 1]d, their initial values will be given by ϕi = (i! ·
(
d
i

)
)1/i < di ≤ d2. Since

those quantities are monotone non-increasing, they will be in the interval [0, d2). We

will divide this interval in ranges of doubly-exponentially decreasing length (as in one
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and two dimensions). The ranges will be (`k+1, `k] where

`k = d2 exp(−αk) for α = 1 + 1/d

To keep track of which range each of our potentials φi belongs to, define ki so that

ϕi ∈ (`ki+1, `ki ]. By the isoperimetric inequality we know that:

ϕ1 ≥ ϕ2 ≥ . . . ≥ ϕd k1 ≤ k2 ≤ . . . ≤ kd

Recall that in the 2-dimensional case, whenever the perimeter and the area were

in the same range, we chose to make progress in the area. To extend this idea to

higher dimensions, whenever many φi belong to the same range and we decide to

make progress on that range, we will always choose the largest such ϕi:

M(i) = max{j; ki = kj}

The complete method is summarized in Algorithm 8. As before, constants c0

through cd−1 in Algorithm 8 are defined so that c0 = 1 and ci/ci−1 = 1
2i

. In other

words, ci = 1
2i−1i!

.

We begin by arguing that our algorithm is well-defined. We ask the reader to

recall the notation p
t

= minx∈St 〈ut, x〉 and pt = maxx∈St 〈ut, x〉.

Lemma 4.6.7. PricingSearch (Algorithm 8) is well defined, i.e., it is always possible

to choose pi and j with the desired properties.

Proof. For the choice of pi, if Vi(St)−Vi(S+
t (pt;ut)) > `iki+1/(2 · i!), then the function

φi : [p
t
, pt] → R, φi(p) = Vi(St) − Vi(S

+
t (p;ut)) is continuous and monotone with

φi(pt) = 0 and φi(pt) >
1
2
i! · `iki+1 so this guarantees the existence of such pi.

For the choice of j, let 0 = i0 < i1 < . . . < ia = d be the indices i such that

M(i) = i. Notice that the intervals [Lis+1 , Lis) are of the form [LM(i), Li−1) for
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Algorithm 8 PricingSearch

1: w = 1
2
width(St;ut)

2: for i = 1 to d do
3: let ϕi = (i! · Vi(St))1/i and ki such that ϕi ∈ (`ki+1, `ki ]
4: if Vi(St)− Vi(S+

t (pt;ut)) > `iki+1/(2 · i!) then
5: choose pi such that Vi(St)− Vi(S+

t (pi;ut)) = `iki+1/(2 · i!)
6: else
7: choose pi = pt
8: end if
9: define Ki = {x ∈ St; 〈ut, x〉 = pi}

10: define Li = (Vi(Ki)/ci)
1/i (define L0 =∞)

11: end for
12: if w < 1/T then
13: set pt = p

t
.

14: else
15: let M(i) = max{j; ki = kj}
16: find a j such that Lj−1 ≥ w ≥ LM(j)

17: let J = M(j) and set pt = pJ .
18: end if

i = is + 1. Finally notice that the intervals [Lis+1 , Lis) cover the entire interval

[Ld, L0) = [0,∞) so one of them must contain w.

Before we proceed to the main analysis, we begin by proving a couple of lemmas

regarding the ranges (`k+1, `k] of the intrinsic volumes before and after each iteration.

The first lemma says that if we overprice (i.e. S−t is chosen) the quantity ϕJ jumps

from the range [`kJ+1, `kJ ) to the next range (`kJ+2, `kJ+1].

Lemma 4.6.8. [J ! · VJ(S−t (pJ ;ut))]
1/J ≤ `kJ+1

Proof. We abbreviate S−t (pJ ;ut) and S+
t (pJ ;ut) by S− and S+ respectively. Using

the fact that VJ is a valuation and that S− ∩ S+ = KJ we have that:

VJ(S−) = VJ(St)− VJ(S+) + VJ(KJ) ≤ `JkJ+1/(2 · J !) + VJ(KJ)
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It remains to show that VJ(KJ) ≤ `JkJ+1/(2 · J !). To do this, we will again use the

Cone Lemma to obtain the following inequalities:

1

J + 1
VJ(KJ)w ≤ VJ+1(St) ≤

1

(J + 1)!
`J+1
k(J+1)

≤ 1

(J + 1)!
`J+1

(kJ )+1

The first inequality is the Cone Lemma (Lemma 4.6.1) applied to the fact that St

contains a cone of base KJ and height at least w. The second inequality comes from

the definition of kJ and the third inequality comes from the fact that J = M(J) so

kJ+1 ≥ kJ + 1.

Finally, observe that because of our choice of J , w ≥ LJ = (VJ(KJ)/cJ)1/J .

Substituting in the previous equation we obtain:

1

J + 1
VJ(KJ)(J+1)/J(cJ)−1/J ≤ 1

(J + 1)!
`J+1

(kJ )+1

Substituting the definition of cJ and simplifying, we get the desired bound of

VJ(KJ) ≤ `JkJ+1/(2 · J !).

We next show that, for our chosen J , if we underprice, then the Jth intrinsic

volume of our knowledge set decreases by at least `JkJ+1. This will allow us to bound

the number of times we can potentially underprice before kJ changes (in particular,

it is at most 2`JkJ/`
J
kJ+1).

Lemma 4.6.9. VJ(St)− VJ(S+
t (pJ ;ut)) = `JkJ+1/(2 · J !)

Proof. Note that this equality is guaranteed by the algorithm’s choice of pJ , except

when VJ(St) − VJ(S+
t (pt;ut)) < `JkJ+1/(2 · J !) and pJ = pt. However, in this case,

S−t (pt;ut) = St by the definition of pt. Lemma 4.6.8 then implies that [J !·VJ(St)]
1/J ≤

`kJ+1, but this contradicts the definition of kJ .

We now show that in each round, the width of the knowledge set (and thus our

loss) is at most 2`kJ .

92



Lemma 4.6.10. w ≤ 2`kJ

Proof. We will derive both an upper and lower bound on Vj(St). For the upper bound

we again apply the Cone Lemma (Lemma 4.6.1).

Vj(St) ≥
1

j
Vj−1(Kj−1)w ≥ 1

j
(cj−1w

j−1)w

If j > 1, then the first inequality holds since St contains a cone of base Kj−1 and

height w, and the second inequality follows from the fact that w ≤ Lj−1. If j = 1,

then we observe that St contains a segment of length w, so V1(St) ≤ w.

To get a lower bound on Vj(St), simply note that

Vj(St) ≤ `jkj/(j!) = `jkJ/(j!)

where the first inequality follows from the definition of kj and the second from the

fact that kj = kJ since J = M(j).

Together the bounds imply that cj−1w
j/j ≤ `jkJ/(j!). Substituting in the value of

cj−1 and simplifying we obtain that w ≤ 2`kJ .

Finally, we argue that if w is large enough (at least 1/T ), then kJ is at most

Od(log log T ). Once w is at most 1/T , we can always price at p
t

and incur at most

O(1) additional regret, so this provides a bound for the number of times we can e.g.

overprice.

Lemma 4.6.11. In iterations where w ≥ 1/T , then kJ ≤ O(d log log(dT )).

Proof. It follows directly from Lemma 4.6.10: 1/T ≤ w ≤ 2`kJ = 2d2 exp(−αkJ ).

Simplifying the expression we get kJ ≤ O(d log log(dT ))

We are now ready to prove our main result:

93



Theorem 4.6.12. The total loss of PricingSearch (Algorithm 8) is bounded by

O(d4 log log(dT )).

Proof. We sum the loss in different cases. The first is when w < 1/T and the algorithm

prices at p
t
. In those occasions the algorithm always sells and the loss is at most

2w ≤ 2/T , so the total loss is at most 2.

The second case is when the algorithm overprices and doesn’t sell. If the algorithm

doesn’t sell, then by Lemma 4.6.8, then φJ goes from range (`kJ+1, `kJ ] to the next

range (`kJ+2, `kJ+1]. Since kJ ≤ O(d log log(dT )) by Lemma 4.6.11 this can happen

at most this many times for each index J . Since there are d such indices and the loss

of each event is at most 1, the total loss is bounded by O(d2 log log(dT )).

The final case is when the algorithm underprices. The loss in this case is bounded

by the width 2w. We sum the total loss of events in which the algorithm overprices.

We fix the selected index J and kJ . The loss in such a case is at most 2w ≤ 4`kJ by

Lemma 4.6.10. Whenever this happens St+1 = S+
t (pJ ;ut) so the J-th intrinsic volume

decreases by `JkJ+1/(2J !) since VJ(St)−VJ(St+1) = VJ(St)−VJ(S+
t ) = `JkJ+1/(2J !) by

Lemma 4.6.9. Since VJ(St) ≤ `JkJ/(J !). Therefore the total number of times it can

happen is: 2`JkJ/`
J
kJ+1. The total loss is at most the number of times the event can

happen multiplied by the maximum loss for an event, which is:

2`JkJ
`JkJ+1

·(4`kJ ) = 8
`J+1
kJ

`JkJ+1

= 8d2 exp(JαkJ+1−(J+1)αkJ ) ≤ 8d2 exp(αkJ (dα−(d+1)) = 8d2

since α = 1+1/d. By summing over all d possible values of J and all O(d log log(dT ))

values of kJ we obtain a total loss of O(d4 log log(dT )).

4.6.3 Proof of the Cone Lemma

We will prove the Cone Lemma in three steps. We start by proving some geometric

lemmas about how linear transformations affect intrinsic volumes. We then use these
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lemmas to bound the intrinsic volumes of cylinders. Finally, by approximating a cone

as a stack of thin cylinders, we apply these bounds to prove the Cone Lemma.

Geometric lemmas

Define an α-stretch of Rd as a linear transformation which contracts Rd along

some axis by a factor of α, leaving the remaining axes untouched (in other words,

there is some coordinate system in which an α-stretch Tα sends (x1, x2, . . . , xd) to

(αx1, x2, . . . , xd)).

A contraction is a linear transformation T : Rd → Rd such that ‖Tx‖ ≤ ‖x‖ for

all x ∈ Rd. An α-stretch is a contraction whenever α ∈ [0, 1].

Lemma 4.6.13. Let H and H ′ be two (d-dimensional) hyperplanes in Rd+1, whose

normals are separated by angle θ. Let K be a convex body contained in H, and let K ′

be the projection of K onto H ′. Then K ′ is (congruent to) a (cos θ)-stretch of K.

Proof. Without loss of generality, let H ′ be the hyperplane with orthonormal basis

e1, e2, . . . , ed, and let H be the hyperplane with orthonormal basis e′1 = (cos θ)e1 +

(sin θ)ed+1, e
′
2 = e2, . . . , e

′
d = ed. Note that a point a1e

′
1 + a2e

′
2 + . . . ane

′
n in H,

projects to the point (cos θ)a1e1 + a2e2 + · · ·+ anen in H ′. This is the definition of a

(cos θ)-stretch.

The next lemma bounds the change in the d-th volume of a (d + 1)-dimensional

object when it is transformed by a contraction. The analysis will be based on the fact

that for a (d+ 1)-dimensional convex set S, Vd(S) corresponds to half of the surface

area. This fact can be derived either from Hadwiger’s theorem (Theorem 4.5.4) or

from Cauchy’s formula for the surface area together with Theorem 4.5.8.

It is simpler to reason about the surface area of polyhedral convex sets (i.e. sets

that can be described as a finite intersection of half-spaces). The boundary of a

polyhedral convex set in Rd+1 can be described as a finite collection of facets, which
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are convex sets of dimension d. The surface area corresponds to the sum of the

d-dimensional volume of the facets. For a 2-dimensional polytope the surface area

correspond to the perimeter. For a 3-dimensional polytope the surface area corre-

sponds to the sum of the area (the 2-dimensional volume) of the facets. For a general

convex set K, the surface area can be computed as the limit of the surface area of

Kt where Kt are polyhedral sets that converge (in the Hausdorff sense) to K. This

is equivalent to the usual definition of the surface area as the surface integral of a

volume element.

Given the discussion in the previous paragraph, to reason about how the surface

area transforms after a linear transformation, it is enough to reason how the volume

of d-dimensional convex sets (the facets) transform when the ambient Rd+1 space is

transformed by a linear transformation.

Lemma 4.6.14. Let K ∈ Convd+1 and T be a contraction, then

Vd(T (K)) ≥ detT · Vd(K)

Proof. By the previous discussion, Vd(K) is proportional to the surface area of K.

By taking finer and finer approximations of K by polytopes, it suffices to prove the

result for a polyhedral set. We only need to argue how the d-dimensional volume of

the facets is transfomed by T . The change in volume of a facet corresponds to the

determinant of the transformation induced by T on the tangent space of that facet1.

More precisely, given vectors linearly independent vectors v1, . . . , vd ∈ Rd+1, let P be

the parallelepiped generated by them and let Vd(P ) be its volume. Let also n be the

unit vector orthogonal to affine subspace containing P and N an unit segment in that

direction, i.e., the set of points of the form tn for t ∈ [0, 1], then:

Vd+1(T (P +N)) = (detT ) · Vd(P +N) = (detT ) · Vd−1(P )

1The tangent space of a facet is the space of all vectors that are parallel to that facet
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where the first equality follows from how the (standard) volume transforms and the

second since N is orthogonal to P and has size 1.

Now, since T (P +N) = T (P )+T (N), the volume Vd+1(T (P +N)) can be written

as Vd−1(T (P )) times the projection of N in the orthogonal direction of T (P ), which

is 〈Tn, n′〉 ≤ ‖Tn‖ ·‖n′‖ ≤ 1 where n′ is the orthogonal vector to T (P ) and ‖Tn‖ ≤ 1

follows from the fact that T is a contraction. Therefore:

Vd−1(T (P )) ≥ Vd+1(T (P +N)) = (detT ) · Vd−1(P )

Intrinsic volumes of cylinders

Given a convex set K in Rd, an orthogonal cylinder with base K and height w is the

convex set in Rd+1 formed by taking the Minkowski sum of K (embedded into Rd+1)

and a line segment of length w orthogonal to K.

Lemma 4.6.15. Let K be a convex set in Rd, and let S be an orthogonal cylinder

with base K and height h. Then, for all 0 ≤ j ≤ d,

Vj+1(S) = Vj+1(K) + hVj(K).

Proof. Embed K into Rd+1 so that it lies in the hyperplane xd+1 = 0, and let L be

the line segment from 0 to hed+1, so that S = K + L is an orthogonal cylinder with

base K and height h. We will compute Vold+1(S + εBd+1). Recall that Vol refers to

the standard volume. Whenever we add subscripts (e.g. Vold) we do so to highlight

that we are talking about the standard volume of a convex set in a d-dimensional

(sub)space.

We claim we can decompose S + εBd+1 into two parts; one with total volume

Vold+1(K + εBd+1), and one with total volume hVold(K + εBd). To begin, consider
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the intersection of S + εBd+1 with {xd+1 ∈ [0, h]}. We claim this set has volume at

least hVold(K + εBd). In particular, note that (since S is an orthogonal cylinder)

every cross-section of the form (S + εBd+1) ∩ {xd+1 = t} for t ∈ [0, h] is congruent to

the set K + εBd. It follows that the volume of this region is hVold(K + εBd).

Next, consider the intersection of S + εBd+1 with the set {xd+1 6∈ [0, h]}. This

intersection has two components: a component S+, the intersection of S+εBd+1 with

the set {xd+1 ≥ h}, and a component S−, the intersection of S + εBd+1 with the set

{xd+1 ≤ 0} (see Figure 4.3a). Now, define K+ to be the intersection of K + εBd+1

with {xd+1 ≥ 0}, and let K− be the intersection of K + εBd+1 with {xd+1 ≤ 0}. It

is straightforward to verify that K+ is congruent to S+ and that K− is congruent

to S−, and therefore the volume of this region is equal to Vol(K+) + Vol(K−) =

Vold+1(K + εBd+1).

We therefore have that Vold+1(S+εBd+1) = Vold+1(K+εBd+1)+hVold(K+εBd).

Expanding out all parts via Steiner’s formula (4.1), we have that:

d+1∑
j=0

κd+1−jVj(S)εd+1−j =
d∑
j=0

κd+1−jVj(K)εd+1−j + h
d∑
j=0

κd−jVj(K)εd−j.

Equating coefficients of εd−j, we find that

Vj+1(S) = Vj+1(K) + hVj(K).

An oblique cylinder in Rd+1 is formed by taking the Minkowski sum of a convex

set K ⊂ Rd and a line segment L not necessarily perpendicular to K. The height of

an oblique cylinder is equal to the length of the component of L orthogonal to the

affine subspace containing K.
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S+

S−

S+

S−

(a) Proof of Lemma 4.6.15: we de-
composeK+L+εB (left) and K+εB
(right).

S⊥
S1

S2 S1

S2

(b) First step in the proof of Lemma
4.6.16, we cut and re-assemble a
cylinder

S S[4] S
[4]
⊥

(c) Stacking thin oblique and orthog-
onal cylinders in Lemma 4.6.16

S2

S1

S0

S3

(d) Approximating a cone by thin
oblique cylinders

Figure 4.3: Illustration of the cylinder and cone proofs. In all cases, the x-axis is a
d-dimensional space and the y-axis a 1-dimensional space

Lemma 4.6.16. Let K be a convex set in Rd. If S is an oblique cylinder with base

K and height h, and S⊥ is an orthogonal cylinder with base K and height h, then (for

all 1 ≤ j ≤ d+ 1)

Vj(S) ≥ Vj(S⊥).

Proof. Note that when j = d + 1, Vj(S) = Vj(S⊥) as they are related by a linear

transformation with determinant 1. For the remaining cases, we will first prove for

j = d and then reduce all other cases to j = d.

Case j = d (tall cylinder). Write S = K +L, where L is a line segment of length

` (with orthogonal component h with respect to K). We will begin by choosing a

hyperplane H perpendicular to L that intersects S along its lateral surface, dividing

it into two sections S1 and S2 (see Figure 4.3b). Note that this is only possible if the

height h of this cylinder is large enough with respect to the diameter of K and angle
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L makes with K. We address the case of the short cylinder in the next case. Let

K ′ = H ∩ S. By Theorem 4.5.3, we know that Vd(S) = Vd(S1) + Vd(S2)− Vd(K ′).

Note that it is possible to reassemble S1 and S2 by gluing them along their copies

of K to form an orthogonal cylinder with base K ′ and height `. Call this cylinder S ′.

Again by Theorem 4.5.3, we have that Vd(S
′) = Vd(S1)+Vd(S2)−Vd(K), and therefore

Vd(S) = Vd(S
′)+Vd(K)−Vd(K ′). But by Lemma 4.6.15, Vd(S

′) = Vd(K
′)+`Vd−1(K ′),

so Vd(S) = Vd(K) + `Vd−1(K ′). On the other hand (also by Lemma 4.6.15), Vd(S⊥) =

Vd(K) + hVd−1(K). Therefore, to show that Vd(S) ≥ Vd(S⊥), it suffices to show that

`Vd−1(K ′) ≥ hVd−1(K).

Now, note that K ′ is the projection of K onto the hyperplane H. The normal to

H is parallel to L. Since L has length ` and orthogonal component h with respect

to K, the angle between L and the normal to K equals arccos(h/`), from which it

follows from Lemma 4.6.13 that K ′ is an (h/`) stretch of K. By Lemma 4.6.14, it

follows that Vj−1(K ′) ≥ (h/`)Vj−1(K), from which the desired inequality follows.

Case j = d (short cylinder). Finally, what if the original cylinder was not tall

enough to divide into two components in the desired manner? To deal with this,

let S[n] denote n copies of S stacked on top of each other (i.e. S[n] = K + nL),

and let S
[n]
⊥ denote n copies of S⊥ stacked on top of each other (i.e. an orthogonal

cylinder with base K and height nh). Repeatedly applying Theorem 4.5.3, we have

that Vd(S
[n]) = nVd(S) + (n− 1)Vd(K), and that Vd(S

[n]
⊥ ) = nVd(S⊥) + (n− 1)Vd(K).

Therefore, to show that Vd(S) ≥ Vd(S⊥), it suffices to show that Vd(S
[n]) ≥ Vd(S

[n]
⊥ ).

For some n, S[n] will be tall enough to divide as desired, which completes the proof.

Reducing j < d to j = d. We can without loss of generality assume that K (the

base of the cylinder) is in the plane spanned by the first d coordinate vectors. Also,

let πd : Rd+1 → Rd be the projection in the first d coordinates.
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Recall that the jth intrinsic volume Vj(S) is equal to the expected volume of

the projection of S onto a randomly chosen j-dimensional subspace of Rd+1, where

the distribution over subspaces is given by the Haar measure over Gr(d + 1, k) (see

Theorem 4.5.8).

Therefore, choose H according to this measure and let P = πd(H). Note that

(almost surely) P is an element of Gr(d, j) and P is distributed according to the

Haar measure of this Grassmannian. By the law of total expectation, we can write

Vj(S) = EH∼Gr(d+1,j) [Vj(ΠHS)] = EP∼Gr(d,j)

[
EH∼Gr(d+1,j) [Vj(ΠHS) | πd(H) = P ]

]
Let P ′ be the element of Gr(d+ 1, j + 1) spanned by P and ed+1. Note that since

H ⊂ P ′, ΠHS = ΠHΠP ′S. We therefore claim that

EH∼Gr(d+1,j) [Vj(ΠHS) |πd(H) = P ] = Vj(ΠP ′S).

Indeed, conditioned on πd(H) = P , H is a (Haar-)uniform subspace of dimension

j of the j+1-dimensional space P ′, from which the above equality follows. Therefore,

we have that

Vj(S) = EP∼Gr(d,j) [Vj(ΠP ′S)]

and similarly

Vj(S⊥) = EP∼Gr(d,j) [Vj(ΠP ′S⊥)] .

Now, since ed+1 belongs to P ′, if S⊥ is an orthogonal cylinder with base K and

height h in Rd+1, then ΠP ′S⊥ is an orthogonal cylinder with base ΠP ′K and height h

in P ′. Likewise, ΠP ′S is an oblique cylinder with base ΠP ′K and height h in P ′. Since

P ′ is j + 1 dimensional, it follows the previous cases that: Vj(ΠP ′S) ≥ Vj(ΠP ′S⊥) so
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Vj(S) = EP∼Gr(,.j)
[Vj(ΠP ′S)] ≥ EP∼Gr(d,j) [Vj(ΠP ′S⊥)] ≥ Vj(S⊥)

Intrinsic volumes of cones

A cone in Rd+1 is the convex hull of a d-dimensional convex set K and a point

p ∈ Rd+1. If the distance from p to the affine subspace containing K is h, we say the

cone has height h and base K.

Lemma 4.6.17. Let K be a convex set in Rd, and let S be a cone in Rd+1 with base

K and height h. Then, for all 0 ≤ j ≤ d,

Vj+1(S) ≥ 1

j + 1
hVj(K).

Proof. Choose a positive integer n, and divide S into n parts via the hyperplanes

Hi = {xd+1 = n−i
n
h} (for 0 ≤ i ≤ n). For 0 ≤ i < n, let Ki be the intersection of Hi

with S, and let and let Si be the region of S bounded between hyperplanes Hi and

Hi+1 (see Figure 4.3d). Note that each Si is a frustum with bases Ki and Ki+1 and

height h/n, and furthermore that each Ki is congruent to i
n
K.

By repeatedly applying Theorem 4.5.3, we know that

Vj+1(S) =
n−1∑
i=0

Vj+1(Si)−
n−1∑
i=1

Vj+1(Ki).

Note that each set Si contains an oblique cylinder with base Ki (since Ki is a

contraction of Ki+1, some translate of Ki is strictly contained inside Ki+1) and height

h/n. It follows from Lemmas 4.6.15 and 4.6.16 that Vj+1(Si) ≥ Vj+1(Ki) + h
n
Vj(Ki).

It follows that
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Vj+1(S) ≥
n−1∑
i=1

h

n
Vj(Ki) =

n−1∑
i=1

h

n
Vj

(
i

n
K

)
=

n−1∑
i=1

h

n

(
i

n

)j
Vj(K) =

(
n−1∑
i=1

(
i

n

)j
1

n

)
hVj(K).

As n goes to infinity, this sum approaches
∫ 1

0
xjdx = 1

j+1
, and therefore we have

that Vj+1(S) ≥ 1
j+1

hVj(K).

4.6.4 Efficient implementation

We have thus far ignored issues of computational efficiency. In this subsection, we will

show that algorithms SymmetricSearch (Algorithm 7) and PricingSearch (Algorithm

8) can be implemented in polynomial time by a randomized algorithm that succeeds

with high probability.

The main primitive we require to implement both algorithms is a way to efficiently

compute the intrinsic volumes of a convex set (and in particular a convex polytope,

since our knowledge set starts as [0, 1]d and always remains a convex polytope). Un-

fortunately, even computing the ordinary volume of a convex polytope (presented as

an intersection of half-spaces) is known to be #P -hard [20]. Fortunately, there exist

efficient randomized algorithms to compute arbitrarily good multiplicative approxi-

mations of the volume of a convex set.

Theorem 4.6.18 (Dyer, Frieze, and Kannan [59]). Let K be a convex subset of

Rd with an efficient membership oracle (which given a point, returns whether or not

x ∈ K). Then there exists a randomized algorithm which, given input ε > 0, runs in

time poly(d, 1
ε
) and outputs an ε-approximation to Vol(K) with high probability.

We will show how we can extend this to efficiently compute (approximately, with

high probability) the intrinsic volumes of a convex polytope presented as an intersec-

tion of half-spaces.
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Theorem 4.6.19. Let K be a polytope in Rd defined by the intersection of n half-

spaces and contained in [0, 1]d. Then there exists a randomized algorithm which, given

input ε > 0 and 1 ≤ i ≤ d, runs in time poly(d, n, 1
ε
), and outputs an ε-approximation

to Vi(K) with high probability.

Proof. We use the fact (Theorem 4.5.8) that Vi(K) is the expected volume of the

projection of K onto a randomly chosen i-dimensional subspace (sampled according to

the Haar measure). Since K is contained inside [0, 1]d, any i-dimensional projection of

K will be contained within an i-dimensional projection of [0, 1]d, whose i-dimensional

volume is at most poly(d). By Hoeffding’s inequality, we can therefore obtain an ε-

approximation to Vi(K) by taking the average of poly(d, 1
ε
) (ε/2)-approximations for

volumes of projections of K onto i-dimensional subspaces.

To approximately compute the volume of a projection of K onto an i-dimensional

subspace S, we will apply Theorem 4.5.8. Note that we can check whether a point

belongs in the projection of K into S by solving an LP (the point adds i additional

linear constraints to the constraints defining K). This can be done efficiently in

polynomial time, and therefore we have a polynomial-time membership oracle for

this subproblem.

We now briefly argue that Theorem 4.6.19 allows us to implement efficient ran-

domized variants of SymmetricSearch and PricingSearch which succeed with high

probability. To do this, it suffices to note that all of the analysis of both algorithms

is robust to tiny perturbations in computations of intrinsic volumes. For example,

in SymmetricSearch the analysis carries through even if instead of Ki dividing St

into two regions such that Vi(S
+) = Vi(S

−), it divides them into regions satisfying

Vi(S
+) ∈ [(1− ε)Vi(S−), (1 + ε)Vi(S

−)] for some constant ε.

The only remaining implementation detail is how to hyperplanes Ki that divide

the ith intrinsic volume of Si equally (or in the case of PricingSearch, divide off a
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fixed amount of intrinsic volume). Since intrinsic volumes are monotone (Theorem

4.5.3), this can be accomplished via binary search.

4.7 Halving algorithms

There are many simple algorithms one can try for the contextual search problem, like

algorithms that always halve the width or volume of the current knowledge set. One

natural question is whether these simple algorithms suffice to give the same sort of

regret bounds as our algorithms based on intrinsic volumes (e.g. SymmetricSearch).

In this section, we show that while these algorithms also obtain Od(1) regret for

the contextual search problem with symmetric loss, the dependence on d is expo-

nential rather than polynomial (and moreover this dependence is tight, at least for

the algorithm which always divides the width in half). Moreover, we show that even

for these simpler algorithms, looking at how intrinsic volumes of the knowledge set

change is a valuable technique for bounding the total regret.

4.7.1 Dividing the width in half

In this section, we will analyze the algorithm which always cuts the width in half;

that is, always guesses pt = pmid
t = 1

2
(pt + p

t
). We will show that for the symmetric

loss function, this strategy achieves 2O(d) = Od(1) regret.

Our analysis will proceed similarly to the proof of Theorem 4.6.5. We will rely

on the following lemma, which shows that dividing the width in half guarantees that

the ratio of the intrinsic volume of the smaller half to that of the larger half is still

lower-bounded by some function of d.

Lemma 4.7.1. If pt = pmid
t , then

Vj(S
−) ≥ 2−jVj(S

+) and Vj(S
+) ≥ 2−jVj(S

−)
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Proof. Let w = 1
2
(pt − p

t
) and K be the intersection of the hyperplan 〈x, ut〉 = pt

with St. Choose a point q in St such that 〈q, ut〉 = p
t

as depicted in Figure 4.4a.

Consider the cone C formed by the convex hull of q and K (Figure 4.4b). Since S−

is convex, C is contained in S−, and thus Vj(S
−) ≥ Vj(C).

Now, consider the dilation of the cone C by a factor of 2 about the point q (Figure

4.4c). This results in a new cone 2C. We claim that this cone contains S+. To see

this, it suffices to note that the contraction of S+ by a factor of 1/2 about q lies

within S−. This follows from the fact that S is convex, and the width of S− is equal

to the width of S+ (so any segment connecting q to some point q′ ∈ S+ has at least

as much length in S− than S+).

It follows that 2jVj(C) = Vj(2C) ≥ Vj(S
+). Combining this with our earlier

inequality, the first result follows. The second result follows symmetrically.

Theorem 4.7.2. The algorithm that always sets pt = pmid
t has regret bounded by 2O(d)

for the symmetric loss.

Proof. We will proceed similarly to the analysis of the SymmetricSearch algorithm.

For any fixed round t, let w = 1
2
width(St;ut) and K be the intersection of the hyper-

plane 〈x, ut〉 = pmid
t with St.

Define a sequence of constants ci so that c0 = 1 and ci/ci−1 = 2−(i+1)/i (in other

words, ci = 2−(i+1)(i+2)/2/i!). For 1 ≤ i ≤ d, define Li = (Vi(K)/ci)
1/i, and let

L0 = ∞. Choose j so that Lj−1 ≥ w ≥ Lj (it is always possible to do this by the

106



same logic as in Theorem 4.6.5). Note that the proof of Lemma 4.6.3 carries over

verbatim to show that Vj(St) ≥ 1
j
cj−1w

j. We now proceed in two steps:

Step 1 First we show that Vj(St+1) ≤ (1− 2−(j+2))Vj(St).

The set St+1 is either S+ or S−. By Lemma 4.7.1, we therefore have that

Vj(St+1) ≤ 1

1 + 2−j
(Vj(S

+) + Vj(S
−)).

Now, since Vj is a valuation, Vj(S
+) + Vj(S

−) = Vj(St) + Vj(K). Now, Vj(K) =

cjL
j
j ≤ cjw

j by the choice of j. Combining this with the fact Vj(St) ≥ 1
j
cj−1w

j, we

observe that Vj(K) ≤ j
cj
cj−1

Vj(St), and therefore that

Vj(S
+) + Vj(S

−) ≤
(

1 + j
cj
cj−1

)
Vj(St) = (1 + 2−(j+1))Vj(St).

It follows that

Vj(St+1) ≤ 1

1 + 2−j
· (1 + 2−(j+1))Vj(St) ≤ (1− 2−(j+2))Vj(St).

Step 2: Next we consider the potential function Φ(t) =
∑d

i=1 Vi(St)
1/i. Note that

Φ(0) = poly(d). We will show that each round, Φ(t) decreases by at least 2−O(d)w.

Since the loss each round is upper bounded by w, this proves our theorem.

Vj(St)
1/j − Vj(St+1)1/j ≥ (1− (1− 2−(j+2))1/j)Vj(St)

1/j ≥ 1

j
2−(j+2)Vj(St)

1/j

≥ 1

j
2−(j+2)

(
cj−1

j

)1/j

w ≥ 2−O(d)w.
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The exponential dependency on the dimension is tight, as it is shown in an example

by Cohen et al [43].

Theorem 4.7.3. There is an instance of the contextual search problem with symmet-

ric loss such that the algorithm that always sets pt = pmidt incurs regret 2Ω(d).

Proof. See [43]. The instance they describe is as follows: let the dimension d be a

multiple of 8 and v = 0 ∈ [0, 1]d. Let Xt be iid random subsets of [d] of size d/4.

Now, consider feature vectors of the form ut = 1{Xt}/
√
d/4 where 1{Xt} is the

indicator vector of Xt. By standard concentration bounds we have that with high

probability for any s < t < 2Ω(d) we will have |Xs ∩ Xt| ≤ d/8. Therefore for such

s < t, 〈1{Xt}, us〉 ≤ 1
2
〈1{Xs}, us〉 and hence 1{Xt} ∈ St where St is the knowledge

set in step t. It implies that the loss in the t-th step is at least Ω(1). Since there are

2Ω(d) such steps, the loss grows exponentially in d.

4.7.2 Dividing the volume in half

In this section we will consider the algorithm which always divides the volume of our

current knowledge set in half. More specifically, this algorithm always chooses pt so

that Vol(S+) = Vol(S−). We will show that for the symmetric loss function, this

strategy also achieves 2O(d) = Od(1) regret.

Like in the previous subsection, we will argue that splitting the volume in half

guarantees that the other intrinsic volumes are split in some ratio bounded away

from 0 and 1. To do this, we will first show that splitting the volume in half imposes

constraints on the ratio of the widths of S+ and S−, and then adapt the proof of

Lemma 4.7.1. The proof follows the same scheme depicted in Figure 4.4 but with

unequal widths for S+ and S−.

Lemma 4.7.4. Assume pt is chosen so that Vol(S+) = Vol(S−). Then if w+ =

width(S+;ut) and w− = width(S−;ut),
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w− ≥ (21/d − 1)w+ and w+ ≥ (21/d − 1)w−.

Proof. Choose a point q in S− that is distance w− from the hyperplane 〈x, ut〉 = pt.

Let K be the intersection of this hyperplane with the original set St. Consider the

cone C formed by the convex hull of q and K. Since S− is convex, C is contained in

S−, and therefore Vol(S−) ≥ Vol(C).

Now, consider the dilation of the cone C by a factor of α = (w+ +w−)/w− about

the point q. By similar logic as in the proof of Lemma 4.7.1, this cone αC contains

S+. In fact, since C is contained in αC (since α > 1) and since C is contained in

S− (which has zero volume intersection with S+), S+ is contained in αC \ C. We

therefore have that

Vol(αC)− Vol(C) ≥ Vol(S+) = Vol(S−) ≥ Vol(C).

Since Vol(αC) = αdVol(C), this implies that αd ≥ 2, and therefore that (w+ +

w−)/w− = α ≥ 21/d and w+/w− ≥ 21/d − 1, as desired. The other inequality follows

by symmetry.

Lemma 4.7.5. Let w+ = width(S+;ut) and w− = width(S−;ut). Assume pt is chosen

so that w+ ≥ αw− and w− ≥ αw+, for some α > 0. Then, for all 1 ≤ j ≤ d,

Vj(S
−) ≥

(
1 +

1

α

)−j
Vj(S

+) and Vj(S
+) ≥

(
1 +

1

α

)−j
Vj(S

−).

Proof. We follow the argument in the proof of Lemma 4.7.1. The only difference is

that we now must consider the dilation of the cone C by a factor of 1 + 1
α

about q,

as the ratio of the width of St to the width of S− (or S+) is at most 1 + 1
α

.

Corollary 4.7.6. If pt is chosen so that Vol(S+) = Vol(S−), then for all 1 ≤ j ≤ d,
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Vj(S
−) ≥

(
1 +

1

α

)−j
Vj(S

+) and Vj(S
+) ≥

(
1 +

1

α

)−j
Vj(S

−),

where α = 21/d − 1 = Θ(d−1).

Proof. Follows from Lemmas 4.7.4 and 4.7.5.

Theorem 4.7.7. The algorithm that always sets pt such that Vol(S+
t ) = Vol(S−t ) has

regret bounded by 2O(d log d) for the symmetric loss.

Proof. We will proceed similarly to the analysis of the SymmetricSearch algorithm.

Consider a fixed round t, let w = 1
2
width(St;ut), and let K be the intersection of the

hyperplane 〈x, ut〉 = pt with St.

Let α = 21/d − 1, and let λ = 1 + 1
α

. Note that λ ≥ 2 and λ = Θ(d). Define

a sequence of constants ci so that c0 = 1 and ci/ci−1 = λ−(i+1)/i (in other words,

ci = λ−(i+1)(i+2)/2/i!). For 1 ≤ i ≤ d, define Li = (Vi(K)/ci)
1/i, and let L0 = ∞.

Choose j so that Lj−1 ≥ w ≥ Lj (it is always possible to do this by the same logic

as in Theorem 4.6.5). The proof of Lemma 4.6.3 again carries over verbatim to

show that Vj(St) ≥ 1
j
cj−1w

j. We again proceed in two steps similarly to the proof of

Theorem 4.7.2.

Step 1: We first show that Vj(St+1) ≤ (1− λ−(j+2))Vj(St).

The set St+1 is either S+ or S−. By Corollary 4.7.6, we therefore have that

Vj(St+1) ≤ 1
1+λ−j (Vj(S

+) + Vj(S
−)).

Now, since Vj is a valuation, Vj(S
+) + Vj(S

−) = Vj(St) + Vj(K). Since w ≥ Lj,

Vj(K) ≤ cjw
j. Combining this with the fact Vj(St) ≥ 1

j
cj−1w

j, we observe that

Vj(K) ≤ j
cj
cj−1

Vj(St), and therefore that

Vj(S
+) + Vj(S

−) ≤
(

1 + j
cj
cj−1

)
Vj(St) = (1 + λ−(j+1))Vj(St).

It follows that (since λ ≥ 2)
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Vj(St+1) ≤ 1

1 + λ−j
· (1 + λ−(j+1))Vj(St) ≤ (1− λ−(j+2))Vj(St).

Step 2: We next consider the potential function Φ(t) =
∑d

i=1 Vi(St)
1/i. Note that

Φ(0) = poly(d). We will show that each round, Φ(t) decreases by at least 2−O(d log d)w.

Since the loss each round is upper bounded by w, this proves our theorem.

In particular, note that

Vj(St)
1/j − Vj(St+1)1/j ≥ (1− (1− λ−(j+2))1/j)Vj(St)

1/j ≥ 1

j
λ−(j+2)Vj(St)

1/j

≥ 1

j
λ−(j+2)

(
cj−1

j

)1/j

w ≥ 2−O(d log d)w.

4.8 General loss functions

Throughout this chapter we have focused on the special cases of the symmetric loss

function and the pricing loss function. In this subsection we briefly explore the

landscape of other possible loss functions and what regret bounds we can obtain for

them.

For simplicity, we restrict ourselves to loss functions of the form `(〈ut, v〉, pt) =

F (〈ut, v〉−pt). Note that while some functions (e.g. the pricing loss function) may not

be of this form, they may be dominated by some function of this form (e.g. F (x) = x

for x ≥ 0 and F (x) = 1 for x ≤ 0), and hence any regret bound that holds for this

simplified loss function holds for the original loss function.

We begin by showing that if F (x) goes to 0 polynomially quickly from both sides

(i.e. if F (x) ≤ |x|β for some β > 0), then SymmetricSearch still achieves constant

regret.
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Theorem 4.8.1. If F (x) = |x|β, for β > 0, then SymmetricSearch (Algorithm 7)

achieves regret Od,β(1) for the contextual search problem with this loss function.

Proof. We modify the proof of Theorem 4.6.5 to look at the potential function Φt =∑d
i=1 Vi(St)

β/i. The change in potential in each round is now at least (for some

j ∈ [d]):

Vj(St)
β/j − Vj(St+1)β/j ≥

(
1−

(
3

4

)β/j)
Vj(St)

β/j

≥

(
1−

(
3

4

)β/j)(
cj−1

j

)β/j
wβ ≥ Od,β(1)`t.

It follows that the total regret of SymmetricSearch is Od,β(1).

Similarly, we can show that for functions F which are discontinuous on one side

and converge to zero polynomially quickly on the other side, the PricingSearch algo-

rithm (with a slightly different choice of parameters) achieves Od,α(1) regret.

Theorem 4.8.2. Let α > 0 be a constant, and let F (x) = |x|β, for x ≥ 0 and let

F (x) = 1 for x < 0. PricingSearch (Algorithm 8) with parameter α = 1 + β
d

achieves

regret Od,β(log log T ) for the contextual search problem with this loss function.

Proof. Again, we modify the proof of Theorem 4.6.12. Lemmas 4.6.8, 4.6.9, 4.6.10,

and 4.6.11 hold as written. The only necessary change is in the underpricing case of

the proof of Theorem 4.6.12, where the maximum loss for an event is now (4`kJ )β,

and so the total loss from underpricing (for a fixed value of J and kJ) is at most

2`JkJ
`JkJ+1

· (4`kJ )β = 21+2βd2β exp(JαkJ+1 − (J + β)αkJ )

≤ 21+2βd2β exp(αkJ (dα− (d+ β))

= 21+2βd2β = Od,β(1).
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It follows that the total regret of PricingSearch is Od,β(log log T ).
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Part III

Learning how to rank
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Chapter 5

Condorcet-consistent and

approximately strategyproof

tournament rules

This chapter is joint work with Ariel Schvartzman and Matthew Weinberg [128].

5.1 Introduction

In recent years, numerous scandals have unfolded surrounding match fixing and throw-

ing at the highest levels of competitive sports (e.g. Olympic Badminton [85], Pro-

fessional Tennis [47], European Football [127], and even eSports [134]). In some in-

stances, the motivation behind these scandals was gambling profits, and no amount of

clever tournament design can possibly mitigate this. In others, however, the surprising

motivation was an improved performance at that same tournament. For instance, four

Badminton teams (eight players) were disqualified from the London 2012 Olympics

for throwing matches. Interestingly, the reason teams wanted to lose their matches

was in order to improve their probability of winning an Olympic medal. Olympic

Badminton (like many other sports) conducts a two-phase tournament. In the first
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stage, groups of four play a round-robin tournament, with the top two teams ad-

vancing. In the second stage, the advancing teams participate in a single elimination

tournament, seeded according to their performance in the group stage. An upset in

one group left one of the world’s top teams with a low seed, so many teams actually

preferred to receive a lower seed coming out of the group stage to face the tougher

opponent as late as possible.

While much of the world blames the teams for their poor sportsmanship, re-

searchers in voting theory have instead critiqued the poor tournament design that

punished teams for trying to maximize their chances of winning a medal. Specifi-

cally, the two-phase tournament lacks the basic property of monotonicity, where no

competitor can unilaterally improve their chances of winning by throwing a match

that they otherwise could have won. Thus, recent work has addressed the question

of whether tournament structures exist that are both fair, in that they select some

notion of a qualified winner, and strategyproof, in that teams have no incentive to do

anything but play their best in each match.

One minimal notion of fairness studied is Condorcet-consistence, which just guar-

antees that whenever one competitor wins all of their matches (and is what’s called

a Condorcet winner), they win the event with probability 1. Designing Condorcet-

consistent, monotone rules is simple: any single elimination bracket suffices. Popular

voting rules such as the Copeland Rule or the Random Condorcet Removal Rule are

also Condorcet-consistent and monotone, but two-phase tournaments with an initial

group play aren’t [117].

Still, monotonicity only guarantees that no team wishes to unilaterally throw a

match to improve their chances of winning, whereas one might also hope to guarantee

that no two teams could fix the outcome of their match in order to improve the

probability that one of them wins. While we have to go back further in history to

find a clear instance of this kind of match-fixing, it did indeed result in a historical
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scandal. In the 1982 FIFA World Cup (again a two-stage tournament), Austria,

West Germany, and Algeria were in the same group of four where two would advance.

Algeria had already won two matches and lost one, Austria was 2-0, West Germany

was 1-1, and the only remaining game was Austria vs. West Germany. Due to tie-

breakers and the specific outcomes of previous matches, Austria would have been

eliminated by a large West German victory, and West Germany would have been

eliminated by a loss or draw. Once West Germany scored an early goal, both teams

essentially threw the rest of the match, allowing both of them to advance at Algeria’s

expense [136]. While the incident was never formally investigated, many fans were

confident the teams had colluded beforehand, and the event is remembered as the

“disgrace of Gijón.” Before being eliminated, Algeria had become the first African

team to beat a European team at the World Cup, and also the first to win two games.

West Germany went on to become the runners-up of the tournament.

Motivated by events like this, it is important also to design tournaments where no

two teams can fix the outcome of their match and improve the probability that one

of them wins. Altman and Kleinberg terms this property 2-Strongly Nonmanipulable

(2-SNM), and showed that no tournament rule is both Condorcet-consistent and 2-

SNM [4] (it was previously shown by Altman et. al. that no deterministic rule is

both Condorcet-consistent and 2-SNM [5]).

In light of this, both works relax the notion of Condorcet-consistency and design

tournament rules that are at least non-imposing (could possibly select each competi-

tor as a winner) and 2-SNM [5], or α-Condorcet-consistent (if there is a Condorcet

winner, she wins with probability at least α) and 2-SNM. While these relaxations

are well-motivated for settings where pair-wise comparisons are only implicitly made,

and not even necessarily learned in the end (e.g. elections), it is hard to imagine a

successful sports competition format where a competitor could win all their matches

and still leave empty handed. This happened during the 2008 NCAA Football Sea-

117



son. Utah went undefeated (#2, 13-0) in their region but were not invited to the

bowl game because critics deemed their schedule weak. They were eventually ranked

second nation-wide and beat Alabama (#6, 12-2) in the Sugar Bowl, while Florida

(#1, 13-1) beat Oklahoma (#5, 12-2) for the National Championship. This event

prompted organizers to reconsider the process by which teams are invited to the

National Championship game.

Motivated by match-based applications such as sporting events, where the out-

come of pair-wise matches is explicitly learned and used to select a winner, we consider

instead the design of tournament rules that are exactly Condorcet-consistent, but only

approximately 2-SNM. Specifically, we say that a tournament rule is 2-SNM-α if it is

never possible for two teams i and j to fix their match such that the probability that

the winner is in {i, j} improves by at least α. The idea behind this relaxation is that

whatever motivates j to throw the match (perhaps j and i are teammates, perhaps

i is paying j some monetary bribe, etc.), the potential gains scale with α. So it is

easier to disincentivize manipulation (either through investigations and punishments,

reputation, or just feeling morally lousy) in tournaments that are less manipulable.

5.1.1 Our Results

Our main result is a matching upper and lower bound of 1/3 on attainable values

of α for Condorcet-consistent 2-SNM-α tournament rules. The optimal rule that

attains this upper bound is actually quite simple: a random single elimination bracket.

Specifically, each competitor is randomly placed into one of 2dlog2 ne seeds, along with

2dlog2 ne − n byes, and then a single elimination tournament is played.

Proving a lower bound of 1/3 is straight-forward: imagine a tournament with

three players, A,B and C, where A beats B, B beats C, and C beats A. Then

some pair must win with combined probability at most 2/3. Yet, any pair could

create a Condorcet winner by colluding, who necessarily wins with probability 1 in
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any Condorcet-consistent rule. Embedding this within examples for arbitrary n is

also easy: just have A, B, and C each beat all of the remaining n− 3 competitors1.

On the other hand, proving that a random single elimination bracket is optimal is

tricky, but our proof is still rather clean. For any i, j in any tournament, we directly

show that i can improve her probability of winning by at most 1/3 when j throws

their match using a coupling argument. For every deterministic single elimination

bracket where i and j could potentially gain from manipulation (because i would

be the champion if i beat j, but j would not be the champion even if j beat i),

we construct two deterministic single elimination brackets where no potential exists

(possibly because one of them will lose before facing each other, or because the winner

would be in {i, j} no matter the outcome of their match). For our coupling to be

valid, we not only need each mapping to be invertible, but also for their images to

be disjoint. Our coupling is necessarily somewhat involved in order to obtain this

property, but otherwise we believe our proof is likely as simple as possible. Because

the probability that j wins cannot possibly go up by throwing a match to i, this

immediately proves that a random single elimination bracket is 2-SNM-1/3.

We also show that the Copeland rule, a popular rule that chooses the team with

the most wins, is asymptotically 2-SNM-1, the worst possible. Essentially, the prob-

lem is that if all teams have the same number of wins, then any two can collude to

guarantee that one of them wins, no matter the tie-breaking rule. We further show

that numerous other formats, (the Random Voting Caterpillar, the Iterative Con-

dorcet Rule, and the Top Cycle Rule) are all at best 2-SNM-1/2. The same example

is bad for all three formats: there is one superman who beats n− 2 of the remaining

players, and one kryptonite, who beats only the superman (but loses to the other

n− 2 players).

1Interestingly, this lower-bound example is far from pathological and occurs at even the highest
levels of professional sports (see [118], for instance).
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Our results extend to settings where the winner of each pairwise match is not

deterministically known, but randomized (i.e. all partipants know that i will beat j

with probability pij). Specifically, we show that any rule that is 2-SNM-α when all

pij ∈ {0, 1} is also 2-SNM-α for arbitrary pij. Clearly, any lower bound using integral

pij also provides a lower bound for arbitrary pij, so as far as upper/lower bounds

are concerned the models are equivalent. Of course, the randomized model is much

more realistic, so it is convenient that we can prove theorems in this setting by only

studying the deterministic setting, which is mathematically much simpler.

Finally, we consider manipulations among coalitions of k > 2 participants. We

say that a rule is k-SNM-α if no set S of size ≤ k can ever manipulate the outcomes

of matches between players in S to improve the probability that the winner is in S by

more than α. We prove a simple lower bound of α = k−1
2k−1

on all Condorcet-consistent

rules, and conjecture that this is tight.

5.1.2 Related Works

The mathematical study of tournament design has a rich literature, ranging from

social choice theory to psychology. The overarching goal in these works is to design

tournament rules that satisfy various properties a designer might find desirable. Ex-

amples of such properties might be that all players are treated equally, that a winner

is chosen without a tiebreaking procedure, or that a “most qualified” winner is se-

lected [63, 124, 57, 121, 146, 110, 129]. See [96] for a good review of this literature

and its connections to other fields as well.

Most related to our work are properties involving strategic manipulation. In the

more general field of Voting Theory, there is a rich literature on the design of strat-

egyproof mechanisms dating back to Arrow’s Impossibility Theorem [13] and the

Gibbard-Satterthwaite Theorem [65, 125, 66]. While tournaments are a very special

case (voters are indifferent among outcomes where they do not win, voters can only
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“lie” in specific ways, etc.), tournament design indeed seems to inherit much of the

impossibility associated with strategyproof voting procedures [4], [5].

Specifically, Altman et. al. proved that no deterministic tournament rule is 2-SNM

and Condorcet-consistent, and Altman and Kleinberg proved that no randomized

tournament rule is 2-SNM and Condorcet-consistent either [5, 4]. More recently,

Pauly studied the specific two-stage tournament rule used by the World Cup (and

Olympic Badminton, etc.) [117]. There, it is shown essentially that the problem lies

in the first round group stage: no changes to the second phase can possibly result in

a strategyproof 2 tournament.

To cope with their impossibility results, Altman et. al. propose a relaxation of

Condorcet-consistence called non-imposing. A rule r is non-imposing if for all i, there

exists a T such that player i wins with probability 1. They design a clever recursive

rule that is non-imposing and 2-SNM for all n 6= 3. Interestingly, they also show that

for n = 3 no such rule exists. Altman and Kleinberg consider a different relaxation

called α-Condorcet-consistent. A rule r is α-Condorcet-consistent if whenever i is a

Condorcet winner in T , we have their probability of winning T is at least α. They

design a rule that is 2/n-Condorcet-consistent and 2-SNM (in fact it is also k-SNM

for all k), but conjecture that much better is attainable.

The two works above are most similar to ours in spirit: motivated by the non-

existence of Condorcet-consistent and 2-SNM tournament rules, we relax one of the

notions. These previous works relax Condorcet-consistency while maintaining 2-SNM

exactly, and are most appropriate in settings where pairwise comparisons of players

are only learned implicitly (or perhaps not at all) through the outcome and not

explicitly as the result of matches. Instead, we relax the notion of 2-SNM and maintain

the notion of Condorcet-consistency exactly. In settings like sports competitions

where pairwise comparisons of players are learned explicitly through matches played,

2See [117] for the specific notion of strategyproofness studied.
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Condorcet-consistency is a non-negotiable desideratum. Therefore, we believe our

approach is more natural in such settings.

Another line of work introduced by [21] considers a different kind of strategyproof-

ness: how much control does the designer of a single-elimination tournament have over

the winner? Can the designer efficiently find a bracket in such a way to maximize the

likelihood that a player of their choice wins the tournament? The models in this area

assume that the designer is given the probabilities pij that team i beats team j and

the problem is known in the literature as agenda control when pij are real numbers

and Tournament Fixing Problem (TFP) when all probabilities are 0 or 1.

On the negative side, it is known that for n-player tournaments it is NP-hard

to decide whether or not there exists a seeding such that the probability of team k

winning is at least δ, given k, δ, even if pij ∈ {0, 0.5, 1} for all i, j [143]. [137] show

that the hardness results persist even for the TFP when the given team k is a king

(for every team j, either k beats j or k beats a team that beats j) with at least n/4

wins, or a 3−king (is at most 3 ”wins” away from every team) that wins at least

half of their games. Follow up work [88] shows that in the case of balanced single

elimination brackets, it is still NP-hard to find a bracket that favors team k when the

designer is allowed to bribe at most (1−ε) log n of the teams to throw their respective

matches.

On the positive side, there exist structural results that dictate when it is computa-

tionally efficient to find a tournament that favors a given team. [137] show conditions

under which, for large enough tournaments, any sufficiently good team can be fa-

vored by the tournament seeding. Other results [88, 87] show conditions under which

3−kings can be made into winners of single-elimination tournaments.

A large body of literature exists regarding manipulation and bribery in the context

of voting rules. For an introduction, we recommend the reader consult chapter 7 of

the handbook [111].
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5.1.3 Conclusions and Future Work

Our work contributes to a recent literature on incentive compatible tournament de-

sign. While most previous works insist on strong incentive properties and relaxed

fairness properties, such rules are inadequate for sporting events. Instead, we insist

at least that events maintain Condorcet-consistency, and aim to relax strategyproof-

ness as minimally as possible.

At a high level, our work suggests (similar to previous works), that single elim-

ination brackets are desirable whenever incentive issues come into play. However,

previous desiderata (such as those considered in [4]) don’t necessarily rule out other

tournament formats, like the Copeland rule, which is ubiquitous in tournaments (both

as a complete format and as subtournaments in a two-phase format). In comparison,

our work identifies single elimination brackets (2-SNM-1/3) as having significantly

better strategic properties versus the Copeland rule (2-SNM-1).

Our work also identifies two practical suggestions when match-fixing is a concern

that aren’t explained by prior benchmarks. First, when hosting a single elimination

tournament, it might be desirable to release the exact bracket as late as possible. The

idea is that as soon as the exact bracket is known, competitors have greater incentive

to fix matches (in our model, up to three times as much), which presumably takes some

time and organization. Obviously, there are more tradeoffs at play: a later release

inconveniences athletes and fans, and (perhaps more importantly to the designers)

could negatively impact ticket sales. But our work does at least identify match-fixing

as a part of this tradeoff. Note that some Olympic events (such as Taekwondo)

contest the entire competition in a single day at a single venue, so a delayed release

may indeed be practical. We also note that a similar “fix” was applied after the 1982

World Cup: the last two matches in each group are now played at the same time to

minimize the amount of information teams have when making potentially strategic

decisions.
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Additionally, our work suggests that even in the optimal tournament, hefty pun-

ishments for cheaters might be necessary in order to discourage match-fixing (even

without taking gambling into consideration). In many sports, winning an Olympic

gold can make a career. Unfortunately, our work suggests that punishments roughly

on this order might be necessary in order to properly deter match-fixing.

Finally, we propose two directions for future work. First, while we obtain tight

results for Condorcet-consistent 2-SNM-α rules, we only prove a lower bound of k-

SNM- k−1
2k−1

for Condorcet-consistent rules and k > 2. We conjecture that this is tight,

but unfortunately simulations indicate that all of the formats studied in our work

do not achieve this bound. So it is an interesting open question to design a rule

that does. Even partial results (of the form identified below) would require a new

tournament format than those considered in this work.

Open Question 1. Does there exist a tournament rule that is Condorcet-consistent

and k-SNM- k−1
2k−1

for all k? What about a family of rules F such that for all k, Fk is

k-SNM- k−1
2k−1

? What about a rule that is k-SNM-1/2 for all k?3

It is also important to study what bounds are attainable in restricted versions

of our probabilistic model (e.g. if for all i, j, the probability that i beats j lies in

[ε, 1− ε]). Realistic instances at least have some non-zero probability of an upset in

every match, but our lower bounds don’t hold in this model. So it is interesting to

see if better formats are possible.

Open Question 2. Is a random single elimination bracket still optimal among

Condorcet-consistent rules (w.r.t. 2-SNM-α) if for all i, j, the probability that i beats

j lies in [ε, 1 − ε]? How does the optimal attainable α for Condorcet-consistent, 2-

SNM-α tournament formats change as a function of ε?

3Note that k−1
2k−1 → 1/2 as k →∞.
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5.2 Preliminaries and Notation

In this section, we present notation used throughout the remainder of this chapter.

Where possible, we adopt notation from [4].

Definition 5.2.1. A (round-robin) tournament T on n players is the set of outcomes

of the
(
n
2

)
games played between all pairs of distinct players. We write Tij = 1 if

player i beats player j and Tij = −1 otherwise. We also let Tn denote the set of

tournaments on n players.

Definition 5.2.2. For a subset S ⊆ [n] of players, two tournaments T and T ′ are

S-adjacent if they only differ on the outcomes of some subset of games played between

members of S. In particular, two tournaments T and T ′ are {i, j} adjacent if they

only differ in the result of the game played between player i and player j.

Definition 5.2.3. A tournament rule (or winner determination rule) r : Tn → ∆([n])

is a mapping from the set of tournaments on n players to probability distributions

over these n players (representing the probability we choose a given player to be the

winner). We will write ri(T ) = Pr[r(T ) = i] to denote the probability that player i

wins tournament T under rule r.

Many tournament rules, while valid by the above definition, would be ill-suited for

running an actual tournament; for example, the tournament rule which always crowns

player 1 the winner. In an attempt to restrict ourselves to ‘reasonable’ tournament

rules, we consider tournaments that obey the following two criteria.

Definition 5.2.4. Player i is a Condorcet winner in tournament T if player i wins

their match against all the other n − 1 players. A tournament rule r is Condorcet-

consistent if ri(T ) = 1 whenever i is a Condorcet winner in T .

Definition 5.2.5. A tournament rule r is monotone if, for all i, ri(T ) does not

increase when i loses a game it wins in T . That is, if i beats j in T and T and T ′

are {i, j} adjacent, then if r is monotone, ri(T ) ≥ ri(T
′).
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Intuitively, this first criterion requires us to award the prize to the winner in the

case of a clear winner (hence making the tournament a contest of skill), and the

second criterion makes it so that players have an incentive to win their games. There

are various other criteria one might wish a tournament rule to satisfy; many can be

found in [4].

In this chapter, we consider the scenario where certain coalitions of players attempt

to increase the overall chance of one of them winning by manipulating the outcomes

of matches within players of the coalition. The simplest case of this is in the case of

coalitions of size 2, where player j might throw their match to player i. If T is the

original tournament and T ′ is the manipulated tournament where j loses to i, then

player i gains ri(T
′)−ri(T ) from the manipulation, and player j loses rj(T )−rj(T ′) (in

terms of probability of winning). Therefore, as long as ri(T
′)−ri(T ) > rj(T )−rj(T ′),

it will be in the players’ interest to manipulate. Equivalently, if ri(T
′) + rj(T

′) >

ri(T ) + rj(T ) (i.e., the probability either player i or j wins increases upon throwing

the match), there is incentive for i and j to manipulate.

Ideally, we would like to choose a tournament rule so that, regardless of the

tournament, there will be no incentive to perform manipulations of the above sort.

This is encapsulated in the following definition from [4].

Definition 5.2.6. A tournament rule r is 2-strongly non-manipulable (2-SNM) if,

for all pairs of {i, j}-adjacent tournaments T and T ′, ri(T ) + rj(T ) = ri(T
′) + rj(T

′).

Unfortunately, no tournament rules exist that are simultaneously Condorcet-

consistent and 2-strongly non-manipulable (this is shown in [4] and also follows from

our lower bound in Section 5.3.1). As tournament designers, one way around this

obstacle is to discourage manipulation. This discouragement can take many forms,

both explicit (if players are caught fixing matches, they are disqualified/fined) and

implicit (it is logistically hard to fix matches, it is unsportsmanlike). The focus of

this chapter is to quantify how manipulable certain tournament formats are (i.e. how

126



much can teams possibly gain by fixing matches), the idea being that it is easier to

discourage manipulation in tournaments that are less manipulable.

Definition 5.2.7. A tournament rule r is 2-strongly non-manipulable at probability

α (2-SNM-α) if, for all i and j and pairs of {i, j}-adjacent tournaments T and T ′,

ri(T
′) + rj(T

′)− ri(T )− rj(T ) ≤ α.

It is straightforward to generalize this definition to larger coalitions of colluding

players.

Definition 5.2.8. A tournament rule r is k-strongly non-manipulable at probability α

(k-SNM-α) if, for all subsets S of players of size at most k, for all pairs of S-adjacent

tournaments T and T ′,
∑

i∈S ri(T
′)−

∑
i∈S ri(T ) ≤ α.

5.2.1 The Random Single-Elimination Bracket Rule

Our main result concerns a specific tournament rule we call the random single-

elimination bracket rule. This rule can be defined formally as follows.

Definition 5.2.9. A single-elimination bracket (or bracket, for short) B on n = 2h

players is a complete binary tree of height h whose leaves are labelled with some

permutation of the n players. The outcome of a bracket B under a tournament T is

the labelling of internal nodes of B where each node is labelled by the winner of its

two children under T . The winner of B under T is the label of the root of B under

this labelling.

Definition 5.2.10. The random single-elimination bracket rule r is a tournament

rule on n = 2h players where ri(T ) is the probability player i is the winner of B under

T when B is chosen uniformly at random from the set of n! possible brackets.

If n is not a power of 2, we define the random single-elimination bracket rule on

n players by introducing 2dlog2 ne − n dummy players who lose to all of the existing n

players.
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It is straightforward to check that the random single-elimination bracket rule is

both Condorcet-consistent and monotone. Our main result (Theorem 5.3.3) shows

that in addition to these properties, the random single-elimination bracket rule is

2-SNM-1/3 (which is the best possible, by Theorem 5.3.1).

We give some examples of other common tournament rules in Section 5.3.4. While

many of these rules are both Condorcet-consistent and monotone, we do not know of

any which are additionally 2-SNM-1/3.

5.3 Main Result

5.3.1 Lower bounds for k-SNM-α

We begin by showing that no tournament rule is 2-SNM-α for α < 1/3. A similar

theorem appears as Proposition 17 in [4] (which states that α = 0 is impossible).

Theorem 5.3.1. There is no Condorcet-consistent tournament rule on n players (for

n ≥ 3) that is 2-SNM-α for α < 1
3
.

Proof. Consider the tournament T on three players A, B, and C where A beats B, B

beats C, and C beats A (illustrated in Figure 5.1). . Note that, while this tournament

has no Condorcet winner, changing the result of any of the three games results in

a Condorcet winner. For example, if A bribes C to lose to A, then A becomes the

Condorcet winner.

If we have a tournament rule r that is 2-SNM-α, then combining this with the

above fact gives rise to the following three inequalities.
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Figure 5.1: A tournament which attains the lower bound of α = 1/3 for all tournament
rules.

rA(T ) + rB(T ) ≥ 1− α

rB(T ) + rC(T ) ≥ 1− α

rC(T ) + rA(T ) ≥ 1− α

Together these imply rA(T ) + rB(T ) + rC(T ) ≥ 3
2
(1 − α). But rA(T ) + rB(T ) +

rC(T ) = 1; it follows that α ≥ 1
3
, as desired.

We can extend this counterexample to n > 3 players by introducing n− 3 dummy

players who all lose to A, B, and C; the argument above continues to hold.

We can use similar logic to prove lower bounds for the more general case of k-

SNM-α.

Theorem 5.3.2. There is no Condorcet-consistent tournament rule on n players (for

n ≥ 2k − 1) that is k-SNM-α for α < k−1
2k−1

.

Proof. Consider the following tournament T on the 2k− 1 players labelled 1 through

2k−1. Each player i wins their match versus the k−1 players i+1, i+2, . . . , i+(k−1),

and loses their match versus the k−1 players i−1, i−2, . . . , i− (k−1) (indices taken

modulo 2k − 1). Note that the coalition of players Si = {i, i − 1, . . . , i − (k − 1)} of
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size k can cause i to become a Condorcet winner if all players in the coalition agree

to lose their games with i. If we have a tournament rule r that is k-SNM-α, then this

implies the following 2k − 1 inequalities (one for each i ∈ [2k − 1]):

∑
j∈Si

rj(T ) ≥ 1− α (5.1)

Summing these 2k − 1 inequalities, we obtain

k
2k−1∑
j=1

rj(T ) ≥ (2k − 1)(1− α) (5.2)

Since
∑2k−1

j=1 rj(T ) ≤ 1, this implies that α ≥ k−1
2k−1

, as desired. Again, it is possible

to extend this example to any number of players n ≥ 2k − 1 by introducing dummy

players who lose to all 2k − 1 of the above players.

5.3.2 Random single elimination brackets are 2-SNM-1/3

We now show that the random single elimination bracket rule is optimal against

coalitions of size 2. The proof idea is simple; for every bracket B that contributes to

the incentive to manipulate ri(T
′) + rj(T

′) − ri(T ) − rj(T ) we will show that there

are two that do not (in other words, for every scenario where team i benefits from

the manipulation, there exist two other scenarios where the maniuplation does not

benefit either team).

Theorem 5.3.3. The random single elimination bracket rule is 2-SNM-1/3.

Proof. Let B be the set of n! different possible brackets amongst the n players. For a

given tournament T and a given player i, write 1(B, T, i) to represent the indicator

variable which is 1 if i wins bracket B under the outcomes in T and 0 otherwise.

Then we can write
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ri(T ) =
1

|B|
∑
B∈B

1(B, T, i).

Assume i loses to j in T . Then, if we let T ′ be the tournament that is {i, j}

adjacent to T , we can write the increase in utility resulting from j throwing to i

1

|B|
∑
B∈B

(1(B, T ′, i) + 1(B, T ′, j)− 1(B, T, i)− 1(B, T, j)) . (5.3)

Our goal is to show that this sum is at most 1/3. Now, note that if i does not

end up playing j in bracket B under T , i also does not play j in B under T ′ (and

vice versa). In these brackets, 1(B, T ′, i) = 1(B, T, i) and 1(B, T ′, j) = 1(B, T, j), so

these brackets contribute nothing to the sum in Equation 5.3. On the other hand,

in a bracket B where i does play j, we are guaranteed that 1(B, T, i) = 0 and

1(B, T ′, j) = 0 (since i loses to j in T and j loses to i in T ′). Therefore, letting Bij

be the subset of B of brackets where i meets j, we can rewrite Equation 5.3 as

1

|B|
∑
B∈Bij

(1(B, T ′, i)− 1(B, T, j)) .

Since 1(B, T ′, i) ≤ 1, this is at most

1

|B|
∑
B∈Bij

(1− 1(B, T, j)) .

This final sum counts exactly the number of brackets B where i and j meet (under

T , so j beats i) but j does not win the tournament. Call such brackets bad, and call

the remaining brackets good. We will exhibit two injective mappings σi and σj from

bad brackets to good brackets such that the ranges of σi and σj are disjoint. This

implies that there are at least twice as many good brackets as bad brackets, and thus

that the sum above is at most 1/3, completing the proof.
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Figure 5.2: An example of a bad bracket B.

For both mappings, we will need the following terminology. Consider a bad bracket

B, and consider the path from j up to the root of this tree. The nodes of this path

are labelled by players that j would face if they got that far. More specifically, j

has some opponent in the first round. Should j win, j would face some opponent

in the second round, then the third round, etc. all the way to the finals, and these

opponents do not depend on the outcomes of any of j’s matches. Then since B is a

bad bracket, j does not win, and at least one of the players on this path can beat

j. Choose the latest such player (i.e. the closest to the root) and call this player k.

Note that k might not be the player that knocks j out of the tournament (that is the

first player along this path who would beat j).

Suppose that i and j meet at height h of the bracket (i.e. in the hth round).

Let Bi, Bj, Bk be the subtrees of height h that contain i, j, and k respectively. An

example is shown in Figure 5.2.

We first describe the simpler of the two maps, σi. Define σi(B) by swapping the

subtrees Bi and Bk as shown in Figure 5.3. In this bracket j will lose to k before ever

meeting i, so σi(B) is good. Moreover σi is injective since we can construct its inverse.

In σi(B), j certainly would lose to k at height h before reaching i. Furthermore,

because we didn’t change Bj at all, j still wins all of its first h−1 matches and makes

it to k (because we started from a B where j makes it to i at height h). So we can
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Figure 5.3: σi(B).

identify k as the first player who beats j in σi(B), learn the height h, and undo the

swap of Bk and Bi.

We now describe the second map, σj. To construct σj(B), begin by swapping the

subtrees Bj and Bk (see Figure 5.4). Note that the bracket formed in this way is

good; since we chose k to be the latest player on j’s path to victory that can beat j,

if j meets i, j will also beat all subsequent players and win the tournament (note that

it is of course possible that j doesn’t even make it to i, in which case σj(B) is still

good. But it is clear that if j meets i, then j will win the tournament, so σj(B) is

good in either case). Unfortunately, this map as stated is not injective; in particular,

we cannot recover the height h to undo the swap as in the previous case.

The only reason we cannot uniquely identify k in the same way as when we invert

σi is that i might meet some player k′ at height h′ < h in Bi who also could beat

j. So, intuitively, we would like to swap such players out with players who lose to j.

Since j beats all of its opponents in Bj, Bj is an ample source of such players. We

will therefore perform some additional ‘subswap’ operations, swapping subtrees of Bj

and Bk so as to uniquely identify k as the first player i meets in σj(B) who can beat

j.

Specifically, for 0 ≤ h′ < h, let a(h′) be the opponent i plays at height h′ in Bi,

and let Bi(h
′) be the subtree of Bi with root a(h′) (note that the player that i meets

at height h′ is the root of a subtree of height h′ − 1, and that all these subtrees are
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Figure 5.4: σj(B).

disjoint). Similarly, let b(h′) be the opponent j plays at height h′ in Bj, and let Bj(h
′)

be the subtree of Bj with root b(h′). To construct σj(B) from B, first swap Bj and

Bk. Then for each h′ ∈ [0, h) such that a(h′) would beat j, swap the subtrees Bi(h
′)

and Bj(h
′). See Figure 5.5 for an illustration of a subswap operation.

Note that σj(B) is still good; it is still the case that if j meets i, j will beat

all subsequent players (all we have done in that part of the bracket is perhaps alter

whether or not j will indeed meet i). On the other hand, since j makes it to height h

in Bj, j can beat player b(h′) for all h′, so k is now the first player i would encounter

in σj(B) who can beat j. From this, we can recover k and thus h, and undo the swap

of Bi and Bj. To undo the subswaps, observe that because we started with a bad

bracket B, that j must have beaten all opponents it faces in the first h rounds. Since

all opponents on j’s path who beat j at height less than h were necessarily put there

by our subswap operations, we can just find all such opponents and swap them back

out. This process inverts σj, thus proving that σj is injective.

Finally, note that in σi(B), k must play j before either plays i, whereas in σj(B),

k must play i before either plays j. Therefore the ranges of σi and σj are disjoint,

and this completes the proof.

For the reader aiming to understand our coupling argument better, Appendix D.1

contains some specific examples.
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Figure 5.5: Subswap operation for σj.

5.3.3 Extension to randomized outcomes

Thus far we have been assuming that all match results are deterministic and known

to the players in advance. Of course, this is not true in general; in real life, the

outcomes of games are inherently unpredictable. It is perhaps imaginable that this

unpredictability could increase the incentive to manipulate. In this section we show

that this is not the case; a simple application of linearity of expectation shows that

results about deterministic tournaments still hold for their randomized counterparts.

We begin by defining a randomized tournament as follows.

Definition 5.3.4. A randomized tournament T is a random variable whose values

range over (deterministic) tournaments T . As shorthand, we will write PT (T ) to

represent the probability that T = T .

Note that this definition accounts for the most straightforward generalization of

tournament outcomes from deterministic to randomized, where for each match be-

tween players i and j we assign a probability pij to the probability that i beats j.

This definition further allows for the possibility of correlation between matches (e.g.,

with some probability player i has a good day and wins all his matches, and with

some probability he has a bad day and loses all his matches).

Manipulations in this randomized model are similar to manipulations in the de-

terministic model in that they effectively force the result of a match to a win or a loss.
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Formally, let σij(T ) for a (deterministic) tournament T be the tournament formed by

T but where i beats j (if i beats j in T , then σij(T ) = T ). A tournament rule r is

2-SNM-α if for all i and j,

ET [ri(σij(T )) + rj(σij(T ))− ri(T )− rj(T )] ≤ α (5.4)

We then have the following theorem:

Theorem 5.3.5. If a rule r is 2-SNM-α in the deterministic tournament model, it

is also 2-SNM-α in the randomized tournament model.

Proof. Note that we can write the expectation in Equation 5.4 as

∑
T

PT (T ) (ri(σij(T )) + rj(σij(T ))− ri(T )− rj(T ))

If r is 2-SNM-α for deterministic tournaments, then each term in this sum is at

most PT (T )α. It follows that this sum is at most α, and therefore r is also 2-SNM-α

for randomized tournaments.

It is straightforward to generalize the above definitions and result to the case of

k-SNM-α.

5.3.4 Other tournament formats

Finally, there are many other tournament formats that are either used in practice or

have been previously studied. In this section we show that many of these formats are

more susceptible to manipulation than the random single elimination bracket rule; in

particular, all of the following formats are at best 2-SNM-1/2.

By far the most common tournament rule for round robin tournaments is some

variant of a ‘scoring’ rule, where the winner is the player who has won the most games

(with ties broken in some fashion if multiple players have won the same maximum
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number of games). In voting theory, this rule is often called Copeland’s rule, or

Copeland’s method [46].

Definition 5.3.6. A tournament rule r is a Copeland rule if the winner is always

selected from the set of players with the maximum number of wins.

We begin by showing that no Copeland rule can be 2-SNM-α for any α < 1

(regardless of how the rule breaks ties).

Theorem 5.3.7. There is no Copeland rule on n players that is 2-SNM-α for α <

1− 2
n−1

.

Proof. Assume to begin that n = 2k + 1 is odd, and let r be a Copeland rule on n

players. Let T be the tournament where each player i beats the k players {i+ 1, i+

2, . . . , i + k} but loses to the k players {i − 1, i − 2, . . . , i − k}, with indices taken

modulo n (similar to the tournament in the proof of Theorem 5.3.2).

Since
∑n

i=1 ri(T ) = 1, there must be some i such that ri−1(T ) + ri(T ) ≤ 2
n
. On

the other hand, if player i− 1 throws their match to player i, then player i becomes

the unique Copeland winner (winning k + 1 games) and ri(T
′) = 1. It follows that,

for such a rule, if r is 2-SNM-α, then α ≥ 1− 2
n
.

If n is even, then we can embed the above example for n−1 by assigning one player

to be a dummy player that loses to all teams. This immediately implies α ≥ 1− 2
n−1

in this case.

In [4], Altman and Kleinberg provide three examples of tournament rules that are

Condorcet-consistent and monotone: the top cycle rule, the iterative Condorcet rule,

and the randomized voting caterpillar rule. We prove lower bounds on α for each of

these in turn. Interestingly, the same tournament provides all three lower bounds.

Definition 5.3.8. The superman-kryptonite tournament on n players has i beat j

whenever i < j, except that player n beats player 1. That is, player 1 beats everyone

except for player n, who loses to everyone except for player 1.
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Now we show that the superman-kryptonite tournament provides lower bounds

against the tournament rules considered in [4].

Definition 5.3.9. The top cycle of a tournament T is the minimal set of players who

never lose to any other player. The top cycle rule is a tournament rule which assigns

the winner to be a uniformly random element of this set.

Theorem 5.3.10. The top cycle rule on n players is not 2-SNM-α for any α < 1− 2
n

.

Proof. Let T be the superman-kryptonite tournament on n players. The top cycle in

T contains all the players, so r1(T ) + rn(T ) = 2
n
. However, if player n throws their

match to player 1, player 1 becomes a Condorcet winner and r1(T ′) = 1. It follows

that α ≥ 1− 2
n
.

Definition 5.3.11. The iterative Condorcet rule is a tournament rule that uniformly

removes players at random until there is a Condorcet winner, and then assigns that

player to be the winner.

Theorem 5.3.12. The iterative Condorcet rule on n players is not 2-SNM-α for any

α < 1
2
− 1

n(n−1)
.

Proof. Let T be the superman-kryptonite tournament on n players. Note that no

Condorcet winner will appear until either player 1 is removed, player n is removed, or

all other n− 2 players are removed. If all the other n− 2 players are removed before

players 1 or n (which occurs with probability 2
n(n−1)

), then player n wins. If this does

not happen and player n is removed before player 1 (which occurs with probability

1
2

(
1− 2

n(n−1)

)
= 1

2
− 1

n(n−1)
), then player 1 becomes the Condorcet winner and wins.

Otherwise, player 1 will be removed before player n, while some players in 2 through

n − 1 remain, and one of them will become the Condorcet winner (the remaining

player in {2, . . . , n − 1} with lowest index). It follows that r1(T ) = 1
2
− 1

n(n−1)
and

rn(T ) = 2
n(n−1)

, so r1(T ) + rn(T ) = 1
2

+ 1
n(n−1)

.
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On the other hand, if player n throws their match to player 1, then again player

1 becomes a Condorcet winner and r1(T ′) = 1. It follows that α ≥ 1
2
− 1

n(n−1)
.

Definition 5.3.13. The randomized voting caterpillar rule is a tournament rule which

chooses a winner as follows. Choose a random permutation π of [n]. Start by matching

π(1) and π(2), and choose a winner according to T . Then for all i ≥ 3 match π(i)

with the winner of the most recent match. The player that wins the last match (against

π(n)) is declared the winner.

Theorem 5.3.14. The randomized voting caterpillar rule on n players is not 2-SNM-

α for any α < 1
2
− n−3

n(n−1)
.

Proof. Let T be the superman-kryptonite tournament on n players. The only way

player 1 loses is if either player n occurs later in π than player 1 (which happens with

probability 1
2
) or if π(n) = 1 and π(1) = 2 and they play in the first round (which

happens with probability 1
n(n−1)

). The only way player n can win is if π(n) = n (i.e.,

they only play the very last game), in which case they will play player 1 and win (this

happens with probability 1
n
). It follows that r1(T ) = 1

2
− 1

n(n−1)
and rn(T ) = 1

n
, so

r1(T ) + rn(T ) = 1
2

+ n−2
n(n−1)

.

On the other hand, if player n throws their match to player 1, then again player

1 becomes a Condorcet winner and r1(T ′) = 1. It follows that α ≥ 1
2
− n−2

n(n−1)
.
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Chapter 6

Optimal instance adaptive

algorithm for the top-K ranking

problem

This chapter is joint work with Xi Chen, Sivakanth Gopi, and Jieming Mao [40].

6.1 Introduction

The problem of inferring a ranking over a set of n items, such as documents, images,

movies, or URL links, is an important problem in machine learning and finds many

applications in recommender systems, web search, social choice, and many other areas.

One of the most popular forms of data for ranking is pairwise comparison data, which

can be easily collected via, for example, crowdsourcing, online games, or tournament

play. The problem of ranking aggregation from pairwise comparisons has been widely

studied and most work aims at inferring a total ordering of all the items (see, e.g.,

[114]). However, for some applications with a large number of items (e.g., rating of

restaurants in a city), it is only necessary to identify the set of top K items. For

these applications, inferring the total global ranking order unnecessarily increases the
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complexity of the problem and requires significantly more samples. Typically, the

sample complexity of recovering the set of top K items is inversely related to the

gap between item K and item K + 1. On the other hand, the sample complexity of

recovering the global ranking order might depend on the the minimum of the gaps

between two consecutive items.

In the basic setting for this problem, there is a set of n items with some true

underlying ranking. For possible pair (i, j) of items, an analyst is given r noisy

pairwise comparisons between those two items, each independently ranking i above

j with some probability pij. From this data, the analyst wishes to identify the top

K items in the ranking, ideally using as few samples r as is necessary to be correct

with sufficiently high probability. The noise in the pairwise comparisons (i.e., the

probabilities pij) is constrained by the choice of noise model. Many existing models

- such as the Bradley-Terry-Luce model (BTL) [25, 101], the Thurstone model [140],

and their variants - are parametric comparison models, in that each probability pij

is of the form f(si, sj), where si is a ‘score’ associated with item i. While these

parametric models yield many interesting algorithms with provable guarantees [41,

78, 138], the models enforce strong assumptions on the probabilities of incorrect

pairwise comparisons that might not hold in practice [52, 104, 141, 19].

A more general class of pairwise comparison model is the strong stochastic transi-

tivity (SST) model, which subsumes the aforementioned parameter models as special

cases and has a wide range of applications in psychology and social science (see, e.g.,

[52, 104, 62]). The SST model only enforces the following coherence assumption: if i

is ranked above j, then pil ≥ pjl for all other items l. [130] pioneered the algorithmic

and theoretical study of ranking aggregation under SST models. For top-K rank-

ing problems, [132] proposed a counting-based algorithm under a very general noise

model that includes SST as a special case. The algorithm simply orders the items by

the total number of pairwise comparisons won. For a certain class of instances, this
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algorithm is in fact optimal; any algorithm with a constant probability of success on

these instances needs roughly at least as many samples as this counting algorithm.

However, this does not rule out the existence of other instances where the counting

algorithm performs asymptotically worse than some other algorithm (see the example

in Eq. (6.1)).

Under the SST model, we study algorithms for the top-K problem from the stand-

point of instance-specific analysis (a.k.a. competitive analysis in the computer sci-

ence). This is in spirit very similar to the notion “instance optimal”[61]. We give an

algorithm which, on any instance, needs at most Õ(
√
n) times as many samples as the

best possible algorithm for that instance to succeed with the same probability. We

further show this result is tight (up to polylogarithmic factors): for any algorithm,

there are instances where that algorithm needs at least Ω̃(
√
n) times as many samples

as the best possible algorithm. In contrast, the counting algorithm of [132] sometimes

requires Ω(n) times as many samples as the best possible algorithm, even when the

probabilities pij are bounded away from 1.

Our main technical tool is the introduction of a new decision problem we call

domination, which captures the difficulty of solving the top-K problem while being

simpler to directly analyze via information theoretic techniques. The domination

problem can be thought of as a restricted one-dimensional variant of the top-K prob-

lem, where the analyst is only given the outcomes of pairwise comparisons that involve

item i or j, and wishes to determine whether i is ranked above j. Our proof of the

above claims proceeds by proving analogous competitive ratio results for the domina-

tion problem, and then carefully embedding the domination problem as part of the

top-K problem. To establish the competitive ratio for the domination, we start from

a simple case where the comparison probabilities are bounded away from zero and

one. We first show that a popular counting algorithm developed by [132] has a sub-

optimal competitive ratio of Θ̃(n). The main reason is that the counting algorithm
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treats samples from different coordinates of comparison probability vector equally.

To address the issue of the counting algorithm, another maximum algorithm is first

proposed. However, the maximum algorithm still leads to a sub-optimal competitive

ratio and it fails whenever the counting algorithm performs well. Therefore, we de-

velop techniques to combine the counting and maximum algorithms together, which

give the optimal competitive ratio of Õ(
√
n). More detailed description of this idea

is provided in Section 6.3.1.

6.1.1 Related Work

The problem of sorting a set of items from a collection of pairwise comparisons is one

of the most classical problems in computer science and statistics. Many works investi-

gate the problem of recovering the total ordering under noisy comparisons drawn from

some parametric model. For the BTL model, Negahban et al. [114] propose the Rank-

Centrality algorithm, which serves as the building block for many spectral ranking

algorithms. Lu and Boutilier [100] give an algorithm for sorting in the Mallows model.

Rajkumar and Agarwal [120] investigate which statistical assumptions (BTL models,

generalized low-noise condition, etc.) guarantee convergence of different algorithms

to the true ranking.

More recently, the problem of top-K ranking has received a lot of attention. Chen

and Suh [41], Jang et al. [78], and Suh et al. [138] all propose various spectral

methods for the BTL model or a mixture of BTL models. Eriksson [60] considers

a noisy observation model where comparisons deviating from the true ordering are

i.i.d. with bounded probability. In [132], Shah and Wainwright propose a counting-

based algorithm, which motivates our work. However, their algorithm is not instance

adaptive and we provide a simple instance (see Eq. (6.1)) illustrating that the sample

complexity in [132] is sub-optimal on that instance. The top-K ranking problem is

also related to the best K arm identification in multi-armed bandit [33, 76, 147].
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However, in the latter problem, the samples are i.i.d. random variables rather than

pairwise comparisons and the goal is to identify the top K distributions with largest

means.

This paper and the above references all belong to the non-active setting: the set

of data provided to the algorithm is fixed, and there is no way for the algorithm to

adaptively choose additional pairwise comparisons to query. In several applications,

this property is desirable, specifically if one is using a well-established dataset or if

adaptivity is costly (e.g., on some crowdsourcing platforms). Nonetheless, the prob-

lems of sorting and top-K ranking are incredibly interesting in the adaptive setting

as well. Several works [2, 77, 86, 27] consider the adaptive noisy sorting problem with

(noisy) pairwise comparisons and explore the sample complexity to recover an (ap-

proximately) correct total ordering in terms of some distance function (e.g,., Kendall’s

tau). In [144], Wauthier et al. propose simple weighted counting algorithms to recov-

ery an approximate total ordering from noisy pairwise comparisons. Dwork et al. [58]

and Ailon et al. [3] consider a related Kemeny optimization problem, where the goal

is to determine the total ordering that minimizes the sum of the distances to different

permutations. More recently, the top-K ranking problem in the active setting has

been studied by Braverman et al. [26] where they consider the tradeoff between the

sample complexity of algorithms and the number of rounds of adaptivity. All of this

work takes place in much more constrained noise models than the SST model. A very

recent work by Heckel et. al. [74] investigates the active ranking under a general

class of nonparametric models and also establishes a lower bound on the number of

comparisons for parametric models. However, developing an active instance-adaptive

ranking algorithm under the SST model still remains an interesting open problem.

The instance adaptivity has been widely studied in many statistical estimation

problems. For example, the adaptive estimation is an important topic in nonpara-

metric shape-restricted regression (see, e.g., [72, 38, 39, 71]). Shah et. al. [131]
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study the adaptive estimation problem for estimating comparison probabilities in a

SST model. The concept of instance adaptivity is also closely related to the oracle

inequality, which relates the performance of a constructed estimator with that of an

“oracle” estimator with the information about local structure of the parameter space

(see the survey paper [36] and the book [91] and references therein).

[132] discussed the approximate recovery of top items. The approximate recovery

would be suitable for many practical applications. In their paper, they showed that

this approximate relaxation allows a less constrained separation threshold. For our

algorithms, it is not clear that the approximate relaxation can significantly improve

the competitive ratios. It is an interesting open question to extend our work to see if

the approximate recovery can result in better competitive ratios.

6.2 Preliminaries and Problem Setup

6.2.1 The Top-K problem

Consider the following problem. An analyst is given a collection of n items, labelled

1 through n. These items have some true ordering defined by a permutation π :

{1, . . . , n} → {1, . . . , n} such that for 1 ≤ u < v ≤ n, the item labelled π(u) has a

better rank than the item labelled π(v) (i.e., the item with label i has a better rank

than the item j if and only if π−1(i) < π−1(j)). The analyst’s goal is to determine

the set of the top K items, i.e., {π(1), . . . , π(k)}.

The analyst receives r samples. Each sample consists of pairwise comparisons

between all pairs of items. All the pairwise comparisons are independent with each

other. The outcomes of the pairwise comparison between any two items is character-

ized by the probability matrix P ∈ [0, 1]n×n. For a pair of items (i, j), let Xi,j ∈ {0, 1}

be the outcome of the comparison between the item i and j, where Xi,j = 1 means

i is preferred to j (denoted by i � j) and Xi,j = 0 otherwise. Further, let B(z)
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denote the Bernoulli random variable with mean z ∈ [0, 1]. The outcome Xi,j follows

B(Pπ−1(i),π−1(j)), i.e.,

Pr(Xi,j = 1) = Pr(i � j) = Pπ−1(i),π−1(j).

The probability matrix P is said to be strong stochastic transitive (SST) if it satisfies

the following definition.

Definition 6.2.1. The n × n probability matrix P ∈ [0, 1]n×n is strong stochastic

transitive (SST) if

1. For 1 ≤ u < v ≤ n, Pu,l ≥ Pv,l for all l ∈ [n].

2. P is shifted-skew-symmetric (i.e., P − 0.5 is skew-symmetric) where Pv,u =

1−Pu,v and Pu,u = 0.5 for u ∈ [n].

The first condition claims that when the item i has a higher rank than item j (i.e.,

π−1(i) < π−1(j)), for any other item k, we have

Pr(i � k) = Pπ−1(i),π−1(k) ≥ Pr(j � k) = Pπ−1(j),π−1(k).

Remark 6.2.1. Many classical parametric models such that BTL [25, 101] and Thur-

stone (Case V) [140] models are special cases of SST. More specifically, parametric

models assume a score vector w1 ≥ w2 ≥ . . . ≥ wn. They further assume that the

comparison probability Pu,v = F (wu − wv), where F : R → [0, 1] is a non-decreasing

function and F (t) = 1 − F (−t) (e.g., F (t) = 1/(1 + exp(−t)) in BTL models). By

the property of F , it is easy to verify that Pu,v = F (wu − wv) satisfy the conditions

in Definition 6.2.1.

Under the SST models, we can formally define the top-K ranking problem as

follows. The top-K ranking problem takes the inputs n, k, r that are known to the

algorithm and the SST probability matrix P that is unknown to the algorithm.
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Definition 6.2.2. Top-K(n, k,P, r) is the following algorithmic problem:

1. A permutation π of [n] is uniformly sampled.

2. The algorithm is given samples Xi,j,l for i ∈ [n], j ∈ [n], l ∈ [r], where each Xi,j,l

is sampled independently according to B(Pπ−1(i),π−1(j)). The algorithm is also

given the value of k, but not π or the matrix P.

3. The algorithm succeeds if it correctly outputs the set of labels {π(1), ..., π(k)} of

the top k items.

Remark 6.2.2. We note that [132] considers a slightly different observation model

in which each pair is queried r times. For each query, one can obtain a comparison

result with the probability pobs ∈ (0, 1] and with probability 1−pobs, the query is invalid.

In this model, each pair will be compared r ·pobs times on expectation. When pobs = 1,

it reduces to our model in Definition 6.2.2, where we observe exactly r comparisons

for each pair. Our results can be easily extended to deal with the observation model

in [132] by replacing r with the effective sample size, r · pobs. We omit the details for

the sake of simplicity.

Our primary metric of concern is the sample complexity of various algorithms;

that is, the minimum number of samples an algorithm A requires to succeed with

a given probability. To this end, we call the triple S = (n, k,P) an instance of

the Top-K problem, and write rmin(S,A, p) to denote the minimum value such that

for all r ≥ rmin(S,A, p), A succeeds on instance S with probability p when given r

samples. When p is omitted, we will take p = 3
4
; i.e., rmin(S,A) = rmin(S,A, 3

4
). It

is worthwhile to note that, by repeating the algorithm constant number of times and

taking the majority output, solving the problem for any constant error translates to

a solution with polynomially decaying error, and the sample complexity will increase

only by a multiplicative logarithmic factor.
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6.2.2 The Domination problem

To solve the problem of Top-K, we study a key sub-problem called Domination,

which captures the core of the difficulty of Top-K. In particular, Domination

captures the dominance relation between two consecutive rows of a SST probability

matrix. Domination is formally defined as follows.

Definition 6.2.3. Domination(n,p,q, r) is the following algorithmic problem:

1. p = (p1, · · · , pn) and q = (q1, · · · , qn) are two vectors of probabilities that satisfy

1 ≥ pi ≥ qi ≥ 0 for all i ∈ [n]. p,q are not given to the algorithm.

2. A random bit B is sampled from B(1
2
). Samples Xi,j, Yi,j (for i ∈ [n], j ∈ [r])

are generated as follows:

(a) Case B = 0: each Xi,j is independently sampled according to B(pi) and

each Yi,j is independently sampled according to B(qi).

(b) Case B = 1: each Xi,j is independently sampled according to B(qi) and

each Yi,j is independently sampled according to B(pi).

The algorithm is given the samples Xi,j and Yi,j, but is not given the bit B or

the values of p and q.

3. The algorithm succeeds if it correctly outputs the value of the hidden bit B.

From Definition 6.2.1, it is clear for any pair of rows (or columns) of a SST

probability matrix P, one row (or column) will dominate another. As before, we

are interested in the sample complexity of algorithms for Domination. We call

the triple C = (n,p,q) an instance of Domination, and write rmin(C,A, p) to be

the minimum value such that for all r ≥ rmin(C,A, p), algorithm A succeeds at

solving Domination(n,p,q, r) with probability at least p. Moreover, for notational

simplicity, let rmin(C,A) = rmin(C,A, 3
4
).
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There are at least two main approaches one can take to analyze the sample com-

plexity of problems like Top-K or Domination. The first (and more common)

approach is to bound the value of rmin(S,A) by some explicit function f(S) of a

Top-K instance S. This is the approach taken by [132]. They show that for some

simple function f (roughly, the square of the reciprocal of the absolute difference of

the sums of the k-th and (k+ 1)-th rows of the matrix P i.e. 1/‖Pk −Pk+1‖2
1), there

is an algorithm A such that for all instances S, rmin(S,A) = O(f(S)); moreover this

is optimal in the sense that there exists an instance S such that for all algorithms A,

rmin(S,A) = Ω(f(S)). While this is a natural approach, it leaves open the question

of what the correct choice of f should be; indeed, different choices of f give rise to

different ‘optimal’ algorithms A which outperform each other on different instances.

In this paper, we take the second approach, which is to compare the sample

complexity of an algorithm on an instance to the sample complexity of the best

possible algorithm on that instance. Formally, let rmin(S, p) = infA rmin(S,A, p) and

let rmin(S) = rmin(S, 3
4
). An ideal algorithm A would satisfy rmin(S,A) = Θ(rmin(S))

for all instances S of Top-K; more generally, we are interested in bounding the

ratio between rmin(S,A) and rmin(S). We call this ratio the competitive ratio of the

algorithm, and say that an algorithm is f(n)-competitive if rmin(S,A) ≤ f(n)rmin(S).

We likewise define the corresponding notions for Domination.

6.3 Main Results

In our main upper bound result, we give a linear-time algorithm for Top-K which is

Õ(
√
n)-competitive (restatement of Corollary 6.7.5):
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Theorem 6.3.1. There is an algorithm A for Top-K such that A runs in time

O(n2r) and on every instance S of Top-K on n items,

rmin(S,A) ≤ O(
√
n log n)rmin(S).

In our main lower bound result, we show that up to logarithmic factors, this
√
n

competitive ratio is optimal (restatement of Theorem 6.8.1):

Theorem 6.3.2. For any algorithm A for Top-K, there exists an instance S of

Top-K on n items such that

rmin(S,A) ≥ Ω

( √
n

log n

)
rmin(S).

In comparison, for the counting algorithm A′ of [132], there exist instances S such

that rmin(S,A′) ≥ Ω̃(n)rmin(S). For example, consider the instance S = (n, k,P)

with

P =



1
2

1
2

+ ε · · · · · · 1
2

+ ε

1
2
− ε ...

...
. . . . . . . . .

...

... 1
2

+ ε

1
2
− ε · · · · · · 1

2
− ε 1

2


(6.1)

It is straightforward to show that with Θ(log n/ε2) samples, we can learn all

pairwise comparisons correctly with high probability by taking a majority vote, and

therefore even sort all the elements correctly. This implies that rmin(S) = O(log n/ε2).

On the other hand, we show in Corollary 6.5.4 that rmin(S,A′) = Ω(n/ε2) when

ε < 1/10.
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6.3.1 Main Techniques and Overview

We prove our main results by first proving similar results for Domination which we

defined in Definition 6.2.3. Intuitively Domination captures the main hardness of

Top-K while being much simpler to analyze. Once we prove upper bound and lower

bounds for the sample complexity of Domination, we will use reductions to prove

analogous results for Top-K.

We begin in Section 6.4, by proving a general lower bound on the sample com-

plexity of domination. Explicitly, for a given instance C = (n,p,q) of Domination,

we show that rmin(C) ≥ Ω(1/I(p,q)) where I(p,q) is the amount of information we

can learn about the bit B from one sample of pairwise comparison in each of the

coordinates.

In Section 6.5, we proceed to design algorithms for Domination restricted to

instances C = (n,p,q) where δ ≤ pi, qi ≤ 1 − δ for some constant 0 < δ ≤ 1/2. In

this regime I(p,q) = Θ(‖p− q‖2
2), which makes it easier to argue our algorithms are

not too bad compared with the optimal one. We first consider an algorithm we call

the counting algorithm Acount (Algorithm 9), which is a Domination analogue of

the counting algorithm proposed by [132]. We show that Acount has a competitive

ratio of Θ̃(n). Intuitively, the main reason Acount fails is that Acount tries to consider

samples from different coordinates equally important even when they are sampled

from a very unbalanced distribution (for example, p1 6= q1, p2 = q2, ..., pn = qn).

We then consider another algorithm we call the max algorithm Amax (Algorithm 10)

which simply finds i′ = maxi |
∑r

j=1(Xi,j − Yi,j)| and outputs B according the sign of∑r
j=1(Xi′,j−Yi′,j). We show Amax also has a competitive ratio of Θ̃(n). Interestingly,

Amax fails for a different reason from Acount, namely that Amax does not use the

information fully from all coordinates when the samples are sampled from a very

balanced distribution. In fact, Acount performs well whenever Amax fails and vice

versa. We therefore show how combine Acount and Amax in two different ways to get
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two new algorithms: Acomb (Algorithm 11) and Acube (Algorithm 12). We show that

both of these new algorithms have a competitive ratio of Õ(
√
n), which is tight by

Theorem 6.8.2. While Acube has a slightly better competitive ratio (O(
√
n) versus

O(
√
n log n)), the method introduced in Acomb is more general and allows one to

combine any two algorithms for Domination and to obtain the better one of the two

performances on any instance.

In Section 6.6, we extend Acomb to design an efficient algorithm for Domina-

tion in the general regime. In this regime, I(p,q) can be much larger than ‖p− q‖2
2,

particularly for values of pi and qi very close to 0 or 1. In these corner cases, the count-

ing algorithm Acount and max algorithm Amax can fail very badly; we will show that

even for fixed n, their competitive ratios can grow arbitrarily large (Lemma 6.6.6 and

Lemma 6.6.7). One main reason for this failure is that, even when |pi−qi| < |pj−qj|,

samples from coordinate i could convey much more information than the samples from

coordinate j (consider, for example, pi = ε/2, qi = 0, and pj = 1/2 + ε, qj = 1/2).

Taking this into account, we design a new algorithm Acoup (Algorithm 13) which has a

competitive ratio of O(
√
n log n) in the general regime. The new algorithm builds off

Acoup and still combines features from both Acount and Amax, but also better estimates

the importance of each coordinate. To estimate how much information each coordi-

nate has, the new algorithm divides the samples into Θ(log n) groups and checks how

often samples from coordinate i are consistent with themselves. If one coordinate has

a large proportion of the total information, it uses samples from that coordinate to

decide B, otherwise it takes a majority vote on samples from all coordinates.

In Section 6.7, we return to Top-K and present an algorithm that has a compet-

itive ratio of Õ(
√
n), thus proving Theorem 6.3.1. Our algorithm works by reducing

the Top-K problem to several instances of the Domination problem (see Theo-

rem 6.6.5). At a high level, the algorithm tries to find the top k rows by pairwise

comparisons of rows, each of which can be thought of as an instance of Domination.
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We use algorithm Acoup to solve these Domination instances. Since we only need

to make at most n2 comparisons, if Acoup outputs the correct answer with at least

1− ε
n2 probability for each comparison, then by union bound all the comparisons will

be correct with probability at least 1 − ε. However, to find the top k rows, we do

not actually need to compare all the rows to each other; Lemma 6.7.1 shows that we

can find the top k rows with high probability while making only O(n) comparisons.

Using this lemma, we get a linear time algorithm (linear in the size of the input, i.e.

Θ(n2r) ) for solving Top-K. Finally in Lemma 6.7.4, we extend the lower bound

for Domination proved in Lemma 6.4.2 to show a lower bound on the number of

samples any algorithm would need on a specific instance of Top-K. Combining these

results, we prove Theorem 6.3.1.

Finally, in Section 6.8, we show that the algorithms for both Domination and

Top-K presented in the previous sections have the optimal competitive ratio (up

to polylogarithmic factors). Specifically, we show that for any algorithm A solv-

ing Domination, there exists an instance C of domination where rmin(C,A) ≥

Ω̃(
√
n)rmin(C) (Theorem 6.8.2). We accomplish this by constructing a distribution C

over instances of Domination such that each instance in the support of this distri-

bution can by solved by an algorithm with low sample complexity (Theorem 6.8.5)

but any algorithm that succeeds over the entire distribution requires Ω̃(
√
n) times

more samples (Theorem 6.8.7). We then embed Domination in Top-K (similarly

as in Section 6.7) to show an analogous Ω̃(
√
n) lower bound for Top-K (Theorem

6.8.1).
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6.4 Lower bounds on the sample complexity of

domination

We start by establishing lower bounds on the number of samples rmin(C) needed by

any algorithm to succeed with constant probability on a given instance C = (n,p,q)

of Domination. This is controlled by the quantity I(p,q), which is the amount of

information we can learn about the bit B given one sample of pairwise comparison

between each of the coordinates of p and q.

Definition 6.4.1. Given 0 ≤ p, q ≤ 1, define

I(p, q) = (p(1− q) + q(1− p))
(

1−H
(

p(1− q)
p(1− q) + q(1− p)

))
.

Given p = (p1, · · · , pn) ∈ [0, 1]n,q = (q1, · · · , qn) ∈ [0, 1]n, define I(p,q) =∑n
i=1 I(pi, qi).

Lemma 6.4.2. Let C = (n,p,q) be an instance of Domination. Then rmin(C) ≥

0.05/I(p,q).

Proof. The main idea is to bound the mutual information between the samples

and the correct output, and then apply Fano’s inequality. Let p = (p1, · · · , pn)

and q = (q1, · · · , qn). Recall that B indicates the correct output and that

X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r are the samples given to the algorithm. By Fact E.1.1,

I(B;X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r) = I(B;X1,1Y1,1)+I(B;X1,2, ..., Xn,r, Y1,2, ..., Yn,r|X1,1Y1,1).

When p, q and B are given, each sample (Xi,j or Yi,j) is independent of the other sam-

ples, and thus I(X1,1Y1,1;X1,2, ..., Xn,r, Y1,2, ..., Yn,r|B) = 0. By Fact E.1.2, we then

have I(B;X1,2, ..., Xn,r, Y1,2, ..., Yn,r|X1,1Y1,1) ≤ I(B;X1,2, ..., Xn,r, Y1,2, ..., Yn,r) and

therefore I(B;X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r) ≤ I(B;X1,1Y1,1)+I(B;X1,2, ..., Xn,r, Y1,2, ..., Yn,r).

Repeating this, we get I(B;X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r) ≤
∑n

i=1

∑r
j=1 I(B;Xi,jYi,j).
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By Fact E.1.3, we have

I(B;Xi,jYi,j)

= Pr[B = 0] ·D(Xi,jYi,j|B = 0‖Xi,jYi,j)

+ Pr[B = 1] ·D(Xi,jYi,j|B = 1‖Xi,jYi,j)

= (pi(1− qi) + qi(1− pi))

·
(

1−H
(

pi(1− qi)
pi(1− qi) + qi(1− pi)

))
= I(pi, qi).

It follows that I(B;X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r) ≤
∑n

i=1

∑r
j=1 I(B;Xi,jYi,j) = r ·∑n

i=1 I(pi, qi) = rI(p,q). For any algorithm, let pe be its error probability on Domi-

nation(n,p,q, r). By Fano’s inequality, we have that

H(pe) ≥ H(B|X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r)

= H(B)− I(B;X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r)

= 1− rI(p,q) ≥ 0.95.

Since H(pe) ≥ 0.95, we find that pe ≥ 1/4, as desired.

In the following section, we will concern ourselves with instances C = (n,p,q)

that satisfy δ ≤ pi, qi ≤ 1− δ for some constant δ for all i. For such instances, we can

approximate I(p, q) by the `2 distance between p and q.

Lemma 6.4.3. For some 0 < δ ≤ 1
2
, let δ ≤ p, q ≤ 1− δ. Then

1

4 ln 2
(p− q)2 ≤ I(p, q) ≤ 1

δ ln 2
(p− q)2.
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Proof. Let x = p(1 − q) and y = q(1 − p). Then I(p, q) = (x + y)(1 − H( x
x+y

)) and

p− q = x− y. We need to show that

(x+ y)

(
1−H

(
x

x+ y

))
≤ 1

δ ln 2
(x− y)2.

By Fact E.1.4,

1

ln 2
z2 ≤ 1−H

(
1

2
+ z

)
= D

(
1

2
+ z

∣∣∣∣∣∣∣∣12
)
≤ 4

ln 2
z2,

and therefore

1

4 ln 2

(x− y)2

(x+ y)
≤ (x+ y)

(
1−H

(
x

x+ y

))
≤ 1

ln 2

(x− y)2

(x+ y)
.

Since x+y = p(1−q)+q(1−p) ≥ 2
√
p(1− p)q(1− q) ≥ 2δ(1−δ) ≥ δ, this implies the

desired upper bound. The lower bound also holds since, x+ y = p(1− q) + q(1−p) ≤√
p2 + (1− p)2 ·

√
q2 + (1− q)2 ≤ δ2 + (1− δ)2 ≤ 1.

Corollary 6.4.4. Let C = (n,p,q) be an instance of Domination satisfying δ ≤

pi,qi ≤ 1− δ for all i ∈ [n]. Then

rmin(C) ≥ 0.05 ln(2) · δ

‖p− q‖2
2

.

Proof. By Lemma 6.4.3, I(p,q) ≤ ‖p− q‖2
2/(δ ln 2). The result then follows from

Lemma 6.4.2.

6.5 Domination in the well-behaved regime

We now proceed to the problem of designing algorithms for Domination which are

competitive on all instances. As a warmup, we begin by considering only instances

C = (n,p,q) of Domination satisfying δ ≤ pi, qi ≤ 1−δ for all i ∈ [n] where 0 < δ ≤
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1/2 is some fixed constant. This regime of instances captures much of the interesting

behavior of Domination, but with the added benefit that the mutual information

between the samples and B behaves nicely in this regime: in particular I(p,q) =

Θ(‖p− q‖2
2) (see Lemma 6.4.3). By Corollary 6.4.4, we have rmin ≥ Ω( 1

‖p−q‖22
). This

fact will make it easier to design algorithms for Domination which are competitive

in this regime.

In Section 6.5.1, we give two simple algorithms (counting algorithm and max algo-

rithm) which can solve Domination given Õ(n/‖p− q‖2
2) samples which gives them

a competitive ratio of Õ(n). We will then show that this is tight, i.e. their competi-

tive ratio is Θ̃(n) in Lemma 6.5.3 and Lemma 6.5.5. While the sample complexities

of these two algorithms are not optimal, they have the nice property that whenever

one performs badly, the other performs well. In Section 6.5.2, we show how to com-

bine the counting algorithm and the max algorithm to give two different algorithms

which can solve Domination using only Õ(
√
n/‖p− q‖2

2) samples i.e. they have a

competitive ratio of Õ(
√
n). According to Theorem 6.8.2, this is the best we can do

up to polylogarithmic factors.

6.5.1 Counting algorithm and max algorithm

We now consider two simple algorithms for Domination(n,p,q), which we call the

counting algorithm (Algorithm 9) and the max algorithm (Algorithm 10) denoted

by Acount and Amax respectively. We show that both algorithms require Õ( n
‖p−q‖22

)

samples to solve Domination (Lemmas 6.5.1 and 6.5.2). By Corollary 6.4.4, we have

rmin ≥ Ω( 1
‖p−q‖22

), leading to a Õ(n) competitive ratio for these algorithms. We show

in Lemma 6.5.3 and Lemma 6.5.5 that this is tight up to polylogarithmic factors i.e.

their competitive ratio is Θ̃(n).

Both the counting algorithm and the max algorithm begin by computing (for each

coordinate i) the differences between the number of ones in the Xi,j samples and Yi,j
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Algorithm 9 The counting algorithm Acount for Domination(n,p,q, r)

1: for i = 1 to n do
2: Si =

∑r
j=1(Xi,j − Yi,j)

3: end for
4: Z =

∑n
i=1 Si

5: If Z > 0, output B = 0. If Z < 0, output B = 1. If Z = 0, output B = 0 with
probability 1/2 and output B = 1 with probability 1/2.

Algorithm 10 The max algorithm Amax for Domination(n,p,q, r)

1: for i = 1 to n do
2: Si =

∑r
j=1(Xi,j − Yi,j)

3: end for
4: i′ = arg max |Si|
5: Z = Si′
6: If Z > 0, output B = 0. If Z < 0, output B = 1. If Z = 0, output B = 0 with

probability 1/2 and output B = 1 with probability 1/2.

samples; i.e., we compute the values Si =
∑r

j=1(Xi,j − Yi,j). The counting algorithm

Acount decides whether to output B = 0 or B = 1 based on the sign of
∑

i Si, whereas

the max algorithm decides its output based on the sign of the Si with the largest

absolute value. See Algorithms 9 and 10 for detailed pseudocode for both Acount and

Amax.

We omit proofs in this subsection. They can be found in Appendix E.2.

We begin by proving upper bounds for the sample complexities of both Acount and

Amax. In particular, both Acount and Amax need at most Õ(n) times as many samples

as the best possible algorithm for any instance in this regime.

Lemma 6.5.1. Let C = (n,p,q) be an instance of Domination. Then

rmin(C,Acount, 1− α) ≤ 2n ln(α−1)

‖p− q‖2
1

.

If C further satisfies δ ≤ pi, qi ≤ 1− δ for all i for some constant δ > 0, then

rmin(C,Acomb) ≤ O(n)rmin(C).
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Lemma 6.5.2. Let C = (n,p,q) be an instance of Domination. Then

rmin(C,Amax, 1− α) ≤ 8 ln(2nα−1)

‖p− q‖2
∞

If C further satisfies δ ≤ pi, qi ≤ 1− δ for all i for some constant δ, then

rmin(C,Acomb) ≤ O(n log n)rmin(C).

We now show that the upper bounds we proved above are essentially tight. In

particular, we demonstrate instances where both Acount and Amax need Ω̃(n) times

as many samples as the best possible algorithms for those instances. Interestingly, on

the instance where Acount suffers, Amax performs well, and vice versa. This fact will

prove useful in the next section.

Lemma 6.5.3. For each ε < 1
10

and each sufficiently large n, there exists an instance

C = (n,p,q) of Domination such that the following two statements are true:

1. rmin(C,Amax, 1− 2
n
) ≤ 16 lnn

ε2
.

2. rmin(C,Acount) ≥ n
128ε2

.

It is not hard to observe that in certain cases, the counting algorithm of [132] for

Top-K reduces to the algorithm Acount for Domination. It follows that there also

exists an Ω(n) multiplicative gap between the sample complexity of their counting

algorithm and the sample complexity of the best algorithm on some instances.

Corollary 6.5.4. Let A′ be the Top-K algorithm of [132], and let S = (n, k,P) be

a Top-K instance, with P as described in Section 6.3. Then, for sufficiently large n

and ε < 1/10, rmin(S,A′) ≥ Ω( n
ε2

).

We will now show that Amax has a competitive ratio of Ω̃(n).

Lemma 6.5.5. For each sufficiently large n, there exists an instance C = (n,p,q)

of Domination such that the following two statements are true:
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1. rmin(C,Acount, 1− 1
n
) ≤ 2n3 lnn.

2. rmin(C,Amax, 4
5
) ≥ n4

214 lnn
.

6.5.2 Õ(
√
n)-competitive algorithms

We will now demonstrate two algorithms for Domination that use at most Õ(
√
n)

times more samples than the best possible algorithm for each instance. According to

Theorem 6.8.2, this is the best we can do up to polylogarithmic factors.

Note that the counting algorithm Acount tends to work well when the max algo-

rithm Amax fails, and vice versa (e.g., Lemmas 6.5.3 and 6.5.5). Therefore, intuitively,

combining both algorithms in some way should lead to better performance.

Both of the algorithms we present in this section share this intuition. We begin

(in Lemma 6.5.6) by demonstrating a very general method for combining any two

algorithms for Domination. Applying this to Acount and Amax, we obtain an algo-

rithm Acomb that satisfies rmin(C,Acomb) ≤ O(
√
n log n) · rmin(C) (Corollary 6.5.7)

for instances C in this regime. We then show an alternate algorithm with slightly

better performance than Acomb, which we call the sum of cubes algorithm Acube. This

algorithm satisfies rmin(C,Acube) ≤ O(
√
n) · rmin(C) for instances C in this regime

(Theorem 6.5.10).

Combining counting and max

We first show how to combine any two algorithms for Domination to get an al-

gorithm that always does at least as well as the better of the two algorithms. Call

an algorithm A for Domination stable if it always outputs the correct answer with

probability at least 1/2 (i.e. it always does at least as well as a random guess). Note

that Acount and Amax are both stable. We have the following lemma.
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Lemma 6.5.6. Let A1 and A2 be two stable algorithms for Domination. Then there

exists an algorithm Acomb such that for all instances C of Domination,

rmin(C,Acomb, 1− α) ≤ 32 ln(α−1) ·min (rmin(C,A1), rmin(C,A2))

Proof. See Algorithm 11 for a description of Acomb. Assume without loss of generality

that B = 0, and let r = 32 log(nα−1) min (rmin(C,A1), rmin(C,A2)). We will show

that Acomb outputs B = 0 correctly with probability at least 1− α.

Let r′ = r
32 lnn

; note that either r′ ≥ rmin(C,A1) or rmin(C,A2). Assume first that

r′ ≥ rmin(C,A1). Then, A1 will output B = 0 in each of its 16 lnα−1 groups with

probability at least 3
4
. On the other hand, since it is stable, A2 will output B = 0 in

each of its groups with probability at least 1
2
. Therefore

E
[
Z1 + Z2

2

]
≤ 1

8
+

1

4
≤ 3

8
.

Since Z1+Z2

2
is the average of 32 lnα−1 random variables, by Hoeffding’s inequality,

the probability that Z1+Z2

2
≥ 1

2
is at most exp

(
−2(32 lnα−1)(1

8
)2
)
≤ α.

Similarly, if r′ ≥ rmin(C,A2), the probability that Z1+Z2

2
≥ 1

2
is also at most α.

This concludes the proof.

Algorithm 11 Combining two algorithms A1 and A2 for Domination(n,p,q, r)

1: Divide the samples into 32 lnα−1 groups.
2: Run A1 on each of the first 16 lnα−1 groups and let Z1 be the average of the

outputs.
3: Run A2 on each of the last 16 lnα−1 groups and let Z2 be the average of the

outputs.
4: If Z1+Z2

2
≤ 1

2
output B = 0, else output B = 1.

Corollary 6.5.7. Let Acomb be the algorithm we obtain by combining Acount and Amax

in the manner of Lemma 6.5.6. Then for any instance C = (n,p,q) of Domination,

rmin(C,Acomb) ≤ O

(√
n log n

‖p− q‖2
2

)
.
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If C further satisfies δ ≤ pi, qi ≤ 1− δ for all i for some constant δ, then

rmin(C,Acomb) ≤ O(
√
n log n)rmin(C).

Proof. This follows from Lemmas 6.5.1, 6.5.2, 6.5.6, and the following observation:

min

(
n

‖p− q‖2
1

,
log n

‖p− q‖2
∞

)
≤

√
n

‖p− q‖2
1

· log n

‖p− q‖2
∞

≤
√
n log n

‖p− q‖2
2

.

The last inequality follows from the fact that for any vector x, ‖x‖2
2 ≤ ‖x‖1 ·‖x‖∞.

The second part of the corollary then follows directly from Corollary 6.4.4.

The sum of cubes algorithm

We now give a different algorithm for Domination which we call the sum of cubes

algorithm, Acube. If we let Si =
∑

j(Xi − Yi), then intuitively, whereas Acount decides

its output based on the signed `1 norm of the Si and whereas Amax decides its output

based on the signed `∞ norm of the Si, Acube decides its output based on the signed

`3 norm of the Si. See Algorithm 12 for a detailed description of the algorithm.

Algorithm 12 Sum of cubes algorithm Acube for Domination(n,p,q, r)

1: Ti,j = 1 with probability 1
2
+

(Xi,j−Yi,j)

2
and Ti,j = −1 with probability 1

2
− (Xi,j−Yi,j)

2

2: Si =
∑r

j=1 Ti,j
3: Z =

∑n
i=1 S

3
i

4: If Z ≥ 0, output B = 0. If Z < 0, output B = 1.

To analyze the performance of Acube, we begin by analyzing statistical properties

of the random variable S.
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Lemma 6.5.8. Let S =
∑r

j=1 Xj where X1, · · · , Xr are i.i.d {−1, 1}-valued random

variables with mean ε ≥ 0 and r ≥ 8. Let Z = S3. Then

E[Z] ≥ 2r2ε+
1

2
r3ε3

Var[Z] ≤ 15r3 + 36r4ε2 + 9r5ε4.

Proof. By applying the multinomial theorem and using the fact that X2
i = 1 for each

i, we can write multilinear expressions for S3 and S6. We can now use linearity of

expectation and the independence among the Xi’s to compute the mean and variance

exactly.

E[Z] = E[S3] = (−2r + 3r2)ε+ (2r − 3r2 + r3)ε3

≥ 2r2ε+
1

2
r3ε3

Var[Z] = E[S6]− E[S3]2 = (16r − 30r2 + 15r3)

+ (−136r + 282r2 − 183r3 + 36r4)ε2

+ (240r − 522r2 + 381r3 − 108r4 + 9r5)ε4

+ (−120r + 270r2 − 213r3 + 72r4 − 9r5)ε6

≤ 15r3 + 36r4ε2 + 9r5ε4

Lemma 6.5.9. Let Si =
∑r

j=1Xi,j where for each i ∈ [n], Xi,1, · · · , Xi,r are i.i.d

{−1, 1}-valued random variables with mean εi, along with the condition that either

all εi ≥ 0 or all εi ≤ 0. Let Z =
∑n

i=1 S
3
i . If r ≥ 8 and r ≥ η

√
n/(
∑n

i=1 ε
2
i ) for some

η ≥ 1 then, E[Z]2 ≥ η
36

Var[Z].
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Proof. Without loss of generality, we can assume that εi ≥ 0 for all i ∈ [n]. By

Lemma 6.5.8,

E[Z]2 ≥ 4r4(
∑
i

εi)
2 +

1

4
r6(
∑
i

ε3
i )

2 + 2r5(
∑

εi)(
∑
i

ε3
i ) (6.2)

Var[Z] ≤ 15nr3 + 36r4
∑
i

ε2
i + 9r5

∑
i

ε4
i . (6.3)

We will show that each term in the Equation 6.3 is dominated by some term in

Equation 6.2.

nr3 = r5 n

r2
≤ 1

η2
r5(
∑
i

ε2
i )

2 ≤ 1

η2
r5(
∑
i

εi)(
∑
i

ε3
i )

(Cauchy-Schwarz inequality)

r4(
∑
i

ε2
i ) ≤

1

η
√
n
r5(
∑
i

ε2
i )

2 ≤ 1

η
√
n
r5(
∑
i

εi)(
∑
i

ε3
i )

r5(
∑
i

ε4
i ) ≤ r6 1

η
√
n

(
∑
i

ε2
i )(
∑
i

ε4
i )

≤ r6 1

η
√
n

(
√
n · (

∑
i

ε4
i )

1/2

)
(
∑
i

ε4
i ) (Cauchy-Schwarz inequality)

=
r6

η
(
∑
i

ε4
i )

3/2 ≤ r6

η
(
∑
i

ε3
i )

2 (monotonicity of `p norms)

Adding the above inequalities, we get Var[Z] ≤ 36
η
E[Z]2.

Theorem 6.5.10. If C = (n,p,q) is any instance of Domination, then

rmin(C,Acube) ≤ max

(
144
√
n

‖p− q‖2
2

, 8

)
.

If C satisfies δ ≤ pi, qi ≤ 1− δ for all i for some constant δ, then

rmin(C,Acube) ≤ O(
√
n)rmin(C).
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Proof. Assume without loss of generality that B = 0. We have Si =
∑r

j=1 Ti,j and

Z =
∑n

i=1 S
3
i . Note that for each i, the Ti,j are i.i.d. {−1, 1} random variables with

mean E[Ti,j] = pi − qi. Applying Lemma 6.5.9 with η = 144, if r ≥ max
(

144
√
n

‖p−q‖22
, 8
)

we have that E[Z]2 ≥ 144
36

Var[Z] = 4Var[Z]. Since the algorithm makes an error

(i.e. outputs B = 1) when Z < 0, we can use Chebyshev’s inequality to bound the

probability that Z < 0.

Pr[Z < 0] ≤ Pr[|Z − E[Z]| ≥ E[Z]] ≤ Var[Z]

E[Z]2
≤ 1

4
.

The second part of the theorem then follows directly from Corollary 6.4.4.

6.6 Domination in the general regime

In this section, we consider Domination in the general regime. Unlike in the pre-

vious section, it is no longer true that I(Xi,jYi,j;B) = I(pi, qi) = Θ((pi − qi)
2). In

particular, when pi and qi are both very small, I(pi, qi) can be much bigger than

(pi − qi)2; as a result, the algorithms designed in the previous section can fail under

these circumstances.

In Section 6.6.1, we present a new algorithm Acoup which is Õ(
√
n · rmin)-

competitive. According to Theorem 6.8.2, this is the best we can do up to

polylogarithmic factors. In Section 6.6.2, we then demonstrate that the general

regime is indeed harder than the restricted regime in Section 6.5. In particular, we

give instances where the algorithms presented in the previous section fail; we show

that the competitive ratio of these algorithms is unbounded (even for fixed n).

6.6.1 An Õ(
√
n)-competitive algorithm

Here we give an algorithm that only needs O(
√
n log(n)/I(p,q)) samples to solve

Domination (Theorem 6.6.5). By Lemma 6.4.2, this is only Õ(
√
n) times as many
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samples as the optimal algorithm needs. Intuitively, the algorithm works as follows:

if for some coordinate i, Xi,1Yi,1...Xi,r, Yi,r conveys enough information about B, we

will only use samples from coordinate i to determine B. Otherwise, the information

about B must be well-spread throughout all the coordinates, and a majority vote will

work.

We begin by bounding the probability we can determine the answer from a single

fixed coordinate. The following four lemmas will be used to prove Theorem 6.6.5 and

their proofs can be found in Appendix E.3.

Lemma 6.6.1 (Sanov’s theorem). Let P(Σ) denote the space of all probability dis-

tributions on some finite set Σ. Let R ∈ P(Σ) and let Z1, · · · , Zk be i.i.d random

variables with distribution R. For every x ∈ Σk, we can define an empirical probability

distribution P̂x on Σ as

∀σ ∈ Σ P̂x(σ) =
|{i ∈ [k] : xi = σ}|

k
.

Let C be a closed convex subset of P(Σ) such that for some P ∈ C, D(P ||R) < ∞.

Then

Pr
[
P̂(Z1,··· ,Zk) ∈ C

]
≤ exp (−k(ln 2)D(Q∗||R))

where Q∗ = argminQ∈C D(Q||R) is unique. In the case when D(Q||R) = ∞ for all

Q ∈ C, Pr
[
P̂(Z1,··· ,Zk) ∈ C

]
= 0.

Proof. See exercise 2.7 and 3.20 in [48].

Sanov’s theorem allows us to bound the following probability that we incorrectly

rank two Bernoulli variables (e.g., Xi and Yi for a fixed coordinate i) from k indepen-

dent samples.

Lemma 6.6.2. Let 0 ≤ q < p ≤ 1 and let X1, · · · , Xk be i.i.d B(p) and Y1, · · · , Yk be

i.i.d B(q). Then Pr
[∑k

i=1(Xi − Yi) ≤ 0
]
≤ exp

(
−2(ln 2)k log

(
1

√
pq+
√

(1−p)(1−q)

))
.
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We can in turn relate the upper bound in Lemma 6.6.2 to the quantity I(p, q).

Lemma 6.6.3.

2 log

(
1

√
pq +

√
(1− p)(1− q)

)
≥ 1

2
I(p, q).

Combining Lemma 6.6.2 and Lemma 6.6.3, we can show the following corollary

which says that given Ω(1/I(p, q)) samples, we can correctly rank two Bernoulli vari-

ables with constant probability.

Corollary 6.6.4. In Domination(n,p,q, r), for any i ∈ [n], if r > 6/I(pi, qi), then

Pr

[
sign

(
r∑
j=1

(Xi,j − Yi,j)

)
= (−1)B

]
> 5/6.

Proof. Assume we are in the B = 0 case, the other case is similar. Fix an i ∈ [n]. By

Lemma 6.6.2,

Pr

[
r∑
j=1

(Xi,j − Yi,j) ≤ 0

]

≤ exp

(
−r(ln 2) log

(
1

√
piqi +

√
(1− pi)(1− qi)

))

≤ exp (−r(ln 2)Ii/2) (By Lemma 6.6.3)

= 2−rIi/2 < 1/8.

We now introduce what we call the general coupling algorithm Acoup for

Domination. A detailed description of the algorithm can be found in Algorithm

13; more briefly the algorithm works as follows:

1. Split the r samples for each of the n coordinates into ` = 18 log(2nα−1) equally-

sized segments where α is the error parameter. For each coordinate i and

segment j, set Si,j = 1 if more samples from X equal 1 than samples from Y ,
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and −1 otherwise. This can be thought of as running a miniature version of

the counting algorithm on each segment; Si,j = 1 is evidence that B = 0, and

Si,j = −1 is evidence that B = −1.

2. Let i′ be the coordinate i which maximizes
∣∣∣∑`

j=1 Si,j

∣∣∣ (i.e. the coordinate that

is “most consistently” either 1 or −1). If
∣∣∣∑`

j=1 Si′,j

∣∣∣ ≥ `/3 (i.e. at least 2`/3 of

the segments for this coordinate agree on the value of B), output B according

to the sign of
∑`

j=1 Si′,j.

3. Otherwise, for each segment, take the majority of the votes from each of the n

coordinates; that is, for each 1 ≤ j ≤ `, set Tj = sign(
∑n

i=1 Si,j). Then take

another majority over the segments, by setting Z2 = sign(
∑`

j=1 Tj). Finally, if

Z2 > 0 output B = 0; otherwise, output B = 1.

Theorem 6.6.5. If C = (n,p,q) is any instance of Domination, then

rmin(C,Acoup, 1− α) ≤ 2592
√
n ln(2nα−1)

I(p,q)

and thus

rmin(C,Acoup) ≤ O(
√
n log n) · rmin(C).

Proof. Let Ii = I(pi, qi), r = 2592
√
n log(2nα−1)/I(p,q) and ` = 18 ln(2nα−1). There

are two cases to consider:

1. Case 1: There exists an i′ such that 24
√
nIi′ ≥

∑n
k=1 Ik.

By symmetry, we can assume that B = 0. In this case, we have that r
`
≥

24·6
√
n∑n

k=1 Ik
≥ 6

Ii′
. By Corollary 6.6.4, for each j = 1, . . . , `, Pr[Si′,j = 1] ≥ 5/6.

Therefore we have

E

[
l∑

j=1

Si′,j

]
≥ ` · (5/6− 1/6) = 2`/3.
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Algorithm 13 General coupling algorithm Acoup for Domination(n,p,q, r)

1: ` = 18 log(2nα−1).
2: for i = 1 to n do
3: for j = 1 to ` do
4: Si,j = sign(

∑jr/`
t=(j−1)∗(r/`)+1Xi,t − Yi,t)

5: If Si,j = 0, let Si,j = 1 with probability 1/2 and let Si,j = −1 with probability
1/2.

6: end for
7: end for
8: i′ = arg maxi |

∑`
j=1 Si,j|

9: Z1 =
∑`

j=1 Si′,j
10: if |Z1| ≥ `/3 then
11: If Z1 > 0 output B = 0, else output B = 1.
12: else
13: for j = 1 to l do
14: Tj = sign(

∑n
i=1 Si,j).

15: If Tj = 0, let Tj = 1 with probability 1/2 and let Tj = −1 with probability
1/2.

16: end for
17: Z2 = sign(

∑`
j=1 Tj).

18: If Z2 = 0, let Z2 = 1 with probability 1/2 and let Z2 = −1 with probability
1/2.

19: If Z2 > 0 output B = 0, else output B = 1.
20: end if

Since Si′,1, ..., Si′,l are independent when B is given, by the Chernoff bound, we

have that Pr
[∑l

j=1 Si′,j ≥ `/3
]
≥ 1 − exp(−` · (1/3)2 · (1/2)) ≥ 1 − α

2n
. For

i 6= i′, since pi ≥ qi, we still have Pr[Si,j = 1] ≥ 1/2. By a similar argument,

we get Pr
[∑l

j=1 Si,j ≥ −`/3
]
≥ 1− exp(−` · (1/3)2 · (1/2)) ≥ 1− α

2n
. Let W be

the event that
∑`

j=1 Si′,j ≥ `/3 and for i 6= i′,
∑l

j=1 Si,j ≥ −`/3. By the union

bound, we have that Pr[W ] ≥ 1− n · α
2n

= 1− α
2
. Moreover, when W happens,

we know that Z1 ≥ `/3 and Acoup outputs B = 0. Therefore, in Case 1, the

probability that Acoup outputs B correctly is at least 1− α
2
.

2. Case 2: For all i ∈ {1, . . . , n}, 24
√
nIi <

∑n
k=1 Ik.

169



Similarly as in Case 1, since Pr[Si,j = (−1)B] ≥ 1/2, the probability that

|Z1| ≥ `/3 and our algorithm outputs wrongly is at most α
2
. For the rest of

Case 2, assume |Z1| < `/3.

Now fix a coordinate i. Our plan is to first lower bound the amount of informa-

tion samples from coordinate i have about B by using Corollary 6.6.4 and the

subadditivity of information. Let s = r/`, and let s′ = s ·d 6
sIi
e. Imagine that we

have s′ new samples, Ui,1, Vi,1, ..., Ui,s′ , Vi,s′ , where each (Ui,j, Vi,j) (j = 1, . . . , s′)

is generated independently according to the same distribution as (Xi,1, Yi,1).

Since s′ ≥ 6/Ii, by Corollary 6.6.4, we have that

Pr

[
sign

(
s′∑
j=1

(Ui,j − Vi,j)

)
= (−1)B

]
> 5/6.

Write (UiVi)
[a,b] as shorthand for the sequence ((Ui,a, Vi,a), . . . (Ui,b, Vi,b)), and

define (XiYi)
[a,b] analogously. By Fano’s inequality, we have that

I
(

(UiVi)
[1,s′];B

)
= H(B)−H(B|(UiVi)[1,s′])

≥ H(1
2
)−H(1− 5

6
) = 1−H(1

6
) ≥ 1/3.

Since I((UiVi)
[1,s]; (UiVi)

[s+1,s′]|B) = 0 (our new samples are independent given

B), we have

I((UiVi)
[1,s′];B)

= I((UiVi)
[1,s];B|(UiVi)[s+1,s′])

+I((UiVi)
[s+1,s′];B)

≤ I((UiVi)
[1,s];B) + I((UiVi)

[s+1,s′];B)

(by Fact E.1.2)
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Repeating this procedure, we get

I((UiVi)
[1,s′];B) ≤

d 6
sIi
e∑

u=1

I((UiVi)
[(u−1)s+1,us];B).

Since we know that for any u = 1, ..., d 6
sIi
e,

I((UiVi)
[(u−1)s+1,us];B) = I((XiYi)

[1,s];B),

we get

I((XiYi)
[1,s];B) ≥ I((UiVi)

[1,s′];B) · 1

d 6
sIi
e
≥ sIi

6 · 6
.

The last inequality is true because 6
sIi

=
∑n

k=1 Ik
24
√
nIi
≥ 1.

After we lower bound I((XiYi)
[1,s];B), we are going to show that we can output

B correctly with reasonable probability based on samples only from coordinate
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i.

sIi
6 · 6

≤ I((XiYi)
[1,s];B)

=
∑
x

Pr[(XiYi)
[1,s] = x]

·D(B|(XiYi)
[1,s] = x‖B)

≤
∑
x

Pr[(XiYi)
[1,s] = x]

·
(
2(Pr[B = 0|(XiYi)

[1,s] = x]− 1/2)2

+2(Pr[B = 1|(XiYi)
[1,s] = x]− 1/2)2

)
(by Fact E.1.4)

=
∑
x

Pr[(XiYi)
[1,s] = x]

·(Pr[B = 0|(XiYi)
[1,s] = x]

−Pr[B = 1|(XiYi)
[1,s] = x])2

≤
∑
x

Pr[(XiYi)
[1,s] = x]

·|Pr[B = 0|(XiYi)
[1,s] = x]

−Pr[B = 1|(XiYi)
[1,s] = x]|.

When
∑s

j=1(Xi,j − Yi,j) > 0, it is easy to check that

Pr[B = 0|(XiYi)
[1,s]] > Pr[B = 1|(XiYi)

[1,s]].

172



Therefore,

Pr[Si,1 = (−1)B]

=
∑
x

Pr[(XiYi)
[1,s] = x]

·max(Pr[B = 0|(XiYi)
[1,s] = x],

Pr[B = 1|(XiYi)
[1,s] = x])

=
1

2
+

1

2
·
∑
x

Pr[(XiYi)
[1,s] = x] ·

|Pr[B = 0|(XiYi)
[1,s] = x]

−Pr[B = 1|(XiYi)
[1,s] = x]|

≥ 1

2
+

sIi
12 · 6

≥ 1

2
+

√
nIi∑n
k=1 Ik

.

Similarly, we can show for all i = 1, ..., n, j = 1, ..., l,

Pr[Si,j = (−1)B] ≥ 1

2
+

√
nIi∑n
k=1 Ik

.

Now without loss of generality assume that B = 0. We have that E [
∑n

i=1 Si,j] ≥∑n
i=1

(
1
2

+
√
nIi∑n

k=1 Ik
− 1

2
+

√
nIi∑n

k=1 Ik

)
= 2
√
n. Therefore, by the Chernoff bound,

Pr[Tj = 1] ≥ 1− e−(1/n)·(2
√
n)2·(1/2) > 3/4.

By the Chernoff bound again,

Pr[Z2 > 0] ≥ 1− e−`·(1/2)2·(1/2) ≥ 1− α

2n
.
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Since we initially fail with probability at most α
2
, by the union bound, in Case

2 we fail with probability at most α
2

+ α
2n
< α. This concludes the proof.

6.6.2 Acount and Amax with unbounded competitive ratios even

for constant n

In this section, we show that the competitive ratios of Acount and Amax are unbounded

even when n is a constant. In other words, we cannot upper bound the competitive

ratios of Acount and Amax by only a function of n. The competitive ratio also needs

to depend on some parameters of the instance. We prove this by showing instances

where the competitive ratios of Acount and Amax also depend on ε which is some

parameter of the instances in Lemma 6.6.6 and Lemma 6.6.7. The result in Lemma

6.6.6 can be easily generalized to show that the counting algorithm of [132] for Top-

K also has unbounded competitive ratio even when n is a constant. Proofs can be

found in Appendix E.3.

Lemma 6.6.6. For each sufficiently large n and for any ε > 0, there exists an

instance C = (n,p,q) of Domination such that the following two statements are

true:

1. rmin(C,Acoup, 1− 2
n
) ≤ 5184

√
n logn
ε

2. rmin(C,Acount) ≥ n
16ε2

.

Lemma 6.6.7. For each sufficiently large n and any 0 < ε < 1/n3, there exists an

instance C = (n,p,q) of Domination such that the following two statements are

true.

1. rmin(C,Acoup, 1− 2
n
) ≤ 518400

√
n lnn

ε
.

2. rmin(C,Amax, 9
10

) ≥ 1
ε2214 lnn
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6.7 Reducing top-K to domination

In this section, we will finally reduce Top-K to Domination, thus proving Theo-

rem 6.3.1. First, we will give an algorithm for Top-K problem that uses Acoup for

Domination as a subroutine. We need Lemma 6.7.1 and Lemma 6.7.2 for the algo-

rithm. Their proof can be found in Appendix E.4. We begin by reducing Top-K to

the following graph theoretic problem.

Lemma 6.7.1. Let G = ([n], E) be a directed complete graph on vertices {1, 2, · · · , n}

i.e. for every distinct i, j ∈ [n], either (i, j) ∈ E or (j, i) ∈ E but not both. Suppose

there is a subset S ⊂ [n] of size k such that (i, j) ∈ E for every i ∈ S and j /∈ S.

Then there is a randomized algorithm which runs in expected running time O(n) and

finds the set S given oracle access to the edges of G. Moreover there is some absolute

constant C > 0 such that for every λ ≥ 1, the probability that the algorithm runs in

more than Cλn time is bounded by exp(−λ).

The following lemma shows that when p ≥ q, I(p, q) is an increasing function of p

and a decreasing function of q.

Lemma 6.7.2. Let 0 ≤ q′ ≤ q ≤ p ≤ p′ ≤ 1, then I(p′, q′) ≥ I(p, q).

We are now ready to give an algorithm for Top-K.

Theorem 6.7.3. There exists an algorithm A for Top-K such that for any α > 0

and any instance S = (n, k,P), A runs in time O(n2r log(1/α)) and satisfies

rmin(S,A, 1− α) ≤ 7776
√
n log(2nα−1)

I(Pk,Pk+1)

where Pk,Pk+1 are the k and k + 1 rows of P.

Proof. Let Pi denote the ith row of P, and let ∆ = I(Pk,Pk+1). Recall that A is

given as input the three-dimensional array of samples Zi,j,l, where for each i, j ∈ [n]
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and 1 ≤ l ≤ r, Zi,j,l is the result of the lth noisy comparison between item i and

item j (sampled from B(Pπ−1(i),π−1(j))). We will define a complete directed graph

G = ([n], E) as follows. For every 1 ≤ i < j ≤ n and 1 ≤ h ≤ n, run Acoup with

input Xh,l = Zi,h,l and Yh,l = Zj,h,l; if Acoup returns B = 0, then direct the edge from

i towards j, and otherwise, direct the edge from j towards i.

Let T = {π(1), π(2), . . . , π(k)} be the set of labels of the top k items. We claim

that if i ∈ T and j 6∈ T , then with probability at least 1 − α
n2 , the edge is directed

from i towards j. To see this, note that in the corresponding input to Acoup, X is

drawn from Pπ−1(i) and Y is drawn from Pπ−1(j). If i ∈ T and j 6∈ T , then π−1(i) ≤

k < π−1(j). In particular, Pπ−1(i) dominates Pπ−1(j), and moreover by Lemma 6.7.2,

I(Pπ−1(i),Pπ−1(j)) ≥ ∆. It follows from Theorem 6.6.5 that Acoup outputs B = 0 on

this input with probability at least 1− α
2n2 , since in general,

rmin(C,Acoup, 1− α
2n2 ) ≤ 2592

√
n log(4n3α−1)

I(p,q)

≤ 7776
√
n log(2nα−1)

I(p,q)
.

By the union bound, the probability that all of these comparisons are correct is at

least 1− α
2
. Therefore, by the tail bounds in Lemma 6.7.1, we can find the subset T

in O(n log(1/α)) oracle calls to Acoup with probability at least 1− α
2
. The probability

of failure is at most α
2

+ α
2

= α. Each call to Acoup takes O(nr) time, so the overall

time of the algorithm is O(n2r log(1/α)).

To prove that this algorithm is competitive, we will conclude by proving a

lower bound on rmin(S) (again, by reduction to the appropriate lower bound for

Domination).
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Lemma 6.7.4. Let S = (n, k,P) be an instance of Top-K. Then rmin(S) ≥
0.1

I(Pk,Pk+1)
.

Proof. We will proceed by contradiction. Suppose there exists an algorithm A which

satisfies rmin(S,A) ≤ 0.01
I(Pk,Pk+1)

. We will show how to convert this into an algorithm

A′ which solves the instance C = (n,Pk,Pk+1) of Domination with probability at

least 3
4

when given at least 2r = 0.05/I(Pk,Pk+1) samples, thus contradicting Lemma

6.4.2.

The algorithm A′ is described in Algorithm 14; essentially, A′ embeds the inputs

X and Y to the Domination instance as rows/columns k and k + 1 respectively of

the Top-K instance. It is easy to check that the Zi,j,l for i, j ∈ [n],l ∈ [r] generated in

A′ are distributed according to the same distribution as the corresponding elements

in the instance S of Top-K. Therefore A will output the top k items correctly with

probability at least 3/4. In addition, if B = 0 the item labeled k will be in the top k

items and if B = 1 the item labeled k will not be in the top k items. Therefore, A′

succeeds to solve this instance of Domination with probability at least 3/4, leading

to our desired contradiction.

Algorithm 14 Algorithm A′ for the lower bound reduction

1: Get input Xi,l, Yi,l for i ∈ [n] and l ∈ [2r] from Domination(n,Pk,Pk+1, 2r).
2: Generate a random permutation π on n elements s.t. π({k, k+ 1}) = {k, k+ 1}.
3: for i ∈ [n], j ∈ [n], l ∈ [r] do
4: If i = k, set Zi,j,l = Xj,l.
5: If i = k + 1, set Zi,j,l = Yj,l.
6: If i 6∈ {k, k + 1}, j = k, set Zi,j,l = Xi,l+r.
7: If i 6∈ {k, k + 1}, j = k + 1, set Zi,j,l = Yi,l+r.
8: If i 6∈ {k, k + 1}, j 6∈ {k, k + 1}, sample Zi,j,l from B(Pπ−1(i),π−1(j)).
9: end for

10: Run A on samples Zi,j,l, i, j ∈ [n], l ∈ [r].
11: If A said k is amongst the top k items, output B = 0. Otherwise output B = 1.

We are now ready to prove our main upper bound result.
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Corollary 6.7.5. There is an algorithm A for Top-K such that A runs in time

O(n2r) and on every instance S of Top-K on n items,

rmin(S,A) ≤ O(
√
n log n)rmin(S).

Proof. Let S =Top-K(n, k,P, ·) be an instance of Top-K. By Lemma 6.7.4,

rmin(S) ≥ 0.1

I(Pk,Pk+1)
.

If A is the algorithm in Theorem 6.7.3 with α = 1
4

then A runs in time O(n2r) and

rmin(S,A) ≤ O

( √
n log n

I(Pk,Pk+1)

)
.

Combining these two inequalities, we obtain our result.

6.8 Lower bounds for domination and top-K

In the previous section we demonstrated an algorithm that solves Top-K on any

distribution using at most Õ(
√
n) times more samples than the optimal algorithm

for that distribution (see Corollary 6.7.5). In this section, we show this is tight up

to logarithmic factors; for any algorithm, there exists some distribution where that

algorithm requires Ω̃(
√
n) times more samples than the optimal algorithm for that

distribution. Specifically, we show the following lower bound.

Theorem 6.8.1. For any algorithm A, there exists an instance S of Top-K of size

n such that rmin(S,A) ≥ Ω
( √

n
logn

)
rmin(S).
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As in the previous sections, instead of proving this lower bound directly, we will

first prove a lower bound for the domination problem, which we will then embed in a

Top-K instance.

Theorem 6.8.2. For any algorithm A, there exists an instance C of Domination

of size n such that rmin(C,A) ≥ Ω
( √

n
logn

)
rmin(C).

6.8.1 A hard distribution for domination

To prove Theorem 6.8.2, we will show that there exists a distribution over instances

of the domination problem such that, while each instance in the support of this

distribution can be solved by some algorithm with a small number of samples, any

algorithm requires a large number of samples given an instance randomly sampled

from this distribution.

Let C be a distribution over instances C of the domination problem of size n.

We extend rmin to distributions by defining rmin(C, A, p) as the minimum number of

samples algorithm A needs to successfully solve Domination with probability at least

p over instances randomly sampled from C, and let rmin(C, A) = rmin(C, A, 3/4). The

following lemma relates the distributional sample complexity to the single instance

sample complexity.

Lemma 6.8.3. For any p > 1/2, algorithm A and any distribution C over instances of

the domination problem, there exists a C in the support of C such that rmin(C,A, p) ≥

rmin(C, A, p).

Proof. Let ε(C,A, r) be the probability that algorithm A errs given r samples from

C. By the definition of rmin(C, A, p), we have that

∑
C∈suppC

Pr
C

[C] · ε(C,A, rmin(C, A, p)) = 1− p

It follows that there exists some C∗ ∈ suppC such that
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ε(C∗, A, rmin(C, A, p)) ≥ 1− p

Since ε(C∗, A, r) is decreasing in r, this implies that rmin(C∗, A, p) ≥ rmin(C, A, p), as

desired.

We will find it useful to work with distributions that are only mostly supported

on easy instances. The following lemma lets us do that.

Lemma 6.8.4. Let C be a distribution over instances of the domination problem, and

let E be an event with Pr[E] = 1−δ. Then for any algorithm A and any 1−δ > p > 1
2
,

rmin(C|E,A, p + δ) ≥ rmin(C, A, p) (here C|E denotes the distribution C conditioned

on event E occurring).

Proof. By the definition of rmin(C, A, p), we have that

∑
C∈suppC

Pr
C

[C] · ε(C,A, rmin(C, A, p)) = 1− p

Rewrite this as

Pr[E] ·
∑

C∈suppC PrC|E[C] · ε(C,A, rmin(C, A, p)) + Pr[E] ·
∑

C∈suppC PrC|E[C] ·

ε(C,A, rmin(C, A, p)) = 1− p

Since
∑

C∈suppC PrC|E[C] = 1 and Pr[E] = δ, it follows that

∑
C∈suppC

Pr
C|E

[C] · ε(C,A, rmin(C, A, p)) ≥ 1− p− δ

from which it follows that rmin(C|E,A, p+ δ) ≥ rmin(C, A, p).

We can now define the hard distribution for the domination problem. Define γ =

1
100
√
n
. Let SP be a random subset of [n] where each i ∈ [n] is independently chosen to

belong to SP with probability γ. Likewise, define SQ the same way (independently of
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SP ). Finally, fix n constants Ri all in the range [1
4
, 3

4
] (for now, it is okay to consider

only the case where Ri = 1
2

for all i; to extend this lower bound to the top-k problem,

we will need to choose different values of Ri). Then the hard distribution Chard is the

distribution over instances C(SP , SQ) = (n,p,q) of Domination where

pi =


Ri(1 + ε) if i ∈ SP

Ri if i 6∈ SP

and

qi =


Ri(1− ε) if i ∈ SQ

Ri if i 6∈ SQ

We claim that the majority of the instances in the support of Chard have an al-

gorithm that requires few samples. Intuitively, if SP and SQ are fixed, then the best

algorithm for that specific instance can restrict attention only to the indices in SP

and SQ. In particular, if SP is large enough (some constant times its expected size),

then simply throwing away all indices not in SP and counting which row has more

heads is an efficient algorithm for recovering the dominant set.

Theorem 6.8.5. Fix any SP and SQ such that |SP | ≥ 1
10
nγ. Then rmin(C(SP , SQ), p) =

O
(

log(1−p)−1

ε2
√
n

)
for all p < 1.

Proof. It suffices to demonstrate an algorithm A such that rmin(C(SP , SQ), A, p) =

O
(

log(1−p)−1

ε2
√
n

)
.

Any algorithm A receives two sets X, Y , each of r samples from n coins. Write

X = (X1, X2, . . . , Xn), where each Xi = (Xi,1, Xi,2, . . . Xi,r) is the collection of r

samples from coin i (likewise, write Y = (Y1, Y2, . . . , Yn), and Yi = (Yi,1, Yi,2, . . . Yi,r)).

Consider the following algorithm: A computes the value
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T =
∑
i∈SP

r∑
j=1

(Xi,j − Yi,j)

and outputs that B = 0 if T ≥ 0 and outputs B = 1 otherwise.

For each i, j, let Ai,j = Xi,j − Yi,j. If B = 0, then Ai,j ∈ [−1, 1], E[Ai,j] ≥ εRi ≥ ε
4

and all the Ai,j are independent. It follows from Hoeffding’s inequality that in this

case,

Pr[T < 0] = Pr[T − E[T ] < −E[T ]]

≤ exp

(
−2E[T ]2

4|SP |r

)
= exp

(
−|SP |rε

2

32

)
≤ exp

(
−γnε

2r

320

)
= exp

(
−
√
nε2r

32000

)

Therefore, choosing r = 32000 ln(1−p)−1
√
nε2

= O
(

log(1−p)−1
√
nε2

)
guarantees Pr[T < 0] ≤

1− p. Similarly, the probability that T ≥ 0 if B = 1 is also at most 1− p for this r.

The conclusion follows.

By a simple Chernoff bound, we also know that the event that SP has size at least

1
10
nγ occurs with high probability.

Lemma 6.8.6. Pr
[
|SP | ≥ 1

10
nγ
]
≥ 1− e−

√
n/400.

In the following subsection, we will prove that for all A, rmin(Chard, A) is large.

More precisely, we will prove the following theorem.

Theorem 6.8.7. For all algorithms A, rmin(Chard, A, 2
3
) = Ω

(
1

ε2 logn

)
.

Given that this theorem is true, we can complete the proof of Theorem 6.8.2.
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Proof of Theorem 6.8.2. By Theorem 6.8.7, for any algorithm A, rmin(Chard, A, 2
3
) =

Ω
(

1
ε2 logn

)
. Let E be the event that |SP | ≥ 1

10
nγ. By Lemma 6.8.6, if n ≥ (400 ln 12

11
)2,

Pr[E] ≥ 1
12

. It then follows from Lemma 6.8.4 that

rmin(Chard|E,A) = rmin(Chard|E,A, 3/4)

≥ rmin(Chard, A, 2/3)

≥ Ω

(
1

ε2 log n

)
.

It then follows by Lemma 6.8.3 that there is a specific instance C = C(SP , SQ)

with |SP | at least 1
10
γn such that rmin(C,A) ≥ Ω

(
1

ε2 logn

)
. On the other hand, by

Theorem 6.8.5, for this C, rmin(C) ≤ O
(

1
ε2
√
n

)
. It follows that for any algorithm A,

there exists an instance C such that rmin(C,A) ≥ Ω
( √

n
logn

)
rmin(C), as desired.

6.8.2 Proof of lower bounds

In this subsection, we prove Theorem 6.8.7; namely, we will show that any algorithm

needs at least Ω
(

1
ε2 logn

)
samples to succeed on Chard with constant probability. Our

main approach will be to bound the mutual information between the samples pro-

vided to the algorithm and the correct output (recall that B is the hidden bit that

determines whether the samples in X are drawn from p or from q).

Lemma 6.8.8. If I(XY ;B) < 0.05, then there is no algorithm that can succeed at

identifying B with probability at least 2
3
.

Proof. Fix an algorithm A, and let pe be the probability that it errs at computing B.

By Fano’s inequality, we have that
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H(pe) ≥ H(B|XY )

= H(B)− I(XY ;B)

= 1− I(XY ;B)

> 0.95

Since H(1
3
) ≤ 0.95, it follows that A must err with probability at least 1/3.

Via the chain rule, we can decompose I(XY ;B) into the sum of many smaller

mutual informations.

Lemma 6.8.9. I(XY ;B) ≤
∑n

i=1 (I(Xi;B) + I(Yi;B))

Proof. Write X<i to represent the concatenation X1X2 . . . Xi−1. By the chain rule,

we have that

I(XY ;B) =
n∑
i=1

I(XiYi;B|X<iY <i)

We claim that I(XiYi;X
<iY <i|B) = 0. To see this, note that given B, each coin

in Xi is sampled from some B(p) distribution, where p only depends on whether

i ∈ SP or i ∈ SQ. Since each i is chosen to belong to SP and SQ independently

with probability γ, this implies Xi (and similarly Yi) are independent from X<i and

Y <i given B. By Fact E.1.2, this implies that I(XiYi;B|X<iY <i) ≤ I(XiYi;B), and

therefore that

I(XY ;B) ≤
n∑
i=1

I(XiYi;B).
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Likewise, we can write I(XiYi;B) = I(Xi;B) + I(Yi;B|Xi). Since I(Xi;Yi|B) = 0

(since SP and SQ are chosen independently), again by Fact E.1.2 it follows that

I(Yi;B|Xi) ≤ I(Yi;B) and therefore that

I(XY ;B) ≤
n∑
i=1

(I(Xi;B) + I(Yi;B)) .

Lemma 6.8.10. If n ≥ 400 and r = 1
100ε2 lnn

, then for all i, I(B;Xi) = I(B;Yi) ≤
1

100n
.

Proof. By symmetry, I(B;Xi) = I(B;Yi). We will show that I(B;Xi) ≤ 1
100n

.

Let Zi =
∑

j Xi,j. Note that Zi is a sufficient statistic for B, and therefore

I(B;Xi) = I(B;Zi). By Fact E.1.3,

I(B;Zi) = EZi
[D(B|Zi‖B)]

=
r∑
z=0

Pr[Zi = z] ·D(Pr[B = 0|Zi = z]‖1
2
).

We next divide the range of z into two cases.

1. Case 1: |z − rRi| ≤ 11rε lnn.

In this case, we will bound the size of D(Pr[B = 0|Zi = z]‖1
2
). Note that

∣∣∣∣Pr[B = 0|Zi = z]− 1

2

∣∣∣∣ (6.4)

=

∣∣∣∣Pr[Zi = z|B = 0] · Pr[B = 0]

Pr[Zi = z]
− 1

2

∣∣∣∣
=

∣∣∣∣ Pr[Zi = z|B = 0]

Pr[Zi = z|B = 0] + Pr[Zi = z|B = 1]
− 1

2

∣∣∣∣
=

|Pr[Zi = z|B = 0]− Pr[Zi = z|B = 1]|
2(Pr[Zi = z|B = 0] + Pr[Zi = z|B = 1])

(6.5)
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Now, note that

Pr[Zi = z|B = 0] = (1− γ)

(
r

z

)
Rz
i (1−Ri)

r−z

+ γ

(
r

z

)
(Ri(1 + ε))z(1−Ri(1 + ε))r−z

Pr[Zi = z|B = 1] = (1− γ)

(
r

z

)
Rz
i (1−Ri)

r−z

+ γ

(
r

z

)
(Ri(1− ε))z(1−Ri(1− ε))r−z

We can therefore lower bound the denominator of (6.5) via

2(Pr[Zi = z|B = 0] + Pr[Zi = z|B = 1])

≥ 4(1− γ)

(
r

z

)
Rz
i (1−Ri)

r−z

≥ 2

(
r

z

)
Rz
i (1−Ri)

r−z

Likewise, we can write the numerator of (6.5) as

|Pr[Zi = z|B = 0]− Pr[Zi = z|B = 1]| = γ

(
r

z

)
Rz
i (1−Ri)

r−zM

where
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M =
∣∣(1 + ε)z

(
1−Ri(1 + ε)

1−Ri

)r−z
−(1− ε)z

(
1−Ri(1− ε)

1−Ri

)r−z ∣∣
=

∣∣(1 + ε)z
(

1− Ri

1−Ri

ε

)r−z
−(1− ε)z

(
1 +

Ri

1−Ri

ε

)r−z ∣∣.
To bound M , note that (applying the inequality 1 + x ≤ ex)

(1 + ε)z
(

1− Ri

1−Ri

ε

)r−z
≤ exp

(
εz − ε Ri

1−Ri

(r − z)

)
= exp

(
ε
z − rRi

1−Ri

)
≤ exp(4ε(z − rRi))

≤ exp(44rε2 lnn)

= e0.44

< 2

Similarly, (1 − ε)z
(

1 + Ri

1−Ri
ε
)r−z

≤ 2. It follows that M ≤ 2, and therefore

that
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∣∣∣∣Pr[B = 0|Zi = z]− 1

2

∣∣∣∣
=

|Pr[Zi = z|B = 0]− Pr[Zi = z|B = 1]|
2(Pr[Zi = z|B = 0] + Pr[Zi = z|B = 1])

≤
γ
(
r
z

)
Rz
i (1−Ri)

r−zM

2
(
r
z

)
Rz
i (1−Ri)r−z

=
γM

2

≤ γ

By Fact E.1.4, this implies that

D(Pr[B = 0|Zi = z]‖1
2
) ≤ 4γ2

ln 2
.

2. Case 2: |z − rRi| > 11rε lnn.

Let Z+ be the sum of r i.i.d. B (Ri(1 + ε)) random variables. Note that since

Z is the sum of r B(p) random variables for some p ≤ Ri(1 + ε), Pr[Z+ ≥ x] ≥

Pr[Z ≥ x] for all x. Therefore, by Hoeffding’s inequality, we have that

Pr [Z − rRi ≥ 11rε lnn]

≤ Pr
[
Z+ − rRi ≥ 11rε lnn

]
≤ Pr

[
Z+ − rRi(1 + ε) ≥ rε(11 lnn−Ri)

]
≤ Pr

[
Z+ − E[Z+] ≥ 10rε lnn

]
≤ exp

(
−2(10rε lnn)2

r

)
= exp(−2 lnn)

= n−2
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Likewise, we can show that

Pr [Z − rRi ≤ −11rε lnn] ≤ n−2

so

Pr [|Z − rRi| ≥ 11rε lnn] ≤ 2n−2

Combining these two cases, we have that (for n ≥ 400)

I(B;Zi) =
r∑
z=0

Pr[Zi = z] ·D(Pr[B = 0|Zi = z]‖1
2
)

≤
∑

|‖z‖−r/2|>11rε lnn

Pr[Zi = z] · 1

+
∑

|‖z‖−r/2|≤11rε lnn

Pr[Zi = z] ·O(γ2)

≤ 2n−2 +
4γ2

ln 2

≤ 1

100n
.

We can now complete the proof of Theorem 6.8.7.

Proof of Theorem 6.8.7. Combining Lemmas 6.8.9 and 6.8.10, we have that if r =

1
100ε2 lnn

, then (for n ≥ 400) I(XY ;B) ≤ 2nI(Xi;B) ≤ 0.02. Therefore by Lemma

6.8.8, there exists no algorithm A that, given this number of samples, correctly iden-

tifies B (and thus solves the domination problem) with probability at least 2/3. It

follows that

rmin(Chard, A, 2
3
) ≥ 1

100ε2 lnn
= Ω

(
1

ε2 log n

)
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as desired.

6.8.3 Proving lower bounds for Top-K

We will now show how to use our hard distribution of instances of Domination to

generate a hard distribution of instances of Top-K. Our goal will be to embed our

Domination instance as rows k and k + 1 of our SST matrix; hence, intuitively,

deciding which of the two rows (k or k+ 1) belongs to the top k is as hard as solving

the domination problem.

Unfortunately, the SST condition imposes additional structure that prevents us

from directly embedding any instance of the domination problem. However, for ap-

propriate choices of the constants Ri, all instances in the support of Chard give rise to

valid SST matrices.

Specifically, we construct the following distribution Shard over Top-K instances

S of size n+ 2. Consider the distribution Chard over Domination instances of size n,

where for 1 ≤ i ≤ n, Ri = 1
4

+ i
8n

, and ε = 1
100n2 . Now, consider the following map f

from Domination instances C = (p,q) to Top-K instances S = f(C) = (n+2, k,P):

we choose k = n+1 (so that the problem becomes equivalent to identifying row n+2)

and define the matrix P as follows:

Pij =



pj if i = n+ 1 and j ≤ n

qj if i = n+ 2 and j ≤ n

1− pi if j = n+ 1 and i ≤ n

1− qi if j = n+ 2 and i ≤ n

1
2

otherwise
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In general, for arbitrary p and q, this matrix may not be an SST matrix. Note

however that for this choice of Ri and ε, it is always the case that Ri(1+ε) ≤ Ri+1(1−

ε), so for all i (regardless of sample C), pi < pi+1. In addition, all the Ri belong to

[1/4, 3/8], so for all i, pi and qi are less than 1/2. From these two observations, it

easily follows that if C belongs to the support of Chard, P is an SST matrix, and f(C)

is a valid instance of the top-k problem. We will write Shard = f(Chard) to denote

the distribution of instances of top-k f(C) where C is sampled from Chard. Likewise,

for any event E (e.g. the event that |SP | ≥ 1
10
nγ) , we write Shard|E to denote the

distribution f(Chard|E).

We will begin by showing that, if there exists a sample efficient algorithm for

some Domination instance C in the support of Chard, there exists a similarly efficient

algorithm for the corresponding Top-K instance S = f(C).

Lemma 6.8.11. If C ∈ suppChard and S = f(C), then

rmin(S) ≤ max(rmin(C,
4

5
), 1000n2(1 + lnn)).

Proof. Let A be an algorithm that successfully solves the Domination instance C

with probability at least 4
5

using rmin(C, 4
5
) samples. We will show how to use A to

construct an algorithm A′ that solves the Top-K instance S with probability at least

3/4 using r = max(rmin(C, 4
5
), 1000n2(1 + lnn)) samples.

For each i, j, write Zi,j =
∑r

`=1 Zi,j,`. Our algorithm A′ operates as follows.

1. We begin by finding the two rows with the smallest row sums
∑

j Zi,j. Let

these two rows have indices c and d. We claim that, with high probability,

π−1({c, d}) = {n+ 1, n+ 2}.

To see this, note that for all i 6∈ π({n + 1, n + 2}), Pi,j ≥ 1
2
, so E

[∑
j Zi,j

]
≥(

n
2

+ 1
)
r. Thus, for any fixed i 6∈ π({n+ 1, n+ 2}), it follows from Hoeffding’s

inequality that
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Pr

[∑
j

Zi,j ≤
(

7

16
n+ 1

)
r

]
≤ exp

(
− nr

128

)

so by the union bound, the probability that there exists an i 6∈ π−1({n+1, n+2})

such that
∑

j Zi,j ≤
(

7
16
n+ 1

)
r is at most n exp

(
− nr

128

)
.

On the other hand, if i ∈ π({n + 1, n + 2}) then Pi,j ≤ 3
8
(1 + ε) unless j ∈

π({n + 1, n + 2}), where Pi,j = 1
2
; it follows that in this case, E

[∑
j Zi,j

]
≤(

3n
8

(1 + ε) + 1
)
r. Similarly, applying Hoeffding’s inequality in this case, we

find that for any fixed i ∈ π−1({n + 1, n + 2}), Pr
[∑

j Zi,j ≥
(

7
16
n+ 1

)
r
]
≤

exp
(
− nr

128(1+ε)2

)
≤ 1.5 exp

(
− nr

128

)
and thus the probability that there exists

some i ∈ π−1({n + 1, n + 2}), such that
∑

j Zi,j ≥
(

7
16
n+ 1

)
r is at most

3 exp
(
− nr

128

)
. It follows that, altogether, the probability that π−1({c, d}) 6=

{n + 1, n + 2} is at most (n + 3) exp
(
− nr

128

)
. Since r ≥ 1000n2 lnn, this is at

most 4 exp(−1000/128) < 0.01.

2. We next sort the values Zc,j for j ∈ [n+2]\{c, d} and obtain indices j1, j2, . . . , jn

so that Zc,j1 ≤ Zc,j2 ≤ · · · ≤ Zc,jn . We claim that, with high probability, for all

a, π−1(ja) = a.

For each i, let Ui be the interval
[
Ri(1− ε)− 1

20n
, Ri(1 + ε) + 1

20n

]
. Note that,

by our choice of Ri and ε, all the intervals Ui are disjoint, with Ui less than Ui+1

for all i. We will show that with high probability, 1
r
Zc,π(i) ∈ Ui for all i, thus

implying the previous claim.

Note that Zc,π(i) is the sum of r B(p) random variables, where p is either (1+ε)Ri,

Ri, or (1− ε)Ri. By Hoeffding’s inequality, it follows that
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Pr

[
Zc,π(i) ≥ r

(
Ri(1 + ε) +

1

20n

)]
≤ exp

(
−2

(r/20n)2

r

)
= exp

(
− r

200n2

)

Likewise,

Pr

[
Zc,π(i) ≤ r

(
Ri(1− ε)−

1

20n

)]
≤ exp

(
− r

200n2

)
Thus, for any fixed i,

Pr

[
Zc,π(i)

r
6∈ Ui

]
≤ 2 exp

(
− r

200n2

)
and by the union bound, the probability this fails for some i is at most

2n exp
(
− r

200n2

)
. Since r ≥ 1000n2(1 + lnn), exp

(
− r

200n2

)
≤ (ne)−5, so this

probability is at most 2e−5 < 0.02.

3. Finally, we give algorithm A as input Xi,` = Zc,ji,` and Yi,` = Zd,ji,`. Note that

(conditioned on the above two claims holding), this input is distributed equiva-

lently to input from the Domination instance C. In particular, if π−1(c) = n+1

and π−1(d) = n + 2, then each Xi,` is distributed according to B(pi) and each

Yi,` is distributed according to B(qi), and if π−1(c) = n+ 2 and π−1(d) = n+ 1,

then each Xi,` is distributed according to B(qi) and each Yi,` is distributed ac-

cording to B(pi). Thus, if A returns B = 0, we return [n + 2] \ {d} as the top

n + 1 indices, and if A returns B = 1, we return [n + 2] \ {c} as the top n + 1

indices.
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The probability that A fails given that steps 1 and 2 succeed is at most 0.2, and

the probability that either of the two steps fail to succeed is at most 0.01+0.02 =

0.03. Since 0.2 + 0.03 < 1
4
, A′ succeeds with probability at least 3

4
, as desired.

Corollary 6.8.12. Let E be the event that |SP | ≥ 1
10
nγ. If C ∈ supp(Chard|E) and

S = f(C), then rmin(S) ≤ O(n3.5).

Proof. Recall that by Theorem 6.8.5, for any C ∈ supp(Chard|E), rmin(C, 4
5
) ≤

O
(

1√
nε2

)
= O(n3.5). By Lemma 6.8.11, rmin(S) ≤ max(rmin(C, 4

5
), 1000n2(1 +

lnn)) ≤ O(n3.5).

We next show that solving Top-K over the distribution Shard|E is at least as hard

as solving Domination over the distribution Chard|E.

Lemma 6.8.13. For any algorithm A that solves Top-K, there exists an algorithm

A′ that solves domination such that rmin(Shard, A, p) ≥ 1
2
rmin(Chard, A′, p).

Proof. We will show more generally that for any distribution C of Domination in-

stances, if S = f(C) is a valid distribution of Top-K instances, then rmin(S, A, p) ≥
1
2
rmin(C, A′, p).

We will construct A′ by embedding the domination instance inside a top-k instance

in much the same way that the function f does, and then using A to solve the top-k

instance. We receive as input two sets of samples Xi,` and Yi,` (where 1 ≤ i, j ≤ n and

1 ≤ ` ≤ r) from some Domination instance C drawn from C. We then generate a

random permutation π of [n+ 2]. We use our input and this permutation to generate

a matrix Zi,j,` (where 1 ≤ i, j ≤ n + 2 and 1 ≤ ` ≤ r
2
) of samples to input to A as

follows.

For 1 ≤ i, j ≤ n, set each Zπ(i),π(j),` to be a random B(1
2
) random variable.

Similarly, for n + 1 ≤ i, j ≤ n + 2, set each Zπ(i),π(j),` to be a random B(1
2
) random
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variable. Now, for all 1 ≤ j ≤ n, set Zπ(n+1),π(j),` = Xj,` and set Zπ(n+2),π(j),` = Yj,`.

Similarly, for all 1 ≤ i ≤ n, set Zπ(i),π(n+1),` = 1 − Xi,`+r/2 and set Zπ(i),π(n+2),` =

1− Yi,`+r/2. Finally, set k = n+ 1 and ask A to solve the Top-K instance defined by

k and Zi,j,`. If A returns that π(n+ 1) is in the top n+ 1 indices, return B = 0, and

otherwise return B = 1.

From our construction, if the r samples of X and Y are distributed according to

a Domination instance C, then the r/2 samples of Z are distributed according to

the Top-K instance S = f(C). Since A succeeds with probability p on distribution

S with rmin(S, A, p) samples, A′ therefore succeeds with probability p on distribution

C with 2rmin(S, A, p) samples, thus implying that rmin(S, A, p) ≥ 1
2
rmin(C, A′, p).

Corollary 6.8.14. For all algorithms A that solve Top-K, rmin(Shard, A, 2
3
) =

Ω
(

n4

logn

)
.

Proof. Theorem 6.8.7 tells us that for all algorithms A′ that solve Domination,

rmin(Chard, A, 2
3
) = Ω

(
1

ε2 logn

)
= Ω

(
n4

logn

)
. Combining this with Lemma 6.8.13, we

obtain the desired result.

We can now prove Theorem 6.8.1 in much the same fashion as Theorem 6.8.2.

Proof of Theorem 6.8.1. By Corollary 6.8.14, rmin(Shard, A, 2
3
) = Ω

(
n4

logn

)
. Let E be

the event that |SP | ≥ 1
10
nγ (in the original Domination instance C). By Lemma

6.8.6, if n ≥ (400 ln 12
11

)2, Pr[E] ≥ 1
12

, and it follows from Lemma 6.8.4 that

rmin(Shard|E,A) = rmin(Shard|E,A,
3

4
)

≥ rmin(Shard, A,
2

3
)

≥ Ω

(
n4

log n

)
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It therefore follows from 6.8.3 that there is a specific instance S in the support of

Shard|E such that rmin(S,A) ≥ Ω
(

n4

logn

)
. However, by Corollary 6.8.12, rmin(S) ≤

O(n3.5). It follows that for any algorithm A, there exists an instance S of Top-K

such that rmin(S,A) ≥ Ω
( √

n
logn

)
rmin(S), as desired.
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Appendices

197



Appendix A

Appendix for Chapter 2

A.1 Good no-regret algorithms for the buyer

In this section we show that there exists a (contextual) no-regret algorithm for the

buyer which guarantees that the seller receives at most the Myerson revenue per round

(i.e., Mye(D)T in total). As mentioned earlier, it does not suffice for the buyer to

simply run the contextualization cont(M) for some no-regret learning algorithm M

(and in fact, if M is mean-based, the seller can extract strictly more than Mye(D)T ,

as we will see later). However, by modifying cont(M) so that it has not just no-regret

with respect to the best stationary policy, but so that it additionally does not regret

playing as if it had some other context, we obtain a no-regret algorithm for the buyer

which guarantees the seller receives no more than Mye(D) per round.

The details of the algorithm are presented in Algorithm 15. Recall that the dis-

tribution D is supported over m values v1 < v2 < · · · < vm, where for each i ∈ [m],

vi has probability qi under D. The algorithm takes a no-regret algorithm M for the

classic multi-armed bandit problem, and runs M instances of it, one per possible

value u. Each instance Mi of M learns not only over the possible K actions, but also

over i− 1 virtual actions corresponding to values v1 through vi−1. Picking the virtual
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action associated with vj corresponds to the buyer pretending they have value vj, and

playing accordingly (i.e., querying Mj).

This algorithm is very similar in structure to the construction of a low swap-regret

bandits algorithm from a generic no-regret bandits algorithm (see [24]). The main

difference is that whereas swap regret guarantees no-regret with respect to swapping

actions (i.e. always playing action i instead of action j), this algorithm guarantees

no-regret with respect to swapping contexts (i.e., always pretending you have context

i when you actually have context j). In addition, the auction structure of our problem

allows us to only consider contexts with valuations smaller than our current valuation

vi; this puts a limit of m on the number of recursive calls per round, as opposed to

the low swap regret algorithm where one must solve for the stationary distribution of

a Markov chain over m states each round.

Algorithm 15 No-regret algorithm for buyer (restatement of Algorithm 1).

1: Let M be a δ-no-regret algorithm for the classic multi-armed bandit problem,
with δ = o(T ). Initialize m copies of M , M1 through Mm.

2: Instance Mi of M will learn over K + i− 1 arms.
3: The first K arms of Mi (“bid arms”) correspond to the K possible menu options
b1, b2, . . . , bK .

4: The last i− 1 arms of Mi (“value arms”) correspond to the i− 1 possible values
(contexts) v1, . . . , vi−1.

5: for t = 1 to T do
6: if buyer has value vi then
7: Use Mi to pick one arm from the K + i− 1 arms.
8: if the arm is a bid arm bj then
9: Pick the menu option j (i.e. bid bj).

10: else if the arm is a value arm vj then
11: Sample an arm from Mj (but don’t update its state). If it is a bid arm,

pick the corresponding menu option. If it is a value arm, recurse.
12: end if
13: Update the state of algorithm Mi with the utility of this round.
14: end if
15: end for

We now proceed to show that Algorithm 15 has our desired guarantees.
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Theorem A.1.1. Let qmin = mini qi. If the buyer plays according to Algorithm

15 then the seller (even if they play an adaptive strategy) receives no more than

Mye(D)T + mδ
qmin

revenue.

Proof. For each i ∈ [m], define hi to be the expected number of rounds the buyer

receives the item when they have value vi. For each i ∈ [m] define ri to be the

expected total payment from the buyer to the seller when the buyer has value vi. Our

goal is to upper bound
∑

i ri, the total revenue the seller receives.

Recall that every strategy must contain a zero option in its menu, where the buyer

pays nothing and doesn’t receive the item (and hence receives zero utility). Since each

Mi is a δ-no-regret algorithm, we know that the buyer does not regret always choosing

the zero option when they have value vi. It follows that, for all i ∈ [m], we have that

vihi − ri ≥ −δ. (A.1)

The following lemma shows that when j > i, the buyer does not regret pretending

to have value vi when they have value vj.

Lemma A.1.2. For all 1 ≤ i < j ≤ m,

(vjhj − rj)/qj ≥ (vjhi − ri)/qi − δ/qj.

Proof. From the algorithm, we know that Mj does not regret always playing the value

arm corresponding to vi. We define the following notation. For all i ∈ [m], t ∈ [T ]

and any history π of t − 1 rounds (including for each round which option is chosen

and the utility of that round), define hi(t, π) to be the probability of getting item in

round t given history π when buyer has value vi and define ri(t, π) to be the expected

price paid in round t when the buyer has value vi given history π.

Let Πt be the distribution of histories at round t, for t = 0, ..., T−1. The no-regret

guarantee tells us that
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T∑
t=1

qj · Eπ∼Πt−1 [(hj(t, π)vj − rj(t, π))− (hi(t, π)vj − ri(t, π))] ≥ −δ. (A.2)

Note that

T∑
t=1

Eπ∼Πt−1 [hj(t, π)qj] = hj,

T∑
t=1

Eπ∼Πt−1 [hi(t, π)qi] = hi,

T∑
t=1

Eπ∼Πt−1 [rj(t, π)qj] = rj,

T∑
t=1

Eπ∼Πt−1 [ri(t, π)qi] = ri.

Dividing (A.2) through by qj and substituting in these relations, we arrive at the

statement of the lemma.

Now define λi =
∑

j≤i
1
qj

, and define

r′i =
ri
qi
− λiδ. (A.3)

It follows from Lemma A.1.2 that for all 1 ≤ i < j ≤ m,

vjhj
qj
− r′j ≥

vjhi
qi
− r′i. (A.4)

From (A.1), we also have for all i ∈ [m],

vihi
qi
− r′i ≥ 0. (A.5)
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We will argue from these constraints that
∑

i qir
′
i ≤ Mye(D)T . To do this, we

will construct a single-round mechanism for selling an item to a buyer with value

distribution D such that this mechanism has expected revenue
∑

i qir
′
i/T ; the result

then follows from the optimality of the Myerson mechanism ([112]).

To construct this mechanism, first find a sequence of indices a1, a2, . . . , al via the

following algorithm.

1: l← 1, a1 ← 1.
2: for i = 2 to m do
3: if r′i ≥ r′al then
4: l← l + 1, al ← i.
5: end if
6: end for

It is easy to verify that following this algorithm results in r′a1 ≤ r′a2 ≤ · · · ≤ r′al .

For any ai ≤ j < ai+1 (assuming al+1 = m+ 1), r′j < r′ai .

Lemma A.1.3. For a bidder with value distribution D, the following menu of l

options will achieve revenue at least
∑m

i=1 r
′
iqi/T : for each 1 ≤ i ≤ l, the buyer has

the choice of paying r′ai/T , and receiving the item with probability hai/(qaiT ).

Proof. Consider some value vj in D. We will show that the buyer with value vj will

pay at least r′j/T , thus proving the lemma. Assume ai ≤ j ≤ ai+1.

We have (from (A.5) and the monotonicity of vi) that

vjhai
qai
− r′ai ≥

vaihai
qai

− r′ai ≥ 0.

This means the buyer with value uj receives non-negative utility by choosing option

i. For any 1 ≤ i′ < i, we have (from (A.4)) that

vaihai
qai

− r′ai ≥
vaihai′
qai′

− r′ai′ .
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Since r′ai ≥ r′ai′ , the above inequality implies that

hai
qai
≥
hai′
qai′

.

It follows that

vj

(
hai
qai
−
hai′
qai′

)
≥ vai

(
hai
qai
−
hai′
qai′

)
≥ r′ai − r

′
ai′
.

This means the buyer with value vj prefers option i to all options i′ < i. Therefore this

buyer will choose an option from {i, i + 1, . . . , l}. Since r′j ≤ r′ai ≤ r′ai+1
≤ · · · ≤ r′al ,

we know that this buyer will pay at least r′j/T , as desired.

It follows from the optimality of the Myerson auction that
∑

i qir
′
i/T ≤ Mye(D),

and therefore that
∑

i qir
′
i ≤ Mye(D)T . Expanding out r′i via (A.3), we have that

∑
i

qir
′
i =

∑
i

ri −
∑
i

qiλiδ

≥
∑
i

ri − δ ·max
i
λi

≥
∑
i

ri −
mδ

qmin
,

from which the theorem follows.

We can remove the explicit dependence on qmin by filtering out all values which

occur with small enough probability.

Corollary A.1.4 (Restatement of Theorem 2.3.2). There exists a no-regret algorithm

for the buyer where the seller receives no more than Mye(D)T +O(m
√
δT ) revenue.
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Proof. Ignore all values vi with qi ≤
√
δ/T (whenever a round with this value arises,

choose an arbitrary action for this round). There are m total values, so this happens

with at most probability m
√
δ/T , and therefore modifies the regret and revenue in

expectation by at most O(m
√
δT ) = o(T ).

The regret bound from Theorem A.1.1 then holds with qmin ≥
√
δ/T , from which

the result follows.

A.1.1 Multiple bidders

Interestingly, we show that by slightly modifying Algorithm 15, we obtain an algo-

rithm (Algorithm 16) that works for the case where there are multiple bidders. In

the multiple bidder setting, there are B bidders with independent valuations for the

item. Each round t, bidder ` receives a value v`(t) for the item drawn from a dis-

tribution D` (independently of all other values). Each distribution D` is supported

over m` values, v`,1 < v`,2 < · · · < v`,m`
, where v`,i occurs under D` with probability

q`,i. Every round each bidder ` submits a bid b`(t), and the auctioneer decides on

an allocation rule at, which maps `-tuples of bids (b1(t), b2(t), . . . , bB(t)) to `-tuples

of probabilities (a1(t), a2(t), . . . , aB(t)) and a pricing rule pt, which maps `-tuples of

bids (b1(t), b2(t), . . . , bB(t)) to `-tuples of prices (p1(t), p2(t), . . . , pB(t)). The alloca-

tion rule at must additionally obey the supply constraint that
∑

` a`(t) ≤ 1. Bidder

` wins the item with probability a`(t) and pays p`(t).

We show that if every bidder plays the no-regret algorithm Algorithm 16, then

the auctioneer (even if playing adaptively) is guaranteed to receive no more than

Mye(D1,D2, . . . ,DB)T +o(T ) revenue, where Mye(D1,D2, . . . ,DB) is the optimal rev-

enue obtainable by an auctioneer selling a single item to B bidders with valuations

drawn independently from distributions D`. In other words, if every bidder plays

according to Algorithm 16, the seller can do nothing better than running the single-

round optimal Myerson auction every round.
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The only difference between Algorithm 15 and Algorithm 16 is that instance Mi

in Algorithm 16 has a value arm for every possible value, not only the values less than

vi. This means that the recursion depth of this algorithm is potentially unlimited,

however it will still terminate in finite expected time since we insist that M has

a positive probability of picking any arm (in particular, it will eventually pick a

bid arm). We can optimize the runtime of step 11 of Algorithm 16 by eliciting a

probability distribution over arms from each instance Mi, constructing a Markov

chain, and solving for the stationary distribution. This takes O((K + m)3) time per

step of this algorithm.

Algorithm 16 No-regret algorithm for a bidder (when there are multiple bidders).

1: Let M be a δ-no-regret algorithm for the classic multi-armed bandit problem
(that always has some positive probability of choosing any arm), with δ = o(T ).
Initialize m copies of M , M1 through Mm.

2: Instance Mi of M will learn over K +m arms.
3: The first K arms of Mi (“bid arms”) correspond to the K possible menu options
b1, . . . , bK .

4: The last m arms of Mi (“value arms”) correspond to the m possible values (con-
texts) v1, . . . , vm.

5: for t = 1 to T do
6: if buyer has value vi then
7: Use Mi to pick one arm from the K +m arms.
8: if the arm is a bid arm bj then
9: Pick the menu option j (i.e. bid bj).

10: else if the arm is a value arm vj then
11: Sample an arm from Mj (but don’t update its state). If it is a bid arm,

pick the corresponding menu option. If it is a value arm, recurse.
12: end if
13: Update the state of algorithm Mi with the utility of this round.
14: end if
15: end for

Theorem A.1.5. Let qmin = min`,i q`,i. If every bidder plays according to Algorithm

16 then the auctioneer (even if they play an adaptive strategy) receives no more than

Mye(D1,D2, . . . ,DB)T +O
(√

δT
qmin

)
revenue.
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Proof. Similarly as before, let h`,i equal the expected number of rounds bidder `

receives the item while having value v`,i, and let r`,i equal the expected total amount

bidder ` pays to the auctioneer while having value v`,i. Again, our goal is to upper

bound
∑

`

∑
i r`,i, the total expected revenue the seller receives.

Note that, as before, since every strategy contains a zero option in its menu, we

have that (for all ` ∈ [B] and i ∈ [m`])

v`,ih`,i − r`,i ≥ −δ. (A.6)

Repeating the argument of Lemma A.1.2 (which still holds in the multiple bidder

setting), we additionally have that (for all ` ∈ [B] and 1 ≤ i < j ≤ m`),

v`,jh`,j − r`,j
q`,j

≥ v`,jh`,i − r`,i
q`,i

− δ

q`,j
. (A.7)

We will now (as in the proof of Theorem A.1.1) construct a mechanism for the

single-round instance of the problem of an auctioneer selling a single item to B bidders

with valuations independently drawn fromD`. Our mechanismM will work as follows:

1. The auctioneer will begin by asking each of the bidders for their valuations.

Assume that bidder ` reports valuation v′` (we will insist that v′` belongs to the

support of D`).

2. The auctioneer will then sample a t ∈ [T ] uniformly at random.

3. For each bidder `, the auctioneer will calculate a`(t) and p`(t), the expected

allocation probability and price bidder ` has to pay in round t of the dynamic

T -round mechanism, conditioned on v`(t) = v′` for all `.

4. The auctioneer will then give the item to bidder ` with probability a`(t), and

charge bidder ` a price p`(t).
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Note that since the allocation rules at must always satisfy the supply constraint,

the probabilities a`(t) we sample also obey this supply constraint, and therefore this is

a valid mechanism for the single-round problem. We will now show it is approximately

incentive compatible.

Lemma A.1.6. Mechanism M is δ
qminT

-Bayesian incentive compatible and δ
qminT

-ex-

interim individually rational.

Proof. To begin, we claim that in expectation, if bidder ` reports valuation v`,i (and

everyone else reports truthfully), then the expected probability bidder ` receives the

item (under this single-round mechanism) is equal to h`,i/Tq`,i. Likewise, we claim

that, if bidder ` reports valuation v`,i (and everyone else reports truthfully), the

expected payment bidder they pay is equal to r`,i/Tq`,i.

To see why this is true, let h`(t, i1, i2, . . . , iB) equal the probability bidder ` gets

the item (in the multi-round mechanism) at time t conditioned on v`(t) = v`,i for all

` ∈ [B]. By construction, the probability a′`,i bidder ` receives the item (in mechanism

M) after reporting valuation v`,i is equal to

a′`,i =
1

T

∑
t

∑
`′ 6=`,v`′,i`′∈suppD`′

∏
`′ 6=`

q`′,i`′h`(t, i1, i2, . . . , i`−1, i, i`+1, . . . , iB).

On the other hand, we can write h`,i in terms of our function h` as

h`,i =
∑
t

∑
`′ 6=`,v`′,i`′∈suppD`′

q`,i
∏
`′ 6=`

q`′,i`′h`(t, i1, i2, . . . , i`−1, i, i`+1, . . . , iB).

It follows that a′`,i =
h`,i
Tq`,i

. A similar calculation shows that if p′`,i is the expected

payment of bidder ` (if they report valuation v`,i and everyone else reports truthfully),

then p′`,i =
r`,i
Tq`,i

.
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Now, recall that a mechanism is ε-BIC if misreporting your value increases your

expected utility by at most ε (assuming everyone else reports truthfully). To show

that mechanism M is ε-BIC, it therefore suffices to show that for all j 6= i, that

a′`,jv`,i − p′`,j ≤ a′`,iv`,i − p′`,i + ε.

But for ε = δ/(qminT ), this follows from equation (A.7). Similarly, M is ε-ex-

interim IR if for all i,

a′`,iv`,i − p′`,i ≥ −ε.

Again, this follows from equation (A.6), and the result therefore follows.

We now apply the following lemma from [51], which lets us transform an ε-BIC

mechanism M into a BIC mechanism M ′ at the cost of O(
√
ε) revenue.

Lemma A.1.7. If M is an ε-BIC, ε-ex-interim IR mechanism for selling a single item

to several bidders with independent valuations, then there exists a BIC, ex-interim IR

mechanism M ′ for the same problem that satisfies Rev(M ′) ≥ Rev(M)−O(
√
ε).

Proof. See Theorem 3.3 in [51].

Applying Lemma A.1.7 to our mechanism, we obtain a mechanismM ′ that satisfies

Rev(M ′) ≥ Rev(M) − O(
√

δ
qminT

). Finally, note that since the Myerson auction is

the optimal Bayesian-incentive compatible mechanism for this problem, Rev(M ′) ≤

Mye(D1, . . . ,DB). On the other hand, since (from the proof of Lemma A.1.6) the

expected payment bidder ` pays under mechanism M when being truthful is equal

to:

∑
i

q`,i ·
r`,i
Tq`,i

=
1

T

∑
i

r`,i.

It follows that
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1

T

∑
`

∑
i

r`,i ≤ Mye(D1, . . . ,DB) +O(

√
δ

qminT
),

and thus that

∑
`

∑
i

r`,i ≤ Mye(D1, . . . ,DB)T +O(

√
δT

qmin
).

A.2 Achieving full welfare against non-conservative

buyers

In this section, we will show that if the buyer uses a mean-based algorithm instead

of Algorithm 15, the seller has a strategy which extracts the entire welfare from the

buyer (hence leaving the buyer with zero utility).

Theorem A.2.1 (Restatement of Theorem 2.3.1). If the buyer is non-conservative

and running a mean-based algorithm, for any constant ε > 0, there exists a strategy

for the seller which obtains revenue at least (1− ε)Val(D)T − o(T ).

Proof. If every element in the support of D is at least 1−ε, then the seller can simply

always sell the item at price 1−ε (since D is supported on [0, 1], this ensures a (1−ε)

approximation to the buyer’s welfare). From now on, we will assume that D is not

entirely supported on [1− ε, 1].

Recall that D is supported on m values v1 < v2 < · · · < vm, where vi is chosen

with probability qi. Define ρ = min(vm, 1 − ε/2), and define δ = (1 − ρ)/(1 − v1).

Since v1 < 1 − ε/2 and v1 < vm, we know that v1 < ρ and therefore δ < 1. Notice

that here we can make the strategy independent of D if we just pick ρ = 1 − ε/2

and δ = ε/2 (but setting ρ and δ according to information about D can reduce the

number of arms).
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Consider the following strategy for the seller. In addition to the zero arm, the

seller will offer n = log(ε/2)
log(1−δ) possible options, each with maximum bid value bi = 1.

We divide the timeline of each arm into three “sessions” in the following way:

1. ∅ session: For the first (1− (1− δ)i−1)T rounds, the seller charges 0 and does

not give the item to the buyer (i.e. (pi,t, qi,t) = (0, 0)).

2. 0 session: For the next (1−δ)i−1(1−ρ)T rounds, the seller charges 0 and gives

the item to the buyer (i.e. (pi,t, qi,t) = (0, 1)).

3. 1 session: For the final (1− δ)i−1ρT rounds, the seller charges 1 and gives the

item to the buyer (i.e. (pi,t, qi,t) = (1, 1)).

Note that this strategy is monotone; if i < j, then pi,t ≥ pj,t and ai,t ≥ aj,t.

Assume that the buyer is running a γ-mean-based algorithm, for some γ = o(1).

Define Aj = (1 − ρ(1 − δ)j−1)T and Bj(v) = Aj + min(v,ρ)
1−v1 (1 − ρ)(1 − δ)j−1T − γT .

Note that Aj is the round where arm j starts its 1 session; we show in the following

Lemma that (by the mean-based property), the buyer with value v will prefer arm j

over any arm j′ < j over all rounds in the interval [Aj, Bj(v)].

Lemma A.2.2. For each vi ∈ D, j ∈ {1, . . . , n − 1}, and round τ ∈ [Aj, Bj(vi)],

σj,τ (vi) > σj′,τ (vi) + γT for all j′ > j.

Proof. Note that arm j starts its 1 session at round Aj ≤ τ . It follows that

σj,τ (vi) = vi
(
τ − (1− (1− δ)j−1)T

)
−
(
(1− δ)j−1Tρ− (T − τ)

)
= (T − τ) + (vi − ρ)(1− δ)j−1T + viτ − Tvi.

Now consider the cumulative utility of playing some arm j′ > j. It is easy to verify

that Bj < Aj+1, and therefore arm j′ is still either in its ∅ session or its 0 session.
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Since arm j+1 starts its 0 session the earliest, it follows that σj′,τ (vi) ≤ σj+1,τ (vi), so

from now on, assume without loss of generality that j′ = j + 1. There are two cases:

1. If τ < T (1− (1− δ)j), the utility is 0.

2. If τ ≥ T (1− (1− δ)j), the utility is (τ − T (1− (1− δ)j))vi.

It suffices to show that

(T − τ) + (vi − ρ)(1− δ)j−1T + viτ − Tvi ≥ max(0, (τ − T (1− (1− δ)j))vi) + γT.

We have that

(T − τ) + (vi − ρ)(1− δ)j−1T + viτ − Tvi − (τ − T (1− (1− δ)j))vi

= vi(1− δ)j−1δT + (T − τ)− ρ(1− δ)j−1T

≥ vi(1− δ)j−1δT + (T −Bj(vi))− ρ(1− δ)j−1T

= (1− δ)j−1T

(
viδ − (1− ρ)

min(vi, ρ)

1− v1

)
+ γT

= (1− δ)j−1T (1− ρ)

(
vi −min(vi, ρ)

1− v1

)
+ γT

≥ γT.

Similarly

(T − τ) + (vi − ρ)(1− δ)j−1T + viτ − Tvi

≥ T −Bj(vi) + (vi − ρ)(1− δ)j−1T + viBj(vi)− Tvi

= (Bj(vi)− T (1− (1− δ)j−1))vi + (T −Bj(vi)− ρ(1− δ)j−1T )

= (Bj(vi)− T (1− (1− δ)j−1))vi −min(vi, ρ)δ(1− δ)j−1T + γT

≥ (Bj(vi)− T (1− (1− δ)j−1))vi − viδ(1− δ)j−1T + γT

≥ (Bj(vi)− T (1− (1− δ)j))vi + γT

≥ γT.
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It follows from the mean-based condition (Definition 2.2.2) that in the interval

[Aj, Bj(vi)] the buyer with value vi will, with probability at least (1 − nγ), choose

an arm currently in its 1-session (i.e. an arm with label at most j) and hence pay 1

each round. Since the buyer has value vi for the item with probability qi, the total

contribution of the buyer with value vi to the expected revenue of the seller is given

by

qi

n∑
j=1

(1− γ)(Bj(vi)− Aj(vi))

= qi

n∑
j=1

(1− nγ)

(
min(u, ρ)

1− v1

(1− ρ)(1− δ)j−1T − γT
)

= (1− nγ)qiT

(
−nγ +

(1− ρ) min(vi, ρ)

1− v1

n∑
j=1

(1− δ)j−1

)

= (1− nγ)qiT

(
−nγ +

(1− ρ) min(vi, ρ)(1− (1− δ)n)

(1− v1)δ

)
= (1− nγ)qiT (−nγ + min(vi, ρ)(1− (1− δ)n))

= qiT min(vi, ρ)(1− (1− δ)n)− o(T )

≥ qiT
(

1− ε

2

)2

vi − o(T )

≥ (1− ε)qiviT − o(T ).

Here we have used the fact that (1−(1−δ)n) = 1−ε/2 (since n = log(ε/2)/ log(1−

δ)) and min(vi, ρ) ≥ (1 − ε/2)vi (since if min(vi, ρ) 6= vi, then ρ = (1 − ε/2) ≥

(1 − ε/2)vi. Summing this contribution over all vi ∈ D, we have that the expected

revenue of the seller is at least
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∑
i

((1− ε)qiviT − o(T )) = (1− ε)

(∑
i

qivi

)
T − o(T )

= (1− ε)Ev∼D[v]T

= (1− ε)Val(D)T.

A.2.1 Switching-mean-based algorithms

One reason why we were able to exploit mean-based algorithms in the previous section

(and in general) is that they do not adapt quickly enough to changes in the best arm.

One way this is partially modelled in multi-armed bandits is through the concept of

“switching regret”. The S−switching regret (or just switching regret, when S is clear

from context) of an algorithm A for the multi-armed bandits problem is the difference

between the overall performance of A and the performance of the best algorithm in

hindsight that switches arms at most S times. As before, we say that an algorithm

is no-switching-regret if its expected switching regret is o(T ). No-switching-regret

algorithms are easily seen to be not mean-based (for one, they are not fooled by the

example given in the introduction). A natural question then arises: to be robust

against such manipulation, does it suffice to simply have no-switching-regret for some

S?

In [16], the authors present an algorithm (EXP3.S) for the multi-armed bandits

algorithm with
√
SKT log T . While this algorithm is not mean-based, it does have

the following mean-based-like property. Let Π be the set of different policies which

switch at most S times (note that for constant S there are O(T S) policies in this

set). We say a policy π ∈ Π is γ-dominated at time t if there exists another policy

π′ ∈ Π such that the cumulative reward σπ,t of playing π until round t satisfies
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σπ,t < σπ′,t − γT . Then an algorithm is γ-switching-mean-based if, each round, with

probability at least 1 − γ, it plays according to a non-γ-dominated strategy, and an

algorithm is switching-mean-based if it is γ-switching-mean-based for some γ = o(1).

Just as EXP3 is mean-based, EXP3.S is switching-mean-based (the proof follows that

of Theorem A.4.3).

We will show here that it is possible to extend our counterexample in the previous

section to achieve full-welfare against a switching-mean-based buyer.

Theorem A.2.3. If the buyer is non-conservative and running a switching-mean-

based algorithm (with S = O(1) switches), then for any constant ε > 0, there exists a

strategy for the seller which obtains revenue at least (1− ε)Val(D)T − o(T ).

Proof. We will use the example in Theorem 2.3.1 as a blackbox. Divide the time

horizon into P > S phases of length T/P each. From Theorem 2.3.1, we can construct

a set of arms which achieves (1− ε′)Val(D)(T/P ) welfare in a time horizon of length

T/P using some number n of arms. Our example will have nP total arms, with each

phase having n arms assigned to it. The n arms for phase i out of P will have the

following payout structure:

1. In phases j < i, all arms charge nothing and do not give the item.

2. In phase i, arms behave according to the payout structure of our example from

Theorem 2.3.1.

3. In phases j > i, all arms charge 1 and give the item.

Since n arms in the example in Theorem 2.3.1 can be assigned monotone bids,

this payout structure allows this set of nP arms to be assigned monotone bids (in

particular, if j > i, then all the arms in phase j should have lower associated bids

than those in phase i). Because arms are monotone decreasing, we can without loss

of generality restrict ourselves to looking at strategies which only ever switch to arms
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with lower bids (i.e. arms active in later phases, or arms in the current phase but

with a lower bid). We will label the ith arm in the pth phase as ai,p.

Consider a buyer running a no-switching-regret strategy with S switches. Assume

we are at the tth round in the pth phase (so the τ = (t + pT/P )th round overall),

where p > S, and t > γT = o(T ). Further assume the buyer has some fixed value v.

Let ai be the action with the highest cumulative utility for a buyer with this value

(i.e. the action a mean-based buyer is most likely to play) in the tth round of our

example, and denote this utility by U . We claim the following.

Lemma A.2.4. If U ≥ (ε′/P + γ)T , then for all non-dominated π ∈ Π, π will play

an arm at round τ of the form ai′,p with cumulative utility (in the example) of at least

U − γT .

Proof. To show this, we first argue that any policy that plays two different arms in

phase p is dominated. To do this, let δT be the length of the longest 0 session in our

example, and let δ′T be the length of the second longest 0 session in our example.

Note that any policy that switches at most s times achieves cumulative utility up to

time τ at most sδT (since the largest utility you can receive from any given arm is

δT ). Moreover, as long as τ belongs to the (S + 1)th phase or later, there is a policy

which switches s times and receives utility sδT (simply switch from the arm with the

longest 0 session in phase i to the arm with the longest 0 session in phase i+1 for the

first S phases, finally switching to the zero arm at the end). On the other hand, any

policy that plays two different arms in phase p receives utility at most (s−1)δT +δ′T ,

which is less than sδT − γT for large enough T (since γ is o(1)). It follows that such

policies are dominated.

We next argue that if U ≥ γT (where U is the cumulative utility of playing action

ai until round t in our subexample), then any policy which plays an arm of the form

aj,p′ with p′ 6= p (i.e. an arm belonging to a different phase) for more than γT rounds

in phase p is dominated. To see this, consider the last switch the policy makes:
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• If the policy switches to the zero arm (or an arm in a phase p′ > p, which

behaves identically to the zero arm for this time range), then it can increase its

utility by at least U by instead switching to ai,p.

• If the policy switches to an arm ai,p′ with p′ < p, then this switch will result

in at most additional ε′T/P utility, since our example has the property that

playing any fixed arm from round t′ to the final round T results in at most

ε′T/P utility. Again it follows that the policy can increase its utility by at least

U − ε′T/P ≥ γT by switching to ai,p.

• Finally, if the policy switches to an arm of the desired form aj,p, but at a time

t′ at least γT rounds after the start of phase p, it can increase its utility by at

least γT by switching at the beginning of phase p.

It follows that all such policies are dominated. Finally, any policy that plays some

arm aj,p (with cumulative utility in our example less than U − γT ) can increase its

utility by at least γT by switching to ai,p instead of aj,p. Our claim is thus proven.

As a consequence of this claim, for each phase

A.3 Optimal revenue against conservative buyers

In Theorem 2.3.1, we demonstrated a mechanism for the seller that extracts full

welfare from a buyer running a mean-based learning algorithm. This mechanism,

while in some sense as good as possible (it is impossible to extract more than welfare

from any buyer running a no-regret strategy), has several drawbacks. One general

drawback is that it is extremely unlikely the mechanism in Section A.2 would arise

naturally as the allocation rule for any sort of auction that might arise in practice. A

more specific drawback is that this mechanism assumes buyers are learning over all
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possible bids, instead of just bids less than their value; indeed, all arms essentially

cost the maximum possible price per round, and their only difference is when they

give the item away for free and when they charge for it.

In this section, we address the second drawback by studying this problem for

conservative buyers ; buyers who are constrained to only submit bids less than their

current value for the item. We characterize via a linear program the optimal revenue

attainable for the seller when playing against conservative buyers running a mean-

based learning algorithm over their set of allowable bids. We show that, while we

can no longer achieve the full welfare as in Section A.2, we can still achieve strictly

more than the Myerson revenue. Interestingly, our optimal mechanism has a natu-

ral interpretation as a repeated first-price auction with gradually decreasing reserve,

thus also partially addressing the first drawback. Notably, this auction is a critical

auction. Since clever buyers act conservatively in critical auctions, this mechanism is

simultaneously the optimal critical auction against clever buyers.

A.3.1 Characterizing the optimal revenue

maximize
m∑
i=1

qi(vixi − ui)

subject to ui ≥ (vi − vj) · xj, ∀ i, j ∈ [m] : i > j

ui ≥ 0, 1 ≥ xi ≥ 0, ∀ i ∈ [m]

Figure A.1: The mean-based revenue LP (same as Figure 2.1).

We begin by describing the optimal strategy for the seller against mean-based

conservative buyers. Fix some small constant ε > 0. Recall that the buyer’s value

distribution D is supported on the m values 0 ≤ v1 < v2 < · · · < vm ≤ 1, with

Pr[vi] = qi. The seller will offer m options, one for each possible value. Option i
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(corresponding to bidding bi = vi) will charge 0 and not allocate the item for the first

(1−xi)T rounds, and charge bi−ε and allocate the item for the remaining xiT rounds.

The values xi are computed by finding an optimal solution to the above LP (Figure

A.1), which we call the mean-based revenue LP. We will call the value of this LP the

mean-based revenue of D, and write this as MBRev(D). Our goal in this subsection

will be to show that this strategy achieves approximately MBRev(D)T total revenue

against a conservative buyer running a mean-based algorithm, and that this is tight;

no other strategy for a non-adaptive seller can obtain more than MBRev(D)T revenue.

To show that this is a valid strategy for the seller, we need to show that the values

xi are monotone increasing. Luckily, this follows simply from the structure of the

mean-based revenue LP.

Lemma A.3.1. Let x1, x2, . . . , xm, u1, u2, . . . , um be an optimal solution to the mean-

based revenue LP. Then for all i < j, xi < xj.

Proof. We proceed by contradiction. Suppose that the sequence of xi are not mono-

tone; then there exists an 1 ≤ i ≤ m− 1 such that xi > xi+1. Now consider another

solution of the LP, where we increase xi+1 to xi, keeping the value of all other vari-

ables the same. This new solution does not violate any constraints in the LP since

for all j > i + 1, uj ≥ (vj − vi) · xi ≥ (vj − vi+1) · xi. However this change increases

the value of the objective by vi+1qi+1(xi − xi+1) > 0, thus contradicting the fact that

x1, . . . , xm, u1, ..., um was an optimal solution of the mean-based revenue LP.

We begin by showing that this strategy achieves revenue at least MBRev(D)T −

o(T ) when the buyer is using a mean-based algorithm.

Theorem A.3.2 (Restatement of Theorem 2.3.6). The above strategy for the seller

gets revenue at least (MBRev(D)− ε)T − o(T ) against a conservative buyer running

a mean-based algorithm. In addition, this strategy is critical.

Proof. First of all, by Lemma A.3.1, it is easy to check the strategy is critical.
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To prove the rest, we will show that: i) the buyer with value vi receives the item

for at least xiT −o(T ) turns (receiving vixiT −o(T ) total utility from the items), and

ii) this buyer’s net utility is at most (ui + ε)T + o(T ). This implies that this buyer

pays the seller at least xiviT − (ui + ε)T − o(T ) over the course of the T rounds;

taking expectation over all vi completes the proof.

Assume the buyer is running a γ-mean-based learning algorithm. Consider the

buyer when they have value vi. Note that

σj,t(vi) = (vi − vj + ε) ·max(0, t− (1− xj)T ).

We first claim that after round (1−xi)T +γT/ε, the buyer will buy the item (i.e.,

choose an option that results in him getting the item) each round with probability at

least 1 −mγ. To see this, first note that σi,t(vi) ≥ γT when t ≥ (1 − xi)T + γT/ε.

Then, since the cumulative utility of any arm is 0 until it starts offering the item, it

follows from the mean-based condition that the buyer will pick a specific arm that

is not offering the item with probability at most γ, and therefore choose some good

arm with probability at least 1−mγ. It follows that, in expectation, the buyer with

value vi receives the item for at least (1−mγ)(xiT − γT/ε) = xiT − o(T ) turns.

We now proceed to upper bound the overall expected utility of the buyer. For each

index j ≤ i, let Sj be the set of t where σj,t(vi) > σj′,t(vi) for all other j′. Note that

since each σj,t(vi) is a linear function in t (when positive), each Sj is either the empty

set or an interval (yjT, zjT ). Since all the vi are distinct, note that these intervals

partition the interval ((1−xi)T, T ) (with the exception of up to m endpoints of these

intervals); in particular,
∑

j≥i(zj − yj) = xi.

Let ε′ = minj(vj+1 − vj). Note that, if t ∈ (yjT + γT/ε′, zjT − γT/ε′), then for

all j′ 6= j, σj,t(vi) > σj′,t(vi) + γT . This follows since σj,t(vi) − σj′,t(vi) is linear in t

with slope vj − vj′ , and |vj − vj′ | > ε′. It follows that if t is in this interval, then the
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buyer will choose option j with probability at least 1 −mγ (by a similar argument

as before).

Define j(t) = arg maxj σj,t(vi) to be the index of the arm with the current largest

cumulative reward, and let σmax,t(vi) =
∑t

s=1 rj(s),s(vi) be the cumulative utility of

always playing the arm with the current highest cumulative reward for the first t

rounds. The following lemma shows that σmax,T (vi) is close to maxj σj,T (vi). (In

other words, playing the best arm every round and playing the best-at-the-end arm

every round have similar payoffs if the historically best arm does not change often).

Lemma A.3.3. |σmax,T (vi)−maxj σj,T (vi)| ≤ m.

Proof. Let W = |{t|j(t) 6= j(t+1)}| equal the number of times the best arm switches

values; note that since each σj,t(vi) is linear, W is at most m. Let t1 < t2 < · · · < tW

be the values of t such that j(t) 6= j(t+ 1). Additionally define t0 = 1 and tW+1 = T .

Then, dividing the cumulative reward σmax,t into intervals by these ti, we get that

σmax,t(vi) =
t∑

s=1

rj(s),s(vi)

=
W+1∑
i=1

(σj(ti),ti(vi)− σj(ti),ti−1
(vi))

= σj(T ),T (vi) +
W+1∑
i=1

(σj(ti−1),ti−1
(vi)− σj(ti),ti−1

(vi))

= max
j
σj,t(vi) +

W+1∑
i=1

(σj(ti−1),ti−1
(vi)− σj(ti),ti−1

(vi))

It therefore suffices to show that |σj(ti−1),ti−1
(vi) − σj(ti),ti−1

(vi)| ≤ 1 for all i. To

see this, note that (by the definition of j(t)), σj(ti−1),ti−1
(vi) − σj(ti),ti−1

(vi) > 0, and

that σj(ti−1),ti−1+1(vi)− σj(ti),ti−1+1(vi) < 0. However,
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(σj(ti−1),ti−1+1(vi)− σj(ti),ti−1+1(vi)) =

(σj(ti−1),ti−1
(vi)− σj(ti),ti−1

(vi)) + (rj(ti−1),ti−1+1(vi)− rj(ti),ti−1+1(vi))

Since 0 ≤ rj,t(u) ≤ 1, it follows that |σj(ti−1),ti−1
(vi) − σj(ti),ti−1

(vi)| ≤ 1. This

completes the proof.

Let σT (vi) =
∑T

t=1 E[rIt,t(vi)] denote the expected cumulative utility of this buyer

at time T . We claim that σT ≤ maxj σj,T (vi) + o(T ). To see this, recall that, for

t ∈ (yjT + γT/ε′, zjT − γT/ε′), Pr[It 6= j] ≤ mγ, and therefore E[rIt,t] ≤ rj,t + mγ.

Furthermore, note that for t ∈ Sj, j(t) = j, so rj,t = rj(t),t and E[rIt,t] ≤ rj(t),t + mγ.

It follows that
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σT (vi) =
T∑
t=1

E[rIt,t(vi)]

≤
T∑

t=(1−xi)T

E[rIt,t(vi)]

=
i∑

j=1

zjT∑
t=yjT

E[rIt,t(vi)]

≤
i∑

j=1

2γT

ε′
+

zjT−γT/ε′∑
t=yjT+γT/ε′

E[rIt,t(vi)]


≤

i∑
j=1

2γT

ε′
+

zjT−γT/ε′∑
t=yjT+γT/ε′

(rj(t),t(vi) +mγ)


≤ 2mγT

ε′
+mγT +

T∑
t=1

rj(t),t(vi)

=
2mγT

ε′
+mγT + σmax,T (vi)

≤ 2mγT

ε′
+mγT +m+ max

j
σj,T (vi)

= max
j
σj,T (vi) + o(T ).

Finally, note that

max
j
σj,T (vi) = max

j<i
(vi − vj + ε)xjT

≤ (max
j<i

(vi − vj)xj + ε)T

= (ui + ε)T

It follows that σT (vi) ≤ (ui + ε)T + o(T ), as desired.
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We now proceed to show that this bound is in fact optimal; no strategy for the

seller (even an adaptive one) can achieve better revenue against a no-regret , conser-

vative buyer.

Theorem A.3.4 (Restatement of Theorem 2.3.4). Any strategy for the seller achieves

revenue at most MBRev(D)T + o(T ) against a conservative buyer running a no-regret

algorithm.

Proof. Assume the buyer is running a δ-no-regret algorithm, for some δ = o(T ).

Consider an arbitrary strategy for the seller with K arms, where arm j is labelled

with maximum bid bj. We begin by claiming that the following LP (Figure A.2)

provides an upper bound on the revenue obtainable by this strategy against our no-

regret buyer.

maximize
m∑
i=1

qi(vixi − ui)

subject to ui ≥ viyj − pj − δ/T, i ∈ [m], j ∈ [K] : vi ≥ bj

pj ≤ bjyj, j ∈ [K]

xi = yj, i ∈ [m], j = arg max
j∈[K]:bj≤vi

bj

pj ≥ 0, 1 ≥ yj ≥ 0, j ∈ [K]

Figure A.2: LP ′, with variables xi, ui, yj, and pj

Lemma A.3.5. Let V ′ be the optimal value of LP ′ (see Figure A.2). Then the

expected revenue of the seller is at most V ′T .

Proof. Given our strategy for the seller, we will assign values to variables in the

following way. Fix a strategy for the buyer, and let yj = 1
T
E [
∑

t aj,t] be the expected

average probability that arm j gives the item and let pj = 1
T
E [
∑

t pj,t] be the expected

average price charged by arm j. We will define xi through the third constraint, and
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set ui = maxj(viyj−pj−δ/T ). We will show that this assignment of variables satisfies

all the constraints, and that the objective function evaluated on this assignment of

variables is at least the seller’s revenue using this strategy.

The first and third constraints are satisfied via our choices of xi and ui. The

constraint pj ≤ bjyj is satisfied since pj,t ≤ bjaj,t for all t. Finally, 0 ≤ yj ≤ 1 is

satisfied since yj is an average probability.

We now must show that the seller’s revenue is at most qi(vixi − ui). We begin

by claiming that xi is an upper bound for the expected fraction of the time that the

buyer receives the item when he has value vi. To see this, note first that the buyer

is conservative, and therefore will not bid on any arm with bid value larger than vi.

Choose j so that bj is maximized over all bj ≤ vi; note that since the seller’s strategy

is monotone, aj,t > aj′,t for any j′ < j, so the buyer will receive the item at most

E
[

1
T

∑
t aj,t

]
= yj of the time in expectation. But by our third constraint, xi = yj,

so xi is an upper bound on the average probability that the buyer with value vi gets

the item, and therefore
∑m

i=1 qivixi is an upper bound on the average welfare of the

buyer.

We next claim that
∑

i qiui is a lower bound for the average utility of the buyer.

To see this, note that since the buyer is using a δ-no-regret algorithm, when the value

is vi, the buyer should not regret always playing some arm j with wj ≤ vi. Therefore

the average surplus of value vi should satisfy the constraint on ui, and so
∑m

i=1 qi · ui

is a lower bound on the average surplus of the buyer.

Finally, note that the seller’s revenue is just the buyer’s welfare minus the buyer’s

surplus. Combining the upper bound on the buyer’s welfare and the lower bound on

the buyer’s surplus, we get our desired upper bound on the seller’s revenue.

We will now show how to transform a solution of this LP into a solution to the

mean-based revenue LP while ensuring that its value does not decrease by more than

δ/T . To begin, it is easy to see that there exists an optimal solution of LP ′ that
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satisfies pj = yj · wj for all j ∈ [K]. We can thus increase each ui by δ/T , since

this will decrease the value of the LP by at most δ/T as
∑m

i=1 qi = 1. This solution

now satisfies ui ≥ (vi − bj)yj for all i ∈ [m], j ∈ [K] : vi ≥ bj. Finally, for each

i, j ∈ [m] : i > j, note that for ` = arg max`∈[K]:b`≤vj b`, we have that b` ≤ vj. It

follows that ui ≥ (vi − vj)y` = (vi − vj)xj, and therefore that this solution is a valid

solution of the mean-based revenue LP.

From the above argument, we can conclude that V1 ≤ Rmb(D) + δ/T . It follows

from Lemma A.3.5 that the total revenue is upper bounded by T (MBRev(D)+δ/T ) =

Rmb(D)T + o(T ), as desired.

Note that the proof of Lemma A.3.5 relies on the fact that our allocation rule

is monotone. We can show that this constraint is necessary; with non-monotone

strategies, the seller can extract up to the full welfare of a conservative buyer playing

a mean-based strategy. The proof of this fact can be found in Appendix ??.

A.3.2 Bounding MBRev(D)

In this section, we compare the mean-based revenue MBRev(D) to our two bench-

marks: the Myerson revenue for the item, Mye(D), and the buyer’s expected value

for the item, Val(D). It is not too hard to see that MBRev(D) ≤ Val(D) (the

value of the mean-based revenue LP is clearly at most
∑

i qivi = Val(D)) and that

MBRev(D) ≥ Mye(D) (the seller can achieve Mye(D) by just always selling the item

the Myerson price). We show here that MBRev(D) is not a constant factor approxi-

mation to either Mye(D) or Val(D), and thus lies strictly between our two benchmarks

in general.

We will begin by showing that MBRev(D) is monotone with respect to stochastic

dominance. We will break from notation somewhat by considering distributions D

supported on [1, H] rather than [0, 1]; since Mye(D), MBRev(D), and Val(D) are all

linear in the values vi, dividing all values through by H results restores the condition
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that D is supported on [0, 1] while preserving the multiplicative gaps between these

quantities.

Definition A.3.6. A distribution D stochastically dominates distribution D′ if for

all t, Pru∼D[u ≥ t] ≥ Pru∼D′ [u ≥ t].

Lemma A.3.7. If distribution D stochastically dominates distribution D′, then

MBRev(D) ≥ MBRev(D′).

Proof. Note that we can write MBRev(D) in the form

MBRev(D) = max
x

Evi∼D
[
vixi −max

j
(vi − vj)xj

]
To show MBRev(D) ≥ MBRev(D′), it suffices to show that for all increasing x (i.e.

xi ≥ xj for i ≥ j), that

Evi∼D
[
vixi −max

j
(vi − vj)xj

]
≥ Evi∼D′

[
vixi −max

j
(vi − vj)xj

]
Note that if D stochastically dominates distribution D′, then for any increasing

function f , Eu∼D[f(u)] ≥ Eu∼D′ [f(u)]. It suffices to show that f(vi) = vixi−maxj(vi−

vj)xj is increasing in i (and hence in vi). In particular, we wish to show that, for

i′ > i,

vi′xi′ −max
j

(vi′ − vj)xj ≥ vixi −max
j

(vi′ − vj)xj

or equivalently,

min
j

(vi′xi′ − (vi′ − vj)xj) ≥ min
j

(vixi − (vi − vj)xj) .

To show this, it suffices to show that for each j,

vi′xi′ − (vi′ − vj)xj ≥ vixi − (vi − vj)xj
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or equivalently,

vi′xi′ − vixi ≥ (vi′ − vi)xj.

This follows since

vi′xi′ − vixi ≥ vi′xi − vixi

= (vi′ − vi)xi

≥ (vi′ − vi)xj.

Here we have used the fact that xi′ ≥ xi ≥ xj. This concludes the proof.

For ease of analysis, we will also switch to considering continuous distributions D.

The definitions of Mye(D) and Val(D) still hold for continuous D. Since the mean-

based revenue LP implies that, in the optimal solution, ui = maxj(vi− vj)xj, we can

write MBRev(D) for a continuous D supported on [1, H] with pdf q(v) as

MBRev(D) = max
x(v)

∫ H

1

q(v)(vx(v)−max
w<u

(v − w)x(w))dv.

By discretizing appropriately, all gaps we prove for continuousD extend to discrete

values of D.

Definition A.3.8. The equal revenue curve is the (continuous) distribution DERC

supported on [1,∞) with CDF F (v) = 1− 1
v
. The equal revenue curve truncated at H

is the distribution distribution DERC(H) supported on [1, H] with CDF F (v) = 1− 1
v

for v ≤ H and F (v) = 0 for v > H.

Note that Mye(DERC) = 1 (since v(1 − F (v)) = 1 for all v ≥ 1). Likewise,

Mye(DERC(H)) = 1.
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Lemma A.3.9. Let DERC(H) be the equal revenue curve truncated at H. Let D be

any distribution supported on [1, H] with Mye(D) = 1. Then DERC(H) stochastically

dominates D.

Corollary A.3.10. The distribution D supported on [1, H] that maximizes MBRev(D)

subject to Mye(D) = 1 is the truncated equal revenue curve DERC(H).

Theorem A.3.11. MBRev(DERC(H)) ≥ Ω(log logH).

Proof. Note that for DERC(H), the pdf q(v) is given by q(v) = 1
v2

, so

MBRev(DERC(H)) ≥ max
x(v)

∫ H

1

q(v)(vx(v)−max
w<v

(v − w)x(w))dv

= max
x(v)

∫ H

1

1

v

(
x(v)−max

w<v

(
1− w

v

)
x(w)

)
dv.

Here the maximum of x(v) is taken over all increasing functions from [1, H] to

[0, 1]. Consider the function x(v) = log v
logH

. In this case, (v − w)x(w) is maximized

when:

d

dv
((v − w)x(w)) = 0

(v − w)x′(w)− x(w) = 0

(v − w)
1

w logH
− logw

logH
= 0

w + w logw = v.

If we choose w so that the above inequality holds, then note that dv = (2 +

logw)dw. It follows that
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MBRev(DERC(H))

≥ 1

logH

∫ H

1

1

w + w logw

(
log(w + w logw)−

(
1− w

w + w logw

)
logw

)
(2 + logw)dw

=
1

logH

∫ H

1

(2 + logw)

w + w logw

(
log(w + w logw)− logw +

logw

1 + logw

)
dw

≥ 1

logH

∫ H

1

(2 + logw)

w + w logw
log(1 + logw)dw

≥ 1

logH

∫ H

1

log(1 + logw)

w
dw

=
log(H) log(1 + logH)− log(1 + logH)− logH

logH

= Ω(log logH)

Theorem A.3.12. MBRev(DERC(H)) ≤ O(log logH).

Proof. Note that, up to a point mass at H which contributes at most H(1/H) = 1

to the mean-based revenue, MBRev(DERC(H)) is given by

max
x(v)

∫ H

1

1

v

(
x(v)−max

w<v

(
1− w

v

)
x(w)

)
dv.

Let f(v) : [1,∞)→ [1,∞) be a function that satisfies f(v) < v for all v ∈ [1,∞).

By choosing w = f(v), we have that
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MBRev(DERC(H))

≤ max
x(v)

(∫ H

1

1

v

(
x(v)−

(
1− f(v)

v

)
x(f(v))

)
dv

)
= max

x(v)

(∫ H

1

x(v)

v
dv −

∫ H

1

1

v

(
1− f(v)

v

)
x(f(v))dv

)
= max

x(v)

(∫ H

f(H)

x(v)

v
dv +

∫ f(H)

1

x(v)

v
dv −

∫ H

1

(
1

v
− f(v)

v2

)
x(f(v))dv

)

= max
x(v)

(∫ H

f(H)

x(v)

v
dv +

∫ H

1

x(f(v))f ′(v)

f(v)
dv −

∫ H

1

(
1

v
− f(v)

v2

)
x(f(v))dv

)
= max

x(v)

(∫ H

f(H)

x(v)

v
dv +

∫ H

1

(
f ′(v)

f(v)
+
f(v)

v2
− 1

v

)
x(f(v))dv

)
.

Choose f(v) = v
1+log v

. Note that, for this choice of f ,

f ′(v) =
log v

(1 + log v)2
,

and so

f ′(v)

f(v)
+
f(v)

v2
− 1

v
=

log v

v(1 + log v)
+

1

v(1 + log v)
− 1

v

= 0.

It follows that (since x(v) ∈ [0, 1] for all v)
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MBRev(DERC(H)) ≤ max
x(v)

∫ H

f(H)

x(v)

v
dv

≤
∫ H

H/(logH+1)

dv

v

= log(logH + 1)

= O(log logH).

Corollary A.3.13 (Restatement of Theorem 2.3.8). The gap MBRev(D)/Mye(D)

can grow arbitrarily large. For distributions D supported on [1, H], this gap can be

as large as Ω(log logH) (and this is tight). Similarly, the gap Val(D)/MBRev(D) can

grow arbitrarily large. For distributions D supported on [1, H], this gap can be as

large as Ω(logH/ log logH).

A.4 Mean-based learning algorithms

In this appendix we will show that Multiplicative Weights and EXP3 - the most

common adversarial no-regret algorithms for the experts and bandits case respectively

- are mean-based, as per Definition 2.2.1. We expect that many variants of these

algorithms along with other no-regret learning algorithms are also mean-based, and

can be shown to be mean-based via similar methods of proof.

We begin by showing that Multiplicative Weights (Algorithm 17) is mean-based.

Multiplicative Weights, also known as Hedge (see survey [12] for more details) is a

simple no-regret learning algorithm for the full-information setting. It proceeds by

maintaining a weight wi for each option. Every round, Multiplicative Weights chooses

an option with probability proportional to wi, and then updates each weight wi by
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multiplying it by eεri , where ε is a parameter of the algorithm and ri is the reward

from option i this round.

Algorithm 17 Multiplicative Weights algorithm.

1: Choose ε =
√

logK
T

. Initialize K weights, letting wi,t be the value of the ith weight

at round t. Initially, set all wi,0 = 1.
2: for t = 1 to T do
3: Choose option i with probability pi,t = wi,t−1/

∑
j wj,t−1.

4: for j = 1 to K do
5: Set wj,t = wj,t−1 · eεrj,t .
6: end for
7: end for

Theorem A.4.1. The Multiplicative Weights algorithm (Algorithm 17) is mean-

based.

Proof. Define γ = 2(Tε)−1 log(Tε). We will show that Multiplicative Weights is

γ-mean-based. Note that since ε =
√

logK
T

, γ = o(1) and therefore Multiplicative

Weights is mean-based.

Note that wi,t = eεσi,t . Therefore, if σi,t − σj,t < −γT , we have σi,t−1 − σj,t−1 <

−γT + 1 < −γT/2, it follows that

pi,t =
wi,t−1∑
j wj,t−1

≤ wi,t−1

wj,t−1

= eε(σi,t−1−σj,t−1)

< e−εγT/2

= e− log(Tε) = 1/(Tε) ≤ γ.

It follows that Multiplicative Weights is γ-mean-based.

We now show the Follow-the-Perturbed-Leader algorithm (Algorithm 18) is mean-

based.
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Algorithm 18 Follow-the-Perturbed-Leader algorithm.

1: Choose ε =
√

logK
T

.

2: for t = 1 to T do
3: For each arm, sample peri ≥ 0 independently from exp. distribution dµ(x) =

εe−εx.
4: Choose option i with largest σi,t−1 + peri.
5: end for

Theorem A.4.2. The Follow-the-Perturbed-Leader algorithm (Algorithm 18) is

mean-based.

Proof. Let γ =
√

1
T
· log(T ). When σi,t < σj,t− γT , the probability option i is chosen

at round i is at most

Pr[peri > σi,t−1 − σj,t−1] = e−ε(σi,t−1−σj,t−1) ≤ e−εγT/2 <

√
1

T
< γ.

Therefore the Follow-the-Perturbed-Leader algorithm (Algorithm 18) is γ-mean-

based.

We will now show that EXP3 (Algorithm 19) is mean-based. EXP3 can be thought

of as an extension of Multiplicative Weights to the incomplete information (bandits)

setting. Since we no longer observe every option’s reward each round, we cannot

perform the same weight update rule as in Multiplicative Weights. Instead, if we

choose option i, we update weight wi by multiplying it with eεri/pi , where pi is the

probability of picking this option this round (i.e. wi/
∑
wj), and leave all other

weights unmodified. Since E[
ri,t
pi,t
1It=i] = ri,t, this accomplishes in expectation (in

some sense) the same update rule as Multiplicative Weights. It is known that (for

fixed K) if ε = T−α for some α ∈ (0, 1), then EXP3 is no-regret ([16]). This regret is

minimized when α = 1/2, but for convenience of analysis we will show that EXP3 is

mean-based when α = 1/4. EXP3 is still no-regret when α = 1/4.

Theorem A.4.3. The EXP3 algorithm (Algorithm 19) is mean-based.
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Algorithm 19 EXP3 algorithm.

1: Choose a parameter ε ∈ (0, 1). Initialize K weights, letting wi,t be the value of
the ith weight at round t. Initially, set all wi,0 = 1.

2: for t = 1 to T do
3: Choose option i with probability pi,t = (1−Kε) wi,t−1∑

j wj,t−1
+ ε.

4: Set wi,t = wi,t−1 · eεri,t/pi,t .
5: end for

Proof. We will set ε = T−1/4 and γ = 2(2
√

2 + 1)T−1/4 log T . We will show that

EXP3 is γ-mean-based.

Define σ̂i,t =
∑t

s=1
ri,s
pi,s
· 1Is=i. Note that σ̂i,t − σi,t is a martingale in t; indeed,

conditioned on the actions from time 1 up to time t − 1, E
[
ri,s
pi,s
· 1Is=i

]
= ri,s. In

addition, note that
∣∣∣ εri,spi,s

· 1Is=i − εri,s
∣∣∣ ≤ 1

pi,s
≤ 1/ε, since pi,s ≥ ε by definition. It

follows from Azuma’s inequality that, for any 1 ≤ i ≤ K, 1 ≤ t ≤ T , and M > 0,

Pr [|σ̂i,t − σi,t| ≥M ] ≤ 2 exp

(
−M

2ε2

2T

)
.

We will choose M so that Mε =
√

2T log T ; for this M , it follows that

Pr [|σ̂i,t − σi,t| ≥M ] ≤ 2

T
.
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Now, note that wi,t = eεσ̂i,t . If σi,t−σj,t < −γT , we have σi,t−1−σj,t−1 < −γT+1 <

−γT/2, it then follows that

pi,t = (1−Kε) wi,t−1∑
j wj,t−1

+ ε

≤ min

(
wi,t−1

wj,t−1

, 1

)
+ ε

= min(eε(σ̂i,t−1−σ̂j,t−1), 1) + ε

≤ eε(σi,t−1−σj,t−1)+2Mε +
2

T
+ ε

< e−εγT/2+2
√

2T log T +
2

T
+ ε

≤ e−
√
T log T +

2

T
+ T−1/4

≤ γ.

Finally, we prove Theorem 2.2.3, showing that the contextualization of a mean-

based algorithm is still mean-based. In particular, the contextualizations of the above

three algorithms (Multiplicative Weights, Follow the Perturbed Leader, and EXP3)

are all mean-based algorithms for the contextual bandits problem.

Theorem A.4.4 (Restatement of Theorem 2.2.3). If an algorithm for the experts

problem or multi-armed bandits problem is mean-based, then its contextualization is

also a mean-based algorithm for the contextual bandits problem.

Proof. AssumeM is a γ-mean-based algorithm. We will showM ′ is 1
minc Pr[c]

(
γ +

2
√

log(mKT )

T 1/2

)
-

mean-based.

First define σ̂i,t(c) =
∑

s:s≤t, cs=c ri,s(c) to be the total reward given by arm i

on rounds where the context is c. Since M is γ-mean-based, whenever σ̂i,t(c) <

σ̂j,t(c)− γT , then the probability pi,t(c) that the algorithm pulls arm i on round t if

it has context c satisfies pi,t(c) < γ.
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We will proceed to show that σ̂i,t(c) < σ̂j,t(c) − γT with sufficiently large proba-

bility. It is easy to check that E[σ̂i,t(c)] = σi,t(c) · Pr[c]. By the Chernoff bound, we

have that

Pr
[
|σ̂i,t(c)− σi,t(c) · Pr[c]| ≥

√
T log(mKT )

]
≤ 2 exp(−2T log(mKT )/t) ≤ 2

T 2m2K2
.

By the union bound, with probability at least 2
Tm2K2 , we have |σ̂i,t(c)− σi,t(c) · Pr[c]| ≥√

T log(mKT ) for all i,t, and c. In this case we have that σi,t(c) < σj,t(c)− 1
Pr[c]

(γT +

2
√
T log(mKT )) implies that σ̂i,t(c) < σ̂j,t(c)− γT .

Therefore, if σi,t(c) < σj,t(c)− 1
Pr[c]

(γT+2
√
T log(mKT )) and the context of round

t is c, then pi,t(c) < γ + 2
Tm2K2 ≤ ( 1

minc Pr[c]
(γ + 1

T 1/2 )).
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Appendix B

Appendix for Chapter 3

B.1 Negative Results

In this section, we show that algorithms that achieve low-regret in the multi-armed

bandits problem with adversarial values perform poorly in the strategic multi-armed

bandits problem. Throughout this section, we will assume we are working in the

restricted payment model (i.e., arms can only pass along a value wi,t that is at most

vi,t), but all proofs also work in the unrestricted payment model (and in fact are much

easier there).

B.1.1 Tacit Observational Model

We begin by showing that in the tacit observational model, where arms cannot see

the amounts passed on by other arms, it is still possible for the arms to collude and

leave the principal with o(T ) revenue.

We begin by proving this result for the case of two arms, where the proof is slightly

simpler.

Theorem B.1.1. Let mechanism M be a (ρ, δ)-low regret algorithm for the multi-

armed bandit problem with two arms, where ρ ≤ T−2 and δ ≥
√
T log T . Then in
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the strategic multi-armed bandit problem under the tacit observational model, there

exist distributions D1, D2 and an O(
√
Tδ)-Nash Equilibrium where a principal using

mechanism M gets at most O(
√
Tδ) revenue.

Proof. Let D1 and D2 be distributions with means µ1 and µ2 respectively, such that

|µ1 − µ2| ≤ max(µ1, µ2)/2. Additionally, assume both D1 and D2 are supported on

[
√
δ/T , 1]. We now describe the equilibrium strategy S∗ (the below description is for

arm 1; S∗ for arm 2 is symmetric):

1. Set parameters B = 6
√
Tδ and θ =

√
δ
T

.

2. Define c1,t to be the number times arm 1 is pulled in rounds 1, ..., t. Similarly

define c2,t to be the number times arm 2 is pulled in rounds 1, ..., t.

3. For t = 1, . . . , T :

(a) If there exists a t′ ≤ t− 1 such that c1,t′ < c2,t′ −B, set w1,t = v1,t.

(b) If the condition in (a) is not true, let p1,t be the probability that the

principal will pick arm 1 in this round conditioned on the history (assuming

player 2 is also playing S∗), and let p2,t = 1− p1,t. Then:

i. If c1,t−1 < c2,t−1 and p1,t < p2,t, set w1,t = θ.

ii. Otherwise, set w1,t = 0.

We will now show that (S∗, S∗) is an O(
√
Tδ)-Nash equilibrium. To do this, for

any deviating strategy S ′, we will both lower bound u1(M,S∗, S∗) and upper bound

u1(M,S ′, S∗), hence bounding the net utility of deviation.

We begin by proving that u1(M,S∗, S∗) ≥ µ2T
2
−O(

√
Tδ). We need the following

lemma.

Lemma B.1.2. If both arms are using strategy S∗, then with probability
(
1− 4

T

)
,

|c1,t − c2,t| ≤ B for all t ∈ [T ].
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Proof. Assume that both arms are playing the strategy S∗ with the modification that

they never defect (i.e. condition (a) in the above strategy is removed). This does not

change the probability that |c1,t − c2,t| ≤ B for all t ∈ [T ].

Define R1,t =
∑t

s=1w1,s −
∑t

s=1wIs,s be the regret the principal experiences for

not playing only arm 1. Define R2,t similarly. We will begin by showing that with

high probability, these regrets are bounded both above and below. In particular, we

will show that with probability at least 1− 2
T

, Ri,t lies in [−2θ
√
T log T − δ, δ] for all

t ∈ [T ] and i ∈ {1, 2}.

To do this, note that there are two cases where the regrets R1,t and R2,t can

possibly change. The first is when p1,t > p2,t and c1,t > c2,t. In this case, the

arms offer (w1,t, w2,t) = (0, θ). With probability p1,t the principal chooses arm 1 and

the regrets update to (R1,t+1, R2,t+1) = (R1,t, R2,t + θ), and with probability p2,t the

principal chooses arm 2 and the regrets update to (R1,t+1, R2,t+1) = (R1,t − θ, R2,t).

It follows that E[R1,t+1 +R2,t+1|R1,t +R2,t] = R1,t +R2,t + (p1,t − p2,t)θ ≥ R1,t +R2,t.

In the second case, p1,t < p2,t and c2,t < c1,t, and a similar calculation shows again

that E[R1,t+1 +R2,t+1|R1,t +R2,t] = R1,t +R2,t + (p2,t− p1,t)θ ≥ R1,t +R2,t. It follows

that R1,t +R2,t forms a submartingale.

From the above analysis, it is also clear that |(R1,t+1 +R2,t+1)− (R1,t +R2,t)| ≤ θ.

It follows from Azuma’s inequality that, for any fixed t ∈ [T ],

Pr
[
R1,t +R2,t ≤ −2θ

√
T log T

]
≤ 1

T 2

Applying the union bound, with probability at least 1 − 1
T

, R1,t + R2,t ≥

−2θ
√
T log T for all t ∈ [T ]. Furthermore, since the principal is using a (T−2, δ)-low-

regret algorithm, it is also true that with probability at least 1 − T−2 (for any fixed

t) both R1,t and R2,t are at most δ. Applying the union bound again, it is true that

R1,t ≤ δ and R2,t ≤ δ for all t with probability at least 1− 1
T

. Finally, combining this

with the earlier inequality (and applying union bound once more), with probability
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at least 1 − 2
T

, Ri,t ∈
[
−2θ
√
T log T − δ, δ

]
, as desired. For the remainder of the

proof, condition on this being true.

We next proceed to bound the probability that (for a fixed t) c1,t−c2,t ≤ B. Define

the random variable τ to be the largest value s ≤ t such that c1,τ − c2,τ = 0 – note

that if c1,t−c2,t ≥ 0, then c1,s−c2,s ≥ 0 for all s in the range [τ, t]. Additionally let ∆s

denote the ±1 random variable given by the difference (c1,s − c2,s)− (c1,s−1 − c2,s−1).

We can then write

c1,t − c2,t ≤
t∑

s=τ+1

∆s

≤
t∑

s=τ+1

∆s · 1p1,s>p2,s +
t∑

s=τ+1

∆s · 1p1,s≤p2,s

Here the first summand corresponds to times s where one of the arms offers θ (and

hence the regrets change), and the second summand corresponds to times where both

arms offer 0. Note that since c1,s ≥ c2,s in this interval, the regret R2,s increases by θ

whenever ∆s = 1 (i.e., arm 1 is chosen), and furthermore no choice of arm can decrease

R2,s in this interval. Since we know that R2,s lies in the interval
[
−2θ
√
T log T − δ, δ

]
for all s, this bounds the first sum by

t∑
s=τ+1

∆s · 1p1,s>p2,s ≤
2δ + 2θ

√
T log T

θ
=

2δ

θ
+ 2
√
T log T

On the other hand, when p1,s ≤ p2,s, then E[∆s] = p1,s − p2,s ≤ 0. By Hoeffding’s

inequality, it then follows that with probability at least 1− 1
T 2 ,

t∑
s=τ+1

∆s · 1p1,s≤p2,s ≤ 2
√
T log T

Altogether, this shows that with probability at least 1− 1
T 2 ,
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c1,t − c2,t ≤
2δ

θ
+ 4
√
T log T ≤ 6

√
Tδ = B

The above inequality therefore holds for all t with probability at least 1 − 1
T

.

Likewise, we can show that c2,t− c1,t ≤ B also holds for all t with probability at least

1− 1
T

. Since we are conditioned on the regrets Ri,t being bounded (which is true with

probability at least 2
T

), it follows that |c1,t − c2,t| ≤ B for all t with probability at

least 1− 4
T

.

By Lemma B.1.2, we know that with probability 1− 4
T

, |c1,t−c2,t| ≤ B throughout

the mechanism. In this case, arm 1 never uses step (a), and c1,T ≥ (T − B)/2.

Therefore

u1(M,S∗, S∗) ≥
(

1− 4

T

)
· (µ1 − θ) · (T −B)/2

≥ µ1T

2

(
1− 4

T
− θ

µ1

− B

T

)
=

µ1T

2
− 2µ1 −

θT

2
− Bµ1

2

≥ µ1T

2
−O(

√
Tδ).

Now we will show that u1(M,S ′, S∗) ≤ µ1T
2

+O(
√
Tδ). Without loss of generality,

we can assume S ′ is deterministic. Let MR be the deterministic mechanism when

M ’s randomness is fixed to some outcome R. Consider the situation when arm 1 is

using strategy S ′, arm 2 is using strategy S∗ and the principal is using mechanism

MR. There are two cases:

1. c1,t − c2,t ≤ B is true for all t ∈ [T ]. In this case, we have

u1(MR, S
′, S∗) ≤ c1,T · µ1 ≤ µ1(T +B)/2.

241



2. There exists some t such that c1,t − c2,t > B: Let τR + 1 be the smallest t such

that c1,t − c2,t > B. We know that c1,τR − c2,τR ≤ B. Therefore we have

u1(MR, S
′, S∗)

=
T∑
t=1

(µ1 − w1,t) · 1It=1

=
T∑
t=1

(µ1 − w2,t) · 1It=1 +
T∑
t=1

(w2,t − w1,t) · 1It=1

≤ c1,τRµ1 + µ1 + (T − τR − 1) max(µ1 − µ2, 0) +
T∑
t=1

(w2,t − w1,t) · 1It=1

≤ µ1(τR +B)/2 + µ1 + (T − τR − 1)(µ1/2) +
T∑
t=1

(w2,t − w1,t) · 1It=1

≤ µ1T/2 + µ1(B + 1)/2 +
T∑
t=1

(w2,t − w1,t) · 1It=1.

In general, we thus have that

u1(MR, S
′, S∗) ≤ µ1T/2 + µ1(B + 1)/2 + max

(
0,

T∑
t=1

(w2,t − w1,t) · 1It=1

)
.

Therefore

u1(M,S ′, S∗) = ER[u1(MR, S
′, S∗)]

≤ µ1T/2 + µ1(B + 1)/2 + ER

[
max

(
0,

T∑
t=1

(w2,t − w1,t) · 1It=1

)]
.

Notice that
∑T

t=1(w2,t−w1,t) · 1It=1 is the regret of not playing arm 2 (i.e., R2 in the

proof of Lemma B.1.2). Since the mechanism M is (ρ, δ) low regret, with probability

1− ρ, this sum is at most δ (and in the worst case, it is bounded above by Tµ2). We

therefore have that:
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u1(M,S ′, S∗) ≤ µ1T

2
+
µ1(B + 1)

2
+ δ + ρTµ2

≤ µ1T

2
+O(

√
Tδ)

From this and our earlier lower bound on u1(M,S∗, S∗), it follows that

u1(M,S ′, S∗) − u1(M,S∗, S∗) ≤ O(
√
Tδ), thus establishing that (S∗, S∗) is an

O(
√
Tδ)-Nash equilibrium for the arms.

Finally, to bound the revenue of the principal, note that if the arms both play

according to S∗ and |c1,t−c2,t| ≤ B for all t (so they do not defect), the principal gets

a maximum of Tθ = O(
√
Tδ) revenue overall. Since (by Lemma B.1.2) this happens

with probability at least 1 − 4
T

(and the total amount of revenue the principal is

bounded above by T ), it follows that the total expected revenue of the principal is at

most O(
√
Tδ).

We now extend this proof to the K arm case, where K can be as large as

T 1/3/ log(T ).

Theorem B.1.3. Let mechanism M be a (ρ, δ)-low regret algorithm for the multi-

armed bandit problem with K arms, where K ≤ T 1/3/ log(T ), ρ ≤ T−2, and δ ≥
√
T log T . Then in the strategic multi-armed bandit problem under the tacit observa-

tional model, there exist distributions Di and an O(
√
KTδ)-Nash Equilibrium for the

arms where the principal gets at most O(
√
KTδ) revenue.

Proof of Theorem B.1.3. As in the proof of Theorem B.1.1, let µi denote the mean

value of the ith arm’s distribution Di (supported on [
√
Kδ/T , 1]). Without loss of

generality, further assume that µ1 ≥ µ2 ≥ · · · ≥ µK . We will show that as long as

µ1 − µ2 ≤ µ1
K

, there exists some O(
√
KTδ)-Nash equilibrium for the arms where the

principal gets at most O(
√
KTδ) revenue.
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We begin by describing the equilibrium strategy S∗ for the arms. Let ci,t denote

the number of times arm i has been pulled up to time t. As before, set B = 7
√
KTδ

and set θ =
√

Kδ
T

. The equilibrium strategy for arm i at time t is as follows:

1. If at any time s ≤ t in the past, there exists an arm j with cj,s− ci,s ≥ B, defect

and offer your full value wi,t = µi.

2. Compute the probability pi,t, the probability that the principal will pull arm i

conditioned on the history so far.

3. Offer wi,t = θ(1− pi,t).

We begin, as before, by showing that if all parties follow this strategy, then with

high probability no one will ever defect.

Lemma B.1.4. If all arms are using strategy S∗, then with probability
(
1− 3

T

)
,

|ci,t − cj,t| ≤ B for all t ∈ [T ], i, j ∈ [K].

Proof. As before, assume that all arms are playing the strategy S∗ with the modifica-

tion that they never defect. This does not change the probability that |ci,t− cj,t| ≤ B

for all t ∈ [T ], i, j ∈ [K].

Define Ri,t =
∑t

s=1wi,s −
∑t

s=1 wIs,s be the regret the principal experiences for

not playing only arm i up until time t. We begin by showing that with probability

at least 1− 2
T

, Ri,t lies in [−Kθ
√
T log T − (K − 1)δ, δ] for all t ∈ [T ] and i ∈ [K].

To do this, first note that since the principal is using a (T−2, δ)-low-regret algo-

rithm, with probability at least 1 − T−2 the regrets Ri,t are all upper bounded by δ

at any fixed time t. Via the union bound, it follows that Ri,t ≤ δ for all i and t with

probability at least 1− 1
T

.

To lower bound Ri,t, we will first show that
∑K

i=1Ri,t is a submartingale in t. Note

that, with probability pj,t, Ri,t+1 will equal Ri,t + θ((1 − pj,t) − (1 − pi,t)). We then

have
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E

[
K∑
i=1

Ri,t+1

∣∣∣∣∣
K∑
i=1

Ri,t

]
=

K∑
i=1

Ri,t +
K∑
i=1

pi,t

K∑
j=1

θ((1− pj,t)− (1− pi,t))

=
K∑
i=1

Ri,t +
K∑
i=1

pi,t

K∑
j=1

θ(pi,t − pj,t)

=
K∑
i=1

Ri,t + θ

K∑
i=1

pi,t(Kpi,t − 1)

=
K∑
i=1

Ri,t + θ

(
K

K∑
i=1

p2
i,t −

K∑
i=1

pi,t

)

≥
K∑
i=1

Ri,t

where the last inequality follows by Cauchy-Schwartz. It follows that
∑K

i=1 Ri,t forms

a submartingale.

Moreover, note that (since |pi − pj| ≤ 1) |Ri,t+1 − Ri,t| ≤ θ. It follows that∣∣∣∑K
i=1Ri,t+1 −

∑K
i=1Ri,t

∣∣∣ ≤ Kθ and therefore by Azuma’s inequality that, for any

fixed t ∈ [T ],

Pr

[
K∑
i=1

Ri,t ≤ −2Kθ
√
T log T

]
≤ 1

T 2
.

With probability 1 − 1
T

, this holds for all t ∈ [T ]. Since (with prob-

ability 1 − 1
T

) Ri,t ≤ δ, this implies that with probability 1 − 2
T

, Ri,t ∈[
−2Kθ

√
T log T − (K − 1)δ, δ

]
.

We next proceed to bound the probability that ci,t − cj,t > B for a i, j, and t.

Define

S
(i,j)
t =

(
ci,t − cj,t +

1

θ
(Ri,t −Rj,t)

)
.
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We claim that S
(i,j)
t is a martingale. To see this, we first claim that Ri,t+1−Rj,t+1 =

Ri,t − Rj,t − θ(pi,t − pj,t). Note that, if arm k is pulled, then Ri,t+1 = Ri,t + θ((1 −

pi,t) − (1 − pk,t)) = Ri,t + θ(pk,t − pi,t) and similarly, Rj,t+1 = Rj,t + θ(pk,t − pj,t). It

follows that Ri,t+1 −Rj,t+1 = Ri,t −Rj,t − θ(pi,t − pj,t).

Secondly, note that (for any arm k) E[ck,t+1 − ck,t|pt] = pk,t, and thus E[ci,t+1 −

cj,t+1 − (ci,t − cj,t)|pt] = pi,t − pj,t. It follows that

E[S
(i,j)
t+1 − S

(i,j)
t |pt] = E[(ci,t+1 − cj,t+1)− (ci,t − cj,t)|pt]

+
1

θ
E[(Ri,t+1 −Rj,t+1)− (Ri,t −Rj,t)|pt]

= (pi,t − pj,t)− (pi,t − pj,t)

= 0

and thus that E[S
(i,j)
t+1 |S

(i,j)
t ] = S

(i,j)
t , and thus that S

(i,j)
t is a martingale. Finally,

note that |S(i,j)
t+1 − S

(i,j)
t | ≤ 2, so by Azuma’s inequality

Pr
[
S

(i,j)
t ≥ 4

√
T log(TK)

]
≤ (TK)−2

Taking the union bound, we find that with probability at least 1 − 1
T

, S(i,j) ≤

4
√
T log(TK) for all i, j, and t. Finally, since with probability at least 1 − 2

T
each

Ri,t lies in
[
−2Kθ

√
T log T − (K − 1)δ, δ

]
, with probability at least 1 − 3

T
we have

that (for all i, j, and t)
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ci,t − cj,t = S
(i,j)
t − 1

θ
(Ri,t −Rj,t)

≤ 4
√
T log(TK) +

1

θ
|Ri,t −Rj,t|

≤ 4
√
T log(TK) + 2K

√
T log T +

Kδ

θ

≤ 7Kδ

θ

= 7K
√
Tδ

= B

By Lemma B.1.4, we know that with probability 1 − 3
T

, |ci,t − cj,t| ≤ B for all

t ∈ [T ], i, j ∈ [K]. In this case, arm 1 never defect, and c1,T ≥ T/K −B. Therefore

u1(M,S∗, S∗) ≥
(

1− 3

T

)
· (µ1 − θ) · (T/K −B)

≥ µ1T

K

(
1− 3

T
− θ

µ1

− BK

T

)
=

µ1T

K
− 3µ1/K −

θT

K
−Bµ1

≥ µ1T

K
−O(

√
KTδ)

Now we are going to show that u1(M,S ′, S∗) ≤ µ1T
K

+O(
√
KTδ). Without loss of

generality, we can assume S ′ is deterministic. Let MR be the deterministic mechanism

when M ’s randomness is fixed to some outcome R. Consider the situation when arm

1 is using strategy S ′, arm 2 is using strategy S∗ and the principal is using mechanism

MR. There are two cases:
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1. ci,t − cj,t ≤ B is true for all t ∈ [T ] and i, j ∈ [K]. In this case, we have

u1(MR, S
′, S∗) ≤ c1,T · µ1 ≤ µ1(T + (K − 1)B)/K.

2. There exists some t ∈ [T ] and i, j ∈ [K] such that ci,t − cj,t > B: Let τR + 1

be the smallest t such that ci,t − cj,t > B for some i, j ∈ [K]. We know that

c1,τR − ci,τR ≤ B for all i ∈ [K]. Therefore we have

u1(MR, S
′, S∗) =

T∑
t=1

(µ1 − w1,t) · 1It=1

=
T∑
t=1

(µ1 − w2,t) · 1It=1 +
T∑
t=1

(w2,t − w1,t) · 1It=1

≤ c1,τRµ1 + µ1 + (T − τR − 1) max(µ1 − µ2, 0) +
T∑
t=1

(w2,t − w1,t) · 1It=1

≤ µ1(τR +B)/K + µ1 + (T − τR − 1)(µ1/K) +
T∑
t=1

(w2,t − w1,t) · 1It=1

≤ µ1T/K + µ1(B + 1)(K − 1)/K +
T∑
t=1

(w2,t − w1,t) · 1It=1.

In MR, we also have

T∑
t=1

(w2,t − w1,t) · 1It=1 =
T∑
t=1

(w2,t − wIt,t)−
T∑
t=1

(w2,t − wIt,t) · 1It 6=1

≤
T∑
t=1

(w2,t − wIt,t) +

τR∑
t=1

wIt,t · 1It 6=1 −
T∑

t=τR+1

(µ2 − µIt) · 1It 6=1

≤
T∑
t=1

(w2,t − wIt,t) + T (θ +B/T ) + 0.
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In general, we thus have that

u1(MR, S
′, S∗) ≤ µ1T/K+µ1(B+1)(K−1)/K+max

(
0,

T∑
t=1

(w2,t − wIt,t) + Tθ +B

)
.

Therefore

u1(M,S ′, S∗) = ER[u1(MR, S
′, S∗)]

≤ µ1T/K + µ1(B + 1)(K − 1)/K

+ ER

[
max

(
0,

T∑
t=1

(w2,t − wIt,t) + Tθ +B

)]
.

Notice that
∑T

t=1(w2,t−wIt,t) is the regret of not playing arm 2. Since the mechanism

M is (ρ, δ) low regret, with probability 1− ρ, this sum is at most δ (and in the worst

case, it is bounded above by Tµ2). We therefore have that:

u1(M,S ′, S∗) ≤ µ1T/K + µ1(B + 1)(K − 1)/K + δ + ρTµ+Tθ +B

≤ µ1T

K
+O(

√
KTδ).

From this and our earlier lower bound on u1(M,S∗, S∗), it follows that

u1(M,S ′, S∗) − u1(M,S∗, S∗) ≤ O(
√
KTδ), thus establishing that (S∗, S∗) is an

O(
√
KTδ)-Nash equilibrium for the arms.

Finally, to bound the revenue of the principal, note that if the arms both play

according to S∗ and |ci,t − cj,t| ≤ B for all t ∈ [T ], i, j ∈ [K] (so they do not defect),

the principal gets a maximum of Tθ = O(
√
KTδ) revenue overall. Since (by Lemma

B.1.2) this happens with probability at least 1− 3
T

(and the total amount of revenue

the principal is bounded above by T ), it follows that the total expected revenue of

the principal is at most O(
√
KTδ).
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While the theorems above merely claim that a bad set of distributions for the

arms exists, note that the proofs above show it is possible to collude in a wide range

of instances - in particular, any set of distributions which satisfy µ1 − µ2 ≤ µ1/K. A

natural question is whether we can extend the above results to show that it is possible

to collude in any set of distributions.

One issue with the collusion strategies in the above proofs is that if µ1−µ2 > µ1/K,

then arm 1 will have an incentive to defect in any collusive strategy that plays all

the arms evenly (arm 1 can report a bit over µ2 per round, and make µ1 − µ2 every

round instead of µ1 every K rounds). One solution to this is to design a collusive

strategy that plays some arms more than others in equilibrium (for example, playing

arm 1 90% of the time). We show how to modify our result for two arms to achieve

an arbitrary market partition and thus work over a broad set of distributions.

Theorem B.1.5. Let mechanism M be a (ρ, δ)-low regret algorithm for the multi-

armed bandit problem with two arms, where ρ ≤ T−2 and δ ≥
√
T log T . Then, in

the strategic multi-armed bandit problem under the tacit observational model, for any

distributions D1, D2 of values for the arms (supported on [
√
δ/T , 1]), there exists an

O(
√
Tδ)-Nash Equilibrium for the arms where a principal using mechanism M gets

at most O(
√
Tδ) revenue.

Unfortunately, it as not as easy to modify the proof of Theorem B.1.3 to prove

the same result for K arms. It is an interesting open question whether there exist

collusive strategies for K arms that can achieve an arbitrary partition of the market.

Proof. Let D1 and D2 be distributions with means µ1 and µ2 respectively, and both

distributions supported on [
√
δ/T , 1]. We now describe the equilibrium strategy S∗

(the below description is for arm 1; S∗ for arm 2 is symmetric):

1. Set parameters B = 6
√
Tδ/µ2 and θ =

√
δ
T

.
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2. Define c1,t to be the number times arm 1 is pulled in rounds 1, ..., t. Similarly

define c2,t to be the number times arm 2 is pulled in rounds 1, ..., t.

3. For t = 1, ..., T .

(a) If there exists a t′ ≤ t− 1 such that c1,t′/µ1 < c2,t′/µ2 −B, set w1,t = v1,t.

(b) If the condition in (a) is not true, let p1,t be the probability that the

principal will pick arm 1 in this round conditioned on the history (assuming

player 2 is also playing S∗), and let p2,t = 1− p1,t. Then:

i. If c1,t−1/µ1 < c2,t−1/µ2 and p1,t/µ1 < p2,t/µ2, set w1,t = θ.

ii. Otherwise, set w1,t = 0.

We will now show that (S∗, S∗) is an O(
√
Tδ)-Nash equilibrium. To do this, for

any deviating strategy S ′, we will both lower bound u1(M,S∗, S∗) and upper bound

u1(M,S ′, S∗), hence bounding the net utility of deviation.

We begin by proving that u1(M,S∗, S∗) ≥ µ21T

µ1+µ2
−O(
√
Tδ). We need the following

lemma.

Lemma B.1.6. If both arms are using strategy S∗, then with probability
(
1− 4

T

)
,

|c1,t/µ1 − c2,t/µ2| ≤ B for all t ∈ [T ].

Proof. Assume that both arms are playing the strategy S∗ with the modification that

they never defect (i.e. condition (a) in the above strategy is removed). This does not

change the probability that |c1,t/µ1 − c2,t/µ2| ≤ B for all t ∈ [T ].

Define R1,t =
∑t

s=1w1,s −
∑t

s=1wIs,s be the regret the principal experiences for

not playing only arm 1. Define R2,t similarly. We will begin by showing that with

high probability, these regrets are bounded both above and below. In particular, we

will show that with probability at least 1 − 2
T

, Ri,t lies in
[
−µ1
µ2

(2θ
√
T log T + δ), δ

]
for all t ∈ [T ] and i ∈ {1, 2}.
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To do this, note that there are two cases where the regrets R1,t and R2,t can

possibly change. The first is when p1,t/µ1 > p2,t/µ2 and c1,t/µ1 > c2,t/µ2. In this case,

the arms offer (w1,t, w2,t) = (0, θ). With probability p1,t the principal chooses arm 1

and the regrets update to (R1,t+1, R2,t+1) = (R1,t, R2,t + θ), and with probability p2,t

the principal chooses arm 2 and the regrets update to (R1,t+1, R2,t+1) = (R1,t−θ, R2,t).

It follows that E[R1,t+1/µ2+R2,t+1/µ1|R1,t/µ2+R2,t/µ1] = R1,t/µ2+R2,t/µ1+(p1,t/µ1−

p2,t/µ2)θ ≥ R1,t/µ2 +R2,t/µ1.

In the second case, p1,t/µ1 < p2,t/µ2 and c2,t/µ1 < c1,t/µ2, and a similar cal-

culation shows again that E[R1,t+1/µ2 + R2,t+1/µ1|R1,t/µ2 + R2,t/µ1] = R1,t/µ2 +

R2,t/µ1 + (p2,t/µ2 − p1,t/µ1)θ ≥ R1,t + R2,t. It follows that R1,t/µ2 + R2,t/µ1 forms a

submartingale.

From the above analysis, it is also clear that |(R1,t+1/µ2 +R2,t+1/µ1)− (R1,t/µ2 +R2,t/µ1)| ≤

θ/µ2. It follows from Azuma’s inequality that, for any fixed t ∈ [T ],

Pr

[
R1,t/µ2 +R2,t/µ1 ≤ −

2θ

µ2

√
T log T

]
≤ 1

T 2

Applying the union bound, with probability at least 1 − 1
T

, R1,t/µ2 + R2,t/µ1 ≥

− 2θ
µ2

√
T log T for all t ∈ [T ]. Furthermore, since the principal is using a (T−2, δ)-low-

regret algorithm, it is also true that with probability at least 1 − T−2 (for any fixed

t) both R1,t and R2,t are at most δ. Applying the union bound again, it is true that

R1,t ≤ δ and R2,t ≤ δ for all t with probability at least 1− 1
T

. Finally, combining this

with the earlier inequality (and applying union bound once more), with probability

at least 1− 2
T

, Ri,t ∈
[
−µ1
µ2

(2θ
√
T log T + δ), δ

]
, as desired. For the remainder of the

proof, condition on this being true.

We next proceed to bound the probability that (for a fixed t) c1,t/µ1−c2,t/µ2 ≤ B.

Define the random variable τ − 1 to be the largest value s ≤ t such that c1,τ/µ1 −

c2,τ/µ2 ≤ 0 – note that if c1,t/µ1 − c2,t/µ2 ≥ 0, then c1,s/µ1 − c2,s/µ2 ≥ 0 for all s
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in the range [τ, t]. Additionally let ∆s denote the ±1 random variable given by the

difference (c1,s/µ1 − c2,s/µ2)− (c1,s−1/µ1 − c2,s−1/µ2). We can then write

c1,t/µ1 − c2,t/µ2 ≤
t∑

s=τ+1

∆s

≤
t∑

s=τ+1

∆s · 1p1,s/µ1>p2,s/µ2 +
t∑

s=τ+1

∆s · 1p1,s/µ1≤p2,s/µ2

Here the first summand corresponds to times s where one of the arms offers θ

(and hence the regrets change), and the second summand corresponds to times where

both arms offer 0. Note that since c1,s/µ1 ≥ c2,s/µ2 in this interval, the regret R2,s

increases by θ whenever ∆s = 1/µ1 (i.e., arm 1 is chosen), and furthermore no choice

of arm can decrease R2,s in this interval. Since we know that R2,s lies in the interval[
−µ1
µ2

(2θ
√
T log T + δ), δ

]
for all s, this bounds the first sum by

t∑
s=τ+1

∆s · 1p1,s>p2,s ≤
δ + µ1

µ2
(2θ
√
T log T + δ)

θ
· (1/µ1) =

1

µ2

(
2δ

θ
+ 2
√
T log T

)

On the other hand, when p1,s/µ1 ≤ p2,s/µ2, then E[∆s] = p1,s/µ1 − p2,s/µ2 ≤ 0.

By Hoeffding’s inequality, it then follows that with probability at least 1− 1
T 2 ,

t∑
s=τ+1

∆s · 1p1,s≤p2,s ≤
2

µ2

√
T log T

Altogether, this shows that with probability at least 1− 1
T 2 ,

c1,t − c2,t ≤
1

µ2

(
2δ

θ
+ 4
√
T log T

)
≤ 6
√
Tδ/µ2 = B

The above inequality therefore holds for all t with probability at least 1 − 1
T

.

Likewise, we can show that c2,t/µ2 − c1,t/µ1 ≤ B also holds for all t with probability
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at least 1− 1
T

. Since we are conditioned on the regrets Ri,t being bounded (which is

true with probability at least 2
T

), it follows that |c1,t/µ1 − c2,t/µ2| ≤ B for all t with

probability at least 1− 4
T

.

By Lemma B.1.2, we know that with probability 1 − 4
T

, |c1,t/µ1 − c2,t/µ2| ≤ B

throughout the mechanism. In this case, arm 1 never uses step (a), and c1,T ≥
µ1

µ1+µ2
T − µ1µ2

µ1+µ2
B. Therefore

u1(M,S∗, S∗) ≥
(

1− 4

T

)
· (µ1 − θ) ·

(
µ1

µ1 + µ2

T − µ1µ2

µ1 + µ2

B

)
≥ µ2

1T

µ1 + µ2

−O(
√
Tδ)

Now we will show that u1(M,S ′, S∗) ≤ µ21T

µ1+µ2
+O(
√
Tδ). Without loss of generality,

we can assume S ′ is deterministic. Let MR be the deterministic mechanism when M ’s

randomness is fixed to some outcome R. Consider the situation when arm 1 is using

strategy S ′, arm 2 is using strategy S∗ and the principal is using mechanism MR.

There are two cases:

1. c1,t/µ1 − c2,t/µ2 ≤ B is true for all t ∈ [T ]. In this case, we have

u1(MR, S
′, S∗) ≤ c1,T · µ1 ≤

µ1

µ1 + µ2

T +
µ1µ2

µ1 + µ2

B.

2. There exists some t such that c1,t/µ1 − c2,t/µ2 > B: Let τR + 1 be the smallest

t such that c1,t/µ1 − c2,t/µ2 > B. We know that c1,τR/µ1 − c2,τR/µ2 ≤ B.
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Therefore we have

u1(MR, S
′, S∗)

=
T∑
t=1

(µ1 − w1,t) · 1It=1

=
T∑
t=1

(µ1 − w2,t) · 1It=1 +
T∑
t=1

(w2,t − w1,t) · 1It=1

≤ c1,τRµ1 + µ1 + (T − τR − 1) max(µ1 − µ2, 0) +
T∑
t=1

(w2,t − w1,t) · 1It=1

≤ µ1

(
µ1

µ1 + µ2

τR +
µ1µ2

µ1 + µ2

B

)
+ µ1 + (T − τR − 1)

q2
1

µ1 + µ2

+
T∑
t=1

(w2,t − w1,t) · 1It=1

≤ µ2
1

µ1 + µ2

T +
µ1µ2

µ1 + µ2

B + µ1 +
T∑
t=1

(w2,t − w1,t) · 1It=1.

In general, we thus have that

u1(MR, S
′, S∗) ≤ µ2

1

µ1 + µ2

T +
µ1µ2

µ1 + µ2

B + µ1 + max

(
0,

T∑
t=1

(w2,t − w1,t) · 1It=1

)
.

Therefore

u1(M,S ′, S∗) = ER[u1(MR, S
′, S∗)]

≤ µ2
1

µ1 + µ2

T +
µ1µ2

µ1 + µ2

B + µ1 + ER

[
max

(
0,

T∑
t=1

(w2,t − w1,t) · 1It=1

)]
.

Notice that
∑T

t=1(w2,t−w1,t) · 1It=1 is the regret of not playing arm 2 (i.e., R2 in the

proof of Lemma B.1.2). Since the mechanism M is (ρ, δ) low regret, with probability
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1− ρ, this sum is at most δ (and in the worst case, it is bounded above by Tµ2). We

therefore have that:

u1(M,S ′, S∗) ≤ µ2
1

µ1 + µ2

T +
µ1µ2

µ1 + µ2

B + µ1 + δ + ρTµ2

≤ µ2
1

µ1 + µ2

T +O(
√
Tδ)

From this and our earlier lower bound on u1(M,S∗, S∗), it follows that

u1(M,S ′, S∗) − u1(M,S∗, S∗) ≤ O(
√
Tδ), thus establishing that (S∗, S∗) is an

O(
√
Tδ)-Nash equilibrium for the arms.

Finally, to bound the revenue of the principal, note that if the arms both play

according to S∗ and |c1,t/µ1 − c2,t/µ2| ≤ B for all t (so they do not defect), the

principal gets a maximum of Tθ = O(
√
Tδ) revenue overall. Since (by Lemma B.1.2)

this happens with probability at least 1 − 4
T

(and the total amount of revenue the

principal is bounded above by T ), it follows that the total expected revenue of the

principal is at most O(
√
Tδ).

B.1.2 Explicit Observational Model

In this section we show that in the explicit observational model, there is an approxi-

mate equilibrium for the arms that results in the principal receiving no revenue. Since

arms can view other arms’ reported values, it is easy to collude in the explicit model;

simply defect and pass along the full amount as soon as you observe another arm

passing along a positive amount.

Theorem B.1.7. Let mechanism M be a δ-low regret algorithm for the multi-armed

bandit problem. Then in the strategic multi-armed bandit problem under the explicit
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observational model, there exist distributions Di and a (δ + 1)-Nash equilibrium for

the arms where a principal using mechanism M receives zero revenue.

Proof. Consider the two-arm setting where D1 and D2 are both deterministic dis-

tributions supported entirely on {1}, so that vi,t = 1 for all i = 1, 2 and t ∈ [T ].

Consider the following strategy S∗ for arm i:

1. Set wi,t = 0 if at time 1, ..., t− 1, the other arm always reports 0 when pulled.

2. Set wi,t = 1 otherwise.

We will show that (S∗, S∗) is a (δ + 1)-Nash Equilibrium. It suffices to show

that arm 1 can get at most δ + 1 more utility by deviating. Consider any deviating

strategy S ′ for arm 1. By convexity, we can assume S ′ is deterministic (there is some

best deterministic deviating strategy). Since mechanism M might be randomized, let

R be the randomness used by M and define MR to be the deterministic mechanism

when M uses randomness R. Now, consider the case when arm 1 plays strategy S ′,

arm 2 plays strategy S∗ and the principal is usings mechanism MR.

1. If arm 1 never reports any value larger than 0 when pulled, then S ′ behaves

exactly the same as S∗. Therefore,

u1(MR, S
′, S∗) = u1(MR, S

∗, S∗).

2. If arm 1 ever reports some value larger than 0 when pulled, let τR be the first

time it does so. We know that S ′ behaves the same as S∗ before τR. Therefore,

u1(MR, S
′, S∗) ≤ u1(MR, S

∗, S∗) +
T∑

t=τR

(v1,t − w1,t) · 1It=1

≤ u1(MR, S
∗, S∗) + 1 +

T∑
t=τR+1

(max(w1,t, w2,t)− w1,t) · 1It=1

257



So in general, we have

u1(MR, S
′, S∗) ≤ ui(MR, S

∗, S∗) + 1 +
T∑

t=τR+1

(max(w1,t, w2,t)− w1,t) · 1It=1.

Therefore

u1(M,S ′, S∗) = ER[u1(MR, S
′, S∗)]

≤ ER[u1(MR, S
∗, S∗)] + 1 + ER

[
T∑

t=τR+1

(max(w1,t, w2,t)− w1,t) · 1It=1

]

= u1(M,S∗, S∗) + 1 + ER

[
T∑

t=τR+1

(max(w1,t, w2,t)− w1,t) · 1It=1

]
.

Notice that this expectation is at most the regret of M in the classic multi-armed

bandit setting when the adversary sets rewards equal to the values w1,t and w2,t passed

on by the arms when they play (S ′, S∗). Therefore, by our low-regret guarantee on

M , we have that

ER

[
T∑

t=τR+1

(max(w1,t, w2,t)− w1,t) · 1It=1

]
≤ δ.

Thus

u1(M,S ′, S∗) ≤ u1(M,S∗, S∗) + 1 + δ

and this is a (1 + δ)-approximate Nash equilibrium. Finally, it is easy to check that

the principal receives zero revenue when both arms play according to this equilibrium

strategy.
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B.2 Omitted Results and Proofs of Section 3.4

B.2.1 All Strategic Arms with Stochastic Values

Proof of Lemma 3.4.1. Note that the mechanism is naturally divided into three parts

(in the same way the strategy above is divided into three parts): (1) the start, where

each arm is played once and reports its mean, (2) the middle, where the principal

plays the best arm and extracts the second-best arm’s value (and plays each other

arm once), and (3) the end, where the principal plays each arm some number of times,

effectively paying them off for responding truthfully in step (1). To show the above

strategy is dominant, we will proceed by backwards induction, showing that each part

of the strategy is the best conditioned on an arbitrary history.

We start with step (3). It is easy to check that these rounds don’t affect how

many times the arm is played or not. It follows that it is strictly dominant to just

report 0 (and receive your full value for the turn). Note that the reward the arm

receives in expectation for this round is (u+ log(wi))µi; we will use this later.

For step (2), assume that i = i∗; otherwise, arm i is played only once, and the

dominant strategy is to report 0 and receive expected reward µi. Depending on what

happened in step (1), there are two cases; either w′ ≤ µi, or w′ > µi. We will

show that if w′ ≤ µi, the arm should play w′ for the next R rounds (not defecting)

and report 0 for the bonus round. If w′ > µi, the arm should play 0 (defecting

immediately).

Note that we can recast step (2) as follows: arm i starts by receiving a reward from

his distribution Di. For the next R turns, he can pay w′ for the privilege of drawing a

new reward from his distribution (ending the game immediately if he refuses to pay).

If w′ ≤ µi, then paying for a reward w′ is positive in expectation, whereas if w′ > µi,

then paying for a reward is negative in expectation. It follows that the dominant

strategy is to continue to report w′ if w′ ≤ µi (receiving a total expected reward of
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R(µi −w′) + µi) and to immediately defect and report 0 if w′ > µi (receiving a total

expected reward of µi).

Finally, we analyze step (1). We will show that, regardless of the values reported

by the other players, it is a dominant strategy for arm i to report its true mean µi.

If arm i reports wi, and i 6= i∗, then arm i will receive in expectation reward

G = (µi − wi) + µi + max(u+ log(wi), 0)µi

If u+ log(wi) > 0, then this is maximized when wi = µi and G = (u+ log(µi) + 1)µi

(note that by our construction of u, u + log(µi) ≥ 1). On the other hand, if u +

log(wi) ≤ 0, then this is maximized when wi = 0 and G = 2µi. Since u+log(µi)+1 ≥

2, the overall maximum occurs at wi = µi.

Similarly, when arm i reports wi and i = i∗, then arm i receives in expectation

reward

G′ = (µi − wi) + max(0, R(µi − w′)) + µi + max(u+ log(wi), 0)µi

which is similarly maximized at wi = µi. Finally, it follows that if µi ≤ w′, G = G′,

so it is dominant to report wi = µi. On the other hand, if µi > w′, then reporting

wi = µi will ensure i = i∗ and so once again it is dominant to report wi = µi.

Proof of Lemma 3.4.3. Suppose there exists an truthful mechanism A guarantees

(αµ + (1 − α)µ′)T revenue for any distributions. We will show this results in a

contradiction.

We now consider L > exp(1/α) inputs. The i-th input has µ = bi = 1/2 + i/(2L)

and µ′ = 1/2. Among these inputs, one arm (call it arm j∗) is always the arm with

largest mean and another arm is always the arm with the second largest mean. Other

arms have the same input distribution in all the inputs.
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Consider all the arms are using their dominant strategies. For the i-th input, let

xiT be the expected number of pulls by A on the arm k∗ and piT be the expected

amount arm k∗ gives to the principal. Because the mechanism is truthful, in the i-th

distribution, arm k∗ prefers its dominant strategy than the dominant strategy it uses

in some j-th distribution (i 6= j). In other words, we have for i 6= j,

bixi − pi ≥ bixj − pj.

We also have, for all i,

bixi − pi ≥ 0.

By using these inequalities , we get for all i,

pi ≤ bixi +
i−1∑
j=1

xj(bj+1 − bj).

On the other hand, A’s revenue in the i-th distribution is at most (pi + (1− xi)µ′)T .

Therefore we have, for all i,

pi + (1− xi)µ′ ≥ α · bi + (1− α)µ′.

So we get

(1− xi)µ′ + bixi +
i−1∑
j=1

xj(bj+1 − bj) ≥ α · bi + (1− α)µ′.

It can be simplified as

xi ≥ α +
i−1∑
j=1

xj
bj+1 − bj
bi − µ′

= α +
1

i
·
i−1∑
j=1

xj.
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By induction we get for all i,

xi ≥ α
i∑

j=1

1

i
> α ln(i).

Therefore we have

xL > α ln(L) ≥ 1.

Here we get a contradiction.

B.2.2 Strategic and Non-strategic Arms with Stochastic Val-

ues

Proof of Lemma 3.4.4. Similarly as the proof of Lemma 3.4.1, the mechanism is di-

vided into three parts: (1) the start, where each arm is played B times and reports

its mean, (2) the middle, where the principal plays the best arm and extracts the

second-best arm’s value (and plays each other arm B times), and (3) the end, where

the principal plays each arm some number of times, effectively paying them off for

responding truthfully in step (1). To show the above strategy is dominant, we will

proceed by backwards induction, showing that each part of the strategy is the best

conditioned on an arbitrary history.

For step (3), similarly as the proof of Lemma 3.4.1, it is strictly dominant for

the arm to report 0. The reward the arm receives in expectation for this step is

(u+ log(w̄i −M))µiB.

For step (2), assume that i = i∗; otherwise, arm i is played B times, and the

dominant strategy is to report 0 and receive expected reward µiB. Depending on

what happened in step (1), there are two cases; either w′ −M ≤ µi, or w′ −M > µi.

Similarly as the proof of Lemma 3.4.1, we know that if w′ −M ≤ µi, the arm should
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play w′ −M for the next R rounds (not defecting) and report 0 for B bonus rounds.

If w′ −M > µi, the arm should play 0 (defecting immediately).

For step (1), similar as the proof of Lemma 3.4.1, the expected reward of arm i is

either

G = (µi − w̄i)B +Bµi + max(u+ log(w̄i −M), 0)Bµi

or

G′ = max(0, R(µi − w′ +M)) + (µi − w̄i)B +Bµi + max(u+ log(w̄i −M), 0)Bµi

Using the same argument as the proof of Lemma 3.4.1, we know arm i’s dominant

strategy is to make w̄i = µi +M .

Proof of Lemma 3.4.6. The only difference between the strategy in this lemma and

the strategy in Lemma 3.4.4 is the first step, where instead of the arm reporting their

mean every round (which they don’t necessarily know), they instead report their

value every round. It suffices to show that the expected difference in utility between

running the above strategy and the strategy in Lemma 3.4.4 is at most o(T ).

To do this, let w̄′i = 1
B

∑B
t=1(vt + M) be the average value reported in the first

phase by this new strategy, and let w̄i = µi + M be the optimal average to report.

Let δ = w̄′i − w̄. From the formulas for net utility in the proof of Lemma 3.4.4, we

note that reporting w̄′i in the first phase instead of w̄i results in at most Tδ less utility

overall. On the other hand, since E[vt] = µi for all t, by the Chernoff bound,

Pr
[
|δ| > 2

√
log T/B

]
≤ 2 exp

1

2

(
2

√
log T

B

)2

B

 =
2

T 2
.

It follows that the expected difference in utility is at most
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2

√
log T

B
T +

2

T 2
T = O(ε−1/8T 5/8) = o(T ).

Proof of Corollary 3.4.5. Note that the proof of Lemma 3.4.4 works regardless of the

values of B and M , so the strategy described in Lemma 3.4.4 is still a dominant

strategy here. In an ε-Nash equilibrium, each player plays according to a strategy

which gives them at least ε less than their payoff in the dominant equilibrium. We

will show that if this is the case, then the principal gets at most Kε less than their

payoff in the dominant equilibrium; since Kε = o(T ), this proves the theorem.

Recall that B = 2ε1/4T 3/4/µmin and define γ = ε1/3/T 1/3. We first claim that,

similarly as in the proof of Lemma 3.4.4, if i = i∗ and (1 + γ)µi ≥ w′, then if arm i is

playing according to an ε-Nash equilibrium, it will not defect. This follows from the

fact that modifying arm i’s strategy to start repeatedly reporting w′ as soon as arm

i would have defected under the original strategy increases arm i’s payoff by at least

Bµi−Rγµi ≥ 2ε1/4T 3/4− ε1/3T 2/3 ≥ ε in expectation (where the additional Bµi term

comes via the payoff from the bonus rounds).

We next show that, in any ε-Nash equilibrium, each arm i reports an average value

w̄i between µi(1− γ) +M and µi(1 + γ) +M with high probability.

To do this, we define

Gµ(w) = ((µ− (w +M)) + µ+ max(u+ logw, 0)µ) ·B.

Note that Gµ(w) upper bounds the expected reward an arm with mean µ which

reports w+M can get from all rounds except the R rounds in line 4 (but including the

potential bonus rounds). Moreover, by the proof of Lemma 3.4.4, for w = µ, Gµ(µ)

exactly equals the expected reward (in these rounds) of an arm following the dominant

strategy. We’ll first show that if w < µ(1− γ), then Gµ(µ)−Gµ(w) ≥ ε11/12T 1/12.
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First, if u+log(w−M) < 0, then Gµ(w) ≤ 2Bµ−BM , but by the proof of Lemma

3.4.4, Gµ(µ) = B(u + log µ + 1)µ− BM . Since u + log µ + 1 > 3, Gµ(µ)−Gµ(w) ≥

Bµ ≥ ε1/4T 3/4 ≥ ε11/12T 1/12. We can thus assume max(u + logw, 0) = u + logw.

Under this assumption

Gµ(w) = ((µ− w) + µ+ (u+ logw)µ) ·B.

Then, if w ≤ µ(1− γ),

Gµ(µ)−Gµ(w) = B(µ log µ− µ− µ logw + w)

= Bµ(log(1− γ)− γ)

≥ Bµγ2

≥ 2ε1/4T 3/4ε2/3T−2/3

≥ ε11/12T 1/12

Similarly, if w > µ(1 + γ), we have that Gµ(µ) − Gµ(w) ≥ ε11/12T 1/12. Now, in

expectation over w, Ew[Gµ(µ) − Gµ(w)] ≤ ε; otherwise, this player could increase

their expected total reward by at least ε by switching to the dominant strategy (note

that a player’s expected reward from the R rounds in line 4 can only increase by

switching to the dominant strategy). From Markov’s inequality, it follows that

Pr
wi

[wi ∈ [µi(1− γ), µi(1 + γ)]] ≥ 1− (ε/T )1/12.

Via the union bound, it follows that the probability that each wi belongs to the

interval [µi(1−γ)+M,µi(1+γ)+M ] is at least 1−K(ε/T )1/12 ≥ 1−o(1). Note that

if this is the case, arm i∗ will not defect, since (1 + γ)µi∗ ≥ wi∗ ≥ w′. In addition,

note that w′ ≥ (1− γ)µ′+M (since the two largest means are larger than µ′, the two
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largest reported values w will be at least (1−γ)µ′+M). It follows in this case that the

principal receives at least (1−γ)µ′R = µ′T −o(T ). Since this occurs with probability

1 − o(1), it follows that the principal receives at least µ′T − o(T ) in expectation, as

desired.

Proof of Theorem 3.4.7. Recall that B = 2ε1/4T 3/4/µmin and M = 8B−1/2 ln(KT ).

We first show that with high probability non-strategic arms’ reported values don’t

deviate too much from their means.

For each non-strategic arm i, by the Chernoff bound,

Pr[|w̄i − µi| ≥M/2] ≤ 2 exp(−(M/2)2B/2) ≤ 1/(KT )8

By the union bound, with probability 1 − o(1/T ), all non-strategic arms i satisfy

|w̄i−µi| ≤M/2. From now on, we will assume we are in the case when |w̄i−µi| < M/2,

for all i such that arm i is a non-strategic arm.

In the proof of Corollary 3.4.5, we showed that any strategic arm i playing ac-

cording to an ε-Nash equilbrium, will report in Line 1 an average value w̄i between

(1 − γ)µi + M and (1 + γ)µi + M with high probability, where γ = o(1). Note that

this guarantee holds even in the presence of non-strategic arms, as we only use the

fact that any strategy an arm plays in an ε-Nash equilibrium has an expected value

of at least ε less than their dominant strategy’s expected value. With this, we can

consider two possible cases:

• Case 1: Arm i∗ is a strategic arm. Then w′ ≥ (1−γ)µs+M and w′ ≥ µn−M/2,

and also µi∗ = wi∗ −M ≥ w′ −M . So, from only the third step of Mechanism
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3, the principal will get reward at least

(w′ −M)R = max((1− γ)µs, µn − 3M/2)R

≥ (1− γ) max(µs, µn)R− 3MR/2

≥ (1− γ) max(µs, µn)T −max(µs, µn)(u+ 3)BK − 3MR/2

= max(µs, µn)T − o(T ).

• Case 2: Arm i∗ is a non-strategic arm. We know that µi∗ ≥ wi∗ −M/2 ≥

(w′ −M) + M/2. By using the Chernoff bound and union bound again, we

know that arm i∗ will defect in the line three with probability at most o(1/T ).

We also know that µi∗ ≥ wi∗ − M/2 ≥ (1 − γ)µs + M − M/2 and µi∗ ≥

wi∗−M/2 ≥ un−M/2−M/2. It follows via the same argument as Case 1 that

the principal will get reward at least max(us, un)T − o(T ).
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Appendix C

Appendix for Chapter 4

C.1 Analysis of the 1-dimensional case

We now analyze the policy of Kleinberg and Leighton for the one-dimensional case.

Their keep a knowledge set St = [at, at + ∆t] and choose price

pt = at + 1/22kt where kt = b1 + log2 log2 ∆−1
t c

while ∆t > 1/T after that, their policy prices at the lower end of the interval.

Clearly the total regret whenever ∆t ≤ 1/T is at most 1, so we only need to

analyze the cases where ∆t > 1/T and hence kt ≤ O(log log T ). To show a regret

bound of O(log log T ) it is enough to argue that for every value of k, the total regret

from timesteps where kt = k is O(1).

We start by noting that if there is no sale then in the next period ∆t+1 = 1/22kt

and therefore kt+1 = kt + 1. Since kt is monotone, there can be at most one no-sale

for every value of kt. The remaining periods where kt = k correspond to sales, where

the loss is at most ∆t ≤ 1/22k−1
, since by each sale ∆t decreases by 1/22k , there are

at most 22k/22k−1
= 22k−1

sales. Since each of them incur loss ∆t ≤ 1/22k−1
, the total
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regret for sales with kt = k is at most 1. The total regret from no-sales is at most 1

since there is at most one no-sale.
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Appendix D

Appendix for Chapter 5

D.1 More Details on the Coupling Argument

In this appendix we present examples of bracket transformations. Recall that our

transformations took as input any “bad” bracket, where player i eventually meets

player j, and player j will lose to some player k in the future if she advances past i (and

k is the latest such player). The players benefit from manipulating these brackets.

We transformed them into “good” brackets, where either player j is eliminated before

even meeting player i, or where player j would be the champion conditioned on getting

past i. The players have no incentive to manipulate these brackets.

We designed two injective transformations with disjoint images, σi and σj. σi

was more straight-forward, but we include an example below anyway. σj was more

complex. We include below an example showing that the complexity is necessary,

and then an example of σj. All figures are at the end.

D.1.1 Example of the transformation σi(B).

Recall that σi essentially swaps the sub-brackets rooted at i and k. See Section 5.3.2

for a formal description.
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Consider the partial bracket B1 shown in Figure D.1. Then, applying the transfor-

mation σi(B1) as described in our paper will yield the bracket B′1 shown in Figure D.2.

Note that this mapping is injective: by examining σi(B), we see exactly where j is

eliminated, and conclude that this must be where i met j in the original B.

D.1.2 Counterexample to a naive σj(B).

We could try using the same ideas in σi for σj: simply swap the subtrees rooted at k

and j. Unfortunately, this mapping is not injective.

Consider the two brackets B3, B4 shown in Figure D.3. Then applying this naive

transformation will map these brackets to the same bracket (see Figure D.4), showing

that the mapping may not be injective. This motivates the need for the more involved

transformation σj from Section 5.3.2.

Specifically, observe that in B3, i meets j in round 2, so the depth-2 subtree rooted

at k would get swapped with the depth-2 subtree rooted at j. In B4, i meets j in

round 1, so the single node i1 would get swapped with the single node j. It is easy,

but tedious, to complete this into a full tournament/bracket.

D.1.3 Example of the transformation σj(B).

Essentially, the problem with the naive transformation is that it’s hard to recover

where i met j in the original B just from the naive σj(B). This is because maybe

on its path to j, i met many other competitors who also would have beaten j, in

addition to the k we swap in from the mapping. Our more involved transformation

fixes this by additionally swapping all such competitors out of the subtree below i,

so we can again recover where i met j in the original B.

Consider the partial bracket B2 shown in Figure D.5 and assume that in the

tournament in case i2 would beat j. Then, applying the transformation σj(B2) as

described in our paper will yield the bracket B′2 shown in D.6.
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Note that this mapping is injective! First, we can recover where i met j in the

original B by looking at where i first encounters someone who would beat j in σj(B).

Once we learn this, we also know that in the original B, j actually advanced this far

in the tournament to meet i, so we know exactly which subtrees we need to un-swap

with subtrees of i.

Figure D.1: A partial bracket B1.

Figure D.2: σi(B1).
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Figure D.3: Two partial brackets B3, B4.

Figure D.4: Swapping the subtrees corresponding to j, k in both brackets above yields
this bracket.
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Figure D.5: A partial bracket B2.

Figure D.6: σj(B2).
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Appendix E

Appendix for Chapter 6

E.1 Probability and Information Theory Prelimi-

naries

We briefly review some standard facts and definitions from information theory we

will use throughout this paper. For a more detailed introduction, we refer the reader

to [48].

Throughout this paper, we use log to refer to the base 2 logarithm and use ln to

refer to the natural logarithm. If X is drawn from Bernoulli distribution Bp, we use

H(p) = −(p log p+ (1− p)(log(1− p)) to denote H(X).

Fact E.1.1. Let X1, X2, Y, Z be random variables, we have I(X1X2;Y |Z) =

I(X1;Y |Z) + I(X2;Y |X1Z).

Fact E.1.2. Let X, Y, Z,W be random variables. If I(Y ;W |X,Z) = 0, then

I(X;Y |Z) ≥ I(X;Y |ZW ).

If X and Y are drawn from Bernoulli distribution Bp and Bq, we write D(p‖q) as

an abbreviation for D(X‖Y ).
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Fact E.1.3. Let X, Y, Z be random variables, we have I(X;Y |Z) = Ex,z[D((Y |X =

x, Z = z)‖(Y |Z = z))].

Fact E.1.4. Let X, Y be random variables,
∑

x
|Pr[X=x]−Pr[Y=x]|2

2 max{Pr[X=x],Pr[Y=x]} ≤ ln(2) ·

D(X‖Y ) ≤
∑

x
|Pr[X=x]−Pr[Y=x]|2

Pr[Y=x]
.

Proof. A proof of Fact E.1.4 can be found in [28].

We will also need the following quantitative version of the central limit theorem.

Lemma E.1.1 (Berry-Esseen Theorem). Let Z1, · · · , Zk be independent random vari-

ables and let S =
∑k

i=1 Zi. Let µ = E[S] =
∑k

i=1 E[Zi], σ
2 = Var[S] =

∑k
i=1 Var[Zi]

and γ =
∑k

i=1 E[|Zi−E[Zi]|3]. Let Φ be the CDF of standard Gaussian. Then for all

t ∈ R, ∣∣∣∣Pr [S < t]− Φ

(
t− µ
σ

)∣∣∣∣ ≤ γ

σ3
.

Finally, we will need the following estimates on the tails of the Gaussian distribu-

tion.

Lemma E.1.2. Let Φ(t) be the CDF of standard Gaussian distribution then for t > 0,

1√
2π

exp(−t2/2)

(
1

t
− 1

t3

)
≤ 1− Φ(t) ≤ 1√

2π
exp(−t2/2)

1

t
.

Proof.

1− Φ(t) =
1√
2π

∫ ∞
t

exp(−x2/2)dx

=
1√
2π

∫ ∞
t

1

x
· x exp(−x2/2)dx

=
1√
2π

(
exp(−t2/2)

t
−
∫ ∞
t

1

x2
exp(−x2/2)dx

)
(integration by parts)

=
1√
2π

(exp(−t2/2)

t
− exp(−t2/2)

t3

+

∫ ∞
t

3

x4
exp(−x2/2)dx

)
. (integration by parts again)
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From the last two expressions, we get the required upper and lower bounds.

E.2 Missing proofs of Section 6.5

Proof of Lemma 6.5.1. Let pe be the probability that B = 0 and Acount outputs

B = 1 when provided with r = 2n ln(α−1)

‖p−q‖21
samples. By symmetry pe is equal to the

probability that we are in the case B = 1 and Acount outputs B = 0 when provided

with r samples. It therefore suffices to show that pe is at most α. When B = 0,

E[Z] = E

[
n∑
i=1

Si

]
= r

n∑
i=1

(pi − qi).

By the Chernoff bound,

pe ≤ Pr[Z ≤ 0] ≤ exp

(
−nr

2
·
(∑n

i=1(pi − qi)
n

)2
)
≤ α.

The second part of the lemma follows from Corollary 6.4.4, along with the obser-

vation that ‖p− q‖2
1 ≥ ‖p− q‖2

2.

Proof of Lemma 6.5.2. Assume without loss of generality that B = 0, and let ε =

p1−q1 = ‖p− q‖∞. Let E be the event that Amax makes an error and outputs B = 1

when given r = 8 ln 2nα−1

ε2
samples. We can upper bound the probability of error as

Pr[E] ≤ Pr[E|S1 > rε/2] + Pr[S1 ≤ rε/2].

We will bound each term separately. Since E[S1] = r(p1 − q1) = rε, by Hoeffding’s

inequality,

Pr[S1 ≤ rε/2] ≤ exp(−rε2/8) ≤ α

2
.

Similarly, by Hoeffding’s inequality and the union bound, Pr[E|S1 > rε/2] ≤ Pr[∃i :

Si < −rε/2] ≤ n exp(−rε2/8) ≤ α
2
. It follows that Pr[E] ≤ α. The second part of
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the lemma follows from Corollary 6.4.4, along with the observation that ‖p− q‖2
2 ≤

n‖p− q‖2
∞.

Proof of Lemma 6.5.3. Let k be an arbitrary integer between 1 and n − 1. Let p,q

be any vectors satisfying the following constraints:

1. For all i ∈ [n], 1
4
< pi, qi <

3
4
.

2. If i 6∈ {k, k + 1}, pi = qi .

3. If i ∈ {k, k + 1}, qi = pi − ε .

Note that ‖p− q‖∞ = ε. Therefore, by Lemma 6.5.2, rmin(C,Amax, 1 − 2
n
) ≤ 16 lnn

ε2
,

thus proving the first part of the lemma.

Now assume that r ≤ n/128ε2. We will show that with this many samples, Acount

solves instance C with probability at most 3/4, thus implying the second part of the

lemma. Without loss of generality, assume that B = 0. Define the following random

variables Ui,j:

1. Ui,j = Xi,j − Yi,j for i = 1, ..., k − 1, k + 2, ..., n and j = 1, .., r.

2. Ui,j = Xi,j − Yi,j − ε. i = k, k + 1 and j = 1, ..., r.
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It is straightforward to check that for all i = 1, ..., n, j = 1, .., r, E[Ui,j] = 0, E[U2
i,j] ≥

1/4 and E[|Ui,j|3] ≤ 1. Let Φ be the cdf of the standard normal distribution.

Pr[Acount outputs B = 1 (incorrectly)]

= Pr[
n∑
i=1

r∑
j=1

(Xi,j − Yi,j) < 0] = Pr[
n∑
i=1

r∑
j=1

Ui,j < −2rε]

≥ Φ

−2rε · 1√∑n
i=1

∑r
j=1 E[U2

i,j]


−

∑n
i=1

∑r
j=1 E[|Ui,j|3]

(
∑n

i=1

∑r
j=1 E[U2

i,j])
−3/2

(By Berry-Esseen theorem (Lemma E.1.1))

≥ Φ

(
−
√

8rε2

n

)
− 8√

nr
≥ Φ(−1/4)− 8√

nr
≥ 1/4.

Proof of Corallary 6.5.4. Let i = π−1(k) and j = π−1(k + 1). The algorithm A′

correctly places i in the set of the top k rows exactly when Acount correctly outputs

that row i dominates row j. On the other hand, any two consecutive rows of P satisfy

the constraints in the proof of Lemma 6.5.3. It follows that rmin(S,A′) ≥ Ω( n
ε2

).

Proof of Lemma 6.5.5. Consider the instance C = (n,p,q) where pi = 1
2

+ ε and

qi = 1
2
, with ε = 1

n2 . Since ‖p− q‖1 = 1
n
, by Lemma 6.5.1, rmin(C,Acount, 1 − 1

n
) ≤

2n3 lnn.

Now assume r = n4

214 lnn
. We will now show thatAmax solves Domination(n,p,q, r)

with probability strictly smaller than 4/5. Without loss of generality, assume that

B = 0. Define random variables Si =
∑r

j=1(Xi,j − Yi,j). Note that S1, · · · , Sn are

i.i.d random variables with E[Si] = rε and Var[Si] = r(1
2
− ε2). Our algorithm Amax

outputs B = 1 whenever infi Si + supi Si < 0. Let λ > 0 be a parameter whose value

we will choose later. Note that:
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Pr[inf
i
Si + sup

i
Si < 0]

≥ Pr[inf
i
Si < −λ, sup

i
Si < λ]

≥ Pr[sup
i
Si < λ]− Pr[inf

i
Si ≥ −λ, sup

i
Si < λ]

=
n∏
i=1

Pr[Si < λ]n −
n∏
i=1

Pr[−λ ≤ Si < λ]n

= Pr[S1 < λ]n − Pr[−λ ≤ S1 < λ]n

= Pr[S1 < λ]n − (Pr[S1 < λ]− Pr[S1 < −λ])n

We will now apply the Berry-Esseen Theorem (Lemma E.1.1) with Zj = (X1,j −Y1,j)

to approximate the CDF of S1. We have µ = E[S1] = rε, σ2 = Var[S1] = r(1
2
−ε2) ≥ r

4
.

and γ =
∑r

j=1 E[|Zj − ε|3] ≤ 8r. Therefore for all t ∈ R,

∣∣∣∣Pr[S1 < t]− Φ

(
t− µ
σ

)∣∣∣∣ ≤ γ

σ3
≤ 64√

r
=

215
√

lnn

n2
≤ 1

n3/2

when n is large enough. Let us choose λ = µ + σΦ−1(1 − ln 2
n

) and let a = λ−µ
σ

,

b = λ+µ
σ

. Therefore Φ(a) = 1− ln 2
n
. When n is large enough, a > 10. By Fact E.1.2,

1√
2π

exp(−a2/2)
1

a
≥ ln 2

n
= 1− Φ(a) ≥ 1√

2π
exp(−a2/2)

1

2a
.
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From the left hand side of the above inequality, we can conclude that a ≤ 2
√

lnn.

Also,

Φ(−b) = 1− Φ(b)

=
ln 2

n
− (Φ(b)− Φ(a))

=
ln 2

n
− 1√

2π

∫ b

a

exp
(
−t2/2

)
dt

≥ ln 2

n
− 1√

2π
(b− a) exp(−a2/2)

≥ ln 2

n
− 2a(ln 2)(b− a)

n
(Since 1√

2π
exp(−a2/2) 1

2a
≤ ln 2

n
)

≥ ln 2

n
− 4aµ

nσ

≥ ln 2

n
− 16ε

√
r lnn

n
(µ = rε, σ2 ≥ r

4
, a ≤ 2

√
lnn)

≥ ln 2

n
− 16

1

n2

1

n

√
n4

214 lnn
lnn

≥ ln 2

n
− 1

8n

Now we can bound the probability of error as follows:

Pr[inf
i
Si + sup

i
Si < 0]

≥ Pr[S1 < λ]n − (Pr[S1 < λ]− Pr[S1 < −λ])n

≥
(

Φ

(
λ− µ
σ

)
− 1

n3/2

)n
−
(

Φ

(
λ− µ
σ

)
− Φ

(
−λ− µ

σ

)
+ 2 · 1

n3/2

)n
=

(
Φ(a)− 1

n3/2

)n
−
(

Φ(a)− Φ(−b) +
2

n3/2

)n
≥
(

1− ln 2

n
− 1

n3/2

)n
−
(

1− 2 ln 2

n
+

1

8n
+

2

n3/2

)n
≥ exp(− ln 2)− exp(−2 ln 2 + 1/8)− 0.01 (when n is large enough)

>
1

5
.

281



E.3 Missing proofs of Section 6.6

Proof of Lemma 6.6.2. We will use Sanov’s theorem (Lemma 6.6.1). Let Σ =

{0, 1}2. Consider the set of distributions on Σ, P(Σ) = {(p00, p01, p10, p11) :

0 ≤ p00, p01, p10, p11 ≤ 1, p00 + p01 + p10 + p11 = 1}, and define C ⊂ P(Σ) as

C = {(p00, p01, p10, p11) : p01 ≥ p10}. Clearly C is a closed convex set. Define

R = ((1− p)(1− q), (1− p)q, p(1− q), pq) ∈ P(Σ); note that this is exactly the

distribution of (Xi, Yi) for each i ∈ [k]. Since p > q, R /∈ C. Observe that∑r
i=1(Xi − Yi) ≤ 0 iff the empirical distribution generated by (X1, Y1), · · · , (Xk, Yk),

P̂((X1,Y1),··· ,(Xk,Yk)) belongs to C. We can assume that there is some Q ∈ C such that

D(Q||R) <∞, otherwise the lemma is trivially true. Therefore by Lemma 6.6.1,

Pr

[
r∑
i=1

(Xi − Yi) ≤ 0

]
≤ exp (−k(ln 2)D(Q∗||R))

where Q∗ = argminQ∈C D(Q||R) is unique. In addition, Q∗ should lie on the boundary

of C i.e. Q∗ should satisfy p01 = p10. So

D(Q∗||R) = min
0≤x,y≤1, x+2y≤1

D((1− x− 2y, y, y, x)||R).

Let f(x, y) = (ln 2)D((1 − x − 2y, y, y, x||R). Since D(Q||R) is convex as a function

of Q, f(x, y) is convex as well. We will show that there is always a point in the region

{0 ≤ x, y ≤ 1, x + 2y ≤ 1} where the gradient of f(x, y) is zero. Since f is convex,

282



this must be the minimizer of f . Note that

∂f(x, y)

∂x
= −1− ln(1− x− 2y) + ln((1− p)(1− q))

+ 1 + lnx− ln(pq) = 0

∂f(x, y)

∂y
= −2− 2 ln(1− x− 2y) + ln((1− p)(1− q))

+ 2 + 2 ln y − ln(pq) = 0.

Solving the above equations for x, y we get

x =
pq(√

pq +
√

(1− p)(1− q)
)2 ,

y =

√
pq(1− p)(1− q)(√

pq +
√

(1− p)(1− q)
)2 .

It is easy to check that 0 ≤ x, y ≤ 1 and x + 2y ≤ 1. Substituting the values of x, y,

we find that

D(Q∗||R) = −2 log
(√

pq +
√

(1− p)(1− q)
)
.

Proof of Lemma 6.6.3. We can assume 0 < p, q < 1, otherwise the required inequality

follows from the fact that − ln(1 − t) ≥ t for 0 ≤ t < 1. For example, when p = 0,

the LHS simplifies to − log(1− q) and the RHS to q/2, and the inequality is satisfied.

The other cases are similar. Hence, from now on, assume that 0 < p, q < 1. Let

x = p(1− q) and y = q(1− p). Thus I(p, q) = (x+ y)(1−H(x/x+ y)). We can also
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the write the LHS of the inequality as:

− 2 log
(√

pq +
√

(1− p)(1− q)
)

= − log
(
pq + (1− p)(1− q) + 2

√
pq(1− p)(1− q)

)
= − log (1− x− y + 2

√
xy)

= − log
(
1− (

√
x−√y)2

)
≥ (
√
x−√y)2/(ln 2) (− log(1− t) ≥ t/(ln 2))

= (x+ y − 2
√
xy)/(ln 2).

Now we need to show that

(x+ y − 2
√
xy)

ln 2
≥ 1

2
(x+ y)

(
1−H

(
x

x+ y

))
.

We can scale x, y such that x+ y = 1, so let x = 1
2

+ z and y = 1
2
− z. Therefore it is

enough to show that

1−
√

1− 4z2 ≥ ln 2

2

(
1−H

(
1

2
+ z

))
.

We have 1−
√

1− 4z2 ≥ 2z2 and by Fact E.1.4,

1−H
(

1

2
+ z

)
= D

(
1

2
+ z

∣∣∣∣∣∣∣∣12
)
≤ 4

ln 2
z2.

Combining these two, we have the required inequality.

Proof of Lemma 6.6.6. Define p,q to be

1. p1 = ε, q1 = 0.

2. pi = qi = 1/2 for i = 2, ..., n.
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Note that I(p1, q1) = ε, and I(p2, q2) = · · · = I(pn, qn) = 0. Therefore, by Theorem

6.6.5, Acoup succeeds given r = 5184
√
n logn
ε

samples with probability at least 1− 2/n.

Now assume that r ≤ n/(16ε2) ≤ (n − 1)/(8ε2). We will now show that Acount

solves Domination(n,p,q, r) with probability at most 3/4. Without loss of gener-

ality assume that B = 0. Define the random variables Ui,j as follows:

1. U1,j = X1,j − Y1,j − ε. j = 1, ..., r.

2. Ui,j = Xi,j − Yi,j for i = 2, ..., n, j = 1, .., r.

It is straightforward to check that for all i = 1, . . . , n and j = 1, . . . , r, E[Ui,j] = 0

and E[|Ui,j|3] ≤ 1/2. For all i = 2, . . . , n and j = 1, . . . , r, we further have that

E[U2
i,j] = 1/2. Let Φ be the cdf of the standard normal distribution.

Pr[Acount outputs B = 1 (incorrectly)]

= Pr[
n∑
i=1

r∑
j=1

(Xi,j − Yi,j) < 0] = Pr[
n∑
i=1

r∑
j=1

Ui,j < −r · ε]

≥ Φ

−r · ε · 1√∑n
i=1

∑r
j=1 E[U2

i,j]


−

∑n
i=1

∑r
j=1 E[|Ui,j|3]

(
∑n

i=1

∑r
j=1 E[U2

i,j])
−3/2

(By Berry-Esseen theorem (Lemma E.1.1))

≥ Φ
(
−r · ε/

√
r(n− 1)/2

)
−

√
2n2

(n− 1)3r
≥ Φ(−1/4)

−

√
2n2

(n− 1)3r

≥ 1/4.

Proof of Lemma 6.6.7. Define p,q as:

1. p1 = ε/100, q1 = 0.
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2. pi = 1/2 + ε, qi = 1/2 i = 2, ..., n.

Note that I(p1, q1) = ε/100 and I(p2, q2) = · · · I(pn, qn) = (1 − H(1/2 + ε))/2. By

Fact E.1.4, I(p2, q2) ≤ 4
ln(2)
· (ε)2 ≤ ε/(100n). Thus ε/100 ≤

∑n
i=1 I(pi, qi) ≤ ε/50.

Therefore, by Theorem 6.6.5, given at least 518400
√
n lnn

ε
samples, Acoup succeeds with

probability at least 1− 2/n.

Now fix r = 1
ε2214 lnn

. We will now show that Amax solves Domination(n,p,q, r)

with probability at most 9/10. Without loss of generality assume B = 0. Define

random variable Si =
∑r

j=1(Xi,j − Yi,j). S1 is always non-negative. S2, · · · , Sn are

i.i.d random variables with E[Si] = rε and Var[Si] = r(1
2
− ε2). Algorithm 10 outputs

B = 1 when infi Si + supi Si < 0. Let λ > 0 be some parameter which we will choose

later.

Pr[inf
i
Si + sup

i
Si < 0]

≥ Pr[inf
i
Si < −λ, sup

i
Si < λ]

≥ Pr[sup
i
Si < λ]− Pr[inf

i
Si ≥ −λ, sup

i
Si < λ]

=
n∏
i=1

Pr[Si < λ]n −
n∏
i=1

Pr[−λ ≤ Si < λ]n

= Pr[S1 < λ]
(
Pr[S2 < λ]n−1 − Pr[−λ ≤ S2 < λ]n−1

)
= Pr[S1 < λ]

·
(
Pr[S2 < λ]n−1 − (Pr[S2 < λ]− Pr[S2 < −λ])n−1

)

We will now apply Berry-Esseen Theorem (Lemma E.1.1) with Zj = (X2,j − Y2,j)

for j = 1, · · · , r, to approximate the CDF of S2. We have µ = E[S2] = rε, σ2 =
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Var[S2] = r(1
2
− ε2) ≥ r

4
. and γ =

∑r
j=1 E[|Zj − ε|3] ≤ 8r. Therefore for all t ∈ R,

∣∣∣∣Pr[S2 < t]− Φ

(
t− µ
σ

)∣∣∣∣ ≤ γ

σ3
≤ 64√

r
≤ 64

n3/2

when n is large enough. Let us choose λ = µ + σΦ−1(1 − ln 2
n−1

) and let a = λ−µ
σ

,

b = λ+µ
σ

. Therefore Φ(a) = 1− ln 2
n−1

. When n is large enough, a > 10. By Fact E.1.2,

1√
2π

exp(−a2/2)
1

a
≥ ln 2

n− 1
= 1− Φ(a) ≥ 1√

2π
exp(−a2/2)

1

2a
.

From the left hand side of the above inequality, we can conclude that a ≤

2
√

ln(n− 1). Also,

Φ(−b) = 1− Φ(b) =
ln 2

n
− (Φ(a)− Φ(b))

=
ln 2

n− 1
− 1√

2π

∫ b

a

exp
(
−t2/2

)
dt

≥ ln 2

n− 1
− 1√

2π
(b− a) exp(−a2/2)

≥ ln 2

n− 1
− 2a(ln 2)(b− a)

n− 1

≥ ln 2

n− 1
− 4aµ

(n− 1)σ

≥ ln 2

n− 1
−

16ε
√
r ln(n− 1)

n− 1
(µ = rε, σ2 ≥ r

4
, a ≤ 2

√
ln(n− 1))

≥ ln 2

n− 1
− 16

ε

n− 1

√
1

ε2214 lnn
ln(n− 1)

≥ ln 2

n− 1
− 1

8(n− 1)
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By Chernoff bound, we have Pr[S1 < λ] ≥ Pr[S1 ≤ µ] = 1 − e−r·D(ε‖ε/100) ≥

1− e− 2.5
ε
·ε ≥ 1/2. Now we can bound the probability of error as follows:

Pr[inf
i
Si + sup

i
Si < 0]

≥ Pr[S1 < λ]

·
(
Pr[S2 < λ]n−1 − (Pr[S2 < λ]− Pr[S2 < −λ])n−1

)
≥ 1

2

(
Φ

(
λ− µ
σ

)
− 64

n3/2

)n−1

− 1

2

(
Φ

(
λ− µ
σ

)
− Φ

(
−λ− µ

σ

)
+ 2 · 64

n3/2

)n−1

=
1

2

(
Φ(a)− 64

n3/2

)n−1

− 1

2

(
Φ(a)− Φ(−b) +

128

n3/2

)n−1

≥ 1

2

(
1− ln 2

n− 1
− 64

n3/2

)n−1

− 1

2

(
1− 2 ln 2

n− 1
+

1

8(n− 1)
+

128

n3/2

)n−1

≥ 1

2
(exp(− ln 2)− exp(−2 ln 2 + 1/8)− 0.01) (when n is large enough)

>
1

10
.

E.4 Missing proofs of Section 6.7

Proof of Lemma 6.7.1. Pick v ∈ [n], uniformly at random. Let din(v) and dout(v) be

the indegree and outdegree of vertex v ∈ [n]. Clearly din(v) + dout(v) = n − 1. Also

v ∈ S iff din(v) < k. We can thus easily test if v ∈ S by querying the n − 1 edges,

{(i, v) : i ∈ [n] \ {v}}. Depending on whether v ∈ S, we now have two cases:

• Case 1: v ∈ S
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For every i such that (i, v) ∈ E, we can conclude that i ∈ S. We can therefore

remove these vertices and iterate. We have reduced the problem to a graph on

n− 1− din(v) = dout(v) vertices.

• Case 2: v /∈ S

For every i such that (v, i) ∈ E, we can conclude that i /∈ S. We can therefore

remove these vertices and iterate. We have reduced the problem to a graph on

n− 1− dout(v) = din(v) vertices.

Let n′ be the number of vertices that remain after the above random process. Note

that

Ev[n′] = Pr[v ∈ S] · E[dout(v)|v ∈ S]

+ Pr[v /∈ S] · E[din(v)|v /∈ S]

=
k

n

(
n− k +

k − 1

2

)
+
n− k
n

(
k +

n− k − 1

2

)
=
n− 1

2
+
k(n− k)

2n
≤ 3n

4
.

By Markov’s inequality, Pr[n′ ≥ 4n/5] ≤ 15
16

. We will repeatedly choose v at random

until we find a v such that n′ < 4n
5

. Once we find such a v, we can remove at least

n/5 vertices from the graph and iterate the same procedure for the remaining graph.

Let T0 denote the random variable equal to the number of times we sample v. We

have that Pr[T0 ≥ t] ≤ (15
16

)t and therefore

E[T0] =
∞∑
t=1

Pr[T0 ≥ t] ≤ 15.

Similarly let Ti represent the number of times we must sample v in iteration i of this

process; by the same logic, E[Ti] ≤ 15 for all i. If we let the random variable X
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denote the number of edge queries the algorithm makes, then since the graph shrinks

by a factor of 4/5 at each iteration,

X = T0 · n+ T1 ·
(

4

5

)
n+ T2 ·

(
4

5

)2

n+ · · ·

E[X] ≤ 15 ·

(
1 +

4

5
+

(
4

5

)2

+ . . .

)
· n ≤ 75n.

This completes the proof that E[X] = O(n), as required. We can similarly analyze

the tail probability of X; note that:

Pr[X > Cλn] ≤ Pr

[
∃i : Ti >

λC

9

(
10

9

)i]

since Ti ≤ Cλ
9

(
10
9

)i
for every i implies that

X ≤ Cλn

9

∞∑
i=0

(
4

5

)i(
10

9

)i
=
Cλn

9

∞∑
i=0

(
8

9

)i
≤ Cλn.

By the union bound,

Pr

[
∃i : Ti >

Cλ

9

(
10

9

)i]

≤
∞∑
i=0

Pr

[
Ti >

Cλ

9

(
10

9

)i]

≤
∞∑
i=0

exp

(
−Cλ

9
ln

(
16

15

)(
10

9

)i)

≤ exp(−λ). (for sufficiently large C)
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Proof of Lemma 6.7.2. We have:

∂I(p, q)
∂p

= (1− q) log

(
2p(1− q)

p(1− q) + (1− p)q

)
− q log

(
2(1− p)q

p(1− q) + (1− p)q

)
∂I(p, q)
∂q

= (1− p) log

(
2(1− p)q

p(1− q) + (1− p)q

)
− p log

(
2p(1− q)

p(1− q) + (1− p)q

)

When p ≥ q,

log

(
2p(1− q)

p(1− q) + (1− p)q

)
≥ 0,

log

(
2(1− p)q

p(1− q) + (1− p)q

)
≤ 0.

Thus ∂I(p,q)
∂p
≥ 0 and ∂I(p,q)

∂q
≤ 0 when p ≥ q. Thus increasing p or decreasing q cannot

decrease I(p, q) when p ≥ q.
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[16] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):48–77,
January 2003.

[17] Moshe Babaioff, Robert D. Kleinberg, and Aleksandrs Slivkins. Truthful mech-
anisms with implicit payment computation. In Proceedings of the 11th ACM
Conference on Electronic Commerce, EC ’10, pages 43–52, New York, NY, USA,
2010. ACM.

[18] Moshe Babaioff, Yogeshwer Sharma, and Aleksandrs Slivkins. Characterizing
truthful multi-armed bandit mechanisms: Extended abstract. In Proceedings of
the 10th ACM Conference on Electronic Commerce, EC ’09, pages 79–88, New
York, NY, USA, 2009. ACM.

[19] T. P. Ballinger and N. T. Wilcox. Decisions, error and heterogeneity. The
Economic Journal, 107(443):1090–1105, 1997.
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[34] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends in Ma-
chine Learning, 5(1):1–122, 2012.

[35] Yang Cai and Constantinos Daskalakis. Learning multi-item auctions with (or
without) samples. In FOCS, 2017.

[36] E. J. Candés. Modern statistical estimation via oracle inequalities. Acta Nu-
merica, 15:257–325, 2006.

[37] Sylvain Chassang. Calibrated incentive contracts. Econometrica, 81(5):1935–
1971, 2013.

294



[38] Sabyasachi Chatterjee, Adityanand Guntuboyina, and Bodhisattva Sen. On risk
bounds in isotonic and other shape restricted regression problems. 43(4):1774–
1800, 2014.

[39] Sabyasachi Chatterjee, Adityanand Guntuboyina, and Bodhisattva Sen.
On matrix estimation under monotonicity constraints. arXiv preprint
arXiv:1506.03430, 2015.

[40] Xi Chen, Sivakanth Gopi, Jieming Mao, and Jon Schneider. Competitive anal-
ysis of the top-k ranking problem. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, 2017.

[41] Y. Chen and C. Suh. Spectral MLE: Top-K rank aggregation from pairwise com-
parisons. In Proceedings of the International Conference on Machine Learning
(ICML), 2015.

[42] Edward H. Clarke. Multipart Pricing of Public Goods. Public Choice, 11(1):17–
33, 1971.

[43] Maxime C. Cohen, Ilan Lobel, and Renato Paes Leme. Feature-based dynamic
pricing. In Proceedings of the 2016 ACM Conference on Economics and Com-
putation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016, page 817,
2016.

[44] Maxime C Cohen, Ilan Lobel, and Renato Paes Leme. Feature-based dynamic
pricing. In Proceedings of the 2016 ACM Conference on Economics and Com-
putation, pages 817–817. ACM, 2016.

[45] Richard Cole and Tim Roughgarden. The sample complexity of revenue maxi-
mization. In Proceedings of the Forty-sixth Annual ACM Symposium on Theory
of Computing, STOC ’14, pages 243–252, New York, NY, USA, 2014. ACM.

[46] A.H. Copeland. A ’reasonable’ social welfare function. Seminar on Mathematics
in Social Sciences, 1951.

[47] S Cox. Tennis match fixing: Evidence of suspected match-fixing revealed, Jan-
uary 2016. http://www.bbc.com/sport/tennis/35319202.

[48] I. Csiszar and J. Körner. Information theory: coding theorems for discrete
memoryless systems. Cambridge University Press, 2011.

[49] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou.
The complexity of computing a nash equilibrium. SIAM Journal on Computing,
39(1):195–259, 2009.

[50] Constantinos Daskalakis and Vasilis Syrgkanis. Learning in auctions: Regret is
hard, envy is easy. In IEEE 57th Annual Symposium on Foundations of Com-
puter Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,
New Jersey, USA, pages 219–228, 2016.

295

http://www.bbc.com/sport/tennis/35319202


[51] Constantinos Daskalakis and S. Matthew Weinberg. Symmetries and Optimal
Multi-Dimensional Mechanism Design. In the 13th ACM Conference on Elec-
tronic Commerce (EC), 2012.

[52] D. Davidson and J. Marschak. Experimental tests of a stochastic decision the-
ory. Measurement: Definitions and theories, pages 233–269, 1959.

[53] Nikhil R. Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. The sample
complexity of auctions with side information. In Proceedings of the Forty-eighth
Annual ACM Symposium on Theory of Computing, STOC ’16, pages 426–439,
New York, NY, USA, 2016. ACM.

[54] Nikhil R. Devanur and Sham M. Kakade. The price of truthfulness for pay-
per-click auctions. In Proceedings of the 10th ACM Conference on Electronic
Commerce, EC ’09, pages 99–106, New York, NY, USA, 2009. ACM.

[55] Nikhil R. Devanur, Yuval Peres, and Balasubramanian Sivan. Perfect bayesian
equilibria in repeated sales. In Proceedings of the Twenty-sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’15, pages 983–1002, Philadel-
phia, PA, USA, 2015. Society for Industrial and Applied Mathematics.

[56] Miroslav Dud́ık, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis
Syrgkanis, and Jennifer Wortman Vaughan. Oracle-efficient learning and auc-
tion design. In FOCS, 2017.

[57] Bhaskar Dutta. Covering sets and a new condorcet choice correspondence.
Journal of Economic Theory, 44(1):63 – 80, 1988.

[58] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation meth-
ods for the web. In Proceedings of the Tenth International World Wide Web
Conference, 2001.

[59] Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time al-
gorithm for approximating the volume of convex bodies. Journal of the ACM
(JACM), 38(1):1–17, 1991.

[60] B. Eriksson. Learning to top-k search using pairwise comparisons. In Conference
on Artificial Intelligence and Statistics, 2013.

[61] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms
for middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[62] P. C. Fishburn. Binary choice probabilities: on the varieties of stochastic tran-
sitivity. Journal of Mathematical psychology, 10(4):327–352, 1973.

[63] Peter C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied
Mathematics, 33(3):469–489, 1977.

296



[64] Peter Frazier, David Kempe, Jon Kleinberg, and Robert Kleinberg. Incentiviz-
ing exploration. In Proceedings of the Fifteenth ACM Conference on Economics
and Computation, EC ’14, pages 5–22, New York, NY, USA, 2014. ACM.

[65] Allan Gibbard. Manipulation of voting schemes: a general result. Econometrica,
41(4):587–601, 1973.

[66] Allan Gibbard. Manipulation of schemes that mix voting with chance. Econo-
metrica, 45(3):665–681, 1977.

[67] Stephen Gillen, Christopher Jung, Michael Kearns, and Aaron Roth. Online
learning with an unknown fairness metric. arXiv preprint arXiv:1802.06936,
2018.

[68] J.C. Gittins and D.M. Jones. A dynamic allocation index for the sequential
design of experiments. In J. Gani, editor, Progress in Statistics, pages 241–266.
North-Holland, Amsterdam, 1974.

[69] Yannai A. Gonczarowski and Noam Nisan. Efficient empirical revenue maxi-
mization in single-parameter auction environments. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages
856–868, New York, NY, USA, 2017. ACM.

[70] Theodore Groves. Incentives in Teams. Econometrica, 41(4):617–631, 1973.

[71] A. Guntuboyina, D. Lieu, S. Chatterjee, and B. Sen. Spatial adaptation in
trend filtering. arXiv preprint arXiv:1702.05113, 2017.

[72] Adityanand Guntuboyina and Bodhisattva Sen. Global risk bounds and adap-
tation in univariate convex regression. Probab. Theory Related Fields, 2013. To
appear, available at http://arxiv.org/abs/1305.1648.

[73] James Hannan. Approximation to bayes risk in repeated play. In Contributions
to the Theory of Games, pages 3:97–139, 1957.

[74] R. Heckel, N. B. Shah, K. Ramchandran, and M. J. Wainwright. Active ranking
from pairwise comparisons and when parametric assumptions dont help. arXiv
preprint arXiv:1606.08842v2, 2016.

[75] Nicole Immorlica, Brendan Lucier, Emmanouil Pountourakis, and Samuel Tag-
gart. Repeated sales with multiple strategic buyers. In Proceedings of the 2017
ACM Conference on Economics and Computation, pages 167–168. ACM, 2017.

[76] K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck. lil’ ucb : An optimal
exploration algorithm for multi-armed bandits. In Proceedings of Conference
on Learning Theory (COLT), 2014.

[77] K. Jamieson and R. Nowak. Active ranking using pairwise comparisons. In
Advances in Neural Information Processing Systems, 2011.

297



[78] M. Jang, S. Kim, C. Suh, and S. Oh. Top-k ranking from pairwise comparisons:
When spectral ranking is optimal. arXiv preprint arXiv:1603.04153, 2013.

[79] Adel Javanmard. Perishability of data: dynamic pricing under varying-
coefficient models. The Journal of Machine Learning Research, 18(1):1714–
1744, 2017.

[80] Adel Javanmard and Hamid Nazerzadeh. Dynamic pricing in high-dimensions.
Working paper, University of Southern California, 2016.

[81] Paul Johnson and Jacques Robert. Collusion in a model of repeated auc-
tions. Cahiers de recherche, Universite de Montreal, Departement de sciences
economiques, 1999.

[82] Sham M. Kakade, Ilan Lobel, and Hamid Nazerzadeh. Optimal dynamic mech-
anism design and the virtual-pivot mechanism. Operations Research, 61(4):837–
854, 2013.

[83] Adam Kalai and Santosh Vempala. Geometric algorithms for online optimiza-
tion. In Journal of Computer and System Sciences, pages 26–40, 2002.

[84] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision
problems. J. Comput. Syst. Sci., 71(3):291–307, October 2005.

[85] P Kelso. Badminton pairs expelled from london 2012 olympics after ’match-
fixing’ scandal, August 2012. .

[86] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Symposium
on Theory of computing (STOC), 2007.

[87] Michael P. Kim, Warut Suksompong, and Virginia Vassilevska Williams. Who
can win a single-elimination tournament? In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA., pages 516–522, 2016.

[88] Michael P. Kim and Virginia Vassilevska Williams. Fixing tournaments for
kings, chokers, and more. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Ar-
gentina, July 25-31, 2015, pages 561–567, 2015.

[89] Daniel A Klain and Gian-Carlo Rota. Introduction to geometric probability.
Cambridge University Press, 1997.

[90] Robert Kleinberg and Tom Leighton. The value of knowing a demand curve:
Bounds on regret for online posted-price auctions. In Foundations of Computer
Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages 594–605.
IEEE, 2003.

298

http://www.telegraph.co.uk/sport/olympics/badminton/9443922/Badminton-pairs-expelled-from-London-2012-Olympics-after-match-fixing-scandal.html


[91] Vladimir Koltchinskii. Oracle Inequalities in Empirical Risk Minimization and
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