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Abstract

For a deep learning model, efficient execution of its
computation graph is key to achieving high perfor-
mance. Previous work has focused on improving the
performance for individual nodes of the computation
graph, while ignoring the parallelization of the graph
as a whole. However, we observe that running multi-
ple operations simultaneously without interference is
critical to efficiently perform parallelizable small op-
erations. The attempt of executing the computation
graph in parallel in deep learning frameworks usually
involves much resource contention among concurrent
operations, leading to inferior performance on many-
core CPUs. To address these issues, in this paper,
we propose Graphi , a generic and high-performance
execution engine to efficiently execute a computa-
tion graph in parallel on manycore CPUs. Specifi-
cally, Graphi minimizes the interference on both soft-
ware/hardware resources, discovers the best parallel
setting with a profiler, and further optimizes graph
execution with the critical-path first scheduling. Our
experiments show that the parallel execution consis-
tently outperforms the sequential one. The training
times on four different neural networks with Graphi
are 2.1ˆ to 9.5ˆ faster than those with TensorFlow
on a 68-core Intel Xeon Phi processor.

1 Introduction

Manycore processor architectures utilize many rela-
tively low performance cores to achieve high overall
performance [51, 60]. The architecture is particularly
well-suited to high-performance computing (HPC) ap-

plications with lots of data parallelism, due to its large
number of computing cores and wide vector process-
ing units. One such application is deep learning [37],
whose models can be expressed as computation graphs
with nodes representing the operations and edges rep-
resenting the dependencies between nodes [7] (more
details in Section 2).

The efficiency of processing computation graphs on
contemporary computing devices, especially graphic
processing units (GPUs), has been extensively stud-
ied in the literature[11, 34, 53, 58]. Among these,
many have focused on building efficient primitives to
speed up single operations on one processor [27, 61]
or optimizing distributed execution across multiple
processors with a server [10, 25] and across a clus-
ter [39, 62]. So far, little effort has been put into
the scheduling of computation graphs on manycore
processors. Some previous methods use one executor
to run a computation graph operation-by-operation
sequentially on GPUs [8, 30]; others use a naive way to
allow multiple executors to run simultaneously [2, 10],
which introduces contention between threads sharing
computing and memory resources. These approaches
result in the substantial under-utilization of CPUs,
the most popularly available computing resource, on
the deep learning workloads.

In this paper, we study how to efficiently execute
computation graphs of deep learning models on many-
core CPUs. Our experimental hardware platform is
the Intel Xeon Phi processor, based on the Intel Many
Integrated Core architecture (MIC) [51]. We show
that sequential execution normally cannot exhaust the
available resource of this processor and that naive par-
allel execution typically achieves poor performance

1



mainly due to sub-optimal thread scheduling and
thread interference. Based on these observations, we
propose Graphi , a generic high-performance execution
engine for computation graphs on manycore CPUs.
Our key idea is to profile a given computation graph,
allocate resources to different agents (scheduler and
executors) of the execution engine using the profiling
results, and schedule operations intelligently with min-
imal interference. We compare running our execution
engine on the manycore CPU with TensorFlow [2] on
the same hardware.

To the best of our knowledge, Graphi is the first
high-performance parallel execution engine with in-
telligent scheduling strategies for deep learning com-
putation graphs on manycore CPUs. Although many
of the techniques in Graphi are not new, our unique
contribution is to identify issues of current deep learn-
ing frameworks on manycore CPUs, adapt proper
techniques to a complex deep learning system, and
make them work in synergy to greatly boost the over-
all performance. Moreover, we believe the concepts
captured by Graphi can be incorporated into main-
stream frameworks. Specifically, this paper makes the
following contributions:

1. We demonstrate that by choosing proper par-
allelism scheme and using optimized scheduling,
Graphi outperforms TensorFlow on the Intel Xeon
Phi processor by 2.1ˆ to 9.5ˆ on 4 popular deep
learning networks.

2. We demonstrate that operations typically used in
deep learning models (e.g. matrix multiplication
and element-wise operation) saturate at 8 or 16
cores on the Intel Xeon Phi processor, and paral-
lelizing multiple operations without unnecessary
thread interference is preferable. We show that
parallel execution outperforms sequential by up
to 3.4ˆ.

3. We demonstrate that using a centralized sched-
uler to impose intelligent scheduling and elim-
inate software resource contention between au-
tonomous executors further boosts overall perfor-
mance of the execution engine by up to 19%.

The rest of the paper is organized as follows: Sec-
tion 2 provides background on computation graphs

and manycore CPUs, Section 3 delves deeper into the
motivation for our work and the challenges we have
via microbenchmarking of the manycore CPU. We
present the overall design of Graphi in Section 4 and
its implementation in Section 5. Section 6 discusses
other optimization we considered during the system
design. The evaluation is in Section 7, followed by
the discussion of related work in Section 8. Section 9
summarizes the paper and proposes the future work.

2 Background

This section discusses the background of the two main
aspects of the paper: computation graphs and many-
core CPUs.
Computation graph The computation graph is
a common way to specify computation tasks and
their dependencies for execution [32]. This abstrac-
tion has found wide usage in dataflow computa-
tion [3, 15, 16, 22] and streaming data process-
ing [9, 59]. Recently, deep learning frameworks such
as TensorFlow [2], MXNet [10], neon [43], Theano [8]
and Caffe [30] have used computation graphs to repre-
sent the required computation of deep learning models
after compilation. A computation graph is a directed
acyclic graph (DAG) with each node representing an
operation which could be a matrix multiplication, a
convolution or an element-wise operation, etc. A di-
rected edge pointing from node A to B represents that
operation B is dependent on operation A, i.e. the out-
put of operation A serves as (part of) the input of
operation B.

The training and inference of a deep learning model
is essentially the execution of the corresponding com-
putation graph. Training requires a larger computa-
tion graph which consists of both forward operations
for computing the loss and backward operations for
computing the gradients. A complete execution on
the graph corresponds to one training iteration of a
batch. The computation graph for inference is smaller
since it only contains the forward operations. One
complete execution of the graph typically results in
the inference of a group of instances.

The execution engine of a computation graph uses
an important abstraction executor to lead a team of
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Figure 1: Architecture of Intel Xeon Phi pro-
cessor 7250.

threads to run an operation at a time. The team
of threads allows the executor to use thread-level
parallelism to execute the operation efficiently. The
size of the team can be configured or adjusted by the
execution engine.

The conventional way of interpreting a computation
graph is to execute operations in sequence according
to a topological order of the graph. That is, starting
from an operation with no dependencies (i.e. no other
operations pointing to it), the execution engine picks
one executable operation at a time to run. An opera-
tion is executable only after all operations pointing
to it have finished (if any).

The sequential execution approach requires only
one executor, and improves performance by exploit-
ing the parallelism within each operation to utilize
the available SIMD and multi-thread parallelism of
a CPU or GPU. This method works well when the
computation graphs have large operations and simple
structures (e.g., AlexNet [34]).

A more advanced way is to execute operations with
multiple executors in parallel when necessary, which
is under explored and not optimized in popular frame-
works. It holds the promise for improving the overall
performance of computation graph execution on many
complex networks.

Manycore CPU This paper studies how to effi-
ciently execute a computation graph on a manycore
CPU. Our experimental hardware is a 68-core Intel
Xeon Phi processor 7250 (code named Knights Land-

ing or KNL, referred to hereinafter as the manycore
CPU) based on the Intel Many Integrated Core (MIC)
architecture. It allows the use of parallel program-
ming toolkits such as OpenMP in the same way as
programming on a typical multicore x86 processor.
The processor runs at a clock frequency of 1.40 GHz
and supports up to 4 hardware hyper-threads per core.
Our experiments used one thread per core to eliminate
interference among hardware threads running on the
same core while achieving good performance.

Each core has 32 KB L1 data cache, and 32 KB L1
instruction cache. Every two cores are organized as
a tile with 1 MB shared unified L2 cache. All tiles
are interconnected as a 2D mesh. Cache coherence is
maintained via a distributed directory provided. The
mesh supports three modes of tile clustering (all-to-
all, quadrant, and sub-NUMA clustering) to provide
different levels of memory address affinity for bet-
ter overall performance in different use cases. These
cluster modes aim to lower latencies and improve
bandwidth by reducing the distance of data traversals
within the chip [54].

In this paper, the manycore CPU is configured in
the quadrant mode, which offers symmetric memory
access. For a more sophisticated system design, the
manycore CPU may use the sub-NUMA clustering
mode for better performance. The manycore CPU is
equipped with a 16 GB multi-channel DRAM (MC-
DRAM) with bandwidth greater than 400 GB/s, as
well as 96 GB DDR4 memory. Figure 1 depicts the ar-
chitecture. Understanding of this architecture helped
to shape the design of our execution engine in Sec-
tion 4.

3 Motivations

This section first discusses the challenges of executing
computation graphs on a manycore CPU efficiently,
then performs microbenchmarking on the manycore
CPU to further investigate the issues, which motivates
the design of Graphi .
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Figure 2: Scalability of GEMM/element-wise multiplication operations in a typical LSTM on
Intel Xeon Phi processor 7250.

3.1 Challenges

The conventional way of executing computation
graphs in sequence does not work well on the many-
core CPUs for networks with smaller operations and
complex linking structures (e.g. long short-term mem-
ory (LSTM) [28], PathNet [20]). These networks have
operations that are too small to fully take advantage
of the compute power of all cores because of the thread
management overhead, which is getting worse as the
number of cores increases. In order to obtain better
resource utilization, multiple operations should be run
in parallel.

Fortunately, independent operations in a computa-
tion graph are always parallelizable. Modern frame-
works like TensorFlow and MXNet provide parallel
execution engines that can execute more than one
operation at the same time. Nevertheless, these frame-
works have not been carefully optimized for manycore
CPUs, and the challenges described below can hinder
their execution efficiency on the hardware.

The first challenge is how to optimally schedule
the operations of a computation graph on a num-
ber of operation executors. Scheduling M operations
expressed as a DAG to run on N executors to min-
imize the makespan, the total time from execution
starts until every operation finishes, is a well-known
NP-hard problem by reduction from the 3-partition
problem [38].

The approach TensorFlow and MXNet have taken
is to maintain a centralized queue of the executable
operations without dependencies, and allows an ar-
bitrary executor to execute any operation that is at
the head of the queue. Once the dependencies of an

operation are all executed, it will be placed onto the
queue. The scheduling continues until all operations
are executed. This naive scheduling strategy is simple
but may not perform well on the manycore CPU.

Another challenge is how to eliminate the interfer-
ence among executors, which is commonly seen in the
modern deep learning frameworks, leading to perfor-
mance reduction of the parallel execution engine and
even decreases the overall performance compared with
sequential execution.

For instance, TensorFlow and Caffe2 (an updated
version of Caffe) [55] use Eigen Library [1] as well as
OpenMP for different operations, each with their own
thread pool, which results in more software threads
than available physical cores. This over-subscription
causes either unnecessary resource contention or ex-
pensive thread context switching on the manycore
CPU. Moreover, those frameworks do not explicitly
specify on which cores the threads should run, making
it likely for execution threads to compete for the same
physical cores. Such contention can cause threads to
straggle, and further hampers overall performance.

Contention may happen over software resources
as well. One example is the centralized queue of the
executable operations. When the number of executors
is large and the execution time of an operation is
small, the overhead of global queue polling contention
becomes significant. In general, contention on the
manycore CPU could be very severe due to its large
number of cores.
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Figure 3: Performance of parallel operations with pinned vs. OS managed threads on Intel
Xeon Phi processor 7250. There are multiple executors, each running GEMM/element-wise
multiplication operations with a team of threads.

3.2 Microbenchmark Performance

We designed two microbenchmarks to validate the
following two performance characteristics of the many-
core CPU: 1) the scalability of small operations de-
grades at some point and 2) running multiple small
operations in parallel without interference is beneficial.
Although these concepts are well-studied in general,
we do not see them embodied for typical deep learn-
ing operations on the manycore CPU. Therefore, we
find it critical to validate them before designing a
scheduling system for deep learning workloads on the
manycore CPU.

The first microbenchmark was used to assess the
scalability of a manycore CPU for small operations.
This benchmark includes two commonly used oper-
ations in the computation graph of LSTM: matrix
multiplication (GEMM) of size r64, 512s ˆ r512, 512s
implemented via Intel Math Kernel Library (MKL),
and element-wise multiplication for 32 768 element
pairs multi-threaded via OpenMP. The specific sizes
are chosen to represent the medium size of LSTM
suggested in the standard TensorFlow benchmark.

Figure 2 shows that the performance of GEMM
saturates when the number of threads is greater than
8, whereas the element-wise multiplication saturates
when it is greater than 16. Therefore, dedicating all
available computing resources of the manycore CPU
to a single operation is not optimal and the parallel
computing power is largely wasted.

The second microbenchmark was designed to show
the effect of resource contention within the many-
core CPU. This microbenchmark consists of multiple

GEMM and element-wise multiplication instances.
The sizes of these two operations are the same as
those in the first microbenchmark. We ran the mi-
crobenchmark in two modes on the same manycore
CPU: manually pinning different threads to different
physical cores and leaving the thread assignment to
OS.

Figure 3 shows that the overall FLOPS of opera-
tions with threads pinned is higher than OS managed
by up to 45%. This is because the OS is unaware
of the layout of the physical cores of the manycore
CPU, so it is likely that multiple threads ran on the
same physical core, which can cause synchronization
overheads and cache misses. Since a modern many-
core CPU has private caches within each tile, the
scheduling of executors on physical cores should be
architecturally aware to reduce such cache contention.
Pinning threads to cores properly removes such over-
heads.

By comparing the peak FLOPS in Figure 2 and
Figure 3, we can see that the overall performance of
running multiple small operations together without
interference is more than 6ˆ faster than running one
single small operation using all the available resources.
Such results validate the value of running multiple
small operations in parallel.

Based on our benchmark experiments, we argue
that an efficient parallel execution engine should avoid
contentions on the manycore CPU and should execute
small operations of a computation graph in parallel.
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4 Graphi Design

We propose Graphi , a generic and high-performance
execution engine to efficiently run computation graphs
of deep learning models on the manycore CPU. Graphi
has multiple kinds of agents, e.g. profiler, scheduler,
and executor, whose functions will be described in
detail later. We keep the following goals in mind while
designing the system:

1. The system should be general purpose, and be
able to execute different kinds of neural networks;

2. Given a computation graph, the system should
be able to schedule and execute the operations
in a way that minimizes the makespan.

3. In presence of a fleet of multi-threaded executors
and a centralized scheduler, the system should
avoid interference across these agents.

4.1 Overview

Figure 4 shows the architecture of Graphi . Graphi has
two kinds of inputs: a compiled computation graph
of a deep learning model and the number of cores of
a manycore CPU. We assume that the computation
graph is static, meaning that the graph will not change
during the entire computation.

In order to fulfill design goal (1), Graphi is designed
to be agnostic to the underlying neural network, only
seeing the computation graph as a DAG. For an ar-
bitrary DAG, Graphi will first profile it for a better
scheduling strategy during In the initial few runs.

The Graphi profiler works with the execution en-
gine in a feedback loop as shown in the upper part
of Figure 4: the execution engine runs the graph
to generate statistics and informs the profiler, while
the profiler uses these statistics to collect informa-
tion and improve scheduling. The execution engine
then uses this information to optimize subsequent
runs, therefore fulfilling design goal (2). In general,
Graphi works to avoid possible hardware and software
resource contention following (3).

Fetch

Executor Executor 

Buffer Buffer
Push

tile

tile

Triggered Triggered

tile

tile Ready Operations

Graphi scheduler

sorted by level

Graphi Profiler

Optimized
scheduling

Execution Engine

Running
statistics

Figure 4: Graphi design overview.

4.2 Profiler

The Graphi profiler has two goals. The first is to de-
termine the basic configuration for execution. Given
the number of available cores, it comes up with differ-
ent combinations of number of executors and threads
per executor in order to find one with minimal execu-
tion makespan. For simplicity (see Section 6 for more
discussions), we make the executors symmetric, i.e.
all executors own the same number of threads. In this
way the profiler only needs to enumerate through a
small number of configurations. For example, assume
there are 64 threads, then we may have 1 executor
with 64 threads, or 2 executors with 32 threads each,
etc., up to 64 executors with 1 thread each. The
Graphi execution engine will then use the selected
combination for the subsequent optimizations.

The second goal is to estimate the running time
of each operation of the computation graph with the
selected combination. This adds modest overhead
(i.e. execution time) to the system, but since the
computation graph is static, this information can be
treated as invariant and only needs to be collected for
the first few iterations. It can then be used by the
scheduler to further improve the scheduling process.

6



4.3 Scheduler

Graphi uses a centralized scheduler to coordinate the
operations running on different executors, which sim-
plifies the system processing pipeline by concentrating
the scheduling decisions to a single agent. The lower
part of Figure 4 illustrates the design of our scheduler,
and Algorithm 1 summarizes its workflow.

The centralized scheduler oversees the execution sta-
tus. It keeps polling for the newly triggered operations
from the executors, as well as allocating ready-to-run
operations to the executors. The scheduling is done
once all operations are executed. Since the scheduler
has knowledge of the system state, i.e. which opera-
tions are executable and their dependencies with the
other operations, it can make strategy accordingly of
sending which operation to run once an executor be-
comes available. One analogy of this design choice is
the centralized software defined networks (SDN) [24]
compared with the traditional decentralized network
protocols.

Although we know the graph structure and the
estimated executing times of all operations by profiling
the graph, an optimal offline scheduling solution is
not feasible because there are unpredictable variations
at run time. These variations can cause empty cycles
spent waiting for operation dependencies. Therefore,
we focus on an online scheduling solution.

We design the scheduler using an online algo-
rithm [29] to prioritize the operations in the criti-
cal path of the DAG. Specifically, from the informa-
tion of the computation graph structure and the esti-
mated running time of each operation, we can derive a
level value for each operation, which is defined as the
longest accumulated time from this operation to the
end (sink point) of the computation graph. Graphi
sorts the read-to-run operations according to their
level values decreasingly and always schedules the op-
erations with higher level value first. In other words,
the operations in the critical path are prioritized for
earlier execution so that they will not become the
bottleneck. We call this critical-path first scheduling.

The Graphi scheduler design improves upon existing
scheduling schemes in two ways. First, it eliminates
potential software resource contention. In the parallel
execution engines of TensorFlow and MXNet, there is

Algorithm 1 Graphi Scheduler

1: while hasPendingOperations() do
2: Poll triggered operations from each executor
3: Sort ready operations based on their level val-

ues
4: while hasReadyOperations() and FindExecu-

tor(e) do
5: Get operation p with the maximal level

value
6: Put p into executor e’s buffer
7: end while
8: end while

only one queue that maintains the operations ready
for execution (i.e., have no dependencies or all depen-
dencies are satisfied). All executors independently
poll the same queue for the next operations. This
results in a heavy contention on the global queue,
especially when the number of executors is large and
the execution time of an operation is small. Graphi
avoids this issue by having the scheduler push opera-
tions to executor-specific operation buffers. Since the
buffers are disjoint, the interference between polling
executors is eliminated.

The other advantage of the centralized scheduler is
that it gives us flexibility to use different advanced
scheduler polices. Current scheduling strategy is
critical-path first, but the architecture allows us to
easily implement other strategies. This is not possible
in other state-of-the-art parallel execution engines,
which lack a centralized scheduler. As discussed in
Section 3, those execution engines schedule the op-
erations in an arbitrary topological order, that is,
whenever an executor is available, it randomly picks
a ready operation to run. Since all executors work
greedily, a global optimization strategy cannot be
imposed.

4.4 Executors

In addition to the centralized scheduler, Graphi uses
a fleet of executors harnessed by the scheduler. The
number of executors, as well as the team size of threads
per executor, are determined by the profiler. The ex-
ecutors are in charge of executing operations assigned
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to them by the scheduler. Its workflow is shown in
Algorithm 2.

As discussed in Section 4.3, the executors only need
to poll their own operation buffers for operations to
execute. In addition, to further reduce contention,
each executor is also associated with its own triggered
queue, where it outputs the triggered operations upon
finishing one operation. These are then fetched by
the scheduler for processing.

Algorithm 2 Graphi Executor

1: while true do
2: /* Poll the buffer for new operation */
3: if GetOperation(p) then
4: Execute p with the team of threads
5: Trigger p’s depending operations
6: end if
7: end while

In our design, we assign each executor exclusively
to a number of tiles (see lower part of Figure 4),
each of which consists of two physical cores and an
exclusive L2 cache as described in Section 2. As
a result, executors do not share the compute units
nor L2 cache, and consequently the hardware resource
contention we discussed in Section 3 is largely avoided.

5 Implementation

The implementation of Graphi leverages the computa-
tion graph toolkit (CGT) [50]. The main reasons for
choosing CGT are its modular design of compilation
and execution and its small code base. We use CGT’s
compilation component to compile a deep learning
model into a computation graph. But, we add the
profiler component, and completely redesign and reim-
plement the execution engine. These are the focuses
of this paper, and the implementation can also be
migrated to other deep learning frameworks.

This section gives an overview of a typical deep
learning framework like CGT, and then describes the
implementation issues in Graphi .

5.1 Overview of CGT

CGT consists of two main parts: 1) a compiler to
compile from a model into a computation graph and
2) an execution engine to run the graph. The model
definition is constructed in Python, represented as
mathematical expressions relating to the inputs, the
intermediate variables, and the outputs. The com-
piler translates high level expressions to a low level
computation graph targeting a particular processor,
in our case the manycore CPU.

Each variable will be assigned a memory location,
and optimizations during compilation allow multiple
variables to share the same location as long as their
lifespans do not overlap. Compute-intensive opera-
tions implemented in C++ are also compiled into
shared libraries as callable routines.

The execution engine, as well as the data structures
of the computation graph, including variables, opera-
tions, and their dependencies, are also written in C++
for efficiency. The engine is discussed in more detail
in the next susbsection.

5.2 Profiler and execution engine

As described previously, Graphi has three components:
the profiler, the centralized scheduler, and a fleet of
executors. This subsection discusses their implemen-
tation details.

Profiler. After determining the best configuration
for graph execution, the profiler records the informa-
tion of each operation for several runs, which includes
start and end time, the input/output data address
and size, as well as the executor running it. The com-
puted duration is averaged over multiple iterations to
reduce variance, and then it is used in the critical-path
first scheduling. The data addresses help analyze data
locality (see Section 6 for our attempts on improving
locality). In addition, we use the profiling results
to visualize the execution process , i.e. placing the
operations to their running executors’ timelines. This
has been immensely helpful in analysis and debug-
ging. Normally, the profiler only runs in the first few
iterations, adding minimal overhead to a typical deep
learning workload running for thousands of iterations.

Scheduler. We dedicate the client thread initiat-
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ing the graph execution to run the scheduler, and it
works in a busy loop. In each iteration, it first polls
for the newly triggered operations. In order to do
the critical-path first scheduling, it then maintains
the operations in a max binary heap ordered by their
level values, and these operations can be fired once
an executor becomes available.

In order to efficiently check the available executors
and make advanced scheduling decisions, the executor
states are represented as a bit map, with 1 denoting
the executor is idle, and 0 denoting busy. We use
bit-scan intrinsics to find the number of trailing zeros
in the bit map, which corresponds to the first executor
now available to run. The scheduler then pushes the
operation at the head of the heap to that executor’s
operation buffer.

Executors. Each executor polls for operation from
its own operation buffer, executes the operation, and
triggers this operation’s dependencies. The opera-
tion buffer is implemented with a lock free ring buffer
for high efficiency. This implementation is inspired
by the per-thread run queue of MuQSS [33] sched-
uler, and enables us to buffer multiple operations to
further reduce scheduling overheads and apply more
sophisticated scheduling schemes.

In practice, we find that the load imbalance caused
by a larger buffer size offset the benefit, so we buffer at
most one operation in Graphi . Each executor spawns
a team of OpenMP threads to run the operations. Our
implementation chooses an even number of threads
such that no two executors shared a tile (see Section 2),
consequently avoiding L2 cache interference among
executors.

We use the primitives in several software packages
including LIBXSMM [27] for convolutions, Intel MKL
for matrix multiplications, and OpenMP for loop of
element-wise operations. The engine uses OpenMP
for thread management. As long as the size of the
thread team of an executor does not change across
different operations, the OpenMP library will always
reuse the same team of threads, with the executor
thread being the master.

Before one executor launches, it creates an OpenMP
parallel region for its team of threads, in which each
thread in the team is pinned to a specific core. During
the execution of subsequent operations, the thread

will stay on the same core. We find this setting im-
portant for high performance because it eliminates
resource contention as well as the overheads from
thread migrations and context switches.

The executors discussed above are designed to run
expensive operations such as convolutions, matrix
multiplications, and large element-wise operations. In
addition, there are also small operations like scalar
addition in the computation graph. Both CGT and
TensorFlow employ an optimization to directly run
these small operations in the current thread/executor
instead of pushing them to the ready-operation queue.
We adopt the same idea in Graphi .

It is also worth noting that bootstrapping the com-
putation graph requires running some small opera-
tions. The state-of-the-art execution engines usually
piggyback them to the framework’s client thread that
initiates the graph execution, but this hinders the
scheduling process, which runs on the same thread.
To solve this issue, Graphi maintains a light-weight
single-threaded executor to take care of these oper-
ations. In order to avoid interference, one core is
reserved exclusively for this executor as well.

6 Optimization Considerations

Since the design of Graphi allows us to implement
many scheduling policies, we experimented several
approaches. This section reports some of such opti-
mization attempts and the insights we gained.

Different executor thread team sizes. A com-
plex network such as LSTM consists of operations
with varying sizes and different scalability. We per-
formed a study to execute the computation graph with
a sequential interpreter running on varying number
of threads, and found that running time of opera-
tions scaled differently with the number of cores used.
Based on this, we classified the operations into multi-
ple classes (e.g. 3) according to how well they scale,
and made the scheduler preferably assign an operation
to an executor of corresponding thread team size.

This technique indeed reduced the total CPU time
of all the threads. However, the makespan of the whole
graph execution did not improve. This was because
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different executor sizes could cause work straggling
when some big operations are scheduled to run on the
executors with a small team of threads. Therefore,
the current Graphi uses symmetric executors with the
same number of threads. Whether varying team sizes
is useful on other models requires more investigations.

Dynamic number of executors. We considered
varying the number of executors dynamically during
of the course of graph execution. For example, we
tried to use different numbers of executors for forward
and backward computations during a model training.
The rationale is that typically the number of parallel
operations doubles during the backward pass.

We found that two issues prevented this optimiza-
tion method from being effective. First, there is a
limitation with OpenMP such that thread reuse could
not be guaranteed if the thread team size changed dy-
namically. Our experiments showed that the overhead
of context switches between different threads on the
manycore CPU is significant, at about 10-30 ms. This
is aligned with the numbers provided in [6]. Second,
as shown later in Figure 6, after certain saturation
points, increasing the parallelism only by a factor of
2 reduces the overall running time only slightly. The
optimization to double the executors during the back-
ward pass might not be worthwhile especially when
the operations are large enough.

Data cache locality. Pinning threads of an execu-
tor to specific cores gives control over the execution
location of the threads. Combined with the knowledge
from the centralized scheduler, we could naturally
incorporate L2 cache locality in the Graphi execu-
tion engine. Note that when one operation finishes,
it may trigger another using its result as the input
data. In this case, we made the system remember
the current executor as the preferred executor for this
triggered operation, which would then have the pri-
ority to run as the next operation on the preferred
executor. Such cache affinity idea had been studied
in the past [47, 48].

When analyzing the execution times of individual
operations, we found that only element-wise opera-
tions improved by a modest margin, while matrix

multiplications did not improve. Our hypothesis is
that this is due to the blocking scheme of Intel MKL
on the input/output matrices. As long as the threads
of one executor does not totally reside in the shared L2
cache within a tile (consisting of two cores), data still
have to traverse between different L2 caches, defeat-
ing the purpose of cache affinity scheduling. Further
experiments where each thread team resided in one
tile showed modest yet consistent improvement, con-
firming our hypothesis, but we did not pursue the
idea because of this restrictive setting.

In contrary to locality, we find that writing through
the results of an element-wise operation to memory
with stream store1 slightly improves the overall per-
formance. Since it is likely that the results will not
be reused by the same executor, there is no need to
fetch the overwritten data into the cache to cause ad-
ditional overheads. Therefore we adopt this technique
in all our design.

7 Evaluation

We tested our implementation of Graphi with 4 rep-
resentative deep learning models including LSTM,
PhasedLSTM, PathNet and GoogleNet. Our evalua-
tion seeks to answer the following key questions:

1. What’s the overall performance of Graphi on
the manycore CPU? How does it compare with
the state-of-the-art deep learning framework like
TensorFlow? (§7.2)

2. How much parallelism is needed for running dif-
ferent computation graphs on the manycore CPU,
and what is the relationship between parallelism
and performance? (§7.3)

3. How much benefit does our centralized sched-
uler have on a hardware resource contention free
baseline design? (§7.4)

7.1 Experiment Setup

Environment In the evaluation, we ran Graphi with
various experiment settings and compared its per-

1achieved through #pragma vector nontemporal
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Size Sequence Neurons

Small 20 128
Medium 30 512
Large 40 1024

(a) LSTM/PhasedLSTM

Size Image Neurons

Small 32 16
Medium 48 32
Large 64 48

(b) PathNet

Size Image Width

Small 128 1
Medium 192 2
Large 256 4

(c) GoogleNet

Table 1: Parameters of the deep learning models in evaluation.

formance with TensorFlow (version 1.2.0), a popular
state-of-the-art deep learning framework on Intel Xeon
Phi processor 7250 (see Section 2). Graphi compiled
operations of the computation graph via ICC (ver-
sion 17.0.420170411), and links to Intel MKL 2017 for
matrix multiplication and LIBXSMM (version 1.8.1)
for convolution. TensorFlow is configured to run mul-
tiple operations in parallel on the manycore CPU
using Intel MKL 2017 for matrix multiplication and
convolution.

Deep learning models The experiments ran the
training phases of four neural networks. The first
one is LSTM [28], a popular recurrent neural network
model with applications in modeling text [56, 57],
speech [17, 23], and video [46, 63]. Both our imple-
mentation and the TensorFLow benchmark of LSTM
are based on [65].

The second is PhasedLSTM [42], a recent variant
of LSTM which suits for processing asynchronous sen-
sory events that carry timing information. TensorFlow
provides PhasedLSTM cell for benchmarking, and
we implemented an identical counterpart for Graphi .
Note that the customized optimizations for LSTM
cannot be easily applied to PhasedLSTM even if these
two networks only have slight difference. However,
the optimizations with Graphi apply to both since it
is neural network agnostic.

Table 1a summarizes the three network sizes of
LTSM-like networks following the Tensorflow conven-
tion.

The third one we used is a convolutional neural
network (CNN) called PathNet [20] invented by Deep-
Mind. PathNet is designed to be trained on multiple
tasks simultaneously, leading to many parallel mod-
ules in each layer. We implemented this neural net-
work for both Graphi and TensorFlow using one 3ˆ 3

convolution, followed by rectified linear units and a
2 ˆ 2 pooling in each module. We chose 3 sizes for
evaluation based on the original study, with number of
layers set to 3, active modules per layer set to 6, and
the remaining parameters summarized in Table 1b.

Lastly, we also evaluated on GoogleNet [58], a deep
CNN model widely used in image classification. It
does not have as many parallel operations compared
to the previous 3 networks, so there is less room for
optimization in Graphi , nevertheless, the “inception”
modules in GoogleNet still consists of 2-3 parallel con-
volution/pooling operations, so sequential execution is
suboptimal. We refer to the implementation provided
in TensorFlow for evaluation as well, but vary the
image size and multiply the number of output filters
in each convolution by a constant factor (i.e. “width”
of the network [64]) to obtain models of 3 different
sizes (Table 1c).

For LSTM/PhasedLSTM/PathNet, the batch size
is set to 64, and for GoogleNet, the batch size is 32,
to maximally utilize the 16GB MCDRAM.

7.2 Overall Results

Figure 5 shows the overall results of batch training
times of different models by both Graphi and Ten-
sorFlow. These are results of the best parallelization
settings for both Graphi and TensorFlow. For clarity,
we normalized the batch training time of different
models.

The results show that Graphi achieves 2.1-9.5ˆ
speed-up compared with TensorFlow on the manycore
CPU. For LSTM/PhasedLSTM, because both Graphi
and TensorFlow relies on MKL for the time consuming
matrix multiplication operations, the better results
are largely attributed to Graphi ’s execution engine.
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Figure 5: Batch training time of TensorFlow and Graphi on the manycore CPU. y-axis shows
the relative running time to Graphi , lower is better.

Since TensorFlow does not control thread placement,
multiple threads often run on the same physical core,
causing interference and unpredictable performance.
Besides, TensorFlow uses Eigen for element-wise op-
erations, which has its own thread pool, making the
problem worse.

Moreover, Eigen divides all the element-wise op-
erations into small chunks and manages them in a
centralized job queue. This causes contention as well,
and we think this helps to explain why Graphi per-
formed best with the medium sized networks relative
to the small/large: for the small networks, each opera-
tion is not divided into many chunks and the effect is
not too damaging; and for the large networks, Eigen’s
job queue design is less of a bottleneck because each
operation now takes longer to run.

For PathNet, Graphi achieved about 9.5ˆ speed-
up on the large size, 7ˆ on the medium, and 4ˆ
on the small. Aside from the difference of execution
engines, we think this is also attributed to the building
primitives, because LIBXSMM, the library Graphi
uses for convolution, has been specially optimized
for small convolutions compared with the Intel MKL
convolution implementation.

Graphi was about 3-4ˆ faster on GoogleNet of all
three different sizes. Although GoogleNet is a rela-
tively simple network with less optimization opportu-
nities, Graphi still benefits from the better parallel

scheduling, in addition to the more performant primi-
tives provided by LIBXSMM.

In the next two subsections, we try to decom-
pose the speedup contribution made by our proposed
schemes. We analyzed the effect of parallel execution
(7.3) and intelligent scheduling (7.4), and the rest is
attributed to the elimination of resource interference.

7.3 Varying number of executors

In this experiment we varied the number of executors
in Graphi when running different neural networks, and
observed how the performance changed. The Intel
Xeon Phi processor 7250 has 68 cores, 2 of which was
reserved for the scheduler and the light-weight execu-
tor, respectively as discussed in Section 5. We varied
the number of executors from k “ 2, 4, 8, 16, 32, and
assigned 64{k cores to each executor. PathNet in our
setting had 6 modules per layer, so in addition to the
aforementioned settings, we added one setting with
6 executors, each using 10 cores. And for GoogleNet
because it has 2-3 parallel operations, we also tried
3 executors each with 10 cores. For comparison, we
also ran a sequential execution engine. Figure 6 shows
the relative batch training times of Graphi compared
with the sequential engine.

From the figure we can see that parallel executions
of Graphi achieved significant speed-ups for all 4 mod-
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Figure 6: Relative batch training time of Graphi under different parallelism settings compared
with a sequential execution engine. nˆk on x-axis means n executors, each using k cores. S64
refers to sequential execution engine using 64 cores.

els on Intel Xeon Phi processor 7250. For LSTM and
PhasedLSTM, the highest improvements ranged from
2.3ˆ to 3.1ˆ, and for PathNet, they ranged from 1.2ˆ
to 2.1ˆ. In general, the speed-ups for small networks
are more pronounced, because the small operations in
these networks lead to poor usage of the cores with a
sequential execution engine. For GoogleNet with less
parallelism opportunities, the speed up is smaller and
around 1.2ˆ, and the performance decreases rapidly
when we have more than 2 executors.

Figure 6 also shows that different numbers of execu-
tors were needed to achieve the maximum performance
for different networks. This highlights the importance
of the profiling step (Section 4.2) of Graphi since the
optimal number of parallel executors is related to the
structure of the model. Specifically, in the four-layer
LSTM/PhasedLSTM model, one cell from each layer
can run in parallel, and there are 2-3 parallel opera-
tors in each cell, so the total number of parallelizable
operations is around 8-12. PathNet/GoogleNet model
has 6/2-3 modules in each layer that can run in paral-
lel, respectively, corresponding exactly to the number
of optimal number of executors needed.

When surpassing the optimal setting, the perfor-
mance starts to decrease, with the large networks

Parallelism LSTM PhasedLSTM PathNet GoogleNet

2ˆ32 0.86 0.81 0.88 0.94
4ˆ16 0.88 0.85 0.92 0.96
8ˆ8 0.82 0.91 0.89 0.93
16ˆ4 0.91 0.86 0.91 0.91
32ˆ2 0.87 0.85 0.92 0.92

Table 2: Relative batch training time of
Graphi vs. naive parallel scheduler on
medium-sized networks.

suffering most, because there are not enough parallel
operations to utilize all the executors simultaneously,
resulting in some executors being idle most of the
time.

Note that although we have enumerated through the
configurations to obtain optimal number of executors
needed in these experiments, in practice, it is also
possible to infer some good settings through static
analysis from the graph structure, just like what we
have done above.

7.4 Graphi scheduler

Table 2 summarizes the relative training time of
Graphi compared with the naive scheduling used in
TensorFlow and MXNet on medium-sized networks
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under various parallelism configurations. Note that
in this comparison, we have eliminated all executor
thread interference, so the performance difference only
comes from the scheduler. For the sake of space, we
only show the speed-up on medium sized networks,
and the results on small/large networks are consistent.

Graphi achieved 8%-19% speed-up compared with
the naive scheduling, in which all executors indepen-
dently poll the centralized queue for operations. When
the number of executors is large (e.g. in the manycore
CPU), the heavy concurrent use of the centralized
queue causes contention. In addition, part of im-
provement is also attributed to the critical-path first
scheduling based on the operation-level profiling.

Specifically, there was greater speed-up on LSTM
and PhasedLSTM because they have many more small
operations, which results in severer contention on the
global queue in the naive scheduling. Correspondingly,
the improvement on GoogleNet is smaller because
each operation is larger, resulting in less contention
when polling the queue. Moreover, the more complex
structures of the LSTM/PhasedLSTM computation
graphs, the greater gain critical-path-first scheduling
provides. In effect, the hand-optimized LSTM imple-
mentation by cuDNN [4] follows a diagonal parallel
execution pattern for the LSTM cells on different
layers and sequence locations. We visualized the op-
eration execution trace and found the critical-path
scheduler recovered the same pattern automatically
(details omitted due to space limit), while the baseline
scheduler failed to.

8 Related Works

Modern deep learning frameworks mostly express the
computation of deep learning models in computation
graphs. Caffe [30] and neon [43] use computation
graphs with layers and explicitly labels the forward
and backward paths, which limits the overall opti-
mization opportunities. TensorFlow [2], MXNet [10],
Theano [8] and Caffe2 [55] all express the computa-
tion in the pure computation graph. Such a design
method leaves more room for optimization.

By default, the execution engines of the existing
deep learning frameworks execute the computation

graph in sequence according to its topological order.
This is conceptually simple and feasible to neural net-
works with large operation since the within-operation
parallelization is able to fully utilize the computation
resources. For neural networks with smaller opera-
tions and more complex structures, TensorFlow and
MXNet provide parallel execution engines for CPUs.
However, their simple scheduling and thread interfer-
ence often result in sub-optimal performance, espe-
cially on the manycore CPU. The Graphi execution
engine proposed in this paper surmounts these two
limitations to obtain high performance for various
neural networks on the hardware.

The idea of expressing the computation as a directed
acyclic graph (or in some context, dependence graph)
dates back to the data flow computation [15, 16] in
1970s. Much of the later work focused on optimizing
the execution performance in different scenarios espe-
cially in the compilers [13, 21, 36, 44, 45]. The work
in this paper leverages the previous idea and applies
it to a new application (deep learning computation
graph) on manycore CPU architecture.

The online scheduling problem, i.e. how to dynam-
ically schedule M jobs with dependencies to run on
N workers has been studied for decades, including
theoretical results such as achievable upper bounds
of an online algorithm [19] as well as heuristic greedy
solutions [12, 29]. The Graphi scheduler design is
inspired mainly by the critical-path first scheduling
algorithm [29] and the multiple queue skiplist sched-
uler [33].

How to eliminate thread interference has been an
important performance optimization issue on mul-
ticore or manycore CPUs. Much of previous work
focused on mapping different applications to differ-
ent cores [14] or partitioning memory for multiple
applications [40, 41]. Our work follows a similar rule-
of-thumb to assure that different threads use disjoint
resources so as to maximally reduce the resource con-
tention in the Graphi execution engine.

The manycore CPU used in our experiments runs
as an independent host. However, a manycore CPU
can be viewed as an accelerator. Related work on
optimizations for deep learning computations on the
accelerators include GPU [11], FPGA [18, 26, 66, 67]
and the first generation Intel Xeon Phi coprocessor
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(Knights Corner) [68]. Their focus was on the op-
timizations of the critical deep learning primitives,
e.g. convolution and matrix multiplication, which are
the operations of a computation graph. Our work, in
contrast, aims at optimizing the entire computation
graph, and focuses more on inter-operation optimiza-
tions.

For specific neural networks like LSTM, customized
optimizations such as operation fusion, network prun-
ing and parallel execution of the computation graph
(similar to Graphi) exist, including optimizations for
GPUs [4] and FPGAs [26]. However, these are ad-hoc
solutions specific to certain kinds of neural networks.
Classical neural network like LSTM has many variants
such as time-frequency LSTM [49], grid LSTM [31],
LSTM with layer normalization [5] and dropout [52],
phased LSTM [42], group LSTM [35], etc. Graphi is a
generic execution engine, optimized for all variations
without specializations.

9 Conclusions

This paper proposes Graphi , a generic and high-
performance execution engine for running computa-
tion graphs of deep learning models on manycore
CPUs. The focus of our work is on efficiently execut-
ing deep learning computation graphs, especially ones
with small operations and complex structures. To
achieve this goal, Graphi automatically finds the op-
timal parallel setting with profiling, minimizes the in-
terference of parallel operations, and further improves
execution efficiency with critical-path first scheduling.

Our experiments with four different neural networks
showed that Graphi outperformed TensorFlow (opti-
mized for CPU via MKL) by 2.1ˆ to 9.5ˆ on Intel
Xeon Phi processor 7250. Further detailed analysis
shows that proper parallelism without interference
improves performance by 1.2ˆ to 3.1ˆ, and better
scheduling results in 8% to 19% speed up and automat-
ically recovers a handcrafted parallelization scheme
for LSTM in cuDNN.

The work in this paper is a first step towards de-
signing an efficient parallel engine for deep learning
computation graph execution on the manycore CPU.
Beyond the scope of this paper, we also have verified

that Graphi achieves favarbale speedup on the lat-
est multicore CPUs (Intel Xeon Platinum 8180, code
named Skylake), demonstrating the generalizability
of our framework. There are several future directions,
including applying the ideas to GPUs and FPGAs as
well as the distributed systems with multiple nodes,
extending Graphi to handle dynamic computation
graphs, and further optimizing Graphi for challenging
memory hierarchies such as NUMA.
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