
Algorithms in Strategic or Noisy

Environments

Jieming Mao

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Mark Braverman

September 2018

c© Copyright by Jieming Mao, 2018.

All rights reserved.

Abstract

Algorithms are often used to interact with agents. When the input is collected from

agents instead of being directly given, designing algorithms becomes more challenging. Two

main challenges arise here: (i) agents may lie to maximize their own utility functions and

we need to take their incentives into account (ii) the uncertainty in agents’ behavior makes

the input appear to be noisy.

In this thesis, we study these two challenges in several contexts: the multi-armed bandit

problem, combinatorial auctions and rank aggregation. Our goal is to understand how these

strategic and noisy factors make the problem harder and to design new techniques which

make algorithms robust against these factors.

In Part I (Chapter 2 and Chapter 3), we study multi-armed bandit algorithms in strategic

environments where rewards are decided by actions taken by strategic agents. We show that

traditional multi-armed bandit algorithms could fail and we also develop multi-armed bandit

algorithms which achieve good performance in strategic envrionments.

In Part II (Chapter 4 and Chapter 5), we focus on combinatorial auctions which are a

natural testbed for truthful mechanisms. We characterize the power of truthful mechanisms

in several settings and make progress in understanding whether truthful mechanisms are as

powerful as algorithms.

In Part III (Chapter 6, Chapter 7 and Chapter 8), we study the top-k ranking problem. In

this problem, even if the agents are perfectly incentivized, their reported comparison results

could still be noisy caused by reasons like limit of knowledge and subjective preferences. We

deisgn algorithms which aggregate noisy comparisons to output the set of top items.

iii

Acknowledgements

Foremost, I would like to thank my advisor Mark Braverman for his support over the years.

He has always been a great role model for me and his guidance helped me to mature as a

researcher. There were numerous times when I got stuck in research, the inspiring discussions

with him led to new progress and finally many results of this thesis.

I am grateful to Matt Weinberg for his guidance, encouragement and collaboration. His

advice on both research as well as on my career has been invaluable.

I would like to thank Bernard Chazelle, Elad Hazan and Ran Raz who devoted time to

serve on my thesis committee.

I would like to thank my collaborators over the past few years: Mark Braverman, Xi

Chen, Ankit Garg, Ran Gelles, Sivakanth Gopi, Nicole Immorlica, Young Kun Ko, Yuanzhi

Li, Brendan Lucier, Rafail Ostrovsky, Jon Schneider, Vasilis Syrgkanis, Christos Tzamos,

Dave Touchette and Matt Weinberg.

I would like to thank CS department at Princeton, especially Mitra Kelly and Nicki

Gotsis for their administrative work over the years. I would like to thank grants and fel-

lowships: CCF-1215990, CCF-1149888, CCF-1525342, School of Engineering and Applied

Science Award for Excellence and Siebel Scholarship.

I would like to thank my friends, my fellow graduate students especially those people

who have been my officemates: Ankit Garg, Sumegha Garg, Sivakanth Gopi, Young Kun

Ko, Yuanzhi Li, Rafael Oliveira, Jon, Schneider and Ariel Schvartzman. They made my

graduate student daily life much more interesting.

Last but not least, I would like to thank my parents Long and Jinling for their love and

support throughout the past 27 years.

iv

To my parents, Long and Jinling.

v

Contents

Abstract . iii

Acknowledgements . iv

1 Introduction 1

1.1 Overview . 2

1.2 Preliminaries . 8

I Multi-armed Bandit Problems with Strategic Inputs 14

2 Selling to a No-Regret Buyer 15

2.1 Introduction . 15

2.2 Model and Preliminaries . 21

2.3 An Illustrative Example . 25

2.4 Conclusion and Future Directions . 38

3 Multi-armed Bandit with Strategic Arms 40

3.1 Introduction . 40

3.2 Our Model . 48

3.3 Negative Results Overview . 52

3.4 Positive Results . 57

3.5 Conclusions and Future Directions . 62

vi

II Truthful Mechanisms in Combinatorial Auctions 64

4 On Simultaneous Two-player Combinatorial Auctions 65

4.1 Introduction . 65

4.2 Intuition for the Gap: an Extremely Toy Setting 78

4.3 Warmup: Beating a 1/2-Approximation . 79

4.4 Developing Good Summaries . 83

4.5 Lower Bounds . 86

4.6 Discussion and Future Work . 87

5 Interpolating Between Truthful and non-Truthful Mechanisms for Combi-

natorial Auctions 89

5.1 Introduction . 89

5.2 Preliminaries . 96

5.3 Single-Price Mechanisms . 100

5.4 Non-Adaptive Pricing Mechanisms . 102

5.5 Maximal-In-Range Mechanisms . 104

5.6 Value Query and Computationally Efficient Mechanisms 105

III Rank Aggregation with Noisy Comparisons 106

6 Top-k Ranking with Noisy Comparisons in Rounds 107

6.1 Introduction . 107

6.2 Preliminaries and Notation . 116

6.3 Results for Non-Adaptive Algorithms . 118

6.4 Results for Multi-Round Algorithms . 121

7 Top-k Ranking under the Strong Stochastic Transitivity Model 127

7.1 Introduction . 127

vii

7.2 Preliminaries and Problem Setup . 132

7.3 Main Results . 136

7.4 Lower Bounds on the Sample Complexity of Domination 140

7.5 Domination in the Well-behaved Regime . 143

7.6 Domination in the General Regime . 152

7.7 Reducing Top-k to Domination . 160

7.8 Lower Bounds for Domination and Top-k . 164

8 Top-k Ranking under the Multinomial Logit Model 181

8.1 Introduction . 181

8.2 Algorithm . 192

8.3 Lower Bounds . 195

8.4 Additional Algorithmic Results and Proofs 196

8.5 Proofs of Lower Bounds . 210

Bibliography 227

viii

Chapter 1

Introduction

Traditional algorithms are designed to efficiently compute outputs when inputs are directly

given. In recent years, motivated by various applications on the Internet, there has been a

lot of interests understanding the performance of algorithms whose inputs are collected from

agents. For example, in crowdsourcing, data are collected from workers on crowdsourcing

platforms and later used by algorithms. As another example, in sponsered search auctions,

auctioneers’ algorithms decide how the advertisement slots are assigned based on bidders’

bids. In these examples, it is clear that we should reason about how agents provide inputs.

While doing so, two main challenges arise.

The first challenge is that, algorithms do not have the power to directly enforce agents to

provide the needed inputs. Instead, agents may strategically provide inputs which maximize

their own utility functions. In the example of sponsored search auctions, bidders don’t

necessarily need to bid their true values. In order to reason about such incentive issues,

tools from game theory and mechanism design should be used in the algorithm design.

The second chanllenge is that, even when agents are perfectly incentivized to provide their

information in a certain way, algorithms still need to face some extra uncertainty caused by

the heterogeneity among agents and noise generated in the interaction between algorithms

and agents. In the example of crowdsourcing, workers on the crowdsourcing platforms may

1

have subjective perferences and their knowledge sometimes is not sufficient for the tasks. As

a result, data collected from crowdsourcing can be noisy. Algorithms have to extract useful

information from the noisy inputs and solve algorithmic tasks.

In this thesis, we study these two challenges in the contexts of multi-armed bandit,

combinatorial auctions and rank aggregation. These problems are much better understood

in the absence of strategic or noisy factors. We focus on understanding how much more

difficult these problems become when inputs are strategic or noisy and develop tools for

algorithms in strategic or noisy environments.

1.1 Overview

In section, we give an overview of our results.

1.1.1 Multi-armed Bandit with Strategic Inputs

Multi-armed bandit is a fundamental decision problem in machine learning that models the

tradeoff between exploration and exploitation in an online setting. In the classic multi-armed

bandit problem, an algorithm A chooses one of K arms per round, over T rounds. On round

t, the algorithm receives some reward Xi,t ∈ [0, 1] for pulling arm i. Let It denote the arm

pulled by the algorithm A at round t. The regret of A is defined as

Reg(A) = max
i∈{1,...,K}

T∑
t=1

Xi,t −
T∑
t=1

XIt,t.

Good regret bounds have been achieved if the rewards Xi,t’s are drawn stochastically

or chosen by a non-adaptive (oblivious) adversary. If adversary decides rewards adaptively

according to the history, the regret notion needs to be refined to incorporate the adaptiveness.

This is addressed by the notion “policy regret” [13]. [13] showed that no algorithms can

achieve sublinear policy regret in the most general setting.

2

When multi-armed bandit algorithms are used in strategic environments, the rewards

Xi,t’s are decided by actions taken by strategic agents who may use adaptive strategies.

So the rewards cannot be simply considered as stochastic or decided by a non-adaptive

adversary. The algorithms with good regret bounds don’t simply apply here. On the other

hand, strategic agents are not completely adversarial. They want to maximize their own

utilities. So there is still hope to achieve good policy regret bounds. In Part I (Chapter 2

and Chapter 3), we study the performance of multi-armed bandit algorithms in two different

strategic settings.

In Chapter 2, we study the setting where a single seller repeatedly sells a single item to

a single buyer. The buyer is using a no-regret learning algorithm to make online decisions.

This no-regret learning algorithm is interacting with a strategic agent — the seller who

strategically maximize its own revenue. We ask the following question: if the seller knows

the buyer is no-regret learning over time, can the seller achieve average revenue more than

the Myerson revenue? Here Myerson revenue is the maximum possible revenue of selling a

single item in a single round.

This problem can be considered as a special case of a two-player repeated game where

one player is using no-regret learning and the other player is strategically maximize its own

utility. In our specific setting, we manage to chracterize the maximum utility of the strategic

player (the seller). Interestingly, this number highly depends on which no-regret learning

algorithm is used.

We show that if the buyer is using EXP3 (or any other “mean-based” learning algo-

rithm1), the seller can achieve average revenue higher than the Myerson revenue. In fact,

it can be arbitrarily close to the expected buyer’s value of the item. Even when the seller

is restricted to auction format where overbidding is always dominated, we show that the

optimal revenue can still be better than the Myerson revenue. We characterize the seller’s

1Informally, a “mean-based” learning algorithm is define as a learning algorithm which chooses arms of
higher means with much higher probabilities. This notion is formally defined in Chapter 2.

3

optimal revenue by a linear program and show that seller’s optimal strategy is a pay-your-bid

format with decreasing reserve over time.

On the other hand, if the buyer is using some sophisticated no-regret learning algorithm

taylored for this problem, we show that the seller cannot get average revenue more than

the Myerson revenue. We develop a no-regret learning algorithm for the buyer such that no

seller’s strategy can get more than the Myerson revenue. In this case, the optimal strategy

for the seller is just to post the Myerson reserve every round.

In Chapter 3, we study a different strategic environment for multi-armed bandit algo-

rithms. In this setting, each arm corresponds to a strategic agent and the principal pulls

one arm each round. When an arm gets pulled, it receives some private saving va and can

choose amount xa to pass on to the principal (keeping va − xa for itself).

We first show that algorithms that perform well in the classic adversarial multi-armed

bandit setting necessarily perform poorly: For all algorithms that guarantee low regret in an

adversarial setting, there exist distributions and an o(T)-approximate Nash equilibrium for

the arms where the principal receives reward o(T).

On the other hand, we show that there exists an algorithm for the principal that induces

a game among the arms where each arm has a dominant strategy. Moreover, for every o(T)-

approximate Nash equilibrium, the principal receives expected reward µ′T − o(T), where µ′

is the second-largest of the means of arms’ private rewards. This algorithm maintains its

guarantee if the arms are non-strategic (xa = va), and also if there is a mix of strategic and

non-strategic arms.

1.1.2 Truthful Mechanisms in Combinatorial Auctions

In a combinatorial auction, a designer with m items wishes to allocate them to n bidders

so as to maximize the social welfare. That is, if bidder i has a monotone valuation function

vi : 2[m] → R+, the designer wishes to find disjoint sets S1, . . . , Sn maximizing
∑

i vi(Si).

The history of combinatorial auctions is rich, and the problem has been considered with and

4

without incentives, with and without Bayesian priors, and in various models of computation.

The overarching theme in all of these works is to try and answer the following core question:

Are truthful mechanisms as powerful as (not necessarily truthful) algorithms?

For many instantiations of the above question, the answer is surprisingly yes. For exam-

ple, without concern for computational/communication complexity, the celebrated Vickrey-

Clarke-Groves auction is a truthful mechanism that always selects the welfare-maximizing

allocation (and therefore achieves welfare equal to that of the best algorithm) [187, 63, 110].

Of course, the welfare maximization problem is NP-hard and also requires exponential com-

munication between the bidders, even to guarantee a 1/
√
m-approximation. A poly-time al-

gorithm (with polynomial communication) is known to match this guarantee [168, 131, 43],

and interestingly, a poly-time truthful mechanism (with polynomial communication) was

later discovered as well [139].

The state of affairs gets even more interesting if we restrict to proper subclasses of mono-

tone valuations such as submodular valuations.2 Here, a very simple greedy algorithm is

known to find a 1/2-approximation in both poly(n,m) black-box value queries to each vi(·),

and polynomial runtime (in n,m, and the description complexity of each vi(·)) [140], and a se-

ries of improvements provides now a (1-1/e)-approximation, which is tight [188, 153, 83]. Yet,

another series of works also proves that any truthful mechanism that runs in polynomial time

(in n,m, and the description complexity of each vi(·)), or makes only poly(n,m) black-box

value queries to each vi(·) achieves at best an 1/mΩ(1)-approximation [67, 75, 87, 84]. So while

poly-time algorithms, or algorithms making poly(n,m) black-box value queries can achieve

constant-factor approximations, poly-time truthful mechanisms and truthful mechanisms

making poly(n,m) black-box value queries can only guarantee an 1/mΩ(1)-approximation,

and there is a separation.

In Part II (Chapter 4 and Chapter 5), we study the power of truthful mechanisms in two

less well-understood settings.

2A function is submodular if v(S) + v(T) ≥ v(S ∪ T) + v(S ∩ T).

5

In Chapter 4, we focus on truthful mechanisms with polynomial communication. It is

motivated by posted-price mechanisms which are truthful mechanisms with polynomial many

demand queries. The hardness results discussed above don’t simply apply to posted-price

mechanisms since a demand query is NP-hard or requires exponential many value queries

to answer. However, posted-price mechanisms are considered “natural” and their approxi-

mation ratios have been subsequently improved to 1/O(
√

logm) [81, 74, 134, 76] for XOS

valuations3. No separation between polytime algorithms and posted-price mechanisms is

known. Recently, [77] provided a clear path to possibly proving a separation. The paper

shows that for XOS valuations, a posted-price mechanism for two bidders implies a simul-

taneous communication protocol with polynomial communication cost and therefore lower

bounds on simultaneous communication complexity would imply lower bounds on posted-

price mechanisms. We follow this direction to study the simultaneous communication com-

plexity of two-player combinatorial auctions. We give a tight characterization for the binary

XOS valuation class (a special case of XOS) and also extensions for general XOS valuations.

In Chapter 5, we study the power of interpolation mechanisms that interpolate between

non-truthful and truthful protocols. Specifically, an interpolation mechanism has two phases.

In the first phase, the bidders participate in some non-truthful protocol whose output is itself

a truthful protocol. In the second phase, the bidders participate in the truthful protocol

selected during phase one. Note that virtually all existing auctions have either a non-existent

first phase (and are therefore truthful mechanisms), or a non-existent second phase (and are

therefore just traditional protocols, analyzed via the Price of Anarchy/Stability).

The goal of this chapter is to understand the benefits of interpolation mechanisms versus

truthful mechanisms or traditional protocols, and develop the necessary tools to formally

study them. Interestingly, we exhibit settings where interpolation mechanisms greatly out-

perform the optimal traditional and truthful protocols. Yet, we also exhibit settings where

interpolation mechanisms are provably no better than truthful ones. Finally, we apply our

3A function is XOS if it is the maximum of additive functions.

6

new machinery to prove that the single-bid mechanism of Devanur et. al. [70] achieves the

optimal price of anarchy among a wide class of protocols.

1.1.3 Rank Aggregation with Noisy Comparisons

Rank aggregation is an important problem in machine learning and it finds many applications

in crowdsourcing, recommendation systems, peer grading and web search. We focus on the

problem called top-k (or partition): Given a set of n items with an unknown underlying

order, output the set of top-k items out of n items using comparison results collected from

agents. In these applications, the noise in the communication and the subjective preferences

among agents make the comparison results noisy. In Part III (Chapter 6, Chapter 7 and

Chapter 8), we study several interesting aspects of the top-k problem with noisy comparisons.

In Chapter 6, we study the round complexity of top-k algorithms. In many of these

applications, multiple rounds of interaction are costly. For example, in peer grading, each

round of interaction might take a week. We study the tradeoff between the round complexity

(the adaptiveness of algorithms) and the sample complexity (how many samples are needed)

of the top-k ranking problem in standard noise models4. We first show that one-round

algorithms have much worse performance than fully adaptive algorithms. Then we tightly

characterize the minimum number of rounds an algorithm requires to achieve the performance

of fully adaptive algorithms. Surprisingly, this number is quite small: 4 and Θ(log∗(n)) in

the noise models we study, despite the poor performance of one-round algorithms.

In Chapter 7, we study a more general noise model named strong stochastic transitivity

(SST) noise model. SST requires that for any items i, j, l, the probability we observe item

i beats item l in the comparisons is at least the probability we observe item j beats item

l. In this chapter, we present an algorithm which has a competitive ratio of Õ(
√
n); i.e. to

solve any instance of the top-k problem, our algorithm needs at most Õ(
√
n) times as many

samples needed as the best possible algorithm for that instance. In contrast, all previous

4Two noise models we consider here are: erasure (each comparison is erased with probability 1− γ) and
noisy (each comparison is correct with probability 1/2 + γ/2 and incorrect otherwise.

7

known algorithms for the top-k problem have competitive ratios of Ω̃(n) or worse. We further

show that this is tight up to polylogarithmic factors: any algorithm for the top-k problem

has competitive ratio at least Ω̃(
√
n). Our result is very related to the notion “instance

optimal” [96] and it directly implies that there are no instance optimal algorithms under the

SST noise model.

In Chapter 8, we study the top-k problem under the multinomial logit (MNL) model

to understand how much more helpful multi-wise comparisons are. In MNL, a multi-wise

comparison within set S will return item i with probability θi∑
j∈S θj

for i ∈ S. Here θi is the

underlying preference score of item i. We design a new active ranking algorithm without

using any information about the underlying items’ preference scores. We also establish a

matching lower bound on the sample complexity even when the set of preference scores is

given to the algorithm. These two results together show that the proposed algorithm is

nearly instance optimal. With this tight sample complexity bound, we also characterize

when multi-wise comparisons are more helpful than pairwise comparisons.

1.2 Preliminaries

In this section, we describe some tools we use throughout the thesis.

1.2.1 Game Theory

Here we review some standard definitions from game theory which are used in Part I and

Part II.

Consider a finite game with n players. Player i has a set of strategies Si and it can

choose a mixed strategy xi ∈ ∆Si (a distribution over the strategy set Si). For a strategy

profile s = (s1, ..., sn), player i’s utility is defined as ui(s). For a mixed strategy profile

x = (x1, ..., xn), player i’s expected utility is defined as ui(x) = Es∼x[ui(s)]. We use notation

x−i to denote the mixed strategies of all players except player i.

8

Definition 1.2.1 (Nash Equilibrium). A mixed strategy profile x is a Nash equilbrium if for

all i ∈ [n] and si ∈ Si,

ui(x) ≥ ui(si, x−i).

Definition 1.2.2 (ε-Nash Equilibrium). A mixed strategy profile x is an ε-Nash equilbrium

if for all i ∈ [n] and si ∈ Si,

ui(x) ≥ ui(si, x−i)− ε.

Definition 1.2.3 (Dominant Strategy). We say that strategy xi is a dominant strategy for

player i, if for all x−i and si ∈ Si,

ui(xi, x−i) ≥ ui(si, x−i).

1.2.2 Information Theory

We briefly review some standard facts and definitions from information theory which is used

in Chapter 4, Chapter 6 and Chapter 7. For a more detailed introduction, we refer the reader

to [66].

Throughout this thesis, we use log to refer to the base 2 logarithm and use ln to refer to

the natural logarithm.

Definition 1.2.4. The entropy of a random variable X, denoted by H(X), is defined as

H(X) =
∑

x Pr[X = x] log(1/Pr[X = x]).

If X is drawn from Bernoulli distributions B(p), we use H(p) = −(p log p+(1−p)(log(1−

p)) to denote H(X).

Definition 1.2.5. The conditional entropy of random variable X conditioned on random

variable Y is defined as H(X|Y) = Ey[H(X|Y = y)].

Fact 1.2.1. H(XY) = H(X) +H(Y |X).

9

Definition 1.2.6. The mutual information between two random variables X and Y is defined

as I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X).

Definition 1.2.7. The conditional mutual information between X and Y given Z is defined

as I(X;Y |Z) = H(X|Z)−H(X|Y Z) = H(Y |Z)−H(Y |XZ).

Fact 1.2.2. Let X1, X2, Y, Z be random variables, we have I(X1X2;Y |Z) = I(X1;Y |Z) +

I(X2;Y |X1Z).

Fact 1.2.3. Let X, Y, Z,W be random variables. If I(Y ;W |X,Z) = 0, then I(X;Y |Z) ≥

I(X;Y |ZW).

Fact 1.2.4. Let X, Y, Z,W be random variables. If I(Y ;W |Z) = 0, then I(X;Y |Z) ≤

I(X;Y |ZW).

Definition 1.2.8. The Kullback-Leibler divergence between two random variables X and Y

is defined as D(X‖Y) =
∑

x Pr[X = x] log(Pr[X = x]/Pr[Y = x]).

If X and Y are drawn from Bernoulli distribution Bp and Bq, we write D(p‖q) as an

abbreviation for D(X‖Y).

Fact 1.2.5. Let X, Y, Z be random variables, we have I(X;Y |Z) = Ex,z[D((Y |X = x, Z =

z)‖(Y |Z = z))].

Fact 1.2.6. Let X, Y be random variables,

∑
x

|Pr[X = x]− Pr[Y = x]|2

2 max{Pr[X = x],Pr[Y = x]}
≤ ln(2) ·D(X‖Y) ≤

∑
x

|Pr[X = x]− Pr[Y = x]|2

Pr[Y = x]
.

10

Proof. For notation convenience, let p(x) = Pr[X = x] and q(x) = Pr[Y = x]. Let’s first

prove the right-hand side.

ln(2) ·D(X‖Y) =
∑
x

p(x) ln

(
p(x)

q(x)

)

≤ ln

(∑
x

p(x)2

q(x)

)
(by concavity of ln(z))

≤
∑
x

p(x)2

q(x)
− 1

=
∑
x

(p(x)− q(x))2

q(x)
.

For the left-hand side, consider any convex function f such that f ′′(x) ≥ m > 0 for all

x ∈ [a, b]. By strong convexity, for x, y ∈ [a, b], we have

f(y) ≥ f(x) + f ′(x)(y − x) +
m(y − x)2

2
.

Let f(x) = x lnx. For x ∈ [a, b], we have f ′′(x) ≥ 1
b
. Therefore,

a ln a ≥ b ln b+ (a− b)(1 + ln b) +
(a− b)2

2b
.

and then

a ln
(a
b

)
≥ (a− b) +

(a− b)2

2b
.

Similarly, we have

b ln

(
b

a

)
≥ (b− a) +

(a− b)2

2b
.

11

Thus

ln(2) ·D(X‖Y) =
∑
x

p(x) ln

(
p(x)

q(x)

)
≥

∑
x

[
p(x)− q(x) +

(p(x)− q(x))2

2 max{p(x), q(x)}

]
=

∑
x

(p(x)− q(x))2

2 max{p(x), q(x)}
.

1.2.3 Communication Complexity

The two-party communication model was introduced by Yao [190]. Here we review some

definitions and notations in communication complexity which are used in Chapter 4 and

Chapter 5. For a more detailed introduction, see [135].

In the two-party communication model, Alice and Bob want to jointly compute a function

f : X ×Y → Z. Alice is only given input x ∈ X and Bob is only given input y ∈ Y . In order

to compute function f , they have to communicate with each other following a protocol π

which specifies when the communication is over, who sends the next bit if the communication

is not over, and the function of each transmitted bit given the history, the input of the person

who sends this bit and the shared randomness. The transcript of a protocol is a concatenation

of all bits exchanged. The communication cost of a communication protocol π is define as

the maxmimum number of bits exchanged on the worst input.

Definition 1.2.9 (Deterministic Communication Complexity). For a function f : X ×Y →

Z, the deterministic communication complexity of f is defined as the communication cost of

the best deterministic protocol for computing f .

Definition 1.2.10 (Randomized Communication Complexity). For a function f : X ×

Y → Z and a parameter ε > 0, the randomized communication complexity of f denotes the

12

communication cost of the best randomized protocol for computing f with error at most ε on

every input.

The two-party communication model can be generalized to the multi-party number-in-

hand model. In this model, there are k players, each with a private input Xi and players

wish to compute a joint function f(X1, ..., Xk). In Chapter 4 and Chapter 5, we focus on the

communication model in the context of combinatorial auctions. This model is a special case

of the multi-party number-in-hand model. The players are the bidders and the auctioneer.

Each bidder’s input is its valuation function and the goal is to output the optimal allocation

of items.

13

Part I

Multi-armed Bandit Problems with

Strategic Inputs

14

Chapter 2

Selling to a No-Regret Buyer

The results of this chapter are based on joint work with Mark Braverman, Jon Schneider

and Matt Weinberg [37].

2.1 Introduction

Consider a bidder trying to decide how much to bid in an auction (for example, a spon-

sored search auction). If the auction happens to be the truthful Vickrey-Clarke-Groves

auction [187, 63, 110], then the bidder’s decision is easy: simply bid your value. If instead,

the bidder is participating in a Generalized First-Price (GFP) or Generalized Second-Price

(GSP) auction, the optimal strategy is less clear. Bidders can certainly attempt to compute

a Bayes-Nash equilibrium of the associated game and play accordingly, but this is unrealistic

due to the need for accurate priors and extensive computation.

Alternatively, the bidders may try to learn a best-response over time (possibly offloading

the learning to commercial bid optimizers). We specifically consider bidders who no-regret

learn, as empirical work of [160] shows that bidder behavior on Bing is largely consistent

with no-regret learning (i.e. for most bidders, there exists a per-click value such that their

behavior guarantees no-regret for this value). From the perspective of a revenue-maximizing

15

auction designer, this motivates the following question: If a seller knows that buyers

are no-regret learning over time, how should they maximize revenue?

This question is already quite interesting even when there is just a single item for sale

to a single buyer. We consider a model where in every round t, the seller solicits a bid

bt ∈ [0, 1] from the buyer, then allocates the item according to some allocation rule xt(·)

and charges the bidder according to some pricing rule pt(·) (satisfying pt(b) ≤ b · xt(b) for all

t, b).1 Note that the allocation and pricing rules (henceforth, auction) can differ from round

to round, and that the auction need not be truthful. Each round, the bidder has a value vt

drawn independently from D, and uses some no-regret learning algorithm to decide which

bid to place in round t, based on the outcomes in rounds 1, . . . , t − 1 (we will make clear

exactly what it means for a buyer with changing valuation to play no-regret in Section 2.2,

but one can think of vt as providing a “context” for the bidder during round t). The same

mathematical model can also represent a population D of many indistinguishable buyers

with fixed values who each separately no-regret learn - see Section 2.2.3 for further details.

One default strategy for the seller is to simply to set Myerson’s revenue-optimal reserve

price for D, r(D), in every round (that is, xt(bt) = I(bt ≥ r(D)), pt(bt) = r(D) · I(bt ≥ r(D))

for all t, where I(·) is the indicator function). It’s not hard to see that any no-regret learning

algorithm will eventually learn to submit a winning bid during all rounds where vt > r(D),

and a losing bid whenever vt < r(D). Note that this observation appeals only to the fact

that the buyer guarantees no-regret, and makes no reference to any specific algorithm the

buyer might use. So if Rev(D) denotes the expected revenue of the optimal reserve price

when a single buyer is drawn from D, the default strategy guarantees the seller revenue

T · Rev(D)− o(T) over T rounds. The question then becomes whether or not the seller can

beat this benchmark, and if so by how much.

The answer to this question isn’t a clear-cut yes or no, so let’s start with the following

instantiation: how much revenue can the seller extract if the buyer runs EXP3 [18]? In

1Of course, the pricing rule can be implemented by charging pt(b)/xt(b) whenever the item is awarded if
ex-post individual rationality is desired.

16

Theorem 2.3.1, we show that the seller can actually do much better than the default strategy:

it’s possible to extract revenue per round equal to (almost) the full expected welfare! That

is, if Val(D) = Ev←D[v], there exists an auction that extracts revenue T · Val(D) − o(T) for

all D.2 It turns out this result holds not only for EXP3, but for any learning algorithm

with the following (roughly stated) property: if at time t, the mean reward of action a

is significantly larger than the mean reward of action b, the learning algorithm will choose

action b with negligible probability. We call a learning algorithm with this property a “mean-

based” learning algorithm and note that many commonly used learning algorithms - EXP3,

Multiplicative Weights Update [14], and Follow-the-Perturbed-Leader [114, 128, 129] - are

‘mean-based’ (see Section 2.2 for a formal definition).

We postpone all intuition until Section 2.3.1 with a worked-through example, but just

note here that the auction format is quite unnatural: it “lures” the bidder into submitting

high bids early on by giving away the item for free, and then charging very high prices (but

still bounded in [0, 1]) near the end. The transition from “free” to “high-price” is carefully

coordinated across different bids to achieve the revenue guarantee.

This result motivates two further directions. First, do there exist other no-regret algo-

rithms for which full surplus extraction is impossible for the seller? In Theorem 2.3.2, we

show that the answer is yes. In fact, there is a simple no-regret algorithm A, such that

when the bidder uses algorithm A to bid, the default strategy (set the Myerson reserve every

round) is optimal for the seller. We again postpone a formal statement and intuition to

Section 2.3.2, but just note here that the algorithm is a natural adaptation of EXP3 (or in

fact, any existing no-regret algorithm) to our setting.

Finally, it is reasonable to expect that bidders might use off-the-shelf no-regret learning

algorithms like EXP3, so it is still important to understand what the seller can hope to

achieve if the buyer is specifically using such a “mean-based” algorithm (formal definition

in Section 2.2). Theorem 2.3.1 is perhaps unsatisfying in this regard because the proposed

2The order of quantifiers in this sentence is correct: it is actually the same auction format that works for
all D.

17

auction is so unnatural. It turns out that the key property separating natural untruthful

auctions (e.g. GSP/GFP) from the unnatural auction above is whether overbidding is a

dominated strategy. That is, in our unnatural auction, if the bidder truly hopes to guarantee

low regret they must seriously consider overbidding (and this is how the auction lures them

into bidding way above their value). In both GSP and GFP, overbidding is dominated, so

the bidder can guarantee no regret while overbidding with probability 0 in every round.

The final question we ask is the following: if the buyer is using EXP3 (or any “mean-

based” algorithm), never overbids (we call such a bidder conservative), how much revenue

can the seller extract using an auction where overbidding is dominated in every round? It

turns out that the auctioneer can still outperform the default strategy, but not extract full

welfare. Instead, we identify a linear program (as a function of D) that tightly characterizes

the optimal revenue the seller can achieve in this setting when the buyer’s values are drawn

from D. Moreover, we show that the auction that achieves this guarantee is natural, and can

be thought of as a pay-your-bid auction with decreasing reserves over time. Finally, we show

that this “mean-based revenue” benchmark, MBRev(D) lies truly in between the Myerson

revenue and the expected welfare: for all c, there exists a distribution D over values such that

c · T · Rev(D) < MBRev(D) < 1
c
· T ·Val(D). In other words, the seller’s mean-based revenue

may be unboundedly better than the default strategy, yet simultaneously unboundedly far

from the expected welfare. We provide formal statements and a detailed proof overview of

these results in Section 2.3.3. To briefly recap, our main results are the following:

1. If the buyer uses a “mean-based” learning algorithm like EXP3, the seller can extract

revenue (1− ε)T · Val(D)− o(T) for any constant ε > 0 (Theorem 2.3.1).

2. There exists a natural no-regret algorithm A such that when the buyer bids according

to A, the seller’s default strategy (charging the Myerson reserve every round) is optimal

(Theorem 2.3.2).

18

3. If the buyer uses a “mean-based” algorithm only over undominated strategies, the seller

can extract revenue MBRev(D) using an auction where overbidding is dominated in

every round. Moreover, we characterize MBRev(D) as the value of a linear program, and

show it can be simultaneously unboundedly better than T · Rev(D) and unboundedly

worse than T · Val(D) (Theorems 2.3.4, 2.3.3 and 2.3.5).

Our plan for the remaining sections is as follows. Below, we overview our connection to

related work. Section 2.2 formally defines our model. Section 2.3 works through a concrete

example, providing intuition for all three results. Section 2.4 discusses conclusions and open

problems.

2.1.1 Related Work

There are two lines of work that are most related to ours. The first is that of dynamic

auctions, such as [164, 15, 151, 152, 143]. Like our model, there are T rounds where the

seller has a single item for sale to a single buyer, whose value is drawn from some distribution

every round. However, the buyer is fully strategic and processes fully how their choices today

affect the seller’s decisions tomorrow (e.g. they engage with deals of the form “pay today to

get the item tomorrow”). Additional closely related work is that of Devanur et al. studying

the Fishmonger problem [73, 122]. Here, there is again a single buyer and seller, and T

rounds of sale. Unlike our model, the buyer draws a value from D once during round 0 and

that value is fixed through all T rounds (so the seller could try to learn the buyer’s value

over time). Also unlike our model, they study perfect Bayesian equilibria (where again the

buyer is fully strategic, and reasons about how their actions today affect the seller’s behavior

tomorrow).

In contrast to these works, while buyers in our model do care about the future (e.g. they

value learning), they don’t reason about how their actions today might affect the seller’s

decisions tomorrow. Our model better captures settings where full information about the

19

auction is not public (and fully strategic reasoning is simply impossible without the necessary

information).

Other related work considers the Price of Anarchy of simple combinatorial auctions

when bidders no-regret learn [173, 181, 160, 68]. One key difference between this line of

work and ours is that these all study welfare maximization for combinatorial auctions with

rich valuation functions. In contrast, our work studies revenue maximization while selling

a single item. Additionally, in these works the seller commits to a publicly known auction

format, and the only reason for learning is due to the strategic behavior of other buyers. In

contrast, buyers in our model have to learn even when they are the only buyer, due to the

strategic nature of the seller.

Recent work has also considered learning from the perspective of the seller. In these

works, the buyer’s (or buyers’) valuations are drawn from an unknown distribution, and the

seller’s goal is to learn an approximately optimal auction with as few samples as possible [65,

71, 155, 156, 109, 47, 85]. These works consider numerous different models and achieve a

wide range of guarantees, but all study the learning problem from the perspective of the

seller, whereas the buyer is simply myopic and participates in only one round. In contrast,

it is the buyer in our model who does the learning (and there is no information for the seller

to learn: the buyer’s values are drawn fresh in every round).

Finally, no-regret learning in online decision problems is an extremely well-studied prob-

lem. When feedback is revealed for every possible action, one well-known solution is the

multiplicative weight update rule which has been rediscovered and applied in many fields

(see survey [14] for more details). Another algorithmic scheme for the online decision prob-

lem is known as Follow the Perturbed Leader [114, 128, 129]. When only feedback for the

selected action is revealed, the problem is referred to as the multi-armed bandit problem.

Here, similar ideas to the MWU rule are used in developing the EXP3 algorithm [18] for

adversarial bandit model, and also for the contextual bandit problem [138]. Our algorithm

in Theorem 2.3.2 bears some similarities to the low swap regret algorithm introduced in [28].

20

See the survey [45] for more details about the multi-armed bandit problem. Our results hold

in both models (i.e. whether the buyer receives feedback for every bid they could have made,

or only the bid they actually make), so we will make use of both classes of algorithms.

In summary, while there is already extensive work related to repeated sales in auctions,

and even no-regret learning with respect to auctions (from both the buyer and seller perspec-

tive), our work is the first to address how a seller might adapt their selling strategy when

faced with a no-regret buyer.

2.2 Model and Preliminaries

We consider a setting with 1 buyer and 1 seller. There are T rounds, and in each round

the seller has one item for sale. At the start of each round t, the buyer’s value v(t) (known

only to the buyer) for the item is drawn independently from some distribution D (known to

both the seller and the buyer). For simplicity, we assume D has a finite support3 of size m,

supported on values 0 ≤ v1 < v2 < · · · < vm ≤ 1. For each i ∈ [m], vi has probability qi of

being drawn under D.

The seller then presents K options for the buyer, which can be thought of as “possible

bids” (we will interchangeably refer to these as options, bids, or arms throughout the paper,

depending on context). Each arm i is labelled with a bid value bi ∈ [0, 1], with b1 < . . . , < bK .

Upon pulling this arm at round t, the buyer receives the item with some allocation probability

ai,t, and must pay a price pi,t ∈ [0, ai,t · bi]. These values ai,t and pi,t are chosen by the seller

during time t, but remain unknown to the buyer until he plays an arm, upon which he

learns the values for that arm. All of our positive results (i.e. strategies for the seller) are

non-adaptive (in some places called oblivious), in the sense that that ai,t, pi,t are set before

the first round starts. All of our negative results (i.e. upper bounds on how much a seller

3If D instead has infinite support, all our results hold approximately after discretization to multiples of
ε. If D is bounded in [0, H], then all our results hold after normalizing D by dividing by H.

21

can possibly attain) hold even against fully adaptive sellers, where ai,t and pi,t can be set

even after learning the distribution of arms the buyer intends to pull in round t.

In order for the selling strategies to possibly represent natural auctions, we require the

allocation/price rules to be monotone. That is, if i > j, then for all t, ai,t ≥ aj,t and pi,t ≥ pj,t.

In other words, bidding higher should result in a (weakly) higher probability of receiving the

item and (weakly) higher expected payment. We’ll also insist on the existence of an arm 0

with bid b0 = 0 and a0,t = 0 for all t; i.e., an arm which charges nothing but does not give

the item. Playing this arm can be thought of as not participating in the auction.

2.2.1 Bandits and experts

Our goal is to understand the behavior of such mechanisms when the buyer plays according

to some no-regret strategy for the multi-armed bandit problem. In the classic multi-armed

bandit problem a learner (in our case, the buyer) chooses one of K arms per round, over

T rounds. On round t, the learner receives a reward ri,t ∈ [0, 1] for pulling arm i (where

the values ri,t are possibly chosen adversarially). The learner’s goal is to maximize his total

reward.

Let It denote the arm pulled by the principal at round t. The regret of an algorithm

A for the learner is the random variable Reg(A) = maxi
∑T

t=1 ri,t −
∑T

t=1 rIt,t. We say an

algorithm A for the multi-armed bandit problem is δ-no-regret if E[Reg(A)] ≤ δ (where the

expectation is taken over the randomness of A). We say an algorithm A is no-regret if it is

δ-no-regret for some δ = o(T).

In the multi-armed bandits setting, the learner only learns the value ri,t for the arm i

which he pulls on round t. In our setting, the learner will learn ai,t and pi,t explicitly (from

which they can compute ri,t). Our results (both positive and negative) also hold when the

learner learns the value ri,t for all arms i (we refer this full-information setting as the experts

setting, in contrast to the partial-information bandits setting). Simple no-regret algorithms

exist in both the experts setting and the bandits setting. Of special interest in this paper

22

will be a class of learning algorithms for the bandits problem and experts problem which we

term ‘mean-based’.

Definition 2.2.1 (Mean-Based Learning Algorithm). Let σi,t =
∑t

s=1 ri,s. An algorithm

for the experts problem or multi-armed bandits problem is γ-mean-based if it is the case that

whenever σi,t < σj,t − γT , then the probability that the algorithm pulls arm i on round t is

at most γ. We say an algorithm is mean-based if it is γ-mean-based for some γ = o(1).

Intuitively, ‘mean-based’ algorithms will rarely pick an arm whose current mean is signif-

icantly worse than the current best mean. Many no-regret algorithms, including commonly

used variants of EXP3 (for the bandits setting), the Multiplicative Weights algorithm (for

the experts setting) and the Follow-the-Perturbed-Leader algorithm (experts setting), are

mean-based (see the full version of [37]).

Contextual bandits

In our setting, the buyer has the additional information of their current value for the item,

and hence is actually facing a contextual bandits problem. In (our variant of) the contextual

bandits problem, each round t the learner is additionally provided with a context ct drawn

from some distribution D supported on a finite set C (in our setting, ct = v(t), the buyer’s

valuation for the item at time t). The adversary now specifies rewards ri,t(c), the reward

the learner receives if he pulls arm i on round t while having context c. If we are in the

full-information (experts) setting, the learner learns the values of ri,t(ct) for all arms i after

round t, where as if we are in the partial-information (bandits) setting, the learner only

learns the value of ri,t(ct) for the arm i that he pulled.

In the contextual bandits setting, we now define the regret of an algorithm A

in terms of regret against the best “context-specific” policy π; that is, Reg(A) =

maxπ:C→[K]

∑T
t=1 rπ(ct),t(ct) −

∑T
t=1 rIt,t(ct), where again It is the arm pulled by M on

round t. As before, we say an algorithm is δ-low regret if E[Reg(M)] ≤ δ, and say an

algorithm is no-regret if it is δ-no-regret for some δ = o(T).

23

If the size of the context set C is constant with respect to T , then there is a simple way

to construct a no-regret algorithm M ′ for the contextual bandits problem from a no-regret

algorithm M for the classic bandits problem: simply maintain a separate instance of M

for every different context v ∈ C (in the contextual bandits literature, this is sometimes

referred to as the S-EXP3 algorithm [45]). We call the algorithm we obtain this way its

contextualization, and denote it as cont(M).

If we start with a mean-based learning algorithm, then we can show that its contextual-

ization satisfies an analogue of the mean-based property for the contextual-bandits problem.

Definition 2.2.2 (Mean-Based Contextual Learning Algorithm). Let σi,t(c) =
∑t

s=1 ri,s(c).

An algorithm for the contextual bandits problem is γ-mean-based if it is the case that whenever

σi,t(c) < σj,t(c)−γT , then the probability pi,t(c) that the algorithm pulls arm i on round t if it

has context c satisfying pi,t(c) < γ. We say an algorithm is mean-based if it is γ-mean-based

for some γ = o(1).

Theorem 2.2.1. If an algorithm for the experts problem or multi-armed bandits problem

is mean-based, then its contextualization is also a mean-based algorithm for the contextual

bandits problem.

Finally, we will refer to learning algorithms that never overbid as conservative. We will

sometimes abuse notation and instead refer to a buyer employing a conservative algorithm

as conservative.

2.2.2 Welfare and monopoly revenue

In order to evaluate the performance of our mechanisms for the seller, we will compare the

revenue the seller obtains to two benchmarks from the single-round setting of a seller selling

a single item to a buyer with value drawn from distribution D.

24

The first benchmark we consider is the welfare of the buyer, the expected value the buyer

assigns to the item. This quantity clearly upper bounds the expected revenue that the seller

can hope to extract per round.

Definition 2.2.3. The welfare, Val(D) is equal to Ev∼D[v].

The second benchmark we consider is the monopoly revenue, the maximum possible

revenue attainable by the seller in one round against a rational buyer. Seminal work of My-

erson [157] shows that this revenue is attainable by setting a fixed price (“monopoly/Myerson

reserve”) for the item, and hence can be characterized as follows.

Definition 2.2.4. The monopoly revenue (alternatively, Myerson revenue) Mye(D) is equal

to maxp p · Prv∼D[v ≥ p].

2.2.3 A final note on the model

For concreteness, we chose to phrase our problem as one where a single bidder whose value is

repeatedly drawn independently from D each round engages in no-regret learning with their

value as context. Alternatively, we could imagine a population of m different buyers, each

with a fixed value vi. Each round, exactly one buyer arrives at the auction, and it is buyer i

with probability qi. The buyers are indistinguishable to the seller, and each buyer no-regret

learns (without context, because their value is always vi). This model is mathematically

equivalent to ours, so all of our results hold in this model as well if the reader prefers this

interpretation instead.

2.3 An Illustrative Example

In this section, we overview an illustrative example to show the difference between

mean-based and non-mean-based learning algorithms, and between conservative and non-

conservative learners. We will not prove all claims in this section (nor carry out all

25

calculations) as it is only meant to illustrate and provide intuition. Throughout this section,

the running example will be when D samples 1/4 with probability 1/2, 1/2 with probability

1/4, and 1 with probability 1/4. Note that Val(D) = 1/2 and Rev(D) = 1/4.

2.3.1 Mean-Based Learning

Let’s first consider what the seller can do with an auction when the buyer is running a

mean-based (non-conservative) learning algorithm like EXP3. The seller will let the buyer

bid 0 or 1. If the buyer bids 0, they pay nothing but do not receive the item (recall that an

arm of this form is required). If the buyer bids 1 in round t, they receive the item and pay

some price pt as follows: for the first half of the game (1 ≤ t ≤ T/2), the seller sets pt = 0.

For the second half of the game (T/2 < t ≤ T), the seller sets pt = 1.

Let’s examine the behaviour of the buyer, recalling that they run a mean-based learning

algorithm, and therefore (almost) always pull the arm with highest cumulative utility. The

buyer with value 1 will happily bid 1 all the way through, since he is always offered the

item for less than or equal to his value for the item. The buyer with value 1/2 will bid 1

for the first T/2 rounds, accumulating a surplus (i.e., negative regret) of 1/2 per round. For

the next T/2 rounds, this surplus slowly disappears at the rate of 1/2 per round until it

disappears at time T , so the bidder with value 1/2 will bid 1 all the way through. Finally,

the bidder with value 1/4 will bid 1 for the first T/2 rounds, accumulating surplus at a rate

of 1/4 per round. After round T/2, this surplus decreases at a rate of 3/4 per round, until

at round 2T/3 his cumulative utility from bidding 1 reaches 0 and he switches to bidding 0.

Now let’s compute the revenue. From round T/2 through 2T/3, the buyer always buys

the item at a price of 1, so the seller obtains T/6 revenue. Finally, from round 2T/3 through

T , the buyer purchases the item with probability 1/2 and pays 1. The total revenue is

0 + T/6 + T/6 = T/3. Note that if the seller used the default strategy, they would extract

revenue only T/4.

26

Where did our extra revenue come from? First, note that the welfare of the buyer in

this example is quite high: the bidder gets the item the whole way through when v ≥ 1/2,

and two-thirds of the way through when v = 1/4. One reason why the welfare is so high is

because we give the item away for free in the early rounds. But notice also that the utility

of the buyer is quite low: the buyer actually has zero utility when v ≤ 1/2, and utility 1/2

when v = 1. The reason we’re able to keep the utility low, despite giving the item away

for free in the early rounds is because we overcharge the bidders in later rounds (and they

choose to overpay, exactly because their learning is mean-based).

In fact, by offering additional options to the buyer, we show that it is possible for the

seller to extract up to the full welfare from the buyer (e.g. a net revenue of T/2 − o(T)

for this example). As in the above example, our mechanism makes use of arms which are

initially very good for the buyer (giving the item away for free, accumulating negative regret),

followed by a period where they are very bad for the buyer (where they pay more than their

value). The trick in the construction is making sure that the good/bad intervals line up so

that: a) the buyer purchases the item in every round, no matter their value (this is necessary

in order to possibly extract full welfare) and b) by round T , the buyer has zero (arbitrarily

small) utility, no matter their value.

Getting the intervals to line up properly so that any mean-based learner will pick the

desired arms still requires some work. But interestingly, our constructed mechanism is non-

adaptive and prior-independent (i.e. the same mechanism extracts full welfare for all D).

Theorem 2.3.1 below formally states the guarantees. The construction itself and the proof

appear in the full version of [37].

Theorem 2.3.1. If the buyer is running a mean-based algorithm, for any constant ε > 0,

there exists a strategy for the seller which obtains revenue at least (1− ε)Val(D)T − o(T).

Two properties should jump out as key in enabling the result above. The first is that the

buyer only has no regret towards fixed arms and not towards the policy they would have

used with a lower value (this is what leads the buyer to continue bidding 1 with value 1/2

27

even though they have already learned to bid 0 with value 1/4). This suggests an avenue

towards an improved learning algorithm: have the bidder attempt to have no regret not

only towards each fixed arm, but also towards the policy of play produced when having

different values. This turns out to be exactly the right idea, and is discussed in the following

subsection below.

The second key property is that we were able to “lure” the bidders into playing an arm

with a free item, then overcharge them later to make up for lost revenue. This requires that

the bidder consider pulling an arm with maximum bid exceeding their value, which will never

happen for a conservative bidder. It turns out it is still possible to do better than the default

strategy against conservative bidders, but not as well as against non-conservative mean-based

bidders. Section 2.3.3 explores conservative mean-based bidders for this example.

2.3.2 Better Learning

In our bad example above, the buyer with value 1/2 for the item slowly spends the second

half of the game losing utility. While his behaviour is still no-regret (he ends up with zero

net utility, which indeed is at least as good as only bidding 0), he would have been much

happier to follow the actions of the buyer with value 1/4, who started bidding 0 at 2T/3.

Using this idea, we show how to construct a no-regret algorithm for the buyer (Algorithm

1) such that the seller receives at most the Myerson revenue every round. We accomplish this

by extending an arbitrary no-regret algorithm (e.g. EXP3) by introducing “virtual arms” for

each value, so that each buyer with value v has low regret not just with respect to every fixed

bid, but also no-regret with respect to the policy of play as if they had a different value v′ for

the item (for all v′ < v). In some ways, our construction is very similar to the construction

of low internal-regret (or swap-regret) algorithms from low external-regret algorithms. The

main difference is that instead of having low regret with respect to swapping actions, we have

low regret with respect to swapping contexts (i.e. values). Theorem 2.3.2 below states that

28

the seller cannot outperform the default strategy against buyers who use such algorithms to

learn.

Theorem 2.3.2. There exists a no-regret algorithm (Algorithm 1) for the buyer against

which every seller strategy extracts no more than Mye(D)T +O(m
√
δT) revenue.

Algorithm 1 No-regret algorithm for buyer where the seller achieves no more than
Mye(D)T + o(T) revenue.

1: Let M be a δ-no-regret algorithm for the classic multi-armed bandit problem, with
δ = o(T). Initialize m copies of M , M1 through Mm.

2: Instance Mi of M will learn over K + i− 1 arms.
3: The first K arms of Mi (“bid arms”) correspond to the K possible menu options
b1, b2, . . . , bK .

4: The last i−1 arms of Mi (“value arms”) correspond to the i−1 possible values (contexts)
v1, . . . , vi−1.

5: for t = 1 to T do
6: if buyer has value vi then
7: Use Mi to pick one arm from the K + i− 1 arms.
8: if the arm is a bid arm bj then
9: Pick the menu option j (i.e. bid bj).

10: else if the arm is a value arm vj then
11: Sample an arm from Mj (but don’t update its state). If it is a bid arm, pick the

corresponding menu option. If it is a value arm, recurse.
12: end if
13: Update the state of algorithm Mi with the utility of this round.
14: end if
15: end for

A more further discussion of the algorithm along with a proof of Theorem 2.3.2 appear

in the full version of [37]. The key observation in the proof is that “not regretting playing as

if my value were v′” sounds a lot like “not preferring to report value v′ instead of v.” This

suggests that the aggregate allocation probabilities and prices paid by any buyer using our

algorithm should satisfy the same constraints as a truthful auction, proving that the resulting

revenue cannot exceed the default strategy (and indeed the proof follows this approach).

Finally, observe that the following corollary immediately follows. Because the seller

cannot hope to get more than Mye(D)T+o(T) per round when the buyer is using Algorithm 1,

and the buyer cannot hope to do better than telling the truth against a truthful auction, it

29

is in fact a Nash for the buyer to use Algorithm 1 and the seller to set price equal to the

Myerson reserve every round.

Corollary 2.3.1. It is an o(T)-Nash equilibrium for the seller to set the Myerson reserve

p(D) in every round (any bid ≥ p(D) reserve wins the item and pays p(D)), and the buyer

to use Algorithm 1.

2.3.3 Mean-Based Learning and Conservative Bidders

Recall in our example that to extract revenue T/3, bidders with values 1/4 and 1/2 had to

consider bidding 1. If bidders are conservative, they will simply never do this.

Although the auction in Section 2.3.1 is no longer viable, consider the following auction

instead: in addition to the zero arm, the bidder can bid 1/4 or 1/2. If they bid 1/2 in

any round, they will get the item with probability 1 and pay 1/2. If they bid 1/4 in round

t ≤ T/3, they get nothing. If they bid 1/4 in round t ∈ (T/3, T], they get the item and pay

1/4. Let’s again see what the bidder will choose to do, remembering that they will always

pull the arm that has provided highest cumulative utility (due to being mean-based).

Clearly, the bidder with value 1/4 will bid 1/4 every round (since they are conservative,

they won’t even consider bidding 1/2), making a total payment of 2T/3 · 1/4 · 1/2 = T/12.

The bidder with value 1/2 will bid 1/2 for the first T/3 rounds, and then immediately switch

to bidding 1/4, making a total payment of T/3 · 1/2 · 1/4 + 2T/3 · 1/4 · 1/4 = T/12.

The bidder with value 1 will actually bid 1/2 for the entire T rounds. To see this, observe

that their cumulative surplus through round t from bidding 1/2 is t ·1/2 ·1/4 = t/8 (t rounds

by utility 1/2 per round by probability 1/4 of having value 1). Their cumulative surplus

through round t from bidding 1/4 is instead (t− T/3) · 3/4 · 1/4 = 3t/16− T/16 ≤ t/8 (for

t ≤ T). Because they are mean-based, they will indeed bid 1/2 for the entire duration due

to its strictly higher utility. So their total payment will be T · 1/2 · 1/4 = T/8. The total

revenue is then 7T/24 > T/4, again surpassing the default strategy (but not reaching the

T/3 achieved against non-conservative buyers).

30

Let’s again see where our extra revenue comes from in comparison to a truthful auction.

Notice that the bidder receives the item with probability 1 conditioned on having value 1/2,

and also conditioned on having value 1. Yet somehow the bidder pays an average of 1/3

conditioned on having value 1/2, but an average of 1/2 conditioned on having value 1. This

could never happen in a truthful auction, as the bidder would strictly prefer to pretend their

value was 1/2 rather than 1. But it is entirely possible when the buyer does mean-based

learning, as evidenced by this example.

We define MBRev(D) as the value of the LP in Figure 2.1. In Theorems 2.3.4 and 2.3.3,

we show that MBRev(D)T tightly characterizes (up to ±o(T)) the optimal revenue a seller

can extract against a conservative buyer. The proofs can be found in the full version of [37].

maximize
m∑
i=1

qi(vixi − ui)

subject to ui ≥ (vi − vj) · xj, ∀ i, j ∈ [m] : i > j

ui ≥ 0, 1 ≥ xi ≥ 0, ∀ i ∈ [m]

Figure 2.1: The mean-based revenue LP.

Before stating our theorems, let us parse this LP. qi is a constant representing the proba-

bility that the buyer has value vi (also a constant). xi is a variable representing the average

probability that the bidder gets the item with value vi, and ui is a variable representing the

average utility of the bidder when having value vi. Therefore, this bidder’s average value

is vixi, the average price they pay is vixi − ui, and the objective function is simply the

average revenue. The second constraints are just normalization, ensuring that everything

lies in [0, 1]. The first line of constraints are the interesting ones. These look a lot like IC

constraints that a truthful auction must satisfy, but something’s missing: the LHS is clearly

the utility of the buyer with value vi for “telling the truth,” but the utility of the buyer for

“reporting vj instead” is (vi − vj) · xj + uj (so the uj term is missing on the RHS).

Here is a brief proof outline for why no seller can extract more revenue than MBRev(D):

31

1. Since the buyer has no regret conditioned on having value vi, their utility is at least as

high as playing arm j every round, for all j ≤ i.

2. Since the auction never charges arm j more than vj (conditioned on awarding the

item), the buyer’s utility for playing arm j every round is at least yj · (vi − vj), where

yj is the average probability that arm j awards the item.

3. Since the auction is monotone, and the buyer never considers overbidding, if the buyer

gets the item with probability xj conditioned on having value vj, we must have yj ≥ xj.

These three facts together show that no seller can extract more than MBRev(D) against

a no-regret buyer who doesn’t overbid. Observe also that step 3 is exactly the step that

doesn’t hold for buyers who consider overbidding (and is exactly what’s violated in our

example in Section 2.3.1): if the buyer ever overbids, then they might receive the item with

higher probability than had they just played their own arm every round.

Theorem 2.3.3. Any strategy for the seller achieves revenue at most MBRev(D)T + o(T)

against a conservative buyer.

The full proof of Theorem 2.3.3 can be found in the full version of [37] - all of the key

ideas have been overviewed above.

It turns out that the previous theorem is tight; there exists an auction (taking the form

of a first-price auction with descending reserve) which achieves revenue MBRev(D)T against

a conservative mean-based buyer. More specifically, this auction is defined by a threshold rt

that decreases over time. If at time t you bid bt ≥ rt, then you receive the item and must

pay bt; otherwise, you receive nothing and pay nothing. Moreover, the threshold function rt

which achieves optimal revenue is determined from the optimal solution to the mean-based

LP: the threshold rt drops from vi to vi+1 at round xi (where the xi belong to some optimal

solution).

32

To show that this is a valid strategy for the seller, we need to show that the values xi

are monotone increasing. Luckily, this follows simply from the structure of the mean-based

revenue LP.

Lemma 2.3.1. Let x1, x2, . . . , xm, u1, u2, . . . , um be an optimal solution to the mean-based

revenue LP. Then for all i < j, xi < xj.

Proof. We proceed by contradiction. Suppose that the sequence of xi are not monotone;

then there exists an 1 ≤ i ≤ m − 1 such that xi > xi+1. Now consider another solution

of the LP, where we increase xi+1 to xi, keeping the value of all other variables the same.

This new solution does not violate any constraints in the LP since for all j > i + 1, uj ≥

(vj − vi) · xi ≥ (vj − vi+1) · xi. However this change increases the value of the objective by

vi+1qi+1(xi−xi+1) > 0, thus contradicting the fact that x1, . . . , xm, u1, ..., um was an optimal

solution of the mean-based revenue LP.

We now show that this strategy indeed achieves MBRev(D)T against a conservative buyer.

Theorem 2.3.4. For any constant ε > 0, there exists a strategy for the seller gets revenue at

least (MBRev(D)−ε)T −o(T) against a buyer running a mean-based algorithm who overbids

with probability 0. The strategy sets a decreasing cutoff rt and for all t awards the item with

probability 1 to any bid bt ≥ rt for price bt, and with probability 0 to any bid bt < rt.

Proof. We will show that: i) the buyer with value vi receives the item for at least xiT −o(T)

turns (receiving vixiT − o(T) total utility from the items), and ii) this buyer’s net utility

is at most (ui + ε)T + o(T). This implies that this buyer pays the seller at least xiviT −

(ui + ε)T − o(T) over the course of the T rounds; taking expectation over all vi completes

the proof.

Assume the buyer is running a γ-mean-based learning algorithm. Consider the buyer

when they have value vi. Note that

σj,t(vi) = (vi − vj + ε) ·max(0, t− (1− xj)T).

33

We first claim that after round (1 − xi)T + γT/ε, the buyer will buy the item (i.e.,

choose an option that results in him getting the item) each round with probability at least

1 −mγ. To see this, first note that σi,t(vi) ≥ γT when t ≥ (1 − xi)T + γT/ε. Then, since

the cumulative utility of any arm is 0 until it starts offering the item, it follows from the

mean-based condition that the buyer will pick a specific arm that is not offering the item

with probability at most γ, and therefore choose some good arm with probability at least

1−mγ. It follows that, in expectation, the buyer with value vi receives the item for at least

(1−mγ)(xiT − γT/ε) = xiT − o(T) turns.

We now proceed to upper bound the overall expected utility of the buyer. For each

index j ≤ i, let Sj be the set of t where σj,t(vi) > σj′,t(vi) for all other j′. Note that since

each σj,t(vi) is a linear function in t (when positive), each Sj is either the empty set or an

interval (yjT, zjT). Since all the vi are distinct, note that these intervals partition the interval

((1 − xi)T, T) (with the exception of up to m endpoints of these intervals); in particular,∑
j≥i(zj − yj) = xi.

Let ε′ = minj(vj+1− vj). Note that, if t ∈ (yjT + γT/ε′, zjT − γT/ε′), then for all j′ 6= j,

σj,t(vi) > σj′,t(vi) + γT . This follows since σj,t(vi)− σj′,t(vi) is linear in t with slope vj − vj′ ,

and |vj − vj′ | > ε′. It follows that if t is in this interval, then the buyer will choose option j

with probability at least 1−mγ (by a similar argument as before).

Define j(t) = arg maxj σj,t(vi) to be the index of the arm with the current largest cumu-

lative reward, and let σmax,t(vi) =
∑t

s=1 rj(s),s(vi) be the cumulative utility of always playing

the arm with the current highest cumulative reward for the first t rounds. The following

lemma shows that σmax,T (vi) is close to maxj σj,T (vi). (In other words, playing the best arm

every round and playing the best-at-the-end arm every round have similar payoffs if the

historically best arm does not change often).

Lemma 2.3.2. |σmax,T (vi)−maxj σj,T (vi)| ≤ m.

Proof. Let W = |{t|j(t) 6= j(t+1)}| equal the number of times the best arm switches values;

note that since each σj,t(vi) is linear, W is at most m. Let t1 < t2 < · · · < tW be the values

34

of t such that j(t) 6= j(t+ 1). Additionally define t0 = 1 and tW+1 = T . Then, dividing the

cumulative reward σmax,t into intervals by these ti, we get that

σmax,t(vi) =
t∑

s=1

rj(s),s(vi)

=
W+1∑
i=1

(σj(ti),ti(vi)− σj(ti),ti−1
(vi))

= σj(T),T (vi) +
W+1∑
i=1

(σj(ti−1),ti−1
(vi)− σj(ti),ti−1

(vi))

= max
j
σj,t(vi) +

W+1∑
i=1

(σj(ti−1),ti−1
(vi)− σj(ti),ti−1

(vi))

It therefore suffices to show that |σj(ti−1),ti−1
(vi) − σj(ti),ti−1

(vi)| ≤ 1 for all i. To see

this, note that (by the definition of j(t)), σj(ti−1),ti−1
(vi) − σj(ti),ti−1

(vi) > 0, and that

σj(ti−1),ti−1+1(vi)− σj(ti),ti−1+1(vi) < 0. However,

(σj(ti−1),ti−1+1(vi)− σj(ti),ti−1+1(vi))

=(σj(ti−1),ti−1
(vi)− σj(ti),ti−1

(vi)) + (rj(ti−1),ti−1+1(vi)− rj(ti),ti−1+1(vi))

Since 0 ≤ rj,t(u) ≤ 1, it follows that |σj(ti−1),ti−1
(vi) − σj(ti),ti−1

(vi)| ≤ 1. This completes

the proof.

Let σT (vi) =
∑T

t=1 E[rIt,t(vi)] denote the expected cumulative utility of this buyer at

time T . We claim that σT ≤ maxj σj,T (vi) + o(T). To see this, recall that, for t ∈ (yjT +

γT/ε′, zjT − γT/ε′), Pr[It 6= j] ≤ mγ, and therefore E[rIt,t] ≤ rj,t + mγ. Furthermore, note

that for t ∈ Sj, j(t) = j, so rj,t = rj(t),t and E[rIt,t] ≤ rj(t),t +mγ. It follows that

35

σT (vi) =
T∑
t=1

E[rIt,t(vi)]

≤
T∑

t=(1−xi)T

E[rIt,t(vi)]

=
i∑

j=1

zjT∑
t=yjT

E[rIt,t(vi)]

≤
i∑

j=1

2γT

ε′
+

zjT−γT/ε′∑
t=yjT+γT/ε′

E[rIt,t(vi)]


≤

i∑
j=1

2γT

ε′
+

zjT−γT/ε′∑
t=yjT+γT/ε′

(rj(t),t(vi) +mγ)


≤ 2mγT

ε′
+mγT +

T∑
t=1

rj(t),t(vi)

=
2mγT

ε′
+mγT + σmax,T (vi)

≤ 2mγT

ε′
+mγT +m+ max

j
σj,T (vi)

= max
j
σj,T (vi) + o(T).

Finally, note that

max
j
σj,T (vi) = max

j<i
(vi − vj + ε)xjT

≤ (max
j<i

(vi − vj)xj + ε)T

= (ui + ε)T

It follows that σT (vi) ≤ (ui + ε)T + o(T), as desired.

36

Finally, we show that this quantity MBRev(D) is in fact significantly different from both

Val(D) and Rev(D); in particular, it is a constant-factor approximation to neither. In partic-

ular, the multiplicative gap between MBRev(D) and Rev(D) can grow as large as log logH

for distributions D supported on [1, H]. In comparison, the gap between Val(D) and Rev(D)

can grow as large as logH on this same interval, and in fact both gaps are maximized for

the same distribution: the equal-revenue curve DERC truncated at H.

Theorem 2.3.5. For distributions D supported on [1, H], MBRev(D) = O(log logH), and

there exist D supported on [1, H] such that MBRev(D) = Θ(log logH). For this same D,

Val(D) = Θ(logH).

The proof of Theorem 2.3.5 can be found in the full version of [37]. The proof is di-

vided into two parts (after extending the definition of MBRev(D) to hold for continuous

distributions D): 1. showing that MBRev(DERC) ≤ O(log logH), and 2. showing that

MBRev(DERC) ≥ O(log logH).

To show the first part, it suffices to simply demonstrate a solution to the mean-based LP

with value at least O(log logH). In the proof it suffices to choose x(v) = log v
logH

(equivalently,

the reserve for the associated second-price auction should exponentially decay over time).

To show the second part, we examine the dual of the LP. Effectively, this involves rewrit-

ing MBRev(D) in the form

MBRev(D) = max
x

Evi∼D
[
vixi −max

j
(vi − vj)xj

]
(in particular, note that for a fixed choice of x, uj = maxj(vi − vj)xj), and finding an

appropriate function j(i) (which corresponds to an assignment to the dual).

37

2.3.4 A Final Note on the Example

While reading through our examples, the reader may think that the mean-based learner’s

behavior is clearly irrational: why would you continue paying above your value? Why would

you continue paying more than necessary, when you can safely get the item for less?

But this is exactly the point: a more thoughtful learner can indeed do better (for in-

stance, by using the algorithm of Section 2.3.2). It is also perhaps misleading to believe

that the bidder should “obviously” stop overpaying: we only know this because we know

the structure of the example. But in principle, how is the bidder supposed to know that

the overcharged rounds are the new norm and not an anomaly? Given that most standard

no-regret algorithms are mean-based, it’s important to nail down the seller’s options for

exploiting this behavior.

2.4 Conclusion and Future Directions

We consider a revenue-maximizing seller with a single item (each round) to sell to a single

buyer. We show that when the buyer uses mean-based algorithms like EXP3, the seller can

extract revenue equal to the expected welfare with an unnatural auction. We then provide

a modified no-regret algorithm A such that the seller cannot extract revenue exceeding

the monopoly revenue when the buyer bids according to A. Finally, we consider a mean-

based buyer who never overbids. We tightly characterize the seller’s optimal revenue with

a linear program, and show that a pay-your-bid auction with decreasing reserves over time

achieves this guarantee. Moreover, we show that the mean-based revenue can be unboundedly

better than the monopoly revenue while simultaneously worse than the expected welfare. In

particular, for the equal revenue curve truncated at H, the monopoly revenue is 1, the

expected welfare is ln(H), and the mean-based revenue is Θ(ln(ln(H))).

While our work has already shown the single-buyer problem is quite interesting, the

most natural direction for future work is understanding revenue maximization with multiple

38

learning buyers. Of our three main results, only Theorem 2.3.2 extends easily (that if every

buyer uses our modified learning, the default strategy, which now runs Myerson’s optimal

auction every round, is optimal). Our work certainly provides good insight into the multi-

bidder problem, but there are still clear barriers. For example, in order to obtain revenue

equal to the expected welfare, the auction must necessarily also maximize welfare. In our

single-bidder model, this means that we can give away the item for free for Ω(T) rounds,

but with multiple bidders, such careless behaviour would immediately make it impossible

to achieve the optimal welfare. Regarding the mean-based revenue, while there is a natural

generalization of our LP to multiple bidders, it’s no longer clear how to achieve this revenue

against conservative bidders, as all the relevant variables now implicitly depend on the

actions of the other bidders. These are just examples of concrete barriers, and there are

likely interesting conceptual barriers for this extension as well.

Another interesting direction is understanding the consequences of our work from the

perspective of the buyer. Aside from certain corner configurations (e.g. the seller extracting

the buyer’s full welfare), it’s not obvious how the buyer’s utility changes. For instance, is

it possible that the buyer’s utility actually increases as the seller switches from the default

strategy to the optimal mean-based revenue? Does the buyer ever benefit from using an

“exploitable” learning strategy, so that the seller can exploit it and make them both happier?

39

Chapter 3

Multi-armed Bandit with Strategic

Arms

The results of this chapter are based on joint work with Mark Braverman, Jon Schneider

and Matt Weinberg [36].

3.1 Introduction

Classically, algorithms for problems in machine learning assume that their inputs are drawn

either stochastically from some fixed distribution or chosen adversarially. In many contexts,

these assumptions do a fine job of characterizing the possible behavior of problem inputs.

Increasingly, however, these algorithms are being applied to contexts (ad auctions, search

engine optimization, credit scoring, etc.) where the quantities being learned are controlled

by rational agents with external incentives. To this end, it is important to understand how

these algorithms behave in strategic settings.

The multi-armed bandit problem is a fundamental decision problem in machine learning

that models the trade-off between exploration and exploitation, and is used extensively as a

building block in other machine learning algorithms (e.g. reinforcement learning). A learner

(who we refer to as the principal) is a sequential decision maker who at each time step t,

40

must decide which of k arms to ‘pull’. Pulling this arm bestows a reward (either adversarially

or stochastically generated) to the principal, and the principal would like to maximize his

overall reward. Known algorithms for this problem guarantee that the principal can do

approximately as well as the best individual arm.

In this paper, we consider a strategic model for the multi-armed bandit problem where

each arm is an individual strategic agent and each round one arm is pulled by an agent we

refer to as the principal. Each round, the pulled arm receives a private reward v ∈ [0, 1] and

then decides what amount x of this reward gets passed on to the principal (upon which the

principal receives utility x and the arm receives utility v − x). Each arm therefore has a

natural tradeoff between keeping most of its reward for itself and passing on the reward so

as to be chosen more frequently. Our goal is to design mechanisms for the principal which

simultaneously learns which arms are valuable while also incentivizing these arms to pass on

most of their rewards.

This model captures a variety of dynamic agency problems, where at each time step

the principal must choose to employ one of K agents to perform actions on the principal’s

behalf, where the agent’s cost of performing that action is unknown to the principal (for

example, hiring one of K contractors to perform some work, or hiring one of K investors

with external information to manage some money - the important feature being that the

principal doesn’t know exactly how much they will pay/receive/etc. until the job is done,

and the agent has a lot of freedom to set this ex-post). In this sense, this model can be

thought of as a multi-agent generalization of the principal-agent problem in contract theory

when agents are allowed private savings (see Section 3.1.2 for references). The model also

captures, for instance, the interaction between consumers (as the principal) and many sellers

deciding how steep a discount to offer the consumers - higher prices now lead to immediate

revenue, but offering better discounts than your competitors will lead to future sales. In all

domains, our model aims to capture settings where the principal has little domain-specific

41

or market-specific knowledge, and can really only process the reward they get for pulling an

arm and not any external factors that contributed to that reward.

There are two “obvious” approaches to try and solve these problems: Option one is to

treat it like a procurement auction and run a reverse second-price auction. This doesn’t

quite work, however, in the case where the agents don’t initially know how much reward

they’ll generate, so some amount of learning needs to enter the picture for a solution to be

viable. Using the contractor as a toy running example: the contractor will not initially know

how much it costs her to work on your home, but after working on your home several times

they will start to learn how much the next one will cost (you will only learn how much they

charge you). In any case, one cannot simply treat it like an auctions problem and ignore

learning completely.

The second “obvious” approach is just to treat it as a learning problem, and ignore in-

centives completely. In fact, one oft-cited motivation for considering adversarial rewards in

bandit settings is that arms might be strategic. Indeed, this is because even if the arms’

rewards are stochastic, the utility they strategically pass on to the principal is unlikely to

follow any distribution. Algorithms like EXP3 which guarantee low-regret in adversarial set-

tings then seem like the natural “pure learning” approach. Interestingly, our main “negative

result” shows that any adversarial learning algorithm admits a really bad approximate Nash

equilibrium (more details below).

So auctions alone cannot solve the problem, nor can learning alone. To complement our

main negative result, we show that the right combination of auctions and learning yields a

positive result: an algorithm such that all approximate Nash result in good utility for the

principal. We now overview our results in more detail.

42

3.1.1 Our results

Low-regret algorithms are far from strategyproof

Many algorithms for the multi-armed bandit problem are designed to work in worst-case set-

tings, where an adversary can adaptively decide the value of each arm pull. Here, algorithms

such as EXP3 ([18]) guarantee that the principal receives almost as much as if he had only

pulled the best arm. Formally, such algorithms guarantee that the principal experiences at

most O(
√
T) regret over T rounds compared to any algorithm that only plays a single arm

(when the adversary is oblivious).

Given these worst-case guarantees, one might naively expect low-regret algorithms such

as EXP3 to also perform well in our strategic variant. It is important to note, however,

that single arm strategies perform dismally in this strategic setting; if the principal only

ever selects one arm, the arm has no incentive to pass along any surplus to the principal.

In fact, we show that the objectives of minimizing adversarial regret and performing well in

this strategic variant are fundamentally at odds.

Theorem 3.1.1. Let M be a low-regret algorithm for the classic multi-armed bandit problem

with adversarially chosen values. Then there exists an instance of the strategic multi-armed

bandit problem and an o(T)-Nash equilibrium for the arms where a principal running M

receives at most o(T) revenue.

While not immediately apparent from the statement of Theorem 3.1.1, these instances

where low-regret algorithms fail are far from pathological; in particular, there is a problematic

equilibrium for any instance where arm i receives a fixed reward vi each round it is pulled,

as long as the the gap between the largest and second-largest vi is not too large (roughly

1/#arms).

Here we assume the game is played under a tacit observational model, meaning that arms

can only observe which arms get pulled by the principal, but not how much value they give

to the principal. In particular, this means that arms can achieve this equilibrium despite

43

not communicating directly with each other and not observing the actions of the other arms.

This rules out various sorts of “grim trigger” collusion strategies (similar to collusion that

occurs in the setting of repeated auctions, see [178]), where arms agree on a protocol ahead

of time and immediately defect as soon as one arm deviates from this protocol. (Indeed, in

an explicit observational model, where arms can see both which arms get pulled and how

much value they pass on, it is easy to show even stronger results via such strategies; see the

full version of [36] for details).

Instead, the strategies in the equilibrium of Theorem 3.1.1 take the form of market-sharing

strategies, where arms calibrate their actions so that they each get played some proportion

(e.g. 1/K) of the time while passing on little utility to the principal. For example, consider

a simple instance of this problem with two strategic arms, where the principal is using the

low-regret EXP3 algorithm, and where arm 1 always gets private reward 1 if pulled and arm

2 always gets private reward 0.8. By always reporting some value slightly larger than 0.8,

arm 1 can incentivize the principal to almost always pull it in the long run. This gains arm

1 roughly 0.2 utility per round (and arm 2 nothing). On the other hand, if arm 1 and arm 2

never pass along any surplus to the principal, they will likely be played equally often, gaining

arm 1 roughly 0.5 utility per round and arm 2 0.4 utility per round.

To show such a market-sharing strategy works for general low-regret algorithms, much

more work needs to be done. The arms must be able to enforce an even split of the principal’s

pulls (as soon as the principal starts lopsidedly pulling one arm more often than the others,

the remaining arms can defect and start reporting their full value whenever pulled). As long

as the principal guarantees good performance in the non-strategic adversarial case (achieving

o(T) regret), we show that the arms can (at o(T) cost to themselves, and without explicitly

communicating) cooperate so that they are all played equally often.

44

Mechanisms for strategic arms with stochastic values

We next show that, in contrast to Theorem 3.1.1, it is in fact possible for the principal to

extract positive values from the arms per round, if we do not restrict the principal to use an

adversarial low-regret algorithm (and hence there is a price to being adversarial low-regret).

We consider a setting where each arm i’s reward when pulled is drawn independently from

some distribution Di with mean µi (unknown to the principal). In this case the principal can

extract the value of the second-best arm (which is the best possible, as we show in Lemma

3.4.2). In the below statement, we are using the term “truthful mechanism” quite loosely as

shorthand for “strategy that induces a game among the arms where each arm has a dominant

strategy.”

Theorem 3.1.2 (restatement of Corollary 3.4.2). Let µ′ be the second largest mean amongst

the set of µis. Then there exists a truthful mechanism for the principal that guarantees

revenue at least µ′T−o(T) when the arms are playing according to any o(T)-Nash equlibrium.

The mechanism in Theorem 3.1.2 can be thought of as a combination of a second-price

auction with the explore-then-exploit strategy from multi-armed bandits. The principal

divides the time horizon into three “phases”. In the first phase (of size o(T)), the principal

begins by asking each arm i to simply report their value each round, thus allowing the

principal to learn which arm is the most valuable. In the second phase (which comprises

the vast majority of the rounds), the principal asks the most valuable arm (the arm with

the highest mean in the first phase) to give him the second-largest mean worth of value per

round. If this arm fails to comply in any round, the principal avoids picking this arm for

the remainder of the rounds. Finally, in the third phase, the principal uses a proper scoring

rule to recompensate all arms for reporting truthfully in the first phase. (A more detailed

description of the mechanism can be seen in Mechanisms 2 and 3 in Section 3.4).

45

As an added bonus, we show that this mechanism has similar guarantees in the setting

where some arms are strategic and some arms are non-strategic (and our mechanism does

not know which arms are which).

Theorem 3.1.3 (restatement of Theorem 3.4.1). Let µs be the second largest mean amongst

the means of the strategic arms, and let µn be the largest mean amongst the means of the

non-strategic arms. Then there exists a truthful mechanism for the principal that guarantees

(with probability 1−o(1/T)) revenue at least max(µs, µn)T −o(T) when arms play according

to any o(T)-Nash equilibrium.

In particular, this implies that Mechanism 3 has low-regret in the classical stochastic

multi-armed bandits setting, and so the adversarial aspect of the low-regret guarantees is

actually essential for the proof of Theorems 3.1.1.

A fair critique of this mechanism is that most of the work of learning the distributions

of the arms is offloaded to the beginning of the game. This is appealing because it makes it

much feasible to “slide in” some auction design and scoring rules to handle incentives. It is

an interesting problem whether learning can still be done adaptively over time in this model,

as such a procedure would necessitate a much more sophisticated treatment of incentives;

see Section 3.5 for further discussion.

3.1.2 Related work

The study of classical multi-armed bandit problems was initiated by [171], and has since

grown into an active area of study. The most relevant results for our paper concern the

existence of low-regret bandit algorithms in the adversarial setting, such as the EXP 3

algorithm ([18]), which achieves regret Õ(
√
KT). Other important results in the classical

setting include the upper confidence bound (UCB) algorithm for stochastic bandits ([137])

and the work of [105] for Markovian bandits. For further details about multi-armed bandit

problems, see the survey [45].

46

One question that arises in the strategic setting (and other adaptive settings for multi-

armed bandits) is what the correct notion of regret is; standard notions of regret guarantee

little, since the best overall arm may still have a small total reward. [13] considered the

multi-armed bandit problem with an adaptive adversary and introduced the quantity of

“policy regret”, which takes the adversary’s adaptiveness into account. They showed that

any multi-armed bandit algorithm will get Ω(T) policy regret. This indicates that it is not

enough to treat strategic behaviors as an instance of adaptively adversarial behavior; good

mechanisms for the strategic multi-armed bandits problem must explicitly take advantage

of the rational self-interest of the arms.

Our model bears some similarities to the principal-agent problem of contract theory,

where a principal employs an more informed agent to make decisions on behalf of the prin-

cipal, but where the agent may have incentives misaligned from the principal’s interests

when it gets private savings (for example [52]). For more details on principal-agent problem,

see the book [136]. Our model can be thought of as a sort of multi-armed version of the

principal-agent problem, where the principal has many agents to select from (the arms) and

can try to use competition between the agents to align their interests with the principal.

Our negative results are closely related to results on collusions in repeated auctions.

Existing theoretical work [147, 17, 126, 11, 12, 178] has shown that collusive schemes exist in

repeated auctions in many different settings, e.g., with/without side payments, with/without

communication, with finite/infinite typespace. In some settings, efficient collusion can be

achieved, i.e., bidders can collude to allocate the good to the bidders who values it the most

and leave 0 asymptotically to the seller. Even without side payments and communication,

[178] showed that tacit collusion exists and can achieve asymptotic efficiency with a large

cartel.

Our truthful mechanism uses a proper scoring rule [42, 148] implicitly. In general, scoring

rules are used to assessing the accuracy of a probabilistic prediction. In our mechanisms, we

use a logarithmic scoring rule to incentivize arms to truthfully report their average rewards.

47

Our setting is similar to settings considered in a variety of work on dynamic mechanism

design, often inspired by online advertising. [26] considers the problem where a buyer wants

to buy a stream of goods with an unknown value from two sellers, and examines Markov

perfect equilibria in this model. [22, 72, 20] study truthful pay-per-click auctions where

the auctioneer wishes to design a truthful mechanism that maximizes the social welfare.

[133, 104] consider the scenario where the principal cannot directly choose which arm to

pull, and instead must incentivize a stream of strategic players to prevent them from acting

myopically. [9, 10] consider a setting where a seller repeatedly sells to a buyer with unknown

value distribution, but the buyer is more heavily discounted than the seller. [127] develops a

general method for finding optimal mechanisms in settings with dynamic private information.

[158] develops an ex ante efficient mechanism for the Cost-Per-Action charging scheme in

online advertising.

3.2 Our Model

3.2.1 Classic Multi-Armed Bandits

We begin by reviewing the definition of the classic multi-armed bandits problem and associ-

ated quantities.

In the classic multi-armed bandit problem a learner (the principal) chooses one of K

choices (arms) per round, over T rounds. On round t, the principal receives some reward

vi,t ∈ [0, 1] for pulling arm i. The values vi,t are either drawn independently from some

distribution corresponding to arm i (in the case of stochastic bandits) or adaptively chosen

by an adversary (in the case of adversarial bandits). Unless otherwise specified, we will

assume we are in the adversarial setting.

48

Let It denote the arm pulled by the principal at round t. The revenue of an algorithm

M is the random variable

Rev(M) =
T∑
t=1

vIt,t

and the the regret of M is the random variable

Reg(M) = max
i

T∑
t=1

vi,t − Rev(M)

Definition 3.2.1 (δ-Low Regret Algorithm). Mechanism M is a δ-low regret algorithm for

the multi-armed bandit problem if

E[Reg(M)] ≤ δ.

Here the expectation is taken over the randomness of M and the adversary.

Definition 3.2.2 ((ρ, δ)-Low Regret Algorithm). Mechanism M is a (ρ, δ)-low regret algo-

rithm for the multi-armed bandit problem if with probability 1− ρ,

Reg(M) ≤ δ.

There exist O(
√
KT logK)-low regret algorithms and (ρ,O(

√
KT log(K/ρ)))-low regret

algorithms for the multi-armed bandit problem; see Section 3.2 of [45] for details.

3.2.2 Strategic Multi-Armed Bandits

The strategic multi-armed bandits problem builds upon the classic multi-armed bandits

problem with the notable difference that now arms are strategic agents with the ability to

withhold some payment from the principal. Instead of the principal directly receiving a

reward vi,t when choosing arm i, now arm i receives this reward and passes along some

amount wi,t to the principal, gaining the remainder vi,t − wi,t as utility.

49

For simplicity, in the strategic setting, we will assume the rewards vi,t are generated

stochastically; that is, each round, vi,t is drawn independently from a distribution Di (where

the distributions Di are known to all arms but not to the principal). While it is possible to

pose this problem in the adversarial setting (or other more general settings), this comes at

the cost of there being no clear notion of strategic equilibrium for the arms.

This strategic variant comes with two additional modeling assumptions. The first is the

informational model of this game; what information does an arm observe when some other

arm is pulled. We define two possible observational models:

1. Explicit: After each round t, every arm sees the arm played It along with the quantity

wIt,t reported to the principal.

2. Tacit: After each round t, every arm only sees the arm played It.

In both cases, only arm i knows the size of the original reward vi,t; in particular, the

principal also only sees the value wi,t and learns nothing about the amount withheld by the

arm. Collusion between arms is generally significantly easier in the explicit observational

model than in the tacit observational model, and for this reason we will assume we are in

the tacit observational model unless otherwise stated.

The second modeling assumption is whether to allow arms to go into debt while paying

the principal. In the restricted payment model, we impose that wi,t ≤ vi,t; an arm cannot

pass along more than it receives in a given round. In the unrestricted payment model, we

let wi,t be any value in [0, 1]. We prove our negative results in the restricted payment model

and our positive results in the unrestricted payment model, but our proofs for our negative

results work in both models (in particular, it is easier to collude and prove negative results in

the unrestricted payment model) and Mechanism 3 can be adapted to work in the restricted

payment model (see discussion in Section 3.4.2).

50

Finally, we proceed to define the set of strategic equilibria for the arms. We assume the

mechanism M of the principal is fixed ahead of time and known to the K arms. If each arm

i is using a (possibly adaptive) strategy Si, then the expected utility of arm i is defined as

ui(M,S1, . . . , SK) = E

[
T∑
t=1

(vi,t − wi,t) · 1It=i

]
.

An ε-Nash equilibrium for the arms is then defined as follows.

Definition 3.2.3 (ε-Nash Equilibrium for the arms). Strategies (S1, ..., SK) form an ε-Nash

equilibrium for the strategic multi-armed bandit problem if for all i ∈ [n] and any deviating

strategy S ′i,

ui(S1, . . . , Si, . . . , SK) ≥ ui(S1, . . . , S
′
i, . . . , SK)− ε.

Similarly as before, the revenue of the principal in this case is the random variable

Rev(M,S1, . . . , SK) =
T∑
t=1

wIt,t.

The goal of the principal is to choose a mechanism M which guarantees large revenue in

any ε-Nash Equilibrium for the arms.

In Section 3.4, we will construct mechanisms for the strategic multi-armed bandit problem

which are truthful for the arms. We define the related terminology below.

Definition 3.2.4 (Dominant Strategy). When the principal uses mechanism M , we say Si

is a dominant strategy for arm i if for any deviating strategy S ′i and any strategies for other

arms S1, .., Si−1, Si+1, ..., SK,

ui(M,S1, . . . , Si, . . . , SK) ≥ ui(M,S1, . . . , S
′
i, . . . , SK).

Definition 3.2.5 (Truthfulness). We say that a mechanism M for the principal is truthful,

if all arms have some dominant strategies.

51

3.3 Negative Results Overview

In this section we give a sketch of the proof of our main theorem, Theorem 3.3.1. The full

list of our negative results and proofs can be found in the full version of [36].

Theorem 3.3.1. Let mechanism M be a (ρ, δ)-low regret algorithm for the multi-armed

bandit problem with K arms, where K ≤ T 1/3/ log(T), ρ ≤ T−2, and δ ≥
√
T log T . Then

in the strategic multi-armed bandit problem under the tacit observational model, there exist

distributions Di and an O(
√
KTδ)-Nash Equilibrium for the arms where the principal gets

at most O(
√
KTδ) revenue.

Proof Sketch. The underlying idea here is that the arms work to try to maintain an equal

market share, where each of the K arms are each played approximately 1/K of the time.

To ensure this happens, arms collude so that arms that aren’t as likely to be pulled pass

along more than arms that have been pulled a lot or are more likely to be pulled; this ends

up forcing any low-regret algorithm for the principal to choose all the arms equally often.

Interestingly, this collusion strategy is mechanism dependent, as arms need to estimate the

probability they will be pulled in the next round.

More formally, let µi denote the mean of the ith arm’s distribution Di. Without loss

of generality, further assume that µ1 ≥ µ2 ≥ · · · ≥ µK . We will show that as long as

µ1−µ2 ≤ µ1

K
, there exists some O(

√
KTδ)-Nash equilibrium for the arms where the principal

gets at most O(
√
KTδ) revenue.

We begin by describing the equilibrium strategy S∗ for the arms. Let ci,t denote the

number of times arm i has been pulled up to time t. Set B = 7
√
KTδ and set θ =

√
Kδ
T

.

The equilibrium strategy for arm i at time t is as follows:

1. If at any time s ≤ t in the past, there exists an arm j with cj,s − ci,s ≥ B, defect and

offer your full value wi,t = µi.

2. Compute the probability pi,t, the probability that the principal will pull arm i condi-

tioned on the history so far.

52

3. Offer wi,t = θ(1− pi,t).

The main technical challenge in proving that this strategy is an equilibrium involves

showing that, if all arms are following this strategy and the principal is using a low-regret

mechanism, then with high probability the arms will not defect. Here the low-regret property

of the mechanism M is essential (indeed, as our positive results imply, the theorem is not

true without this assumption). In particular, by the construction of wi,t in terms of pi,t, the

principal’s expected total regret (here defined to be the sum of the principal’s regrets with

respect to each arm) will increase each round by some amount proportional to the variance

of the pi,t. Intuitively, this implies that the values pi,t cannot be too far from uniform for

too many rounds, and therefore that each arm should be picked approximately the same

proportion of the time. This is formalized in the following lemma:

Lemma 3.3.1. If all arms are using strategy S∗, then with probability
(
1− 3

T

)
, |ci,t−cj,t| ≤ B

for all t ∈ [T], i, j ∈ [K].

Proof. As before, assume that all arms are playing the strategy S∗ with the modification

that they never defect. This does not change the probability that |ci,t − cj,t| ≤ B for all

t ∈ [T], i, j ∈ [K].

Define Ri,t =
∑t

s=1wi,s−
∑t

s=1wIs,s be the regret the principal experiences for not playing

only arm i up until time t. We begin by showing that with probability at least 1 − 2
T

, Ri,t

lies in [−Kθ
√
T log T − (K − 1)δ, δ] for all t ∈ [T] and i ∈ [K].

To do this, first note that since the principal is using a (T−2, δ)-low-regret algorithm,

with probability at least 1 − T−2 the regrets Ri,t are all upper bounded by δ at any fixed

time t. Via the union bound, it follows that Ri,t ≤ δ for all i and t with probability at least

1− 1
T

.

To lower bound Ri,t, we will first show that
∑K

i=1 Ri,t is a submartingale in t. Note that,

with probability pj,t, Ri,t+1 will equal Ri,t + θ((1− pj,t)− (1− pi,t)). We then have

53

E

[
K∑
i=1

Ri,t+1

∣∣∣∣∣
K∑
i=1

Ri,t

]
=

K∑
i=1

Ri,t +
K∑
i=1

pi,t

K∑
j=1

θ((1− pj,t)− (1− pi,t))

=
K∑
i=1

Ri,t +
K∑
i=1

pi,t

K∑
j=1

θ(pi,t − pj,t)

=
K∑
i=1

Ri,t + θ

K∑
i=1

pi,t(Kpi,t − 1)

=
K∑
i=1

Ri,t + θ

(
K

K∑
i=1

p2
i,t −

K∑
i=1

pi,t

)

≥
K∑
i=1

Ri,t

where the last inequality follows by Cauchy-Schwartz. It follows that
∑K

i=1Ri,t forms a

submartingale.

Moreover, note that (since |pi − pj| ≤ 1) |Ri,t+1 − Ri,t| ≤ θ. It follows that∣∣∣∑K
i=1Ri,t+1 −

∑K
i=1Ri,t

∣∣∣ ≤ Kθ and therefore by Azuma’s inequality that, for any fixed

t ∈ [T],

Pr

[
K∑
i=1

Ri,t ≤ −2Kθ
√
T log T

]
≤ 1

T 2
.

With probability 1− 1
T

, this holds for all t ∈ [T]. Since (with probability 1− 1
T

) Ri,t ≤ δ,

this implies that with probability 1− 2
T

, Ri,t ∈
[
−2Kθ

√
T log T − (K − 1)δ, δ

]
.

We next proceed to bound the probability that ci,t − cj,t > B for a i, j, and t. Define

S
(i,j)
t =

(
ci,t − cj,t +

1

θ
(Ri,t −Rj,t)

)
.

We claim that S
(i,j)
t is a martingale. To see this, we first claim that Ri,t+1 − Rj,t+1 =

Ri,t − Rj,t − θ(pi,t − pj,t). Note that, if arm k is pulled, then Ri,t+1 = Ri,t + θ((1 − pi,t) −

54

(1 − pk,t)) = Ri,t + θ(pk,t − pi,t) and similarly, Rj,t+1 = Rj,t + θ(pk,t − pj,t). It follows that

Ri,t+1 −Rj,t+1 = Ri,t −Rj,t − θ(pi,t − pj,t).

Secondly, note that (for any arm k) E[ck,t+1 − ck,t|pt] = pk,t, and thus E[ci,t+1 − cj,t+1 −

(ci,t − cj,t)|pt] = pi,t − pj,t. It follows that

E[S
(i,j)
t+1 − S

(i,j)
t |pt] = E[(ci,t+1 − cj,t+1)− (ci,t − cj,t)|pt]

+
1

θ
E[(Ri,t+1 −Rj,t+1)− (Ri,t −Rj,t)|pt]

= (pi,t − pj,t)− (pi,t − pj,t)

= 0

and thus that E[S
(i,j)
t+1 |S

(i,j)
t] = S

(i,j)
t , and thus that S

(i,j)
t is a martingale. Finally, note

that |S(i,j)
t+1 − S

(i,j)
t | ≤ 2, so by Azuma’s inequality

Pr
[
S

(i,j)
t ≥ 4

√
T log(TK)

]
≤ (TK)−2

Taking the union bound, we find that with probability at least 1 − 1
T

, S(i,j) ≤

4
√
T log(TK) for all i, j, and t. Finally, since with probability at least 1 − 2

T
each Ri,t

lies in
[
−2Kθ

√
T log T − (K − 1)δ, δ

]
, with probability at least 1 − 3

T
we have that (for all

i, j, and t)

55

ci,t − cj,t = S
(i,j)
t − 1

θ
(Ri,t −Rj,t)

≤ 4
√
T log(TK) +

1

θ
|Ri,t −Rj,t|

≤ 4
√
T log(TK) + 2K

√
T log T +

Kδ

θ

≤ 7Kδ

θ

= 7K
√
Tδ

= B

Lemma 3.3.1 implies that if each arm plays strategy S∗, then each arm i will receive on

average µi/K per round. To finish the proof, it suffices to note that by deviating and playing

a different strategy S from S∗, one of two things can occur. If playing this different strategy

S does not trigger the defect condition in (1), then still each arm will be played roughly

1/K of the time (and your total utility is unchanged up to o(T) additive factors). On the

other hand, once the defect condition is triggered, you can receive at most µ1 − µ2 utility

per round (and only if you are arm 1). This implies that as long as µ1/K > µ1 − µ2, there

is no incentive to deviate.

While the theorem above merely claims that a bad set of distributions for the arms exists,

the proof shows it is possible to collude in a wide range of instances - in particular, any

collection of distributions which satisfies µ1− µ2 ≤ µ1/K. A natural question is whether we

can extend the above results to show that it is possible to collude in any set of distributions.

One issue with the collusion strategy in the above proof is that if µ1 − µ2 > µ1/K, then

arm 1 will have an incentive to defect in any collusive strategy that plays all the arms evenly

(arm 1 can report a bit over µ2 per round, and make µ1−µ2 every round instead of µ1 every

56

K rounds). One solution to this is to design a collusive strategy that plays some arms more

than others in equilibrium (for example, playing arm 1 90% of the time). We show how to

modify our result for two arms to achieve an arbitrary market partition and thus work over

a broad set of distributions.

Theorem 3.3.2. Let mechanism M be a (ρ, δ)-low regret algorithm for the multi-armed

bandit problem with two arms, where ρ ≤ T−2 and δ ≥
√
T log T . Then, in the strategic

multi-armed bandit problem under the tacit observational model, for any distributions D1, D2

of values for the arms (supported on [
√
δ/T , 1]), there exists an O(

√
Tδ)-Nash Equilibrium

for the arms where a principal using mechanism M gets at most O(
√
Tδ) revenue.

Unfortunately, it as not as easy to modify the proof of Theorem 3.3.1 to prove the same

result for K arms. It is an interesting open question whether there exist collusive strategies

for K arms that can achieve an arbitrary partition of the market.

3.4 Positive Results

In this section we will show that, in contrast to the previous results on collusion, there exists

a mechanism for the principal that can obtain Θ(T) revenue from the arms when they play

according to an o(T)-Nash equilibrium.

We begin by demonstrating a simpler version of our mechanism (Mechanism 2) that

guarantees the principal Θ(T) revenue whenever the arms play according to their dominant

strategies. In Section 3.4.2, we then show how to make this mechanism more robust (Mech-

anism 3) so that the principal is guaranteed Θ(T) revenue whenever the arms play according

to any o(T)-approximate Nash equilibrium (thus showing a separation between the power

of adversarial low-regret algorithms and general learning algorithms in this model). As an

added bonus, we show that this mechanism also works for a combination of strategic and

non-strategic arms (and therefore achieves low regret in the classical stochastic multi-armed

bandits setting).

57

Throughout this section we will assume we are working in the tacit observational model

and the unrestricted payment model (unless otherwise specified). All the proofs can be found

in the full version of [36].

3.4.1 Good dominant strategy equilibria

This mechanism essentially incentivizes each arm to report the mean of its distribution and

then runs a second-price auction, asking the arm with the highest mean for the second-highest

mean each round.

Define µi as the mean of distribution Di for i = 1, . . . , K, let µmin = mini:µi 6=0(µi), and

u = − log µmin + 1. We assume throughout that u = o(T/K).

2 Truthful mechanism for strategic arms with known stochastic values in the tacit model

Play each arm once (i.e. play arm 1 in the first round, arm 2 in the second round, etc.). Let
wi be the value arm i reports in round i.
Let i∗ = arg maxwi (breaking ties lexicographically), and let w′ = maxi 6=i∗ wi.
Tell arm i∗ the value of w′. Play arm i∗ for R = T − (u + 2)K − 1 rounds. If arm i∗ ever
reports a value different from w′, stop playing it immediately. If arm i∗ always gives w′, play
it for one bonus round (ignoring the value it reports).
For each arm i such that i 6= i∗, play it for one round.
For each arm i satisfying u+log(wi) ≥ 0, play it bu+log(wi)c times. Then, with probability
u+ log(wi)− bu+ log(wi)c, play arm i for one more round.

We will first show that the dominant strategy of each arm in this mechanism includes

truthfully reporting their mean at the beginning, and then then compute the principal’s

revenue under this dominant strategy.

Lemma 3.4.1. The following strategy is the dominant strategy for arm i in Mechanism 2:

1. (line 1 of Mechanism 2) Report the mean value µi of Di the first time when arm i is

played.

2. (lines 3,4 of Mechanism 2) If i = i∗, for the R rounds that the principal expects to see

reported value w′, report the value w′. For the bonus round, report 0. If i 6= i∗, report

0.

58

3. (line 5 of Mechanism 2) For all other rounds, report 0.

Corollary 3.4.1. Under Mechanism 2, the principal will receive revenue at least µ′T − o(T)

when arms use their dominant strategies, where µ′ is the second largest mean in the set of

means µi.

We additionally show that the performance of Mechanism 2 is as good as possible; no

mechanism can do better than the second-best arm in the worst case.

Lemma 3.4.2. Let µ and µ′ be the largest and second largest values respectively among the

µi. Then for any constant α > 0, no truthful mechanism can guarantee (αµ + (1 − α)µ′)T

revenue in the worst case.

3.4.2 Good approximate Nash equilbria

One issue with Mechanism 2 is that, while the principal achieves Θ(T) revenue when the

arms play according to their dominant strategies, there can exist ε-Nash equilibria for the

arms which still leave the principal with negligible revenue. For instance, if there are two

arms with equal means µ1 = µ2 = µ, one possible ε-Nash equilibrium is for them both to

bid µ, and then for arm i∗ to immediately defect after it is chosen. This is not a dominant

strategy, since arm i∗ surrenders its bonus for not defecting, but since this bonus is at most

1, this is still an ε-Nash equilibrium for any ε = o(T) which is larger than 1.

We can make Mechanism 3 more robust to strategies like this by increasing the size of

the bonus with ε. If we additionally allow a tiny buffer between the current reported average

and w′, this mechanism has the added property that it works even when there are a mixture

of strategic and non-strategic arms (and the principal does not know which are which).

In particular, this Mechanism 3 obtains low-regret in the classical stochastic multi-armed

bandits setting, which implies that our negative results in Section 3.3 are really due to the

adversarial nature of the low-regret guarantees.

59

As before, define µi as the mean of distribution Di for i = 1, ..., K. Our mechanism takes

in two parameters, B (representing the size of the bonus) and M (representing the size of

the buffer). We will set B = 2ε1/4T 3/4/µmin and M = 8B−1/2 ln(KT). In addition, we will

define u = − log (mini:µi 6=0 µi) + 2 +M . We assume u = o(T
BK

).

3 Truthful mechanism for strategic/non-strategic arms in the tacit model

Play each arm B times (i.e. play arm 1 in the first B rounds, arm 2 in the next B rounds,
etc.). Let w̄i be the average value arm i reported in its B rounds.
Let i∗ = arg max w̄i (breaking ties lexicographically), and let w′ = maxi 6=i∗ w̄i.
Tell arm i∗ the value of w′. Play arm i∗ for R = T − (u + 3)BK rounds. If arm i∗ ever
reports values with average less than w′ −M in any round after B rounds in this step, stop
playing it immediately. If arm i∗ gives average no less than w′ −M , play it for B bonus
rounds (ignoring the value it reports).
For each arm i such that i 6= i∗, play it for B rounds.
For each arm i satisfying u + log(w̄i −M) ≥ 0, play it Bb(u + log(w̄i −M))c times. Then,
with probability u+ log(w̄i −M)− bu+ log(w̄i −M)c, play arm i for B more rounds.

We begin by characterizing the dominant strategy for Mechanism 3. Similarly as in

Lemma 3.4.1, we show that this dominant strategy involves each arm reporting their true

mean in the beginning rounds.

Lemma 3.4.3. The following strategy is the dominant strategy for arm i in Mechanism 3:

1. (line 1 of Mechanism 3) For the first B rounds, report a total sum of (µi +M)B.

2. (lines 3,4 of Mechanism 3) If i = i∗, for the R rounds that the principal expects to see

reported value w′, report the value w′−M . For the B bonus rounds, report 0. If i 6= i∗,

report 0.

3. (line 5 of Mechanism 3) For all other rounds, report 0.

We use this to show that under any o(T)-Nash equilibrium, the principal receives µ′T −

o(T) revenue under Mechanism 3.

Corollary 3.4.2. Under Mechanism 3, the principal will receive revenue at least µ′T − o(T)

whenever arms play according to an ε-Nash equilibrium, where µ′ is the second largest mean

in the set of means µi and ε = o(T).

60

The dominant strategy in Lemma 3.4.3, as written, requires the arms to know their own

means µi (in particular for step 1). However, if the arms don’t initially know their means,

they can instead simply report their value (plus M) each round, and still report a total sum

of (µi + M)B in expectation. This no longer results in a strictly dominant strategy, but

instead an o(T)-dominant strategy.

Lemma 3.4.4. The following strategy is a prior-independent o(T)-dominant strategy for

arm i in Mechanism 3:

1. (line 1 of Mechanism 3) For each round t in the first B rounds, report vi,t +M .

2. (lines 3,4 of Mechanism 3) If i = i∗, for the R rounds that the principal expects to see

reported value w′, report the value w′−M . For the B bonus rounds, report 0. If i 6= i∗,

report 0.

3. (line 5 of Mechanism 3) For all other rounds, report 0.

It is an interesting question whether a more clever stochastic bandit algorithm can be

embedded without destroying dominant strategies, and also whether a solution exists in

exact dominant strategies for this model.

Similarly, the dominant strategy in Lemma 3.4.3 assumes we are in the unrestricted

payment regime, because sometimes the value you must report (whether it is µi + M or

w′−M) might be larger than the value received in that round. However, again it is possible

to adapt the mechanism (by setting M = 0) and dominant strategy in Lemma 3.4.3 to

work for arms in the restricted payment regime at the cost of transforming it into a o(T)-

dominant strategy. To do this, arms (as in the previous paragraph) simply report their

value each round in the first phase of the mechanism. In the second phase of the mechanism,

instead of reporting w′ each round, they again report their full value, until they have reported

a total of Rw′ (at which point they start reporting 0 for the rest of the game).

Finally, we consider the case when some arms are strategic and other arms are non-

strategic. Importantly, the principal does not know which arms are strategic and which are

61

non-strategic. We show in this case that the principal can get (per round) the larger of the

largest mean of the non-strategic arms and the second largest mean of the strategic arms.

Theorem 3.4.1. If the strategic arms all play according to in Lemma 3.4.3, then the prin-

cipal will get at least max(µs, µn)T − o(T) with probability 1− o(1/T). Here µs is the second

largest mean of the strategic arms and µn is the largest mean of the non-strategic arms.

3.5 Conclusions and Future Directions

We consider the multi-armed bandit problem with strategic arms: arms obtain a reward when

pulled and may pass any of it onto the principal. Our first main result shows that treating

this purely as a learning problem results in undesirable approximate Nash equilibria for the

principle (guaranteeing only o(T) reward over T rounds). Our second main result shows that

a careful combination of auctions, learning, and scoring rules provides a learning algorithm

such that every approximate Nash equilibrium guarantees the principal Ω(T) reward (and

even better - the arms have a dominant strategy). Still, we are far from understanding

the complete picture of multi-armed bandit problems in strategic settings. Many questions

remain, both in our model and related models.

One limitation of our negative results is that they only show there exists some ‘bad’

approximate Nash equilibrium for the arms, i.e., one where any low-regret principal receives

little revenue. This, however, says nothing about the space of all approximate Nash equilib-

ria. Does there exist a low-regret mechanism for the principal along with an approximate

Nash equilibria for the arms where the principal extracts significant utility? An affirmative

answer to this question would raise hope for the possibility of a mechanism that can per-

form well in both the adversarial and strategic setting, whereas a negative answer would

strengthen our claim that these two settings are fundamentally at odds.

One limitation of our positive results is that all of the learning takes place at the beginning

of the protocol. As a result, our mechanism fails in cases where the arms’ distributions can

62

change over time. Is it possible to design good mechanisms for such settings? Ideally, any

good mechanism should learn the arms’ values continually throughout the T rounds, but

accommodating this would require novel tools to handle incentives.

Throughout this paper, whenever we consider strategic bandits we assume their rewards

are stochastically generated. Can we say anything about strategic bandits with adversarially

generated rewards? The key barrier here seems to be defining what a strategic equilibrium is

in this case - arms need some underlying priors to reason about their future expected utility.

Finally, there are other quantities one may wish to optimize instead of the utility of the

principal. For example, is it possible to design an efficient principal, who almost always picks

the best arm (even if the arm passes along little to the principal)? Theorem 3.3.1 implies

the answer is no if the principal also has to be efficient in the adversarial case, but are there

other models where we can answer this question affirmatively?

63

Part II

Truthful Mechanisms in

Combinatorial Auctions

64

Chapter 4

On Simultaneous Two-player

Combinatorial Auctions

The results of this chapter are based on joint work with Mark Braverman and Matt Wein-

berg [39].

4.1 Introduction

We consider the following communication problem: Alice and Bob each have some valuation

functions v1(·) and v2(·) over subsets of m items, and their goal is to partition the items into

S, S̄ in a way that maximizes the welfare, v1(S)+v2(S̄). We study both the allocation problem,

which asks for a welfare-maximizing partition and the decision problem, which asks whether

or not there exists a partition guaranteeing certain welfare, for binary XOS valuations. For

interactive protocols with poly(m) communication, a tight 3/4-approximation is known for

both [97, 82].

For interactive protocols, the allocation problem is provably harder than the decision

problem: any solution to the allocation problem implies a solution to the decision problem

with one additional round and logm additional bits of communication via a trivial reduc-

65

tion. Surprisingly, the allocation problem is provably easier for simultaneous protocols.

Specifically, we show:

• There exists a simultaneous, randomized protocol with polynomial communication

that selects a partition whose expected welfare is at least 3/4 of the optimum. This

matches the guarantee of the best interactive, randomized protocol with polynomial

communication.

• For all ε > 0, any simultaneous, randomized protocol that decides whether the welfare

of the optimal partition is ≥ 1 or ≤ 3/4−1/108 + ε correctly with probability > 1/2 +

1/poly(m) requires exponential communication. This provides a separation between

the attainable approximation guarantees via interactive (3/4) versus simultaneous (≤

3/4− 1/108) protocols with polynomial communication.

In other words, this trivial reduction from decision to allocation problems provably requires

the extra round of communication. We further discuss the implications of our results for

the design of truthful combinatorial auctions in general, and extensions to general XOS

valuations. In particular, our protocol for the allocation problem implies a new style of

truthful mechanisms.

Intuitively, search problems (find the optimal solution) are considered “strictly harder”

than decision problems (does a solution with quality ≥ Q exist?) for the following (formal)

reason: once you find the optimal solution, you can simply evaluate it and check whether its

quality is ≥ Q or not. The same intuition carries over to approximation as well: once you find

a solution whose quality is within a factor α of optimal, you can distinguish between cases

where solutions with quality ≥ Q exist and those where all solutions have quality ≤ αQ.

The easy conclusion one then draws is that the communication (resp. runtime) required

for an α-approximation to any decision problem is upper bounded by the communication

(resp. runtime) required for an α-approximation to the corresponding search problem plus

the communication (resp. runtime) required to evaluate the quality of a proposed solution.

66

Note though that for communication problems, in addition to the negligible increase in

communication (due to evaluating the quality of the proposed solution), this simple reduc-

tion might also require (at least) an extra round of communication (because the parties can

evaluate a solution’s quality only after it is found). Still, it seems hard to imagine that

this extra round is really necessary, and that somehow protocols exist that guarantee an

(approximately) optimal solution without (approximately) learning their quality. The sur-

prising high-level takeaway from our main results is that this extra round of communication

is provably necessary : Theorems 4.1.1 and 4.1.2 provide a natural communication problem

(combinatorial auctions) such that a 3/4-approximation for the search problem can be found

by a simultaneous protocol1 with polynomial communication, but every simultaneous proot-

col guaranteeing a (3/4−1/108+ε)-approximation for the decision problem requires exp(m)

communication.

At this point, we believe our results to have standalone interest, regardless of how we

wound up at this specific communication problem. But there is a rich history related to the

design of truthful combinatorial auctions motivating our specific question, which we overview

below.

4.1.1 Combinatorial Auctions - how did we get here?

In a combinatorial auction, a designer with m items wishes to allocate them to n bidders

so as to maximize the social welfare. That is, if bidder i has a monotone valuation function

vi : 2[m] → R+,2 the designer wishes to find disjoint sets S1, . . . , Sn maximizing
∑

i vi(Si).

The history of combinatorial auctions is rich, and the problem has been considered with and

without incentives, with and without Bayesian priors, and in various models of computation

(see Section 4.1.5 for brief overview). The overarching theme in all of these works is to

1A simultaneous protocol has one round of communication: Alice and Bob each simultaneously send a
message and then no further communication takes place.

2By monotone, we mean that vi(S) ≥ vi(T) for all T ⊆ S.

67

try and answer the following core question: Are truthful mechanisms as powerful as (not

necessarily truthful) algorithms?3

For many instantiations of the above question, the answer is surprisingly yes. For exam-

ple, without concern for computational/communication complexity, the celebrated Vickrey-

Clarke-Groves auction is a truthful mechanism that always selects the welfare-maximizing

allocation (and therefore achieves welfare equal to that of the best algorithm) [187, 63, 110].

Of course, the welfare maximization problem is NP-hard and also requires exponential com-

munication between the bidders, even to guarantee a 1/
√
m-approximation. A poly-time al-

gorithm (with polynomial communication) is known to match this guarantee [168, 131, 43],

and interestingly, a poly-time truthful mechanism (with polynomial communication) was

later discovered as well [139].

The state of affairs gets even more interesting if we restrict to proper subclasses of mono-

tone valuations such as submodular valuations.4 Here, a very simple greedy algorithm is

known to find a 1/2-approximation in both poly(n,m) black-box value queries to each vi(·),

and polynomial runtime (in n,m, and the description complexity of each vi(·)) [140], and a se-

ries of improvements provides now a (1-1/e)-approximation, which is tight [188, 153, 83]. Yet,

another series of works also proves that any truthful mechanism that runs in polynomial time

(in n,m, and the description complexity of each vi(·)), or makes only poly(n,m) black-box

value queries to each vi(·) achieves at best an 1/mΩ(1)-approximation [67, 75, 87, 84]. So while

poly-time algorithms, or algorithms making poly(n,m) black-box value queries can achieve

constant-factor approximations, poly-time truthful mechanisms and truthful mechanisms

making poly(n,m) black-box value queries can only guarantee an 1/mΩ(1)-approximation,

and there is a separation.

But this is far from the whole story: already ten years ago, quite natural truthful mech-

anisms were developed that achieved an 1/O(log2m)-approximation [81], which were subse-

3Note that combinatorial auctions is not the only literature to study this question, see Section 6.1.1 for
very brief discussion of other examples such as combinatorial public projects [165] and job scheduling [161].
We just note here that combinatorial auctions remain the core testbed for this line of work.

4A function is submodular if v(S) + v(T) ≥ v(S ∪ T) + v(S ∩ T).

68

quently improved to 1/O(
√

logm) [74, 134, 76], and even hold for the much broader class

of XOS valuations.5 As these approximation guarantees are better than the lower bounds

referenced in the previous paragraph, it seems that perhaps there should be some kind of

contradiction: any reasonable definition of “natural” should imply “poly-time,” right? The

catch is that each of these mechanisms are essentially posted-price mechanisms: they (essen-

tially) offer each bidder a price pj for item j, and let the buyer choose any subset of items

they want to purchase. These prices can be computed in poly-time, but the barrier is that

deciding which subset of items the bidder wishes to purchase, called a demand query, is in

general NP-hard (assuming a succinct representation of the valuation function is given), or

requires exponentially many black-box value queries. So the only reason these mechanisms

don’t fall victim to the strong lower bounds of the previous paragraph is because they get to

ask each bidder to compute a single demand query, and this query is used to select exactly

the set of items that bidder receives.

The point is that while these existing separations are major results, and rule out certain

classes of natural truthful mechanisms from achieving desirable approximation ratios, they

are perhaps not addressing “the right” model if posted-price mechanisms with poly-time com-

putable prices provide approximation guarantees that significantly outperform known lower

bounds. Therefore, it seems that communication is really the right complexity measure to

consider, if one wants the resulting lower bounds to hold against all “natural” mechanisms.

Unfortunately, the state-of-affairs for communication complexity of combinatorial auctions

lags pretty far behind the aforementioned complexity measures. For instance, existing litera-

ture doesn’t provide a single lower bound against truthful mechanisms that doesn’t also hold

against algorithms. That is, wherever it’s known that no truthful mechanism with communi-

cation at most C obtains an approximation ratio better than α when buyers have valuations

in class V , it’s because it’s also known that no algorithm/protocol with communication at

5A valuation is XOS if there exists a matrix of item valuations vij and vi(S) = maxj{
∑

i∈S vij}. XOS
valuations are also called fractionally subadditive, and are a proper subclass of subadditive valuations (where
v(S ∪ T) ≤ v(S) + v(T)).

69

most C obtains an approximation ratio better than α when buyers have valuations in class

V . On the other hand, the best known truthful mechanisms with polynomial communication

for (say) XOS bidders achieve an 1/O(
√

logm) approximation [76], while the best known

algorithms with polynomial communication obtain a (1 − 1/e)-approximation [82, 97, 98].

Even for the case of just two bidders, the best known truthful mechanisms with polynomial

communication achieve a 1/2-approximation (which is trivial - just give the grand bundle

of all items to whoever values it most), while the best known algorithms with polynomial

communication achieve a 3/4-approximation (which is tight). It’s fair to say that deter-

mining whether or not there’s a separation in what approximation guarantees are possible

for algorithms with polynomial communication and truthful mechanisms with polynomial

communication for any class of valuations between submodular and subadditive is one of the

core, concrete open problems in Algorithmic Mechanism Design.

Progress on this front had largely been stalled until very recent work of Dobzinski pro-

vided a clear path to possibly proving a separation (and it seems to be an accepted conjecture

that indeed a separation exists) [77]. Without getting into details of the complete result, one

implication is the following: if there exists a truthful mechanism with polynomial communi-

cation for 2-player combinatorial auctions with XOS (/submodular/subadditive) valuations

that guarantees an approximation ratio of α, then there exists a simultaneous protocol

with polynomial communication for 2-player combinatorial auctions with XOS (/submod-

ular/subadditive) valuations that guarantees an approximation ratio of α as well. Let us

emphasize this point again: in general, interactive protocols with polynomial communica-

tion do not imply simultaneous protocols with polynomial communication, and numerous

well-known problems have polynomial interactive protocols, but require exponential simul-

taneous communication [166, 88, 162, 79, 8, 16]. But, Dobzinski’s result asserts that because

of the extra conditions on truthful (interactive) mechanisms, their existence indeed implies

a simultaneous (not necessarily truthful) protocol of comparable communication complex-

ity. So “all” one has to do to prove lower bounds against truthful mechanisms for 2-player

70

combinatorial auctions is prove lower bounds against simultaneous protocols, motivating the

study of simultaneous 2-player combinatorial auctions.

At first glance, it perhaps seems obvious that achieving strictly better than a 1/2-

approximation via a simultaneous protocol should be impossible, and it’s just a matter

of finding the right tools to prove it.6 This is because quite strong lower bounds are known

for “sketching” valuation functions, that is, finding a succinct representation of a func-

tion that allows for approximate evaluation of value queries. For example, it’s known that

any sketching scheme for XOS valuations that allows for evaluation of value queries to be

accurate within a o(m)-factor requires superpoly(m) size [23]. So if somehow a 1/(2 − ε)-

approximation could be guaranteed with a poly(m)-communication simultaneous protocol,

it is not because enough information is transmitted to evaluate value queries within any

non-trivial error. At first glance, it perhaps seems unlikely that such a protocol can possibly

exist. Surprisingly, our work shows not only that a 1/(2 − ε)-approximation is achievable

with poly(m) simultaneous communication, but (depending on exactly the question asked)

poly(m) simultaneous communication suffices to achieve the same approximation guarantees

as the best possible interactive protocol with poly(m) communication.

4.1.2 Simultaneous Protocols for Welfare Maximization

In this work, we specifically study the welfare maximization problem for two bidders with

binary XOS valuations.7 Binary XOS valuations are a natural starting point since welfare

maximization is especially natural when phrased as a communication problem. Depending

on whether one wants to decide the quality of the welfare-optimal allocation, or actually find

an allocation inducing the optimal welfare, welfare maximization for binary XOS bidders is

equivalent to one of the following:8

6Indeed, that is what the authors conjectured at the onset of this work.
7A function is binary XOS if all vij in the matrix representation are 0 or 1.
8Equivalent definitions are given in Section 4.1.4 which are stated more in the language of welfare maxi-

mization. We pose these statements here since these formulations make for an especially natural communi-
cation problem.

71

Definition 4.1.1 (BXOS Decision Problem). Alice is given as input a subsets of [m],

A1, . . . , Aa. Bob is given as input b subsets of [m], B1, . . . , Bb, and both see input X.

Determine whether or not there exists an i, j such that |Ai ∪ Bj| ≥ X. A protocol is an

α-approximation if whenever there exists an i, j such that |Ai ∪ Bj| ≥ X, it answers yes,

and whenever maxi,j{|Ai ∪ Bj|} < X/α it answers no, but may have arbitrary behavior in

between.

Definition 4.1.2 (BXOS Allocation Problem). Alice is given as input a subsets of [m],

A1, . . . , Aa. Bob is given as input b subsets of [m], B1, . . . , Bb. Output a partition of items

S, S̄ maximizing maxi,j{|Ai ∩ S|+ |Bj ∩ S̄|} (over all partitions).9

Recall that typically we think of decision problems as being “easier” than alloca-

tion/search problems: certainly if you can find a welfare maximizing allocation, you can

also determine its welfare (and this claim is formal for interactive protocols with poly(m)

communication). Our main result asserts that this intuition breaks down for simultaneous

protocols: the decision problem is strictly harder than the allocation/search problem. To

the best of our knowledge, this is the first instance of such a separation.

Theorem 4.1.1. There exists a randomized, simultaneous protocol with poly(m) communi-

cation that obtains a 3/4-approximation for the BXOS allocation problem. This is the best

possible, as even randomized, interactive protocols require 2Ω(m) communication to do better.

Theorem 4.1.2. For all ε > 0, any randomized, simultaneous protocol that obtains a (3/4−

1/108 + ε)-approximation for the BXOS decision problem with probability larger than 1/2 +

1/poly(m) requires 2Ω(m) communication.

Future sections contain more precise versions (that reference the protocols achieving

them) of Theorems 4.1.1 (Theorem 4.4.1) and 4.1.2 (Theorem 4.5.1).

9A protocol is an α-approximation if it outputs a partition S, S̄ guaranteeing α·maxi,j{|Ai∩S|+|Bj∩S̄|} ≥
maxi,j,T {|Ai ∩ T |+ |Bj ∩ T |}.

72

4.1.3 Extensions and Implications for Truthful Combinatorial

Auctions

Part of the analysis of our protocols actually makes use of the binary assumption (as opposed

to holding for general XOS). Part of the analysis, however, does not. In particular, our

same protocols when applied to general XOS functions yield a deterministic, simultaneous

(3/4 − 1/32 − ε)-approximation for both problems, and a deterministic 2-round (3/4 − ε)-

approximation for both problems for general XOS functions.

We are also able to show that a modification of our protocol yields a 1/2-approximation

for any number of binary XOS bidders, and that this protocol implies a strictly truthful

mechanism.10 The mechanism is quite different from existing approaches, and could inspire

better truthful mechanisms in domains where previous molds provably fail. Essentially, the

designer offers a menu of lotteries to each bidder and the cost of each lottery depends on

how “flexible” the option is. So for instance, taking item one deterministically will be more

expensive than taking a single item uniformly at random. The pricing scheme is designed

exactly so that each bidder is strictly incentivized to follow our simultaneous protocol.

Finally, while our results have standalone merit outside the scope of truthful combinato-

rial auctions, it is important to properly quantify their impact in this direction. Dobzinski’s

recent reduction shows that truthful combinatorial auctions with polynomial communication

imply simultaneous algorithms for the allocation problem. So Theorem 4.1.2 does not rule

out the possibility of a truthful mechanism for two XOS bidders that requires polynomial

communication and guarantees a 3/4-approximation (more on this in Section 4.6).

4.1.4 Brief Preliminaries and Roadmap

Below we give some brief preliminaries. Section 4.2 provides a toy setting to help develop

intuition for where the gap between allocation and decision problem comes from. Section 4.3

10By this we mean it is a strongly dominant strategy for bidders to follow the protocol, and not just that
they are indifferent between following and not following.

73

provides a warmup for our protocols via a 2/3-approximation for the allocation problem and

a 3/5-approximation for the decision problem. Sections 4.4 and 4.4.1 contain our positive

results, and Section 4.5 contains details on our lower bound.

In a combinatorial auction, there are n players and m items. In 2-party case, we call

the first player Alice and the second player Bob. Each player i has a valuation function

vi : 2[m] → R+. (We require vi(∅) = 0.) The goal for the auctioneer is to find an allocation

S1, ..., Sn (S1 ∩ · · · ∩ Sn = ∅) to maximize the social welfare
∑n

i=1 vi(Si).

1. When we use “protocol”, it means that players honestly follow the protocol and the

challenge is to make the protocol have good approximation ratio, polynomial commu-

nication cost and possibly small number of rounds. In this paper, we use the standard

communication complexity model and we allow public randomness and private ran-

domness. For details, we refer the reader to [135]. We want to emphasize two relevant

properties of the communication protocols here:

(a) We care about the number of rounds of a protocol. In each round, all the mes-

sages need to be sent simultaneously. We use ”simultaneous protocols” to denote

protocols with only one round of communication.

(b) All the protocols discussed in this paper are in the “blackboard model.” In the

blackboard model, each message is broadcasted. Or in other words, each message

is written on a blackboard for all players and the auctioneer to see. In some

protocol, we don’t really need broadcast, we will specify where is the message

from and sent to in those protocols.

2. When we use “mechanism,” it means that players might not tell the truth and we need

to incentivize the players to cooperate. A mechanism in this paper can be considered

as a protocol together with an allocation rule and a payment rule. Let the protocol

be π and the transcript be Π. For i = 1, ..., n, let Si be the allocation rule and pi

be the payment of player i. Player i’s utility is defined as ui(Π) = vi(Si(Π)) − pi(Π).

74

Player i’s goal is to maximize her expected utility E[ui(Π)]. The expectation is over

the randomness of the mechanism.

We further define the truthful mechanism as the following. Let mi be the message sent

by player i. mi is a function of vi and the history of the protocol. Here we only make the

definition for the case when each player sends at most one message in the protocol and all

the mechanisms in this paper are in this case. We say that mi is a dominant strategy (in

expectation) for player i, if for all v1, ..., vn, player i’s other strategy m′i and other players’

strategy m−i,

E [vi(Si(Π(mi,m−i))− pi(Π(mi,m−i))]

≥ E [vi(Si(Π(m′i,m−i))− pi(Π(m′i,m−i))] .

We say that a mechanism is a truthful mechanism if there exist dominant strategies for

all players.

One of our goals in this paper is to find an allocation that achieves good approximation

of the maximum social welfare SW∗(v1, ..., vn) (defined as allocation problem in Section 4.1).

We say a protocol is α-approximation if for all v1, ..., vn,

E[
n∑
i=1

vi(Si(Π))] ≥ α · SW∗(v1, ..., vn).

We say a truthful mechanism is α-approximation if for all v1, ..., vn there exist dominant

strategies m1, ...,mn for player 1, ..., n guaranteeing:

E[
n∑
i=1

vi(Si(Π(m1, ...,mn))] ≥ α · SW∗(v1, ..., vn).

Below are definitions of the valuation classes used in the paper. These are equivalent to

the definitions used in Section 4.1, but more apt for proofs and less apt for posing easy-to-

parse communication problems.

75

Definition 4.1.3. We consider the following classes of valuations:

• A valuation function v is additive if for every bundle S, v(S) =
∑

i∈S v({i}).

• A valuation function v is XOS if there exist additive valuations a1, ..., at such that for

every bundle S, v(S) = maxti=1 ai(S). Each ai is called a clause of v.

• A valuation function v is binary additive if v is additive and for every item i,

v({i}) ∈ {0, 1}. We will sometimes refer to a binary additive valuation as a set,

referring to {i|v({i}) = 1}.

• A valuation function v is binary XOS if v is XOS and all v’s clauses are binary

additive valuations. Again, we will sometimes refer to v’s clauses as sets to make it

more natural to talk about unions/intersections/etc.

4.1.5 Background on Related Work

There is an enormous literature of related work on combinatorial auctions. The state-of-

the-art without concern for incentives is a 1/2-approximation for any number of subadditive

bidders [97], and numerous improvements for special cases, such as submodular bidders [82,

97, 98]. With concern for incentives, the state-of-the-art (for worst-case approximation ratios

and dominant strategy truthfulness) is an 1/O(
√

logm)-approximation for XOS bidders,

again with improvements for further special cases [86]. The problem has also been studied

in Bayesian settings, where a generic black-box reduction is known if the designer only

desires Bayesian truthfulness11 [118, 117, 25]. If the designer desires dominant strategy

truthfulness but is okay with an average-case welfare guarantee, then a 1/2-approximation

is known for XOS bidders [101]. Combinatorial auctions have also been studied through

the lens of Price of Anarchy, but a deeper discussion of this is outside the scope of this

paper [27, 163, 180, 181, 100, 48, 78, 70, 140, 62, 38, 99].

11A mechanism is Bayesian truthful if it is in every bidder’s interest to tell the truth, assuming all other
bidders tell the truth and have values drawn from the correct Bayesian prior.

76

The direction of “truthful mechanisms versus algorithms” is also studied through other

topics. For example, [165] introduces the combinatorial public projects problem, and char-

acterize truthful mechanisms via a Roberts-like theorem [172]. They further show a sep-

aration between what is achievable by communication-efficient truthful mechanisms and

communication-efficient algorithms, owing to this characterization. In contrast, such a char-

acterization is not known (and not believed to exist) for combinatorial auctions, with Dobzin-

ski’s recent reduction being the only progress in this direction [77]. Nisan and Ronen’s

seminal paper also attacked this question through the problem of truthful job scheduling

on unrelated machines [161]. Here, the specific question studied is fundamentally different:

they ask whether or not any truthful mechanism (regardless of computation/communication)

can achieve makespan guarantees competitive with the best possible (whereas for combina-

torial auctions, the VCG mechanism guarantees that truthful mechanisms can achieve the

first-best without concern for computation/communication [187, 63, 110]).

On the topic of simultaneous versus interactive communication, [190] proposed the

2-party simultaneous communication model when communication complexity was intro-

duced. [166], [88], [162] showed that in the 2-party case, there is an exponential gap between

k and (k − 1)-round deterministic/randomized communication complexity of an explicit

function. In the multiparty number-on-forehead communication model [51], [19] showed

an exponential gap between simultaneous communication complexity and communication

complexity for up to (log n)1−ε players for any ε > 0. [79] recently showed that in combina-

torial auctions with unit demand bidders/subadditive bidders, there is an exponential gap

(exponential in the number of players) between simultaneous communication complexity

and communication complexity. In comparison to these works, our separation between

simultaneous and interactive communication for the 2-player BXOS decision problem is of

a quite different flavor, and makes the available toolkit for future results more diverse.

77

4.2 Intuition for the Gap: an Extremely Toy Setting

Consider the following very toy setting: Alice and Bob each have some valuation function

v(·) such that v([m]) ∈ [1,M], and v(·) is monotone (no other assumptions).12

Observation 4.2.1. In the very toy setting, Alice and Bob can guarantee the following tight

approximation guarantees with zero communication:

• A 1/2-approximation for the allocation problem with a randomized protocol: give all

the items either to Alice or Bob uniformly at random.

• A 1/(M + 1)-approximation for the allocation problem with a deterministic protocol:

give all the items to Alice.

• A 1/(2M)-approximation for the decision problem (decide if social welfare ≥ X or

≤ X/(2M), arbitrary behavior allowed in-between): If X > 2M output “≤ X/(2M)”

If X ≤ 2M , “≥ X.”

Since this example is just to provide intuition, we omit a complete proof. The first bullet

should be fairly clear: the optimal welfare is clearly upper bounded by v1([m]) + v2([m]),

and the protocol guarantees exactly half of this. The third bullet should also be clear: the

optimal welfare is always between 1 and 2M . Moreover, any value in the range is possible

(2M if, for instance, v1({1}) = M = v2({2}). 1 if, for instance, v1(S) = v2(S) = 1 iff S 3 1,

and v1(S) = v2(S) = 0 otherwise). So with zero communication, better than 1/(2M) is not

possible. The middle bullet is perhaps the only tricky one. If we give all of the items to

Alice, we guarantee welfare v1([m]) ≥ 1, and the optimum is upper bounded by v1([m])+M .

Again, the purpose of this example is just to provide intuition as to where this gap might

come from, and we do not consider it a “result.” Of course, one should not expect the gaps

to stay quite so drastic as we dial up the communication: with just logM bits in the above

example, a deterministic protocol for the allocation problem and decision problem can both

12If one wishes, one could further restrict attention to submodular, XOS, etc., but this section is just
supposed to be a toy model to provide some intuition, and we will not belabor this point.

78

guarantee a 1/2-approximation (output v([m])). But this example still captures some of the

intuition as to where the gap comes from.

4.3 Warmup: Beating a 1/2-Approximation

Before explaining our protocol, consider the following thought experiment: say instead Alice

and Bob are asked to just report a single clause from their valuation. What clause should

they choose and how well will this protocol solve the allocation/decision problem? It’s not

too hard to see that the best they can do is to just report the largest clause in their list

(maximizes bi([m]) over all clauses bj), which will obtain just a 1/2-approximation for each

problem. Now, what if they each report two clauses from their valuations, can they do

something more clever? Well, they should certainly try to report clauses that are large, as

this lets the other know which sets they value the most. But they should also try to report

clauses that are different, as this allows for more flexibility in an allocation that both parties

value highly. It’s perhaps not obvious what the right tradeoff is between large/different (or

even exactly what “different” should formally mean), but it turns out that a good approach

is for Alice and Bob to each output the two clauses in their list with the largest union

(i.e. output bi, bj maximizing SW∗(bi, bj)). Subject to figuring out how to translate this

information into solutions, a slight variant of this protocol guarantees a 2/3-approximation

for the allocation problem, and a 3/5-approximation for the decision problem, and the proof

is actually quite simple. Note below that Theorem 4.3.1 holds only for BXOS, whereas

Theorem 4.3.2 holds for general XOS. We’ll provide both proofs below first, followed by a

brief discussion.

Protocol 4 Simultaneous randomized warmup protocol for 2-party combinatorial auctions
with binary XOS valuations

1: Alice finds b1, b2, b3 among clauses of her valuation v1 such that b1 maximizes b1([m]) and
b2, b3 maximize SW∗(b2, b3). Then she picks j uniformly at random from {1, 2, 3} and
sends bj to the auctioneer.

2: For each item i, the auctioneer allocates it to Alice if bj({i}) = 1; otherwise allocate it
to Bob.

79

Theorem 4.3.1. Protocol 4 gives a 2/3-approximation to the 2-party BXOS allocation prob-

lem.

Proof. First, we want to claim that if Alice sents bj to the auctioneer, then the resulting

welfare is at least SW∗(bj, v2). This is actually an instantiation of a claim we will want to

reference later, so we’ll state a more general form below:

Claim 4.3.1. Let b1 be a binary additive valuation and v2 be a binary XOS valuation. Then

the allocation that awards to Alice all items such that b1({i}) = 1 achieves welfare equal to

SW∗(b1, v2).

Proof. Let A denote the set of items for which b1({i}) = 1, and consider any other allocation

(B, B̄). We first reason that we can remove from B all items /∈ A without hurting bj(B) +

v2(B̄). This is trivial to see, as bj has value 0 for all items /∈ A. Next, we reason that we

can add to B any item ∈ A without hurting bj(B) + v2(B̄). To see this, observe that we

are certainly increasing bj(B) by 1 when we make this change, as bj is just additive and

bj({i}) = 1 for all i ∈ A. In addition, we can’t possibly decrease v2(B̄) by more than 1, as all

of the clauses in v2 are binary additive (and therefore have value at most 1 for any item). So

again, the total change is only positive. At the end of these changes, observe that we have

now transitioned from (B, B̄) to (A, Ā) without losing any welfare, and therefore (A, Ā) is

indeed optimal.

Claim 4.3.1 immediately lets us conclude that the expected welfare guaranteed by Proto-

col 4 is at least 1
3
·
∑3

j=1 SW∗(bj, v2). Now, let S and T be the optimal allocation to achieve

SW∗(v1, v2). Let a be the clause of v1 such that a(S) = v1(S). Let a′ be the clause of v2

such that a′(T) = v2(T). So SW∗(v1, v2) = a(S) + a′(T). From the protocol, we know that

b1([m]) ≥ a([m]) ≥ a(S). Moreover, if U and U ′ are the allocation that achieves SW∗(b2, b3),

then we know that b2(U) + b3(U ′) = SW∗(b2, b3) ≥ SW∗(a, b1) ≥ a(S) + b1(T) (by definition

80

of b2, b3). In expectation, the social welfare we get in the protocol is at least:

1

3
·

3∑
j=1

SW∗(bj, v2)

≥ 1

3
· (b1(S) + a′(T) + b2(U) + a′(U ′) + b3(U ′) + a′(U))

≥ 1

3
· (b1(S) + a′(T) + a(S) + b1(T) + a′([m]))

≥ 1

3
· (b1([m]) + a(S) + 2a′(T))

≥ 1

3
· (2a(S) + 2a′(T)) =

2

3
· SW∗(v1, v2).

Protocol 5 Simultaneous deterministic warmup protocol for 2-party combinatorial auctions
with XOS valuations

1: Alice finds b1, b2, b3 among clauses of her valuation v1 such that b1 maximizes b1([m]) and
b2, b3 maximize SW∗(b2, b3). Bob finds b4, b5, b6 among clauses of his valuation v2 such
that b4 maximizes b4([m]) and b5, b6 maximize SW∗(b5, b6). Alice sends b1, b2, b3 to the
auctioneer and Bob sends b4, b5, b6 to the auctioneer simultaneously.

2: For allocation problem: Auctioneer finds j ∈ {1, 2, 3}, j′ ∈ {4, 5, 6} that maximizes
SW∗(bj, b′j′) and allocate items according to it.

3: For decision problem: Let X be the parameter in the decision problem. Auctioneer
finds j ∈ {1, 2, 3}, j′ ∈ {4, 5, 6} that maximizes SW∗(bj, b′j′). If SW∗(bj, b′j′) ≥ 3X/5,
say ”yes” (SW∗(v1, v2) ≥ X). If SW∗(bj, b′j′) < 3X/5, say ”no”.

Theorem 4.3.2. Protocol 5 gives a 3/5-approximation to the 2-party XOS allocation problem

and the 2-party XOS decision problem.13

Proof. Let S and T be the optimal allocation to achieve SW∗(v1, v2). Let a be the clause

of v1 such that a(S) = v1(S). Let a′ be the clause of v2 such that a′(T) = v2(T). So

SW∗(v1, v2) = a(S) + a′(T). From the protocol, we know that b1([m]) ≥ a([m]) ≥ a(S) and

b4([m]) ≥ a′([m]) ≥ a′(T). Let U and U ′ be the allocation to achieve SW∗(b2, b3). We know

13XOS allocation problem and XOS decision problem are the obvious extensions of BXOS allocation
problem and BXOS decision problem for non-binary clauses.

81

that b2(U) + b3(U ′) ≥ a(S) + b1(T). Let W and W ′ be the allocation to achieve SW∗(b5, b6).

We know that b5(W) + b6(W ′) ≥ a′(T) + b4(S). Then we have

SW∗(b1, b5) + SW∗(b1, b6)

≥ b1(W ′) + b5(W) + b1(W) + b6(W ′)

≥ b1([m]) + b5(W) + b6(W ′) ≥ a(S) + a′(T) + b4(S).

Similarly we have

SW∗(b2, b4) + SW∗(b3, b4) ≥ a(S) + a′(T) + b1(T).

The social welfare we get in the protocol is at least

SW∗(bj, b′j′)

≥ 1

5
· (SW∗(b1, b4) + SW∗(b1, b5) +

SW∗(b1, b6) + SW∗(b2, b4) + SW∗(b3, b4))

≥ 1

5
· (b1(S) + b4(T) + 2a(S) + 2a′(T) + b4(S) + b1(T))

≥ 1

5
· (b1([m]) + b4([m]) + 2a(S) + 2a′(T))

≥ 3

5
(a(S) + a′(T)) =

3

5
SW∗(v1, v2).

From this, it is easy to check that Protocol 5 gives a 3/5-approximation to both the 2-party

XOS allocation problem and the 2-party XOS decision problem.

So now there are two remaining questions: first, how does one generalize the reasoning

in Protocols 4 and 5 to multiple clauses? And second, why the heck is there a difference

between their guarantees for the allocation and decision problem for binary XOS valuations?

For the first question, we’ll postpone the details to Section 4.4, but just note here that our

82

full protocols indeed makes use of similar reasoning. For the second, observe that Claim 4.3.1

is somewhat magical: if Alice’s valuation is binary additive, and Bob’s is binary XOS, then

it is possible to allocate the items optimally without any input from Bob (other than the

knowledge that his valuation is indeed binary XOS). While it’s not obvious that Claim 4.3.1

should necessarily be quite so helpful (given that we do, in fact, get input from Bob), this

turns out to be the crucial difference between the allocation and decision problem. At a high

level, there is necessarily some information lost between Alice’s valuation and her message

(ditto for Bob). The decision problem requires us to deal with both losses, but Claim 4.3.1

lets certain kinds of protocols only worry about the loss from Alice.

4.4 Developing Good Summaries

In this section, we define “summaries” in some specific forms for binary XOS valuations.

They are the main ingredients in our protocols and mechanisms. At a high level, the sum-

maries are trying to simultaneously maximize the size of the reported clauses, while also

keeping on eye on reporting “different” clauses. One can interpret the negative term as a

“regularizer” that achieves this goal. The total size of the reported clauses corresponds to

term
∑m

i=1 xi and we encourage reporting “different” clauses by having the term−
∑m

i=1 α·x2
i .

Definition 4.4.1 (Summaries of binary XOS valuations). For a binary XOS valuation v, de-

fine its (k, α)-summary (b1, ..., bk) as argmaxb1,...,bk∈{a1,...,at}
∑m

i=1 (xi − α · x2
i), where a1, ..., at

are the clauses of v and xi = b1({i})+···+bk({i})
k

.

Remark 4.4.1. For the summaries defined above, there might be multiple (b1, ..., bk)’s max-

imize the term. When we use a (k, α)-summary in some protocol, we will use an arbitrary

one. Additionally, note that our warm-up protocols from Section 4.3 ask Alice and Bob to

output both their (1, 1/2)-summary and their (2, 2/3)-summary, see examples below.

83

Example 4.4.1. For a (1, 1/2)-summary of some binary XOS valuation v, we will find b1

among clauses of v that maximizes

m∑
i=1

(
b1({i})− 1

2
· (b1({i}))2

)
=

m∑
i=1

b1({i})/2 =
1

2
b1([m]).

Example 4.4.2. For a (2, 2/3)-summary of some binary XOS valuation v, we will find b1, b2

among clauses of v that maximize

m∑
i=1

(
b1({i}) + b2({i})

2
− 2

3
·
(
b1({i}) + b2({i})

2

)2
)

=
1

3

m∑
i=1

(b1({i}) + b2({i})− b1({i})b2({i}))

=
1

3
SW∗(b1, b2).

Proofs of some simple properties of these summaries, and an extension of the definition

to non-binary XOS valuations can be found in the full version of [39]. Essentially, what the

lemmas are stating is that for any set A, the summaries defined above do a “good enough” job

capturing Alice’s (/Bob’s) value for A. Note that “good enough” doesn’t mean “captures

v(A) within a constant factor,” as this is impossible with a sketch [23]. “Good enough”

simply means that the summary can be used inside a similar approach to Section 4.3.

Once summaries from Alice and Bob are in hand, there are a couple natural ways to

“wrap up” the allocation/decision problem. We’ll formally name these and refer to them in

future protocols:

• Alice-Only Allocation (randomized): Pick a clause uniformly at random from

Alice’s summary, award to Alice items for which that clause values at 1, and the rest

to Bob.

84

• Best Known Allocation (deterministic): If Alice reports clauses a1, . . . , ak, and

Bob reports clauses b1, . . . , bk, find i, j maximizing SW∗(ai, bj). Allocate items accord-

ing to the allocation that yields SW∗(ai, bj).

• Best Known Decision(α,X) (deterministic): If Alice reports clauses a1, . . . , ak,

and Bob reports clauses b1, . . . , bk, find i, j maximizing SW∗(ai, bj). If SW∗(ai, bj) ≥

αX say “yes” (guess that SW∗(v1, v2) ≥ X). Otherwise, guess “no” (guess that

SW∗(v1, v2) < αX).

4.4.1 Our Protocols and Mechanisms

In this section, we’ll describe all protocols used to provide our positive results. All protocols

involve Alice and Bob reporting a (k, α)-summary, and then using the Alice-Only or Best

Known Allocation, or making the Best Known Decision. All proofs can be found in the full

version of [39]. We make two remarks before proceeding:

1. All of the high-level intuition for why the protocols work is captured by the summaries.

Many of the actual proofs are different, but at a high level everything comes down to

the fact that this class of summaries selects “the right” clauses to report for welfare

maximization.

2. Any protocol that eventually uses the Alice-Only Allocation doesn’t require Alice to

report her entire summary (she can just draw the random clause herself as in Protocol 4

(and have communication m for any choice of k). While we state the guarantees for

such protocols for a fixed k, one can actually take k → ∞ without increasing the

communication at all.

Theorem 4.4.1. The following protocols achieve guarantees:

85

Alice’s Bob’s Wrap-up Approximation Problem Valuations

summary summary

(k, 1/2) ⊥ Alice-Only 3/4− 1/k Allocation BXOS

(k, 1/3) (k, 1/3) Best Known Allocation 23/32− 1/k Allocation XOS

(k, 1/3) (k, 1/3) Best Known Decision 23/32− 1/k Decision XOS

Before continuing, we briefly remark the following:

• The 3/4-approximation guaranteed by the protocol in the first row is tight: [82] showed

that randomized, interactive protocols require exponential communication to beat a

3/4-approximation.

• The second and third protocols also work for general XOS.

• It is still open whether it is possible to beat 23/32 with a deterministic protocol for

the allocation problem, but 23/32 is optimal for any protocol using the Best Known

Allocation after Alice and Bob each report a (k, αi)-summary.

Additional applications of our summaries appear in the full version of this paper, in-

cluding a 2-round protocol guaranteeing a 3/4-approximation for general XOS valuations,

and our strictly truthful mechanism. The strictly truthful mechanism essentially visits bid-

ders one at a time, asks for a (k, 1/2)-summary on the remaining items, awards them the

“Alice-Only Allocation” for their reported summary, and charges payments to ensure strict

truthfulness.

4.5 Lower Bounds

Finally, we overview our lower bound for the BXOS decision problem (which implies Theo-

rem 4.1.2). We begin with some intuition: Alice and Bob will each get exponentially many

clauses of size m/2. These sets will be random, but not uniformly random.14 Instead, they

14If they were uniformly random, then Alice and Bob can guarantee 3m/4 in expectation by just reporting
a single arbitrary clause, because two uniformly random sets of size m/2 have union 3m/4 in expectation.

86

are drawn in such a way that the union of two random clauses of Alice and Bob has size

(3/4 − 1/108)m in expectation. At this point, the optimal welfare is (3/4 − 1/108)m if we

don’t further adjust their inputs. Finally, we modify the construction either by hiding or

not hiding a0 within Alice’s input and b0 within Bob’s input such that a0 ∪ b0 = [m], in a

matter so that these sets are indistinguishable from the rest. Therefore, the answer to the

decision problem rests on whether or not Alice and Bob each have this hidden set, but they

have no means by which to convey this information as this set looks indistinguishable from

the rest. The proof of Theorem 4.5.1 below can be found in the full version of [39].

Theorem 4.5.1. For any constant ε > 0, there exists a distribution over binary XOS valu-

ations such that no simultaneous, randomized protocol with less than e2Cm/9 communication

can guarantee an α-approximation to the 2-party BXOS decision problem with probability

larger than 1
2

+ 2e−Cm/9. Here α = 3/4− 1/108 + ε and C = 2ε2.

4.6 Discussion and Future Work

Our main result shows a simultaneous protocol guaranteeing a 3/4-approximation for the

BXOS allocation problem, and a lower bound of 3/4 − 1/108 for for the BXOS decision

problem. The bigger picture behind these results, even without consideration of truthful

combinatorial auctions, is the following:

• It is surprising that the decision problem is strictly harder than the allocation/search

problem. To the best of our knowledge, this is the first instance of such a separation.

• It is surprising that a (> 1/2)-approximation for either the allocation or decision

problem is possible at all, given the strong lower bounds already known on sketching

valuation functions, but we are able to get a tight 3/4-approximation for the allocation

problem.

87

• A 3/4-approximation for the decision problem now serves as a new example of what

can be achieved in polynomial interactive communication (in fact, two rounds by a

theorem in the full version), but requires exponential simultaneous communication.

While such problems are already known, this has a very different flavor than previous

constructions, and will likely be a useful tool for this reason.

The most obvious question is to resolve whether or not there is a 3/4-approximation

for the allocation problem with general XOS functions. If there isn’t, this would provide

the first separation between truthful and non-truthful protocols with polynomial commu-

nication via Dobzinski’s reduction [77]. Additionally, whether or not our protocol can be

de-randomized is an enticing open question: if no matching deterministic protocol can be

found (implying a lower bound of < 3/4 for deterministic protocols for the allocation prob-

lem), this would provide the first separation between truthful and non-truthful deterministic

protocols (Dobzinski’s reduction preserves determinism). If our protocol can in fact be de-

randomized, this would be fascinating, as this protocol would deterministically guarantee a

3/4-approximation without learning the welfare it achieves.15

Finally, while we have provided simultaneous protocols for the allocation problem with

approximation guarantees strictly better than 1/2 when bidders have XOS valuations, it still

remains open whether or not a truthful mechanism can obtain a (> 1/2)-approximation for

two-player combinatorial auctions with XOS bidders.

15It somehow seems tempting to conjecture both that our protocol can be de-randomized and that it can’t
- a random clause of Alice’s does well on average with no input from Bob, so to de-randomize we just need
Bob to tell us something that identifies a clause performing better than average. At the same time it seems
extremely unlikely that a deterministic protocol will somehow provide an approximation guarantee better
than 3/4− 1/108 for the allocation problem without violating Theorem 4.5.1.

88

Chapter 5

Interpolating Between Truthful and

non-Truthful Mechanisms for

Combinatorial Auctions

The results of this chapter are based on joint work with Mark Braverman and Matt Wein-

berg [38].

5.1 Introduction

In a combinatorial auction, a single designer has m items available for purchase to n buyers.

Each buyer has some private valuation function vi(·) : 2[m] → R+ over subsets of items, and

the seller aims to partition the items into S1 t . . . t Sn so as to optimize the social wel-

fare,
∑

i vi(Si). Much recent work addresses the design of combinatorial auctions, targeting

the desiderata of optimality, simplicity (from both a design and strategic perspective), and

computational tractability. For instance, the celebrated Vickrey-Clarke-Groves mechansim

achieves the optimal social welfare, and is truthful (therefore it is strategically simple: no

bidder need consider any strategy except for honest behavior) [187, 63, 110]. However, in vir-

89

tually all settings of interest, the VCG mechanism is not computationally tractable, making

it unusable in practice.

Much recent work of computer scientists has targeted the design of auctions that are in-

stead approximately optimal, but computationally tractable. One active line of work searches

for truthful mechanisms [139, 80, 81, 74, 86, 134]. While these results all achieve compu-

tational tractability and strategic simplicity in the strongest possible way, the mechanisms

are quite involved and therefore don’t achieve design simplicity. More importantly, many

of these mechanisms can only guarantee approximation ratios that are polynomial in m.

When buyers are assumed to be submodular1 or subadditive,2 the best achieve ratios just

logarithmic in m. A central open problem is the design of computationally tractable truthful

mechanisms that guarantee a constant-factor approximation when valuation functions are

submodular or subadditive.

Another exciting line of work has shown simple mechanisms that achieve a low price of

anarchy at various equilibrium concepts [27, 163, 180, 181, 100]. These results show, for

instance, that as long as buyers are subadditive and interact at equilibrium, auctioning each

item simultaneously via a first-price auction achieves half the optimal social welfare [100].

All of these auctions are computationally tractable and simple in design, and many achieve

approximation ratios that are very small constants, via the price of anarchy. However,

none of the equilibria at which these results hold are known to arise naturally, and some

are even known to be computationally intractable [48, 78].3 Note that even distributed

regret minimization may be computationally intractable in these settings, as each buyer

has exponentially many (in m) strategies to consider. Therefore, these mechanisms are

all extremely complex from a strategic perspective, as buyers would have to reason about

1A valuation function v(·) is submodular if v(X) + v(Y) ≥ v(X ∩ Y) + v(X ∪ Y) for all X,Y .
2A valuation function v(·) is subadditive if v(X) + v(Y) ≥ v(X ∩ Y) for all X,Y .
3Some equilibrium concepts, such as a pure Nash equilibrium in simultaneous second price auctions for

submodular buyers, can be found in polynomial time [140, 62, 78]. However, the algorithms finding them are
highly centralized, and the equilibria themselves are very unnatural: each item only has only one non-zero
bidder, even though bidding zero on any item is possibly a dominated strategy.

90

exponentially many different strategies in order to approach an equilibrium at which good

approximation guarantees hold.

So, truthful mechanisms are strategically simple but achieve poor approximation ratios,

and simple mechanisms achieve good approximation guarantees but are strategically com-

plex. As an alternative to pursuing each direction separately, we propose taking ideas from

each and introduce interpolation mechanisms. An interpolation mechanism has two phases.

In the first phase, buyers participate in some non-truthful mechanism whose output is itself

a truthful mechanism. In the second phase, buyers participate in the truthful mechanism

selected during phase one. In this language, all truthful mechanisms are interpolation mech-

anisms with a non-existent first phase, and the simple mechanisms referenced above are

interpolation mechanisms with a non-existent second phase.

What might interpolation mechanisms bring to the table that truthful mechanisms and

existing simple mechanisms don’t? This question is best addressed with an example. Re-

cent work of Devanur et. al. [70] designs the first interpolation mechanism (although they

did not consider this classification), the single-bid mechanism. Phase one of the single-bid

mechanism asks each buyer to report just a single real number, bi, as their bid. Phase two

visits the buyers one by one in decreasing order of bi, and allows the buyer to purchase any

number of remaining items at bi per item (so more items are available to higher bidders, but

lower bidders pay less per item). It is easy to see that once the bids are fixed and order

determined in phase one, phase two constitutes a truthful mechanism. Note that phase one

by itself is extremely limited: buyers are asked to represent their entire valuation function (of

which there are doubly-exponentially many) with just logm bits. Unsurprisingly, no proto-

col using this limited amount of communication can possibly find a good allocation directly.

Note also that phase two by itself is also quite limited: an ordering of the bidders along with

a single price is set ahead of time, then buyers do as they please. Also unsurprisingly, such

truthful mechanisms (that we call single-price mechanisms) can’t guarantee any non-trivial

approximation ratio. From our perspective, the single-bid mechanism is interesting because

91

it takes two useless mechanisms, neither of which can guarantee a sub-polynomial approx-

imation ratio on even 0/1-additive buyers,4 and combines them into a mechanism with a

price of anarchy O(logm) at correlated equilibria when buyers are subadditive. Importantly,

because the per-bidder communication in phase one is only logarithmic, each bidder can

actually implement any standard regret minimization algorithm over possible bids in poly

time. Therefore, the mechanism achieves design simplicity, strategic simplicity, and com-

putational tractability. The main open problem left following their work is the design of

mechanisms that achieve these three desiderata with a constant price of anarchy.

Interpolation mechanisms are a natural avenue to tackle this problem, and therefore lower

bounds on their capability are important to guide their research. Following Devanur et. al.’s

work, questions arose such as: what if bidders make a constant number of bids instead of

just one? What if the posted prices are different for each item? What if we restrict attention

to a much smaller class than subadditive bidders? What if we consider price of stability

instead of anarchy? Surprisingly, a subset of our results shows that none of these relaxations

suffice to (significantly) beat the O(logm) bound attained by the single-bid mechanism.

The remainder of our results show that lower bounds known for various classes of truthful

mechanisms also extend to interpolation mechanisms with little first-phase communication.

One should interpret these results not as claiming that the limits of interpolation mechanisms

have already been reached, but as guiding future research towards other classes of truthful

mechanisms (specifically, we identify posted-price mechanisms as a natural candidate in

Section 5.1.2).

5.1.1 Our Results

In addition to formally identifying interpolation mechanisms as an important avenue of study,

we identify their connection to the price of anarchy and stability, and provide numerous

lower bounds. Our lower bounds consider interpolation mechanisms where the phase-two

4A buyer is additive if they have a value vi for item i, and their value for a set S is
∑

i vi. A buyer is
0/1-additive if each vi ∈ {0, 1}.

92

mechanism comes from a certain class. The goal of these lower bounds is to identify which

classes of mechanisms are incompatible with interpolation (MIR and value-query, below),

and for which classes of mechanisms the limits have already been reached (single-price and

non-adaptive posted-price, below) to guide future research towards others (adaptive posted-

price mechanisms, Section 5.1.2). Our results all lower bound the amount of first-phase

communication necessary to find a suitable phase-two mechanism from the desired class.

Note that even for truthful mechanisms, no unconditional communication lower bounds are

known outside of artificial settings, so it is outside the scope of this paper to suddenly provide

unconditional lower bounds in the strictly more general setting of interpolation mechanisms.

Price of Anarchy and Price of Stability. Any bidder participating in an interpolation

mechanism with O(logm) first-phase communication per bidder can run any standard regret

minimization algorithm in poly-time. Because bidders need not strategize over their phase-

two behavior, they need only optimize over their possible strategies in phase one, of which

there are at most poly(m). Therefore, price of anarchy bounds for correlated equilibria of

interpolation mechanisms with logarithmic first-phase communication have some extra bite,

as bidders can be reasonably expected to converge to a correlated equilibria and the bound

will hold. We call such mechanisms a priori learnable, and formally define this in Section 5.2.

Because we lower bound the first-phase communication complexity, we not only lower

bound the achievable price of anarchy by such mechanisms, but also the price of stability. In

this context, our bounds are strong in the sense that they don’t rely on equilibrium behavior

of the buyers, and apply no matter how the buyers interact. Prior to this work, Rough-

garden provides the only general approach for proving price of anarchy lower bounds [174],

and no general approach was known for price of stability at all. Our approach is similar to

Roughgarden’s in the sense that both identify settings in which communication lower bounds

imply “the right” price of anarchy lower bounds. Still, our approach differs signifcantly as

Roughgarden’s work specifically targets equilibrium concepts that are not efficiently com-

93

putable, and doesn’t apply to price of stability. We discuss formally the connection between

first-phase communication bounds and price of anarchy/stability in Section 5.2.

Single-Price Mechanisms. A single-price mechanism fixes a price pi for buyer i, then

visits the buyers one at a time and offers buyer i any remaining items for pi each. Devanur et.

al.’s single-bid mechanism has O(logm) first-phase communication per bidder, and obtains

a price of anarchy at correlated equilibria of O(logm) whenever buyers are subadditive.

We show in Section 5.3 that even when buyers are just additive, no amount of first-phase

communication suffices for an interpolation mechanism whose second phase is a single-price

mechanism to obtain an approximation ratio o(logm/ log logm). Note that this significantly

improves a lower bound shown in [70], which simply proved that the single-bid mechanism

itself could not guarantee an approximation ratio o(logm/ log logm).

Non-Adaptive Posted-Price Mechanisms. Non-adaptive posted-price mechanisms

generalize single-price mechanisms by allowing the mechanism to set a price pij for buyer i

to purchase item j. The mechanism still visits the buyers one at a time, and allows buyer

i to purchase any remaining items at the designated price. We show in Section 5.4 that

even when buyers are just additive, any interpolation mechanism whose second phase is a

non-adaptive posted-price mechanism and guarantees an o(logm/ log logm) approximation

ratio has Ω(m1−ε) first-phase communication per bidder, for all ε > 0. Therefore, the

single-bid mechanism cannot be improved by restricting attention to a smaller class of

valuations, restricting attention to a smaller class of equilibrium concepts, setting different

prices for different items, or allowing significantly more (but still sublinear) first-phase

communication.

Maximal-In-Range, Value Query, and Computationally Efficient Mechanisms.

Several recent works have identified lower bounds on approximation ratios that can possi-

bly be obtained by these classes of mechanisms, which we will define in the corresponding

94

sections. We extend these lower bounds to mechanisms with low first-phase communication

that induce a mechanism in one of these classes. In Section 5.5, we extend techniques of

Daniely et. al. based on generalizations of the VC-dimension [67], and in Section 5.6, we

extend the techniques of Dobzinski and Vondrak based on structured sub-menus [75, 83].

5.1.2 Discussion and Future Work

Motivated by impossibility results associated with truthful mechanisms, and concerns re-

garding the strategic simplicity of existing simple mechanisms analyzed via price of anarchy,

we propose the study of interpolation mechanisms. Using this new notion, we show that the

single-bid mechanism of Devanur et. al. [70] is essentially optimal for its class, even subject

to quite significant generalizations. We note that, prior to our work, it was unclear even how

to define a class containing this mechanism, let alone prove lower bounds against mechanisms

“like this.” We also identify several classes of truthful mechanisms that are incompatible

with interpolation in the sense that low first-phase communication doesn’t allow for better

approximation guarantees than no first-phase communication.

Our work identifies adaptive posted-price mechanisms (where the mechanism may choose

what prices to set based on what items have already sold) as an intriguing class of mechanisms

to study with interpolation, as none of the lower bounds from this work apply. Furthermore,

Dynkin’s secretary algorithm [94] immediately implies an adaptive posted-price mechanism

that gets a 1/e approximation for additive bidders, so mild adaptations of our lower bounds

for non-adaptive posted-price mechanisms are unlikely to apply. Can an interpolation mech-

anism with O(logm) per bidder first-phase communication and an adaptive posted-price

mechanism for its second phase guarantee a constant price of anarchy?

Our results also fit into a line of work designing combinatorial auctions with low price of

anarchy via valuation compression [89, 120, 90, 21]. These mechanisms restrict the allowable

valuation reports from buyers to a space where the VCG mechanism is computationally

tractable, even though the buyers may have much more complex valuations. In our context,

95

these mechanisms still consist of just a first phase, and therefore rich valuation classes (like

submodular, subadditive, or even just additive) cannot be compressed all the way down to a

class that can be indexed with just O(logm) bits without super-constant loss. On this front,

interpolation mechanisms provide a new style of two-phase valuation compression where this

level of compression may be attainable.

Additionally, many existing truthful auction formats are naturally parameterized by pa-

rameters that are assumed to be known to the designer (e.g. buyers’ budgets in a clinching

auction [106, 107, 108] or buyers’ interest sets in single-minded combinatorial auctions).

Our framework provides a natural extension of such mechanisms to settings where these

parameters are instead private. For instance, one could take any clinching auction where the

budgets are assumed to be known, and add a first phase where buyers are asked to report

their private budget. It would be very interesting to analyze the price of anarchy of such

interpolation mechanisms, as these parameters are often not public knowledge in practice.

Finally, while we were motivated to study interpolation mechanisms for welfare maxi-

mization in combinatorial auctions, interpolation will also be useful in any setting where

unfortunate lower bounds are known for truthful mechanisms but strategic simplicity is still

a concern. A natural generalization of the presented setting, which we omit due to space

constraints, is a model where rounds of truthful and non-truthful interaction might be inter-

leaved (instead of having all non-truthful interaction come before all truthful interaction). It

would be interesting to understand the power and complexity of such mechanisms in settings

beyond necessarily just combinatorial auctions.

5.2 Preliminaries

In a combinatorial auction, the designer has m items to allocate to n buyers. Each item can

be allocated to at most one buyer, and the buyers can be charged any non-negative price.

Agents have a valuation function vi(·) mapping subsets of items to non-negative real values.

96

Agents are quasi-linear, meaning that their utility for receiving items Si and paying price pi

is vi(Si)− pi. The designer’s goal is to select an allocation that (approximately) maximizes

the welfare,
∑

i vi(Si).

A mechanism is truthful if it is in every buyer’s interest to tell the truth, no matter their

type. Formally, if pi(~v) denotes the expected price paid by buyer i when the reported types

are ~v, and Si(~v) denotes the (possibly random) set that buyer i receives, then we must have:

ESi←Si(~v)[vi(Si)]− pi(~v)

≥ ESi←Si(~v−i;v′i)[vi(Si)]− pi(~v−i; v
′
i), ∀i, ~v−i, vi, v′i.

We define various classes of mechanisms and subclasses of valuation functions within the

following sections.

5.2.1 Interpolation Mechanisms

An interpolation mechanism is a communication protocol with two phases. The first phase

is non-truthful, and the output is a truthful mechanism. The second phase is the truthful

mechanism output in phase one, and the output is an allocation of items and prices to charge.

Definition 5.2.1. (Interpolation Mechanism) Let M denote the space of all truthful mech-

anisms for a combinatorial auction setting. Note that the output space of all M ∈ M is an

allocation of items and charged prices. An interpolation mechanism provides a communica-

tion protocol, P , that outputs a mechanism M ∈ M based on the transcript of P . In phase

one, bidders participate in the protocol P . In phase two, bidders participate in the truthful

mechanism output by P during phase one. After phase two, the items are allocated and prices

charged according to the bidders’ play of the phase two mechanism. If the second phase of an

interpolation mechanism always lies inside a restricted class C of truthful mechanisms, then

we call this a “C interpolation mechanism.”

97

Our main results provide lower bounds on the per-bidder communication necessary during

the first phase in order to possibly select a good truthful mechanism for the second phase.

Formally, we say that an interpolation mechanism guarantees an approximation ratio of c

when buyers have types in V if for all i, vi ∈ V , there exists a phase-one strategy for buyer i,

si(vi), such that for all ~v ∈ Vn, if buyers use the strategies si(vi) during phase one, and report

truthfully during phase two, the resulting allocation obtains a 1/c-fraction (in expectation)

of the optimal social welfare for ~v.

Note that this approximation guarantee is not tied to any particular equilibrium concept.

It is strictly easier to design an interpolation mechanism that guarantees an approximation

ratio of c than one that has a price of anarchy/stability of c (stated formally in the following

section), so lower bounds on the approximation ratio imply lower bounds on attainable price

of anarchy/stability.

Of specific interest are interpolation mechanisms that have poly(n,m) total communi-

cation, and only require bidders to consider poly(m) strategies. Note that bidders must,

at least a priori, consider every possible strategy during phase one (but need only consider

telling the truth during phase two). So in order to guarantee that bidders have at most

poly(m) strategies to consider, the first phase must be especially simple.

Definition 5.2.2. (a priori learnable) We say that an interpolation mechanism is a priori

learnable if the first phase contains a single simultaneous broadcast round of communica-

tion, and the per-bidder communication is O(logm).5

Observation 5.2.1. Any buyer can run any standard regret minimization algorithm (for

instance, Multiplicative Weights Updates) over her strategies in an a priori learnable inter-

polation mechanism in time/space poly(m). Therefore, a correlated equilibrium of any a

priori learnable interpolation mechanism can be found in poly-time, and correlated equilibria

arise as the result of poly-time distributed regret minimization.

5Note that, for instance, a single simultaneous broadcast round of poly(m) communication per bidder
results in exponentially many strategies (as in simultaneous first or second price auctions).

98

Proof. As the second phase is a truthful mechanism, each buyer need not strategize over

possible actions during the second phase. Therefore, buyers should always play their domi-

nant strategies during phase two and need only learn over their strategies during phase one;

this can only decrease their regret. As phase one is a normal form game and there are only

poly(m) such strategies, each buyer can just run a standard regret minimization algorithm

in time/space poly(m). If each buyer does this, their play will converge to a correlated

equilibrium [103, 115].

Note that price of anarchy bounds for correlated equilibria in a priori learnable interpo-

lation mechanisms have more bite than price of anarchy bounds for solution concepts that

don’t arise naturally. The single-bid mechanism, for instance, is a priori learnable.

5.2.2 Connection to Price of Anarchy and Stability

The main application of our first-round communication lower bounds is on the price of

anarchy or stability achievable for any a priori learnable interpolation mechanism. Price of

anarchy/stability is typically defined for the social welfare, but has recently been considered

also for revenue [116], and is well-defined for more general objectives as well. The observation

below holds for any objective, but we state it for social welfare in combinatorial auctions

since that is the focus of this paper.

Definition 5.2.3. Let E denote any solution concept (i.e. Nash equilibria) for the mecha-

nism M , and V denote any set of valuation functions. Then the price of anarchy (PoA) and

Price of Stability (PoS) of M with respect to E when buyers have valuations in V are:

PoA = max
~v∈Vn

maxS1t...tSn{
∑

i vi(Si)}
min~s∈E{ES1,...,Sm←M(~s)[

∑
i vi(Si)]}

.

PoS = max
~v∈Vn

maxS1t...tSn{
∑

i vi(Si)}
max~s∈E{ES1,...,Sm←M(~s)[

∑
i vi(Si)]}

.

99

Observation 5.2.2. If an interpolation mechanism has price of anarchy or price of stability

α at any non-empty equilibrium concept, then that same interpolation mechanism guarantees

an approximation ratio of α. Therefore, lower bounds on the approximation ratios of inter-

polation mechanisms imply lower bounds on the possible price of anarchy/stability obtainable

by those same mechanisms.

Proof. Just sample each strategy si(vi) from any equilibrium where the price of anar-

chy/stability holds. This strategy immediately witnesses that the interpolation mechanism

guarantees an α-approximation.

5.3 Single-Price Mechanisms

In this section, we consider single-price mechanisms. A single-price mechanism visits bidders

one at a time and offers the current bidder the opportunity to buy any number of remaining

items at pi per item. The main result of this section is the following:

Theorem 5.3.1. There exist profiles of additive buyers for which the best single-price mech-

anism achieves an Ω(logm/ log logm)-approximation. Therefore, for all C > 0, no single-

price interpolation mechanism with first-round communication C per bidder obtains an

o(logm/ log logm)-approximation on all profiles of additive buyers. This holds even when

each buyer values each item at an integer between 1 and m.

Proof. Consider the following example. There are b buckets of items (indexed from 0 to

b− 1), with bucket i containing cb−i items, for some constants b, c to be set later. The value

of (almost) every bidder for each item in bucket i is ci. Each item is “special” for exactly

one bidder, who values it instead at ci+1. Each bidder has exactly cb−i/n special items in

bucket i. It is clear that the optimal allocation in this instance is to award each bidder each

of their special items, which has welfare bcb+1.

Now consider any single-price mechanism, with prices p1, . . . , pn. We want to consider

when bidder i will get his special items in bucket j. Notice that bidder i’s special items in

100

bucket j are available to her if and only if pk > cj for all k < i. Bidder i will choose to

purchase her special items in bucket j if and only if pi ≤ cj+1.

So for each bucket j, let ij denote the first bidder for which pi ≤ cj (w.l.o.g. such a

bidder exists as it is always optimal to set pn = 0), and nj denote the number of bidders

before i whose price is at most cj+1. Then the number of bidders who get their special items

in bucket j is exactly nj + 1. So the total number of pairs (i, j) such that bidder i gets

her special items in bucket j is exactly b +
∑b

j=1 nj. It’s also clear that
∑b

j=1 nj ≤ n, as

pi ∈ (cj, cj+1] for at most one j. So the number of pairs (i, j) such that bidder i gets her

special items in bucket j is at most b+ n.

Finally, observe that if the number of pairs (i, j) such that bidder i receives her special

items in bucket j is x, then the welfare is exactly xcb+1/n + (bn − x)cb/n, which achieves

at most a (x
nb

+ 1
c
)-fraction of the optimal welfare. Plugging in for x = n + b, this is a

1/(1/n+ 1/b+ 1/c)-approximation.

Setting b = c = n provides an example withm = Θ(nn) items (so n = Θ(logm/ log logm))

for which no single-price mechanism obtains an o(n) = o(logm/ log logm)-approximation.

Notice that the impossibility above is quite strong: no amount of communication suf-

fices to find a good single-price mechanism (because it is possible that one simply doesn’t

exist). This greatly strengthens an inapproximability result of [70], which just shows that

their specific procedure (the single-bid mechanism) for selecting one doesn’t obtain a better

approximation ratio.

Corollary 5.3.1. No single-price interpolation mechanism obtains a price of anarchy or

price of stability o(logm/ log logm) at any solution concept that is guaranteed to exist on all

profiles of additive buyers.

101

5.4 Non-Adaptive Pricing Mechanisms

In this section, we consider non-adaptive posted-price mechanisms. A non-adaptive posted-

price mechanism orders the bidders however it wants (possibly randomly), then selects a

price vector ~pi for each bidder i. The bidders are visited one at a time, and offered the

opportunity to purchase any subset Si of remaining items for price
∑

j∈Si pij. The main

result of this section is below. Our proof uses the probabilistic method, which has also been

used in [91] to prove price of anarchy lower bounds.

Theorem 5.4.1. Any non-adaptive posted-price interpolation mechanism that guarantees an

approximation ratio of o(logm/ log logm) on all profiles of additive bidders has first-round

communication at least m1−ε per bidder, for all ε > 0. This holds even when each buyer

values each item at an integer between 1 and m.

Proof. We will use the probabilistic method to define a set of profiles of additive bidders

such that no non-adaptive posted-price mechanism does well on much of the set. Let each

~vj (the vector of values of each bidder for item j) be drawn independently, and be equal to

a random permutation of (ck+1, ck, . . . , ck) with probability 1/ck for each k ∈ {1, . . . , b}, and

(0, . . . , 0) with probability 1−
∑b

k=1 1/ck for constants c ≥ 2, b to be set later.

It is clear that the expected maximum value per item is exactly bc, so the expected

optimal welfare is bcm. Consider now any non-adaptive posted-price mechanism, and restrict

attention to prices for item j. For each k, let ik denote the first bidder such that pikj ≤ ck, and

nk denote the number of bidders before ik such that pij ≤ ck+1. Then the probability that this

mechanism awards the item to the “special” bidder when the profile is a random permutation

of (ck+1, ck, . . . , ck) is exactly 1+nk
n

. Therefore, the expected welfare of this posted-price

mechanism, just considering contributions from item j, is
∑b

k=1 c(1+nk)/n+(n−1−nk)/n.

It is also clear that
∑b

k=1 nk ≤ n, as each pij ∈ (ck, ck+1] for at most one k. So the expected

welfare per item of this non-adaptive posted-price mechanism is at most cb/n + c + b, and

the total expected welfare is at most (cb/n+ c+ b)m.

102

Because the values for each item are drawn independently, the optimal welfare and the

welfare of this non-adaptive posted-price mechanism is the sum of m independent random

variables, each in [0, cb+1]. Therefore, we can use the Chernoff bound to bound the probability

that these random variables deviate from their expectation.

Set b = c = n. Then the probability that the welfare of any fixed item pricing exceeds

2(3n)m is at most e−m/n
n
. The probability that the optimal welfare is less than (n2m)/2 is

at most e−m/(4n
n−1). So consider any set P of at most 2m/n

n
different non-adaptive posted-

price mechanisms. Taking a union bound over all mechanisms M ∈ P , we see that with

non-zero probability, the welfare of M is at most 6nm while the optimal welfare is at least

n2m/2. Therefore, there exists a profile of additive bidders for which no mechanism in P is

an n/12-approximation.

If the first-round communication of each player is at most m/nn+1, then there are only

2m/n
n

possible transcripts from the first round, and therefore only 2m/n
n

different non-

adaptive posted-price mechanisms can possibly result. By the above reasoning, this implies

the existence of a profile for which every possible mechanism selected (and therefore every

outcome selected by the protocol) does not obtain an n/12-approximation. For any fixed

ε, setting m = nn/ε yields an instance with n = Θ(ε logm/ log logm) that requires m1−ε

first-round bits per bidder to optain an n/12 approximation.

Interestingly, there is always a non-adaptive posted-price mechanism that allocates the

items optimally: set pij = maxi′ 6=i vi′j for all i, j. Each vi′j can be communicated with

logm bits, so the entire mechanism can be found with m logm bits of communication per

bidder. The theorem states that sublinear communication doesn’t suffice to find a very good

mechanism.

Corollary 5.4.1. No a priori learnable non-adaptive posted-price interpolation mechanism

obtains a price of anarchy or price of stability o(logm/ log logm) at any solution concept

that is guaranteed to exist on all profiles of additive buyers.

103

5.5 Maximal-In-Range Mechanisms

In this section, we consider maximal-in-range (MIR) mechanisms. A maximal-in-range mech-

anism selects some subset F ′ ⊆ 2[n]×[m] of feasible allocations, and always selects an outcome

in arg maxx∈F ′{Welfare(x)} (where the welfare is computed with respect to the valuation

profile). In other words, a maximal-in-range mechanism always optimizes welfare exactly

over a restricted set of possible outcomes. We provide a mild generalization of the tech-

niques of Daniely et. al. [67] that apply to MIR interpolation mechanisms rather than just

MIR mechanisms. With these new techniques, we show the following theorem. All proof

details can be found in the full version of [38].

Theorem 5.5.1. For all δ > 0, the following hold:

• Assuming NP (P/poly, any poly-time (runs in time poly(n,m)) MIR interpolation

mechanism that obtains an approximation ratio m1/3−2δ/3 whenever buyers are single-

minded6 has first-round communication at least mδ per bidder.

• Assuming NP (P/poly, any poly-time (runs in time poly(n,m)) MIR interpolation

mechanism that obtains an approximation ratio m1/3−δ/5 whenever buyers are capped-

additive7 has first-round communication at least m1/3 per bidder.

• Any poly-communication (total communication poly(n,m)) MIR interpolation mecha-

nism that obtains an approximation ratio m1/3−δ whenever buyers are submodular8 has

first-round communication at least m1/3 per bidder.

Corollary 5.5.1. Assuming NP (P/poly, no a priori learnable, computationally efficient

MIR interpolation mechanism obtains a price of anarchy or price of stability o(m1/3) at any

solution concept that is guaranteed to exist on all profiles of single-minded buyers, capped-

additive buyers, or submodular buyers.
6A valuation function v(·) is single-minded if there is a special set S and v(T) = v(S) for all S ⊆ T , and

vi(T) = 0 otherwise.
7A valuation function v(·) is capped-additive if there is a budget b such that v(S) = min{b,

∑
j∈S v({j})}.

8A valuation function v(·) is submodular if v(S ∪ T) + v(S ∩ T) ≤ v(S) + v(T) for all S, T .

104

5.6 Value Query and Computationally Efficient Mech-

anisms

In this section, we consider value query mechanisms and arbitrary computationally efficient

mechanisms. A mechanism is a value query mechanism if it only interacts with buyer valu-

ations with queries of the form: “what is your value for set S?” A computationally efficient

mechanism is any mechanism that terminates in polynomial time in m,n, and the space

it takes to describe a valuation function. Note that for single-minded and capped-additive

functions, the space required is also poly(m,n), but for submodular functions the space

required may be larger. We provide a mild generalization of techniques of Dobzinski and

Vondrak [75, 83] that apply to interpolation mechanisms rather than just truthful mecha-

nisms. With these new techniques, we show the following theorem. All proof details can be

found in the full version of [38].

Theorem 5.6.1. For all δ > 0, the following hold:

• Any value query interpolation mechanism that makes at most em
1/3

10m8 − 1 queries that

obtains an approximation ratio m1/3−δ/20 whenever buyers have submodular valuations

has first-round communication at least mδ per bidder.

• Assuming RP 6= NP , any computationally efficient interpolation mechanism that ob-

tains an approximation ratio m1/3−δ/20 has first-round communication at least mδ per

bidder.

Corollary 5.6.1. Assuming RP 6= NP , no a priori learnable computationally efficient

mechanism or a priori learnable value query mechanism that makes at most em
1/3

10m8 −1 queries

guarantees a price of anarchy or price of stability o(m1/3) at any solution concept that is

guaranteed to exist on all profiles of submodular buyers.

105

Part III

Rank Aggregation with Noisy

Comparisons

106

Chapter 6

Top-k Ranking with Noisy

Comparisons in Rounds

The results of this chapter are based on joint work with Mark Braverman and Matt Wein-

berg [34].

6.1 Introduction

Rank aggregation is a fundamental problem with numerous important applications, ranging

from well-studied settings such as social choice [50] and web search [93] to newer platforms

such as crowdsourcing [58] and peer grading [167]. Salient common features among these

applications is that in the end, ordinal rather than cardinal information about the elements

is relevant, and a precise fine-grained ordering of the elements is often unnecessary. For

example, the goal of social choice is to select the best alternative, regardless of how good

it is. In a curved course, the goal of peer grading is to partition assignments into quantiles

corresponding to A/B/C/D, etc, regardless of their absolute quality.

Prior work has produced numerous ordinal aggregation procedures (i.e. based on compar-

isons of elements rather than cardinal evaluations of individual elements) in different settings,

and we overview those most relevant to our work in Section 6.1.1. However, existing models

107

from this literature fail to capture an important aspect of the problem with respect to some

of the newer applications; that multiple rounds of interaction are costly. In crowdsourcing,

for instance, one round of interaction is the time it takes to send out a bunch of tasks to

users and wait for their responses before deciding which tasks to send out next, which is

the main computational bottleneck. In peer grading, each round of interaction might take a

week, and grades are expected to be determined certainly within a few weeks. In conference

decisions, even one round of interaction seems to be pushing the time constraints.

Fortunately, the TCS community already provides a vast literature of algorithms with

this constraint in mind, under the name of parallel algorithms. For instance, previous work

resolves questions like “how many interactive rounds are necessary for a deterministic or

randomized algorithm to select the kth element with O(n) total comparisons?” [186, 170,

3, 5, 6, 30]. This line of research, however, misses a different important aspect related to

these applications (that is, in fact, captured by most works in rank aggregation), that the

comparisons might be erroneous. Motivated by applications such as crowdsourcing and peer

grading, we therefore study the round complexity of Partition, the problem of partitioning

a totally ordered set into the top k and bottom n− k elements, when comparisons might be

erroneous.

Our first results on this front provide matching upper and lower bounds on what is achiev-

able for Partition in just one round in three different models of error: noiseless (where the

comparisons are correct), erasure (where comparisons are erased with probability 1−γ), and

noisy (where comparisons are correct with probability 1/2 + γ/2 and incorrect otherwise).

We provide one-round algorithms using dn comparisons that make O(n/d), O(n/(dγ)), and

O(n/(dγ2)) mistakes (a mistake is any element placed on the wrong side of the partition) with

high probability in the three models, respectively. The algorithms are randomized and differ-

ent for each model, and the bounds hold both when d is an absolute constant or a function of

n and γ. We provide asymptotically matching lower bounds as well: all (potentially random-

ized) one-round algorithms using dn comparisons necessarily make Ω(n/d),Ω(n/(dγ)), and

108

Ω(n/(dγ2)) mistakes in expectation in the three models, respectively. We further show that

the same algorithms and lower bound constructions are also optimal (up to absolute constant

factors) if mistakes are instead weighted by various different measures of their distance to k,

the cutoff.1

After understanding completely the tradeoff between the number of comparisons and

mistakes for one-round algorithms in each of the three models, we turn our attention to

multi-round algorithms. Here, the results are more complex and can’t be summarized in

a few sentences. We briefly overview our multi-round results in each of the three models

below. Again, all of the upper and lower bounds discussed below extend when mistakes

are weighted by their distance to the cutoff. We overview the techniques used in proving

our results in Section 6.1.2, but just briefly note here that the level of technicality roughly

increases as we go from the noiseless to erasure to noisy models. In particular, lower bounds

in the noisy model are quite involved.

Multi-Round Results in the Noiseless Model.

1. We design a 2-round algorithm for Partition using n/ε total comparisons that makes

O(n1/2+εpoly(log n))) mistakes with probability 1−e−Ω(n), and prove a nearly matching

lower bound of Ω(
√
n · ε5/2) mistakes, for any ε > 0 (ε may be a constant or a function

of n).

2. We design a 3-round algorithm for Partition making O(n ·poly(log n)) total compar-

isons that makes zero mistakes with probability 1− e−Ω(n). It is known that ω(n) total

comparisons are necessary for a 3-round algorithm just to solve Select, the problem

of finding the kth element, with probability 1− o(1) [30].

3. We design a 4-round algorithm for Partition making O(n) total comparisons that

makes zero mistakes with probability 1− e−Ω(n). This matches the guarantee provided

1Specifically, if WRONGi denotes the random variable that is 1 if an algorithm misplaces i and 0 otherwise,
we consider measures of the following form, for any choice of c:

∑
i WRONGi|i − k|c. For example, c = 0

counts the number of mistakes. This is further discussed in Section 6.2.

109

by an algorithm of Bollobás and Brightwell for Select, but is significantly simpler (in

particular, it avoids any graph theory) [30].

Multi-Round Results in the Erasure Model.

1. We design a O(log∗(n))-round algorithm for Partition making O(n/γ) total compar-

isons that makes zero mistakes with probability 1− e−Ω(n).

2. We show that no o(log∗(n))-round algorithm even for Select making O(n/γ) total

comparisons can succeed with probability 2/3.

Multi-Round Results in the Noisy Model.

1. We design a 4-round algorithm for Partition making O(n log n/γ2) comparisons that

makes zero mistakes with high probability (a trivial corollary of our noiseless algo-

rithm).

2. We show that no algorithm even for Select making o(n log n/γ2) comparisons can

succeed with probability 2/3 (in any number of rounds).

3. We design an algorithm for findMin (the special case of Select with k = n) mak-

ing O(n/γ2) comparisons that succeeds with probability 2/3. We also show that

no algorithm making o(n log n/γ2) comparisons can solve findMin with probability

1− 1/poly(n) (in any number of rounds).

Together, these results tell an interesting story. In one round, one can obtain the same

guarantee in the noiseless versus erasure model with an additional factor of 1/γ comparisons.

And one can obtain the same guarantee in the erasure versus noisy model with an additional

factor of 1/γ comparisons. In some sense, this should be expected, because this exactly

captures the degradation in information provided by a single comparison in each of the

three models (a noiseless comparison provides one bit of information, an erasure comparison

provides γ bits of information, and a noisy comparison provides Θ(γ2) bits of information).

110

But in multiple rounds, everything changes. In four rounds, one can perfectly partition with

high probability and O(n) total comparisons in the noiseless model. In the erasure model,

one can indeed partition perfectly with high probability and O(n/γ) comparisons, but now

it requires Θ(log∗(n)) rounds instead of just 4. Moreover, in the noisy model, any algorithm

even solving Select with probability 2/3 requires an Ω(log n/γ) blow-up in the number of

comparisons, in any number of rounds! Note that neither of these additional factors come

from the desire to succeed with high probability (as the lower bounds hold against even a

2/3 success) nor the desire to partition every element correctly (as the lower bounds hold

even for just Select), but just from the way in which interaction helps in the three different

models.

While we believe that the story told by our work as a whole provides the “main result,”

it is also worth emphasizing independently our results in the noisy model. Our one-round

algorithm, for instance, is more involved than its counterparts in the noiseless and erasure

models and our analysis uses the theory of biased random walks. Our multi-round lower

bounds against Select and findMin in the noisy model are the most technical results of

the paper, and tell their own interesting story about the difference between findMin and

Select in the noisy model. To our knowledge, most tight lower bounds known for Select

come directly from lower bounding findMin. It’s surprising that findMin requires Θ(log n)

fewer comparisons than Select to solve with probability 2/3 in the noisy model.

We proceed now by discussing some related works below, and briefly overviewing our

techniques in Section 6.1.2. We provide some conclusions and future directions in Sec-

tion 6.1.3. Our single-round results are discussed in Section 6.3 and our multi-round results

are discussed in Section 6.4.

6.1.1 Related Work

Rank aggregation is an enormous field that we can’t possibly summarize in its entirety here.

Some of the works most related to ours also study Partition (sometimes called Top-K).

111

Almost all of these works also consider the possibility of erroneous comparisons, although

sometimes under different models where the likelihood of an erroneous comparison scales

with the distance between the two compared elements [61, 46, 95]. More importantly, to our

knowledge this line of work either considers settings where the comparisons are exogenous

(the designer has no control over which comparisons are queried, she can just analyze the

results), or only analyze the query complexity and not the round complexity of designed

algorithms. Our results contribute to this line of work by providing algorithms designed for

settings like crowdsourcing or peer grading where the designer does have design freedom,

but may be constrained by the number of interactive rounds.

There is a vast literature from the parallel algorithms community studying various sorting

and selection problems in the noiseless model. For instance, tight bounds are known on the

round complexity of Select for deterministic algorithms using O(n) total comparisons

(it is Θ(log log n)) [186, 3], and randomized algorithms using O(n) total comparisons (it is

4) [6, 5, 170, 30]. Similar results are known for sorting and approximate sorting as well [64, 7,

4, 113, 32, 31, 141]. Many of the designed deterministic algorithms provide sorting networks.

A sorting network on n elements is a circuit whose gates are binary comparators. The

depth of a sorting network is the number of required rounds, and the number of gates is the

total number of comparisons. Randomized algorithms are known to require fewer rounds

than deterministic ones with the same number of total comparisons for both sorting and

selecting [5, 30].

In the noisy model, one can of course take any noiseless algorithm and repeat every

comparison O(log n/δ2) times in parallel. To our knowledge, positive results that avoid this

simple repetition are virtually non-existent. This is likely because a lower bound of Leighton

and Ma [142] proves that in fact no sorting network can provide an asymptotic improvement

(for complete sorting), and our lower bound (Theorem 6.4.7) shows that no randomized

algorithm can provide an asymptotic improvement for Select. To our knowledge, no prior

work studies parallel sorting algorithms in the erasure model. On this front, our work

112

contributes by addressing some open problems in the parallel algorithms literature, but

more importantly by providing the first parallel algorithms and lower bounds for Select in

the erasure and noisy models.

There is also an active study of sorting in the noisy model [40, 41, 146] within the

TCS community without concern for parallelization, but with concern for resampling. An

algorithm is said to resample if it makes the same comparison multiple times. Clearly,

an algorithm that doesn’t resample can’t possibly find the median exactly in the noisy

model (what if the comparison between n/2 and n/2 + 1 is corrupted?). The focus of these

works is designing poly-time algorithms to find the maximum-likelihood ordering from a

set of
(
n
2

)
noisy comparisons. Our work is fundamentally different from these, as we have

asymptotically fewer than
(
n
2

)
comparisons to work with, and at no point do we try to find

a maximum-likelihood ordering (because we only want to solve Partition).

6.1.2 Tools and Techniques

Single Round Algorithms and Lower Bounds. Our single round results are guided

by the following surprisingly useful observation: in order for an algorithm to possibly know

that i exceeds the kth highest element, i must at least be compared to some element between

itself and k (as otherwise, the comparison results would be identical if we replaced i with

an element just below k). Unsurprisingly, it is difficult to guarantee that many elements

within n/d of k are compared to elements between themselves and k using only dn total

comparisons in a single round, and this forms the basis for our lower bounds. Our upper

bounds make use of this observation as well, and basically are able to guarantee that an

element is correctly placed with high probability whenever it is compared to an element

between itself and k. It’s interesting that the same intuition is key to both the upper and

lower bounds. We provide a description of the algorithms and proofs in Section 6.3.

In the erasure model, the same intuition extends, except that in order to have a non-

erased comparison between i and an element between i and k, we need to make roughly

113

1/γ such comparisons. This causes our lower bounds to improve by a factor of 1/γ. In the

noisy model, the same intuition again extends, although this time the right language is that

we need to learn Ω(1) bits of information from comparisons of i to elements between i and

k, which requires Ω(1/γ2) such comparisons, and causes the improved factor of 1/γ2 in our

lower bounds. Our algorithms in these two models are similar to the noiseless algorithm,

but the analysis becomes necessarily more involved. For instance, our analysis in the noisy

model appeals to facts about biased random walks on the line.

Multi-Round Algorithms and Lower Bounds. Our constant-round algorithms in the

noiseless model are based on the following intuition: once we reach the point that we are only

uncertain about o(n) elements, we are basically looking at a fresh instance of Partition

on a significantly smaller input size, except we’re still allowed Θ(n) comparisons per round.

Once we’re only uncertain about only O(
√
n) elements, one additional round suffices to finish

up (by comparing each element to every other one). The challenge in obtaining a four-round

algorithm (as opposed to just an O(1)-round algorithm) is ensuring that we make significant

enough gains in the first three rounds.

Interestingly, these ideas for constant-round algorithms in the noiseless model don’t prove

useful in the erasure or noisy models. Essentially the issue is that even after a constant

number of rounds, we are unlikely to be confident that many elements are above or below

k, so we can’t simply recurse on a smaller instance. Still, it is quite difficult to discover a

formal barrier, so our multi-round lower bounds for the erasure and noisy models are quite

involved. We refer the reader to Section 6.4 for further details.

6.1.3 Conclusions

We study the problems of Partition and Select in settings where interaction is costly in

the noiseless, erasure, and noisy comparison models. We provide matching (up to absolute

constant factors) upper and lower bounds for one round algorithms in all three models,

114

which also show that the number of comparisons required for the same guarantee degrade

proportional to the information provided by a single comparison. We also provide matching

upper and lower bounds for multi-round algorithms in all three models, which also show that

the round and query complexity required for the same guarantee in these settings degrades

worse than just by the loss in information when moving between the three comparison

models. Finally, we show a separation between findMin and Select in the noisy model.

We believe our work motivates two important directions for future work. First, our work

considers some of the more important constraints imposed on rank aggregation algorithms

in applications like crowdsourcing or peer grading, but not all. For instance, some settings

might require that every submission receives the same amount of attention (i.e. is a member

of the same number of comparisons), or might motivate a different model of error (perhaps

where mistakes aren’t independent or identical across comparisons). It would be interesting

to design algorithms and prove lower bounds under additional restrictions motivated by

applications.

Finally, it is important to consider incentives in these applications. In peer grading, for

instance, the students themselves are the ones providing the comparisons. An improperly

designed algorithm might provide “mechanism design-type” incentives for the students to

actively misreport if they think it will boost their own grade. Additionally, there are also

“scoring rule-type” incentives that come into play: grading assignments takes effort! Without

proper incentives, students may choose to put zero or little effort into their grading and just

provide random information. We believe that using ordinal instead of cardinal information

will be especially helpful on this front, as it is much easier to design mechanisms when players

just make binary decisions, and it’s much easier to understand how the noisy information

provided by students scale with effort (in our models, it is simply that γ will increase with

effort). It is therefore important to design mechanisms for applications like peer grading by

building off of our algorithms.

115

6.2 Preliminaries and Notation

In this work, we study two problems, Select and Partition. Both problems take as input

a randomly sorted, totally ordered set and an integer k. For simplicity of notation, we denote

the ith smallest element of the set as i. So if the input set is of size n, the input is exactly

[n]. In Select, the goal is to output the (location of the) element k. In Partition, the

goal is to partition the elements into the top k, which we’ll call A for Accept and the bottom

n − k, which we’ll call R for Reject. Also for ease of notation, we’ll state all of our results

for k = n/2, the median.

We say an algorithm solves Select if it outputs the median, and solves Partition if it

places correctly all elements above and below the median. For Select, we will say that an

algorithm is a t-approximation with probability p if it outputs an element in [n/2−t, n/2+t]

with probability at least p. For Partition, we will consider a class of success measures,

parameterized by a constant c, and say the c-weighted error associated with a specific par-

titioning into A t R is equal to
∑

i>n/2 I(i ∈ R)ic +
∑

i<n/2 I(i ∈ A)ic.2 Interestingly, in all

cases we study, the same algorithm is asymptotically optimal for all c.

Query and Round Complexity. Our algorithms will be comparison-based. We study

both the number of queries, and the number of adaptive rounds necessary to achieve a certain

guarantee.3 We may not always emphasize the runtime of our algorithms, but they all run

in time poly(n).

Notation. We always consider settings where the input elements are a priori indistin-

guishable, or alternatively, that our algorithms randomly permute the input before making

comparisons. When we write x < y, we mean literally that x < y in the ground truth. In

2For instance, c = 0 counts the number of mistakes. c = 1 counts the number of mistakes, weighted by
the distance of the mistaken element from the median. c = 2 is similar to mean-squared-error, etc.

3For example, an algorithm that makes Q queries one at a time, waiting for the result of previous queries
before deciding which queries to make next has round complexity Q. An algorithm that makes all queries
up front, without knowing any results has round complexity 1. We call protocols with round complexity 1
non-adaptive.

116

the noisy model, the results of comparisons may disagree with the underlying ordering, so

we say that x beats y if a noisy comparison of x and y returned x as larger than y (regardless

of whether or not x > y).

Models of Noise. We consider three comparison models, which return the following when

a > b.

• Noiseless: Returns a beats b.

• Erasure: Returns a beats b with probability γ, and ⊥ with probability 1− γ.

• Noisy: Returns a beats b with probability 1/2 + γ/2, and b beats a with probability

1/2− γ/2.

Partition versus Select. We design all of our algorithms for Partition, and prove all

of our lower bounds against Select. We do this because Select is in some sense a strictly

easier problem than Partition. We discuss how one can get algorithms for Select via

algorithms for Partition and vice versa formally in the full version of [34].

Resampling. Finally, note that in the erasure and noisy models, it may be desireable

to query the same comparison multiple times. This is called resampling. It is easy to

see that without resampling, it is impossible to guarantee that the exact median is found

with high probability, even when all
(
n
2

)
comparisons are made (what if the comparison

between n/2 and n/2 + 1 is corrupted?). Resampling is not necessarily undesireable in the

applications that motivate this work, so we consider our main results to be in the model

where resampling is allowed. Still, it turns out that all of our algorithms can be easily

modified to avoid resampling at the (necessary) cost of a small additional error, and it is

easy to see the required modifications.4 All of our lower bounds hold even against algorithms

that resample.

4Essentially, replace all resampled comparisons with comparisons to “nearby” elements instead.

117

6.3 Results for Non-Adaptive Algorithms

In this section, we provide our results on non-adaptive (round complexity = 1) algorithms.

We begin with the upper bounds below, followed by our matching (up to constant factors)

lower bounds. Pesuedocodes and proofs of this section can be found in the full version of

[34].

6.3.1 Upper Bounds

We provide asymptotically optimal algorithms in each of the three comparison models. Our

three algorithms actually choose the same comparisons to make, but determine whether

or not to accept or reject an element based on the resulting comparisons differently. The

algorithms pick a skeleton set S of size
√
n and compare every element in S to every other

element. Each element not in S is compared to d− 1 random elements of S.

From here, the remaining task in all three models is similar: the algorithm must first

estimate the rank of each element in the skeleton set. Then, for each i, it must use this

information combined with the results of d − 1 comparisons to guess whether i should be

accepted or rejected. The correct approach differs in the three models, which we discuss

next.

Noiseless Model. First, we estimate that the median of the skeleton set, x, is close to the

actual median. Then, we hope that each i /∈ S is compared to some element in S between

itself and x. If this happens, we can pretty confidently accept or reject i. If it doesn’t, then

all we learn is that i is beaten by some elements above x and it beats some elements below

x, which provides no helpful information about whether i is above or below the median, so

we just make a random decision.

Theorem 6.3.1. We have an algorithm which has query complexity dn, round complexity

1, does not resample, and outputs a partition that, for all c, has:

118

• expected c-weighted error O((n/d)c+1), for any d = o(n1/4)

• c-weighted error O((n/d)c+1) with probability 1− e−Ω(n3/d2c+2), for any d = o(n1/4).

The main ideas are the following. There are two sources of potential error in the algo-

rithm. First, maybe the skeleton set is poorly chosen and not representative of the ground

set. But this is extremely unlikely with such a large skeleton set. Second, note that if i is

compared to any element in S between itself and x, and x is very close to n/2, then i will

be correctly placed. If |i − n/2| > n/d, then we’re unlikely to miss this window on d − 1

independent tries, and i will be correctly placed.

Erasure Model. At a high level, the algorithm for the erasure model is similar to the

algorithm for the noiseless model.

Theorem 6.3.2. We have an algorithm which has query complexity dn, round complexity

1, does not resample, and outputs a partition that, for all c, has:

• expected c-weighted error O((n/(dγ))c+1), for any d, γ such that d/γ = o(n1/4)

• c-weighted error O((n/(dγ))c+1) with probability 1 − e−Ω(n3/d2c+2), whenever d/γ =

o(
√
n) and dγ = o(n1/4).

The additional ingredient beyond the noiseless case is a proof that with high probability,

not too many of the comparisons within S are erased and therefore while we can’t learn the

median of S exactly, we can learn a set of almost |S|/2 elements that are certainly above the

median, and almost |S|/2 elements that are certainly below. If i /∈ S beats an element that

is certainly above the median of S, we can confidently accept it, just like in the noiseless

case.

Noisy Model. The algorithm for the noisy model is necessarily more involved than the

previous two. We can still recover a good ranking of the elements in the skeleton set using

the Braverman-Mossel algorithm [40], so this isn’t the issue. The big difference between the

119

noisy model and the previous two is that no single comparison can guarantee that i /∈ S

should be accepted or rejected. Instead, every time we have a set of elements all above the

median of S, x, of which i beats at least half, this provides some evidence that i should be

accepted. Every time we have a set of elements all below x of which i is beaten by at least

half, this provides some evidence that i should be rejected. The trick is now just deciding

which evidence is stronger.

Theorem 6.3.3. We have an algorithm which has query complexity dn, round complexity

1, does not resample, and outputs a partition that, for all c, has:

• expected c-weighted error O((n/(dγ2))c+1), for any d = o(n1/4), γ = ω(n1/8).

• c-weighted error O((n/(dγ2))c+1) with probability 1− eΩ(n3/d2c+2), for any d = o(n1/4),

γ = ω(n1/8).

6.3.2 Lower Bounds

In this section, we show that the algorithms designed in the previous section are optimal up

to constant factors. All of the algorithms in the previous section are “tight,” in the sense

that we expect element i to be correctly placed whenever it is compared to enough elements

between itself and the median. In the noiseless model, one element is enough. In the erasure

model, we instead need Ω(1/γ) (to make sure at least one isn’t erased). In the noisy model,

we need Ω(1/γ2) (to make sure we get Ω(1) bits of information about the difference between

i and the median). If we don’t have enough comparisons between i and elements between

itself and the median, we shouldn’t hope to be able to classify i correctly, as the comparisons

involving i would look nearly identical if we replaced i with an element just on the other

side of the median.

Theorem 6.3.4. For all c, d > 0, any non-adaptive algorithm with query complexity dn

necessarily has expected c-weighted error Ω((n/d)c+1) in the noiseless model, Ω((n/(dγ))c+1)

in the erasure model, and Ω((n/(dγ2))c+1) in the noisy model.

120

6.4 Results for Multi-Round Algorithms

Pesuedocodes and proofs of this section can be found in the full version of [34].

6.4.1 Noiseless Model

We first present our algorithm and nearly matching lower bound for 2-round algorithms.

The first round of our algorithm tries to get as good of an approximation to the median

as possible, and then compares it to every element in round two. Getting the best possible

approximation is actually a bit tricky. For instance, simply finding the median of a skeleton

set of size
√
n only guarantees an element within Θ(n3/4) of the median.5 We instead take

several “iterations” of nested skeleton sets to get a better and better approximation to the

median. In reality, all iterations happen simultaneously in the first round, but it is helpful

to think of them as sequential refinements.

For any r ≥ 1, our algorithm starts with a huge skeleton set S1 of n2r/(2r+1) random

samples from [n]. This is too large to compare every element in S1 with itself, so we choose

a set T1 ⊆ S1 of n1/(2r+1) random pivots. Then we compare every element in S1 to every

element in T1, and we will certainly learn two pivots, a1 and b1 such that the median of

S1 lies in [a1, b1], and a p1 such that the median of S1 is exactly the (p1|A1|)th element of

A1 = S1 ∩ [a1, b1]. Now, we recurse within A1 and try to find the (p1|A1|)th element. Of

course, because all of these comparisons happen in one round, we don’t know ahead of time

in which subinterval of S1 we’ll want to recurse, so we have to waste a bunch of comparisons.

These continual refinements still make some progress, and allow us to find a smaller and

smaller window containing the median of S1, which is a very good approximation to the true

median because S1 was so large.

5This is exactly what Bollobás and Brightwell do in the first round of their 4-round algorithm, which
is why sophisticated graph theory follows to fit into four rounds. Our improved first round simplifies the
remaining rounds.

121

Theorem 6.4.1. For all c, r and ε > 0, we have an algorithm which has round complexity

2, query complexity (r + 1)n, and outputs a partition that:

• has expected c-weighted error at most (8rn(r+1)/(2r+1)+ε)c+1

• has c-weighted error at most (8rn(r+1)/(2r+1)+ε)c+1 with probability at least 1− re−nΩ(ε)
.

Note that setting r = log n, and ε such that nε = 8 log3 n, we get an algorithm with

round complexity 2, query complexity n log n + n that outputs a partition with c-weighted

error O((
√
n log4 n)c+1) with probability 1−O(log n/n2).

We also prove a nearly matching lower bound on two-round algorithms in the noiseless

model. At a very high level, our lower bound repeats the argument of our one round lower

bound twice. Specifically, we show that after one round, there are many elements within a

window of size Θ(n/d) of the median such that a constant fraction of these elements have not

been compared to any other elements in this window. We then show that after the second

round, conditioned on this, there is necessarily a window of size ≈
√
n such that a constant

fraction of these elements have not been compared to any other elements in this window.

Finally we show that this implies that we must err on a constant fraction of these elements.

The actual proof is technical, but follows this high level outline.

Theorem 6.4.2. For all c, and any d = o(n1/5), any algorithm with query complexity dn

and round complexity 2 necessarily has expected c-weighted error Ω((
√
n/d5/2)c+1).

From here we show how to make use of our two-round algorithm to design a three-round

algorithm that makes zero mistakes with high probability. After our two-round algorithm

with appropriate parameters, we can be pretty sure that the median lies somewhere in a

range of O(
√
n log4 n), so we can just compare all of these elements to each other in one

additional round.

Theorem 6.4.3. For all c, we have an algorithm which has query complexity O(n log8 n),

round complexity 3, and outputs a partition with zero c-weighted error with probability 1 −

O(log n/n2).

122

Again, recall that ω(n) queries are necessary for any three-round algorithm just to solve

Select with probability 1− o(1) [30]. Finally, we further make use of ideas from our two-

round algorithm to design a simple four round algorithm that has query complexity O(n)

and makes zero mistakes with high probability. More specifically, we appropriately tune the

parameters for our two-round algorithm (i.e. set r = 1) to find a window of size ≈ n2/3

that contains the median (and already correctly partition all other elements). We then use

similar ideas in round three to further find a window of size ≈
√
n that contains the median

(and again correctly partition all other elements). We use the final round to compare all

remaining uncertain elements to each other and correctly partition them.

Theorem 6.4.4. For all c, and any ε ∈ (0, 1/18), we have an algorithm which has query

complexity O(n), round complexity 4, and outputs a partition with zero c-weighted error with

probability at least 1− e−Ω(nε).

6.4.2 Erasure and Noisy Models

Here we briefly overview our results on multi-round algorithms in the erasure and noisy

models. We begin with an easy reduction from these models to the noiseless model, at

the cost of a blow-up in the round or query complexity. Essentially, we are just observing

that one can adaptively resample any comparison in the erasure model until it isn’t erased

(which will take 1/γ resamples in expectation), and also that one can resample in parallel

any comparison in either the erasure or noisy model the appropriate number of times and

have it effectively be a noiseless comparison.

Proposition 6.4.1. If there is an algorithm solving Partition, Select or findMin in

the noiseless model with probability p that has query complexity Q and round complexity r,

then there are also algorithms that resample that:

123

• solve Partition, Select or findMin in the erasure model with probability p that

have expected query complexity Q/γ, but perhaps with expected round complexity Q/γ

as well.

• solve Partition, Select or findMin in the erasure model with probability p −

1/poly(n) that have query complexity O(Q(logQ + log n)/γ), and round complexity

r.

• solve Partition, Select or findMin in the noisy model with probability p −

1/poly(n) that have query complexity O(Q(logQ+ log n)/γ2), and round complexity r.

Corollary 6.4.1. There are algorithms that resample that:

• solve Partition or Select in the erasure model with probability 1 with expected query

complexity O(n/γ) (based on the QuickSelect or Median-of-Medians algorithm [121,

29]).

• solve Partition or Select in the erasure model with probability 1− 1/poly(n) with

query complexity O(n log n/γ) and round complexity 4.

• solve Partition or Select in the noisy model with probability 1 − 1/poly(n) with

query complexity O(n log n/γ2) and round complexity 4.

In the erasure model, the algorithms provided by this reduction do not have the optimal

round/query complexity. We show that Θ(n/γ) queries are necessary and sufficient, as well

as Θ(log∗(n)) rounds. For the algorithm, we begin by finding the median of a random set

of size n/ log n elements. This can be done in 4 rounds and O(n/δ) total comparisons by

Corollary 6.4.1. Doing this twice in parallel, we find two elements that are guaranteed to

be above/below the median, but very close. Then, we spend log∗(n) rounds comparing

every element to both of these. It’s not obvious that this can be done in log∗(n) rounds.

Essentially what happens is that after each round, a fraction of elements are successfully

compared, and we don’t need to use any future comparisons on them. This lets us do

124

even more comparisons involving the remaining elements in future rounds, so the fraction

of successes actually increases with successive rounds. Analysis shows that the number of

required rounds is therefore log∗(n) (instead of log(n) if the fraction was constant throughout

all rounds). After this, we learn for sure that the median lies within a sublinear window,

and we can again invoke the 4-round algorithm of Corollary 6.4.1 to finish up. Our lower

bound essentially shows that it takes log∗(n) rounds just to have a non-erased comparison

involving all n elements even with O(n/δ) per round, and that this implies a lower bound.

Theorem 6.4.5. We have an algorithm which has query complexity O(n/γ), round com-

plexity log∗(n) + 8, and solves Partition with probability at least 1− 1/poly(n).

Theorem 6.4.6. Assume γ ≤ 1/2. In the erasure model, any algorithm solving Select with

probability 2/3 even with O(n/γ) comparisons per round necessarily has round complexity

Ω(log∗(n)).

We now introduce a related problem that is strictly easier than Partition or Select,

which we call Rank, and prove lower bounds on the round/query complexity of Rank noisy

models, which will imply lower bounds on Partition and Select. In Rank, we are given

as input a set S of n elements, and a special element b and asked to determine b’s rank in S

(i.e. how many elements in S are less than b). We say that a solution is a t-approximation

if the guess is within t of the element’s actual rank. We show formally that Rank is strictly

easier than Select in the full version of [34]. From here, we prove lower bounds against

Rank in the noisy model.

At a high level, we show (in the proof of Theorem 6.4.7) that with only O(n log n/γ2)

queries, it’s very likely that there are a constant fraction of ai’s such that the algorithm is

can’t be very sure about the relation between ai and b. This might happen, for instance, if

not many comparisons were done between ai and b and they were split close to 50-50. From

here, we use an anti-concentration inequality (the Berry-Essen inequality) to show that the

rank of b does not concentrate within some range of size Θ(n3/8) conditioned on the available

125

information. In otherwords, the information available simply cannot narrow down the rank

of b to within a small window with decent probability, no matter how that information is

used. We then conclude that no algorithms with o(n log n/γ2) comparisons can approximate

the rank well with probability 2/3.

Theorem 6.4.7. In the noisy model, any algorithm obtaining an (n3/8/40)-approximation

for Rank with probability 2/3 necessarily has query complexity Ω(n log n/γ2).

Finally, we conclude with an algorithm for findMin in the noisy model showing that

findMin is strictly easier than Select. This is surprising, as most existing lower bounds

against Select are obtained by bounding findMin. Our algorithm again begins by find-

ing the minimum, x, of a random set of size n/ log n using O(n/γ2) total comparisons by

Corollary 6.4.1. Then, we iteratively compare each element to x a fixed number of times,

throwing out elements that beat it too many times. Again, as we throw out elements, we

get to compare the remaining elements to x more and more. We’re able to show that after

only an appropriate number of iterations (so that only O(n/δ2) total comparisons have been

made), it’s very likely that only n/ log n elements remain, and that with constant probabil-

ity the true minimum was not eliminated. From here, we can again invoke the algorithm of

Corollary 6.4.1 to find the true minimum (assuming it wasn’t eliminated).

Theorem 6.4.8. Assume n is large enough and 10 ≤ c ≤ log n. We have an algorithm

which has query complexity 3cn
γ2 and solves findMin in the noisy model with probability at

least 1− e−Ω(c).

Theorem 6.4.9. Assume c ≥ 1, n is large enough and γ ≤ 1/4. Any algorithm in the noisy

model with query complexity cn
γ2 solves findMin with probability at most 1− e−O(c).

Theorem 6.4.8 shows that findMin is strictly easier than Select (as it can be solved

with constant probability with asymptotically fewer comparisons). Theorem 6.4.9 is included

for completeness, and shows that it is not possible to get a better success probability without

a blow-up in the query complexity.

126

Chapter 7

Top-k Ranking under the Strong

Stochastic Transitivity Model

The results of this chapter are based on joint work with Xi Chen, Sivakanth Gopi and Jon

Schneider [57].

7.1 Introduction

The problem of inferring a ranking over a set of n items, such as documents, images, movies,

or URL links, is an important problem in machine learning and finds many applications in

recommender systems, web search, social choice, and many other areas. One of the most

popular forms of data for ranking is pairwise comparison data, which can be easily collected

via, for example, crowdsourcing, online games, or tournament play. The problem of ranking

aggregation from pairwise comparisons has been widely studied and most work aims at

inferring a total ordering of all the items (see, e.g., [159]). However, for some applications

with a large number of items (e.g., rating of restaurants in a city), it is only necessary to

identify the set of top K items. For these applications, inferring the total global ranking

order unnecessarily increases the complexity of the problem and requires significantly more

samples. Typically, the sample complexity of recovering the set of top K items is inversely

127

related to the gap between item K and item K+1. On the other hand, the sample complexity

of recovering the global ranking order might depend on the the minimum of the gaps between

two consecutive items.

In the basic setting for this problem, there is a set of n items with some true underlying

ranking. For possible pair (i, j) of items, an analyst is given r noisy pairwise comparisons

between those two items, each independently ranking i above j with some probability pij.

From this data, the analyst wishes to identify the top K items in the ranking, ideally using

as few samples r as is necessary to be correct with sufficiently high probability. The noise

in the pairwise comparisons (i.e., the probabilities pij) is constrained by the choice of noise

model. Many existing models - such as the Bradley-Terry-Luce model (BTL) [33, 145], the

Thurstone model [183], and their variants - are parametric comparison models, in that each

probability pij is of the form f(si, sj), where si is a ‘score’ associated with item i. While these

parametric models yield many interesting algorithms with provable guarantees [60, 125, 179],

the models enforce strong assumptions on the probabilities of incorrect pairwise comparisons

that might not hold in practice [69, 150, 185, 24].

A more general class of pairwise comparison model is the strong stochastic transitivity

(SST) model, which subsumes the aforementioned parameter models as special cases and

has a wide range of applications in psychology and social science (see, e.g., [69, 150, 102]).

The SST model only enforces the following coherence assumption: if i is ranked above j,

then pil ≥ pjl for all other items l. [175] pioneered the algorithmic and theoretical study

of ranking aggregation under SST models. For top-K ranking problems, [177] proposed a

counting-based algorithm under a very general noise model that includes SST as a special

case. The algorithm simply orders the items by the total number of pairwise comparisons

won. For a certain class of instances, this algorithm is in fact optimal; any algorithm with

a constant probability of success on these instances needs roughly at least as many samples

as this counting algorithm. However, this does not rule out the existence of other instances

128

where the counting algorithm performs asymptotically worse than some other algorithm (see

the example in Eq. (7.1)).

Under the SST model, we study algorithms for the top-K problem from the standpoint

of instance-specific analysis (a.k.a. competitive analysis in the computer science). This is

in spirit very similar to the notion “instance optimal”[96]. We give an algorithm which, on

any instance, needs at most Õ(
√
n) times as many samples as the best possible algorithm

for that instance to succeed with the same probability. We further show this result is tight

(up to polylogarithmic factors): for any algorithm, there are instances where that algorithm

needs at least Ω̃(
√
n) times as many samples as the best possible algorithm. In contrast,

the counting algorithm of [177] sometimes requires Ω(n) times as many samples as the best

possible algorithm, even when the probabilities pij are bounded away from 1.

Our main technical tool is the introduction of a new decision problem we call domination,

which captures the difficulty of solving the top-K problem while being simpler to directly

analyze via information theoretic techniques. The domination problem can be thought of as

a restricted one-dimensional variant of the top-K problem, where the analyst is only given

the outcomes of pairwise comparisons that involve item i or j, and wishes to determine

whether i is ranked above j. Our proof of the above claims proceeds by proving analogous

competitive ratio results for the domination problem, and then carefully embedding the

domination problem as part of the top-K problem. To establish the competitive ratio for

the domination, we start from a simple case where the comparison probabilities are bounded

away from zero and one. We first show that a popular counting algorithm developed by

[177] has a sub-optimal competitive ratio of Θ̃(n). The main reason is that the counting

algorithm treats samples from different coordinates of comparison probability vector equally.

To address the issue of the counting algorithm, another maximum algorithm is first proposed.

However, the maximum algorithm still leads to a sub-optimal competitive ratio and it fails

whenever the counting algorithm performs well. Therefore, we develop techniques to combine

129

the counting and maximum algorithms together, which give the optimal competitive ratio

of Õ(
√
n). More detailed description of this idea is provided in Section 7.3.1.

7.1.1 Related Work

The problem of sorting a set of items from a collection of pairwise comparisons is one of

the most classical problems in computer science and statistics. Many works investigate

the problem of recovering the total ordering under noisy comparisons drawn from some

parametric model. For the BTL model, Negahban et al. [159] propose the RankCentrality

algorithm, which serves as the building block for many spectral ranking algorithms. Lu and

Boutilier [144] give an algorithm for sorting in the Mallows model. Rajkumar and Agarwal

[169] investigate which statistical assumptions (BTL models, generalized low-noise condition,

etc.) guarantee convergence of different algorithms to the true ranking.

More recently, the problem of top-K ranking has received a lot of attention. Chen and

Suh [60], Jang et al. [125], and Suh et al. [179] all propose various spectral methods for the

BTL model or a mixture of BTL models. Eriksson [95] considers a noisy observation model

where comparisons deviating from the true ordering are i.i.d. with bounded probability. In

[177], Shah and Wainwright propose a counting-based algorithm, which motivates our work.

However, their algorithm is not instance adaptive and we provide a simple instance (see Eq.

(7.1)) illustrating that the sample complexity in [177] is sub-optimal on that instance. The

top-K ranking problem is also related to the best K arm identification in multi-armed bandit

[44, 123, 191]. However, in the latter problem, the samples are i.i.d. random variables rather

than pairwise comparisons and the goal is to identify the top K distributions with largest

means.

This paper and the above references all belong to the non-active setting: the set of

data provided to the algorithm is fixed, and there is no way for the algorithm to adaptively

choose additional pairwise comparisons to query. In several applications, this property is

desirable, specifically if one is using a well-established dataset or if adaptivity is costly

130

(e.g., on some crowdsourcing platforms). Nonetheless, the problems of sorting and top-K

ranking are incredibly interesting in the adaptive setting as well. Several works [1, 124,

130, 35] consider the adaptive noisy sorting problem with (noisy) pairwise comparisons and

explore the sample complexity to recover an (approximately) correct total ordering in terms

of some distance function (e.g,., Kendall’s tau). In [189], Wauthier et al. propose simple

weighted counting algorithms to recovery an approximate total ordering from noisy pairwise

comparisons. Dwork et al. [92] and Ailon et al. [2] consider a related Kemeny optimization

problem, where the goal is to determine the total ordering that minimizes the sum of the

distances to different permutations. More recently, the top-K ranking problem in the active

setting has been studied by Braverman et al. [34] where they consider the tradeoff between

the sample complexity of algorithms and the number of rounds of adaptivity. All of this work

takes place in much more constrained noise models than the SST model. A very recent work

by Heckel et. al. [119] investigates the active ranking under a general class of nonparametric

models and also establishes a lower bound on the number of comparisons for parametric

models. However, developing an active instance-adaptive ranking algorithm under the SST

model still remains an interesting open problem.

The instance adaptivity has been widely studied in many statistical estimation problems.

For example, the adaptive estimation is an important topic in nonparametric shape-restricted

regression (see, e.g., [112, 53, 54, 111]). Shah et. al. [176] study the adaptive estimation

problem for estimating comparison probabilities in a SST model. The concept of instance

adaptivity is also closely related to the oracle inequality, which relates the performance of a

constructed estimator with that of an “oracle” estimator with the information about local

structure of the parameter space (see the survey paper [49] and the book [132] and references

therein).

[177] discussed the approximate recovery of top items. The approximate recovery would

be suitable for many practical applications. In their paper, they showed that this approxi-

mate relaxation allows a less constrained separation threshold. For our algorithms, it is not

131

clear that the approximate relaxation can significantly improve the competitive ratios. It

is an interesting open question to extend our work to see if the approximate recovery can

result in better competitive ratios.

7.2 Preliminaries and Problem Setup

7.2.1 The Top-K problem

Consider the following problem. An analyst is given a collection of n items, labelled 1 through

n. These items have some true ordering defined by a permutation π : {1, . . . , n} → {1, . . . , n}

such that for 1 ≤ u < v ≤ n, the item labelled π(u) has a better rank than the item

labelled π(v) (i.e., the item with label i has a better rank than the item j if and only

if π−1(i) < π−1(j)). The analyst’s goal is to determine the set of the top K items, i.e.,

{π(1), . . . , π(k)}.

The analyst receives r samples. Each sample consists of pairwise comparisons between all

pairs of items. All the pairwise comparisons are independent with each other. The outcomes

of the pairwise comparison between any two items is characterized by the probability matrix

P ∈ [0, 1]n×n. For a pair of items (i, j), let Xi,j ∈ {0, 1} be the outcome of the comparison

between the item i and j, where Xi,j = 1 means i is preferred to j (denoted by i � j)

and Xi,j = 0 otherwise. Further, let B(z) denote the Bernoulli random variable with mean

z ∈ [0, 1]. The outcome Xi,j follows B(Pπ−1(i),π−1(j)), i.e.,

Pr(Xi,j = 1) = Pr(i � j) = Pπ−1(i),π−1(j).

The probability matrix P is said to be strong stochastic transitive (SST) if it satisfies the

following definition.

Definition 7.2.1. The n× n probability matrix P ∈ [0, 1]n×n is strong stochastic transitive

(SST) if

132

1. For 1 ≤ u < v ≤ n, Pu,l ≥ Pv,l for all l ∈ [n].

2. P is shifted-skew-symmetric (i.e., P − 0.5 is skew-symmetric) where Pv,u = 1 − Pu,v

and Pu,u = 0.5 for u ∈ [n].

The first condition claims that when the item i has a higher rank than item j (i.e.,

π−1(i) < π−1(j)), for any other item k, we have

Pr(i � k) = Pπ−1(i),π−1(k) ≥ Pr(j � k) = Pπ−1(j),π−1(k).

Remark 7.2.1. Many classical parametric models such that BTL [33, 145] and Thurstone

(Case V) [183] models are special cases of SST. More specifically, parametric models assume

a score vector w1 ≥ w2 ≥ . . . ≥ wn. They further assume that the comparison probability

Pu,v = F (wu−wv), where F : R→ [0, 1] is a non-decreasing function and F (t) = 1−F (−t)

(e.g., F (t) = 1/(1 + exp(−t)) in BTL models). By the property of F , it is easy to verify that

Pu,v = F (wu − wv) satisfy the conditions in Definition 7.2.1.

Under the SST models, we can formally define the top-K ranking problem as follows.

The top-K ranking problem takes the inputs n, k, r that are known to the algorithm and

the SST probability matrix P that is unknown to the algorithm.

Definition 7.2.2. Top-k(n, k,P, r) is the following algorithmic problem:

1. A permutation π of [n] is uniformly sampled.

2. The algorithm is given samples Xi,j,l for i ∈ [n], j ∈ [n], l ∈ [r], where each Xi,j,l is

sampled independently according to B(Pπ−1(i),π−1(j)). The algorithm is also given the

value of k, but not π or the matrix P.

3. The algorithm succeeds if it correctly outputs the set of labels {π(1), ..., π(k)} of the top

k items.

133

Remark 7.2.2. We note that [177] considers a slightly different observation model in which

each pair is queried r times. For each query, one can obtain a comparison result with the

probability pobs ∈ (0, 1] and with probability 1− pobs, the query is invalid. In this model, each

pair will be compared r · pobs times on expectation. When pobs = 1, it reduces to our model in

Definition 7.2.2, where we observe exactly r comparisons for each pair. Our results can be

easily extended to deal with the observation model in [177] by replacing r with the effective

sample size, r · pobs. We omit the details for the sake of simplicity.

Our primary metric of concern is the sample complexity of various algorithms; that is, the

minimum number of samples an algorithm A requires to succeed with a given probability.

To this end, we call the triple S = (n, k,P) an instance of the Top-k problem, and write

rmin(S,A, p) to denote the minimum value such that for all r ≥ rmin(S,A, p), A succeeds

on instance S with probability p when given r samples. When p is omitted, we will take

p = 3
4
; i.e., rmin(S,A) = rmin(S,A, 3

4
). It is worthwhile to note that, by repeating the

algorithm constant number of times and taking the majority output, solving the problem for

any constant error translates to a solution with polynomially decaying error, and the sample

complexity will increase only by a multiplicative logarithmic factor.

7.2.2 The Domination problem

To solve the problem of Top-k, we study a key sub-problem called Domination, which

captures the core of the difficulty of Top-k. In particular, Domination captures the dom-

inance relation between two consecutive rows of a SST probability matrix. Domination is

formally defined as follows.

Definition 7.2.3. Domination(n,p,q, r) is the following algorithmic problem:

1. p = (p1, · · · , pn) and q = (q1, · · · , qn) are two vectors of probabilities that satisfy

1 ≥ pi ≥ qi ≥ 0 for all i ∈ [n]. p,q are not given to the algorithm.

134

2. A random bit B is sampled from B(1
2
). Samples Xi,j, Yi,j (for i ∈ [n], j ∈ [r]) are

generated as follows:

(a) Case B = 0: each Xi,j is independently sampled according to B(pi) and each Yi,j

is independently sampled according to B(qi).

(b) Case B = 1: each Xi,j is independently sampled according to B(qi) and each Yi,j

is independently sampled according to B(pi).

The algorithm is given the samples Xi,j and Yi,j, but is not given the bit B or the values

of p and q.

3. The algorithm succeeds if it correctly outputs the value of the hidden bit B.

From Definition 7.2.1, it is clear for any pair of rows (or columns) of a SST probability

matrix P, one row (or column) will dominate another. As before, we are interested in the

sample complexity of algorithms for Domination. We call the triple C = (n,p,q) an

instance of Domination, and write rmin(C,A, p) to be the minimum value such that for all

r ≥ rmin(C,A, p), algorithm A succeeds at solving Domination(n,p,q, r) with probability

at least p. Moreover, for notational simplicity, let rmin(C,A) = rmin(C,A, 3
4
).

There are at least two main approaches one can take to analyze the sample complexity of

problems like Top-k or Domination. The first (and more common) approach is to bound

the value of rmin(S,A) by some explicit function f(S) of a Top-k instance S. This is the

approach taken by [177]. They show that for some simple function f (roughly, the square

of the reciprocal of the absolute difference of the sums of the k-th and (k + 1)-th rows of

the matrix P i.e. 1/‖Pk − Pk+1‖2
1), there is an algorithm A such that for all instances S,

rmin(S,A) = O(f(S)); moreover this is optimal in the sense that there exists an instance S

such that for all algorithms A, rmin(S,A) = Ω(f(S)). While this is a natural approach, it

leaves open the question of what the correct choice of f should be; indeed, different choices

of f give rise to different ‘optimal’ algorithms A which outperform each other on different

instances.

135

In this paper, we take the second approach, which is to compare the sample complexity

of an algorithm on an instance to the sample complexity of the best possible algorithm on

that instance. Formally, let rmin(S, p) = infA rmin(S,A, p) and let rmin(S) = rmin(S, 3
4
).

An ideal algorithm A would satisfy rmin(S,A) = Θ(rmin(S)) for all instances S of Top-k;

more generally, we are interested in bounding the ratio between rmin(S,A) and rmin(S). We

call this ratio the competitive ratio of the algorithm, and say that an algorithm is f(n)-

competitive if rmin(S,A) ≤ f(n)rmin(S). We likewise define the corresponding notions for

Domination.

7.3 Main Results

In our main upper bound result, we give a linear-time algorithm for Top-k which is Õ(
√
n)-

competitive (restatement of Corollary 7.7.1):

Theorem 7.3.1. There is an algorithm A for Top-k such that A runs in time O(n2r) and

on every instance S of Top-k on n items,

rmin(S,A) ≤ O(
√
n log n)rmin(S).

In our main lower bound result, we show that up to logarithmic factors, this
√
n com-

petitive ratio is optimal (restatement of Theorem 7.8.1):

Theorem 7.3.2. For any algorithm A for Top-k, there exists an instance S of Top-k on

n items such that

rmin(S,A) ≥ Ω

(√
n

log n

)
rmin(S).

In comparison, for the counting algorithm A′ of [177], there exist instances S such that

rmin(S,A′) ≥ Ω̃(n)rmin(S). For example, consider the instance S = (n, k,P) with

136

P =



1
2

1
2

+ ε · · · · · · 1
2

+ ε

1
2
− ε ...

...
.

...

... 1
2

+ ε

1
2
− ε · · · · · · 1

2
− ε 1

2


(7.1)

It is straightforward to show that with Θ(log n/ε2) samples, we can learn all pairwise

comparisons correctly with high probability by taking a majority vote, and therefore even

sort all the elements correctly. This implies that rmin(S) = O(log n/ε2). On the other hand,

we show in Corollary 7.5.1 that rmin(S,A′) = Ω(n/ε2) when ε < 1/10.

7.3.1 Main Techniques and Overview

We prove our main results by first proving similar results for Domination which we defined

in Definition 7.2.3. Intuitively Domination captures the main hardness of Top-k while

being much simpler to analyze. Once we prove upper bound and lower bounds for the

sample complexity of Domination, we will use reductions to prove analogous results for

Top-k.

We begin in Section 7.4, by proving a general lower bound on the sample complexity of

domination. Explicitly, for a given instance C = (n,p,q) of Domination, we show that

rmin(C) ≥ Ω(1/I(p,q)) where I(p,q) is the amount of information we can learn about the

bit B from one sample of pairwise comparison in each of the coordinates.

In Section 7.5, we proceed to design algorithms for Domination restricted to instances

C = (n,p,q) where δ ≤ pi, qi ≤ 1 − δ for some constant 0 < δ ≤ 1/2. In this regime

I(p,q) = Θ(‖p− q‖2
2), which makes it easier to argue our algorithms are not too bad com-

pared with the optimal one. We first consider an algorithm we call the counting algorithm

Acount (Algorithm 6), which is a Domination analogue of the counting algorithm proposed

by [177]. We show that Acount has a competitive ratio of Θ̃(n). Intuitively, the main rea-

137

son Acount fails is that Acount tries to consider samples from different coordinates equally

important even when they are sampled from a very unbalanced distribution (for example,

p1 6= q1, p2 = q2, ..., pn = qn). We then consider another algorithm we call the max algo-

rithm Amax (Algorithm 7) which simply finds i′ = maxi |
∑r

j=1(Xi,j − Yi,j)| and outputs B

according the sign of
∑r

j=1(Xi′,j−Yi′,j). We show Amax also has a competitive ratio of Θ̃(n).

Interestingly, Amax fails for a different reason from Acount, namely that Amax does not use the

information fully from all coordinates when the samples are sampled from a very balanced

distribution. In fact, Acount performs well whenever Amax fails and vice versa. We therefore

show how combine Acount and Amax in two different ways to get two new algorithms: Acomb

(Algorithm 8) and Acube (Algorithm 9). We show that both of these new algorithms have

a competitive ratio of Õ(
√
n), which is tight by Theorem 7.8.2. While Acube has a slightly

better competitive ratio (O(
√
n) versus O(

√
n log n)), the method introduced in Acomb is

more general and allows one to combine any two algorithms for Domination and to obtain

the better one of the two performances on any instance.

In Section 7.6, we extend Acomb to design an efficient algorithm for Domination in

the general regime. In this regime, I(p,q) can be much larger than ‖p − q‖2
2, particularly

for values of pi and qi very close to 0 or 1. In these corner cases, the counting algorithm

Acount and max algorithm Amax can fail very badly; we will show that even for fixed n, their

competitive ratios can grow arbitrarily large (Lemma 7.6.4 and Lemma 7.6.5). One main

reason for this failure is that, even when |pi− qi| < |pj− qj|, samples from coordinate i could

convey much more information than the samples from coordinate j (consider, for example,

pi = ε/2, qi = 0, and pj = 1/2 + ε, qj = 1/2). Taking this into account, we design a new

algorithm Acoup (Algorithm 10) which has a competitive ratio of O(
√
n log n) in the general

regime. The new algorithm builds off Acoup and still combines features from both Acount

and Amax, but also better estimates the importance of each coordinate. To estimate how

much information each coordinate has, the new algorithm divides the samples into Θ(log n)

groups and checks how often samples from coordinate i are consistent with themselves. If

138

one coordinate has a large proportion of the total information, it uses samples from that

coordinate to decide B, otherwise it takes a majority vote on samples from all coordinates.

In Section 7.7, we return to Top-k and present an algorithm that has a competitive

ratio of Õ(
√
n), thus proving Theorem 7.3.1. Our algorithm works by reducing the Top-k

problem to several instances of the Domination problem (see Theorem 4.4.1). At a high

level, the algorithm tries to find the top k rows by pairwise comparisons of rows, each of

which can be thought of as an instance of Domination. We use algorithm Acoup to solve

these Domination instances. Since we only need to make at most n2 comparisons, if Acoup

outputs the correct answer with at least 1 − ε
n2 probability for each comparison, then by

union bound all the comparisons will be correct with probability at least 1 − ε. However,

to find the top k rows, we do not actually need to compare all the rows to each other;

Lemma 7.7.1 shows that we can find the top k rows with high probability while making only

O(n) comparisons. Using this lemma, we get a linear time algorithm (linear in the size of

the input, i.e. Θ(n2r)) for solving Top-k. Finally in Lemma 7.7.3, we extend the lower

bound for Domination proved in Lemma 7.4.1 to show a lower bound on the number of

samples any algorithm would need on a specific instance of Top-k. Combining these results,

we prove Theorem 7.3.1.

Finally, in Section 7.8, we show that the algorithms for both Domination and Top-k

presented in the previous sections have the optimal competitive ratio (up to polylogarithmic

factors). Specifically, we show that for any algorithm A solving Domination, there exists

an instance C of domination where rmin(C,A) ≥ Ω̃(
√
n)rmin(C) (Theorem 7.8.2). We ac-

complish this by constructing a distribution C over instances of Domination such that each

instance in the support of this distribution can by solved by an algorithm with low sample

complexity (Theorem 7.8.3) but any algorithm that succeeds over the entire distribution re-

quires Ω̃(
√
n) times more samples (Theorem 7.8.4). We then embed Domination in Top-k

(similarly as in Section 7.7) to show an analogous Ω̃(
√
n) lower bound for Top-k (Theorem

7.8.1).

139

7.4 Lower Bounds on the Sample Complexity of Dom-

ination

We start by establishing lower bounds on the number of samples rmin(C) needed by any algo-

rithm to succeed with constant probability on a given instance C = (n,p,q) of Domination.

This is controlled by the quantity I(p,q), which is the amount of information we can learn

about the bit B given one sample of pairwise comparison between each of the coordinates

of p and q.

Definition 7.4.1. Given 0 ≤ p, q ≤ 1, define

I(p, q) = (p(1− q) + q(1− p))
(

1−H
(

p(1− q)
p(1− q) + q(1− p)

))
.

Given p = (p1, · · · , pn) ∈ [0, 1]n,q = (q1, · · · , qn) ∈ [0, 1]n, define

I(p,q) =
n∑
i=1

I(pi, qi).

Lemma 7.4.1. Let C = (n,p,q) be an instance of Domination. Then rmin(C) ≥

0.05/I(p,q).

Proof. The main idea is to bound the mutual information between the samples and the

correct output, and then apply Fano’s inequality. Let p = (p1, · · · , pn) and q = (q1, · · · , qn).

Recall that B indicates the correct output and that X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r are the

samples given to the algorithm. By Fact 1.2.2,

I(B;X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r) = I(B;X1,1Y1,1)+I(B;X1,2, ..., Xn,r, Y1,2, ..., Yn,r|X1,1Y1,1).

140

When p, q and B are given, each sample (Xi,j or Yi,j) is independent of the other samples,

and thus I(X1,1Y1,1;X1,2, ..., Xn,r, Y1,2, ..., Yn,r|B) = 0. By Fact 1.2.3, we then have

I(B;X1,2, ..., Xn,r, Y1,2, ..., Yn,r|X1,1Y1,1) ≤ I(B;X1,2, ..., Xn,r, Y1,2, ..., Yn,r)

and therefore

I(B;X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r) ≤ I(B;X1,1Y1,1) + I(B;X1,2, ..., Xn,r, Y1,2, ..., Yn,r).

Repeating this, we get

I(B;X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r) ≤
n∑
i=1

r∑
j=1

I(B;Xi,jYi,j).

By Fact 1.2.5, we have

I(B;Xi,jYi,j)

= Pr[B = 0] ·D(Xi,jYi,j|B = 0‖Xi,jYi,j) + Pr[B = 1] ·D(Xi,jYi,j|B = 1‖Xi,jYi,j)

= (pi(1− qi) + qi(1− pi))
(

1−H
(

pi(1− qi)
pi(1− qi) + qi(1− pi)

))
= I(pi, qi).

It follows that

I(B;X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r) ≤
n∑
i=1

r∑
j=1

I(B;Xi,jYi,j) = r ·
n∑
i=1

I(pi, qi) = rI(p,q).

141

For any algorithm, let pe be its error probability on Domination(n,p,q, r). By Fano’s

inequality, we have that

H(pe) ≥ H(B|X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r)

= H(B)− I(B;X1,1, X1,2, ..., Xn,r, Y1,1, ..., Yn,r)

= 1− rI(p,q) ≥ 0.95.

Since H(pe) ≥ 0.95, we find that pe ≥ 1/4, as desired.

In the following section, we will concern ourselves with instances C = (n,p,q) that satisfy

δ ≤ pi, qi ≤ 1−δ for some constant δ for all i. For such instances, we can approximate I(p, q)

by the `2 distance between p and q.

Lemma 7.4.2. For some 0 < δ ≤ 1
2
, let δ ≤ p, q ≤ 1− δ. Then

1

4 ln 2
(p− q)2 ≤ I(p, q) ≤ 1

δ ln 2
(p− q)2.

Proof. Let x = p(1−q) and y = q(1−p). Then I(p, q) = (x+y)(1−H(x
x+y

)) and p−q = x−y.

We need to show that

(x+ y)

(
1−H

(
x

x+ y

))
≤ 1

δ ln 2
(x− y)2.

By Fact 1.2.6,

1

ln 2
z2 ≤ 1−H

(
1

2
+ z

)
= D

(
1

2
+ z

∣∣∣∣∣∣∣∣12
)
≤ 4

ln 2
z2,

and therefore

1

4 ln 2

(x− y)2

(x+ y)
≤ (x+ y)

(
1−H

(
x

x+ y

))
≤ 1

ln 2

(x− y)2

(x+ y)
.

142

Since

x+ y = p(1− q) + q(1− p) ≥ 2
√
p(1− p)q(1− q) ≥ 2δ(1− δ) ≥ δ,

this implies the desired upper bound. The lower bound also holds since,

x+ y = p(1− q) + q(1− p) ≤
√
p2 + (1− p)2 ·

√
q2 + (1− q)2 ≤ δ2 + (1− δ)2 ≤ 1.

Corollary 7.4.1. Let C = (n,p,q) be an instance of Domination satisfying δ ≤ pi,qi ≤

1− δ for all i ∈ [n]. Then

rmin(C) ≥ 0.05 ln(2) · δ

‖p− q‖2
2

.

Proof. By Lemma 7.4.2, I(p,q) ≤ ‖p − q‖2
2/(δ ln 2). The result then follows from

Lemma 7.4.1.

7.5 Domination in the Well-behaved Regime

We now proceed to the problem of designing algorithms for Domination which are compet-

itive on all instances. As a warmup, we begin by considering only instances C = (n,p,q) of

Domination satisfying δ ≤ pi, qi ≤ 1− δ for all i ∈ [n] where 0 < δ ≤ 1/2 is some fixed con-

stant. This regime of instances captures much of the interesting behavior of Domination,

but with the added benefit that the mutual information between the samples and B behaves

nicely in this regime: in particular I(p,q) = Θ(‖p − q‖2
2) (see Lemma 7.4.2). By Corol-

lary 7.4.1, we have rmin ≥ Ω(1
‖p−q‖22

). This fact will make it easier to design algorithms for

Domination which are competitive in this regime.

In Section 7.5.1, we give two simple algorithms (counting algorithm and max algorithm)

which can solve Domination given Õ(n/‖p−q‖2
2) samples which gives them a competitive

143

ratio of Õ(n). We will then show that this is tight, i.e. their competitive ratio is Θ̃(n)

in Lemma 7.5.3 and Lemma 7.5.4. While the sample complexities of these two algorithms

are not optimal, they have the nice property that whenever one performs badly, the other

performs well. In Section 7.5.2, we show how to combine the counting algorithm and the

max algorithm to give two different algorithms which can solve Domination using only

Õ(
√
n/‖p−q‖2

2) samples i.e. they have a competitive ratio of Õ(
√
n). According to Theorem

7.8.2, this is the best we can do up to polylogarithmic factors.

7.5.1 Counting algorithm and max algorithm

We now consider two simple algorithms for Domination(n,p,q), which we call the counting

algorithm (Algorithm 6) and the max algorithm (Algorithm 7) denoted by Acount and Amax

respectively. We show that both algorithms require Õ(n
‖p−q‖22

) samples to solve Domination

(Lemmas 7.5.1 and 7.5.2). By Corollary 7.4.1, we have rmin ≥ Ω(1
‖p−q‖22

), leading to a Õ(n)

competitive ratio for these algorithms. We show in Lemma 7.5.3 and Lemma 7.5.4 that this

is tight up to polylogarithmic factors i.e. their competitive ratio is Θ̃(n).

Algorithm 6 The counting algorithm Acount for Domination(n,p,q, r)

1: for i = 1 to n do
2: Si =

∑r
j=1(Xi,j − Yi,j)

3: end for
4: Z =

∑n
i=1 Si

5: If Z > 0, output B = 0. If Z < 0, output B = 1. If Z = 0, output B = 0 with
probability 1/2 and output B = 1 with probability 1/2.

Algorithm 7 The max algorithm Amax for Domination(n,p,q, r)

1: for i = 1 to n do
2: Si =

∑r
j=1(Xi,j − Yi,j)

3: end for
4: i′ = arg max |Si|
5: Z = Si′
6: If Z > 0, output B = 0. If Z < 0, output B = 1. If Z = 0, output B = 0 with

probability 1/2 and output B = 1 with probability 1/2.

144

Both the counting algorithm and the max algorithm begin by computing (for each coor-

dinate i) the differences between the number of ones in the Xi,j samples and Yi,j samples;

i.e., we compute the values Si =
∑r

j=1(Xi,j − Yi,j). The counting algorithm Acount decides

whether to output B = 0 or B = 1 based on the sign of
∑

i Si, whereas the max algorithm

decides its output based on the sign of the Si with the largest absolute value. See Algorithms

6 and 7 for detailed pseudocode for both Acount and Amax.

We omit proofs in this subsection. They can be found in the full version of [57].

We begin by proving upper bounds for the sample complexities of both Acount and Amax.

In particular, both Acount and Amax need at most Õ(n) times as many samples as the best

possible algorithm for any instance in this regime.

Lemma 7.5.1. Let C = (n,p,q) be an instance of Domination. Then

rmin(C,Acount, 1− α) ≤ 2n ln(α−1)

‖p− q‖2
1

.

If C further satisfies δ ≤ pi, qi ≤ 1− δ for all i for some constant δ > 0, then

rmin(C,Acomb) ≤ O(n)rmin(C).

Lemma 7.5.2. Let C = (n,p,q) be an instance of Domination. Then

rmin(C,Amax, 1− α) ≤ 8 ln(2nα−1)

‖p− q‖2
∞

If C further satisfies δ ≤ pi, qi ≤ 1− δ for all i for some constant δ, then

rmin(C,Acomb) ≤ O(n log n)rmin(C).

We now show that the upper bounds we proved above are essentially tight. In particular,

we demonstrate instances where both Acount and Amax need Ω̃(n) times as many samples as

145

the best possible algorithms for those instances. Interestingly, on the instance where Acount

suffers, Amax performs well, and vice versa. This fact will prove useful in the next section.

Lemma 7.5.3. For each ε < 1
10

and each sufficiently large n, there exists an instance

C = (n,p,q) of Domination such that the following two statements are true:

1. rmin(C,Amax, 1− 2
n
) ≤ 16 lnn

ε2
.

2. rmin(C,Acount) ≥ n
128ε2

.

It is not hard to observe that in certain cases, the counting algorithm of [177] for Top-k

reduces to the algorithm Acount for Domination. It follows that there also exists an Ω(n)

multiplicative gap between the sample complexity of their counting algorithm and the sample

complexity of the best algorithm on some instances.

Corollary 7.5.1. Let A′ be the Top-k algorithm of [177], and let S = (n, k,P) be a Top-k

instance, with P as described in Section 7.3. Then, for sufficiently large n and ε < 1/10,

rmin(S,A′) ≥ Ω(n
ε2

).

We will now show that Amax has a competitive ratio of Ω̃(n).

Lemma 7.5.4. For each sufficiently large n, there exists an instance C = (n,p,q) of

Domination such that the following two statements are true:

1. rmin(C,Acount, 1− 1
n
) ≤ 2n3 lnn.

2. rmin(C,Amax, 4
5
) ≥ n4

214 lnn
.

7.5.2 Õ(
√
n)-competitive algorithms

We will now demonstrate two algorithms for Domination that use at most Õ(
√
n) times

more samples than the best possible algorithm for each instance. According to Theorem

7.8.2, this is the best we can do up to polylogarithmic factors.

146

Note that the counting algorithm Acount tends to work well when the max algorithm

Amax fails, and vice versa (e.g., Lemmas 7.5.3 and 7.5.4). Therefore, intuitively, combining

both algorithms in some way should lead to better performance.

Both of the algorithms we present in this section share this intuition. We begin (in

Lemma 7.5.5) by demonstrating a very general method for combining any two algorithms for

Domination. Applying this to Acount and Amax, we obtain an algorithm Acomb that satisfies

rmin(C,Acomb) ≤ O(
√
n log n) · rmin(C) (Corollary 7.5.2) for instances C in this regime. We

then show an alternate algorithm with slightly better performance than Acomb, which we call

the sum of cubes algorithm Acube. This algorithm satisfies rmin(C,Acube) ≤ O(
√
n) · rmin(C)

for instances C in this regime (Theorem 7.5.1).

Combining counting and max

We first show how to combine any two algorithms for Domination to get an algorithm

that always does at least as well as the better of the two algorithms. Call an algorithm A

for Domination stable if it always outputs the correct answer with probability at least 1/2

(i.e. it always does at least as well as a random guess). Note that Acount and Amax are both

stable. We have the following lemma.

Lemma 7.5.5. Let A1 and A2 be two stable algorithms for Domination. Then there exists

an algorithm Acomb such that for all instances C of Domination,

rmin(C,Acomb, 1− α) ≤ 32 ln(α−1) ·min (rmin(C,A1), rmin(C,A2))

Proof. See Algorithm 8 for a description of Acomb. Assume without loss of generality that

B = 0, and let r = 32 log(nα−1) min (rmin(C,A1), rmin(C,A2)). We will show that Acomb

outputs B = 0 correctly with probability at least 1− α.

Let r′ = r
32 lnn

; note that either r′ ≥ rmin(C,A1) or rmin(C,A2). Assume first that

r′ ≥ rmin(C,A1). Then, A1 will output B = 0 in each of its 16 lnα−1 groups with probability

147

at least 3
4
. On the other hand, since it is stable, A2 will output B = 0 in each of its groups

with probability at least 1
2
. Therefore

E

[
Z1 + Z2

2

]
≤ 1

8
+

1

4
≤ 3

8
.

Since Z1+Z2

2
is the average of 32 lnα−1 random variables, by Hoeffding’s inequality, the

probability that Z1+Z2

2
≥ 1

2
is at most exp

(
−2(32 lnα−1)(1

8
)2
)
≤ α.

Similarly, if r′ ≥ rmin(C,A2), the probability that Z1+Z2

2
≥ 1

2
is also at most α. This

concludes the proof.

Algorithm 8 Combining two algorithms A1 and A2 for Domination(n,p,q, r)

1: Divide the samples into 32 lnα−1 groups.
2: Run A1 on each of the first 16 lnα−1 groups and let Z1 be the average of the outputs.
3: Run A2 on each of the last 16 lnα−1 groups and let Z2 be the average of the outputs.
4: If Z1+Z2

2
≤ 1

2
output B = 0, else output B = 1.

Corollary 7.5.2. Let Acomb be the algorithm we obtain by combining Acount and Amax in

the manner of Lemma 7.5.5. Then for any instance C = (n,p,q) of Domination,

rmin(C,Acomb) ≤ O

(√
n log n

‖p− q‖2
2

)
.

If C further satisfies δ ≤ pi, qi ≤ 1− δ for all i for some constant δ, then

rmin(C,Acomb) ≤ O(
√
n log n)rmin(C).

Proof. This follows from Lemmas 7.5.1, 7.5.2, 7.5.5, and the following observation:

min

(
n

‖p− q‖2
1

,
log n

‖p− q‖2
∞

)
≤

√
n

‖p− q‖2
1

· log n

‖p− q‖2
∞

≤
√
n log n

‖p− q‖2
2

.

148

The last inequality follows from the fact that for any vector x, ‖x‖2
2 ≤ ‖x‖1 · ‖x‖∞. The

second part of the corollary then follows directly from Corollary 7.4.1.

The sum of cubes algorithm

We now give a different algorithm for Domination which we call the sum of cubes algorithm,

Acube. If we let Si =
∑

j(Xi − Yi), then intuitively, whereas Acount decides its output based

on the signed `1 norm of the Si and whereas Amax decides its output based on the signed

`∞ norm of the Si, Acube decides its output based on the signed `3 norm of the Si. See

Algorithm 9 for a detailed description of the algorithm.

Algorithm 9 Sum of cubes algorithm Acube for Domination(n,p,q, r)

1: Ti,j = 1 with probability 1
2

+
(Xi,j−Yi,j)

2
and Ti,j = −1 with probability 1

2
− (Xi,j−Yi,j)

2

2: Si =
∑r

j=1 Ti,j
3: Z =

∑n
i=1 S

3
i

4: If Z ≥ 0, output B = 0. If Z < 0, output B = 1.

To analyze the performance of Acube, we begin by analyzing statistical properties of the

random variable S.

Lemma 7.5.6. Let S =
∑r

j=1 Xj where X1, · · · , Xr are i.i.d {−1, 1}-valued random variables

with mean ε ≥ 0 and r ≥ 8. Let Z = S3. Then

E[Z] ≥ 2r2ε+
1

2
r3ε3

Var[Z] ≤ 15r3 + 36r4ε2 + 9r5ε4.

Proof. By applying the multinomial theorem and using the fact that X2
i = 1 for each i, we

can write multilinear expressions for S3 and S6. We can now use linearity of expectation

149

and the independence among the Xi’s to compute the mean and variance exactly.

E[Z] = E[S3] = (−2r + 3r2)ε+ (2r − 3r2 + r3)ε3 ≥ 2r2ε+
1

2
r3ε3

Var[Z] = E[S6]− E[S3]2 = (16r − 30r2 + 15r3) + (−136r + 282r2 − 183r3 + 36r4)ε2+

(240r − 522r2 + 381r3 − 108r4 + 9r5)ε4 + (−120r + 270r2 − 213r3 + 72r4 − 9r5)ε6

≤ 15r3 + 36r4ε2 + 9r5ε4

Lemma 7.5.7. Let Si =
∑r

j=1Xi,j where for each i ∈ [n], Xi,1, · · · , Xi,r are i.i.d {−1, 1}-

valued random variables with mean εi, along with the condition that either all εi ≥ 0 or

all εi ≤ 0. Let Z =
∑n

i=1 S
3
i . If r ≥ 8 and r ≥ η

√
n/(
∑n

i=1 ε
2
i) for some η ≥ 1 then,

E[Z]2 ≥ η
36

Var[Z].

Proof. Without loss of generality, we can assume that εi ≥ 0 for all i ∈ [n]. By Lemma 7.5.6,

E[Z]2 ≥ 4r4(
∑
i

εi)
2 +

1

4
r6(
∑
i

ε3
i)

2 + 2r5(
∑

εi)(
∑
i

ε3
i) (7.2)

Var[Z] ≤ 15nr3 + 36r4
∑
i

ε2
i + 9r5

∑
i

ε4
i . (7.3)

150

We will show that each term in the Equation 7.3 is dominated by some term in Equa-

tion 7.2.

nr3 = r5 n

r2
≤ 1

η2
r5(
∑
i

ε2
i)

2 ≤ 1

η2
r5(
∑
i

εi)(
∑
i

ε3
i) (Cauchy-Schwarz inequality)

r4(
∑
i

ε2
i) ≤

1

η
√
n
r5(
∑
i

ε2
i)

2 ≤ 1

η
√
n
r5(
∑
i

εi)(
∑
i

ε3
i)

r5(
∑
i

ε4
i) ≤ r6 1

η
√
n

(
∑
i

ε2
i)(
∑
i

ε4
i) ≤ r6 1

η
√
n

(
√
n · (

∑
i

ε4
i)

1/2

)
(
∑
i

ε4
i)

(Cauchy-Schwarz inequality)

=
r6

η
(
∑
i

ε4
i)

3/2 ≤ r6

η
(
∑
i

ε3
i)

2 (monotonicity of `p norms)

Adding the above inequalities, we get Var[Z] ≤ 36
η

E[Z]2.

Theorem 7.5.1. If C = (n,p,q) is any instance of Domination, then

rmin(C,Acube) ≤ max

(
144
√
n

‖p− q‖2
2

, 8

)
.

If C satisfies δ ≤ pi, qi ≤ 1− δ for all i for some constant δ, then

rmin(C,Acube) ≤ O(
√
n)rmin(C).

Proof. Assume without loss of generality that B = 0. We have Si =
∑r

j=1 Ti,j and Z =∑n
i=1 S

3
i . Note that for each i, the Ti,j are i.i.d. {−1, 1} random variables with mean

E[Ti,j] = pi − qi. Applying Lemma 7.5.7 with η = 144, if r ≥ max
(

144
√
n

‖p−q‖22
, 8
)

we have that

E[Z]2 ≥ 144
36

Var[Z] = 4Var[Z]. Since the algorithm makes an error (i.e. outputs B = 1)

when Z < 0, we can use Chebyshev’s inequality to bound the probability that Z < 0.

Pr[Z < 0] ≤ Pr[|Z − E[Z]| ≥ E[Z]] ≤ Var[Z]

E[Z]2
≤ 1

4
.

The second part of the theorem then follows directly from Corollary 7.4.1.

151

7.6 Domination in the General Regime

In this section, we consider Domination in the general regime. Unlike in the previous

section, it is no longer true that I(Xi,jYi,j;B) = I(pi, qi) = Θ((pi− qi)2). In particular, when

pi and qi are both very small, I(pi, qi) can be much bigger than (pi − qi)2; as a result, the

algorithms designed in the previous section can fail under these circumstances.

In Section 7.6.1, we present a new algorithm Acoup which is Õ(
√
n · rmin)-competitive.

According to Theorem 7.8.2, this is the best we can do up to polylogarithmic factors. In Sec-

tion 7.6.2, we then demonstrate that the general regime is indeed harder than the restricted

regime in Section 7.5. In particular, we give instances where the algorithms presented in the

previous section fail; we show that the competitive ratio of these algorithms is unbounded

(even for fixed n).

7.6.1 An Õ(
√
n)-competitive algorithm

Here we give an algorithm that only needs O(
√
n log(n)/I(p,q)) samples to solve

Domination (Theorem 7.6.1). By Lemma 7.4.1, this is only Õ(
√
n) times as many

samples as the optimal algorithm needs. Intuitively, the algorithm works as follows: if for

some coordinate i, Xi,1Yi,1...Xi,r, Yi,r conveys enough information about B, we will only use

samples from coordinate i to determine B. Otherwise, the information about B must be

well-spread throughout all the coordinates, and a majority vote will work.

We begin by bounding the probability we can determine the answer from a single fixed

coordinate. The following four lemmas will be used to prove Theorem 7.6.1 and their proofs

can be found in the full version of [57].

Lemma 7.6.1 (Sanov’s theorem). Let P(Σ) denote the space of all probability distributions

on some finite set Σ. Let R ∈ P(Σ) and let Z1, · · · , Zk be i.i.d random variables with

distribution R. For every x ∈ Σk, we can define an empirical probability distribution P̂x on

152

Σ as

∀σ ∈ Σ P̂x(σ) =
|{i ∈ [k] : xi = σ}|

k
.

Let C be a closed convex subset of P(Σ) such that for some P ∈ C, D(P ||R) <∞. Then

Pr
[
P̂(Z1,··· ,Zk) ∈ C

]
≤ exp (−k(ln 2)D(Q∗||R))

where Q∗ = argminQ∈C D(Q||R) is unique. In the case when D(Q||R) = ∞ for all Q ∈ C,

Pr
[
P̂(Z1,··· ,Zk) ∈ C

]
= 0.

Proof. See exercise 2.7 and 3.20 in [66].

Sanov’s theorem allows us to bound the following probability that we incorrectly rank

two Bernoulli variables (e.g., Xi and Yi for a fixed coordinate i) from k independent samples.

Lemma 7.6.2. Let 0 ≤ q < p ≤ 1 and let X1, · · · , Xk be i.i.d B(p) and Y1, · · · , Yk be i.i.d

B(q). Then

Pr

[
k∑
i=1

(Xi − Yi) ≤ 0

]
≤ exp

(
−2(ln 2)k log

(
1

√
pq +

√
(1− p)(1− q)

))
.

We can in turn relate the upper bound in Lemma 7.6.2 to the quantity I(p, q).

Lemma 7.6.3.

2 log

(
1

√
pq +

√
(1− p)(1− q)

)
≥ 1

2
I(p, q).

Combining Lemma 7.6.2 and Lemma 7.6.3, we can show the following corollary which

says that given Ω(1/I(p, q)) samples, we can correctly rank two Bernoulli variables with

constant probability.

Corollary 7.6.1. In Domination(n,p,q, r), for any i ∈ [n], if r > 6/I(pi, qi), then

Pr

[
sign

(
r∑
j=1

(Xi,j − Yi,j)

)
= (−1)B

]
> 5/6.

153

Proof. Assume we are in the B = 0 case, the other case is similar. Fix an i ∈ [n]. By

Lemma 7.6.2,

Pr

[
r∑
j=1

(Xi,j − Yi,j) ≤ 0

]
≤ exp

(
−r(ln 2) log

(
1

√
piqi +

√
(1− pi)(1− qi)

))

≤ exp (−r(ln 2)Ii/2) (By Lemma 7.6.3)

= 2−rIi/2 < 1/8.

We now introduce what we call the general coupling algorithm Acoup for Domination.

A detailed description of the algorithm can be found in Algorithm 10; more briefly the

algorithm works as follows:

1. Split the r samples for each of the n coordinates into ` = 18 log(2nα−1) equally-sized

segments where α is the error parameter. For each coordinate i and segment j, set

Si,j = 1 if more samples from X equal 1 than samples from Y , and −1 otherwise. This

can be thought of as running a miniature version of the counting algorithm on each

segment; Si,j = 1 is evidence that B = 0, and Si,j = −1 is evidence that B = −1.

2. Let i′ be the coordinate i which maximizes
∣∣∣∑`

j=1 Si,j

∣∣∣ (i.e. the coordinate that is

“most consistently” either 1 or −1). If
∣∣∣∑`

j=1 Si′,j

∣∣∣ ≥ `/3 (i.e. at least 2`/3 of the

segments for this coordinate agree on the value of B), output B according to the sign

of
∑`

j=1 Si′,j.

3. Otherwise, for each segment, take the majority of the votes from each of the n coordi-

nates; that is, for each 1 ≤ j ≤ `, set Tj = sign(
∑n

i=1 Si,j). Then take another majority

over the segments, by setting Z2 = sign(
∑`

j=1 Tj). Finally, if Z2 > 0 output B = 0;

otherwise, output B = 1.

154

Algorithm 10 General coupling algorithm Acoup for Domination(n,p,q, r)

1: ` = 18 log(2nα−1).
2: for i = 1 to n do
3: for j = 1 to ` do
4: Si,j = sign(

∑jr/`
t=(j−1)∗(r/`)+1Xi,t − Yi,t)

5: If Si,j = 0, let Si,j = 1 with probability 1/2 and let Si,j = −1 with probability 1/2.
6: end for
7: end for
8: i′ = arg maxi |

∑`
j=1 Si,j|

9: Z1 =
∑`

j=1 Si′,j
10: if |Z1| ≥ `/3 then
11: If Z1 > 0 output B = 0, else output B = 1.
12: else
13: for j = 1 to l do
14: Tj = sign(

∑n
i=1 Si,j).

15: If Tj = 0, let Tj = 1 with probability 1/2 and let Tj = −1 with probability 1/2.
16: end for
17: Z2 = sign(

∑`
j=1 Tj).

18: If Z2 = 0, let Z2 = 1 with probability 1/2 and let Z2 = −1 with probability 1/2.
19: If Z2 > 0 output B = 0, else output B = 1.
20: end if

Theorem 7.6.1. If C = (n,p,q) is any instance of Domination, then

rmin(C,Acoup, 1− α) ≤ 2592
√
n ln(2nα−1)

I(p,q)

and thus

rmin(C,Acoup) ≤ O(
√
n log n) · rmin(C).

Proof. Let Ii = I(pi, qi), r = 2592
√
n log(2nα−1)/I(p,q) and ` = 18 ln(2nα−1). There are

two cases to consider:

1. Case 1: There exists an i′ such that 24
√
nIi′ ≥

∑n
k=1 Ik.

155

By symmetry, we can assume that B = 0. In this case, we have that r
`
≥ 24·6

√
n∑n

k=1 Ik
≥ 6

Ii′
.

By Corollary 7.6.1, for each j = 1, . . . , `, Pr[Si′,j = 1] ≥ 5/6. Therefore we have

E

[
l∑

j=1

Si′,j

]
≥ ` · (5/6− 1/6) = 2`/3.

Since Si′,1, ..., Si′,l are independent when B is given, by the Chernoff bound, we have

that

Pr

[
l∑

j=1

Si′,j ≥ `/3

]
≥ 1− exp(−` · (1/3)2 · (1/2)) ≥ 1− α

2n
.

For i 6= i′, since pi ≥ qi, we still have Pr[Si,j = 1] ≥ 1/2. By a similar argument, we

get

Pr

[
l∑

j=1

Si,j ≥ −`/3

]
≥ 1− exp(−` · (1/3)2 · (1/2)) ≥ 1− α

2n
.

Let W be the event that
∑`

j=1 Si′,j ≥ `/3 and for i 6= i′,
∑l

j=1 Si,j ≥ −`/3. By the

union bound, we have that Pr[W] ≥ 1− n · α
2n

= 1− α
2
. Moreover, when W happens,

we know that Z1 ≥ `/3 and Acoup outputs B = 0. Therefore, in Case 1, the probability

that Acoup outputs B correctly is at least 1− α
2
.

2. Case 2: For all i ∈ {1, . . . , n}, 24
√
nIi <

∑n
k=1 Ik.

Similarly as in Case 1, since Pr[Si,j = (−1)B] ≥ 1/2, the probability that |Z1| ≥ `/3

and our algorithm outputs wrongly is at most α
2
. For the rest of Case 2, assume

|Z1| < `/3.

Now fix a coordinate i. Our plan is to first lower bound the amount of information

samples from coordinate i have about B by using Corollary 7.6.1 and the subadditivity

of information. Let s = r/`, and let s′ = s ·d 6
sIi
e. Imagine that we have s′ new samples,

Ui,1, Vi,1, ..., Ui,s′ , Vi,s′ , where each (Ui,j, Vi,j) (j = 1, . . . , s′) is generated independently

according to the same distribution as (Xi,1, Yi,1). Since s′ ≥ 6/Ii, by Corollary 7.6.1,

156

we have that

Pr

[
sign

(
s′∑
j=1

(Ui,j − Vi,j)

)
= (−1)B

]
> 5/6.

Write (UiVi)
[a,b] as shorthand for the sequence ((Ui,a, Vi,a), . . . (Ui,b, Vi,b)), and define

(XiYi)
[a,b] analogously. By Fano’s inequality, we have that

I
(

(UiVi)
[1,s′];B

)
= H(B)−H(B|(UiVi)[1,s′])

≥ H(1
2
)−H(1− 5

6
) = 1−H(1

6
) ≥ 1/3.

Since I((UiVi)
[1,s]; (UiVi)

[s+1,s′]|B) = 0 (our new samples are independent given B), we

have

I((UiVi)
[1,s′];B) = I((UiVi)

[1,s];B|(UiVi)[s+1,s′]) + I((UiVi)
[s+1,s′];B)

≤ I((UiVi)
[1,s];B) + I((UiVi)

[s+1,s′];B) (by Fact 1.2.3)

Repeating this procedure, we get

I((UiVi)
[1,s′];B) ≤

d 6
sIi
e∑

u=1

I((UiVi)
[(u−1)s+1,us];B).

Since we know that for any u = 1, ..., d 6
sIi
e,

I((UiVi)
[(u−1)s+1,us];B) = I((XiYi)

[1,s];B),

we get

I((XiYi)
[1,s];B) ≥ I((UiVi)

[1,s′];B) · 1

d 6
sIi
e
≥ sIi

6 · 6
.

The last inequality is true because 6
sIi

=
∑n
k=1 Ik

24
√
nIi
≥ 1.

157

After we lower bound I((XiYi)
[1,s];B), we are going to show that we can output B

correctly with reasonable probability based on samples only from coordinate i.

sIi
6 · 6

≤ I((XiYi)
[1,s];B)

=
∑
x

Pr[(XiYi)
[1,s] = x] ·D(B|(XiYi)

[1,s] = x‖B)

≤
∑
x

Pr[(XiYi)
[1,s] = x] ·

(
2(Pr[B = 0|(XiYi)

[1,s] = x]− 1/2)2 +

2(Pr[B = 1|(XiYi)
[1,s] = x]− 1/2)2

)
(by Fact 1.2.6)

=
∑
x

Pr[(XiYi)
[1,s] = x] · (Pr[B = 0|(XiYi)

[1,s] = x]− Pr[B = 1|(XiYi)
[1,s] = x])2

≤
∑
x

Pr[(XiYi)
[1,s] = x] ·

∣∣Pr[B = 0|(XiYi)
[1,s] = x]− Pr[B = 1|(XiYi)

[1,s] = x]
∣∣ .

When
∑s

j=1(Xi,j − Yi,j) > 0, it is easy to check that

Pr[B = 0|(XiYi)
[1,s]] > Pr[B = 1|(XiYi)

[1,s]].

Therefore,

Pr[Si,1 = (−1)B] =
∑
x

Pr[(XiYi)
[1,s] = x] ·

max
(
Pr[B = 0|(XiYi)

[1,s] = x],Pr[B = 1|(XiYi)
[1,s] = x]

)
=

1

2
+

1

2
·
∑
x

Pr[(XiYi)
[1,s] = x] ·∣∣Pr[B = 0|(XiYi)

[1,s] = x]− Pr[B = 1|(XiYi)
[1,s] = x]

∣∣
≥ 1

2
+

sIi
12 · 6

≥ 1

2
+

√
nIi∑n
k=1 Ik

.

158

Similarly, we can show for all i = 1, ..., n, j = 1, ..., l,

Pr[Si,j = (−1)B] ≥ 1

2
+

√
nIi∑n
k=1 Ik

.

Now without loss of generality assume that B = 0. We have that

E

[
n∑
i=1

Si,j

]
≥

n∑
i=1

(
1

2
+

√
nIi∑n
k=1 Ik

− 1

2
+

√
nIi∑n
k=1 Ik

)
= 2
√
n.

Therefore, by the Chernoff bound,

Pr[Tj = 1] ≥ 1− e−(1/n)·(2
√
n)2·(1/2) > 3/4.

By the Chernoff bound again,

Pr[Z2 > 0] ≥ 1− e−`·(1/2)2·(1/2) ≥ 1− α

2n
.

Since we initially fail with probability at most α
2
, by the union bound, in Case 2 we

fail with probability at most α
2

+ α
2n
< α. This concludes the proof.

7.6.2 Acount and Amax with unbounded competitive ratios even for

constant n

In this section, we show that the competitive ratios of Acount and Amax are unbounded even

when n is a constant. In other words, we cannot upper bound the competitive ratios of

Acount and Amax by only a function of n. The competitive ratio also needs to depend on

some parameters of the instance. We prove this by showing instances where the competitive

ratios of Acount and Amax also depend on ε which is some parameter of the instances in

Lemma 7.6.4 and Lemma 7.6.5. The result in Lemma 7.6.4 can be easily generalized to show

159

that the counting algorithm of [177] for Top-k also has unbounded competitive ratio even

when n is a constant. Proofs can be found in the full version of [57].

Lemma 7.6.4. For each sufficiently large n and for any ε > 0, there exists an instance

C = (n,p,q) of Domination such that the following two statements are true:

1. rmin(C,Acoup, 1− 2
n
) ≤ 5184

√
n logn
ε

2. rmin(C,Acount) ≥ n
16ε2

.

Lemma 7.6.5. For each sufficiently large n and any 0 < ε < 1/n3, there exists an instance

C = (n,p,q) of Domination such that the following two statements are true.

1. rmin(C,Acoup, 1− 2
n
) ≤ 518400

√
n lnn

ε
.

2. rmin(C,Amax, 9
10

) ≥ 1
ε2214 lnn

7.7 Reducing Top-k to Domination

In this section, we will finally reduce Top-k to Domination, thus proving Theorem 7.3.1.

First, we will give an algorithm for Top-k problem that uses Acoup for Domination as a

subroutine. We need Lemma 7.7.1 and Lemma 7.7.2 for the algorithm. Their proof can

be found in the full version of [57]. We begin by reducing Top-k to the following graph

theoretic problem.

Lemma 7.7.1. Let G = ([n], E) be a directed complete graph on vertices {1, 2, · · · , n} i.e.

for every distinct i, j ∈ [n], either (i, j) ∈ E or (j, i) ∈ E but not both. Suppose there is a

subset S ⊂ [n] of size k such that (i, j) ∈ E for every i ∈ S and j /∈ S. Then there is a

randomized algorithm which runs in expected running time O(n) and finds the set S given

oracle access to the edges of G. Moreover there is some absolute constant C > 0 such that

for every λ ≥ 1, the probability that the algorithm runs in more than Cλn time is bounded

by exp(−λ).

160

The following lemma shows that when p ≥ q, I(p, q) is an increasing function of p and a

decreasing function of q.

Lemma 7.7.2. Let 0 ≤ q′ ≤ q ≤ p ≤ p′ ≤ 1, then I(p′, q′) ≥ I(p, q).

We are now ready to give an algorithm for Top-k.

Theorem 7.7.1. There exists an algorithm A for Top-k such that for any α > 0 and any

instance S = (n, k,P), A runs in time O(n2r log(1/α)) and satisfies

rmin(S,A, 1− α) ≤ 7776
√
n log(2nα−1)

I(Pk,Pk+1)

where Pk,Pk+1 are the k and k + 1 rows of P.

Proof. Let Pi denote the ith row of P, and let ∆ = I(Pk,Pk+1). Recall that A is given as

input the three-dimensional array of samples Zi,j,l, where for each i, j ∈ [n] and 1 ≤ l ≤ r,

Zi,j,l is the result of the lth noisy comparison between item i and item j (sampled from

B(Pπ−1(i),π−1(j))). We will define a complete directed graph G = ([n], E) as follows. For

every 1 ≤ i < j ≤ n and 1 ≤ h ≤ n, run Acoup with input Xh,l = Zi,h,l and Yh,l = Zj,h,l; if

Acoup returns B = 0, then direct the edge from i towards j, and otherwise, direct the edge

from j towards i.

Let T = {π(1), π(2), . . . , π(k)} be the set of labels of the top k items. We claim that if

i ∈ T and j 6∈ T , then with probability at least 1− α
n2 , the edge is directed from i towards j.

To see this, note that in the corresponding input to Acoup, X is drawn from Pπ−1(i) and Y

is drawn from Pπ−1(j). If i ∈ T and j 6∈ T , then π−1(i) ≤ k < π−1(j). In particular, Pπ−1(i)

dominates Pπ−1(j), and moreover by Lemma 7.7.2, I(Pπ−1(i),Pπ−1(j)) ≥ ∆. It follows from

Theorem 7.6.1 that Acoup outputs B = 0 on this input with probability at least 1− α
2n2 , since

in general,

161

rmin(C,Acoup, 1− α
2n2) ≤ 2592

√
n log(4n3α−1)

I(p,q)

≤ 7776
√
n log(2nα−1)

I(p,q)
.

By the union bound, the probability that all of these comparisons are correct is at least

1−α
2
. Therefore, by the tail bounds in Lemma 7.7.1, we can find the subset T inO(n log(1/α))

oracle calls to Acoup with probability at least 1 − α
2
. The probability of failure is at most

α
2

+ α
2

= α. Each call to Acoup takes O(nr) time, so the overall time of the algorithm is

O(n2r log(1/α)).

To prove that this algorithm is competitive, we will conclude by proving a lower bound

on rmin(S) (again, by reduction to the appropriate lower bound for Domination).

Lemma 7.7.3. Let S = (n, k,P) be an instance of Top-k. Then rmin(S) ≥ 0.1
I(Pk,Pk+1)

.

Proof. We will proceed by contradiction. Suppose there exists an algorithm A which satisfies

rmin(S,A) ≤ 0.01
I(Pk,Pk+1)

. We will show how to convert this into an algorithm A′ which solves

the instance C = (n,Pk,Pk+1) of Domination with probability at least 3
4

when given at

least 2r = 0.05/I(Pk,Pk+1) samples, thus contradicting Lemma 7.4.1.

The algorithm A′ is described in Algorithm 11; essentially, A′ embeds the inputs X and

Y to the Domination instance as rows/columns k and k + 1 respectively of the Top-k

instance. It is easy to check that the Zi,j,l for i, j ∈ [n],l ∈ [r] generated in A′ are distributed

according to the same distribution as the corresponding elements in the instance S of Top-k.

Therefore A will output the top k items correctly with probability at least 3/4. In addition,

if B = 0 the item labeled k will be in the top k items and if B = 1 the item labeled k will

not be in the top k items. Therefore, A′ succeeds to solve this instance of Domination with

probability at least 3/4, leading to our desired contradiction.

162

Algorithm 11 Algorithm A′ for the lower bound reduction

1: Get input Xi,l, Yi,l for i ∈ [n] and l ∈ [2r] from Domination(n,Pk,Pk+1, 2r).
2: Generate a random permutation π on n elements s.t. π({k, k + 1}) = {k, k + 1}.
3: for i ∈ [n], j ∈ [n], l ∈ [r] do
4: If i = k, set Zi,j,l = Xj,l.
5: If i = k + 1, set Zi,j,l = Yj,l.
6: If i 6∈ {k, k + 1}, j = k, set Zi,j,l = Xi,l+r.
7: If i 6∈ {k, k + 1}, j = k + 1, set Zi,j,l = Yi,l+r.
8: If i 6∈ {k, k + 1}, j 6∈ {k, k + 1}, sample Zi,j,l from B(Pπ−1(i),π−1(j)).
9: end for

10: Run A on samples Zi,j,l, i, j ∈ [n], l ∈ [r].
11: If A said k is amongst the top k items, output B = 0. Otherwise output B = 1.

We are now ready to prove our main upper bound result.

Corollary 7.7.1. There is an algorithm A for Top-k such that A runs in time O(n2r) and

on every instance S of Top-k on n items,

rmin(S,A) ≤ O(
√
n log n)rmin(S).

Proof. Let S =Top-k(n, k,P, ·) be an instance of Top-k. By Lemma 7.7.3,

rmin(S) ≥ 0.1

I(Pk,Pk+1)
.

If A is the algorithm in Theorem 7.7.1 with α = 1
4

then A runs in time O(n2r) and

rmin(S,A) ≤ O

(√
n log n

I(Pk,Pk+1)

)
.

Combining these two inequalities, we obtain our result.

163

7.8 Lower Bounds for Domination and Top-k

In the previous section we demonstrated an algorithm that solves Top-k on any distribution

using at most Õ(
√
n) times more samples than the optimal algorithm for that distribution

(see Corollary 7.7.1). In this section, we show this is tight up to logarithmic factors; for any

algorithm, there exists some distribution where that algorithm requires Ω̃(
√
n) times more

samples than the optimal algorithm for that distribution. Specifically, we show the following

lower bound.

Theorem 7.8.1. For any algorithm A, there exists an instance S of Top-k of size n such

that rmin(S,A) ≥ Ω
(√

n
logn

)
rmin(S).

As in the previous sections, instead of proving this lower bound directly, we will first

prove a lower bound for the domination problem, which we will then embed in a Top-k

instance.

Theorem 7.8.2. For any algorithm A, there exists an instance C of Domination of size

n such that rmin(C,A) ≥ Ω
(√

n
logn

)
rmin(C).

7.8.1 A hard distribution for domination

To prove Theorem 7.8.2, we will show that there exists a distribution over instances of the

domination problem such that, while each instance in the support of this distribution can

be solved by some algorithm with a small number of samples, any algorithm requires a large

number of samples given an instance randomly sampled from this distribution.

Let C be a distribution over instances C of the domination problem of size n. We extend

rmin to distributions by defining rmin(C, A, p) as the minimum number of samples algorithm A

needs to successfully solve Domination with probability at least p over instances randomly

sampled from C, and let rmin(C, A) = rmin(C, A, 3/4). The following lemma relates the

distributional sample complexity to the single instance sample complexity.

164

Lemma 7.8.1. For any p > 1/2, algorithm A and any distribution C over instances of

the domination problem, there exists a C in the support of C such that rmin(C,A, p) ≥

rmin(C, A, p).

Proof. Let ε(C,A, r) be the probability that algorithm A errs given r samples from C. By

the definition of rmin(C, A, p), we have that

∑
C∈suppC

Pr
C

[C] · ε(C,A, rmin(C, A, p)) = 1− p

It follows that there exists some C∗ ∈ suppC such that

ε(C∗, A, rmin(C, A, p)) ≥ 1− p

Since ε(C∗, A, r) is decreasing in r, this implies that rmin(C∗, A, p) ≥ rmin(C, A, p), as desired.

We will find it useful to work with distributions that are only mostly supported on easy

instances. The following lemma lets us do that.

Lemma 7.8.2. Let C be a distribution over instances of the domination problem, and let

E be an event with Pr[E] = 1 − δ. Then for any algorithm A and any 1 − δ > p > 1
2
,

rmin(C|E,A, p+ δ) ≥ rmin(C, A, p) (here C|E denotes the distribution C conditioned on event

E occurring).

Proof. By the definition of rmin(C, A, p), we have that

∑
C∈suppC

Pr
C

[C] · ε(C,A, rmin(C, A, p)) = 1− p

Rewrite this as

Pr[E]·
∑

C∈suppC

Pr
C|E

[C]·ε(C,A, rmin(C, A, p))+Pr[E]·
∑

C∈suppC

Pr
C|E

[C]·ε(C,A, rmin(C, A, p)) = 1−p

165

Since
∑

C∈suppC PrC|E[C] = 1 and Pr[E] = δ, it follows that

∑
C∈suppC

Pr
C|E

[C] · ε(C,A, rmin(C, A, p)) ≥ 1− p− δ

from which it follows that rmin(C|E,A, p+ δ) ≥ rmin(C, A, p).

We can now define the hard distribution for the domination problem. Define γ = 1
100
√
n
.

Let SP be a random subset of [n] where each i ∈ [n] is independently chosen to belong to

SP with probability γ. Likewise, define SQ the same way (independently of SP). Finally,

fix n constants Ri all in the range [1
4
, 3

4
] (for now, it is okay to consider only the case where

Ri = 1
2

for all i; to extend this lower bound to the top-k problem, we will need to choose

different values of Ri). Then the hard distribution Chard is the distribution over instances

C(SP , SQ) = (n,p,q) of Domination where

pi =


Ri(1 + ε) if i ∈ SP

Ri if i 6∈ SP

and

qi =


Ri(1− ε) if i ∈ SQ

Ri if i 6∈ SQ

We claim that the majority of the instances in the support of Chard have an algorithm

that requires few samples. Intuitively, if SP and SQ are fixed, then the best algorithm for

that specific instance can restrict attention only to the indices in SP and SQ. In particular,

if SP is large enough (some constant times its expected size), then simply throwing away

all indices not in SP and counting which row has more heads is an efficient algorithm for

recovering the dominant set.

166

Theorem 7.8.3. Fix any SP and SQ such that |SP | ≥ 1
10
nγ. Then rmin(C(SP , SQ), p) =

O
(

log(1−p)−1

ε2
√
n

)
for all p < 1.

Proof. It suffices to demonstrate an algorithm A such that rmin(C(SP , SQ), A, p) =

O
(

log(1−p)−1

ε2
√
n

)
.

Any algorithm A receives two sets X, Y , each of r samples from n coins. Write X =

(X1, X2, . . . , Xn), where each Xi = (Xi,1, Xi,2, . . . Xi,r) is the collection of r samples from coin

i (likewise, write Y = (Y1, Y2, . . . , Yn), and Yi = (Yi,1, Yi,2, . . . Yi,r)). Consider the following

algorithm: A computes the value

T =
∑
i∈SP

r∑
j=1

(Xi,j − Yi,j)

and outputs that B = 0 if T ≥ 0 and outputs B = 1 otherwise.

For each i, j, let Ai,j = Xi,j − Yi,j. If B = 0, then Ai,j ∈ [−1, 1], E[Ai,j] ≥ εRi ≥ ε
4

and

all the Ai,j are independent. It follows from Hoeffding’s inequality that in this case,

Pr[T < 0] = Pr[T − E[T] < −E[T]]

≤ exp

(
−2E[T]2

4|SP |r

)
= exp

(
−|SP |rε

2

32

)
≤ exp

(
−γnε

2r

320

)
= exp

(
−
√
nε2r

32000

)

Therefore, choosing r = 32000 ln(1−p)−1
√
nε2

= O
(

log(1−p)−1
√
nε2

)
guarantees Pr[T < 0] ≤ 1 − p.

Similarly, the probability that T ≥ 0 if B = 1 is also at most 1−p for this r. The conclusion

follows.

167

By a simple Chernoff bound, we also know that the event that SP has size at least 1
10
nγ

occurs with high probability.

Lemma 7.8.3. Pr
[
|SP | ≥ 1

10
nγ
]
≥ 1− e−

√
n/400.

In the following subsection, we will prove that for all A, rmin(Chard, A) is large. More

precisely, we will prove the following theorem.

Theorem 7.8.4. For all algorithms A, rmin(Chard, A, 2
3
) = Ω

(
1

ε2 logn

)
.

Given that this theorem is true, we can complete the proof of Theorem 7.8.2.

Proof of Theorem 7.8.2. By Theorem 7.8.4, for any algorithm A, rmin(Chard, A, 2
3
) =

Ω
(

1
ε2 logn

)
. Let E be the event that |SP | ≥ 1

10
nγ. By Lemma 7.8.3, if n ≥ (400 ln 12

11
)2,

Pr[E] ≥ 1
12

. It then follows from Lemma 7.8.2 that

rmin(Chard|E,A) = rmin(Chard|E,A, 3/4)

≥ rmin(Chard, A, 2/3)

≥ Ω

(
1

ε2 log n

)
.

It then follows by Lemma 7.8.1 that there is a specific instance C = C(SP , SQ) with |SP |

at least 1
10
γn such that rmin(C,A) ≥ Ω

(
1

ε2 logn

)
. On the other hand, by Theorem 7.8.3, for

this C, rmin(C) ≤ O
(

1
ε2
√
n

)
. It follows that for any algorithm A, there exists an instance C

such that rmin(C,A) ≥ Ω
(√

n
logn

)
rmin(C), as desired.

7.8.2 Proof of lower bounds

In this subsection, we prove Theorem 7.8.4; namely, we will show that any algorithm needs at

least Ω
(

1
ε2 logn

)
samples to succeed on Chard with constant probability. Our main approach

168

will be to bound the mutual information between the samples provided to the algorithm and

the correct output (recall that B is the hidden bit that determines whether the samples in

X are drawn from p or from q).

Lemma 7.8.4. If I(XY ;B) < 0.05, then there is no algorithm that can succeed at identifying

B with probability at least 2
3
.

Proof. Fix an algorithm A, and let pe be the probability that it errs at computing B. By

Fano’s inequality, we have that

H(pe) ≥ H(B|XY)

= H(B)− I(XY ;B)

= 1− I(XY ;B)

> 0.95

Since H(1
3
) ≤ 0.95, it follows that A must err with probability at least 1/3.

Via the chain rule, we can decompose I(XY ;B) into the sum of many smaller mutual

informations.

Lemma 7.8.5. I(XY ;B) ≤
∑n

i=1 (I(Xi;B) + I(Yi;B))

Proof. Write X<i to represent the concatenation X1X2 . . . Xi−1. By the chain rule, we have

that

I(XY ;B) =
n∑
i=1

I(XiYi;B|X<iY <i)

We claim that I(XiYi;X
<iY <i|B) = 0. To see this, note that given B, each coin in Xi is

sampled from some B(p) distribution, where p only depends on whether i ∈ SP or i ∈ SQ.

Since each i is chosen to belong to SP and SQ independently with probability γ, this implies

169

Xi (and similarly Yi) are independent from X<i and Y <i given B. By Fact 1.2.3, this implies

that I(XiYi;B|X<iY <i) ≤ I(XiYi;B), and therefore that

I(XY ;B) ≤
n∑
i=1

I(XiYi;B).

Likewise, we can write I(XiYi;B) = I(Xi;B) + I(Yi;B|Xi). Since I(Xi;Yi|B) = 0 (since

SP and SQ are chosen independently), again by Fact 1.2.3 it follows that I(Yi;B|Xi) ≤

I(Yi;B) and therefore that

I(XY ;B) ≤
n∑
i=1

(I(Xi;B) + I(Yi;B)) .

Lemma 7.8.6. If n ≥ 400 and r = 1
100ε2 lnn

, then for all i, I(B;Xi) = I(B;Yi) ≤ 1
100n

.

Proof. By symmetry, I(B;Xi) = I(B;Yi). We will show that I(B;Xi) ≤ 1
100n

.

Let Zi =
∑

j Xi,j. Note that Zi is a sufficient statistic for B, and therefore I(B;Xi) =

I(B;Zi). By Fact 1.2.5,

I(B;Zi) = EZi [D(B|Zi‖B)]

=
r∑
z=0

Pr[Zi = z] ·D(Pr[B = 0|Zi = z]‖1
2
).

We next divide the range of z into two cases.

1. Case 1: |z − rRi| ≤ 11rε lnn.

In this case, we will bound the size of D(Pr[B = 0|Zi = z]‖1
2
). Note that

170

∣∣∣∣Pr[B = 0|Zi = z]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[Zi = z|B = 0] · Pr[B = 0]

Pr[Zi = z]
− 1

2

∣∣∣∣
=

∣∣∣∣ Pr[Zi = z|B = 0]

Pr[Zi = z|B = 0] + Pr[Zi = z|B = 1]
− 1

2

∣∣∣∣
=

|Pr[Zi = z|B = 0]− Pr[Zi = z|B = 1]|
2(Pr[Zi = z|B = 0] + Pr[Zi = z|B = 1])

(7.4)

Now, note that

Pr[Zi = z|B = 0] = (1− γ)

(
r

z

)
Rz
i (1−Ri)

r−z + γ

(
r

z

)
(Ri(1 + ε))z(1−Ri(1 + ε))r−z

Pr[Zi = z|B = 1] = (1− γ)

(
r

z

)
Rz
i (1−Ri)

r−z + γ

(
r

z

)
(Ri(1− ε))z(1−Ri(1− ε))r−z

We can therefore lower bound the denominator of (7.4) via

2(Pr[Zi = z|B = 0] + Pr[Zi = z|B = 1]) ≥ 4(1− γ)

(
r

z

)
Rz
i (1−Ri)

r−z

≥ 2

(
r

z

)
Rz
i (1−Ri)

r−z

Likewise, we can write the numerator of (7.4) as

|Pr[Zi = z|B = 0]− Pr[Zi = z|B = 1]| = γ

(
r

z

)
Rz
i (1−Ri)

r−zM

where

171

M =

∣∣∣∣∣(1 + ε)z
(

1−Ri(1 + ε)

1−Ri

)r−z
− (1− ε)z

(
1−Ri(1− ε)

1−Ri

)r−z∣∣∣∣∣
=

∣∣∣∣∣(1 + ε)z
(

1− Ri

1−Ri

ε

)r−z
− (1− ε)z

(
1 +

Ri

1−Ri

ε

)r−z∣∣∣∣∣ .
To bound M , note that (applying the inequality 1 + x ≤ ex)

(1 + ε)z
(

1− Ri

1−Ri

ε

)r−z
≤ exp

(
εz − ε Ri

1−Ri

(r − z)

)
= exp

(
ε
z − rRi

1−Ri

)
≤ exp(4ε(z − rRi))

≤ exp(44rε2 lnn)

= e0.44

< 2

Similarly, (1− ε)z
(

1 + Ri
1−Ri ε

)r−z
≤ 2. It follows that M ≤ 2, and therefore that

∣∣∣∣Pr[B = 0|Zi = z]− 1

2

∣∣∣∣ =
|Pr[Zi = z|B = 0]− Pr[Zi = z|B = 1]|

2(Pr[Zi = z|B = 0] + Pr[Zi = z|B = 1])

≤
γ
(
r
z

)
Rz
i (1−Ri)

r−zM

2
(
r
z

)
Rz
i (1−Ri)r−z

=
γM

2

≤ γ

By Fact 1.2.6, this implies that

172

D(Pr[B = 0|Zi = z]‖1
2
) ≤ 4γ2

ln 2
.

2. Case 2: |z − rRi| > 11rε lnn.

Let Z+ be the sum of r i.i.d. B (Ri(1 + ε)) random variables. Note that since Z is the

sum of r B(p) random variables for some p ≤ Ri(1 + ε), Pr[Z+ ≥ x] ≥ Pr[Z ≥ x] for

all x. Therefore, by Hoeffding’s inequality, we have that

Pr [Z − rRi ≥ 11rε lnn] ≤ Pr
[
Z+ − rRi ≥ 11rε lnn

]
≤ Pr

[
Z+ − rRi(1 + ε) ≥ rε(11 lnn−Ri)

]
≤ Pr

[
Z+ − E[Z+] ≥ 10rε lnn

]
≤ exp

(
−2(10rε lnn)2

r

)
= exp(−2 lnn)

= n−2

Likewise, we can show that

Pr [Z − rRi ≤ −11rε lnn] ≤ n−2

so

Pr [|Z − rRi| ≥ 11rε lnn] ≤ 2n−2

173

Combining these two cases, we have that (for n ≥ 400)

I(B;Zi) =
r∑
z=0

Pr[Zi = z] ·D(Pr[B = 0|Zi = z]‖1
2
)

≤
∑

|‖z‖−r/2|>11rε lnn

Pr[Zi = z] · 1 +
∑

|‖z‖−r/2|≤11rε lnn

Pr[Zi = z] ·O(γ2)

≤ 2n−2 +
4γ2

ln 2

≤ 1

100n
.

We can now complete the proof of Theorem 7.8.4.

Proof of Theorem 7.8.4. Combining Lemmas 7.8.5 and 7.8.6, we have that if r = 1
100ε2 lnn

,

then (for n ≥ 400) I(XY ;B) ≤ 2nI(Xi;B) ≤ 0.02. Therefore by Lemma 7.8.4, there exists

no algorithm A that, given this number of samples, correctly identifies B (and thus solves

the domination problem) with probability at least 2/3. It follows that

rmin(Chard, A, 2
3
) ≥ 1

100ε2 lnn
= Ω

(
1

ε2 log n

)
as desired.

7.8.3 Proving lower bounds for Top-K

We will now show how to use our hard distribution of instances of Domination to generate

a hard distribution of instances of Top-k. Our goal will be to embed our Domination

instance as rows k and k+ 1 of our SST matrix; hence, intuitively, deciding which of the two

rows (k or k + 1) belongs to the top k is as hard as solving the domination problem.

174

Unfortunately, the SST condition imposes additional structure that prevents us from di-

rectly embedding any instance of the domination problem. However, for appropriate choices

of the constants Ri, all instances in the support of Chard give rise to valid SST matrices.

Specifically, we construct the following distribution Shard over Top-k instances S of

size n + 2. Consider the distribution Chard over Domination instances of size n, where for

1 ≤ i ≤ n, Ri = 1
4
+ i

8n
, and ε = 1

100n2 . Now, consider the following map f from Domination

instances C = (p,q) to Top-k instances S = f(C) = (n+ 2, k,P): we choose k = n+ 1 (so

that the problem becomes equivalent to identifying row n + 2) and define the matrix P as

follows:

Pij =



pj if i = n+ 1 and j ≤ n

qj if i = n+ 2 and j ≤ n

1− pi if j = n+ 1 and i ≤ n

1− qi if j = n+ 2 and i ≤ n

1
2

otherwise

In general, for arbitrary p and q, this matrix may not be an SST matrix. Note however

that for this choice of Ri and ε, it is always the case that Ri(1 + ε) ≤ Ri+1(1− ε), so for all i

(regardless of sample C), pi < pi+1. In addition, all the Ri belong to [1/4, 3/8], so for all i, pi

and qi are less than 1/2. From these two observations, it easily follows that if C belongs to

the support of Chard, P is an SST matrix, and f(C) is a valid instance of the top-k problem.

We will write Shard = f(Chard) to denote the distribution of instances of top-k f(C) where

C is sampled from Chard. Likewise, for any event E (e.g. the event that |SP | ≥ 1
10
nγ) , we

write Shard|E to denote the distribution f(Chard|E).

We will begin by showing that, if there exists a sample efficient algorithm for some

Domination instance C in the support of Chard, there exists a similarly efficient algorithm

for the corresponding Top-k instance S = f(C).

175

Lemma 7.8.7. If C ∈ suppChard and S = f(C), then rmin(S) ≤ max(rmin(C, 4
5
), 1000n2(1 +

lnn)).

Proof. Let A be an algorithm that successfully solves the Domination instance C with

probability at least 4
5

using rmin(C, 4
5
) samples. We will show how to use A to construct

an algorithm A′ that solves the Top-k instance S with probability at least 3/4 using r =

max(rmin(C, 4
5
), 1000n2(1 + lnn)) samples.

For each i, j, write Zi,j =
∑r

`=1 Zi,j,`. Our algorithm A′ operates as follows.

1. We begin by finding the two rows with the smallest row sums
∑

j Zi,j. Let these

two rows have indices c and d. We claim that, with high probability, π−1({c, d}) =

{n+ 1, n+ 2}.

To see this, note that for all i 6∈ π({n+1, n+2}), Pi,j ≥ 1
2
, so E

[∑
j Zi,j

]
≥
(
n
2

+ 1
)
r.

Thus, for any fixed i 6∈ π({n+ 1, n+ 2}), it follows from Hoeffding’s inequality that

Pr

[∑
j

Zi,j ≤
(

7

16
n+ 1

)
r

]
≤ exp

(
− nr

128

)

so by the union bound, the probability that there exists an i 6∈ π−1({n + 1, n + 2})

such that
∑

j Zi,j ≤
(

7
16
n+ 1

)
r is at most n exp

(
− nr

128

)
.

On the other hand, if i ∈ π({n+1, n+2}) then Pi,j ≤ 3
8
(1+ε) unless j ∈ π({n+1, n+2}),

where Pi,j = 1
2
; it follows that in this case, E

[∑
j Zi,j

]
≤
(

3n
8

(1 + ε) + 1
)
r. Similarly,

applying Hoeffding’s inequality in this case, we find that for any fixed i ∈ π−1({n +

1, n+ 2}),

Pr

[∑
j

Zi,j ≥
(

7

16
n+ 1

)
r

]
≤ exp

(
− nr

128(1 + ε)2

)
≤ 1.5 exp

(
− nr

128

)

and thus the probability that there exists some i ∈ π−1({n + 1, n + 2}), such that∑
j Zi,j ≥

(
7
16
n+ 1

)
r is at most 3 exp

(
− nr

128

)
. It follows that, altogether, the probabil-

176

ity that π−1({c, d}) 6= {n+1, n+2} is at most (n+3) exp
(
− nr

128

)
. Since r ≥ 1000n2 lnn,

this is at most 4 exp(−1000/128) < 0.01.

2. We next sort the values Zc,j for j ∈ [n + 2] \ {c, d} and obtain indices j1, j2, . . . , jn

so that Zc,j1 ≤ Zc,j2 ≤ · · · ≤ Zc,jn . We claim that, with high probability, for all a,

π−1(ja) = a.

For each i, let Ui be the interval
[
Ri(1− ε)− 1

20n
, Ri(1 + ε) + 1

20n

]
. Note that, by our

choice of Ri and ε, all the intervals Ui are disjoint, with Ui less than Ui+1 for all i. We

will show that with high probability, 1
r
Zc,π(i) ∈ Ui for all i, thus implying the previous

claim.

Note that Zc,π(i) is the sum of r B(p) random variables, where p is either (1 + ε)Ri, Ri,

or (1− ε)Ri. By Hoeffding’s inequality, it follows that

Pr

[
Zc,π(i) ≥ r

(
Ri(1 + ε) +

1

20n

)]
≤ exp

(
−2

(r/20n)2

r

)
= exp

(
− r

200n2

)

Likewise,

Pr

[
Zc,π(i) ≤ r

(
Ri(1− ε)−

1

20n

)]
≤ exp

(
− r

200n2

)
Thus, for any fixed i,

Pr

[
Zc,π(i)

r
6∈ Ui

]
≤ 2 exp

(
− r

200n2

)
and by the union bound, the probability this fails for some i is at most 2n exp

(
− r

200n2

)
.

Since r ≥ 1000n2(1 + lnn), exp
(
− r

200n2

)
≤ (ne)−5, so this probability is at most

2e−5 < 0.02.

177

3. Finally, we give algorithm A as input Xi,` = Zc,ji,` and Yi,` = Zd,ji,`. Note that

(conditioned on the above two claims holding), this input is distributed equivalently

to input from the Domination instance C. In particular, if π−1(c) = n + 1 and

π−1(d) = n + 2, then each Xi,` is distributed according to B(pi) and each Yi,` is

distributed according to B(qi), and if π−1(c) = n + 2 and π−1(d) = n + 1, then each

Xi,` is distributed according to B(qi) and each Yi,` is distributed according to B(pi).

Thus, if A returns B = 0, we return [n + 2] \ {d} as the top n + 1 indices, and if A

returns B = 1, we return [n+ 2] \ {c} as the top n+ 1 indices.

The probability that A fails given that steps 1 and 2 succeed is at most 0.2, and the

probability that either of the two steps fail to succeed is at most 0.01 + 0.02 = 0.03.

Since 0.2 + 0.03 < 1
4
, A′ succeeds with probability at least 3

4
, as desired.

Corollary 7.8.1. Let E be the event that |SP | ≥ 1
10
nγ. If C ∈ supp(Chard|E) and S = f(C),

then rmin(S) ≤ O(n3.5).

Proof. Recall that by Theorem 7.8.3, for any C ∈ supp(Chard|E), rmin(C, 4
5
) ≤ O

(
1√
nε2

)
=

O(n3.5). By Lemma 7.8.7, rmin(S) ≤ max(rmin(C, 4
5
), 1000n2(1 + lnn)) ≤ O(n3.5).

We next show that solving Top-k over the distribution Shard|E is at least as hard as

solving Domination over the distribution Chard|E.

Lemma 7.8.8. For any algorithm A that solves Top-k, there exists an algorithm A′ that

solves domination such that rmin(Shard, A, p) ≥ 1
2
rmin(Chard, A′, p).

Proof. We will show more generally that for any distribution C of Domination instances,

if S = f(C) is a valid distribution of Top-k instances, then rmin(S, A, p) ≥ 1
2
rmin(C, A′, p).

We will construct A′ by embedding the domination instance inside a top-k instance in

much the same way that the function f does, and then using A to solve the top-k instance.

We receive as input two sets of samples Xi,` and Yi,` (where 1 ≤ i, j ≤ n and 1 ≤ ` ≤ r) from

178

some Domination instance C drawn from C. We then generate a random permutation

π of [n + 2]. We use our input and this permutation to generate a matrix Zi,j,` (where

1 ≤ i, j ≤ n+ 2 and 1 ≤ ` ≤ r
2
) of samples to input to A as follows.

For 1 ≤ i, j ≤ n, set each Zπ(i),π(j),` to be a random B(1
2
) random variable. Similarly, for

n+ 1 ≤ i, j ≤ n+ 2, set each Zπ(i),π(j),` to be a random B(1
2
) random variable. Now, for all

1 ≤ j ≤ n, set Zπ(n+1),π(j),` = Xj,` and set Zπ(n+2),π(j),` = Yj,`. Similarly, for all 1 ≤ i ≤ n,

set Zπ(i),π(n+1),` = 1−Xi,`+r/2 and set Zπ(i),π(n+2),` = 1− Yi,`+r/2. Finally, set k = n+ 1 and

ask A to solve the Top-k instance defined by k and Zi,j,`. If A returns that π(n + 1) is in

the top n+ 1 indices, return B = 0, and otherwise return B = 1.

From our construction, if the r samples of X and Y are distributed according to a

Domination instance C, then the r/2 samples of Z are distributed according to the Top-k

instance S = f(C). Since A succeeds with probability p on distribution S with rmin(S, A, p)

samples, A′ therefore succeeds with probability p on distribution C with 2rmin(S, A, p) sam-

ples, thus implying that rmin(S, A, p) ≥ 1
2
rmin(C, A′, p).

Corollary 7.8.2. For all algorithms A that solve Top-k, rmin(Shard, A, 2
3
) = Ω

(
n4

logn

)
.

Proof. Theorem 7.8.4 tells us that for all algorithms A′ that solve Domination,

rmin(Chard, A, 2
3
) = Ω

(
1

ε2 logn

)
= Ω

(
n4

logn

)
. Combining this with Lemma 7.8.8, we ob-

tain the desired result.

We can now prove Theorem 7.8.1 in much the same fashion as Theorem 7.8.2.

Proof of Theorem 7.8.1. By Corollary 7.8.2, rmin(Shard, A, 2
3
) = Ω

(
n4

logn

)
. Let E be the

event that |SP | ≥ 1
10
nγ (in the original Domination instance C). By Lemma 7.8.3, if

n ≥ (400 ln 12
11

)2, Pr[E] ≥ 1
12

, and it follows from Lemma 7.8.2 that

179

rmin(Shard|E,A) = rmin(Shard|E,A,
3

4
)

≥ rmin(Shard, A,
2

3
)

≥ Ω

(
n4

log n

)

It therefore follows from 7.8.1 that there is a specific instance S in the support of Shard|E

such that rmin(S,A) ≥ Ω
(

n4

logn

)
. However, by Corollary 7.8.1, rmin(S) ≤ O(n3.5). It follows

that for any algorithm A, there exists an instance S of Top-k such that rmin(S,A) ≥

Ω
(√

n
logn

)
rmin(S), as desired.

180

Chapter 8

Top-k Ranking under the Multinomial

Logit Model

The results of this chapter are based on joint work with Xi Chen and Zhiyuan Li [59].

8.1 Introduction

The problem of inferring a ranking over a set of n items (e.g., products, movies, URLs) is

an important problem in machine learning and finds numerous applications in recommender

systems, web search, social choice, and many other areas. To learn the global ranking, an

effective way is to present at most l (l ≥ 2) items at each time and ask about the most

favorable item among the given items. Then, the answers from these multi-wise comparisons

will be aggregated to infer the global ranking. When the number of items n becomes large,

instead of inferring the global ranking over all the n items, it is of more interest to identify

the top-k items with a pre-specified k. In this paper, we study the problem of active top-

k ranking from multi-wise comparisons, where the goal is to adaptively choose at most l

items for each comparison and accurately infer the top-k items with the minimum number

of comparisons (i.e., the minimum sample complexity). As an illustration, let us consider

a practical scenario: an online retailer is facing the problem of choosing k best designs of

181

handbags among n candidate designs. One popular way is to display several designs to each

arriving customer and observe which handbag is chosen. Since a shopping website has a

capacity on the maximum number of display spots, each comparison will involve at most l

possible designs.

Given the wide application of top-k ranking, this problem has received a lot of attention

in recent years, e.g., [177, 179] (please see Section 6.1.1 for more details). Our work greatly

extends the existing literature on top-k ranking in the following three directions:

1. Most existing work studies a non-active ranking aggregation problem, where the an-

swers of comparisons are provided statically or the items for each comparison are chosen

completely at random. Instead of considering a passive ranking setup, we propose an

active ranking algorithm, which adaptively chooses the items for comparisons based

on previously collected information..

2. Most existing work chooses some specific function (call this function f) of problem

parameters (e.g., n, k, l and preference scores) and shows that the algorithm’s sample

complexity is at most f . For the optimality, they also show that for any value of

f , there exists an instance whose sample complexity equals to that value and any

algorithm needs at least Ω(f) comparisons on this instance. However, this type of

algorithms could perform poorly on some instances other than those instances for

establishing lower bounds (see examples from [57]); and the form of function f can

vary the designed algorithm a lot.

To address this issue, we establish a much more refined upper bound on the sample

complexity. The derived sample complexity matches the lower bound when all the

parameters (including the set of underlying preference scores for items) are given to the

algorithm. They together show that our lower bound is tight and also our algorithm

is nearly instance optimal (see Definition 8.1.1 for the definition of nearly instance

optimal).

182

3. Existing work mainly focuses on pairwise comparisons. We extend the pairwise com-

parison to the multi-wise comparison (at most l items) and further quantify the role

of l in the sample complexity. From our sample complexity result (see Section 7.3), we

show that the pairwise comparison could be as helpful as multi-wise comparison unless

the underlying instance is very easy.

8.1.1 Model

In this paper, we adopt the widely used multinomial logit (MNL) model [145, 149, 184] for

modeling multi-wise comparisons. In particular, we assume that each item i has an under-

lying preference score (a.k.a. utility in economics) µi for i = 1, . . . , n. These scores, which

are unknown to the algorithm, determine the underlying ranking of the items. Specifically,

µi > µj means that item i is preferred to item j and item i should have a a higher rank.

Without loss of generality, we assume that µ1 ≥ µ2 ≥ · · ·µk > µk+1 ≥ · · · ≥ µn, and thus

the true top-k items are {1, . . . , k}. At each time t from 1 to T , the algorithm chooses a

subset of items with at least two items, denoted by St ⊆ {1, ..., n}, for query/comparison.

The size of the set St is upper bounded by a pre-fixed parameter l, i.e., 2 ≤ |St| ≤ l.

Given the set St, the agent will report her most preferred item a ∈ St following the

multinomial logit (MNL) model:

Pr[a|St] =
exp(µa)∑
j∈St exp(µj)

. (8.1)

When the size of St is 2 (i.e., l = 2), the MNL model reduces to Bradley-Terry model [33],

which has been widely studied in rank aggregation literature in machine learning (see, e.g.,

[159, 125, 169, 60]).

In fact, the MNL model has a simple probabilistic interpretation as follows [184]. Given

the set St, the agent draws her valuation νj = µj + εj for each item j ∈ St, where µj is

the mean utility for item j and each εj is independently, identically distributed random

183

variable following the Gumbel distribution. Then, the probability that a ∈ St is chosen as

the most favorable item is Pr (νa ≥ νj, ∀j ∈ St\{a}). With some simple algebraic derivation

using the density of Gumbel distribution (see Chapter 3.1 in [184]), the choice probability

Pr (νa ≥ νj,∀j ∈ St\{a}) has an explicit expression in (8.1). For notational convenience, we

define θj = exp(µj) for i = 1, ..., n, and the choice probability in (8.1) can be equivalently

written as Pr[a|St] = θa∑
j∈St

θj
. By adaptively querying the set St for 1 ≤ t ≤ T and observing

the reported most favorable item in St, the goal is to identify the set of top-k items with

high probability using the minimum number of queries.

For notation convenience, we assume the i-th item (with the preference score θi) is labeled

as πi ∈ {1, . . . , n} by the algorithm at the beginning. Since the algorithm has no prior

knowledge on the ranking of items before it makes any comparison, the ranking of the

items should have no correlation with the labels of the items. Therefore, π = (π1, ..., πn) is

distributed as a uniform permutation of {1, ..., n}.

The notion of instance optimal was originally defined and emphasized as an important

concept in [96]. With the MNL model in place, we provide a formal definition of nearly

instance optimal in our problem. To get a definition of instance optimal in our problem, we

can just replace Õ with O in Definition 8.1.1. The “nearly” here just means we allow polylog

factors.

Definition 8.1.1 (Nearly Instance Optimal). Given instance (n, k, l, θ1, ..., θn), define

c(n, k, l, θ1, ..., θn) to be the sample complexity of an optimal adaptive algorithm on the

instance. We say that an algorithm A is nearly instance optimal, if for any instance

(n, k, l, θ1, ..., θn), the algorithm A outputs the top-k items with high probability (with proba-

bility 1− 1/nc for some constant c) and only uses at most

Õ(c(n, k, l, θ1, ..., θn)) number of comparisons. (Note that Õ(·) hides polylog factors of n and

1
θk−θk+1

.)

184

8.1.2 Main results

Under the MNL model described in Section 8.1.1, the main results of this paper include the

following upper and lower bounds on the sample complexity.

Theorem 8.1.1. We design an active ranking algorithm which uses

Õ

(
n

l
+ k +

∑
i≥k+1 θi

θk
+

∑
i≥k+1,θi≥

θk
2

θ2
k

(θk − θi)2

+
∑

i:i≤k,θi≤2θk+1

θ2
k+1

(θk+1 − θi)2

)

comparisons with the set size at most l (can be 2-wise, 3-wise,...,l-wise comparisons) to

identify the top-k items with high probability (with probability 1− 1/nc for some constant c).

We note that in Theorem 8.1.1, the notation Õ(·) hides polylog factors of n and 1
θk−θk+1

.

Next, we present a matching lower bound result, which shows that our sample complexity

in Theorem 8.1.1 is nearly instance optimal.

Theorem 8.1.2. For any (possibly active) ranking algorithm A, suppose that A uses com-

parisons of set size at most l. Even when the algorithm A is given the values of {θ1, ..., θn}

(note that A does not know which item takes the preference score θi for each i), A still needs

Ω

(
n

l
+ k +

∑
i≥k+1 θi

θk
+

∑
i≥k+1,θi≥

θk
2

θ2
k

(θk − θi)2
+

∑
i:i≤k,θi≤2θk+1

θ2
k+1

(θk+1 − θi)2

)

comparisons to identify the top-k items with probability at least 7/8.

Remark 8.1.1. Notice that our lower bound is with constant probability which is stronger

than a with high probability lower bound and therefore it can be matched with our upper bound

(up to poly logarithmic factors for the number of comparisons). Also notice our asymptotic

185

notation is on n and we don’t make any restrictions on other parameters. For example,

Theorem 8.1.2’s asymptotic notation can be stated as there exists a constant c, for any n

larger than some large enough constant, for any l, k, θ1, ..., θn, A needs

c ·

(
n

l
+ k +

∑
i≥k+1 θi

θk
+

∑
i≥k+1,θi≥

θk
2

θ2
k

(θk − θi)2
+

∑
i:i≤k,θi≤2θk+1

θ2
k+1

(θk+1 − θi)2

)

comparisons to identify the top-k items with probability at least 7/8.

Here we give some intuitive explanations of the terms in the above bounds before intro-

ducing the proof overview:

1. Term n
l
: Since each comparison has size at most l, we need at least n

l
comparisons to

query each item at least once.

2. Term k: As the proof will suggest, in order to find the top-k items, we need to observe

most items in the top-k set as chosen items from comparisons. However, we do not

have to observe most items in the bottom-(n−k) set. Therefore, there is no term n−k

in the bound.

3. Term
∑
i≥k+1 θi

θk
+
∑

i≥k+1,θi≥
θk
2

θ2
k

(θk−θi)2 +
∑

i:i≤k,θi≤2θk+1

θ2
k+1

(θk+1−θi)2 : Roughly speaking,

when i > k and θi ≥ θk/2, Θ
(

(θk−θi)2

θ2
k

)
is the amount of information that the compari-

son between item i and item k reveals. So intuitively, we need Ω
(

θ2
k

(θk−θi)2

)
to tell that

item i ranks after item k. Other quantity can also be understood from an information

theoretic perspective.

186

It is also worthwhile to note that when l is a constant, it’s easy to check that

n

l
+ k +

∑
i≥k+1 θi

θk
+

∑
i≥k+1,θi≥

θk
2

θ2
k

(θk − θi)2
+

∑
i:i≤k,θi≤2θk+1

θ2
k+1

(θk+1 − θi)2

= O

(
n∑

i=k+1

θ2
k

(θk − θi)2
+

k∑
i=1

θ2
i

(θk+1 − θi)2

)
.

This is a simpler expression of the instance optimal sample complexity when l is a constant.

Based on the sample complexity results in Theorem 8.1.1 and 8.1.2, we summarize the

main theoretical contribution of this paper:

1. We design an active ranking algorithm for identifying top-k items under the popular

MNL model. We further prove a matching lower bound, which establishes that the

proposed algorithm is nearly instance optimal.

2. Our result shows that the improvement of the multi-wise comparison over the pairwise

comparison depends on the difficulty of the underlying instance. Note that the only

term in the sample complexity involving l is n
l
. Therefore, the multi-wise comparison

makes a significant difference from the pairwise comparison only when n
l

is the leading

term in the sample complexity.

Therefore, unless the underlying instance is really easy (e.g., the instance-adaptive term

k +
∑
i≥k+1 θi

θk
+
∑

i≥k+1,θi≥
θk
2

θ2
k

(θk−θi)2 +
∑

i:i≤k,θi≤2θk+1

θ2
k+1

(θk+1−θi)2 is o(n). One implication

is that most of the θi’s among θk+1, ..., θn are much smaller than θk), the pairwise

comparison is as helpful as the multi-wise comparison.

8.1.3 Proof overview

In this section, we give some very high level overviews of how we prove Theorem 8.1.1 and

Theorem 8.1.2.

187

Algorithms

To prove Theorem 8.1.1, we consider two separate cases: l = O(log n) or l = Ω(log n).

1. Our result indicates that the only term involving the size of the comparisons l is

n
l
. Therefore, in the first case, by losing a log-factor, we can just focus on only using

pairwise comparisons (because of Claim 8.4.2). Our algorithm (12) first randomly select

Õ(n) pairs and proceed by querying all of them once per iteration. After getting the

query results, by a standard binomial concentration bound, we are able to construct a

confident interval of θi
θi+θj

for each pair (i, j) selected by the algorithm in the beginning.

In a high level, our algorithm goes by declaring θi ≥ θj for pair i, j, if the lower bound

of the corresponding confident interval is bigger or equal to 1, or if there already exists

d items (i = i1), i2, . . . , (id = j) such that we have already declared θir ≥ θir+1 for all

r ∈ [d−1]. Moreover, it is a well known result in graph theory that if we select Ω(n log n)

pairs and create an edge between each of them, then with high probability, the resulting

graph is an expander. Thus, we can pick d to be as small as O(log n). With this, we

are able to show that, if θ1 ≥ θ2 ≥ · · · ≥ θn, then for all i, j ∈ [n] with j ≥ i + n
4
, the

algorithm will successfully declare θi ≥ θj after O
(∑n

i=k+1

θ2
k

(θk−θi)2 +
∑k

i=1
θ2
i

(θk+1−θi)2

)
many total queries. Thus, we can remove at least n

4
items and recurse on a smaller set.

2. The more interesting case is when l = Ω(log n). To illustrate the idea, let us just

consider top 1 item identification (k = 1). We consider two cases: (a). θ1 = 1 and

all the other θi’s are equal but very close to zero. In this case, if we still use pairwise

comparisons, then unless we exactly pick item 1 in one of comparisons, we will get

no information about which one is the top item. Thus, we still need at least Ω(n)

queries. On the other hand, if we use comparisons of size n, then, after Ω(log n)

queries, we should be seeing item 1 all the time, and hence be confident enough to

declare item 1 as the top one. (b). When all θi’s are within a constant factor, then,

even if we use larger comparison size, we will still see all the θi’s show up with com-

188

parable amount of times, and thus it is not beneficial to use comparisons of size > 2.

As illustrate in our bound, it is only beneficial to use multi-wise comparisons when∑
i≥2 θi

θ1
+
∑

i≥2,θi≥
θ1
2

θ2
1

(θ1−θi)2 = o(n). This implies that
∑
i≥2 θi

θ1
= o(n) and therefore

among θ2, ..., θn, there are more than half of θi’s whose value is smaller than some con-

stant fraction of θ1. Thus, intuitively, like we mentioned in (a), if we select a random

subset of items that contains θ1 and keep querying this set, then, instead of seeing all

items in this set with roughly equal probability, we will be seeing item 1 much more

often than the median of frequencies of items in the set. Thus, our algorithm can select

an item if it “appears very often when querying a set containing it”. We will show

that, if the number of total queries is

Ω

(
n

l
+

∑
i≥2 θi

θ1

+
∑

i≥2,θi≥
θ1
2

θ2
1

(θ1 − θi)2

)
,

then we will be able to select all the top 1-items while not selecting any of the bottom

n/2 items. Thus, we can remove at least n
2

items and recurse on a smaller set.

Lower bounds

To prove Theorem 8.1.2, we establish several lower bounds and combine them using a simple

averaging argument. Most of these lower bounds follow the following general proof strategy:

1. For a given instance (n, k, l, θ1, ..., θn), consider other instances on which no algorithm

can output {π1, ..., πk} with high probability 1. For example if we just change θk+1 to

θk, then no algorithm can output {π1, ..., πk} with probability more than 1/2. This

is because item k and item k + 1 look the same now and thus all the algorithms will

output {π1, ..., πk} and {π1, ..., πk−1, πk+1} with the same probability in the modified

instance.

1Recall that πi denotes the initial label of i-th item given as the input to the algorithm, and thus the
true top-k items are labeled by {π1, ..., πk}.

189

2. We then consider a well-designed distribution over these modified instances. We show

that for any algorithm A with not enough comparisons, the transcript of running A

on the original instance distributes very closely to the transcript of running A on the

well-design distribution over modified instances.

3. Finally, since the transcript also includes the output, step 2 will tell us that if A does

not use enough comparisons, then A must fail to output {π1, ..., πk} with some constant

probability.

8.1.4 Related Works

Rank aggregation from pairwise comparisons is an important problem in computer science,

which has been widely studied under different comparison models. Most existing works focus

on the non-active setting: the pairs of items for comparisons are fixed (or chosen completely

at random) and the algorithm cannot adaptively choose the next pair for querying. In

this non-active ranking setup, when the goal is to obtain a global ranking over all the

items, Negahban et al. [159] proposed the RankCentrality algorithm under the popular

Bradley-Terry model, which is a special case of the MNL model for pairwise comparisons.

Lu and Boutilier [144] proposed a ranking algorithm under the Mallows model. Rajkumar

and Agarwal [169] investigated different statistical assumptions (e.g., generalized low-noise

condition) for guaranteeing to recover the true ranking. Shah et al. [175] studied the ranking

aggregation under a non-parametric comparison model—strong stochastic transitivity (SST)

model, and converted the ranking problem into a matrix estimation problem under shape-

constraints. Most machine learning literature assumes that there is a true global ranking of

items and the output of each pairwise comparison follows a probabilistic model. Another

way of formulating the ranking problem is via the minimum feedback arc set problem on

tournaments, which does not assume a true global ranking and aims to find a ranking that

minimizes the number of inconsistent pairs. There is a vast literature on the minimum

feedback arc set problem and here we omit the survey of this direction (please see [130] and

190

references therein). Due to the increasing number of items, it is practically more useful to

identify the top-k items in many internet applications. Chen and Suh [60], Jang et al. [125],

and Suh et al. [179] proposed various spectral methods for top-k item identification under

the BTL model or mixture of BTL models. Shah and Wainwright [177] proposed a counting-

based algorithm under a general noise model including the SST model. The notion of instance

optimal was originally defined and emphasized as an important concept in [96] for identifying

the top-k objects from sorted lists. [57] suggested that notion “instance optimal” is necessary

for rank aggregation from noisy pairwise comparisons in complicated noise models and further

improved [177] under the SST noise model by proposing an algorithm that has competitive

ratio Θ̃(
√
n) compared to the best algorithm of each instance and proving Θ̃(

√
n) is tight.

In addition to static rank aggregation, active noisy sorting and ranking problems have

received a lot of attentions in recent years. For example, several works [35, 1, 124, 189]

studied the active sorting problem from noisy pairwise comparisons and explored the sample

complexity to approximately recover the true ranking in terms of some distance function (e.g.,

Kendall’s tau). Chen et al. [56] proposed a Bayesian online ranking algorithm under the

mixture of BTL models. Dwork et al. [92] and Ailon et al. [2] considered a related Kemeny

optimization problem, where the goal is to determine the total ordering that minimizes

the sum of the distances to different permutations. For top-k identification, Braverman et

al. [34] initiated the study of how round complexity of active algorithms can affect the

sample complexity. Szörényi et al. [182] studied the case of k = 1 under the BTL model.

Heckel et. al. [119] investigated the active ranking under a general class of nonparametric

models and also established a lower bound on the number of comparisons for parametric

models. A very recent work by Mohajer and Suh [154] proposed an active algorithm for

top-k identification under a general class of pairwise comparison models, where the instance

difficulty is characterized by the key quantity mini∈{1,...,k}minj:j>i(pij−0.5)2. Here, pij is the

probability of item i is preferred over item j. However, according to our result in Theorem

8.1.2, the obtained sample complexities in previous works are not instance optimal. We note

191

that the lower bound result in Theorem 8.1.2 holds for algorithms even when all the values

of θi’s are known (but without the knowledge of which item corresponds to which value)

and thus characterizes the difficulty of each instance. Moreover, we study the the multi-wise

comparisons, which has not been explored in ranking aggregation literature but has a wide

range applications.

Finally, we note that the top-k ranking problem is related to the best k arm identification

in multi-armed bandit literature [44, 123, 191, 55]. However, in the latter problem, the

samples are i.i.d. random variables rather than comparisons and the goal is to identify the

top-k distributions with largest means.

8.2 Algorithm

For notational simplicity, throughout the paper we use the words w.h.p. to denote with

probability 1− 1/nc for sufficiently large constant c.

8.2.1 Top-k item identification (For logarithmic l)

For l = O(log n), we can always use pairwise comparisons by losing a polylog factor as proven

in Claim 8.4.2. Therefore, we only focus on the case when l = 2 in this section.

Before presenting the algorithm, let us first consider a graph G = (V = [n], E) where

each edge is labeled with either ≈l,≥l,≤l, >l or <l (see Line 9 in Algorithm 12). Based on

the labeling of edges, we give the following definition of label monotone, which will be used

in Algorithm 12.

Definition 8.2.1 (Monotone). We call a path i1 → i2 → · · · → id strictly label monotone if:

1. For every j ∈ [d− 1], the edge (ij, ij+1) is labeled with either ≈l,≥l or >l.

2. There exists at least one edge (ij, ij+1) with label >l.

Moreover, we call a path “label monotone” if only property 1 holds.

192

Theorem 8.2.1. For every m items with θ1 ≥ θ2 ≥ · · · ≥ θn, Algorithm 12, on given a

random permutation of labels Ω = [n] and k, returns top-k items w.h.p. using

O

(
κ7 ·

(
k +

n∑
i=k+1

θ2
k

(θk − θi)2
+

k∑
i=1

θ2
k+1

(θk+1 − θi)2

))

total number of pairwise comparisons.

We defer the proof of Theorem 8.2.1 to Section 8.4. We only provide the pseudocode in

Algorithm 12. In Algorithm 12, we note that a different letter m (instead of n) is used for

denoting the set size because we will run the algorithm recursively with smaller sets. And

also notice that the parameter κ = Ω(log2 n) regardless of the value of m. We also defer our

result for superlogarithmic l to Section 8.4.

Below, following the intuition in section 8.1.3, line 3 of the algorithm randomly samples

Õ(m) paris to compare. At each iteration, the algorithm queries all pairs once. Line 9 builds

a confident interval for θ̃i,j ≈ θi
θi+θj

. Line 10 of the algorithm declares θj > θi if θ̃i,j is much

larger than 1
2

or there is a path j = i1 → i2 → · · · → id = i such that for each r ∈ [d − 1],

θ̃ir,ir+1 ≥ 1
2

and there is an r′ ∈ [d− 1] with θ̃ir,ir+1 much larger than 1
2
.

193

Algorithm 12 AlgPairwise

1: Parameter: κ = Ω(log2 n).
2: Input: A set of randomly permuted labels Ω with |Ω| = m, k: number of top items.
3: Uniformly at random sample s = mκ subsets S1, · · ·Ss of Ω, each of size 2. Associate

these subsets with a graph G = (Ω, E), where each edge eu ∈ E consists of all the vertices
in Su for u ∈ [s].

4: q = 0, Ωg = ∅,Ωb = ∅, S = ∅.
5: while true do
6: q ← q + 1.
7: Query each set 1 time, obtain in total s query results {Ru,q}u∈[s]. (Ru,q indicates the

reported most favorable item)
8: For all u ∈ [s], for {i, j} = Su, let θ̃i,j = 1

q

∑
p∈[q] 1Ru,p=i .

9: For each edge (i, j) ∈ E, we label it as:

1. i ≈l j if
θ̃i,j

θ̃j,i
∈
[

1

1+4
√

κ
q

, 1 + 4
√

κ
q

]
2. i ≥l j if

θ̃i,j

θ̃j,i
∈
(

1 + 4
√

κ
q
, 1 + 32κ

√
κ
q

)
3. i >l j if

θ̃i,j

θ̃j,i
∈
[
1 + 32κ

√
κ
q
,∞
)

4. i ≤l j if
θ̃i,j

θ̃j,i
∈
(

1

1+32κ
√

κ
q

, 1

1+4
√

κ
q

)
5. i <l j if

θ̃i,j

θ̃j,i
∈
[
0, 1

1+32κ
√

κ
q

]
10: For every i, j ∈ [m], we call j>>li if there exists a strictly label monotone path of

length at most κ from j to i.
11: For each i ∈ [m], if there exists at least k many j ∈ [m] such that j>>li, then add i to

Ωb. (Ωb is the subset of items that we are sure not in top-k.)
12: For each i ∈ [m], if there exists at least m− k many j ∈ [m] such that i>>lj, then add

i to Ωg. (Ωg is the subset of items that we are sure in top-k.)
13: Break if |Ωg ∪ Ωb| ≥ m

4
.

14: end while
15: Ω′ = Ω− Ωg − Ωb, k

′ = k − |Ωg|, S = S ∪ Ωg ∪ AlgPairwise(Ω′, k′).
16: Return S.

194

8.3 Lower Bounds

Here we present lower bounds on the number of comparison used by any algorithm which

identifies top-k items even when the values of preference scores {θ1, ..., θn} are given to the

algorithm. (The algorithm just do not know which item has which θi). Proofs are deferred

to Section 8.5.

8.3.1 Lower bounds for close weights

Theorem 8.3.1. Assume θk > θk+1 and c < 10−4. For any algorithm A (can be adaptive),

if A uses c
∑

i:k+1≤i,θi≥θk/2
θ2
k

(θk−θi)2 comparisons of any size (can be l-wise comparison for

2 ≤ l ≤ n), then A will identify the top-k items with probability at most 7/8.

Theorem 8.3.2. Assume θk > θk+1 and c < 4 ·10−4. For any algorithm A (can be adaptive),

if A uses c
∑

i:i≤k,θi≤2θk+1

θ2
k+1

(θk+1−θi)2 comparisons of any size (can be l-wise comparison for

2 ≤ l ≤ n), then A will identify the top-k items with probability at most 7/8.

8.3.2 Lower bounds for arbitrary weights

Theorem 8.3.3. Assume c < 1/18. For any algorithm A (can be adaptive), if A uses

c
∑

i:i>k
θi
θk

comparisons of any size (can be l-wise comparison for 2 ≤ l ≤ n), then A will

identify the top-k items with probability at most 7/8.

Theorem 8.3.4. For any algorithm A (can be adaptive), if A uses k/4 comparisons of any

size (can be l-wise comparison for 2 ≤ l ≤ n), then A will identify the top-k items with

probability at most 2/3.

Theorem 8.3.5. Assume c < 1/2. For any algorithm A (can be adaptive), if A uses cn
l

comparisons of size at most l (can be 2-wise, 3-wise,...,l-wise comparisons), then A will

identify the top-k items with probability at most 7/8.

195

8.3.3 Combining lower bounds

Corollary 8.3.1 (Restatement of Theorem 8.1.2). For any algorithm A (can be adaptive),

suppose A uses comparisons of size at most l (can be 2-wise, 3-wise,...,l-wise comparisons).

A needs

Ω

(
n

l
+ k +

∑
i≥k+1 θi

θk
+

∑
i≥k+1,θi≥

θk
2

θ2
k

(θk − θi)2
+

∑
i:i≤k,θi≤2θk+1

θ2
k+1

(θk+1 − θi)2

)

to identify the top-k items with probability at least 7/8.

Proof. To prove this corollary, we just need to combine all the results in Theorem 8.3.1,

Theorem 8.3.2, Theorem 8.3.3, Theorem 8.3.4 and Theorem 8.3.5. And then use the fact

that if b < a1 + · · ·+ a5 then there exists i ∈ {1, 2, 3, 4, 5} such that b < 5ai.

8.4 Additional Algorithmic Results and Proofs

Throughout the proofs we are going to use the following claim which is a simple fact about

the binomial concentration.

Claim 8.4.1 (Binomial concentration). For every m ∈ N∗, every p ∈ [0, 1], suppose X ∼

B(m, p), then X ∈ [mp − O(
√
mp log n),mp + O(

√
mp log n)] w.h.p (with high probability

respect to n).

8.4.1 Top-k item identification (For logarithmic l)

In this section, we prove Theorem 8.2.1 of Section 4.4.1.

196

Following Claim 8.4.1, we know that for every (i, j) ∈ E, every q,

θ̃i,j ∈

[
θi,j −

√
θi,jκ

q
, θi,j +

√
θi,jκ

q

]

w.h.p. W.l.o.g, let us just focus on the case that this bound is satisfied for all (i, j) ∈ E and

every q.

We have the following Lemma about the labelling:

Lemma 8.4.1 (Label). For q = Ω(κ3), we have:

1. if θi ≥ θj, then i ≈l j, i ≥l j or i >l j.

2. if θi ≥ θj

(
1 + 128κ

√
κ
q

)
, then i >l j.

3. if i ≥l j or i ≈l j, then

θi ≥ θj

(
1− 8

√
κ

q

)

4. if i >l j, then

θi ≥ θj

(
1 + 16κ

√
κ

q

)

Proof of Lemma 8.4.1. 1. We know that for q = Ω(κ3) and θi ≥ θj:

θ̃i,j

θ̃j,i
≥

θi
θi+θj

−
√

θi
θi+θj

· κ
q

θj
θi+θj

+
√

θj
θi+θj

· κ
q

≥
θi

(
1−

√
2κ
q

)
θj +

√
2θiθjκ

q

≥
1−

√
2κ
q

θj
θi

+
√

θj
θi
· 2κ
q

≥
1−

√
2κ
q

1 +
√

2κ
q

≥ 1

1 + 4
√

κ
q

197

2. Again by θi ≥ θj

(
1 + 128κ

√
κ
q

)
and q = Ω(κ3), we know that

θj
θi
≤ 1 − 64κ

√
κ
q
,

therefore, we have:

θ̃i,j

θ̃j,i
≥

1−
√

2κ
q

θj
θi

+
√

θj
θi
· 2κ
q

≥
1−

√
2κ
q

θj
θi

+
√

2κ
q

≥

1−
√

2κ
q

1− 64κ
√

κ
q

+
√

2κ
q

≥ 1 + 32κ

√
κ

q
.

3. Let us suppose θi ≤ θj, otherwise we already complete the proof. Now, we have:

θi
θi+θj

+
√

θi
θi+θj

· κ
q

θj
θi+θj

−
√

θj
θi+θj

· κ
q

≥ θ̃i,j

θ̃j,i
≥ 1

1 + 4
√

κ
q

Which implies that

θi +
√

2θiθjκ

q

θj

(
1−

√
2κ
q

) ≥ 1

1 + 4
√

κ
q

Therefore, by θi ≤ θj, we have:

θi
θj

+
√

2κ
q

1−
√

2κ
q

≥ 1

1 + 4
√

κ
q

Which implies that

θi
θj
≥

1−
√

2κ
q

1 + 4
√

κ
q

−
√

2κ

q
≥ 1− 8

√
κ

q

4. Let us suppose θi ≤ 2θj, otherwise we already complete the proof. Again, we have:

θi
θj

+
√

3κ
q

1−
√

3κ
q

≥ 1 + 32κ

√
κ

q

198

Which implies that

θi
θj
≥
(

1−
√

3κ

q

)(
1 + 32κ

√
κ

q

)
−
√

2κ

q
≥

1 + 16κ

√
κ

q

Above, the Lemma 8.4.1 implies that w.h.p. the labelling of each edge (i, j) is consistent

with the order of θi, θj. Now, the algorithm will declare i>>lj if there exists strictly label

monotone path from i to j. Using the Lemma above we can show that if such path exists,

then θi > θj. To show the other direction that such paths exists when θj > θi, we first

consider the following graph Lemma that gives the exists of monotone path in random graph

G(m, p).

Lemma 8.4.2 (Graph Path). For every m ≤ n, every random graph G(m, p) on vertices

V = [m], if p ≥ κ
m

, then w.h.p. For every i, j ∈ [m] with j ≥ i + m
4

, there exists a path

i = i1 → i2 → · · · id = j such that

1. d ≤ κ.

2. ir ≤ ir+1 for every r ∈ [d− 1].

We call such a path a monotone path from i to j.

Proof of Lemma 8.4.2. It is sufficient to consider the case when m = Ω(
√
κ), otherwise

w.h.p. the graph is a complete graph and theorem is automatically true.

We consider a sequential way of generating G(m, p): At each time t = 1, 2, · · · ,m, a

vertex t arrives and there exists an edge between t and each t′ ∈ [t − 1] with probability p.

Let us consider a fixed i ≤ 3
4
m and j ≥ i + m

4
. Let τ =

√
κ

32
= Ω(log n). We will divide the

199

set {i, i+ 1, · · · , j − 1} into τ subsets H1, · · · , Hτ such that

Hr = {i+ (r − 1)
j − i
τ

, i+ (r − 1)
j − i
τ

+ 1, · · · ,

i+ r
j − i
τ
− 1}

Since m = Ω(
√
κ) we know that |Hr| ≥ 1.

Let us define the random variable Yr, Xr, Zv as:

Yr = the set of all v ∈ Hr such that there exists a

monotone path from i to v of length at most r

and Xr = |Yr|.

For each v ∈ Hr+1, we define

Zv = 1there is an edge between v and at least one vertex in Yr

Clearly, X1 ≥ 1 and each Zv is i.i.d. random variable in {0, 1} with Pr[Zv = 0 | Xr] =

(1− p)Xr . On the other hand, by definition,

Xr+1 ≥
∑

v∈Hr+1

Zv

We consider two cases:

1. Xr ≥ 1
p
, then Pr[Zv = 1] ≥ 1

4
.

2. Xt <
1
p
, then by (1− p)x ≤ 1− xp

2
for x < 1/p, we have Pr[Zv = 1] ≥ pXr

2
.

Consider a fixed Xr and for each v ∈ Hr+1, let Zv be the random variable. By standard

Chernoff bound, we have:

1. If Xr ≥ 1
p
, then w.h.p. Xr+1 ≥ j−i

4τ
≥ m

16τ
.

200

2. 1 ≤ Xr <
1
p
, then w.h.p. Xr+1 ≥ (j−i)pXr

2τ
−
√
τ (j−i)pXr

2τ
.

Recall that p ≥ κ
m

and j − i ≥ m
4

, therefore,

√
τ

(j − i)pXr

2τ
≤ (j − i)pXr

4τ
,

(j − i)pXr

4τ
≥ 2Xr

Which implies that w.h.p. Xr+1 ≥ 2Xr.

Putting everything together, we know that for τ = Ω(log n), w.h.p. Xτ ≥ m
16τ

. Therefore,

condition on this event, by

Pr

[
there is an edge between j and Yτ

∣∣∣∣Xτ ≥
m

16τ

]
= 1− (1− p)

m
16τ ≥ 1−

(
1− κ

m

) m
16τ

≥ 1−
(

1− 1024τ 2

m

) m
16τ

≥ 1− 1

nΩ(1)

We complete the proof.

Having this Lemma, we can present the main Lemma above the algorithm:

Lemma 8.4.3 (Main 3). Suppose q = Ω(κ3), then w.h.p. the following holds:

1. Ωg ⊆ [k], Ωb ∩ [k] = ∅.

2. If k ≤ m
2

and q = Ω
(
κ5

m
·
∑m

i=k+1

θ2
k

(θk−θi)2

)
, then |Ωb| ≥ m

4
.

3. If k > m
2

and q = Ω
(
κ5

m
·
(
k +

∑k
i=1

θ2
k+1

(θk+1−θi)2

))
, then |Ωg| ≥ m

4
.

Since the algorithm terminates within O(κ) recursions, moreover, in each recursion, the

algorithm makes at most κmq queries. Therefore, Lemma 8.4.3 implies that the algorithm

runs in total queries:

O

(
κ7 ·

(
k +

m∑
i=k+1

θ2
k

(θk − θi)2
+

k∑
i=1

θ2
k+1

(θk+1 − θi)2

))
201

Proof of Lemma 8.4.3. 1. It suffices to show that if i>>lj, then θi ≥ θj. To see this,

consider a strictly label monotone path i = i1 → i2 → · · · → id = j with length d ≤ κ.

By Lemma 8.4.1, we know that for every r ∈ [d− 1], we have: θir ≥ θir+1

(
1− 8

√
κ
q

)
.

Moreover, there exists an r′ ∈ [d − 1] such that θir′ ≥ θir′+1

(
1 + 16κ

√
κ
q

)
. Multiply

every thing together, we know that

θi ≥ θj

(
1− 8

√
κ

q

)κ−1(
1 + 16κ

√
κ

q

)
≥ θj

2. Let us denote the set H = {3
4
m + 1, 3

4
m + 2, · · ·m}, we will prove that H ⊆ Ωb.

Consider one j ∈ H, by Lemma 8.4.2, w.h.p. for every i ∈ [k], there exists a path

i = i1 → i2 → · · · id = j of length at most κ such that θir ≥ θir+1 for every r ∈ [d− 1].

Now, by Lemma 8.4.1, we know that this path is label monotone. We just need to

show that this path is strictly label monotone. To see this, we know that there exists

one r′ ∈ [d− 1] such that

θir′ ≥ θir′+1

(
θi
θj

)1/κ

Let ν = 1
m−k

∑m
i=k+1

θ2
k

(θk−θi)2 . Now, since k ≤ m
2

, we can apply Markov inequality and

conclude that for this j ∈ H and i ∈ [k],
θ2
i

(θi−θj)2 ≤
θ2
k

(θk−θj)2 ≤ 2ν. Which implies that

θi
θj
≥ 1

1−
√

1
2ν

≥ 1 +

√
1

2ν

For q = Ω(κ5ν), we know that

(
θi
θj

)1/κ

≥
(

1 + 64κ2

√
κ

q

)1/κ

≥
(

1 + 32κ

√
κ

q

)

Therefore, θir′ ≥ θir′+1

(
θi
θj

)1/κ

≥
(

1 + 32κ
√

κ
q

)
. By definition, we shall label ir′ >

ir′+1 and thus i>>lj.

202

3. It can be shown with exactly the same calculation as 2 with H =
{

1, 2, · · · 1
4
m
}

and

apply Markov inequality on

ν =
1

k

k∑
i=1

θ2
i

(θk+1 − θi)2
=

1

k
O

(
k +

k∑
i=1

θ2
k+1

(θk+1 − θi)2

)

8.4.2 Top-k item identification (For super logarithmic l)

Before presenting the algorithm, we first argue about which case using bigger l is unnecessary.

We have the following Claim:

Claim 8.4.2 (Bigger l). For every l ≤ m ≤ n, we have:

k +
m∑

i=k+1

θ2
k

(θk − θi)2
+

k∑
i=1

θ2
k+1

(θk+1 − θi)2

≤

(
m

l
+ k +

∑
i≥k+1 θi

θk
+

∑
i≥k+1,θi≥

θk
2

θ2
k

(θk − θi)2
+

k∑
i=1

θ2
k+1

(θk+1 − θi)2

)
+ 4m

Therefore, as long as we can show one of the following:

1. k = Ω(m).

2.
∑
i≥k+1 θi

θk
= Ω(m).

We can just use the algorithm for l = 2. Otherwise, we shall consider larger l, we will

directly considering the case when l = Ω(log n). Before giving the algorithm, it is convenient

to first consider the following query procedure: For a fixed Q, do:

203

Algorithm 13 BasicQuery

1: Parameter: κ = Ω(log2 n)
2: Input: Ω: set of items with |Ω| = m, k: number of top items to find. l: size of the

subset to query.
3: Uniformly at random sample s = mκ

l
subsets S1, · · ·Ss of Ω, each of size l. Associate

these subsets with a hypergraph G = (Ω, E), where each edge eu ∈ E is consists of all
the vertices in Su for u ∈ [s].

4: Query each set Q time, obtain in total sQ query results {Ru,q}u∈[s],q∈[Q].

For a fixed q ≤ Q, let us consider a random variable θ̃i,Su ∈ [0, 1] defined as

θ̃i,Su =
1

q

∑
r∈[q]

1Ru,r=i

For each i, u such that i ∈ Su, let us define 0-1 valued function 1i,u,α,β,γ such that

1i,u,α,β,γ = 1 if and only if all the following conditions hold:

1. θ̃i,Su ≥ α
q
.

2. There exists at least γl many of the j ∈ Su such that θ̃j,Su ≤ βθ̃i,Su .

We also consider the random variable Xi,u,α,β,γ associated with this function, where the

randomness is taken over the uniformly at random choice of Su conditional on i ∈ Su, and

the randomness of the outcome of the queries.

We prove the following main Lemma:

Lemma 8.4.4 (Indicator). Let γ ∈
[

1
32
, 1

2

]
, β ∈ (0, 32], α = Ω(κ). For every i ∈ [m], the

following holds:

1. If q = Ω
(
α +

2αl
∑
j∈[m] θj

mθi

)
and θi ≥ 2βθ(1−2γ)m, then

Pr[Xi,u,α,β,γ = 1] ≥ 15

16

2. For every q, if θi ≤ β
2
θ(1−γ)m, then

Pr[Xi,u,α,β,γ = 1] ≤ 9

16
204

Proof of Lemma 8.4.4. 1. We first bound the probability that θ̃i,Su ≥ α
q
. By

θ̃i,Su ∈

[
θi,Su −

√
θi,Suκ

q
, θi,Su +

√
θi,Suκ

q

]

we know that

θi,Su ≥
2α

q
=⇒ θ̃i,Su ≥

α

q

To lower bound this probability, we just need to consider the probability that θi,Su <
2α
q

.

We apply Markov inequality and have that:

Pr

[
θi,Su <

2α

q

]
= Pr

[
2α

qθi,Su
> 1

]
<

E
[

2α
qθi,Su

]
1

Notice that

2α

qθi,Su
=

2α
∑

j∈Su θj

θiq

Therefore,

E

[
2α

qθi,Su

]
=

2αE[
∑

j∈Su]θj

θiq
≤ 2α

q
+

2αl
∑

j∈[m] θj

mθiq

≤ 1

64

Putting together we obtain

Pr

[
θ̃i,Su <

α

q

]
≤ Pr

[
θi,Su <

2α

q

]
<

1

64

Now we can move to the second condition. For now, suppose θ̃i,Su ≥ α
q

holds, we then

know that

θ̃i,Su ∈
[

31

32
θi,Su ,

33

32
θi,Su

]

205

Therefore, θi ≥ 2βθ(1−2γ)m implies that for every j ∈ H = {(1 − 2γ)m, (1 − 2γ)m +

1, · · ·m} with j ∈ Su, we have:

θ̃j,Su ≤ θj,Su +

√
θj,Suκ

q
≤ θj,Su +

√
θi,Suκ

q

≤ θj,Su +
1

128
θi,Su ≤

θi,Su
2β

+
1

128
θi,Su

≤ 3θi,Su
4β

for β ≤ 32

≤ θ̃i,Su
β

Since |H| = 2γm, we know that for l = Ω(log n), Pr[|H ∩ Su| < γl] ≤ 1
64

. Therefore,

Pr[Xi,u,α,β,γ = 1] ≥

1− Pr

[
θ̃i,Su <

α

q

]
− Pr[|H ∩ Su| < γl] ≥ 15

16

2. The proof follows from the same calculation. Notice that this time we already have

Xi,u,α,β,γ = 1 =⇒ θ̃i,Su ≥ α
q
.

For fixed α = Ω(κ), every β ∈ (0, 32], γ ∈
[

1
32
, 1

2

]
and every τ ∈

[
3
4
, 7

8

]
, we consider set

Ωβ,γ,τ =

i ∈ [m]

∣∣∣∣ ∑
u:u∈[s],i∈Su

Xi,u,α,β,γ ≥ τdeg(i)


We also have the following Corollary of Lemma 8.4.4:

Corollary 8.4.1. 1. For every i, j ∈ [m] with θi ≥ θj, every τ ∈
[

3
4
× 33

32
, 7

8

]
, w.h.p.

j ∈ Ωβ,γ,τ =⇒ i ∈ Ωβ,γ, 32
33
τ .

2. For every i ∈ [m], if θi ≥ 2βθ(1−2γ)m and q = Ω
(
α +

2αl
∑
j∈[m] θj

mθi

)
, then w.h.p. i ∈

Ωβ,γ,τ .

206

3. For every q, if i ∈ Ωβ,γ,τ , then w.h.p. θi ≥ β
2
θ(1−γ)m.

Having this Corollary, we can do the following algorithm that selects all the θi ≥

32 max{θk, θ 3
4
m} and removes most of the θj ≤ 1

4
θk:

Algorithm 14 AlgMulti-wise

1: Parameter: κ = O(log2 n).
2: Input: Ω: set of items, k: number of top items to find.
3: Output: S: set of top items. Ω′: set of remaining items.
4: Initialization: S = ∅,Ω′ = Ω, m = |Ω|.
5: Call BasicQuery to obtain {θ̃i,Su}i∈[n],u∈[s].
6: if k ≤ 1

2
m then

7: if 1 ≤ |Ω32, 1
4
, 13
16
| and |Ω4, 1

16
, 13
16
| < k then

8: S1 = Ω4, 1
16
, 7
8
, Ω′′ = Ω−S1, (S ′,Ω′) = AlgMulti-wise(Ω′′, k−|S1|, R), S = S∪S1∪S ′′.

9: Notice that we pick those numbers so 7
8
≥ 33

32
· 13

16
≥
(

33
32

)2 · 3
4
.

10: else if |Ω4, 1
16
, 13
16
| ≥ k then

11: Ω′′ = Ω4, 1
16
, 3
4
, (S ′,Ω′) = AlgMulti-wise(Ω′′, k, R), S = S ∪ S ′.

12: end if
13: end if
14: Return S,Ω′.

We have the following lemma.

Lemma 8.4.5. For every m, every θ1 ≥ θ2 ≥ · · · ≥ θm, every k ≤ m, every l ≤ m,

Algorithm 14, on given a random permutation of Ω = [m], k satisfies:

1. Output set (S,Ω′) of the algorithm satisfies S ⊆ [k].

2. If Q = Ω̃

(
1 +

l(k+
∑
j≥k θj)

mθk

)
, then the algorithm returns in O(logm) many recursion

calls, and after the algorithm, let us for simplicity still denote [|Ω′|] = Ω′ with θ1 ≥

θ2 ≥ · · · θ|Ω′| and k′ = k − |S|, then either

(a) For every i ∈ Ω′, θi ≤ 512θ 7
8
|Ω′|.

(b) Or k′ ≥ 1
2
|Ω′|.

Proof of the main theorem. After running this algorithm, we can simply apply the algorithm

for l = 2 (By Claim 8.4.2), since one of the following is true:

207

1.
∑
i≥k′+1 θi

θk′
≥ 3

8
× 1

512
|Ω′|.

2. k′ > 1
2
|Ω′|.

Therefore, putting everything together, we can get the top k items in total number of queries:

Õ

(
m

l
+ k +

∑
i≥k+1 θi

θk
+

∑
i≥k+1,θi≥

θk
2

θ2
k

(θk − θi)2
+

k∑
i=1

θ2
k+1

(θk+1 − θi)2

)

Now, it just remains to prove this Lemma:

Proof. We first prove the correctness: S ⊆ [k]. We have the following observations:

1. If |Ω4, 1
16
, 13
16
| ≥ k, then there must be i ∈ Ω4, 1

16
, 13
16

with θi ≤ θk. By Corollary 8.4.1, since

13
16
≥ 33

32
· 3

4
, we know that [k] ⊆ Ω4, 1

16
, 3
4
.

2. If there exists j ∈ Ω4, 1
16
, 7
8

such that j /∈ [k], then by θj ≤ θk, apply Corollary 8.4.1 with

7
8
≥ 33

32
· 13

16
, we know that [k] ⊆ Ω4, 1

16
, 13
16

, which implies |Ω4, 1
16
, 13
16
| ≥ k. Therefore, we

will not include any item that is not top k to S when recursing from Line 7.

These two observations immediately imply S ⊆ [k].

Now, we will show that for sufficiently large Q, either of the two conditions hold:

1. For every i ∈ Ω′, θi ≤ 512θ 7
8
|Ω′|.

2. Or k′ ≥ 1
2
|Ω′|.

Let us for notation simplicity drop the ′ here. Clearly, we just need to consider the case

when k < 1
2
m, otherwise, the algorithm will just terminate and the second condition is true.

We will first prove that θi ≤ 64θk and then we prove that θk ≤ 8θ 7
8
m.

208

1. To prove θi ≤ 64θk, we suppose on the contrary that θ1 > 64θk. Apply Corollary 8.4.1

with q = Q = Ω

(
α +

2αl(
∑
j≥1 θj)

mθ1

)
, we have that 1 ∈ Ω32, 1

16
, 3
4
, which implies that

|Ω32, 1
4
, 13
16
| > 0, so the algorithm won’t terminate, contradict.

2. Now, we need to show that θk ≤ 8θ 7
8
n. We also on the contrary suppose that θk >

8θ 7
8
m. Since the algorithm termniates, by the previous claim, we know that in the last

recursion, it must be the case that θ1 ≤ 64θk. Which implies that

Q = Ω

α +
2αl

(
kθk +

∑
j≥k θj

)
mθk


= Ω

α +
2αl

(∑
j≥1 θj

)
mθk


Therefore, if θk > 8θ 7

8
m, then by Corollary 8.4.1 we know that [k] ⊆ Ω4, 1

16
, 3
4
, so the

algorithm won’t terminate.

Finally, we consider about the total number of recursions. Clearly, if the algorithm

recurses through the second case, then |Ω′| ≤ 15
16
|Ω|. If the algorithm recurses through the

first case, then by Corollary 8.4.1, it must be the case that

θ1 ≥ 16θ 7
8
m

Which implies that for all i with θi ≥ θ1
2
≥ 8θ 7

8
m, i ∈ Ω4, 1

16
, 7
8
.

Therefore, the total number of recursions of the algorithm is bounded by O(logm). So

the total number of queries of the algorithm is:

O

α +
2αl

(
kθk +

∑
j≥k θj

)
mθk

× κm

l
×O(logm)

= Õ

(
m

l
+ k +

∑
j≥k θj

θk

)

209

Remark: How to obtain the value Q: In the proof above we assumed that we have an

aprior estimation of the value of Q. We can replace this assumption by initially setting Q

to be Q = Q0 = 1, and run algorithm 14 with Q0 queries and then run the algorithm with

pairwise comparision. Once the later algorithm requires more than Q0 × n
l

queries, then we

stop it, set Q1 = 2Q0 and repeat this procedure with Q = Q1. We keep on repeating this

for Q2 = 2Q1, Q3 = 2Q2, · · · until the later algorithm requires less than Qi × n
l

queries.

By the Lemma we just proved, the output of the algorithm is correct for every Q. More-

over, if

Q× n

l
= Ω̃

(
n

l
+ k +

∑
i≥k+1 θi

θk
+

∑
i≥k+1,θi≥

θk
2

θ2
k

(θk − θi)2
+

k∑
i=1

θ2
k+1

(θk+1 − θi)2

)

Then this process will terminate, and the total query complexity is then bounded by

Õ
(
Q× n

l

)
.

8.5 Proofs of Lower Bounds

8.5.1 Lower bounds for close weights

Theorem 8.5.1 (Restatement of Theorem 8.3.1). Assume θk > θk+1 and c < 10−4. For

any algorithm A (can be adaptive), if A uses c
∑

i:k+1≤i,θi≥θk/2
θ2
k

(θk−θi)2 comparisons of any

size (can be l-wise comparison for 2 ≤ l ≤ n), then A will identify the top-k items with

probability at most 7/8.

Proof. For notation convenience, we set wi =
θ2
k

(θk−θi)2 for i such that i ≥ k+ 1 and θi ≥ θk/2.

For other i, we set wi = 0. We also set W =
∑n

i=1 wi. Then we have T = cW .

210

First of all, we can assume A is deterministic. This is because if A is randomized, we can

fix the randomness string which makes A achieves the highest successful probability.

Let S = (S1, ..., ST) be the history of algorithm. Each St is the comparison result of

round t. Notice that since A is deterministic, with S1, ..., St, we can determine the labels of

items A want to compare in round t + 1 even when A is adaptive. So there is no point to

put the labels of compared items in the history. So we only put the comparison result in the

history, i.e St is a number in [n] and S is a length-T string of numbers in [n].

Again since A is deterministic, the label A outputs is just a deterministic function of S,

we use A(S) to denote it. A outputs correctly if A outputs the label of the top-k items, i.e.

A(S) = {π1, ..., πk}.

We use p(S, π) to denote the probability that the items are labeled as π and A has history

S. Now consider the case when we set θi equals to θk for i ≥ k+1. In this case the probability

of A(S) = {π1, ..., πk} should be at most 1/2 as item k and item i have the same weight. We

use pi(S, π) to denote the probability that the items are labeled as π and A has history S

when θi is changed to θk.

Now we prove the following lemma that gives the connection between p(S, π) and pi(S, π).

Lemma 8.5.1. Consider p as a distribution over (π, S). For all c1 > 0, we have

Pr
(π,S)∼p

[(
n∑
i=1

wi
W

ln
pi(S, π)

p(S, π)

)
≤ −c1

]

≤ exp

(
−(c1 − 4c)2

72c

)
.

Proof. Define random variable Zt to be the following for t = 1, ..., T when (π, S) is sampled

from distribution p:

Zt =
n∑
i=1

wi
W

ln
pi(S1...St, π)

p(S1...St, π)
.

We have

ZT =
n∑
i=1

wi
W

ln
pi(S, π)

p(S, π)
.

211

Now we want to show that sequence 0, Z1+ 4
W
, ..., Zt+

4t
W
, ..., ZT + 4T

W
forms a supermartingale.

Suppose in round t, given S1, ..., St−1 and π, Algorithm A compares items in set Ut. Let

θ−i =
∑

j∈Ut,j 6=i θi. Then we have, with probability θi/(θi + θ−i),

Zt − Zt−1 =
wi
W

ln

(
1 +

(θk − θi)θ−i
(θk + θ−i)θi

)
+

∑
j∈Ut,j 6=i

wj
W

ln

(
1− θk − θj

θk + θ−j

)

Here are two simple facts about ln. For 0 ≤ x ≤ 1, ln(1 + x) ≥ x − x2. For 0 ≤ x ≤ 1/2,

ln(1 − x) ≥ −x − x2. It’s easy to check that for i such that wi > 0, we have (θk−θi)θ−i
(θk+θ−i)θi

≤ 1

and θk−θi
θk+θ−i

≤ 1/2 . Therefore, by these two facts, for i such that wi > 0, we have

θi
θi + θ−i

wi ln

(
1 +

(θk − θi)θ−i
(θk + θ−i)θi

)
+

θ−i
θi + θ−i

wi ln

(
1− θk − θi

θk + θ−i

)
≥ wi

θi + θ−i

((θk − θi)θ−i
θk + θ−i

−
(θk − θi)2θ2

−i

(θk + θ−i)2θi

−(θk − θi)θ−i
θk + θ−i

− (θk − θi)2θ−i
(θk + θ−i)2

)
= −wi

(θk − θi)2θ−i
(θk + θ−i)2θi

= − θ−iθ
2
k

(θk + θ−i)2θi

≥ − 2θ−iθk
(θk + θ−i)2

≥ − 4θi
θk + θ−i

≥ − 4θi
θi + θ−i

.

Therefore we have for all t and S1, ..., St−1,

E[Zt − Zt−1|S1, ..., St−1] ≥ −
∑
i∈Ut

4θi
W (θi + θ−i)

≥ − 4

W
.

212

As Z1, ..., Zt−1 can be determined by S1, ..., St−1, we have for all t and Z1, ..., Zt−1,

E

[(
Zt +

4t

W

)
−
(
Zt−1 +

4(t− 1)

W

)
|Z1 −

4

W
, ...,

Zt−1 −
4(t− 1)

W

]
≥ 0.

Therefore sequence 0, Z1 + 4
W
, ..., Zt + 4t

W
, ..., ZT + 4T

W
forms a supermartingale.

Now we want to bound |Zt−Zt−1|. We know that for 0 ≤ x ≤ 1, | ln(1 + x)| ≤ x and for

0 ≤ x ≤ 1/2, | ln(1− x)| ≤ 2|x|. Therefore for i such that wi > 0,

|wi
W

ln

(
1 +

(θk − θi)θ−i
(θk + θ−i)θi

)
| ≤ wi

W
· (θk − θi)θ−i

(θk + θ−i)θi

≤ θ2
kθ−i

Wθi(θk − θi)(θk + θ−i)
≤ 2θk
W (θk − θk+1)

and

|wi
W

ln

(
1− θk − θi

θk + θ−i

)
| ≤ wi

W
· 2(θk − θi)
θk + θ−i

=
2θ2

k

W (θk − θi)(θk + θ−i)
≤ 4θk
W (θk − θk+1)

· θi
θi + θ−i

.

Therefore, we get

|Zt − Zt−1| ≤
2θk

W (θk − θk+1)
+
∑
i∈Ut

4θk
W (θk − θk+1)

·

θi
θi + θ−i

≤ 6θk
W (θk − θk+1)

.

Also notice that (
θk

(θk − θk+1)

)2

≤ wk+1 ≤ W.

213

Now by Azuma’s inequality, we have

Pr
(π,S)∼p

[ZT ≤ −c1]

≤ exp

(
−

(c1 − 4T
W

)2

2T (6θk
W (θk−θk+1)

)2

)

= exp

(
−(c1 − 4c)2(θk − θk+1)2W

72 · c · θ2
k

)
≤ exp

(
−(c1 − 4c)2

72c

)
.

Finally we are going to use Lemma 8.5.1 with c1 = 1/3. We define V as indicator function

of the event
∑n

i=1
wi
W

ln pi(S,π)
p(S,π)

≥ −c1, i.e.

1. V = 1 if
∑n

i=1
wi
W

ln pi(S,π)
p(S,π)

≥ −c1.

2. V = 0, otherwise.

214

The probability that A identify the top item can be written as

Pr
(π,S)∼p

[A(S) = {π1, ..., πk}]

= Pr
(π,S)∼p

[(A(S) = {π1, ..., πk}) ∧ (V = 0)] +

Pr
(π,S)∼p

[(A(S) = π1) ∧ (V = 1)]

≤ Pr
(π,S)∼p

[V = 0] +
∑

(π,S):A(S)={π1,...,πk},V=1

p(S, π)

≤ exp

(
−(c1 − 4c)2

72c

)
+

∑
(π,S):A(S)={π1,...,πk},V=1(

ec1
n∏
i=1

pi(S, π)
wi
W

)

≤ exp

(
−(c1 − 4c)2

72c

)
+

∑
(π,S):A(S)={π1,...,πk},V=1(

ec1
n∑
i=1

wi
W
· pi(S, π)

)

≤ exp

(
−(c1 − 4c)2

72c

)
+ ec1

n∑
i=1

wi
W

Pr
(π,S)∼pi

[(A(S) = {π1, ..., πk}) ∧ (V = 1)]

≤ exp

(
−(c1 − 4c)2

72c

)
+ ec1

n∑
i=1

wi
W

Pr
(π,S)∼pi

[A(S) = {π1, ..., πk}]

≤ exp

(
−(c1 − 4c)2

72c

)
+ ec1

n∑
i=1

wi
W
· 1

2

≤ exp

(
−(c1 − 4c)2

72c

)
+
ec1

2

≤ exp

(
−(1/3− 4c)2

72c

)
+

3

4

≤ 1

8
+

3

4
=

7

8
.

The last step comes from the fact that c < 10−4.

215

The following theorem is very similar to Theorem 8.3.1. For some technical reason, it’s

not very easy to merge the two proofs. But many parts of proofs of these two theorems are

very similar.

Theorem 8.5.2 (Restatement of Theorem 8.3.2). Assume θk > θk+1 and c < 4 · 10−4. For

any algorithm A (can be adaptive), if A uses c
∑

i:i≤k,θi≤2θk+1

θ2
k+1

(θk+1−θi)2 comparisons of any

size (can be l-wise comparison for 2 ≤ l ≤ n), then A will identify the top-k items with

probability at most 7/8.

Proof. For notation convenience, we set wi =
θ2
k+1

(θk+1−θi)2 for i such that i ≤ k and θi ≤ 2θk+1.

For other i, we set wi = 0. We also set W =
∑n

i=1 wi. Then we have T = cW .

First of all, we can assume A is deterministic. This is because if A is randomized, we can

fix the randomness string which makes A achieves the highest successful probability.

Let S = (S1, ..., ST) be the history of algorithm. Each St is the comparison result of

round t. Notice that since A is deterministic, with S1, ..., St, we can determine the labels of

items A want to compare in round t + 1 even when A is adaptive. So there is no point to

put the labels of compared items in the history. So we only put the comparison result in the

history, i.e St is a number in [n] and S is a length-T string of numbers in [n].

Again since A is deterministic, the label A outputs is just a deterministic function of S,

we use A(S) to denote it. A outputs correctly if A outputs the label of the top-k items, i.e.

A(S) = {π1, ..., πk}.

We use p(S, π) to denote the probability that the items are labeled as π and A has history

S. Now consider the case when we set θi equals to θk+1 for i ≤ k. In this case the probability

of A(S) = {π1, ..., πk} should be at most 1/2 as item k+ 1 and item i have the same weight.

We use pi(S, π) to denote the probability that the items are labeled as π and A has history

S when θi is changed to θk+1.

Now we prove the following lemma that gives the connection between p(S, π) and pi(S, π).

216

Lemma 8.5.2. Consider p as a distribution over (π, S). For all c1 > 0, we have

Pr
(π,S)∼p

[(
n∑
i=1

wi
W

ln
pi(S, π)

p(S, π)

)
≤ −c1

]

≤ exp

(
−(c1 − c)2

18c

)
.

Proof. Define random variable Zt to be the following for t = 1, ..., T when (π, S) is sampled

from distribution p:

Zt =
n∑
i=1

wi
W

ln
pi(S1...St, π)

p(S1...St, π)
.

We have

ZT =
n∑
i=1

wi
W

ln
pi(S, π)

p(S, π)
.

Now we want to show that sequence 0, Z1 + 1
W
, ..., Zt+

t
W
, ..., ZT + T

W
forms a supermartigale.

Suppose in round t, given S1, ..., St−1 and π, Algorithm A compares items in set Ut. Let

θ−i =
∑

j∈Ut,j 6=i θi. Then we have, with probability θi/(θi + θ−i),

Zt − Zt−1 =
wi
W

ln

(
1− (θi − θk+1)θ−i

(θk+1 + θ−i)θi

)
+

∑
j∈Ut,j 6=i

wj
W

ln

(
1 +

θj − θk+1

θk+1 + θ−j

)

Here are two simple facts about ln. For 0 ≤ x ≤ 1, ln(1 + x) ≥ x − x2. For 0 ≤ x ≤ 1/2,

ln(1−x) ≥ −x−x2. It’s easy to check that for i such that wi > 0, we have (θi−θk+1)θ−i
(θk+1+θ−i)θi

≤ 1/2

217

and θi−θk+1

θk+1+θ−i
≤ 1 . Therefore, by these two facts, for i such that wi > 0, we have

θi
θi + θ−i

wi ln

(
1− (θi − θk+1)θ−i

(θk+1 + θ−i)θi

)
+

θ−i
θi + θ−i

wi ln

(
1 +

θi − θk+1

θk+1 + θ−i

)
≥ wi

θi + θ−i

(
−(θi − θk+1)θ−i

θk+1 + θ−i
−

(θi − θk+1)2θ2
−i

(θk+1 + θ−i)2θi
+

(θi − θk+1)θ−i
θk+1 + θ−i

− (θi − θk+1)2θ−i
(θk+1 + θ−i)2

)
= −wi

(θk+1 − θi)2θ−i
(θk+1 + θ−i)2θi

= −
θ−iθ

2
k+1

(θk+1 + θ−i)2θi

≥ −
θ2
k+1

(θk+1 + θ−i)θi
≥ − θi

θi + θ−i
.

The last step comes from the fact that

θ2
k+1(θi + θ−i) ≤ θ2

i (θk+1 + θ−i).

Therefore we have for all t and S1, ..., St−1,

E[Zt − Zt−1|S1, ..., St−1] ≥ −
∑
i∈Ut

θi
W (θi + θ−i)

≥ − 1

W
.

As Z1, ..., Zt−1 can be determined by S1, ..., St−1, we have for all t and Z1, ..., Zt−1,

E

[(
Zt +

t

W

)
−
(
Zt−1 +

t− 1

W

)
|Z1 −

1

W
, ...,

Zt−1 −
t− 1

W

]
≥ 0.

Therefore sequence 0, Z1 + 1
W
, ..., Zt + t

W
, ..., ZT + T

W
forms a supermartingale.

218

Now we want to bound |Zt−Zt−1|. We know that for 0 ≤ x ≤ 1, | ln(1 + x)| ≤ x and for

0 ≤ x ≤ 1/2, | ln(1− x)| ≤ 2|x|. Therefore for i such that wi > 0,

|wi
W

ln

(
1− (θi − θk+1)θ−i

(θk+1 + θ−i)θi

)
| ≤ wi

W
· 2(θi − θk+1)θ−i

(θk+1 + θ−i)θi

≤
2θ2

k+1θ−i

Wθi(θi − θk+1)(θk+1 + θ−i)
≤ 2θk+1

W (θk − θk+1)

and

|wi
W

ln

(
1 +

θi − θk+1

θk+1 + θ−i

)
| ≤ wi

W
· θi − θk+1

θk+1 + θ−i
=

θ2
k+1

W (θi − θk+1)(θk+1 + θ−i)
≤ θk+1

W (θk − θk+1)
· θi
θi + θ−i

.

Therefore, we get

|Zt − Zt−1| ≤
2θk+1

W (θk − θk+1)
+
∑
i∈Ut

θk+1

W (θk − θk+1)
·

θi
θi + θ−i

≤ 3θk+1

W (θk − θk+1)
.

Also notice that (
θk+1

(θk − θk+1)

)2

≤ wk ≤ W.

Now by Azuma’s inequality, we have

Pr
(π,S)∼p

[ZT ≤ −c1]

≤ exp

(
−

(c1 − T
W

)2

2T (3θk+1

W (θk−θk+1)
)2

)

= exp

(
−(c1 − c)2(θk − θk+1)2W

18 · c · θ2
k+1

)
≤ exp

(
−(c1 − c)2

18c

)
.

219

After we prove Lemma 8.5.2, the rest of the proof is very similar to Theorem 8.3.1. We

omit the argument.

8.5.2 Lower bounds for arbitrary weights

Again, the following theorem is very similar to Theorem 8.3.1.

Theorem 8.5.3 (Restatement of Theorem 8.3.3). Assume c < 1/18. For any algorithm A

(can be adaptive), if A uses c
∑

i:i>k
θi
θk

comparisons of any size (can be l-wise comparison

for 2 ≤ l ≤ n), then A will identify the top-k items with probability at most 7/8.

Proof. For notation convenience, we set wi = θi
θk

for i > k. For i ≤ k, we set wi = 0. We

also set W =
∑n

i=1 wi. Then we have T = cW .

First of all, we can assume A is deterministic. This is because if A is randomized, we can

fix the randomness string which makes A achieves the highest successful probability.

Let S = (S1, ..., ST) be the history of algorithm. Each St is the comparison result of

round t. Notice that since A is deterministic, with S1, ..., St, we can determine the labels of

items A want to compare in round t + 1 even when A is adaptive. So there is no point to

put the labels of compared items in the history. So we only put the comparison result in the

history, i.e St is a number in [n] and S is a length-T string of numbers in [n].

Again since A is deterministic, the label A outputs is just a deterministic function of S,

we use A(S) to denote it. A outputs correctly if A outputs the label of the top-k items, i.e.

A(S) = {π1, ..., πk}.

We use p(S, π) to denote the probability that the items are labeled as π and A has history

S. Now consider the case when we set θi equals to θk for i > k. In this case the probability

of A(S) = {π1, ..., πk} should be at most 1/2 as item k and item i have the same weight. We

use pi(S, π) to denote the probability that the items are labeled as π and A has history S

when θi is changed to θk.

220

Now we prove the following lemma that gives the connection between p(S, π) and pi(S, π).

Lemma 8.5.3. Consider p as a distribution over (π, S). For all c1 > 0, we have

Pr
(π,S)∼p

[(
n∑
i=1

wi
W

ln
pi(S, π)

p(S, π)

)
≤ −c1

]

≤ exp

(
−(c1/c− 1)2T

8

)
.

Proof. Define random variable Zt to be the following for t = 1, ..., T when (π, S) is sampled

from distribution p:

Zt =
n∑
i=1

wi
W

ln
pi(S1...St, π)

p(S1...St, π)
.

We have

ZT =
n∑
i=1

wi
W

ln
pi(S, π)

p(S, π)
.

Now we want to show that sequence 0, Z1+ 1
W
, ..., Zt+

t
W
, ..., ZT + T

W
forms a supermartingale.

Suppose in round t, given S1, ..., St−1 and π, Algorithm A compares items in set Ut. Let

θ−i =
∑

j∈Ut,j 6=i θi. Then we have, with probability θi/(θi + θ−i),

Zt − Zt−1

=
wi
W

ln

(
1 +

(θk − θi)θ−i
(θk + θ−i)θi

)
+

∑
j∈Ut,j 6=i

wj
W

ln

(
1− θk − θj

θk + θ−j

)
= −wi

W
ln

(
1− (θk − θi)θ−i

(θi + θ−i)θk

)
−

∑
j∈Ut,j 6=i

wj
W

ln

(
1 +

θk − θj
θj + θ−j

)

221

We are going to use a simple fact about ln: for all x > −1, ln(1 + x) ≤ x.

−
(

θi
θi + θ−i

wi ln

(
1− (θk − θi)θ−i

(θi + θ−i)θk

)
+

θ−i
θi + θ−i

wi ln

(
1 +

θk − θi
θi + θ−i

))
≥ − wi

θi + θ−i

(
−(θk − θi)θ−iθi

(θi + θ−i)θk
+

(θk − θi)θ−i
θi + θ−i

)
= −(θk − θi)2θ−iθi

(θi + θ−i)2θ2
k

≥ − θi
θi + θ−i

.

Therefore we have for all t and S1, ..., St−1,

E[Zt − Zt−1|S1, ..., St−1] ≥ −
∑
i∈Ut

θi
W (θi + θ−i)

≥ − 1

W
.

As Z1, ..., Zt−1 can be determined by S1, ..., St−1, we have for all t and Z1, ..., Zt−1,

E

[(
Zt +

t

W

)
−
(
Zt−1 +

t− 1

W

)
|Z1 −

1

W
, ...,

Zt−1 −
t− 1

W

]
≥ 0.

Therefore sequence 0, Z1 + 1
W
, ..., Zt + t

W
, ..., ZT + T

W
forms a supermartingale.

Now we want to bound |Zt − Zt−1|. We know that for 0 ≤ x, | ln(1 + x)| ≤ x. Therefore

for i such that wi > 0,

|wi
W

ln

(
1 +

(θk − θi)θ−i
(θk + θ−i)θi

)
| ≤ wi

W
· (θk − θi)θ−i

(θk + θ−i)θi

≤ (θk − θi)θ−i
W (θk + θ−i)θk

≤ 1

W

222

and

|wi
W

ln

(
1 +

θk − θi
θi + θ−i

)
| ≤ wi(θk − θi)

W (θi + θ−i)

=
θi(θk − θi)

Wθk(θi + θ−i)
≤ 1

W
· θi
θi + θ−i

.

Therefore, we get

|Zt − Zt−1| ≤
1

W
+
∑
i∈Ut

1

W
· θi
θi + θ−i

≤ 2

W
.

Now by Azuma’s inequality, we have

Pr
(π,S)∼p

[ZT ≤ −c1] ≤ exp

(
−

(c1 − T
W

)2

2T (2
W

)2

)

= exp

(
−(c1/c− 1)2T

8

)
.

After we prove Lemma 8.5.3, the rest of the proof is very similar to Theorem 8.3.1 by

picking c1 = 1/3. We omit the argument.

Theorem 8.5.4 (Restatement of Theorem 8.3.4). For any algorithm A (can be adaptive),

if A uses k/4 comparisons of any size (can be l-wise comparison for 2 ≤ l ≤ n), then A will

identify the top-k items with probability at most 2/3.

Proof. First of all, we can assume A is deterministic. This is because if A is randomized, we

can fix the randomness string which makes A achieves the highest successful probability.

Let S = (S1, ..., ST) be the history of algorithm. Each St is the comparison result of

round t. Notice that since A is deterministic, with S1, ..., St, we can determine the labels of

items A want to compare in round t + 1 even when A is adaptive. So there is no point to

put the labels of compared items in the history. So we only put the comparison result in the

history, i.e St is a number in [n] and S is a length-T string of numbers in [n].

223

Again since A is deterministic, the label A outputs is just a deterministic function of S,

we use A(S) to denote it. A outputs correctly if A outputs the label of the top-k items, i.e.

A(S) = {π1, ..., πk}.

We use p(S, π) to denote the probability that the items are labeled as π and A has history

S. Now consider the case when we set θi equals to θk+1 for i ≤ k. In this case the probability

of A(S) = {π1, ..., πk} should be at most 1/2 as item k+ 1 and item i have the same weight.

We use pi(S, π) to denote the probability that the items are labeled as π and A has history

S when θi is changed to θk+1.

We define N(π, S) as the set of items among top-k items such that they are not chosen

as the favorite items by algorithm A in history S with labels π. As there are only k/4

comparisons, N(π, S) ≤ 3/4 for all π, S.

Now we prove the following simple lemma that gives the connection between p(S, π) and

pi(S, π) for all i ∈ N(π, S).

Lemma 8.5.4.

∀π, S, i ∈ N(π, S), pi(S, π) ≥ p(S, π).

Proof. We write p(S, π) as

p(S, π) =
T∏
t=1

p(St, π|S1...St−1).

And similarly pi(S, π) as

pi(S, π) =
T∏
t=1

pi(St, π|S1...St−1).

Consider the comparison in round t given S1, S2, ..., St, π. There are two cases

1. i-th item is not compared in round t: The change of θi does not change p(St, π|S1...St−1).

So p(St, π|S1...St−1) = pi(St, π|S1...St−1).

224

2. i-th item is compared in round t: We know the i-th item is not the favorite item of

round t in this history. Therefore decreasing θi to θk+1 will increase p(St, π|S1...St−1).

So p(St, π|S1...St−1) ≤ pi(St, π|S1...St−1).

Thus we always have p(St, π|S1...St−1) ≤ pi(St, π|S1...St−1). By multiplying things together

we get the statement of this lemma.

Finally we have

Pr
(π,S)∼p

[A(S) = {π1, ..., πk}]

=
∑

π,S,A(S)={π1,...,πk}

p(π, S)

≤
∑

π,S,A(S)={π1,...,πk}

1

|N(π, S)|
∑

i∈N(π,S)

pi(π, S)

≤
∑

π,S,A(S)={π1,...,πk}

1

|N(π, S)|
∑

i∈{1,...,k}

pi(π, S)

≤
∑

π,S,A(S)={π1,...,πk}

4

3k

∑
i∈{1,...,k}

pi(π, S)

=
4

3k

∑
i∈{1,...,k}

∑
π,S,A(S)={π1,...,πk}

pi(π, S)

≤ 4

3k

∑
i∈{1,...,k}

1

2

=
2

3
.

Theorem 8.5.5 (Restatement of Theorem 8.3.5). Assume c < 1/2. For any algorithm A

(can be adaptive), if A uses cn
l

comparisons of size at most l (can be 2-wise, 3-wise,...,l-wise

comparisons), then A will identify the top-k items with probability at most 7/8.

Proof. We are going to prove by contradiction. Suppose there’s some A uses cn
l

comparisons

of size at most l and identify the top-k items with probability more than 7/8.

225

Now consider another task where the goal is just to make sure k-th item appeared in

some comparison or (k + 1)-th item appeared in some comparison. Notice that when some

algorithm fails this new task, then the algorithm cannot output top-k items with probability

better than 1/2 because when both k-th item and (k+ 1)-th item are not compared, the al-

gorithm should output them with same probability for identifying top-k items. So algorithm

A should solve the new task with probability more than 3/4.

For the new task, it’s easy to see that the best strategy is to always use l-wise comparison

and compare cn
l
· l different items. The probability of having either k-th item or (k + 1)-th

item compared is

1−
(

1− 2

n

)cn
≤ 1− 1

42c
≤ 3/4.

Here we need to use the fact that n ≥ 4 (when n < 4, the statement of the theorem is

trivial). Now we get a contradiction.

226

Bibliography

[1] N. Ailon. Active learning ranking from pairwise preferences with almost optimal query
complexity. In Proceedings of the Advances in Neural Information Processing Systems
(NIPS), 2011.

[2] N Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: ranking
and clustering. Journal of the ACM, 55(5):23:1–23:27, 2008.

[3] M Ajtai, J Komlos, W L Steiger, and E Szemeredi. Deterministic selection in o(loglog
n) parallel time. In Proceedings of the Eighteenth Annual ACM Symposium on Theory
of Computing, STOC ’86, pages 188–195, New York, NY, USA, 1986. ACM.

[4] Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n log n) sorting network.
In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27
April, 1983, Boston, Massachusetts, USA, pages 1–9, 1983.

[5] Noga Alon and Yossi Azar. The average complexity of deterministic and randomized
parallel comparison-sorting algorithms. SIAM J. Comput., 17(6):1178–1192, 1988.

[6] Noga Alon and Yossi Azar. Sorting, approximate sorting, and searching in rounds.
SIAM J. Discrete Math., 1(3):269–280, 1988.

[7] Noga Alon, Yossi Azar, and Uzi Vishkin. Tight complexity bounds for parallel com-
parison sorting. In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 502–510, 1986.

[8] Noga Alon, Noam Nisan, Ran Raz, and Omri Weinstein. Welfare maximization with
limited interaction. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1499–1512,
2015.

[9] Kareem Amin, Afshin Rostamizadeh, and Umar Syed. Learning prices for repeated
auctions with strategic buyers. In Advances in Neural Information Processing Systems,
pages 1169–1177, 2013.

[10] Kareem Amin, Afshin Rostamizadeh, and Umar Syed. Repeated contextual auctions
with strategic buyers. In Advances in Neural Information Processing Systems, pages
622–630, 2014.

227

[11] Masaki Aoyagi. Bid rotation and collusion in repeated auctions. Journal of Economic
Theory, 112(1):79–105, 2003.

[12] Masaki Aoyagi. Efficient collusion in repeated auctions with communication. Journal
of Economic Theory, 134(1):61–92, 2007.

[13] Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an
adaptive adversary: from regret to policy regret. In John Langford and Joelle Pineau,
editors, Proceedings of the 29th International Conference on Machine Learning (ICML-
12), pages 1503–1510, New York, NY, USA, 2012. ACM.

[14] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing, 8(6):121–164,
2012.

[15] Itai Ashlagi, Constantinos Daskalakis, and Nima Haghpanah. Sequential mechanisms
with ex-post participation guarantees. In Proceedings of the 2016 ACM Conference on
Economics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016,
pages 213–214, 2016.

[16] Sepehr Assadi. Combinatorial auctions do need modest interaction. manuscript, 2017.

[17] Susan Athey and Kyle Bagwell. Optimal collusion with private information. RAND
Journal of Economics, 32(3):428–65, 2001.

[18] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The non-
stochastic multiarmed bandit problem. SIAM J. Comput., 32(1):48–77, January 2003.

[19] László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V. Lokam. Communi-
cation complexity of simultaneous messages. SIAM J. Comput., 33(1):137–166, 2003.

[20] Moshe Babaioff, Robert D. Kleinberg, and Aleksandrs Slivkins. Truthful mechanisms
with implicit payment computation. In Proceedings of the 11th ACM Conference on
Electronic Commerce, EC ’10, pages 43–52, New York, NY, USA, 2010. ACM.

[21] Moshe Babaioff, Brendan Lucier, Noam Nisan, and Renato Paes Leme. On the effi-
ciency of the walrasian mechanism. In the 16th Annual ACM Conference on Economics
and Computation (EC), 2014.

[22] Moshe Babaioff, Yogeshwer Sharma, and Aleksandrs Slivkins. Characterizing truthful
multi-armed bandit mechanisms: Extended abstract. In Proceedings of the 10th ACM
Conference on Electronic Commerce, EC ’09, pages 79–88, New York, NY, USA, 2009.
ACM.

[23] Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam
Nisan, and Tim Roughgarden. Sketching valuation functions. In Proceedings of
the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12,
pages 1025–1035, Philadelphia, PA, USA, 2012. Society for Industrial and Applied
Mathematics.

228

[24] T. P. Ballinger and N. T. Wilcox. Decisions, error and heterogeneity. The Economic
Journal, 107(443):1090–1105, 1997.

[25] Xiaohui Bei and Zhiyi Huang. Bayesian Incentive Compatibility via Fractional Assign-
ments. In the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2011.

[26] Dirk Bergemann and Juuso Vlimki. Learning and strategic pricing. Econometrica,
64(5):1125–49, 1996.

[27] Kshipra Bhawalkar and Tim Roughgarden. Welfare guarantees for combinatorial auc-
tions with item bidding. In Proceedings of the Twenty-second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’11, pages 700–709, Philadelphia, PA, USA,
2011. Society for Industrial and Applied Mathematics.

[28] Avrim Blum and Yishay Mansour. From external to internal regret. Journal of Machine
Learning Research, 8:1307–1324, 2007.

[29] Manuel Blum, Robert W. Floyd, Vaughan Ronald Pratt, Ronald L. Rivest, and
Robert Endre Tarjan. Time bounds for selection. Journal of Computer and System
Sciences, 7(4):448–461, 1973.

[30] Béla Bollobás and Graham Brightwell. Parallel selection with high probability. SIAM
J. Discrete Math., 3(1):21–31, 1990.

[31] Béla Bollobás and Pavol Hell. Sorting and graphs. In Ivan Rival, editor, Graphs and
Order, volume 147 of NATO ASI Series, pages 169–184. Springer Netherlands, 1985.

[32] Béla Bollobás and Andrew Thomason. Parallel sorting. Discrete Applied Mathematics,
6(1):1 – 11, 1983.

[33] R. Bradley and M. Terry. Rank analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[34] M. Braverman, J. Mao, and M. S. Weinberg. Parallel algorithms for select and partition
with noisy comparisons. In Proccedings of the Annual Symposium on the Theory of
Computing (STOC), 2016.

[35] M. Braverman and E. Mossel. Noisy sorting without resampling. In Proceedings of the
ACM-SIAM symposium on discrete algorithms (SODA), 2008.

[36] Mark Braverman, Jieming Mao, Jon Schneider, and S. Matthew Wein-
berg. Multi-armed bandit problems with strategic arms. In Submission,
https://arxiv.org/abs/1706.09060, 2017.

[37] Mark Braverman, Jieming Mao, Jon Schneider, and S. Matthew Weinberg. Selling to
a no-regret buyer. EC, 2018.

229

[38] Mark Braverman, Jieming Mao, and S. Matthew Weinberg. Interpolating between
truthful and non-truthful mechanisms for combinatorial auctions. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’16, pages 1444–1457, Philadelphia, PA, USA, 2016. Society for Industrial and Applied
Mathematics.

[39] Mark Braverman, Jieming Mao, and S. Matthew Weinberg. On simultaneous two-
player combinatorial auctions. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, 2018.

[40] Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In Proceed-
ings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’08, pages 268–276, Philadelphia, PA, USA, 2008. Society for Industrial and Applied
Mathematics.

[41] Mark Braverman and Elchanan Mossel. Sorting from noisy information. CoRR,
abs/0910.1191, 2009.

[42] Glenn W. Brier. Verification of forecasts expressed in terms of probability. Monthly
Weather Review, 78(1):1–3, 1950.

[43] Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques for
utilitarian mechanism design. In Proceedings of the Thirty-seventh Annual ACM Sym-
posium on Theory of Computing, STOC ’05, pages 39–48, New York, NY, USA, 2005.
ACM.

[44] Sebastian Bubeck, Tengyao Wang, and Nitin Viswanathan. Multiple identifications
in multi-armed bandits. In Proceedings of the International Conference on Machine
Learning (ICML), 2013.

[45] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends in Machine Learn-
ing, 5(1):1–122, 2012.

[46] Róbert Busa-Fekete, Balázs Szörényi, Weiwei Cheng, Paul Weng, and Eyke
Hüllermeier. Top-k selection based on adaptive sampling of noisy preferences. In
Proceedings of the 30th International Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16-21 June 2013, pages 1094–1102, 2013.

[47] Yang Cai and Constantinos Daskalakis. Learning multi-item auctions with (or without)
samples. In FOCS, 2017.

[48] Yang Cai and Christos H. Papadimitriou. Simultaneous bayesian auctions and com-
putational complexity. In ACM Conference on Economics and Computation, EC ’14,
Stanford , CA, USA, June 8-12, 2014, pages 895–910, 2014.

[49] E. J. Candés. Modern statistical estimation via oracle inequalities. Acta Numerica,
15:257–325, 2006.

230

[50] Andrew Caplin and Barry Nalebuff. Aggregation and social choice: A mean voter
theorem. Econometrica, 59(1):1–23, 1991.

[51] Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-party protocols.
In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27
April, 1983, Boston, Massachusetts, USA, pages 94–99, 1983.

[52] Sylvain Chassang. Calibrated incentive contracts. Econometrica, 81(5):1935–1971,
2013.

[53] Sabyasachi Chatterjee, Adityanand Guntuboyina, and Bodhisattva Sen. On risk
bounds in isotonic and other shape restricted regression problems. 43(4):1774–1800,
2014.

[54] Sabyasachi Chatterjee, Adityanand Guntuboyina, and Bodhisattva Sen. On matrix
estimation under monotonicity constraints. arXiv preprint arXiv:1506.03430, 2015.

[55] J. Chen, X. Chen, Q. Zhang, and Y. Zhou. Adaptive multiple-arm identification. In
Proceedings of International Conference on Machine Learning (ICML), 2017.

[56] X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz. Pairwise ranking
aggregation in a crowdsourced setting. In Proceedings of the sixth ACM international
conference on Web search and data mining, 2013.

[57] X. Chen, S. Gopi, J. Mao, and J. Schneider. Competitive analysis of the top-k ranking
problem. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
2017.

[58] Xi Chen, Paul N. Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pairwise
ranking aggregation in a crowdsourced setting. In Proceedings of the Sixth ACM In-
ternational Conference on Web Search and Data Mining, WSDM ’13, pages 193–202,
New York, NY, USA, 2013. ACM.

[59] Xi Chen, Yuanzhi Li, and Jieming Mao. A nearly instance optimal algorithm for top-
k ranking under the multinomial logit model. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2018.

[60] Y. Chen and C. Suh. Spectral MLE: Top-K rank aggregation from pairwise compar-
isons. In Proceedings of the International Conference on Machine Learning (ICML),
2015.

[61] Yuxin Chen and Changho Suh. Spectral MLE: top-k rank aggregation from pairwise
comparisons. In Proceedings of the 32nd International Conference on Machine Learn-
ing, ICML 2015, Lille, France, 6-11 July 2015, pages 371–380, 2015.

[62] George Christodoulou, Annamária Kovács, and Michael Schapira. Bayesian combina-
torial auctions. In ICALP, 2008.

231

[63] Edward H. Clarke. Multipart Pricing of Public Goods. Public Choice, 11(1):17–33,
1971.

[64] Richard Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785, 1988.

[65] Richard Cole and Tim Roughgarden. The sample complexity of revenue maximization.
In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 243–252, New York, NY, USA, 2014. ACM.

[66] I. Csiszar and J. Körner. Information theory: coding theorems for discrete memoryless
systems. Cambridge University Press, 2011.

[67] Amit Daniely, Michael Schapira, and Gal Shahaf. Inapproximability of truthful mech-
anisms via generalizations of the vc dimension. In Proceedings of the Forty-seventh
Annual ACM Symposium on Theory of Computing, STOC ’15, pages 401–408, New
York, NY, USA, 2015. ACM.

[68] Constantinos Daskalakis and Vasilis Syrgkanis. Learning in auctions: Regret is hard,
envy is easy. In IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 219–228, 2016.

[69] D. Davidson and J. Marschak. Experimental tests of a stochastic decision theory.
Measurement: Definitions and theories, pages 233–269, 1959.

[70] Nikhil Devanur, Jamie Morgenstern, Vasilis Syrgkanis, and S. Matthew
Weinberg. Simple auctions with simple strategies. Manuscript, 2015.
http://www.cs.cmu.edu/ jamiemmt/papers/draft.pdf.

[71] Nikhil R. Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. The sample com-
plexity of auctions with side information. In Proceedings of the Forty-eighth Annual
ACM Symposium on Theory of Computing, STOC ’16, pages 426–439, New York, NY,
USA, 2016. ACM.

[72] Nikhil R. Devanur and Sham M. Kakade. The price of truthfulness for pay-per-click
auctions. In Proceedings of the 10th ACM Conference on Electronic Commerce, EC
’09, pages 99–106, New York, NY, USA, 2009. ACM.

[73] Nikhil R. Devanur, Yuval Peres, and Balasubramanian Sivan. Perfect bayesian equi-
libria in repeated sales. In Proceedings of the Twenty-sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’15, pages 983–1002, Philadelphia, PA, USA,
2015. Society for Industrial and Applied Mathematics.

[74] Shahar Dobzinski. Two randomized mechanisms for combinatorial auctions. In Pro-
ceedings of the 10th International Workshop on Approximation and the 11th Interna-
tional Workshop on Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 89–103, 2007.

232

[75] Shahar Dobzinski. An impossibility result for truthful combinatorial auctions with
submodular valuations. In Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 139–148, 2011.

[76] Shahar Dobzinski. Breaking the logarithmic barrier for truthful combinatorial auctions
with submodular bidders. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, pages 940–948, New York, NY, USA, 2016.
ACM.

[77] Shahar Dobzinski. Computational efficiency requires simple taxation. In FOCS 2016,
2016.

[78] Shahar Dobzinski, Hu Fu, and Robert Kleinberg. On the complexity of computing an
equilibrium in combinatorial auctions. In the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2015.

[79] Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency requires interac-
tion. In the 46th annual ACM symposium on Theory of computing (STOC), 2014.

[80] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for
combinatorial auctions with complement-free bidders. In Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing, pages 610–618. ACM, 2005.

[81] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Truthful randomized mech-
anisms for combinatorial auctions. In Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, pages 644–652. ACM, 2006.

[82] Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for
combinatorial auctions with submodular bidders. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, pages 1064–1073,
Philadelphia, PA, USA, 2006. Society for Industrial and Applied Mathematics.

[83] Shahar Dobzinski and Jan Vondrák. The computational complexity of truthfulness
in combinatorial auctions. In ACM Conference on Electronic Commerce, EC ’12,
Valencia, Spain, June 4-8, 2012, pages 405–422, 2012.

[84] Shahar Dobzinski and Jan Vondrák. From query complexity to computational com-
plexity. In Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 1107–1116, 2012.

[85] Miroslav Dud́ık, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis,
and Jennifer Wortman Vaughan. Oracle-efficient learning and auction design. In FOCS,
2017.

[86] Shaddin Dughmi, Tim Roughgarden, and Qiqi Yan. From convex optimization to
randomized mechanisms: toward optimal combinatorial auctions. In Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011, pages 149–158, 2011.

233

[87] Shaddin Dughmi and Jan Vondrák. Limitations of randomized mechanisms for com-
binatorial auctions. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 502–511,
2011.

[88] Pavol Duris, Zvi Galil, and Georg Schnitger. Lower bounds on communication complex-
ity. In Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing,
STOC ’84, pages 81–91, New York, NY, USA, 1984. ACM.

[89] Paul Dütting, Felix Fischer, and David C. Parkes. Simplicity-expressiveness trade-
offs in mechanism design. In the 13th Annual ACM Conference on Economics and
Computation (EC), 2011.

[90] Paul Dütting, Felix Fischer, and David C. Parkes. Expressiveness and robustness of
first-price position auctions. In the 16th Annual ACM Conference on Economics and
Computation (EC), 2014.

[91] Paul Dütting and Thomas Kesselheim. Algorithms against anarchy: Understanding
non-truthful mechanisms. In the 17th Annual ACM Conference on Economics and
Computation (EC), 2015.

[92] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the
web. In Proceedings of the Tenth International World Wide Web Conference, 2001.

[93] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation meth-
ods for the web. In Proceedings of the 10th International Conference on World Wide
Web, WWW ’01, pages 613–622, New York, NY, USA, 2001. ACM.

[94] EB Dynkin. The optimum choice of the instant for stopping a markov process. In Sov.
Math. Dokl, volume 4, pages 627–629, 1963.

[95] Brian Eriksson. Learning to top-k search using pairwise comparisons. In Proceed-
ings of the Sixteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2013, Scottsdale, AZ, USA, April 29 - May 1, 2013, pages 265–273, 2013.

[96] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[97] Uriel Feige. On maximizing welfare when utility functions are subadditive. In Proceed-
ings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC
’06, pages 41–50, New York, NY, USA, 2006. ACM.

[98] Uriel Feige and Jan Vondrak. The allocation problem with submodular utility func-
tions. In In Proc. of the 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS, 2006.

[99] Michal Feldman, Ophir Friedler, Jamie Morgenstern, and Guy Reiner. Simple mech-
anisms for agents with complements. In Proceedings of the 2016 ACM Conference
on Economics and Computation, EC ’16, pages 251–267, New York, NY, USA, 2016.
ACM.

234

[100] Michal Feldman, Hu Fu, Nick Gravin, and Brendan Lucier. Simultaneous auctions are
(almost) efficient. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 201–210. ACM, 2013.

[101] Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial auctions via posted
prices. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’15, pages 123–135, Philadelphia, PA, USA, 2015. Society for In-
dustrial and Applied Mathematics.

[102] P. C. Fishburn. Binary choice probabilities: on the varieties of stochastic transitivity.
Journal of Mathematical psychology, 10(4):327–352, 1973.

[103] Dean P Foster and Rakesh V Vohra. Calibrated learning and correlated equilibrium.
Games and Economic Behavior, 21(1):40–55, 1997.

[104] Peter Frazier, David Kempe, Jon Kleinberg, and Robert Kleinberg. Incentivizing
exploration. In Proceedings of the Fifteenth ACM Conference on Economics and Com-
putation, EC ’14, pages 5–22, New York, NY, USA, 2014. ACM.

[105] J.C. Gittins and D.M. Jones. A dynamic allocation index for the sequential design of
experiments. In J. Gani, editor, Progress in Statistics, pages 241–266. North-Holland,
Amsterdam, 1974.

[106] Gagan Goel, Vahab Mirrokni, and Renato Paes Leme. Polyhedral clinching auctions
and the adwords polytope. In the 44th annual ACM symposium on Theory of computing
(STOC), 2012.

[107] Gagan Goel, Vahab Mirrokni, and Renato Paes Leme. Clinching auctions with online
supply. In the 23th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2013.

[108] Gagan Goel, Vahab Mirrokni, and Renato Paes Leme. Clinching auctions beyond
hard budget constraints. In the 16th Annual ACM Conference on Economics and
Computation (EC), 2014.

[109] Yannai A. Gonczarowski and Noam Nisan. Efficient empirical revenue maximization
in single-parameter auction environments. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, pages 856–868, New York,
NY, USA, 2017. ACM.

[110] Theodore Groves. Incentives in Teams. Econometrica, 41(4):617–631, 1973.

[111] A. Guntuboyina, D. Lieu, S. Chatterjee, and B. Sen. Spatial adaptation in trend
filtering. arXiv preprint arXiv:1702.05113, 2017.

[112] Adityanand Guntuboyina and Bodhisattva Sen. Global risk bounds and adaptation in
univariate convex regression. Probab. Theory Related Fields, 2013. To appear, available
at http://arxiv.org/abs/1305.1648.

235

[113] Roland Häggkvist and Pavol Hell. Parallel sorting with constant time for comparisons.
SIAM J. Comput., 10(3):465–472, 1981.

[114] James Hannan. Approximation to bayes risk in repeated play. In Contributions to the
Theory of Games, pages 3:97–139, 1957.

[115] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated
equilibrium. Econometrica, 68(5):1127–1150, 2000.

[116] Jason Hartline, Darrell Hoy, and Sam Taggart. Price of anarchy for auction revenue.
In ACM Conference on Economics and Computation, EC ’14, Stanford , CA, USA,
June 8-12, 2014, 2014.

[117] Jason D. Hartline, Robert Kleinberg, and Azarakhsh Malekian. Bayesian Incentive
Compatibility via Matchings. In the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2011.

[118] Jason D. Hartline and Brendan Lucier. Bayesian Algorithmic Mechanism Design. In
the 42nd ACM Symposium on Theory of Computing (STOC), 2010.

[119] R. Heckel, N. B. Shah, K. Ramchandran, and M. J. Wainwright. Active ranking from
pairwise comparisons and when parametric assumptions dont help. arXiv preprint
arXiv:1606.08842v2, 2016.

[120] Paul Dütting Monika Henzinger and Martin Starnberger. Valuation compressions in
vcg-based combinatorial auctions. In Workshop on Internet and Network Economics
(WINE), 2013.

[121] Charles Antony Richard Hoare. Algorithm 65: Find. Communications of the ACM,
4(7):321–322, 1961.

[122] Nicole Immorlica, Brendan Lucier, Emmanouil Pountourakis, and Samuel Taggart.
Repeated sales with multiple strategic buyers. In Proceedings of the 2017 ACM Con-
ference on Economics and Computation, pages 167–168. ACM, 2017.

[123] K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck. lil’ ucb : An optimal exploration
algorithm for multi-armed bandits. In Proceedings of Conference on Learning Theory
(COLT), 2014.

[124] K. Jamieson and R. Nowak. Active ranking using pairwise comparisons. In Advances
in Neural Information Processing Systems, 2011.

[125] M. Jang, S. Kim, C. Suh, and S. Oh. Top-k ranking from pairwise comparisons: When
spectral ranking is optimal. arXiv preprint arXiv:1603.04153, 2013.

[126] Paul Johnson and Jacques Robert. Collusion in a model of repeated auctions. Cahiers
de recherche, Universite de Montreal, Departement de sciences economiques, 1999.

[127] Sham M. Kakade, Ilan Lobel, and Hamid Nazerzadeh. Optimal dynamic mechanism
design and the virtual-pivot mechanism. Operations Research, 61(4):837–854, 2013.

236

[128] Adam Kalai and Santosh Vempala. Geometric algorithms for online optimization. In
Journal of Computer and System Sciences, pages 26–40, 2002.

[129] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems.
J. Comput. Syst. Sci., 71(3):291–307, October 2005.

[130] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Symposium on
Theory of computing (STOC), 2007.

[131] Stavros G. Kolliopoulos and Clifford Stein. Approximating Disjoint-Path Problems
Using Greedy Algorithms and Packing Integer Programs, pages 153–168. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1998.

[132] Vladimir Koltchinskii. Oracle Inequalities in Empirical Risk Minimization and Sparse
Recovery Problems: Ecole dté de Probabilités de Saint-Flour XXXVIII-2008, vol-
ume 38. Springer Science & Business Media, 2011.

[133] Ilan Kremer, Yishay Mansour, and Motty Perry. Implementing the ”wisdom of the
crowd”. Journal of Political Economy, 122(5):988 – 1012, 2014.

[134] Piotr Krysta and Berthold Vöcking. Online mechanism design (randomized rounding
on the fly). In Automata, Languages, and Programming, pages 636–647. Springer,
2012.

[135] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, New York, NY, USA, 1997.

[136] Jean-Jacques Laffont and David Martimort. The Theory of Incentives: The Principal-
Agent Model. 2002.

[137] T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Adv.
Appl. Math., 6(1):4–22, March 1985.

[138] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits
with side information. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, edi-
tors, Advances in Neural Information Processing Systems 20, pages 817–824. Curran
Associates, Inc., 2008.

[139] Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via lin-
ear programming. In Proceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2005.

[140] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with
decreasing marginal utilities. In the 3rd Annual ACM Conference on Electronic Com-
merce (EC), 2001.

[141] Frank Thomson Leighton. Tight bounds on the complexity of parallel sorting. In
Proceedings of the 16th Annual ACM Symposium on Theory of Computing, April 30 -
May 2, 1984, Washington, DC, USA, pages 71–80, 1984.

237

[142] Frank Thomson Leighton and Yuan Ma. Tight bounds on the size of fault-tolerant
merging and sorting networks with destructive faults. SIAM Journal on Computing,
29(1):258–273, 2000.

[143] Siqi Liu and Christos-Alexandros Psomas. On the competition complexity of dynamic
mechanism design. CoRR, abs/1709.07955, 2017.

[144] T. Lu and C. Boutilier. Learning mallows models with pairwise preferences. In Pro-
ceedings of the International Conference on Machine Learning (ICML), 2011.

[145] R. D. Luce. Individual choice behavior: A theoretical analysis. New York: Wiley, 1959.

[146] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Sorting
noisy data with partial information. In Proceedings of the 4th Conference on Inno-
vations in Theoretical Computer Science, ITCS ’13, pages 515–528, New York, NY,
USA, 2013. ACM.

[147] Randolph McAfee and John McMillan. Bidding rings. American Economic Review,
82(3):579–99, 1992.

[148] John McCarthy. Measures of the value of information. Proceedings of the National
Academy of Sciences, 42(9):654–655, 1956.

[149] D. McFadden. Conditional logit analysis of qualitative choice behaviour. In P. Zarem-
bka, editor, Frontiers in Econometrics, pages 105–142. Academic Press New York, New
York, NY, USA, 1973.

[150] D. H. McLaughlin and R. D. Luce. Stochastic transitivity and cancellation of prefer-
ences between bitter-sweet solutions. Psychonomic Science, 2(1–12):89–90, 1965.

[151] Vahab S. Mirrokni, Renato Paes Leme, Pingzhong Tang, and Song Zuo. Dynamic
auctions with bank accounts. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, pages 387–393, 2016.

[152] Vahab S. Mirrokni, Renato Paes Leme, Pingzhong Tang, and Song Zuo. Optimal
dynamic mechanisms with ex-post IR via bank accounts. CoRR, abs/1605.08840,
2016.

[153] Vahab S. Mirrokni, Michael Schapira, and Jan Vondrák. Tight information-theoretic
lower bounds for welfare maximization in combinatorial auctions. In Proceedings 9th
ACM Conference on Electronic Commerce (EC-2008), Chicago, IL, USA, June 8-12,
2008, pages 70–77, 2008.

[154] S. Mohajer and C. Suh. Active top-k ranking from noisy comparisons. In Proceedings
of the 54th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), 2016.

238

[155] Jamie Morgenstern and Tim Roughgarden. The pseudo-dimension of near-optimal
auctions. In Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’15, pages 136–144, Cambridge, MA, USA, 2015.
MIT Press.

[156] Jamie Morgenstern and Tim Roughgarden. Learning simple auctions. In Vitaly Feld-
man, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on Learn-
ing Theory, volume 49 of Proceedings of Machine Learning Research, pages 1298–1318,
Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.

[157] Roger B. Myerson. Optimal Auction Design. Mathematics of Operations Research,
6(1):58–73, 1981.

[158] Hamid Nazerzadeh, Amin Saberi, and Rakesh Vohra. Dynamic cost-per-action mech-
anisms and applications to online advertising. In Proceedings of the 17th International
Conference on World Wide Web, WWW ’08, pages 179–188, New York, NY, USA,
2008. ACM.

[159] S. Negahban, S. Oh, and D. Sha. Rank Centrality: Ranking from pairwise comparisons.
Operations Research, 65(1):266–287, 2017.

[160] Denis Nekipelov, Vasilis Syrgkanis, and Eva Tardos. Econometrics for learning agents.
In Proceedings of the Sixteenth ACM Conference on Economics and Computation, EC
’15, pages 1–18, New York, NY, USA, 2015. ACM.

[161] Noam Nisan and Amir Ronen. Algorithmic Mechanism Design (Extended Abstract).
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing
(STOC), 1999.

[162] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited.
SIAM J. Comput., 22(1):211–219, February 1993.

[163] Renato Paes Leme, Vasilis Syrgkanis, and Éva Tardos. Sequential auctions and exter-
nalities. In SODA, 2012.

[164] Christos Papadimitriou, George Pierrakos, Christos-Alexandros Psomas, and Aviad
Rubinstein. On the complexity of dynamic mechanism design. In Proceedings of the
Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16,
pages 1458–1475, Philadelphia, PA, USA, 2016. Society for Industrial and Applied
Mathematics.

[165] Christos H. Papadimitriou, Michael Schapira, and Yaron Singer. On the hardness of
being truthful. In Proceedings of the 49th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2008.

[166] Christos H. Papadimitriou and Michael Sipser. Communication complexity. In Pro-
ceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC
’82, pages 196–200, New York, NY, USA, 1982. ACM.

239

[167] Chris Piech, Jonathan Huang, Zhenghao Chen, Chuong Do, Andrew Ng, and Daphne
Koller. Tuned models of peer assessment in moocs. In Proceedings of the Sixth Inter-
national Conference on Educational Data Mining, EDM ’13, 2013.

[168] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approxi-
mating packing integer programs. J. Comput. Syst. Sci., 37(2):130–143, October 1988.

[169] A. Rajkumar and S. Agarwal. A statistical convergence perspective of algorithms for
rank aggregation from pairwise data. In Proceedings of the International Conference
on Machine Learning (ICML), 2014.

[170] Rüdiger Reischuk. A fast probabilistic parallel sorting algorithm. In 22nd Annual
Symposium on Foundations of Computer Science, Nashville, Tennessee, USA, 28-30
October 1981, pages 212–219, 1981.

[171] Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of
the American Mathematical Society, 58(5):527–535, 1952.

[172] Kevin Roberts. The characterization of implementable choice rules. Jean-Jacques
Laffont, editor, Aggregation and Revelation of Preferences, page 321349, 1979. Papers
presented at the 1st European Summer Workshop of the Econometric Society, North-
Holland.

[173] Tim Roughgarden. The price of anarchy in games of incomplete information. In
Proceedings of the 13th ACM Conference on Electronic Commerce, EC ’12, pages 862–
879, New York, NY, USA, 2012. ACM.

[174] Tim Roughgarden. Barriers to near-optimal equilibria. In FOCS, 2014.

[175] N. B. Shah, S. Balakrishnan, A. Guntuboyina, and M. J. Wainright. Stochastically
transitive models for pairwise comparisons: Statistical and computational issues. IEEE
Transactions on Information Theory, 63(2):934–959, 2016.

[176] N. B. Shah, S. Balakrishnan, and M. J. Wainwright. Feeling the bern: Adap-
tive estimators for bernoulli probabilities of pairwise comparisons. arXiv preprint
arXiv:1603.06881v1, 2016.

[177] N. B. Shah and M. Wainwright. Simple, robust and optimal ranking from pairwise
comparisons. arXiv preprint arXiv:1512.08949, 2015.

[178] Andrzej Skrzypacz and Hugo Hopenhayn. Tacit collusion in repeated auctions. Journal
of Economic Theory, 114(1):153–169, 2004.

[179] C. Suh, V. Tan, and R. Zhao. Adversarial top-K ranking. IEEE Transactions on
Information Theory (to appear), 2017. DOI 10.1109/TIT.2017.2659660.

[180] Vasilis Syrgkanis and Eva Tardos. Bayesian sequential auctions. In Proceedings of the
13th ACM Conference on Electronic Commerce, pages 929–944. ACM, 2012.

240

[181] Vasilis Syrgkanis and Eva Tardos. Composable and efficient mechanisms. In STOC,
2013.

[182] B. Szörényi, R. Busa-Fekete, A. Paul, and E. Hüllermeier. Online rank elicitation
for plackett-luce: A dueling bandits approach. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), 2015.

[183] L. L. Thurstone. A law of comparative judgement. Psychological Reviews, 34(4):273,
1927.

[184] Kenneth Train. Discrete Choice Methods with Simulation. Cambridge University Press,
2003.

[185] A. Tversky. Elimination by aspects: A theory of choice. Psychological review,
79(4):281–299, 1972.

[186] Leslie G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4(3):348–
355, 1975.

[187] William Vickrey. Counterspeculations, Auctions, and Competitive Sealed Tenders.
Journal of Finance, 16(1):8–37, 1961.

[188] Jan Vondrák. Optimal approximation for the submodular welfare problem in the
value oracle model. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 67–74, 2008.

[189] F. Wauthier, M. Jordan, and N. Jojic. Efficient ranking from pairwise comparisons.
In Proceedings of the International Conference on Machine Learning (ICML), 2013.

[190] Andrew Chi-Chih Yao. Some complexity questions related to distributive comput-
ing(preliminary report). In Proceedings of the Eleventh Annual ACM Symposium on
Theory of Computing, STOC ’79, pages 209–213, New York, NY, USA, 1979. ACM.

[191] Y. Zhou, X. Chen, and J. Li. Optimal PAC multiple arm identification with ap-
plications to crowdsourcing. In Proceedings of International Conference on Machine
Learning (ICML), 2014.

241

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Overview
	1.2 Preliminaries

	I Multi-armed Bandit Problems with Strategic Inputs
	2 Selling to a No-Regret Buyer
	2.1 Introduction
	2.2 Model and Preliminaries
	2.3 An Illustrative Example
	2.4 Conclusion and Future Directions

	3 Multi-armed Bandit with Strategic Arms
	3.1 Introduction
	3.2 Our Model
	3.3 Negative Results Overview
	3.4 Positive Results
	3.5 Conclusions and Future Directions

	II Truthful Mechanisms in Combinatorial Auctions
	4 On Simultaneous Two-player Combinatorial Auctions
	4.1 Introduction
	4.2 Intuition for the Gap: an Extremely Toy Setting
	4.3 Warmup: Beating a 1/2-Approximation
	4.4 Developing Good Summaries
	4.5 Lower Bounds
	4.6 Discussion and Future Work

	5 Interpolating Between Truthful and non-Truthful Mechanisms for Combinatorial Auctions
	5.1 Introduction
	5.2 Preliminaries
	5.3 Single-Price Mechanisms
	5.4 Non-Adaptive Pricing Mechanisms
	5.5 Maximal-In-Range Mechanisms
	5.6 Value Query and Computationally Efficient Mechanisms

	III Rank Aggregation with Noisy Comparisons
	6 Top-k Ranking with Noisy Comparisons in Rounds
	6.1 Introduction
	6.2 Preliminaries and Notation
	6.3 Results for Non-Adaptive Algorithms
	6.4 Results for Multi-Round Algorithms

	7 Top-k Ranking under the Strong Stochastic Transitivity Model
	7.1 Introduction
	7.2 Preliminaries and Problem Setup
	7.3 Main Results
	7.4 Lower Bounds on the Sample Complexity of Domination
	7.5 Domination in the Well-behaved Regime
	7.6 Domination in the General Regime
	7.7 Reducing Top-k to Domination
	7.8 Lower Bounds for Domination and Top-k

	8 Top-k Ranking under the Multinomial Logit Model
	8.1 Introduction
	8.2 Algorithm
	8.3 Lower Bounds
	8.4 Additional Algorithmic Results and Proofs
	8.5 Proofs of Lower Bounds

	Bibliography

