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Abstract

The proliferation of commodity cloud services helps developers build wide-area

“system-of-systems” applications by harnessing cloud storage, CDNs, and public

datasets as reusable building blocks. But to do so, developers must contend with

two long-term challenges. First, whenever developers change storage providers, they

must work to preserve the application’s expected storage semantics, i.e. the rules

governing how the application expects the storage provider to handle its reads and

writes. Today, changing storage providers is costly, because developers need to patch

the application to make it compatible with the new provider’s data consistency

model, access controls, replica placement strategies, and so on.

At the same time, users have certain expectations about how their data will be

used, which the application must meet. For example, depending on the application,

users may expect that their data will be kept private from other users, that their data

will be exportable to other applications, that accesses to their data will be logged in

an auditable way, and so on. In the limit, each user’s expectations represent an

implicit policy constraining how their data can be stored. Honoring these policies is

difficult for developers who rely on third-party storage providers because the storage

provider is often unaware of them.

This thesis addresses these challenges with a new wide-area storage paradigm,

called “software-defined storage” (SDS), that runs in-between applications and cloud

services. SDS-enabled applications do not host data, but instead let users bring their

preferred cloud services to the application. By taking a user-centric approach to

hosting data, users are empowered to programmatically specify their policies inde-

pendent of their applications and select services that will honor them. To support

this approach and to tolerate service provider changes, SDS empowers developers to

programmatically specify their application’s storage semantics independent of storage

providers.
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This thesis presents the design principles for SDS, and validates their real-world

applicability with two SDS implementations and several non-trivial applications built

on top of them. Most of these applications are used in production today. This

thesis presents microbenchmarks of the SDS implementations and uses real-world

experiences to show how to make the most of SDS.
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Chapter 1

Introduction

The proliferation of cloud storage, content distribution networks, and public curated

datasets poses new challenges and opportunities for hosting data. On the one hand,

the availability of professionally-maintained services is a boon to developers, since it

lets them offload the operational burden of hosting data. On the other hand, it is diffi-

cult to leverage these services over long timescales. Services can appear and disappear,

and service operators can unilaterally change their APIs, pricing, and trustworthi-

ness. Over long enough timescales, developers find themselves continuously patching

their applications to accommodate new service behaviors.

This thesis presents a novel storage architecture, called wide-area software-defined

storage (SDS), that helps developers leverage these commodity services without this

constant patching. In SDS, developers specify their desired end-to-end storage se-

mantics independently of both applications and underlying services. The storage

semantics define the rules for processing application reads and writes, and reside in

an architectural layer “on top” of cloud services but “beneath” applications. This

thesis presents SDS as an architecture for implementing storage semantics, and shows

how developers can realize the benefits of cloud services without the long-term risks.
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1.1 System-of-Systems Approach

Applications built on cloud services are systems-of-systems. A system-of-systems is a

process that aggregates the functionality provided by multiple independent networked

processes in order to solve a problem that none of them could handle on their own.

The most prominent system-of-systems is the Internet, which uses peering agreements

and the Border Gateway Protocol [160] to aggregate the routing logic in multiple

autonomous networks to provide a global end-to-end packet delivery service.

Networked processes that run in the Internet’s application layer can also be

systems-of-systems. For example, university Webmail is a system-of-systems applica-

tion that aggregates DNS, the world’s SMTP servers, campus-hosted Web servers, and

a university-wide identity and authentication system to grant students and faculty

access to their email in their Web browsers (Figure 1.1). Application-layer systems

can be combined with other application-layer systems to build new application-layer

systems.

Webmail
Servers

Identity
Servers

Local DNS
ServersAlice’s

Webmail page
Bob’s

email client

Global
DNS

System

Global 
SMTP

System

Campus network Home network

Figure 1.1: Webmail is a system-of-systems wide-area application. In order for Alice
to receive an email from Bob, her university’s DNS and SMTP servers must coordinate
with the global DNS and SMTP networks, and her university’s identity service and
Webmail servers must coordinate to deliver her mail to her Web browser.
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This thesis is concerned with helping developers build system-of-systems appli-

cations on top of third-party cloud storage, content distribution networks (CDNs),

and curated data-sets. Cloud storage acts as the read/write storage medium for the

application’s state. CDNs help applications overcome high latencies and bandwidth

bottlenecks in WAN settings by serving downstream readers cached data. Curated

datasets host read-only data on behalf of a set of applications, providing value to

each one without requiring them to individually go out and collect data.

These three types of services are of interest because they implement a minimal set

of requirements for many more applications and services. For example, the application

and service offerings from Google are realized with shared corporate cloud storage (i.e.

Megastore [21], Spanner [53], GFS [89]), a shared corporate CDN [94], and multiple

shared repositories of user behavioral data that assist in machine-learning tasks like

spam fighting, page ranking, voice recognition, and so on. Google’s public application

platforms are built with these services as well [92] [93]. The situation is similar for

Amazon AWS and Facebook, which use a common core of cloud storage, CDNs, and

curated datasets to implement both their applications and higher-level services (like

ad placement and logging).

Most applications are not built on top of bespoke datacenters, CDNs, and cu-

rated datasets, but instead rely on third-party service offerings. The developer leases

service capacity in order to build their applications. For example, a navigation ap-

plication would host its users’ preferred routes, maps, and historic queries in cloud

storage, use a CDN to cache map data in appropriate geographic regions, and use

public weather data aggregated by NOAA [142] and crowdsourced road data from

OpenStreetMap [152] to determine the best route to take. As another example, a

movie streaming service like Netflix [149] would host its users’ streaming history in

cloud storage, use a CDN to accelerate the delivery of popular media, and curate the

catalog of movies as a shared dataset for its mobile and Web applications.
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The growth of these public commodity cloud services and the proliferation of

applications using them demonstrates their promise as system-of-systems building

blocks. Developers do not have to re-invent existing functionality each time they

build a new application. Instead, they can purchase metered service capacity to

handle their applications’ needs. This reduces time-to-market, speeds up product

iteration, externalizes infrastructure maintenance and costs, and lowers the barrier to

entry for building new applications.

The difficulty with this approach is that developers spend lots of time and effort

preserving end-to-end storage semantics. This is because an application’s storage

semantics depend on the semantics of each cloud service it uses.

To build a correct implementation, developers must account for the semantics of

their chosen services in the application’s design. For example, the aforementioned

navigation application’s servers must coordinate with downstream CDN servers to

ensure that clients read fresh data. As another example, the Web servers in the cam-

pus Webmail application must coordinate with the authentication servers to enforce

campus-wide access controls. These concerns are not part of the business logic of

the applications, but nevertheless must be addressed in order for the application to

behave correctly.

1.1.1 Challenges

This thesis addresses the challenges of preserving end-to-end storage semantics in

wide-area applications built from third-party cloud services. Three specific pain-

points are identified.

First, developers have no control over the services’ semantics. Cloud services

can unilaterally change their pricing, feature-set, APIs, semantics, availability, and

trustworthiness. Applications that rely on a service can break unexpectedly when the
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service changes its behaviors, and in doing so, cost developers unforeseeable amounts

of time and money.

Developers agree to this one-way relationship when accepting the service’s terms

of service. The terms of service for popular services explicitly state that the operators

have the ability to affect unilateral changes. For example, Dropbox unilaterally broke

its API from version 1 to version 2 [76], and both Twitter and Instagram dropped

API endpoints even after non-trivial applications were built to leverage it [190] [11].

The second challenge is that cloud services are heterogeneous, which makes it hard

to change both services and end-to-end semantics once the application is deployed.

In practice, services that fill similar roles do not always offer the same semantics.

For example, a service designed to use Amazon S3 may depend on its sequential

consistency, which may prevent the developer from switching to Microsoft OneDrive

(which provides eventual consistency [51]) even though both services fulfill a cloud

storage role.

Without careful planning, the application can become tightly coupled to its ser-

vices by accidentally relying on undocumented or unacknowledged behavior. This

creates high service switching costs, making it difficult for developers to move the

application to better offerings or change the application’s semantics later to meet

new requirements.

The third challenge is that application users have certain expectations about how

their data will be used, and which data they will interact with. The application must

meet these expectations in order to be usable. However, a users’ expectations are

specific to each application, each datum, and to other users. They can be arbitrarily

specific, but some common example include:

• Data privacy. Users may expect that their data will be visible only to people

they designate.
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• Data non-repudiability. Users may expect that their data or the data they read

from other users is non-repudiable and will not be erased by the application.

• Data blocking. Users may expect the application to silently prevent other users’

data from reaching them. This is especially relevant to forums and social media

applications, which must contend with online harassment.

• Data portability. Users may expect that they will be able to download their

data from the application at some point in the future and use it in another

application.

• Access audits. Users may expect that the application will tell them how their

data has been used, as well as when and where it was used.

• Ancillary data. Applications generate data from user behavior, and users may

expect to be able to read it. For example, Facebook will tell users which third-

party advertisers may send them ads.

• Data retention. Users may expect that the application holds on to data they

delete for a certain amount of time, so they can un-delete it. For example,

Gmail [91] implements a “trash can” abstraction that retains deleted emails for

30 days after they are deleted from the user’s inbox.

• Data amnesia. Users may expect that the data they delete will be erased and

forgotten by the application.

• Legal compliance. Users may expect that access to their data will be governed

under a particular jurisdiction, i.e. the one that they live in, the one in which

their data replicas reside, and so on.

This is not an exhaustive list by any means, but is meant to illustrate the point

that developers need to honor their users’ expectations, or risk alienating their users
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and/or suffering legal consequences. This thesis refers to a machine-readable encoding

of the user’s expectations for their data in a particular application as the user’s data-

hosting policy.

Today, applications encode and globally enforce data-hosting policies by means of

a “settings page” for users, which gives users some levers to control how their data

will be used. For example, most social media applications have an “Account Privacy”

page that lets the user control which other users can access which data. As another

example, government regulations like GDPR [70] require applications to provide an

“export data” page for downloading all of the user’s data, as well as a “delete and

forget” page for permanently erasing the data.

In the system-of-systems approach, the application alone cannot be trusted to

enforce all data-hosting policies. This is because the data records are stored in third-

party service providers that are unaware of the policies, and may do things that

violate them. The developers have no recourse if this happens.

The third challenge that developers of system-of-systems applications have to

overcome is that data-hosting policies must be enforced by the user’s organizations

while preserving the end-to-end storage semantics. For the purposes of this thesis,

an organization is an autonomous set of computers that a user uses to interact with

their data in a particular application. Example organizations include a user’s personal

devices, a corporation’s workstations, or a lab’s computer cluster.

If a user cannot rely on the application or storage provider to enforce her policy,

then she must rely on her organization to do so on her behalf. This means that each

organization needs to be free to set and enforce data-hosting policies on their users’

behalf, and developers need to ensure that each policy’s rules are followed without

affecting the end-to-end storage semantics. This is true of the example Webmail

application, since the campus-hosted servers, the SMTP servers, and the DNS servers
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can each decide how they store and serve their message and routing information

without affecting the store-and-forward semantics of email.

The difficulty of building cross-organization system-of-systems applications arises

from the degree to which organizations are willing to trust other organizations to

enforce their users’ policies. This degree of trust falls on a spectrum. At one extreme,

users of an organization do not trust other organizations with their policy enforcement

at all. The designs of applications at this extreme reflect this by requiring each

organization to host their users’ data (including choosing their own compliant storage

providers, if any), thus putting them in a position to mediate all accesses to it. The

campus Webmail example falls into this extreme, as do most federated applications

like IRC [150], XMPP [164], Diaspora [61], and Mastodon [129].

At the other extreme, users fully trust external organizations. The designs of

applications at this extreme allow each organization to completely delegate policy

enforcement to another organization. Examples include most Web services like Face-

book [74], Google Apps [84], and Microsoft Office 365 [135], where each user com-

pletely trusts the company running the application to enforce her data policies.

At both extremes, policy enforcement mechanisms are straightforward to develop.

When the organization hosts the user’s data, the user instructs their organization

on when reads and writes from other organizations are permitted and when they are

denied. For example, the campus Webmail application lets university users control

read access to their inboxes by requiring passwords, and lets them control write

accesses both by requiring passwords to send mail and by allowing users to set spam

filter rules that constrain which inbound messages (i.e. “writes” from other users)

they will see. At the other extreme when the user completely trusts an external

organization to enforce her data-hosting policies, the developer simply provides an

“account settings” feature that lets the user control which reads and writes to her

data are permitted by other users, and how to authorize them.
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However, system-of-systems applications built on cloud services fall in-between

these two extremes. In these applications, the data policy enforcement mechanisms

are partially deployed in the same organization that hosts the data, but not com-

pletely. In these cases, organizations at a minimum trust the cloud services to keep

their data available. They may also trust them with additional responsibilities on a

case-by-case basis, such as domain-specific access controls or replica placement.

The challenge to developers is to accommodate the whole spectrum of users’ trust

relationships with organizations and cloud services. Each organization not only has

different user-given data-hosting policies, but also has different degrees of trust in the

cloud service and other organizations with respect to enforcing them. This affects

the design of these applications such that in the limit, the application must be aware

of each trust relationship and each policy that exists. This poses a problem to devel-

opers, since developers must provide the appropriate mechanisms for enforcing them

while still preserving end-to-end storage semantics.

1.1.2 Problem Statement

Building applications on cloud services forces developers to solve two hard problems

in practice.

• Preserve end-to-end storage semantics. This is difficult today because de-

velopers do not control the services’ storage semantics. The services can change

their behavior, the developers can change the services the application uses, and

the developers can change the semantics of the application. The consequences

are the same in all cases: the developers need to patch the application to ac-

commodate the new semantics.

• Preserve organizational autonomy. This is difficult today because applica-

tions run across multiple organizations and cannot enforce data-hosting policies
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on their own. However, each organization has its own user-given policies that

govern what can be done with its users’ data. Ensuring that each organization

is free to enforce its users’ policies is hard because neither the developers nor

the organizations control the services’ behaviors, and users have varying degrees

of trust in each service’s ability to accommodate their policies. Moreover, any

mechanisms that organizations employ to enforce their users’ policies must be

compatible with the application’s end-to-end storage semantics.

As a result, developers spend a lot of time and effort patching their application just

to keep it running, and cannot realistically honor each user’s data-hosting policies.

This in turn hurts users, since it limits the extent to which they can safely use the

application. Users are put into the awkward position of having to avoid using the

application, or put themselves at risk by trusting the application with their data more

than they would like. This thesis shows developers how to address both problems in

a way that requires minimal additional work once the application is deployed.

1.2 Wide-area Software-defined Storage

To address these problems, this thesis presents a storage architecture that separates

storage semantics from both cloud services and applications. The rules for processing

reads and writes are placed in a common data-exchange layer in-between applications

and the cloud services. A system that implements this layer is called a wide-area

software-defined storage (SDS) system (Figure 1.2).

SDS systems preserve end-to-end storage semantics on top of cloud services while

respecting organizational autonomy. A SDS system accommodates changes in service

semantics by encapsulating service-specific interfacing logic inside a “service driver.”

The service driver gives the SDS system a very simple API for loading and storing

immutable chunks of data. This isolates a particular service from the rest of the
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Figure 1.2: Software-defined storage acts as an intermediate “narrow waist” layer that
preserves application-specific storage semantics on top of commodity cloud services.

system and makes its functionality accessible via a common API. Once the SDS

system has a driver implementation for a service, any SDS-powered application can

use it automatically.

SDS preserves organizations’ autonomy without compromising end-to-end seman-

tics by allowing each user to control the network paths their data takes from the

application’s users to the services (and vice versa). Each organization runs its own

service driver instances for storing its data, and developers supply an “aggregation

driver” that applies the application-specific storage semantics over the services used

when processing a read or write.

The aggregation driver is an SDS-specific programming concept that developers

use to implement end-to-end storage semantics. Its programming model borrows

from both the UNIX shell programming and software-defined network programming

paradigms. The developer writes an aggregation driver as a series of composable

“stages,” which are evaluated in sequential order by the SDS system to process a
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read or write according to the desired semantics. Each organization runs one or more

aggregation driver stage instances.

Users apply their data-hosting policies by choosing which organizations’ service

drivers and aggregation driver stages will carry out the read or write. The user does

this by selecting the routes that a read or write on a piece of data is allowed to take

through the set of organizations. In doing so, users choose which organizations process

their reads and writes without violating application-specific storage semantics.

SDS systems avoid the problem of service lock-in by means of a “gateway”. Each

organization runs their service drivers and aggregation driver stages within SDS gate-

ways they control, and the SDS system uses the user’s policy to route reads and writes

to her data through a valid sequence of gateways in order to preserve end-to-end stor-

age semantics. Each gateway implements the storage API of the organization’s choice,

and serves as the application’s access point to the SDS system. This allows each or-

ganization to choose which APIs are exposed to their users’ applications, and enables

each organization to make its own decisions on how other users read and write its

users’ data.

The resulting system solves both problems (Figure 1.3). It ensures that all reads

and writes pass through the correct sequence of aggregation driver stages, thereby

preserving the end-to-end semantics. Each stage loads and stores raw data from the

underlying services as needed by invoking its gateway’s service driver(s). Service

drivers may take advantage of any service-specific features to load and store data,

but are required to expose data to aggregation driver stages as a set of immutable,

content-addressed write-once read-many chunks. In doing so, SDS separates appli-

cation semantics from the semantics of the underlying services while still allowing

developers to take advantage of any useful service-specific features they offer.

At the same time, users control which organizations’ aggregation driver stages

and service driver instances are utilized to process a given request. Moreover, they
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Figure 1.3: Overview of the relationship between service drivers, aggregation drivers,
and gateways on a read request. The application’s request “read foo” is processed by
a sequence of three aggregation driver stages before foo’s data is returned. The SDS
system ensures that each stage is executed in the right sequence (preserving seman-
tics), and each organization runs a service driver to loads and stores the necessary
data to do so (preserving autonomy).

can control which gateway instances are selected to process reads and writes. This

yields a way to translate a user’s data-hosting expectations into a machine-readable

data-hosting policy: they are realized as a set of source routes on each of the user’s

data. By translating policy enforcement into a source-routing problem, organizations

can automatically preserve its users data-hosting expectations without violating end-

to-end storage semantics. The user selects gateways that process their reads and

writes in a way that meets their policy’s terms. A detailed description of how service

drivers, aggregation drivers, and gateways coordinate to achieve this is presented in

Chapter 2.
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1.3 Contributions

The architecture put forth in this thesis is informed by two real-world SDS imple-

mentations and three sample applications. The implementations were designed to

accommodate two sets of real-world use-cases: scientific computing, and “serverless”

Web applications (i.e. Web applications that can operate without application-specific

servers). The design principles in this thesis were formulated once the implementa-

tions were tested and deployed in production settings. This thesis claims the following

contributions:

• This thesis presents the design principles of wide-area software-defined storage,

framed in terms of prior work and the real-world storage needs of existing ap-

plications. Adhering to these design principles reduces the man-hours required

to keep applications compatible with existing services while both preserving

end-to-end storage semantics and respecting each organization’s data-hosting

policies (Chapter 2).

• This thesis presents the design and implementation of two SDS systems: Gaia

and Syndicate. Syndicate is a real SDS system being deployed in scientific work-

flows today, and Gaia is a real SDS system being deployed to build serverless

Web applications. This thesis uses Gaia and Syndicate to show how to translate

SDS design principles into real systems. (Chapter 3).

• This thesis shows how to build SDS-powered applications. The design and

implementation of non-trivial SDS-powered applications that could not have

been feasibly built without SDS are presented. Among these are an end-to-

end encrypted Webmail client that removes the user from key management,

a server-less groupware application that lets users control how their data gets

hosted and accessed, and a scientific data-staging application that automatically
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makes fresh datasets available from existing data repositories to HPC clusters

via commodity CDNs. (Chapter 4).

• This thesis presents microbenchmarks for Gaia and Syndicate. The microbench-

marks show the various overheads of these SDS implementations impose by

processing reads and writes by passing them through aggregation and service

drivers. The results show that the SDS systems are efficient at processing larger

I/O requests, and that developers have many options available to influence end-

to-end read and write performance. (Chapter 5).

These contributions support the thesis that developers can both preserve end-to-

end storage semantics and respect organizational autonomy when building on cloud

services. A properly-designed SDS system achieves this by framing the problem in

terms of service drivers and aggregation drivers, which can be written once and reused

across applications. In doing so, SDS systems minimize the amount of work required

to keep an application running.
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Chapter 2

Design Principles

This chapter presents the design principles of SDS using real-world observations of

contemporary system-of-systems applications. It describes the components that make

up an SDS system and shows how they work together to enforce end-to-end semantics

while preserving organizational autonomy.

2.1 Overview

The need for SDS systems is guided by the real-world needs of three sets of stakehold-

ers in wide-area applications today: its users, its organizations, and its developers.

2.1.1 Users

The users are the authoritative origins of all data in the application. Data is produced

by users for other users to consume. This is unsurprising at first glance, since the point

of having wide-area applications at all is so users can collaborate without having to be

physically present (i.e. by communicating data to one another across the Internet).

However, the key insight here is that conventional wide-area applications such as Web

applications do not treat users as authoritative data origins at the protocol level. At
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the protocol level, application servers are the authoritative data origins for all user

data.

It is only by social convention that users are led to believe and expect that they are

the authoritative data origins. This is reflected in how users talk about the data they

create—for example, a user would say “my Facebook profile” when referring to the

profile data Facebook hosts, instead of the more accurate statement “the downstream

replica of my profile data that I stored in Facebook’s servers and expect Facebook’s

servers to faithfully share on my behalf.” This thesis argues for enforcing this social

convention at the protocol layer (i.e. programmatically, beneath the application) by

separating the responsibility for hosting and serving a user’s data from the responsi-

bility of hosting and running application code.

The fact that users assume that they are both the data’s authoritative origins

and the data consumers means that users have certain expectations regarding how

applications store their data. These expectations can be arbitrarily specific to the

data, the application, and the computer(s) through which they read and write it.

For example, a user would expect an online tax-filing application to prevent their tax

form data from being read by anyone besides themselves and the government, and

would expect it to retain copies of their filings for at least three years. As another

example, a user would expect a ride-hailing application to be accessible only through

their mobile phone, and would expect that their travel history and driver ratings

would be inaccessible to the driver.

Data-hosting Policies

Successful applications empower users to convey their expectations to applications

and other users in the form of a data-hosting policy. The data-hosting policy is a

machine-readable description of how the user expects the application and other users

to interact with her data. Successful applications provide the means for users to
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translate their expectations into data-hosting policies, and enforce the users’ policies

on their behalf.

The data-hosting policy can take many forms, depending on the application. For

example, a social media application like Facebook allows users to encode some as-

pects of a data-hosting policy in a privacy settings page. The settings are stored in

Facebook, and Facebook (ostensibly) enforces them. As another example, a cloud

administration tool like the Google Cloud Console [93] gives its users the ability to

define programmatic hooks and scripts for hosting, retaining, and deleting log data.

This thesis is concerned about the enforcement of data-hosting policies. Users need

to be able to translate their expectations on data storage into policies that they can

enforce without having to rely on applications or storage providers. Today, users have

no technical recourse if the application simply decides to ignore their policies; they

are instead left with external remediation options like boycotting the application or

taking legal action against the developers. Specific to system-of-systems applications,

developers are not in a position where they can plausibly enforce a user’s data-hosting

policies end-to-end. This is because in order to do so, both the application and

the storage providers must recognize and enforce the users’ policies. However, in

practice storage providers are not even guaranteed to be aware that the policies exist,

since users do not interact with storage providers and do not have a direct business

relationship with them.

If users cannot rely on the application or the developer’s chosen storage providers

to enforce their data-hosting policies, then they they are left with three (non-

exclusive) options:

1. Do not use the application. This is not a feasible option for most users.

2. Only use the application if it will store the user’s data on the user’s chosen

storage providers, instead of the developer’s. That way, the user can ostensibly

select storage providers that will enforce their policies alongside the application.
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3. Carry out policy enforcement on a trusted computer or computers independent

of the application and storage providers.

This thesis argues for taking the second and third options in system-of-systems

application design. Users should be able to select which storage providers host their

application-specific data, and choose which computers to trust with enforcing their

data-hosting policies. Applications and storage providers should not be in a position

to make either decision for the user, unless the user explicitly allows them to do so.

2.1.2 Organizations

An organization is the set of computers that enforce a user’s data hosting pol-

icy. Each organization adheres to a single policy, and uses it to constrain how the

application and other users are allowed to interact with the user’s data.

The fact that policies are application-specific means that organizational bound-

aries are also specific to the application, since they pertain to the types of data being

loaded and stored in the application. For example:

• A user’s personal devices constitute a single organization in the context of a

social media application. This is a single organization because all devices adhere

to the same data-hosting policy: they load, manipulate, and store the user’s

account and profile data. Organizations do not overlap in this application—a

user Alice’s devices are a wholly separate organization from a user Bob’s devices.

• A lab’s workstations constitute a single organization in the context of a Web

BLAST [23] deployment. This is a single organization because all workstations

adhere to the same access controls: only lab members can access unpublished

data, and only lab members and site administrators can access user-specific state

like home directories. Workstations additionally retain BLAST computation
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results for their users in a shared directory accessible to all lab members, so

expensive results can be reused.

• The set of personal and work devices belonging to a team of programmers at

a software company constitute a single organization in the context of a shared

version control system (VCS). Each programmer can access the VCS from any of

their devices, but only the devices belonging to programmers on the same team

can commit new changes. Data is never overwritten or deleted—the commit

history is preserved forever. Devices outside of the company are forbidden from

reading and writing.

Users choose which organization(s) to trust with policy enforcement when they

use the application. The organization mediates all of its user’s interactions with their

data in order to apply the user’s policy on the data before the data is received by the

application or other users.

2.1.3 Developers

The developers create and maintain the application code. They have to keep it

running despite any breaking changes in the underlying storage providers, and they

have to ensure that each user’s data-hosting policy is enforced.

The fact that developers lack control over the storage infrastructure leads to the

problem statement. Developers put users in the position of having to trust third-party

infrastructure to adhere to their data-hosting policies (even though the infrastructure

is not guaranteed to be aware of this), and developers put themselves in the difficult

position of having to trust that their underlying services will not change their storage

semantics in a way that breaks the application.

Neither of these positions have proved tenable in practice. User data gets misap-

propriated by the storage providers through breaches of trust like data leaks or data
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loss. Developers find themselves having to patch their applications over and over

whenever they change storage providers or the storage providers change their APIs.

This thesis argues that this problem can be solved by creating a data storage

protocol layer (i.e. SDS) in-between applications and storage services. It is sufficient

for the layer to do the following:

• Treat users as the authoritative origins for all data in a protocol layer beneath

the applications. Then, each application and each user can identify which ap-

plication data originated from which user.

• Identify and enforce organizational boundaries and policies in a protocol layer

beneath the applications. Then, organizations can take unilateral action in

specifying and enforcing their policies without cooperation from the application.

• Give developers a way to specify their desired end-to-end semantics in a pro-

tocol layer beneath the applications, but above the storage services. Then, the

developers can adapt the entire ecosystem of applications to changes in a single

storage provider with a single patch on the protocol layer, instead of having to

patch each application separately.

The design principles for wide-area software-defined storage are rooted in obser-

vations of three “tussle spaces” [46]. These are (1) the cloud services that host and

serve the raw bytes, (2) the end-to-end storage semantics, and (3) the trust relation-

ships between organizations, their users, and cloud services. A well-designed SDS

system helps application developers efficiently accommodate tussles in all three of

these domains.

2.1.4 Semantic Tussle Spaces

It may not be obvious that end-to-end storage semantics warrant their own tussle

space, distinct from the cloud services and applications. Why not simply design
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applications to be portable? Is there a system-of-systems application development

methodology that allows applications to be written once, and be made to run on any

services with only a small amount of work?

This thesis argues that focusing only on application portability is inefficient—it

takes a lot of work to build portable system-of-systems applications with today’s

methodologies. Today, the cost of porting m applications to n services would require

O(mn) patches. This is true even if developers share their patches, since getting a

patch to work with one application can require completely re-writing it to work with

another application.

It is unlikely that this situation will improve on its own, since developers are

incentivized to ship code that works today as opposed to code that is portable to

unspecified systems at unspecified times in the future. Moreover, the business models

of cloud services depend on customers continuously paying for the service, which

removes the incentive to help make applications portable to their competitors. Even

if portability was a desirable and achievable design goal from the get-go, getting

m applications to adopt a new service’s behavior would still at best require O(m)

man-hours, since each application would need to be modified.

SDS reframes the problem of portability as a problem with isolating both the

individual service’s semantics and the desired end-to-end storage semantics from the

application. By treating the set of application end-to-end semantics as their own

tussle space, SDS frees the developer from having to port the application to each

service. Instead, a developer simply ports the service to the SDS system, and the SDS

system overlays the desired end-to-end semantics “on top” of them. Then, all current

and future SDS applications would be able to use the service without modification.

The amount of work to port m applications to n services with a SDS system is reduced

to O(m + n).
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2.1.5 Trust Tussle Spaces

Trust relationships are not static, and system-of-systems applications need a way

to accommodate changes in trust. However, the application needs a way to do so

without compromising any organization’s autonomy. The two approaches to man-

aging trust relationships today—federations and open-membership architectures—do

not fully accommodate trust tussles. They either sacrifice organizational autonomy

(federations) or sacrifice the flexibility needed to accommodate new trust models

(open-membership architectures).

In federations, each organization promises to adhere to a “common ground” data-

hosting policy that allows them to interoperate. This way, users that trust one organi-

zation can trust other member organizations and their users to preserve their policies.

For example, the operators of a set of organizations may agree to use a single-sign-on

(SSO) system to authorize computers from different organizations to access sensitive

data. As another example, a set of organizations may agree to use a common data

format and API for sharing data with one another (such as putting their data servers

behind an API endpoint that emulates a widely-used storage provider like Amazon

S3).

While federations help organizations accommodate tussles in trust relationships,

they impose high and unfair coordination costs that impinge on one or more orga-

nizations’ decision-making. The problem is that organization administrators must

regularly coordinate to adapt to changing trust relationships (imposing a high cost),

and do so in a way that favors certain organizations over others (removing fairness).

For example, federations governed by in-person meetings exclude individuals who can-

not travel easily or live in different timezones. As another example, federations whose

coordination occurs in English penalizes non-English-speaking participants. The un-

fairness of the coordination cost distribution is fundamentally a social problem, and

is beyond the scope of this thesis to address.
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Open-membership architectures attempt to accommodate tussles in trust relation-

ships in a more fair way by embedding all of the coordination logic to do so in the

application protocol itself. The rationale is that this reduces the need for organiza-

tion administrators to coordinate out-of-band. Instead, the act of participating in the

system gives each organization the ability to set its own policies for interacting with

other nodes. Examples systems that follow this architecture include peer-to-peer file

sharing (like BitTorrent [49], Shark [13], and Vanish [88]) and cryptocurrencies (like

Bitcoin [169] and Ethereum [203]). In both examples, peers have the power to unilat-

erally choose which other peers to contact, and unilaterally decide which messages to

send and receive from other peers. For example, BitTorrent allows users to whitelist

other peers when sharing a file to ensure that it only reaches the desired users.

The difficulty with the open-membership approach to accommodating trust tussels

is that it makes it difficult to upgrade the application beyond the scope of the protocol.

This makes it hard to accommodate new types of trust relationships. For example,

the BitTorrent protocol does not provide a mechanism for helping users identify peers

who will continue to seed their files, even if the user is willing to compensate the peers

for doing so. A user who wants to identify and pay peers to seed their files cannot use

BitTorrent alone—they must use some out-of-band mechanism to find, select, and

compensate seeders. In order to accommodate this use-case in-band, the BitTorrent

protocol would need to be upgraded.

The requirement that trust management be performed in-band in the application

protocol means that developers forgo the ability to significantly change the protocol

once deployed. Attempting to introduce a backwards-incompatible change to the

application is tantamount to creating a whole new application. For example, the

Bitcoin Cash cryptocurrency [29] split off from the Bitcoin cryptocurrency due to a

disagreement in the system’s block size (a one-line code change) after over two years

of infighting.
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The SDS approach to accommodating tussles in trust relationships is to lever-

age an open-membership system to bootstrap trust between users and organizations

(Section 2.8.2). Users and organizations leverage the open-membership system to

exchange public keys, and establish end-to-end confidential and authenticated com-

munication channels. This lets users and organizations establish trust relationships

unilaterally while avoiding the high-overhead coordination problems of a federation

(i.e. in order to preserve organizational autonomy). It also helps developers avoid

getting locked into an un-upgradeable platform, since the nature of the trust rela-

tionships is decoupled from the open-membership system used to establish them.

2.1.6 Design Objectives

Applications not only need to work with existing cloud services, but also with

any future cloud services that may be developed after the application is built and

deployed. The developer must be able to use any services they want, with minimal

switching costs. This leads to the first design objective for a SDS system:

Objective 1: Once developed, an application must be able to use any current

or future cloud service to host data without changing its end-to-end storage semantics.

At the same time, a developer may want to stop using a storage system that

was previously in use. The data must nevertheless remain accessible under the terms

of the data-hosting policies of the user(s) that wrote it.

For example, the application developer may discover that the business logic needs

stronger consistency guarantees than the cloud services can offer. The developer

cannot simply move to a different service on a whim, since all of the data is hosted on

the current services. At the same time, the developer cannot be expected to rewrite

the application to keep using it with its weak consistency model.
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This leads to the second design objective for a SDS system:

Objective 2: Once chosen to host data, a cloud service must remain usable by

the application regardless of any future changes to the application’s end-to-end stor-

age semantics.

All the while, the trust relationships between users and their chosen cloud ser-

vices determine how applications are permitted to interact with each user’s data.

If users’ organizations can communicate securely, it can be shown that users only

need to trust cloud services with keeping their data available. Other policies can be

enforced in software outside of the services (Section 2.5).

However, this leaves open the question of how users establish trust in one another

in the first place. They must establish trust relationships outside of the application,

since they need their organizations to trust one another before any cross-organization

data interactions can occur. The developer cannot expect organizations to read or

write data from untrusted services or organizations, since this infringes on their au-

tonomy.

This leads to the third SDS design objective:

Objective 3: Users and their organizations must be able to establish trust in

one another independent of the applications and cloud services that host user data.

If this objective is met, then it becomes possible for organizations to securely

identify with whom they will share data. Once they can do this, each organiza-

tion’s users can programmatically define non-trivial data-hosting policies for the

organization to enforce.
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Organizations do not need the application developer to be aware of their trust re-

lationships. Organizations only need the developer to ensure that their programmatic

data-hosting policies (which encompass their trust relationships) get enforced.

Identifying and authenticating other organizations and their users is the first step

to implementing policy-enforcement mechanisms. The second step is to ensure that

the organization can unilaterally designate which organization(s) can be trusted to

run them. Once these preconditions are met, then it is up to the SDS system to ensure

that the right policy enforcement mechanisms are invoked by the right organizations

during a read or write.

This leads to the final SDS design objective:

Objective 4: An organization’s data-hosting policies must be enforced indepen-

dently of applications and cloud services.

The remainder of this chapter shows how these objectives sculpt the design space

for SDS systems. It concludes by distilling the design space into a set of design

principles for SDS system design and implementation.

2.2 Requirements

At a high-level, a SDS system is a logical “hub” between applications and services

that spans multiple organizations (Figure 2.1). The hub takes reads and writes from

the application, processes them according to application-defined semantics and user

policies, and loads and stores the resulting data to the underlying storage systems.

It necessarily offers two interfaces: a service interface through which it interacts

with services on the applications’ behalf, and an application interface through which

applications interact with data and define their desired storage semantics.
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Figure 2.1: Logical representation of a wide-area SDS system. The SDS system
is a cross-organization intermediate layer that connects services to applications via
distinct interfaces.

2.2.1 Service Interface

Fundamentally, a storage service can be read-only, read/write, or write-only. CDNs

and public datasets are read-only storage services, and cloud storage is a read/write

storage service. Write-only services are of little concern to the users of system-of-

systems applications, since they do not provide a way to interact with the data once

written.

This means SDS systems concern themselves with read-only and read/write ser-

vices. Cloud services can be further distinguished by whether or not they can host

authoritative replicas of user data—that is, replicas that the user explicitly places

and designates as originating from themselves. Public datasets and cloud storage are

capable of hosting authoritative replicas. However, CDNs are not—they can only

host copies of authoritative replicas.

The user can leverage any combination of services to host their data. However,

the application developer cannot be expected to anticipate every possible combina-

tion. The SDS system must instead provide some way to automatically “aggregate”
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the user’s services, so applications can read and write user data regardless of their

configuration.

Aggregating services is not trivial, since different services that fulfill similar roles

can have different semantics. Depending what combination of services, the configu-

ration can have different end-to-end semantics than individual services provide. For

example, a user that uses a CDN to read copies of data from cloud storage will observe

weaker data consistency than had she simply read directly from cloud storage.

What this means is that the SDS system needs a minimum viable model for each

kind of service. The more minimal the model is, the more diverse the set of supported

storage systems can be. In order to help aggregate services for the application, the

SDS system must take all necessary steps to make each of the user’s services conform

to the model.

For cloud storage. the minimum viable model must account for the fact that

different cloud storage providers have different consistency models. Fortunately, every

cloud storage provider in existence promises that if the user writes data once, they and

other users will eventually be able to read it. This implies that the SDS system can

safely assume that cloud storage is at least a write-once read-many medium.

Even if it supports multiple writes to the same record (most do), no assumptions can

be safely made about how readers will observe these writes.

Regarding datasets, data can be removed from a dataset by the provider, in which

case eventually all subsequent reads will fail. Data can be added to a dataset, and

eventually all subsequent reads to the new data will succeed. Users cannot modify

the dataset, since they do not have write access to the dataset provider’s servers.

Therefore, the minimum viable model is that datasets are a read-only medium

to users.

Using CDNs poses a challenge to applications because their usage alters the end-

to-end consistency guarantees of the application. Writes to upstream authoritative
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replicas may not be immediately reflected in the CDN’s replicas. Moreover, the user

cannot control the CDN’s schedule of cache evictions—the CDN can cache data as

long as it wants. However, the minimum viable model for cloud storage means that

the SDS system can “trick” the CDN into fetching and serving fresh data. This is

possible because when the application executes a logical write to an existing record,

the SDS will create a new authoritative data replica in cloud storage. A subsequent

read on that data through the CDN will result in a cache miss, since as far as the

CDN can tell it has been asked to fetch new data (instead of a modification to an

existing record). This means that the minimum viable model for CDNs is that CDNs

are a write-through cache for users.

These minimum viable models suggest an aggregation strategy for the SDS system:

• Treat all cloud storage as a write-once read-many medium. The SDS

system must make it so that the user’s set of cloud storage services will appear

to the application as a single write-once read-many storage medium. The SDS

system must ensure that a given record is written no more than once, and the

SDS system must handle the details of routing the application’s reads and writes

to the correct underlying storage system.

• Treat all datasets as read-only medium. The SDS system must make it

so that all of the user’s datasets appear to the application as a single read-only

storage medium. The SDS system must route the application’s reads to the

correct dataset.

• Treat CDNs as a write-through cache. The SDS system must make it so

that the set of the user’s CDNs appear as a write-coherent cache. A write from

the application must always be considered “fresh” by the CDN, regardless of

its caching policy.
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Figure 2.2: Service and aggregation drivers in an SDS system. Aggregation drivers
span multiple organizations and route application reads and writes to one or more
service drivers.

To interact with services and aggregate them on behalf of applications, the SDS

system would realize these models by means of a service driver. Logically speaking,

service drivers run at the service-facing “bottom” of the SDS “hub” (Figure 2.2).

They handle only the data meant to be hosted on the service. The SDS system may

instantiate multiple copies of the service drivers in order to handle higher load or keep

applications isolated from one another.

2.2.2 Application Interface

Developers need to be able to preserve their application’s end-to-end storage semantics

across an aggregation of services in a multi-user setting. When an application reads

or writes, the SDS system must use the developer’s prescribed rules to handle it. The

SDS service will handle reads by translating an application-level read into requests for

data from its service drivers, and it will handle writes by translating the application-

given write request and write data into requests to store data via its service drivers.
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Since each user chooses their own service providers, the only opportunity to apply

end-to-end semantics is in this application-to-service-driver translation step.

What kinds of semantics should a SDS system support? Since storage semantics

are application-specific, the SDS system must support arbitrary rule sets supplied by

the developer. This implies that SDS systems must be programmable—the developer

must be able to give the SDS system a program that is evaluated on each read and

write to carry out the sequence of steps to transform application-given requests into

requests to service drivers. To enable this, SDS offers a separate type of driver called

an “aggregation driver.”

Since each application has its own storage semantics, there is one aggregation

driver per application. Logically speaking, it runs at the “top” of the SDS “hub”

(Figure 2.2) and mediates all requests between users and service drivers. Note that

this thesis does not distinguish between users and the application clients they run.

The aggregation driver is executed to handle each read and write. Since reads and

writes to a particular piece of data are subject to a particular data-hosting policy, the

SDS system executes reads and writes in terms of which user issues the interaction,

which operation is requested, which data record is affected, and which network host

is originating the request (the network host being indicative of which organization

originated the request).

The high-level idea behind having two driver classes is that once a service has an

appropriate service driver, it can be “plugged into” the SDS system such that existing

aggregation drivers can use it immediately. An aggregation driver implements the

application’s desired end-to-end storage semantics by translating application-level

requests into requests understood by the service driver. These requests are issued

such that their execution by service drivers delivers the desired end-to-end behavior.

This reframes the costs of porting applications to services:
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• For the cost of writing only the application-specific aggregation drivers, a new

application can be made compatible with all existing and future services with

no modification.

• For the cost of writing only the service-specific SDS driver, a new service can

be made compatible with all existing and future applications.

In other words, the cost of porting m applications to n services can be reduced

from O(mn) to O(m + n).

To realize this cost savings, many applications will share an SDS system. Ag-

gregation and service drivers will be decoupled from the applications—they will be

developed independently of one another, and independently of the application itself.

Both types of drivers can be re-used by new applications.

2.2.3 Data and Control Planes

This thesis intentionally uses the term “routing” to describe the act of translating an

application-given read or write from the wide-area (i.e. a user’s client) into requests to

service providers. This is because one facet of processing reads and writes is that the

SDS system needs to ensure that the user’s data-hosting policies are enforced when

they execute. As argued earlier, the user cannot rely solely on the storage providers

to do this, nor can the user rely solely on the application.

The user must instead be able to unilaterally choose which organizations will

process their reads and writes, since only the user is in a position to determine which

organizations will enforce their data-hosting policies. When a user reads or writes, the

request and associated data must pass through the user’s trusted organizations. This

way, the organizations mediate the reads and writes, and apply the user’s policies to

constrain how their data will be processed. For example, a user may require that the

photos they share in an SDS-powered photo-sharing application pass through their
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personal server en route to cloud storage, where they will be encrypted before being

stored. As another example, a user may require other users to pay to read the content

they produce.

Trusting organizations to enforce data-hosting policies introduces a routing con-

cern that SDS systems must fulfill. Reads and writes to a user’s data must be routed

through the sequence of organizations that the user trusts, before reaching the storage

providers (on write) or other users (on read).

What this means for SDS systems is that they must empower the user to determine

which routes the reads and writes to their data are allowed to take. Users must be

able to early-bind their routing decisions to their data, since their routing decisions

must continue to apply to their data long after they create it. The SDS system

must execute a source routing protocol when processing reads and writes to a user’s

data, since the SDS system must honor the user’s routing decisions instead of making

routing decisions on its own (i.e. in order to ensure that the user’s data-hosting policy

is enforced by the right organizations).

The fact that the SDS system is concerned with both sharing data between users

and applying user-given routing decisions on how the data is delivered implies that

SDS systems have both a control plane and a data plane. The data plane’s job is

to ensure all-to-all connectivity between users and services. The SDS data plane

handles two distinct responsibilities. First, it moves the raw bytes between users and

services, but without concerning itself with application-specific semantics or user-

specific hosting policies. It does so via the service drivers, and handles tasks such as

on-the-wire data formatting, data serialization and deserialization, data transmission,

and so on.

The other data plane responsibility is to maintain an inventory of the set of records,

the set of organizations, and the set of services that a SDS user can ostensibly interact

with. Users rely on this service to make source routing decisions and discover available
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data. This is implemented by a SDS data plane subsystem called the metadata service

(Section 2.3.1).

The control plane implements each application’s storage semantics and user-given

policies by acting as a governor for the data plane. It runs an application’s aggrega-

tion driver to mediate all users’ interactions with the data plane (including the data

inventory in the metadata service) in such a way that users decide which network

paths reads and writes take without affecting the end-to-end storage semantics the

driver enforces.

Because each user expects to share data with other users (subject to some pol-

icy), the data plane is effectively shared by all applications and all services, and must

implement a common data-sharing interface via a fully-connected bidirectional com-

munication graph. Every node in an SDS-powered application must be able to send

and receive data-plane messages to every other node, since ostensibly each user must

be able to share data with each other user (whether or not they actually do so in the

application is another matter). The control-plane defines the behavior of the system

insofar as what messages get sent while processing application I/O, and how they are

transformed and routed to and from the underlying services and other users.

2.3 Data Plane

User data can be arbitrarily large. However, data gets cached in CDNs, and large

singular records can cause cache thrashing. To contend with this, the SDS data plane

organizes data into units called chunks. Chunks form the basis of all data within SDS,

and constitute a “data plane narrow waist” between a multitude of service drivers

below and a multitude of aggregation drivers above. Chunks have the following

properties in SDS:

• Every piece of data in SDS is made of one or more chunks.
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• Each chunk is immutable.

• Each chunk has a globally-unique identifier.

In order to achieve all-to-all data availability, the data plane must ensure that each

chunk belonging to a particular application is addressable and ostensibly resolvable

by every user connected to it. If the aggregation driver logic allows it, each user

can potentially resolve and download chunks created by each other user. As will

be shown, the aggregation driver and the users’ trust relationships with each other

constrain which users resolve which data.
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Figure 2.3: The narrow waist in the SDS data plane. The aggregation driver trans-
lates application-level storage requests into operations on manifests and chunks, and
service drivers implement simple create, update, and delete operations on chunks using
existing service interfaces.

At the service driver level, the SDS system provides operations to create, read,

and delete chunks. Service drivers execute the requisite protocols and data trans-

formations to marshal chunks back and forth to their respective services. CDN and

dataset service drivers only implement read, while cloud storage drivers implement

all three.

36



The data the application stores for a user can take any structure, but at the end of

the day the application will store user data as a set of one or more named sequences

of bytes (called records in this thesis). Since records can be arbitrarily large and

must be able to be resolved by any user, SDS systems must implement an addressing

scheme that resolves a record identifier to its sequence of chunks.

The minimally viable way to address records is to introduce one layer of

indirection—the data plane identifies which chunks belong to the same record, in

addition to identifying each chunk. At a layer above the service drivers but beneath

aggregation drivers, SDS groups chunks that belong to the same record by using two

specialized chunk types: a block and a manifest. A block is simply a data container

with a known length. A manifest identifies a sequence of blocks, and in doing so

represents the entire record. Together, blocks and manifests constitute the “narrow

waist” of an SDS system’s data plane (Figure 2.3), since they serve as the common

interchange format for a user’s data. This construction is similar to the inode and

block construction seen in conventional filesystem designs that is used to represent a

user’s files.

This record model is minimally viable because blocks and manifests provide just

enough information define a set of generic operations for manipulating application

data, in a way that does not mandate a particular data representation or access

interface and is consistent with the minimum viable model for cloud storage, CDNs,

and datasets. Specifically, the block-and-manifest construction allows the SDS system

to define data-plane operations on application data in terms of the chunks that make

them up:

• Reading data. To read a piece of application data, a SDS node locates its

manifest, fetches it, and then fetches the blocks listed within it.

• Creating data. To write a new piece of data, a SDS node replicates its set of

chunks and a manifest that contains them.
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• Updating data. Modifying an existing piece of application data is done by

creating blocks with the modified data, creating a new manifest with the “latest”

sequence of blocks, and deleting blocks that contain overwritten data.

• Deleting data. Deleting the data is done by deleting its manifest and blocks.

Subsequent reads on the manifest and blocks will fail.

These operations are what allow the SDS system to implement end-to-end guar-

antees with higher-level aggregation drivers without having to interface directly with

services. Data plane clients (i.e. aggregation drivers) translate data operations into

one or more of these operations.

A key advantage of this protocol is that it gives service drivers insight as to

whether or not a chunk is a block or a manifest, as well as insight on which record is

being processed. Developers are encouraged to exploit this information in practice to

implement service drivers to transparently carry out both chunk-level and application

data-level optimizations like de-duplication, compression, batch-writes, defragmenta-

tion, and so on. Users are encouraged to exploit this in practice because a stream of

chunks passing through an organization can be recognized as belonging to a particular

application record, which allows the organization to apply the correct policy on the

request to read or write it.

2.3.1 Data Discovery and Indexing

Manifests provide a way to resolve a record’s data, but application endpoints still

need a way to find users’ records’ manifests. This requires the SDS system to build

and maintain a global chunk inventory so other users can discover manifests (and

thus records). Because manifest are chunks and are accessable under write-once

read-many semantics, the SDS system must ensure that any time a user creates,

updates, or deletes data, a new manifest will be created for the record and it will
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have a globally unique identifier. This grants each record snapshot consistency—each

manifest uniquely identifies the state of a record in-between writes.

In order to read a record, a reader first needs to discover the record’s “current”

manifest identifier, where the notion of “current” is defined by the application’s stor-

age semantics (i.e. by the aggregation driver). Once it knows it, the reader, must

then resolve the identifier to the manifest, and then resolve each block it needs from

the manifest to the block data. Since both manifests and blocks are chunks, and since

chunks have globally-unique identifiers that any application endpoint can resolve to

chunk data, a SDS system must provide a system-wide discovery service that maps

chunk identifiers to the set of organization hosts and service providers that can serve

its data. This service is called the metadata service.
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Figure 2.4: SDS Metadata Service. The MS resolves names to their current manifests,
and allows gateways to update the name/manifest binding. Manifests are stored in
the underlying cloud services, and point to the set of blocks that make up the record.

The Metadata Service (MS) helps users discover the availability of new records

and new chunks. It also helps users announce the existence of chunks they create,

and identify which organizations and services that can serve a chunk (Figure 2.4).

There only needs to be one MS per SDS instance, and applications can share the MS
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as part of sharing the SDS deployment (i.e. the MS can be designed in a way such

that it can be multiplexed across applications).

To resolve reads, the MS must implement at least two indexes: an index over the

set of manifests, and an index over the set of organization hosts and services that

can serve blocks. Then, once a reader has obtained the manifest, it can decode the

manifest to find the block IDs and resolve them to their data by using the host and

services index.

Since there can be multiple users in system-of-systems applications that write to

the same records, a key ease-of-programming feature the MS must provide developers

is an immutable record identifier for each manifest. This means that the MS’s manifest

index must be realized as a naming system—it binds an immutable name to a record’s

manifest identifier. Once users learn the record’s name, they must be able to resolve

it to the “current” manifest identifier. In both Syndicate and Gaia, the record name

may be an arbitrary string, but other designs are possible (such as a DID [58]).

Name Consistency

The consistency model of the MS’s name/manifest identifier mappings determines

the default consistency model for the user’s data. In Syndicate, for example, the

MS offers per-name sequential consistency. Once a writer successfully updates the

manifest identifier for a name, all subsequent reads on the name will return the new

identifier.

In order to support a wide array of application storage semantics, a SDS system

must allow applications to realize different consistency models by allowing the devel-

oper to programmatically determine precisely when to update the manifest identifier

and precisely when to resolve a name to a manifest identifier as part of an on-going

write or read. This is enabled through the aggregate driver programming model,

described in Section 2.5.
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Service Discovery

The other responsibility of the MS is to provide an index over the set of organization

hosts and storage services that can resolve chunks. This index must also be visible

system-wide in order for application endpoints to query organizations and services

for chunks.

Unlike the record name index, the consistency model of the service index must be

atomic and linearized with respect to reads and writes. All reads and writes must

occur under the same system-wide view of this index, and once an index view-change

executes, all subsequent reads and writes execute in the new view. Put another way,

each read and write belongs to exactly one view, and there is at most one view in the

system at any point in time.

Preserving this index’s consistency model is necessary to ensure that the user’s

data-hosting policies are preserved when the service providers or organizations change.

These changes can happen when the user changes which storage provider(s) host

replicas of their data, and can change when the user’s trust relationships with other

organizations change. The protocols are described in detail in Section 2.6.

Metadata Policy Enforcement

Due to the roles the MS plays in a SDS system, it is important to consider which

organization or organizations run it. The design of the MS must not infringe on each

organization’s autonomy—both it and the underlying infrastructure running it must

respect all data hosting policies.

This requirement allows for two possible MS designs. On the one hand, the MS

can be designed to be distributed across each organization such that each organization

controls the service discovery and naming for its data and services. In this design,

organizational autonomy is preserved because each organization mediates all access
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to its metadata and service discovery information. This is the design strategy taken

by Gaia’s MS.

On the other hand, the MS can be designed such that each organization places

no more trust in its ability to enforce data hosting policies than it already does in its

chosen cloud services. In other words, the MS could run in an external cloud service,

and would only be trusted with data availability. This is the design strategy taken

by Syndicate’s MS.

2.4 Control Plane

The control plane governs the data plane in two ways: it applies the application-

given rules for processing reads and writes as their data moves between users and

storage providers (i.e. preserving storage semantics), and it allows each organization

to choose which other organizations are trusted to execute these rules, based on their

users’ policies (i.e. preserving organizational autonomy). The control plane handles

these two concerns by deploying the application’s service and aggregation drivers

across the organizations that use the application, and by allowing users to select the

routes reads and writes take through the drivers.

The aggregation driver has so far been characterized a program running in the

SDS’s logical “hub” that mediates all interactions with the application’s data. The

aggregation driver is on the read and write paths for all of its application’s endpoints,

including both “front-end” processes on users’ computers and “back-end” processes

running on application servers.

It is tempting to use this logical model as the aggregation driver design by run-

ning it within a developer-chosen organization, such as a cloud computing provider.

This is the approach taken to implementing storage semantics today in most Web

applications—the logic that takes user-initiated reads and writes and translates them
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into reads and writes to underlying storage is addressed via the application’s server-

side processes. However, since users cannot trust application servers or storage

provider servers with enforcing their data-hosting policies, this approach must be

avoided in SDS system designs.

The consequence for the SDS control plane design space is that the control plane’s

execution is necessarily distributed across the set of organizations. This implies a dis-

tributed aggregation driver model, where each organization runs one or more service

driver instances and one or more aggregation driver instances which coordinate to

execute reads and writes. The key to preserving both storage semantics and organi-

zational autonomy is to allow users to select which instances will be used to process

their data: users choose which instances to trust with read and write processing, and

the SDS system ensures that their choices yield a driver execution trace compatible

with the end-to-end storage semantics.

To achieve this, all SDS systems provide two logical control-plane constructs: the

volume and the gateway. Using these two constructs, the control plane realizes the

following properties:

• Scalability. The control plane can service a scalable number of concurrent

requests by distributing them across the users’ organizations.

• Multiplexability. The SDS system can be shared across many applications,

organizations, and users. Each application is given the illusion that it is the

only application interacting with the system (i.e. applications to not interact

via SDS).

• User-determined Source Routing. Users decide which driver instances pro-

cess their reads and writes for each record they create. In doing so, the system

recognizes users as the authoritative sources for their data at the protocol level,

instead of by social convention.
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• Driver Agility. Drivers can be replaced and changed at runtime without

affecting ongoing reads and writes. Each user can change which drivers are

used to service reads and writes to their data.

• Fault Tolerance. Using the user’s source-routes for their data, the SDS system

can recover from driver fail-stop conditions by routing reads and writes to other

driver instances that are permitted by the user’s source-routes. In doing so, the

user defines how the system handles faults when processing requests to their

data.

2.4.1 Volumes

A volume is a logical collection of application data that is accessed through a fixed

set of service and aggregation driver instances. Each driver instance runs within a

gateway (described in the next section), and has a network address that allows users

to send it read and write requests.

Volumes allow the SDS system to be multiplexed across users, applications, and

organizations. Each record belongs to exactly one volume, and each running driver

instance belongs to exactly one volume.

A volume has a designated “owner” user that has the power to unilaterally add

and remove records and driver instances on-the-fly. Volumes can nevertheless be

shared across users, applications and organizations.

Volumes bind their owner’s data-hosting policy to their records. This is achieved

by ensuring that the volume owner has the power both to add and remove service

and aggregation driver instances at runtime, as well as both add and remove users

who can send them requests. Organizations run instances of driver implementations,

and the SDS system executes a view-change protocol (Section 2.6) to ensure that (1)

all of the volume’s users know which driver instances to contact, and (2) all of the

volume’s driver instances know which users are allowed to read and/or write to them.
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This arrangement means that the volume owner has direct control over their trust

relationships with other organizations and their users. The application only provides

a view of the volume data, and has no say in which organizations and users the volume

owner trusts.

The volume owner only allows a service or aggregation driver instance to process

reads and writes to volume records if she trusts the organization running the driver to

faithfully execute its code. Similarly, the volume owner only allows a user to interact

with her volume’s driver instances if she trusts the user. The SDS system design may

provide her with additional access control mechanisms to constrain how other users

interact with her drivers (and thus the volume data).

For example, a lab’s PI may want to store lab data to Amazon S3 and retain an

access log for all requests for a year. She does so by instantiating a service driver for

loading and storing chunks to S3, and an aggregation driver that accepts reads and

writes, logs them, and forwards them to the S3 service driver. She needs all reads

and writes to pass through the aggregation driver, so the log will be maintained.

In this example, the service driver instance includes the PI’s sensitive S3 cre-

dentials. To keep them secret (and avoid log bypasses), she runs the service driver

instance within the lab network on a host that only she can log into. She creates a

volume and binds it to her service and aggregation drivers, and grants her collabora-

tors access to the volume so they can store their data in S3. Her collaborators read

and write via the aggregation driver instance in her volume, thereby both backing

up their data and preserving an access log. The PI can add or remove collaborators

at will, and the SDS system ensures that the driver instances will be informed as to

which users are permitted to interact with them.
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2.4.2 Gateways

Interacting with data in SDS volumes requires deploying, discovering, and authenti-

cating to service and aggregation driver instances. These drivers, in turn, translate

application-level requests into requests for chunks (via the aggregation driver) and

load and store chunks to the volume owner’s chosen storage providers (via the service

driver). Facilitating this process is the responsible of the SDS system’s gateways.

A gateway is a SDS process that runs an instance of a service and/or aggrega-

tion driver (Figure 2.5). Gateways implement common network protocols for both

authenticating and processing read and write requests in SDS. A gateway belongs to

exactly one volume, and every gateway in the volume has the most-recent view of

the volume’s users, their organizations’ hosts, and other gateways in the same vol-

ume. In other words, each gateway knows about its volume owner’s current trust

relationships.
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Figure 2.5: SDS Gateways. Gateways coordinate with one another across organi-
zation boundaries to service read and write requests originating from within their
organization. They run a “stage” of the volume-wide aggregation driver, and run
zero or more service drivers instances to load and store chunks to service the requests
the stage processes.
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Gateways work together to process reads and writes from the volume’s users. They

marshal chunks between services and application endpoints via service drivers, and

they determine how application requests and responses are processed via aggregation

drivers. In doing so, gateways implement the backbone of the SDS control plane.

SDS systems are expected to support many gateway implementations. In the

limit, each user must be able to run their own gateway implementation, so long as

it correctly implements the SDS system’s control-plane interface (i.e. the network

protocol for communicating with other gateways and the MS). This is because the

gateway is an agent of the user, and binds the user to an organization at the protocol

level. Application clients interact with the user’s gateway via a well-defined storage

API, such as a filesystem mount, a SQL database, or a HTTP RESTful endpoint.

The gateway handles requests to these APIs using its locally-running drivers, and by

communicating with other gateways belonging to other trusted users and organiza-

tions.

The SDS system addresses gateways in terms of (user, volume, network-address)

triples. Gateways each maintain an up-to-date view of the set of all other gateway

addresses in the volume (Section 2.6), thereby allowing them to forward read and write

requests to one another in order to invoke each other’s service driver or aggregation

driver instances.

User Policies

A user’s trusted gateways mediate her reads and writes, and are thus well-positioned

to enforce her data-hosting policies. A user’s application client issues reads and writes

to these gateways, and each gateway decides what to do with the request before

forwarding it along to its aggregation driver instance (or another gateway). Since

gateways are arbitrary programs, the user’s organization can run whatever gateway
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implementation she needs in order to process her data according to her (arbitrarily-

specific) data-hosting policy.

Gateways may invoke other gateways’ service or aggregation drivers. For example,

a shared volume in a lab may only have a single service driver instance that can

replicate data to Amazon S3. The other gateways in the volume are aware of which

gateways run which drivers through their view of the volume’s configuration, and can

route accordingly. (Section 2.6).

Because the user ultimately trusts the host that runs her gateway, she can proac-

tively program her gateway to make choices on which other gateways and services

should be contacted when reading or writing a particular record. Crucially, she can

do this independent of any application. For example, a user could create a volume for

storing photos. She would run a gateway on her mobile phone that saves all the pho-

tos it takes by forwarding them to a cloud-hosted gateway in the same volume that

mirrors photos to both her Instagram account and to her Dropbox account. Then,

any SDS-powered photo-sharing application she uses on her phone is bound by this

policy her gateway enforces with no additional effort by the developer.

Advanced user policies may constrain where different aspects of the application-

given storage semantics are allowed to run. For example, the aforementioned photo-

sharing volume could be given an aggregation driver that encrypted photos before

replicating them, such that only certain users could see them. The logic to do this

cannot be run on other users’ gateways, since otherwise they could decrypt any photo.

Advanced user policies have a non-trivial influence on the space of permissible

aggregation driver models, whereby the SDS system must be aware of the program

structure of the aggregation driver in order to ensure that the user can choose which

organizations run which aspects. This is described in detail in Section 2.5.
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Supporting Multiple Applications

Beyond policy enforcement, the other reason SDS systems must support many dif-

ferent gateway implementations is that different applications expect different storage

interfaces. This is particularly true for legacy applications, which already expect a

particular storage interface such as a filesystem, SQL database, or a key/value store.

To process application-level reads and writes, gateways present application clients

with one of a set of high-level data access interfaces. The gateway implementation

translates requests to this interface into requests to the volume’s aggregation driver.

Once the gateway receives the application request, it translates it into an aggregation

driver request. Depending on the aggregation driver implementation, the gateway

may coordinate with other gateways running in other organizations (but in the same

volume) to execute the driver program, thereby preserving the end-to-end storage

semantics. Internally, a gateways’ aggregation driver instance loads and stores chunks

from storage providers via co-located service drivers.

2.5 End-to-End Storage Semantics

The SDS gateway is a necessary control plane component for handling both trivial

and non-trivial storage semantics. With trivial storage semantics, each gateway acts

as a storage service proxy—each gateway can be trusted to faithfully execute all of

the semantics rules regardless of where it runs. In this simple case, each gateway

runs a full copy of the aggregation driver and a full copy of all of the volume’s service

drivers. The user simply selects a gateway that she trusts, and issues her reads and

writes to it. The gateway would execute each request according to the application’s

storage semantics (implemented by the aggregation driver), and load and store the

requested chunks via the cloud services (addressed by the service drivers).
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Most real-world applications have non-trivial storage semantics. In these appli-

cations, different aspects of the storage-processing rules must run in different orga-

nizations. This is because not all organizations are created equal in the eyes of the

volume owner—some organizations can be trusted with certain responsibilities while

others cannot. For example, a scientific data volume that uses an aggregation driver

to log accesses must run the logging aspect of the driver on a host that the volume

owner trusts to carry this task out. The volume owner cannot trust any other user’s

hosts to do this, since otherwise the user could instruct their host to simply omit the

log data.

To accommodate non-trivial storage semantics, the aggregation driver itself must

run as a distributed program, where different pieces of the program run in different

gateways (i.e. different organizations) and/or are run by different users. The SDS

aggregation driver model necessarily reasons about aggregation drivers in terms of

stages.

A stage is a well-defined continuation in the aggregation driver. An aggregation

driver is composed of all of its stages. When the aggregation driver’s stages exe-

cute sequentially in the same request context, they implement the end-to-end storage

semantics.

Stages can be thought of as programs in a UNIX pipeline. The SDS system defines

the interfaces between stages and the invariants that must hold before and after the

stage is executed, but gives the developer free reign to decide how each stage is

implemented. Each stage runs in a separate gateway, allowing the aggregation driver

implementation to span multiple organizations.

By realizing the aggregation driver as a set of composable stages, SDS realizes the

following properties:

• Cross-organization storage semantics. The aggregation driver code can

be split up into distinct stages that can be assigned to different organizations’
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computers. This allows the volume owner to keep sensitive storage processing

confined to trustworthy hosts, requiring other hosts in the volume’s organiza-

tions to route their requests through them.

• Code Reusability. Since stages have well-defined interfaces and pre/post

conditions on their execution, they can be built in isolation and reused in dif-

ferent contexts. This potentially reduces the amount of work a developer must

do to implement the end-to-end storage semantics for a new application, since

previously-written stages can be reused. For example, a stage that encrypts

writes and decrypts reads that pass through it using a key given by the gate-

way’s owner could be used to achieve data confidentiality a file storage appli-

cations, in photo-sharing applications, and social media applications (assuming

that readers have a way to share the key). As another example, a stage that

queries a payment processor to allow or deny reads to a record based on the

reader’s financial standing with the user that wrote the record could be used to

implement content subscription services.

• Familiar programming. Since the SDS system already handles passing flow

control from one stage to another automatically as part of processing a read or

a write, the developer is not required to reason about the set of organizations

running the application or the trust relationships between them. Instead, the

developer simply publishes the set of driver stages. The organizations deploy

stages for their users, and users select which stages to use to process their data

based on their trust relationships with each other and other organizations. The

SDS system composes the stages back together as a network path, subject to

the data-hosting policy of the record being read or written.

Regarding the familiar programming property, consider an application that allows

users to create videos and sell subscriptions to their content. The aggregation driver
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would ensure that only readers who pay the video creator can see the videos. To do

this, the aggregation driver would first determine whether or not the reader has paid

to access the video creator’s content, and if so, would share a key with the reader so

the reader’s gateway could decrypt the video(s) the reader paid for. The only things

the developer would need to do to achieve this would be to create a payment processor

stage and an encryption/decryption stage. The video creator’s organization would

run a payment processor stage for the creator’s videos, and each reader’s organization

would run an encryption/decryption stage. The SDS system would ensure that reads

get routed to the right video creator’s payment processor stage, and would ensure that

video streams are processed only by the reader’s gateway. This frees the developer

from having to reason about trust relationships between users and organizations; the

developer only needs to ensure that logical read path from cloud storage through

the payment stage and the encryption/decryption stage to the reader’s client works

correctly.

The SDS system handles application-level reads and writes by setting up and

executing data flows. A data flow is the pipeline-like assemblage of gateways that

run aggregation driver stages to fulfill the request. The gateways in a data flow

execute all of the stages of the aggregation driver in sequential order in response to

a particular read or write request, thereby processing the read or write according to

the end-to-end semantics.

SDS defines two types of data flow: an access flow, and a mutation flow. Access

flows fulfill read requests and do not alter data. On the data plane, they only load

existing manifests and blocks. Mutation flows fulfill write requests, and alter the

state of data in the system by producing new manifests and blocks. The distinction

between these two types of flows is necessary in order to help the SDS system reason

about when it is safe to execute them (Section 2.6).
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The SDS system handles requests by evaluating the aggregation driver’s stages in

the context of an application-given (user, operation, record, chunks) context. The

user is a SDS system-wide unique identifier of the user who issued the request,

operation is either access (for access flow) or mutate (for mutation flow), record

is the name of the record being read or written (i.e. on the MS), and chunks is the

set of zero or more chunks to be processed (one of which must be a manifest if the

set is non-empty).

2.5.1 Access Flows

The SDS system translates an application’s read request into one or more access flows.

Access flows do not take chunks as input. Instead, they return blocks corresponding

to the application read. The user and record fields are used to look up which blocks

to query, and to carry out any data policy enforcement in the driver code.

discover(user, datum) {
  /* app-given agg. driver code
  to find the manifest ID. */
  return mfst_id;
}

acquire(user, datum, mfst_id) {
  /* app-given agg. driver code
  to find manifest and blocks.*/
  return blocks;
}
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lookup() mfst_id

Get blocks for mfst_id

blocksdata

(1)

(2)

(3)

(4)

(5)(6)

Load chunks

Figure 2.6: Access flow overview. The gateway running the Discover stage identifies
the manifest ID(s) for a the data requested by the application, and the Acquire stage
goes and fetches them with its service driver(s) when given the manifest ID. The
pseudocode describes the behavior of the stages.
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Reading data in an SDS system occurs in three steps: resolve the record’s name

to its “current” manifest ID, resolve the manifest ID to the manifest, and then service

the read by using the manifest to generate block IDs and resolve them to block data.

In SDS, an access flow can be realized in two logical stages (Figure 2.6). They

are:

• Discover. This stage gives the driver a chance to find the manifest identifier

for the record. It executes after the application issues the read request, but

before the processing gateway contacts any other gateways.

• Acquire. This stage takes the manifest identifier from the Discover stage and

outputs the requested blocks. The logic in this stage must fetch and decode the

requested blocks and serve them to the reader.

The Acquire stage combines the act of fetching the manifest and fetching the

blocks, because both the manifest structure and the algorithm for using it to find

block IDs are both well-defined and universal across applications. The right way to

load the manifest and block chunks, however, is application-specific and subject to

the application’s storage semantics.

The two stages in an access flow accommodate a wide variety of consistency mod-

els and cooperative caching models. An aggregation driver that implements strong

consistency could use the Discover stage as a chance to coordinate with other gate-

ways, for example. As another example, an aggregation driver that cached manifest

records across gateways could use the Discover stage to find them, thereby avoiding

a potentially-expensive query to the MS.

The access flow stage implementations are idempotent. In correct implementa-

tions, no chunks will be created, and no chunks will be deleted during their execution.
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2.5.2 Mutate Flows

An application’s write request will be translated into one or more mutate flows.

Mutate flows take one or more chunks as input. The flow will return either True or

False to indicate whether or not the request was carried out successfully.

Build(user, datum, data) {
 /* app-given agg. driver code
 to generate new data. */
 return (manifest,blocks);
}

Push(user, datum, chunks) {
 /* app-given agg. driver code
 to replicate new chunks */
 return manifest_id;
}

Publish(user, datum, mfst_id) {
 /* app-given agg. driver code
 to expose new data globally */
 return mfst_id;
}

Build()

Gateway

Push()

Gateway

Publish()

GatewayApp

service drvr

Metadata
Service

Cloud
Services

write() send chunks send mfst_id

mfst_idmfst_idmfst_id

(1) (2) (4)

(3) (5)

(6)(7)(8)

Store chunks Publish 
manifest

Figure 2.7: Mutate flow overview. The Build stage generates the new manifest and
blocks, which are sent to the Push stage to be replicated (as chunks) to the cloud
services. Once the chunks are durable, the new manifest ID is sent to the Publish
stage where it will be announced to the rest of the system. The pseudocode describes
the behavior of the stages.

There are three steps to writing data in a SDS system. The writer must generate

the new manifest, replicate the new manifest and blocks, and update each gateway’s

view of the record name index so that subsequent Discover stages will find the new

manifest ID. These are realized as three stages in a mutate flow (Figure 2.7):

• Build. This stage acquires the necessary data from the application to begin

the write. At the end of this stage, the driver constructs a new manifest and

set of blocks that encode the changes to the data.

• Push. In this stage, the driver replicates the new blocks and manifest.
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• Publish. This stage takes the new manifest identifier and makes it discoverable

to all subsequent access flows. A subsequent Discover on the given record will

succeed after a successful Publish to the same record.

Like with access flows, the Build and Push stages in a mutate flow give writers

a chance to execute a wide variety of consistency protocols (some of which require

two communication rounds). Also, like Discover and Acquire, the semantics of the

SDS cloud storage driver model ensure that Build and Push stages are idempotent

by default. Service and aggregation drivers must be designed to expect that Build

and Push may be called multiple times in a mutate flow in order to tolerate faults

(Section 2.5.5).

The Publish stage is distinct from the first two stages in that it is not concerned

with replicating data. While the Build and Push stages are concerned with replicating

chunks, the Publish stage instead determines which chunks represent the authoritative

state of the record. The Publish stage is used for enforcing users’ data-hosting policies.

As long as users can choose which gateways are allowed to Publish their writes,

users are able to control how correct applications view their data regardless of which

application reads and writes to it, and regardless of how the data is hosted and

replicated.

2.5.3 Flow Routing

When considering the execution of the aggregation driver, the common requirement

in evaluating driver code on the given (user, operation, record, chunks) input is that

the output of one stage is given to the next stage as input. For access flows, this

means the output of the Acquire stage is the input to the Discover stage. For mutate

flows, the output of the Build stage is the input to the Push stage, and the output

of the Push stage is the input to the Publish stage. The user, operation, and record

inputs are a read-only part of the aggregation driver’s evaluation context—they are
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bound variables in all stages in a flow, and always have the same values across the

flow’s execution.

discover()

acquire()

App

Storage
Services

Metadata
Service lookup manifest ID

load chunks

parse and validate

read succeedsread begins

discover() runs acquire() runs

Figure 2.8: Iterative routing for access flows. The Discover gateway routes the ap-
plication’s request to the Acquire gateway once the Discover stage succeeds, and
forwards the chunks’ data back to the application after parsing and validating it.

Metadata
Service

build()

push()

publish()

App

Storage
Services

publish new manifest

replicate chunks

write succeedswrite begins

build() runs push() runs publish() runs

Figure 2.9: Iterative routing for mutate flows. The Build gateway routes the applica-
tion’s request to the Push gateway to make its chunks durable, and then routes the
request to the Publish gateway to announce the new manifest to the system.
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There are two approaches to evaluating the aggregation driver across a set of

gateways: the iterative approach, and the recursive approach. In the iterative ap-

proach, one gateway invokes stages in other gateways as remote procedure calls, and

maintains all of the intermediate state for flow execution in local memory. For access

flows, the gateway that runs the Discover stage retains the state (Figure 2.8), and for

mutate flows, the gateway that runs the Build stage retains the state (Figure 2.9). In

doing so, these gateways decide which other gateways are involved in processing the

flow.

In the recursive approach, a gateway passes control of the flow’s execution to the

gateway running the next stage. It passes along all intermediate state as a contin-

uation so that the next gateway can evaluate the stage on the given request. Each

gateway in the flow makes its own “next-hop” decision on which gateway to forward

the request.

Both approaches can be used to realize user-determined source routing of data

flows. In the iterative approach, the user’s gateway chooses which other gateway(s)

execute the next stage in the aggregation driver. In the recursive approach, the set of

gateways in organizations the user trusts decide which other trusted gateways execute

the stages. In both cases, only the organizations the user trusts process the read and

write.

When considering ease of implementation and security, the iterative approach

to flow routing is the preferable approach. This is because the intermediate state

between stages is derived from the data, and thus subject to the user’s data hosting

policies. That is, the user expects that any intermediate representation or metadata

for her records that gets generated during a read and write will be handled with the

same care as her records themselves. In the iterative approach, this intermediate

state resides only on the gateway that originates the read or write request (i.e. a

gateway running within the user’s own organization). In the recursive approach,
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this intermediate state resides on many gateways, and while even though they are

all trusted, this approach exposes the user to a higher risk of policy violations since

there are more points of failure.

Both Syndicate and Gaia implement iterative routing strategies.

2.5.4 Flow Coordination

On the data plane, any gateway can potentially host and serve chunks depending on

which service drivers it runs. Since SDS systems span multiple organizations, a key

responsibility of a SDS system is to help organizations preserve their users’ ownership

over their data. Specifically, the user that creates a record must be able to decide

which replica of each record is authoritative.

To fulfill this requirement, the Publish stage must be privileged. The volume

owner decides which gateways are allowed to Publish data (i.e. create, update, or

delete them), and the user that creates a record decides which subset of these gateways

can Publish it. In addition, the volume owner may control on a per-record basis

which gateways may run Publish stages on existing data. This is because a Publish

execution determines both whether or not a Build and Push succeed, and whether or

not Discover and Acquire stages observe the effects of their execution. By deciding

which gateways can Publish their records, user decided which replicas of the record

is authoritative in the event that readers observe more than one conflicting replica.

The set of gateways that can Publish a record are called the coordinator gateways

for that record. The set of coordinators for a record can change over time, such as

to change policies or survive gateway failures. The SDS system’s MS and gateways

maintain a consistent view of the coordinator gateways in the same volume (discussed

in Section 2.6) in order to help other gateways route and authenticate Published data

accordingly.
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2.5.5 Flow Error-Handling

When executing a flow, stages run synchronously and sequentially. If a stage fails,

then all subsequent stages do not execute and the stage that had sent the input to

the failed stage is notified of the failure. This gives the aggregation driver the ability

to handle these errors in application-specific ways, such as by automatically retrying

the operation, back-propagating the error to the application, undoing any actions of

already-executed stages, and so on.

If the coordinators for a record fail, then no writes will complete since no gateway

can run a Publish stage. To tolerate these failures, the SDS system allows other

gateways to become the coordinator automatically. The volume owner supplies the

SDS system with a whitelist of gateways that may be the coordinator for a particular

record. By executing a coordinator view change (Section 2.6), the SDS system (1)

picks a new coordinator from this whitelist to replace a failed coordinator, and (2)

allows the newly-selected coordinator to select a different coordinator at the request of

its aggregation driver. This allows the system to tolerate sudden coordinator failures.

The SDS system’s design may provide system-specific mechanisms for determining

how new coordinators are chosen.

2.5.6 Flow Implementation

If a driver does not implement a stage, the SDS system must prescribe a no-op

behavior. For example, the no-op behavior in Syndicate for the Discover stage is

simply to query the MS for the manifest identifier and the set of gateways that can

serve it. The no-op behavior for the Acquire stage is simply to query the MS-indicated

gateways for the requested chunks in random order.

The designs of all but the Publish stages must be idempotent. They should not

have externally-visible side-effects, but may have their own internal side-effects. The

reason for this requirement is that these stages can be re-tried or executed multiple
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times to recover from faults. This is because fault tolerance is governed in part by

the user’s data-hosting policy—a user may allow a failed flow to be re-tried using a

different set of gateways that is not guaranteed to be disjoint from the set of gateways

that partially processed the failed flow.

The SDS system design space permits any stage to run on any gateway. In ap-

plications that have trivial storage semantics, all stages would run on all gateways,

and each user’s gateway fully implements and executes the storage semantics by run-

ning all stages locally on reads and writes. In non-trivial storage semantics, a user’s

gateway invokes different stages on different gateways through one of the two afore-

mentioned routing strategies. As long as all gateways in the volume have a consistent,

fresh view of the set of users, organizations, and other gateways, they will be able

to handle non-trivial storage semantics correctly (Section 2.6). Since each user can

run her own gateway implementation, users ensure that only trusted organizations

process reads and writes because the gateway implementation selects which other

gateways in the volume process her access and mutate flows.

2.6 View Changes

In a running SDS system, a volume is not static. At any given point in time, the

volume owner may need to adjust a running system to accommodate changes in the

cloud services used, the end-to-end semantics in force, or the trust relationships with

other organizations. In SDS, this translates to taking one or more of the following

actions:

• Add and remove gateways to a volume.

• Add or modify service and aggregation drivers.

• Add or remove SDS users.
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• Change which gateways are coordinators for a given record. In addition to the

volume owner, users need the power to change the coordinator for records they

own.

.

Modifying any of these aspects of the volume’s configuration requires executing a

view change. View changes are infrequent with respect to the number of data flows

executed, but they occur regularly as part of the mundane operation of the SDS

system.

The challenge is to execute view changes while also ensuring that data flows con-

tinue to work correctly while they are being carried out. A key insight that SDS

systems exploit is that most view changes have only “localized” consequences: chang-

ing a record’s coordinators or changing a gateway’s drivers and volume membership

only affect the gateways that interact with it in the first place. In other words, the

SDS system can ensure that a data flow executes successfully simply by guaranteeing

that all participating gateways (and the MS) agree on the latest view of the system

configuration at the time of the flow’s execution. Gateways and the MS can late-bind

on the view.

2.6.1 Coordinator Changes

The SDS system needs to ensure that a writer gateway can reach at least one coor-

dinator for a record. To do so, the MS keeps track of a record’s coordinator epochs.

Within a coordinator epoch, the set of coordinators for the record is fixed. The epoch

changes atomically to reflect the addition or removal of one or more gateways from a

record’s coordinator set.

A new coordinator epoch for a record can begin in one of three ways:

• An authorized gateway successfully requests to become the coordinator.
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• The record’s owner or volume owner explicitly sets a coordinator.

• The volume owner adds or removes a gateway from the record’s coordinator set.

The first case can happen automatically when a Publish-capable gateway that

is also authorized to be a coordinator detects that it cannot contact the current

coordinator (Figure 2.10). It reacts to this by requesting that the MS start a new

coordinator epoch for the record, with itself listed as a coordinator for other gateways

to contact.

The second and third cases can happen when either the record’s owner or the

volume owner intervenes in the running system. This can happen as part of routine

system maintenance, such as when adding or removing servers or changing policies.

Metadata
Service

build()

push()

publish()

App

Storage
Services replicate chunks

write succeedswrite begins

publish()
old coordinator dies

change coordinator publish new manifest

coordinator epoch 1 coordinator epoch 2

build() runs push() runs publish() runs

Figure 2.10: Coordinator fault tolerance. If the coordinator dies while a mutate flow
is being executed, a separate gateway can request to become the new coordinator on
the MS. This advances the record’s coordinator epoch, such that a subsequent request
to Publish will be routed to the new coordinator.

The Publish-capable gateway does not need to know about every current coor-

dinator for a record. It just needs to know about at least one current coordinator.

This means that the gateway can use an optimistic algorithm for invoking a Publish:
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(1) look up the current set of coordinators on the MS, (2) try each coordinator in se-

quence until one succeeds, and (3) re-try the whole process if none succeed (i.e. none

are reachable or none are currently coordinators). Eventually, the writer will reach

a current coordinator, even if the coordinators for the record change intermittently.

The SDS system design space permits other algorithms—the aggregation driver can

choose other coordinators via the Publish stage.

Similarly, there exists an optimistic algorithm by which a gateway can request to

become a coordinator. It (1) looks up the current set of coordinators, (2) requests a

new epoch by proving its knowledge of the current epoch to the MS and proposing a

new epoch with itself listed as a gateway, and (3) retrying if the epoch changed before

it could complete step (2). This works because as long as an epoch change is atomic,

the new gateway will either become a coordinator or will discover a new coordinator

that became available.

The SDS systems in this thesis both use these optimistic algorithms by default,

because they minimize the amount of required inter-gateway coordination as long

as there is a manageable amount of contention. Starting a new coordinator epoch

only requires the new coordinator to communicate with the MS, and not with other

gateways directly. The other gateways learn about the new epoch through in-band

gossiping amongst each other and the MS. That is, they learn about the new epoch

the next time they talk to the MS, or the next time they talk to a gateway that knows

about it.

Under high contention, multiple coordinator gateway candidates would continu-

ously request to become the coordinator of a record, and writer gateways trying to get

the coordinator(s) to Publish their new record data data would be delayed in doing

so until they could reach the current coordinator (or they themselves become the co-

ordinator). However, the contention would only affect writes to that specific record,

and would only arise in pathological situations where writers are partitioned from
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the current coordinator, causing them to each try to become the new coordinator.

Using an in-band signaling approach to notify gateways of coordinator changes helps

avoid high contention, since it maximizes the chances that a writer gateway learns

the coordinator before it attempts to write. This is because the writer can learn the

current coordinator from any gateway that reads or writes the affected record (as

well as the MS).

The SDS system does not need to concern itself with serializing coordinator

changes for different data. This is because the applications that require multiple

coordinators to acknowledge a write (e.g. to enforce cross-record write serialization)

can do so on their own by implementing the Publish stage to proceed only if it can

reach a quorum of the other required coordinators. Moreover, the SDS design is

allowed to constrict the size of the coordinator set for a record to simplify the im-

plementation. For example, in Syndicate and Gaia, at most one gateway may be a

record’s coordinator at any given time—the act of changing a record’s coordinator

removes the old coordinator and adds the requesting gateway as the new one.

2.6.2 Gateway and Volume View Changes

The volume owner will need to change one or more gateways’ configurations in order

to realize changes in cloud services or trust relationships. In addition, the volume

owner will need to change the volume’s service and aggregation drivers to do things

like fix bugs, improve performance, and deal with changes in service APIs.

The SDS system must keep track of gateway configuration and volume configu-

ration epochs to do so. During a gateway epoch, the gateway’s service driver state,

network address, and aggregation driver stages are fixed. During a volume epoch, the

aggregation driver code, the set of gateways in the volume, and the system-specific

user ID and user capabilities of the user that runs each gateway (user IDs must be
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globally unique, but the nature of the ID and capabilities are specific to the SDS

system’s design).

It should never be possible for two gateways to execute a flow together if they

do not agree on each other’s gateway and volume epochs. Agreement on the volume

epochs is required to ensure that all gateways process data with the same version of

the aggregation driver code. Agreement on gateway epochs is required to ensure that

each gateway in the flow knows the capabilities and user IDs of the other gateways,

i.e. in order for the user’s gateway to be aware of the current trust relationships

between users and organizations prior to executing the flow.
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Figure 2.11: Gateway and Volume view changes. When a gateway owner advances
their gateway’s epoch, they inform the MS so it NACKs any of its future requests (by
inspecting its in-band epoch number). The gateway interprets the NACK to reload
its configuration and retry the request. Similarly, when the volume owner advances
the volume epoch on the MS, all gateways’ subsequent requests are NACK’ed until
they reload. Once a gateway reloads, it NACKs requests from other gateways that
have not reloaded to ensure that all gateways and the MS have the same view of the
system configuration when completing a data flow’s execution. In this figure, gateway
4’s configuration gets changed, and gateway 4 is told to reload by gateway 3 when it
next tries to contact it. Shortly after, the volume epoch changes, and gateways 4, 3,
2, and then 1 each discover the change in-band and reload their views before retrying
their requests. Gateway 1 receives a direct hint from the volume owner.
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The SDS system enforces these safety properties by having the gateways and MS

send their last-seen volume epoch number in-band on their control-plane messages,

and by having gateways send their current configuration epoch number in-band. If a

gateway detects that it has a stale view, it will NACK messages from other gateways

until it refreshes its volume and gateway views (Figure 2.11). The requesting gateways

simply re-try the flow with exponential back-off until the view is refreshed.

A gateway’s user can modify the service drivers and network address of their

gateway. This allows the gateway owner to move their gateway to different hosts

within their organization, and allows the gateway owner to control how other gateways

access back-end services she pays for.

When the gateway’s owner modifies the gateway’s state, she sends a message

to both the MS and the gateway to instruct it to upgrade its view. The gateway

will inform other gateways that contact it that their views are now stale, through

the aforementioned in-band signaling. The user contacts the MS to ensure that the

gateway will subsequently instantiate itself from the latest view should it restart after

the view change.

The aggregation driver logic and each gateway’s user ID and capabilities can only

be set by the volume owner. This allows the volume owner to control both end-to-

end storage semantics and trust relationships with other organizations. That is, the

volume owner needs to be able to control where sensitive aggregation driver stages

execute if she can only trust specific users and organizations to do so.

Changing these configuration fields is done by starting a new volume epoch. To

start a new volume epoch, the volume owner broadcasts a view-change message to all

gateways and to the MS, so any subsequent data flow execution will require the gate-

ways to first process and load the new aggregation driver code, gateway memberships,

and gateway capabilities.
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The division of state views into gateway and volume views with different epochs al-

lows gateway owners to handle “localized” network address changes or service provider

changes that do not affect the system’s behavior for other organizations. Because the

volume owner controls the aggregation driver code, and because the code can query

the configuration of each gateway, the volume owner can encode cross-organizational

data-hosting policies in the driver stages by having them decide what to do with

chunks based on which gateways are running the previous or subsequent stage.

For example, a lab PI may require that the gateways that store chunks to the

lab’s NFS server only take chunks from gateways running within the lab’s LAN.

Other lab participants can change their gateways’ network addresses, can can direct

their gateways to store chunks to their personal cloud storage accounts, but they will

only be able to execute mutate flows if they remain within the LAN.

2.7 Security

Gateways and the MS communicate across organizational boundaries, and thus over

untrusted wide-area networks. At a minimum, a SDS system must be able to keep

working in the presence of external adversaries that could forge, corrupt, or replay

messages. If it can do this, then volume and gateway owners can securely execute

view changes and data flows.

2.7.1 Threat Model

At a minimum, every SDS system has two security goals: ensure that cloud services

cannot silently tamper with data, and ensure that networks cannot silently replay or

corrupt messages. Users choose which organizations to trust, so SDS system designs

do not need to assume that users interact with untrustworthy organizations. The
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adversaries do not control gateways or the MS, but instead try to get gateways to

accept corrupt or stale chunks and messages.

In SDS systems, the MS and gateways are assumed to exhibit fail-stop behavior.

While a gateway is online and is a member of a volume, both the gateway owner and

the volume owner may assume that its service driver correctly processes chunks re-

quests and its aggregation driver stage correctly processes data flows. This is because

the gateway’s owner already trusts the computers in her organization to behave cor-

rectly, and the volume owner already trusts the organizations to run its aggregation

driver.

The networks within each organization and between organizations are unreliable

and untrustworthy. Messages can be arbitrarily delayed, dropped, duplicated, or

corrupted.

As mentioned earlier, the MS is designed to either give each organization unilateral

control over mediating requests to its users’ record metadata, or it is structured such

that organizations only need to trust it with keeping metadata available. In both

cases, while it is online, the MS is assumed to reply to requests for metadata with

the latest data and with the latest epoch information. It does not equivocate about

its state or epochs.

To ensure that gateways and the MS only accept fresh, authentic messages from

one another, a SDS system must implement a public-key infrastructure (PKI) within

its control plane. The PKI system ensures that each gateway has an up-to-date view

of the public keys of each other gateway it interacts with. To prevent untrustworthy

networks from interfering with the control plane, ensuring that each gateway has a

fresh public key is a precondition of executing a data flow.

The SDS system itself is not concerned with keeping data confidential, since this

can be handled by the aggregation driver itself. Instead, the SDS system exposes
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each gateway’s and each user’s public keys to each aggregation driver stage, so the

developers can address confidentiality on their own.

2.7.2 Certificate Graphs

It is important to understand that maintaining the PKI cannot be outsourced. This is

because it should never be possible for two gateways to communicate unless they first

agree on each other’s public keys. Otherwise, an external adversary with a compro-

mised gateway private key would have a window of time in which it can impersonate

a gateway whose key has recently been changed. This means that the SDS system

needs to ensure that public key changes occur atomically with respect to data flows.

This requires the SDS system to be aware of public key changes, and must implement

a public key exchange protocol internally as part of processing view changes.
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Figure 2.12: Certificate graph. The volume owner controls user and gateway mem-
bership in the volume, and decides each gateway’s capabilities and aggregation driver
stages. Other users submit their gateways’ public keys to the volume owner in or-
der to add their gateways to the volume. Once added, users can set their gateways’
network addresses and services drivers without the volume owner’s permission.
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The state of the SDS system’s users, gateways, trust relationships, and drivers

is encoded in a data structure called a certificate graph (Figure 2.12). If all of the

gateways running a data flow have the same view of the certificate graph as the MS,

then they will be able to authenticate chunks and messages sent back and forth from

one another and read and publish signed manifest identifiers.

The certificate graph encodes the relationships between users and the gateways

they own, between volumes and gateways, and between the volume owner and the

volume. The volume owner encodes the current volume view by creating a versioned

certificate that lists the set of gateways in the volume, the public keys of the users

that owns them, and their capabilities within the volume. This list is used to control

membership and access privileges in the volume epoch. Each gateway certificate

contains a reference to the gateway’s entry in this list, as well as the gateway’s public

key, network address, and list of driver executables (identified by their cryptographic

hashes). Each user signs their gateways’ certificates in order to prove that they own

them.

Gateways examine the certificate graph to establish secure connections to other

gateways. By trusting the volume owner’s public key, a gateway can be certain that

it will only connect to gateways in the same volume. By trusting a specific user’s

public key, a gateway can determine the user’s gateways’ network addresses and

service driver implementation. By trusting a gateway’s public key, another gateway

handling a read can be certain that the data it receives from is authentic regardless

of how intermediate networks and CDNs handle the data in transit.

Decoupling users from gateways in the certificate graph gives aggregation drivers a

mechanism for reasoning about organizations. In particular, user certificates have an

“account scratch area” into which a user can write hints to the application to prove

membership to one or more organizations. This is useful to applications because

deciding which stages to run data flows depends on the trust the application puts
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into the users running their gateways. By exposing user identity information to the

driver, SDS enables the gateway owner to make domain-specific decisions on how she

routes requests between organizations. This, in turn, enables users to specify and

enforce their data-hosting policies, since it gives them the ability programmatically

convey their expectations regarding how their data ought to be handled. For example,

a user can specify a “use onion routing” hint into their account scratch area, which

compliant gateways would detect and honor by transmitting the user’s reads and

writes using an onion routing scheme (such as through the Tor [189] network).

The aforementioned in-band volume and gateway epochs are signed and verified

using the certificate graph. The volume epoch number must be signed by the volume

owner, and a gateway’s epoch number must be signed by the gateway. This way, only

users within a volume (including the volume owner) can trigger view changes—users

can only change their gateways’ configurations, whereas volume owners can change

user and gateway membership and capabilities in the volume.

2.8 Bootstrapping Trust

Once gateways have a fresh, authentic view of the certificate graph, they can partici-

pate in data flows and execute view changes securely. But before they can do so, they

need to bootstrap trust in the volume owner and the set of users that run gateways

in it.

Bootstrapping trust in nodes is a common operational challenge in distributed

systems, and is exacerbated in SDS by the fact that node-to-node trust will span

multiple organizations. The difficulty is that each organization has its own vetting

criteria which it enforces upon its volume owners (i.e. as part of its users’ data-hosting

policies). Other organizations must be aware of the criteria in order to determine

whether or not to trust its users. For example, Alice’s lab may not trust users in
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Bob’s lab if Bob’s lab allows anyone on the Internet to submit a new user public key

and receive gateways in Bob’s lab’s volumes. For Alice, writing data to Bob’s volumes

may result in her data being leaked to an unknown number of people. As such, Alice

would not allow Bob or Bob’s users to have gateways in her volumes.

2.8.1 Federated Approaches

How do system-of-systems applications bootstrap trust in one anothers’ users today?

The standard approach that honors each organization’s policies is to organize orga-

nizations into a federation. The federation members choose common criteria, and

specify organization-specific criteria when appropriate. This is the approach taken

by Internet2 [110] with InCommon [109], as well as global systems like PlanetLab [43].

Limitations

The downside of using federations to bootstrap trust is that using federations compels

organizations to agree on a specific trust-bootstrapping service to use, such as a shared

certificate authority or a shared single-sign-on endpoint. If the service is maintained

in-house by the federation members, then the service imposes a standing cost on

all organizations to keep it running. If it is outsourced to a third party in a way

that is still somehow consistent with all members’ data-hosting policies, then the

service becomes a portability pain-point since the provider can change its terms of

service. In both cases, having an identity service to bootstrap trust between federation

members imposes a high and potentially uneven coordination cost on the federation’s

organizations. They have to agree on which service to use, and then continuously

coordinate out-of-band to admit new organizations and remove others.

Can the coordination costs of federation be avoided while preserving each orga-

nization’s autonomy to enforce its users’ data-hosting policies? This thesis argues

that SDS systems need to leverage a novel type of trust-bootstrapping system called
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a self-sovereign identity (SSI) system. SSI systems allow users to independently and

unilaterally discover one another and make their own decisions on how much to trust

their respective organizations. This removes the high coordination costs while pre-

serving organizational autonomy.

2.8.2 Self-Sovereign Identity

In a self-sovereign identity (SSI) system, there exists a global, totally-ordered

independently-auditable write log that records user account creations, key rotations,

updates to identifying information, and revocations. SSI systems pair user identifiers

with one or more public keys such that only the owner of the private keys can change

the keys or change the associated user identity information (Figure 2.13).

The distinguishing feature of SSI systems is that each user (not organization) is

treated as an autonomous entity. Each user runs their own SSI server (or chooses

one to trust), and the SSI server independently calculates the same write-log as all

other SSI servers. In doing so, it calculates the public keys of all users as well as any

associated public information a user replicates in the SSI system.

SSI and Blockchains

SSI systems implement their write logs on top of one or more public proof-of-work

(PoW) blockchains [169]. Blockchains are replicated append-only write logs that

operate in a decentralized fashion. They use a leader-election protocol that does not

assume that the set of would-be leaders can be enumerated. Once elected, a leader

can append one or more writes to the log.

Candidate leaders execute a protocol called mining whereby they race each other

to solve an energy-intensive puzzle that, when solved, creates a ticket (a “proof of

work”) that can be used to replicate the write in the peer network. Each correct peer

accepts the write if the written data is valid and the proof-of-work shows that the
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Figure 2.13: Overview of self-sovereign identity systems. A SSI system reads a
blockchain to process its SSI-specific transactions. It replays these transactions to
construct a table of (name, publickey, account) tuples.

number of cycles spent solving the puzzle is sufficiently large. The puzzle’s minimum

difficulty is adjusted dynamically based on how quickly or slowly proofs of work are

created over a given time interval. The adjustments made by the peer network are

deterministic, and are made such that the blockchain grows at a linear rate over

time (no matter how many leaders participate in mining, and no matter how easy or

difficult the proof-of-work puzzle becomes).

Since candidate leaders (and by extension, all peers) are non-enumerable, anyone

can issue a well-formed write to a blockchain (a transaction), and anyone can append

a new block to the blockchain (i.e. a bundle of transactions) as long as the consensus

rules are followed. Each peer maintains a full replica of the blockchain, and will

only accept well-formed blocks with sufficient proof of work. Peers will ignore blocks

generated by leaders that produce invalid blocks or blocks that do not have sufficient

proofs of work.

PoW blockchains have a built-in incentive mechanism to encourage leaders to mine

and widely replicate non-empty blocks. The act of creating a block creates a certain
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amount of “tokens” that must be spent to pay for future transactions. The consensus

rules of most PoW blockchains ensure that the write log incorporates a ledger of all

token expenditures, which peers use to ensure that tokens cannot be spent more than

once. Users include a small amount of tokens with each transaction they send, called

a “transaction fee,” that is used to pay the leader for incorporating their transaction

into the next block.

In principal, leaders are incentivized to mine non-empty blocks and replicate them

widely because they can sell the tokens they accumulate. Correct peers will decide

that a leader created a particular block and received its new tokens and transaction

fees only if the leader can send them the block before any other leader. Leaders are

incentivized to include as many transactions in their blocks as possible, because they

get to keep the transaction fees as well as the tokens generated in the act of creating

the block.

Determining the incentive compatibility of block-mining and block-replication

strategies is still an active area of research [177] [143] [55] [116]. However, if peers

can assume that all newly-mined blocks are broadcasted to all peers significantly

faster than they are mined, then they can conclude that the blockchain makes for-

ward progress so long as less than 25% of the leaders’ aggregate compute power is

malicious [73]. Peers can further conclude that the blockchain write order is stable as

long as less than 50% of the leader’s aggregate compute power is malicious [169]. In

practice, leaders are encouraged to be honest for reasons outside the scope of the pro-

tocol as well—for example, attacking the blockchain lowers the worth of the tokens,

which financially incentivizes honest leaders to identify and punish malicious leaders

through non-technical means.

SSI systems such as Blockstack [7] [6] [8] are implemented by embedding a se-

quence of specially-crafted transactions in an existing PoW blockchain. These trans-

actions encode a fork*-consistent [122] database log. The transactions are well-
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formed, valid transactions with respect to the blockchain’s protocol, but they embed

additional information that SSI nodes reading the blockchain are able to interpret as

SSI database operations. This concept is called a virtualchain [147].

When the SSI node replays the database log (i.e. by scanning the blockchain), it

generates a mapping between user identifiers, public keys, and identity credentials.

Any two SSI nodes that view the same blockchain and follow the same rules for

identifying and processing the specially-crafted transactions that encode SSI database

log entries will independently calculate the same identity database.

This design point is crucial to understanding why SSI systems are more suitable

for identity and authentication in SDS than federated identity systems. This thesis

argues that federated designs are inadequate because they impose high, uneven com-

munication overheads between users and organizations and may require them to use

third-party services. SSI systems have neither of these problems due to four properties

they exhibit:

1. Permissionless writes. Any peer can append a well-formed transaction to a

public PoW blockchain. By extension, any organization can register its users’

public keys.

2. Consensus-driven Evolution. Users, organizations, and developers do not

need to worry about blockchain or SSI API changes or changes to its consensus

rules, transaction formats, and so on (collectively, its log storage semantics).

This is because in practice it is exceedingly difficult to convince a large public

PoW blockchain’s peers to all agree to upgrade to an incompatible protocol, and

because organizations can safely refuse to upgrade without losing access to the

SSI system. Global upgrades can only occur through overwhelming consensus

on the parts of the greater SSI user community.
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3. Write-log inimitability. The constant leader-election race in PoW

blockchains has the side-effect of making it very expensive to create mul-

tiple instances of the same blockchain. This makes it difficult to attack a SSI

system, since an attacker needs to accumulate more compute power than all of

the honest leaders to do so.

4. Write-log censorship resistance. Each SSI node includes a blockchain peer,

so all SSI nodes have full replicas of all of the views of the blockchain and all of

the users’ public keys and identity state. As long as a SDS gateway can contact

one trusted SSI node, it can authenticate its volume certificate graph.

The following sections describe how these properties enable the creation of a SSI

system, and how they make the SSI system suitable for helping SDS users exchange

public keys without having to agree to trust a specific third party.

Permissionless Writes

A public PoW blockchain is permissionless, meaning anyone in the world can submit

a well-formed transaction and have it incorporated into the blockchain as long as the

sender follows the blockchain’s consensus rules. SSI systems leverage this property

to allow any anyone in the world to register a user account simply by sending the

right sequence of transactions that, when interpreted by the SSI system, will cause

the user account to be created in each SSI server’s database. While individual SSI

endpoints may opt to ignore user accounts (e.g. ones that do not conform to their

security standards or are known to be owned by malicious agents), the SSI system

itself cannot mask the existence of the user account if the blockchain peers accept the

transactions that encode it.

This is a boon to SDS users and organizations, since it means that there are no

organizationally-imposed barriers to setting up volumes and their certificate graphs.
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A volume owner and a set of users can bootstrap trust in one another without needing

to set up and operate a cross-organizational system of their own. They simply need

to agree to use the same SSI system, which reduces to agreeing on reading the same

blockchain and using the same rules for interpreting its transactions as a database log.

There is no central point of failure, no trusted third party, and no inter-organization

coordination required for admission control. Each organization and each user makes

its own decisions on how much to trust other users.

Consensus-driven Evolution

The second crucial property SSI systems offer is resistance to protocol changes. A

wide distribution of blockchain peers means that upgrading the consensus rules of the

SSI system’s blockchain, even through legitimate channels such as a software upgrade,

incurs a very high technical cost and a very high coordination cost. The technical

cost is due to fact that an SSI server bootstraps itself by fetching and replaying the

write log. In order to ensure that multiple SSI servers independently reach the same

state from the same write log, they must each implement the same audit logic. This

means that the code itself is “append-only”: the audit code cannot be removed from

the codebase without breaking the SSI server’s ability to calculate the current state of

user accounts. This encourages developers to avoid making breaking changes—each

breaking change can only increase code complexity, and deploying breaking changes

risks causing the network of SSI servers to split and disagree on the current state of

user accounts.

The high coordination cost of changing the SSI system’s blockchain interpretation

rules comes from the fact that this would require each SSI peer to upgrade to the

new rules, assuming they even agree with them at all. This is a consequence of

the fact that a SSI system follows an open-membership architecture. Unless the SSI

operators want the write log to “fork” into two or more mutually-conflicting write
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logs, all operators must upgrade to the same version of the software at the same

time. To avoid a fork, SSI operators to first come to overwhelming agreement on

what the new features should be, and coordinate a flag day to carry out the upgrade.

If agreement cannot be reached, the fork*-consistency of the SSI log guarantess that

disagreeing SSI peers will be partitioned into their own fork-sets, and will not be

able to communicate with one another. Each organization can freely choose which

fork-set rules to use in this case, and because fork-sets are easy to programmatically

distinguish, organizations cannot deceive users about which fork-set their SSI nodes

follow.

While it may seem counter-intuitive for the high organizational and technical

barriers to be beneficial to SDS users, the reality is that these barriers make it difficult

for the identity system itself to unilaterally change its behavior. This is exactly the

desired behavior for a constituent service in a systems-of-systems application—there

cannot be sudden, unilateral service changes without overwhelming agreement from

all affected parties.

A similar constraint exists for the SSI system’s underlying blockchain. Because

the blockchain is operated as a widely-deployed peer-to-peer network, it is difficult

to upgrade the entire blockchain without splitting the network. Indeed, even simple

rules changes such as changing the size of a block can take years to bring to fruition

and still result in a network split [194].

This property crucial to SSI systems, but it is not unique to them. Other protocols

like TCP/IP are so widely deployed that changing their behavior significantly is

infeasible, for the same reasons. Nevertheless, it behooves users and organizations to

rely on a trust bootstrapping mechanism that follows consensus-driven evolution like

this because they cannot be compelled to stop using the system or change the way

they use it (unlike cloud services).
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Write Inimitability

The security of the SSI system assumes that there can only be one instance of a write

log at any given time. This prevents the SSI system from equivocating about the

write log, and ensures that correct peers in the SSI system see the same view of the

write log. This is required in order for any user or organization to query the public

key of any other user or organization in SDS.

By using a public PoW blockchain to host the write log, SSI systems achieve this

security property in a way that does not require users to place trust in a specific third

party. Instead, they rely on the assumption that after a certain number of blockchain

writes, the write order is stable. That is, the order of writes in the blockchain cannot

be retroactively reordered after a certain number of blocks are appended.

This assumption holds true in practice for public PoW blockchains that use

Nakamoto consensus [140], where the blockchain that is considered to be valid is

the one that is both well-formed and has the highest cumulative proof of work. For

example, the ordering of Bitcoin transactions is stable with 98% probability after

six or more blocks have been appended on top of the blocks that incorporated them

[169], assuming 30% of the mining power is working on producing a conflicting fork

and the leaders are publishing blocks as soon as they are discovered. Empirically,

thanks to network optimizations between leaders [77], orphaned blocks are rarer than

this in practice [33].

The inimitability assumption implies that the SSI’s database log is stable. The

assumption holds as long as the majority of aggregate computing power used to order

the writes is honest, regardless of who executes the computations. Specifically, the

majority of the aggregate compute power is not used to generate blocks with the

intent of reordering already-processed transactions (i.e. by generating an alternative

transaction ordering with more proof-of-work).
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Since PoW blockchains themselves were designed as the foundational building

block for cryptocurrencies, they have a built-in incentive to keep leaders honest. In

a PoW blockchain, generating blocks produces new currency tokens in exchange for

an enormous energy expenditure. However, the currency tokens are only valuable if

they can be reliably spent. That is, they are only valuable if all blockchain peers see

the tokens being spent at most once, and received by the same recipient in all views.

If the tokens can be “double-spent”—i.e. the blockchain gets reordered to show the

units being spent, and then spent again with a different receiver—then they lose

their value simply because users will not value the currency in a system that defrauds

them. As a result, the blockchain’s leaders have a compelling reason to ensure that

the transaction ordering remains stable.

There is empirical evidence that suggests that these incentives work in practice.

For example, Bitcoin has a historically low write-conflict rate in practice. It encoun-

ters less than five orphan blocks per day [33], and has only had long-lasting forks

in the event of unforeseen bugs [32] [30]. If a contentious network split does hap-

pen, it is easily noticed in practice because it is usually preceded by lots of outrage

and arguments among the blockchain’s user base and results in the creation of a

separately-branded blockchain [29] [69] [205] [72] created by the disgruntled users.

However, the original blockchain is not affected, which preserves the integrity of the

SSI systems’ databases derived from it.

In the event of a catastrophic blockchain failure where the write log’s inimitability

cannot be assumed, SSI systems can migrate to new blockchains. The SSI develop-

ers can upgrade the SSI software to switch from writing transactions on the failing

blockchain to writing transactions on a stable blockchain. This has been done before

with Blockstack [173], which seamlessly migrated from Namecoin [67] to Bitcoin once

it was discovered [7] that Namecoin was under the control of a single peer that had

sufficient compute power to rewrite Namecoin’s history at any time. This is a case
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where there there was overwhelming consensus among the users and organizations for

a software change. However, the APIs and semantics of Blockstack were preserved

across the migration, so no applications broke in the process.

Censorship Resistance

One requirement for public key infrastructure systems is that if a user has a fixed

identifier (such as a username or a domain name) for a public key, and is allowed

to change the public key without changing the identifier, then other users must be

able to read their current public key. That is, a PKI system must offer a well-defined

consistency model on their keys that ensures that readers receive fresh key data.

SSI systems achieve this by relying on the fact that blockchains are hard to censor.

Blockchains grow at a fixed predictable rate, and blocks have a predictable size.

Moreover, the consensus rules in proof-of-work blockchains stipulate that the amount

of work per block can only increase or decrease by a threshold amount [31]. These

properties give them a degree of censorship resistance.

A SSI peer can predict when an adversary with a minority amount of compute

power is trying to censor the underlying blockchain. If blocks do not arrive in a

timely fashion, then the SSI peer can infer that the upstream networks are blocking

them. If a block arrives with inadequate proof of work, such as a block generated by

a malicious peer, then SSI peer will know to ignore it. If blocks arrive with sufficient

proof of work, but do so very slowly, the SSI peer can infer that it is being eclipsed

and being fed blocks from a peer with significantly less compute power than the global

set of leaders.

All of these events serve as strong hints to the user that they are under attack.

The attack is energy-intensive and takes a long time (days to weeks for Bitcoin [31]),

so the user has a good chance of detecting that the peer is being fed the wrong blocks

and can take corrective action. This also discourages would-be censors, since the

83



upfront cost of the attack is very high and has a low chance of succeeding without

the user noticing.

The only way a censor can succeed in tricking the user into accepting a blockchain

with less proof-of-work is to trick the user’s blockchain peer into believing that the

aggregate compute power of the blockchain has truly diminished. This would require

the attacker to eclipse the victim by blocking all other channels available to the user

to discover the true aggregate compute power, including secondary sources like Web-

based blockchain explorers and each of the various networks the victim is likely to

use. Moreover, the attacker would need to sustain the attack for long enough that

the victim’s blockchain peer node determines that the PoW difficulty has gone down

on its own. While at least one large-scale eclipse attack has been executed in the past

against Bitcoin [18], the attack was very disruptive and easily noticed.

Since censoring the blockchain is difficult, censoring SSI operations is also difficult.

An attacker may be able to silently eclipse a small number of users in limited cases,

but an attacker would have a hard time attacking the entire system without getting

noticed. This means that SSI nodes can be designed to return a user’s current public

key if its blockchain peer appears to have the latest blockchain state, and can NACK

reads if the blockchain peer appears to be in the process of being censored. In other

words, SSI systems use the blockchain’s censorship resistance to implement strong

read consistency guarantees by blocking key reads until the SSI peer can deduce that

it has processed all outstanding blocks.

Changing a key in the SSI system is necessarily no faster than propagating a

transaction in a new block—it takes at least as much time to change a key as it takes

to append a block. Moreover, systems like Blockstack process blocks only after they

are sufficiently deep in the blockchain. What this means is that changing a key can

take a long time—minutes to hours. However, once the block containing the key-
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rotation operation is deep enough in the blockchain for the SSI node to process it,

each SSI node processes it within one block confirmation time.

2.8.3 Using SSI with Volumes

Because anyone can write to the SSI system’s write log, anyone can obtain a user-

name and a public key. Because the SSI system’s write log interface and behaviors

naturally resist change, and are not unilaterally controlled by external parties, each

user and volume owner has a reasonable expectation that their chosen SSI system

will continue to work for the foreseeable future. This yields a straightforward so-

lution to bootstrapping trust between gateways, volumes, and users that minimizes

inter-organizational coordination and preserves organization autonomy (Figure 2.14).

SSI Database SSI DatabaseSSI Database

Users

{id=..., pubkey=...}

{id=..., pubkey=...}

Gateways

{...}

{...}

Users

{id=..., pubkey=...}

{id=..., pubkey=...}

Gateways

{...}

{...}

Users

{id=..., pubkey=...}

{id=..., pubkey=...}

Gateways

{...}

{...}

SSI Database

Volume 
owner

Organization A Organization B Organization C Organization D

Public Blockchain

Figure 2.14: Bootstrapping trust in certificate graphs with SSI. Each organization
runs its own SSI database with the same blockchain. In doing so, they get the
current public keys and account information for all users in the system. This lets
each organization independently validate the volume and gateway configurations.

Thanks to the SSI system, each user and volume owner always has an up-to-

date copy of each other user’s username and current public key. The total ordering

of the write log imposed by the underlying blockchain ensures that each SSI node
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reads the same sequence of username registrations and re-keyings. If any two users

Alice and Bob have processed the same write-log, they can use the SSI system to

register and discover each other’s current public keys as long as the blockchain exhibits

permissionless writes, write inimitability, and censorship resistance.

To construct the certificate graph, a volume owner only needs to know the set

of usernames. The volume owner uses the SSI system to get the set of current user

names and public keys. When a user re-keys, the volume owner regenerates the user’s

certificate and the user re-generates her gateways’ certificates. The other gateways

in the volume refresh their views of the certificate graph when they interact with the

user’s updated gateways, and thus learn the new key. As long as the volume owner

has processed the entirety of the write log, the volume owner will reliably detect when

the user re-keys.

Because the users and volume owner all know each other’s public keys, it becomes

possible for them to establish per-volume trust policies. The volume owner can release

a signed statement describing what each user must do in order to be added as a volume

owner, and the users themselves can release signed machine-readable statements that

prove that they have meet the criteria. For example, a volume owner may require

users to prove that they are members of the same organization. The organization

administrator can sign a statement for each user that attests to the user’s membership,

and the user can sign the statement as well to prove that they have received it.

Similarly, the volume owner can prove membership of a particular organization in

this manner.

As a result of using SSI for bootstrapping trust, a SDS system no longer requires

organizations to communicate with one another. The trust-bootstrapping burden has

instead been shifted to individual volume owners, which get to set their own trust

policies. This removes the communication overhead that trusted third parties and

federations impose, and at the same time, ensures that each user can unilaterally
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decide which other users and organizations to trust. Unlike federations, the organiza-

tions’ members no longer proactively maintain trust links; they instead allow users to

self-organize into trusted groups (volumes) and simply provide them with the means

to prove which organization(s) they belong to.

SSI Deployment

Each organization must run a trusted SSI server on behalf of its users. This includes

storing a full replica of the blockchain and keeping it up-to-date.

The SSI system used with Gaia and Syndicate (Blockstack) uses the Bitcoin

blockchain. This means it must download one megabyte every ten minutes, and

must store about 180 gigabytes of data as of April 2018. While this cost may appear

high, it is worth considering that most Bitcoin peers today can sustain bandwidths

of up to four megabytes per 10 minutes [55]. Also, 180 gigabytes is not expensive—as

of 2017, the marginal cost per gigabyte is as low as $0.028 USD for disk storage [99].

2.9 Design Principles, Distilled

To build applications from cloud services, developers must preserve end-to-end stor-

age semantics while respecting organizational autonomy. A SDS system achieves this

by providing mechanisms that isolate storage semantics, applications, users, organi-

zations, and cloud services from one another. Tussles in storage semantics, cloud

services, and trust relationships are tolerated by a SDS system built from these prin-

ciples.
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2.9.1 Organizations Deploy Gateways

A SDS system implements gateways as the logical barrier to separate the application

and cloud services from an user’s data. The gateway’s main responsibility is to apply

its user’s policy on data that moves through it.

The user relies on their trusted organizations to deploy and run gateways on

their behalf, which in turn load and store the user’s data to their preferred storage

providers via a user-given service driver. When the application requests to read and

write, the gateway loads and stores chunks to the service using the user’s service

driver implementation. This gives the organization the chance to enforce the user’s

data-hosting policies to govern the requests regardless of where its data ends up

hosted.

2.9.2 Developers Compose Gateways

The application’s storage semantics must apply end-to-end, and also must evaluated

in accordance with each organization’s data-hosting policies. A SDS system composes

gateways into data flows to address this.

Data flows separate the concern of applying end-to-end storage semantics from

choosing the organizations and services that process it. A data flow applies the end-

to-end storage semantics by passing the data through a sequence of gateways that

implement the aggregation driver’s access or mutate flow stages. At the same time,

the SDS system respects each organization’s autonomy by only declaring the flow’s

execution successful if all gateways involved approved it and were able to carry out

their part of the flow at the moment of the request. Each gateway in the data flow

has the right to deny the request if the request violates the gateway’s user’s policy.
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2.9.3 Users are External to Applications

In order for applications to read users’ volumes, users must exist outside of appli-

cations. This is because the user, not the application, directly encodes its trust

relationships with other users (and their gateways) via the certificate graph. The

user, not the application, instantiates and runs gateways within their organization.

The application uses the SSI system to discover users’ volumes, instead of the user

discovering the application to find other users’ data.

2.9.4 Users Own Data

Organizations trust cloud services with data availability, but do not have to trust

them with anything else. This is because the data policy logic is offloaded to the

aggregation driver.

What this means is that the organization’s users, not cloud services or appli-

cations, are the de facto owners of the application data. The fact that gateways

cryptographically link all data to the gateway’s owner (i.e. a user) means that the

user is the sole origin for application data at the protocol level. Neither the applica-

tion, the cloud services, nor other users can generate data in place of a given user. In

other words, the certificate graph ensures that users are the authoritative origins for

all application data at a protocol layer beneath all applications.

2.10 Remarks

SDS inverts the architecture of conventional system-of-systems applications build on

cloud services. In conventional applications, the application servers (or the cloud

storage servers they employ) are data silos. They are designed to host everything and

are treated as the trusted origin for all data.
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In contrast, cloud services host downstream replicas of user data in SDS appli-

cations, and only serve to enhance its availability and durability. The application

has no say in how data is hosted, and is reduced to providing users the tools with

which to interact with their data. This is a boon to users that is not realized today

in contemporary cloud applications, since it gives them the ability to both share data

between applications and apply data-hosting policies without the applications’ help.

For example, a social media user can select a gateway that will encrypt her photos

end-to-end, so that only the intended recipients can see them. As another exam-

ple, an undercover whistleblower can select a “dead-man switch” gateway that will

replicate their encrypted messages to several different newspapers through Tor [189],

and send them all the decryption key if the gateway does not communicate with the

whistleblower regularly.

Inverting the architecture of conventional system-of-systems applications is also

a boon to developers. With SDS, developers are no longer responsible for managing

other users’ data. Developers do not need to concern themselves with hosting and

backing up user data, governing access to it, or keeping it safe from hackers. With

SSI, developers do not even need to maintain password databases.

Many SDS-powered applications can be realized without needing application

servers. Instead, all business logic runs on the user’s client, and the user’s client

loads and stores their data to their volumes. Chapter 4 describes several non-trivial

applications that have been built on real SDS systems deployed in production

settings.
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Chapter 3

Exemplar Systems

In order to validate the design principles of software-defined storage, this thesis

presents the design and implementation of two separate SDS systems. Both sys-

tems currently enjoy use in production environments. The first system, called Gaia,

implements a global key/value store with programmable semantics for its get and

put operations. It is a minimalist SDS system—it provides just enough functionality

to ensure that applications and users can interact with their data under a fixed set

of storage semantics running at a layer above the third-party services.

The second system, called Syndicate, implements a full POSIX filesystem inter-

face with programmable semantics for most filesystem operations. It is much more

featureful than Gaia, and is designed to port existing scientific computing workloads

to commodity third-party services.

Despite being designed for different use-cases, both Syndicate and Gaia allow

developers to preserve end-to-end storage semantics while respecting organizational

autonomy. Both systems achieve this by providing one or more gateway implementa-

tions that run in separate organizations, but coordinate through a shared untrusted

metadata service. While the systems have different gateway and MS designs and

implementations, they nevertheless adhere to the same design principles.
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3.1 Gaia: a Key/Value SDS System

Gaia is a global key/value store designed for users to host their data for decentral-

ized Web applications. In this thesis, “decentralized” applications are applications

where all of the business logic runs on the users’ computers. For example, a de-

centralized todo-list application [166] would fetch the user’s application state from

the storage providers of their choice, allow the user to interact with the items once

loaded, and would store the resulting state back to the storage providers when the

user is done. Unlike conventional Web applications, there is no “application server”

that runs business logic on the user’s data.

Gaia is designed for Web programming environments, and offers two modes of

operation. The first mode, called “single-reader mode,” offers behavior similar to

what Web developers today expect from HTML5 localStorage [198]. The Web

code can load a value given a key and store a (key, value) pair, with the expectation

that only this instance of the code will be able to interact with the key. For example,

the aforementioned to-do list application would use this mode to ensure that a user

can only read and write their own data, and other users cannot interact with it at all.

The second mode, called “multi-reader mode,” offers one-writer many-readers

semantics. Only a user may write to their own keys, but any user may discover and

read their keys. For example, a blogging application built on Gaia would use Gaia’s

multi-reader mode to allow a user to publish blog posts, and allow other users to read

them.

The main contribution of Gaia is to give Web developers a secure and reliable way

to outsource data-hosting to users. Gaia ensures that each user securely and automat-

ically discovers each other users’ volumes and certificate graphs for each application

they use prior to loading the data. In doing so, Gaia offers end-to-end data authentic-

ity and confidentiality while using untrusted commodity cloud infrastructure to host

and serve application data.
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Despite being a minimalist SDS system with a simple API, it is used today on

production workloads for Blockstack [7] applications. Many non-trivial applications

rely on it for storage, including a shared document editor [107], a cryptocurrency

portfolio manager [196], a microblogging platform [123], and an end-to-end encrypted

Web chat application [181].

3.1.1 Motivation

In conventional Web applications, users and would-be developers are severely con-

strained in what they are able to do with their data. This is because in conventional

Web applications, the business logic and the storage logic both run in the applica-

tion’s servers. As such, all authoritative replicas are hosted outside of the users’

organizations, and any computations that may be performed over them are medi-

ated by the application’s servers. Users and would-be developers need permission to

access, modify, and extend their data’s storage.

The motivation for creating Gaia is to allow Web applications to be written in

a way that decouples business logic from storage logic. Users and developers ought

to be able to control where their data is hosted and how reads and writes on it are

carried out. At the same time, making this change should not require Web application

developers to significantly re-think the way they build applications—at most, they

should only have to change the Javascript calls in their application frontends to direct

reads and writes to the users’ chosen storage providers, instead of the application

servers. Achieving this would yield three main benefits: (1) users can keep their

data in the event that its developer stops maintaining the application, (2) multiple

applications can interoperate by reading from each other’s volumes, and (3) developers

can avoid the need to host user data, or any “hard state” for their applications.

These benefits are realized by first observing that in many cases, a Web appli-

cation’s data interaction model is already centered around individual user activity.
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Users can read and write their own data, but can only read other users’ data. In

applications that present “shared-write” views of data, like a comment section on a

blog or a shared Google Document page [95], the business logic attributes each write

to a specific user, and then “merges” their writes to present a consistent view. Gaia

exploits this property of Web applications by bundling up all of a user’s data into its

own volume, and giving the volume owner the ability to grant other users read access

to it.
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Figure 3.1: Gaia versus traditional Web applications. In traditional Web applications
(left), application clients’ reads and writes are mediated through a shared application
server. In Gaia, reads and writes are processed by a sequence of one or more Gaia
nodes before being loaded and stored to commodity storage as chunks. Gaia nodes,
in turn, run the users’ gateways.

Even though a Web application has a single logical database that holds all of its

users state, this observation about access patterns allows Gaia to reformulate the

global database as a collection of single-writer multi-reader user-specific databases

(Figure 3.1). It becomes the application client’s job to translate a set of reads across

the users’ databases into a consistent view, whereas this had traditionally been done

by the application’s global database. In SDS terms, both the Web applications and

each users’ computers form separate organizations, and each organization sets a policy
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that allows writes only from within the organization and allows reads from zero or

more other organizations.

This reformulation of application storage gives Gaia the ability to separate each

users’ piece of the Web application’s global state into its own volume, thereby placing

it under the control of the user’s organization. The application only needs to be able

to read from a user’s database piece in order to present other users with a view of its

data. The database need not reside on servers that the application developer chooses.

What this means in SDS terms is that there is one volume per (application, user)

pair, and that only the user may write to the volume and control its access semantics.

Application developers are simply considered users of their own application.

A user may optionally make a volume readable to another set of users, or to

the world. For example, users of a blogging application would make their volumes

world-readable. As another example, the application developer’s volume would store

application assets like images, CSS, and code to be loaded at runtime by the running

application code (thereby allowing the developer to push updates to their application,

much like how they do today on the Web).

The SDS design principles come into play in the following tasks:

• Multiple Storage Systems. Gaia allows users to choose the storage systems

that will host their data in an application-agnostic way.

• User Storage Policies. Gaia allows users to stipulate programmatic policies

pertaining to data availability and durability, thereby preserving organizational

autonomy.

• Application-specific Views. Gaia uses aggregation drivers to construct

global, consistent views of a set of users’ application state, thereby preserving

end-to-end storage semantics.
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3.1.2 Blocks, Manifests, and Volumes

Gaia organizes a user’s data into a set of volumes, where each volume holds one

application’s data. The user decides whether or not the volume operates in single-

reader or multi-reader mode, and selects the set of service drivers to use to replicate

data.

A volume in Gaia is a key/value store. The API the Gaia client exposes to

programmers resembles HTML5’s localStorage. It offers three methods: get(key):

value, put(key, value): bool, and delete(key): bool. The writers to the

volume are the gateways that run on the user’s trusted devices. The readers are

either exclusively the user’s devices (in the single-reader mode), or any device that

can discover the publicly-visible data (in multi-reader mode).

Internally, the set of keys in a volume are bundled into a per-device manifest. Each

value is the associated block, which points to replicas of the raw data. This means

that per-device writes are serialized across keys, and that writes to a key are atomic.

These behaviors were chosen specifically to emulate the semantics of localStorage.

3.1.3 Gateways

Users run one or more Gaia nodes to access their application state. Gaia nodes, in

turn, run gateways on behalf of the application. The Gaia node the application ac-

cesses provides a key/value storage abstraction that encompasses all of the key/value

pairs written by all of the user’s devices. It forwards reads and writes to gateways

running within this and other Gaia nodes.

Gaia nodes are distinct from gateways in that a single Gaia node can run many

gateways for many users in many applications. Gaia nodes are meant to be easy to

deploy for non-technical users—the non-technical user should only need to understand

that as long as they have a running Gaia node, then their policies will be enforced
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regardless of which applications they use and regardless of which other users they

share data with.

This design constraint means that a single Gaia node must be able to instantiate

many gateways for many users and many applications. To achieve this, gateways

in Gaia are implemented as closures within the running Gaia code. This makes in-

stantiating a gateway inexpensive—the node simply allocates a new internal gateway

object and pairs it with an application-specific, user-specific context.

Gateway instantiation and teardown is driven by application sign-ins. When the

user signs into the application, the Gaia node instantiates gateways to run access and

mutate flows. When the application’s Web page writes data, it asks the user’s Gaia

node to run a mutate flow through its Build, Push, and Publish gateways to make

the write durable and available. Each of the user’s devices runs a Gaia node locally

or on a trusted host to process writes. The device running the node with the writing

gateways must be trusted, since it runs coordinator gateways and has access to their

private keys.

The read path depends on whether or not the volume is a single-reader or multi-

reader volume. If it is a single-reader volume, then the Web page simply asks the

user’s own Gaia node to carry out the access flows. If it is a multi-reader volume,

then the Web page instead contacts the Gaia metadata service (discussed below) to

find the Gaia node that can serve the data. Once this node is known, the Web page

asks the node to carry out the access flow.

Because a user may have multiple devices, there can be multiple writers to a sin-

gle volume. However, Gaia assumes that application writes are sequentially consis-

tent [120]—there exists a total ordering of writes issued by the application regardless

of which devices originate them. This is a reasonable assumption in practice, because

(1) a volume may only be written to by the user that owns it, (2) a user typically

does not access the same application from two different devices simultaneously, and
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(3) any concurrent writes from the application on the same device can be serialized

by the Gaia node.
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Figure 3.2: Application interface to Gaia. Gaia combines the timestamped key/value
writes in each device’s manifest to create a coherent view of the user’s volume.

This assumption side-steps the need for a user’s Gaia nodes to coordinate to resolve

write-conflicts in the key/value abstraction. Since each device runs the coordinator

gateway for the key/value pairs it has written, the key/value abstraction can be

realized simply by merging each device’s key/value pairs into a single key/value space.

The merge function simply accepts the value with latest timestamp in order to handle

cross-device key/value conflicts (Figure 3.2).

In the rare cases where an application expects a user to read and write from mul-

tiple devices simultaneously, the developer has the opportunity to implement write

serialization in the volume’s aggregation driver. The absence of built-in write/write

conflict resolution is a design choice that makes the common case simple in its imple-

mentation and performant in its execution.
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3.1.4 Metadata Service

Gaia nodes implement a peer-to-peer metadata service. The Gaia MS is based on

prior work on Blockstack [7] [147] [6]. It enables Gaia nodes to both ensure that

readers do not see stale data, and to ensure that any Gaia node can discover and read

key/value pairs from a given volume for any user.

Gaia uses a blockchain-based SSI system both for bootstrapping trust between

users and for implementing the “volume discovery” and “gateway discovery” functions

of its MS. When users Alice and Bob register their user names in the SSI, they each

include a cryptographic hash within the blockchain transaction. Each hash is the

hash of a DNS zone file [136] that contains routing information for discovering the

user’s volumes and Gaia nodes.

Gaia nodes work with the SSI system to build a 100% replica of all zone files. They

self-organize into an unstructured peer-to-peer network through which they exchange

zone files. They exchange bit-vectors with one another to announce the availability

of their zone files, based on the sequence of transactions the SSI system has processed

that include new zone files hashes. Peers inspect one another’s bit-vectors, and pull

zone files from one another in rarest-first order such that they all eventually build a

100% replica.

Peers arrange themselves into a K-regular peer graph. They each choose an

unbiased random sampling of the peer graph as their neighbors using a Metropolis-

Hastings random graph walk with delayed acceptance [121]. The default implemen-

tation chooses K = 80, and when queried for neighbors, will respond with a random

sample of at most 10 peers that have historically responded to queries at least 50%

of the time. This helps each peer quickly discover “healthy” peers in its neighbor

set. In addition, each peer remembers and periodically pings up to 65536 discovered

peers regardless of their perceived health in order to accommodate churn in both the

set of peers as well as the network links between them. For example, a healthy peer
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that goes offline for a time due to a bad network link or misconfiguration will not be

completely forgotten for some time, giving the operator a chance to correct the issue

and quickly rejoin the network.

Since Gaia nodes view the same blockchain, they calculate the same sequence of

zone file hashes. This gives them a “zone file whitelist” that grows at a constant rate,

no faster than the blockchain. They use the whitelist to identify only legitimate zone

files, and rely on the blockchain to ensure that not too many new zone files can be

introduced into the system at once. A detailed description of the peer network can

be found in [6].
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Figure 3.3: Volume lookups in Gaia. When Alice wants to read Bob’s app data, she
(1) looks up his ID in his SSI database, (2) finds his zone file in Gaia’s peer network,
(3) finds his certificate graphs, (4) finds his public-facing Gaia node and volumes, and
(5) routes access flows through it to access his volume data.

The peer network ensures that each Gaia node knows the names, current public

keys and current zone file for each user. Each user’s zone file points to a set of signed

volume and gateway configuration data structures, including the certificate graphs

for each volume. This way, a Gaia node can look up an application-specific volume

for a user given the user’s name on the SSI system (Figure 3.3). Importantly, the
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networks and storage providers hosting zone files and configuration data are not part

of the trusted computing base. As long as the user’s local SSI server is trusted, then

they can discover authoritative state about other users’ volumes.

Discovering a user’s data is a matter of first looking up the volume metadata, and

then searching the key space in the metadata for the desired metadata record. After

Discovery, the reader caches the key’s version number, so subsequent reads do not

return stale data. Publishing data is a matter of uploading a new key/value pair with

a greater version number.

3.1.5 Aggregation Drivers

Users enforce end-to-end storage semantics for multi-reader volumes by standing up

and running publicly-routable Gaia nodes to process reads from other users (Fig-

ure 3.4). By design, these public read nodes are not trusted, and the gateways they

run do not have any write or coordination capabilities. The data they serve is meant

for external consumption.

When a user Alice creates a volume, she simply lists the Gaia node in her signed

Gaia configuration as the “read” endpoint. When others Bob and Charlie go to read

from her volume, their Gaia nodes issue the request to her “read” Gaia node indicated

by her configuration data. Bob and Charlie discover the “read” node by querying the

MS.

3.1.6 Flow Routing

Only Alice can change her volume and node configuration. She does so simply by

regenerating the configuration and signing it with the key listed under her account

in the SSI system. If she wants to change the URLs to her signed configuration,

she uploads her configurations to the new locations, generates a new zone file with

URLs that point to them, and announces the new zone file’s hash in the SSI system’s
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node in single-reader configurations, but can happen either on untrusted nodes or on
both trusted and untrusted nodes in multi-reader settings. Mutate flow stages always
run within the trusted computing base, however.

blockchain. Once the SSI system processes the transaction, she broadcasts the new

zone file to Gaia’s peer network so all other Gaia nodes can discover her volumes.

When Bob wants to read Alice’s data, his node first inspects her volume record

to determine the “read” endpoint. When Bob’s node runs the Discover and Acquire

stages, the “read” endpoint is given to the aggregation driver as part of its execution

context so it can pull data from it.

When Alice wants to write to data to a volume, her Gaia node ensures that the

appropriate gateways are instantiated with the Build, Push, and Publish stages from

her configuration. Once they are available, the node processes her write request. In

practice, her gateways are locally available for the duration of an application session—

her node instantiates them as part of an application “sign-in” process, and shuts them

down when the session ends.
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3.1.7 Administration

To minimize coordination between developers and users, Gaia automates as much of

the system administration as possible. In its day-to-day operation, the only adminis-

trative contact a user has with their volumes is in connecting storage providers, which

is handled via a provider-specific Web UI. In addition, Gaia minimizes the instances

where the user directly interacts with cryptographic keys by ensuring that they only

need to do so when they acquire or lose a personal computing device.

Application developers do not interface directly with storage providers, but in-

stead with the user’s designated Gaia node. Instead, developers specify the storage

requirements the application needs, and the Gaia node pairs the requirements with

storage drivers when creating its volume.

The application code discovers a user’s Gaia node as part of the SSI sign-in process.

The SSI service identifies to the application the network address of the user’s Gaia

node. The application then learns the set of Gaia storage providers, and the set of

capabilities they offer (which can be matched to storage requirements).

The resulting storage administration workflow for users and developers works as

follows:

1. When the user creates an account in the SSI service, she connects one or more

storage providers to her account.

2. The user loads the application and clicks its “sign-in” UI element.

3. The application redirects the user to the SSI service’s “sign-in” UI, which

prompts the user to authorize the sign-in request. Specifically, the user is

presented with the application’s request for either a “single-reader” or “multi-

reader” volume.

4. Once approved, the SSI service redirects the user back to the application, pass-

ing it a session token which identifies the user’s Gaia node.
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5. The application requests a volume. If this is the first such request, the Gaia

node creates an application-specific volume. The node then returns a handle to

the volume which the application subsequently uses to load, store, and delete

keys.

At no point are users asked to interact with volume, user, or gateway keys, and at

no point are users asked to perform access controls. At no point are the developers

asked to identify or bootstrap a connection to storage providers, and at no point

are developers required to perform any access controls beyond deciding whether or

not their app-specific volume will be world-readable or private (enforced internally

through encryption). This removes the need for developers and users to coordinate

with one another—Gaia ensures that applications’ storage interactions never interact,

and ensures that users can only read one anothers’ data if they interact at all.

Gaia users are self-sufficient—there is no designated third party service that is

responsible for keeping the system alive, since users interact with their data through

device-hosted Gaia nodes. However, users nevertheless need to recover access to their

data in the event they lose their computing devices.

To facilitate this, the configuration state for a user’s Gaia node is replicated to

all of the user’s storage providers. This state includes all app-specific public keys, as

well as all encrypted authentication tokens for their storage providers.

The configuration bundle is signed and encrypted with keys linked to the user’s

identity on the SSI system’s blockchain, so no matter which device(s) the user uses

to modify their configuration state, they will be able to always be able to at least

authenticate the externally-hosted data (even if they lose all of their devices). If the

user changes their keys (i.e. in order to recover from device loss), the configuration

state is automatically re-signed and re-encrypted by the Gaia node.

The only time a user directly interacts with a cryptographic key is when they

change the device(s) they use to interact with their data. The implementation fa-
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cilitates this by encoding an encrypted “master” ECDSA private key as a 12-word

mnemonic phrase, and derive keys for signing name updates and for signing app-

specific volume data using a deterministic key-derivation algorithm [154]. The en-

crypted private key is backed up to their email provider by default.

3.1.8 User Scalability

The limiting factor to the system’s scalability is how many users it can support. This

is limited not by Gaia itself, but by the rate that transactions can be written to the

underlying blockchain.

Registering a username requires two transactions—a commitment to the salted

hash of the username, and a matching revelation of the username and the salt. Two

transactions are necessary in order to prevent front-running, whereby an adversary

can watch the set of unconfirmed blockchain transactions (i.e. those that are present

in each peer’s local memory but not yet assigned to a block) and race the victim

to send out a transaction that acquires a username. If Bitcoin’s blockchain were

utilized solely for registering Gaia users, it could only process 72,000 requests per day

(assuming 1kb transactions and 144 blocks added per day).

Once a name is registered, the owner can update their zone file with a single

transaction. The blockchain provides a linearizable history of all zone file updates,

and thus all zone files.

To scale up the number of users, Gaia allows an alternative way for registering

and updating usernames by packing many such operations into a single Bitcoin trans-

action. It does so by packing them into a single on-chain name’s zone file, and then

propagating the zone file through Gaia’s metadata service. The on-chain name owner

issues the transaction to set the new zone file. The history of off-chain user name op-

erations is still linearized, since the history of zone files is linearized by the blockchain.

Each off-chain user name has its own public key and its own zone file.
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Names registered this way must not collide with on-chain names. To do so, off-

chain names use the on-chain name that propagated their initial “creation” operation

as a suffix. For example, Alice would create the name alice.personal.id by asking

the owner of personal.id to propagate a “creation” operation for it.

Off-chain names retain the same safety properties as on-chain names. Off-chain

names are owned by separate private keys. Only the owner of an off-chain name’s

private key can generate a valid “update” or “re-key” operation. Gaia nodes only

accept newly-discovered off-chain operations if they are signed by the right principal.

The “create” operation sets the initial public key.

However, off-chain names do not have the same liveness properties as on-chain

names. An off-chain name owner needs the cooperation of an on-chain name owner

to propagate a new operation. Specifically, a “create” and “re-key” operation must be

propagated by the owner of the corresponding on-chain name (i.e. only personal.id’s

owner can propagate these transactions for alice.personal.id). In addition, a

“create” or “re-key” operation will only be accepted if the on-chain name owner has

propagated every zone file.

The reason for these constraints is that they ensure that each client receives the

current public key for each off-chain name, regardless of the order in which zone files

are replicated. This requires making sure that the history of non-idempotent off-

chain name operations (creation, re-keying) is linearlized. By requiring all zone files

for the on-chain name to be present before processing a subsequent zone file for the

on-chain name, Gaia ensures that no conflicting off-chain name creation or re-keying

operations exist in each off-chain name’s history.

Unlike “create” and “re-key”, the “update” operation can be propagated by any

on-chain name owner. This is because changing an off-chain name’s zone file is idem-

potent and commutative. The order in which the off-chain name “update” operations
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are propagated to Gaia’s peer network does not affect a correct Gaia node’s ability

to resolve the off-chain name to its zone file.

Even though creating off-chain names only improves the system’s throughput by

a constant factor, it is sufficient in practice. The Gaia implementation allows an on-

chain name’s zone file to be 40Kb, and can fit between 100 and 120 off-chain name

operations without compression. At a rate of eight transactions per block (about

3.4% of Bitcoin’s throughput), the system can accommodate over 115,000 new user

registrations per day (about the rate at which Twitter acquires new users [191])

3.1.9 Global Relational Databases

Even though users own and control their volumes, application developers need global

insights into how people use their applications in order to catch bugs and make

improvements. For example, developers often need to answer queries like:

• Which users are using a given application? Which version?

• Which users are the “power users” who create a lot of content?

• Which users only try the app out a few times and then abandon it?

• Which users use a competing application?

Users need similar functionality to implement cross-volume queries and search

functionality. In the Web today, this need is fulfilled by a search engine. Similarly,

users should not be expected to discover which other users have useful public data in

Gaia without the aid of a search tool.

Gaia addresses both needs by providing the means to implement a global, read-

only, software-defined SQL (called a “Gaia database”) over the entire set of public

data in the system. Application developers and search engine providers instantiate

their own databases for specific applications, specific users, and/or specific types
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of public data. The database services queries by fetching public data from users’

multi-reader Gaia volumes, so each query still invokes the data owner’s aggregation

driver (thereby preserving each organization’s ability to control data exposure to such

systems).

A Gaia database is straightforward to implement because the set of usernames, and

thus the set of volume certificate graphs, is globally consistent and enumerable thanks

to the SSI system. The developer instantiates a Gaia database by first enumerating

all user names (i.e. by instantiating a Gaia node and an SSI node). They build

up the list of all user names, and for each user name, they fetch the user’s list of

volumes and then search the user’s public data. This information is then fed into a

commodity database of the developer’s choice. This indexing process is very similar

to the indexing process of a Web crawler, but is simpler to implement because it

already has the complete list of all data to index.

The Gaia database design pattern is a frequently seen in Gaia-powered appli-

cations, since they allow developers to solve common problems like building search

engines or aggregating content in application-specific ways. For example, a photo-

sharing application would use an application-specific Gaia database instantiated in

this manner that aggregated a user’s friends’ photos on their behalf. The Gaia

database would coordinate with the photo-sharing app clients to implement a write-

through view of the users’ photo albums. Whenever the user posts a new photo or

likes someone else’s photo, she would both save this new state to her Gaia node and

send a hint to the Gaia database that new content had been written (so other users

could be informed in real time).

It is important to remember that even though a Gaia database gives developers

a similar set of insights into user data that they enjoy today in conventional Web

applications, the key improvement offered by Gaia is that the Gaia database preserves

each organization’s autonomy. The Gaia database is simply a downstream replica of
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each organization’s state, and is used in SDS applications as a read optimization (i.e.

so clients do not need to fetch data from as many sources). Each organization can still

unilaterally deny queries or service them in domain-specific ways using their volumes’

aggregation drivers.

This relationship is similar to how search engines on the Web today host down-

stream replicas of Web content, and rely on the robots.txt convention [87] to control

access to site content. But unlike the robots.txt convention, Gaia gives users the

unilateral ability to filter what a Gaia database can query by means of strong encryp-

tion.

A demonstration of the Gaia database design pattern is available online to search

the set of Blockstack user names [86]. It allows users to discover other users’ linked

social media profiles. In addition, this design pattern is common to Gaia-powered

applications described in the next chapter.

3.2 Syndicate: a SDS File System

Syndicate is a scalable software-defined distributed file system meant for scientific

workloads. Unlike Gaia, Syndicate is designed to provide shared volumes that ef-

ficiently leverage CDNs for read-heavy workloads and support I/O from a scalable

number of concurrent users. It is meant to be used for sharing data across compute

clusters, where the data sources and sinks reside in different organizations.

3.2.1 Motivation

Science research is increasingly data-driven and increasingly distributed. Researchers

often share large datasets with other labs across the world and with the public. As

the cost of storage space becomes cheaper, scientists can afford to generate and retain

larger and larger amounts of data for the indefinite future.
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These trends create an interesting set of operational challenges:

• How do scientists onboard new users and labs that use different technology

stacks than their own?

• How do scientists keep legacy data-processing workflows running in the face of

changing storage and compute systems?

• How do scientists take advantage of commodity storage and compute technolo-

gies without having to write a lot of bespoke code to do so?

• How do scientists enforce data access and retention policies when the underlying

storage substrate can be changed out from under them?

The standard practice today is messy. Each time a lab wants to change its storage

system, it must re-work its workflows to be compatible. This entails more than

patching the code to read and write data. It also means changing their operational

practices for staging data for computation and changing the way they share data,

both internally and with other labs.

The recent “containerized approach” to using containers, VMs, and SDNs to pre-

serve the runtime environment for scientific workflows is a step in the right direction

for preserving end-to-end storage semantics. However, it still forces scientists to copy

their data into the new runtime and copying results back out, and it additionally

forces scientists to maintain the (virtualized) infrastructure. This puts them in the

uncomfortable position of having to become experts in state-of-the-art devops tech-

niques and in data management software.

These challenges stem from the fact that scientists increasingly need to share

data across organizations. Organizations include individual scientists’ computers,

the computers in the same research group, the computers across a collaborative set

of research groups who work across multiple labs (including multiple universities,
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corporations, and countries), and the general public. Whenever a scientist in one

organization needs data in another organization today, they need to manually copy

it out into their organization’s storage. At the same time, whenever a scientist needs

to report the results of their workflow to another organization, she has to manually

replicate it to a place where other organizations can read it.

What is needed instead is a storage system that preserves end-to-end storage

semantics across organizations while interoperating with legacy storage. Scientists

should not have to manually access and copy data to move it between organizations.

Instead, the workflow software ought to be able to do that automatically on an as-

needed basis, while preserving the workflow’s expected end-to-end storage semantics.

3.2.2 Gateway Types

Syndicate accommodates cross-organizational data acquisition and data replication

by supplying specially-crafted gateways designed to make it easy to share and store

data. An organization that wishes to share data with another organization would

encode its rules for allowing access into an acquisition gateway that takes care of

indexing and exposing the data as manifests and blocks. An organization that wishes

to store the results of scientific computations would run a replica gateway that enforces

rules that govern whether or not (and how) to store manifests and blocks within the

organization’s storage systems. Linking the two together are user gateways that

expose the Syndicate-formatted data to scientific workflows in a workflow-defined

manner, such as an externally-mounted filesystem within a container (Figure 3.5).

Acquisition gateways (AGs) are gateways that connect to an externally-hosted

dataset and “import” its records into a Syndicate volume in a read-only fashion. It

does so by crawling its backend dataset, and publishing metadata for each (logical)

record to the Syndicate MS. Other gateways read the dataset by first discovering the
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Figure 3.5: Syndicate overview. Syndicate offers three types of gateways (UGs, RGs,
and AGs) for interfacing with CDNs, storage providers, and datasets, respectively. It
is targeted towards science labs.

metadata, and then asking the AG for the manifest and chunks (which it generates

on-the-fly by fetching data from its backend dataset).

Replica gateways (RGs) are gateways that connect to existing storage systems.

They provide a read/write interface at the chunk granularity. The prototype Syn-

dicate implementation comes with service drivers for Amazon S3 [10], Dropbox [64],

Google Drive [96], Amazon Glacier [9], iRODS, and local disk (for compatibility with

NFS [168], AFS [105], Ceph [199], and other legacy distributed filesystems used to-

day).

User gateways (UGs) are gateways that connect users and their workflows to

other gateways. Each UG provides a different interface to workflows, subject to

their needs. For example, Syndicate comes with a UG that implements a FUSE [79]

filesystem, a UG that implements a RESTful [78] interface, a UG that implements a

suite of UNIX-like shell utilities, and a UG that implements a Hadoop filesystem [14]

backend.
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Other types. Syndicate allows operators to specify new gateway types at run-

time, allowing them to incrementally deploy and adapt the system to changing work-

loads. Each gateway’s type is embedded in its certificate, so each gateway knows

at all times the network addresses and types of all other gateways in the volume.

This allows the operator to construct complex acquisition and replication strategies

that span multiple hosts and multiple organizations. This feature is put to use in

Chapter 4.

Each organization runs the appropriate gateways on their computers depending

on how they wish to interact with the data. This allows scientific workflows to

run across organizational boundaries in an automated fashion, allowing scientists to

independently devise new workflows without incurring the cost of coordinating with

each lab to set it up.

For example, an astronomy lab would run acquisition gateways to expose telescope

images of earth. They could stipulate rules in its aggregation driver code that ensure

that newly-generated images are only readable to a privileged set of labs for a time

(e.g. only labs in the same country) before releasing them to the public. Similarly, a

meteorology lab would run replica gateways to store data from trusted scientists, and

store them in a time-series fashion. Unbeknownst to either lab, a scientist could run

a user gateway on her laptop and on her VMs that allowed her to read from both the

astronomy and meteorology labs’ gateways and write data to both the meteorology

lab and to her Dropbox account to be shared with her collaborators. By having

multiple gateway types running in these specific roles, no coordination is necessary

between the astronomy and meteorology labs.

3.2.3 Data Flows

Syndicate gateways route requests to one another based in part on what their type

is. In other words, a gateway’s type identifies the steps it is guaranteed to take while
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handling an access or mutate flow. The UG, RG, and AG gateway types identify a

set of common routing policies that work well in practice (Figure 3.6).
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Figure 3.6: Reads and writes in Syndicate. Writes are initiated by UGs, which rely on
RGs to Push chunks. UGs Publish the files that they coordinate. AGs crawl datasets
and Publish them as files, and both RGs and AGs serve UGs chunks as part of their
Acquire stages.

A UG initiates access flows to AGs and RGs to handle reads, but initiate mutate

flows only to RGs to handle writes. A UG’s Discover step will always fetch the record’s

manifest metadata from the MS, while optionally caching it for a user-specified length

of time. Once it has the manifest metadata, it identifies whether or not the record’s

coordinator is an AG or another UG. If it is an AG, it will fetch the chunks directly

from it in its Acquire step. If it is an UG, however, it will try to fetch the chunks

from each RG. It considers the read to be successful if it Acquires all of the chunks

requested (without regard to which gateways served them).

A UG initiates mutate flows only to RGs. It executes a logical write by Pushing

its modified chunks to each RG. That is, it starts one mutate flow per RG in the vol-

ume. Once each RG successfully processes the request, it Publishes the new manifest

metadata to the MS.
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The behavior of the Build and Publish stages depend on whether or not the UG is

the record coordinator. If the UG is the coordinator, it will Build the manifest, Push

the manifest and chunks, and then Publish the metadata. If it is not the coordinator,

it will Push only the blocks, and then contact the coordinator UG to Build and

Publish the manifest.

AGs and RGs do not initiate any flows of their own. AGs are always the coordi-

nators for the records they Publish. They mark their records as read-only, and will

not participate in any mutate flows for them. They will participate in access flows to

serve chunks to other UGs in the volume.

RGs load, store, and delete chunks in their underlying storage systems. They do

not serve as coordinators. They react to chunks uploaded by the UG by running their

Push driver stage on each of them.

Custom Gateways

The ability to add new gateway types allows operators to define additional flow-

processing policies. Each gateway in the volume can determine the type of all other

gateways, which allows their drivers to make custom routing decisions. This allows

the operator to implement their stage logic to extend the routing behavior of existing

gateways.

For example, suppose the operator defined a custom gateway type called a write-

logger gateway (WLG) for logging all mutate flows. A WLG is not considered to be

an RG, UG, or AG, so the other gateway types will ignore WLG instances by default.

However, the operator could modify the Push implementation for her volume’s RGs

to send a syslog message to each WLG in the volume to record whether or not the

RG completed the write flow successfully. In doing so, the operator is able to define

custom mutate flow routing and processing logic for the volume by composing multiple

gateways together in a pipeline. The UG, RG, and AG implementations do not need
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to be modified at all; only the RG driver code needs to be patched (which is facilitated

by Syndicate’s view-change facilities).

3.2.4 Data Organization

Unlike Gaia, each record in a Syndicate volume has its own manifest, and is comprised

of a variable number of blocks. The block size is fixed for the volume, but each volume

can have its own block size.

Volumes in Syndicate can have arbitrarily many data records, and each data record

may have arbitrary sizes (i.e. made of arbitrarily many blocks). Manifests, blocks, and

certificates are all cacheable for indefinite amounts of time, since Syndicate ensures

that they are all immutable (that is, they each receive new IDs in the system when

their contents change).

Readers construct URLs to manifests, blocks, and certificates using their IDs to

ensure that any intermediate caches serve the right data. Readers learn the IDs

directly from the MS, and use in-band hints to determine when their view of these

IDs is stale (as described in Chapter 2).

Garbage Collection

A consequence of immutability is that writes to a record will cause overwritten blocks

and manifests to become unreferenced. To prevent memory leaks, Syndicate’s gate-

ways execute a distributed garbage-collection protocol to remove them. The process

is asynchronous and tolerant of gateway failures.

When the coordinator of a record uploads new metadata to the MS, it includes

a vector of block IDs and the old manifest ID. These are appended to a per-record

log in the MS. Once the write completes, the coordinator asynchronously queries the

MS for the first k entries in this log, constructs delete requests for them, and sends

the requests to the volume’s replica gateways. Once all replica gateways successfully
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acknowledge deletion, the coordinator instructs the MS to remove the k entries from

the log.

3.2.5 Metadata Service

Syndicate’s MS runs on top of a scalable NoSQL database. In practice, deployments

run within Google AppEngine [92] and AppScale [19], meaning that Syndicate’s meta-

data is hosted in either Cassandra [118], Hbase [15], MySQL [138], Megastore [21] or

Spanner [53]. In all cases, writes to a single key are atomic, and multi-key atomic

writes are allowed provided that the set of keys is small (e.g. five or less in the

implementation).

There are two reasons for building the Syndicate MS on top of a third-party

NoSQL store. The first reason is that it makes it easy to automate the MS operation.

When running on Google AppEngine, for example, deploying an MS from scratch

can be done simply by creating a new AppEngine project and pushing the code

from the user’s laptop to Google’s servers. No further maintenance or infrastructure

administration is required, beyond setting up billing.

The second reason for building on top of a NoSQL store is that it makes it easy

to parallelize non-conflicting operations. The MS metadata records are structured

such that in the absence of concurrent writes, metadata reads execute in parallel.

Moreover, writes to different metadata records execute in parallel. The number of

operations that can execute in parallel depends on how many hosts are running the

NoSQL store; adding more hosts increases the number of parallel operations sup-

ported. By building on top of Google AppEngine specifically, Syndicate users can

easily acquire more capacity as their workloads need it.

Syndicate organizes metadata into a filesystem-like directory hierarchy. The Syn-

dicate MS does not resolve paths for gateways. Instead, the user gateway iteratively
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walks the metadata record hierarchy by querying each directory on the path and

searching for the next metadata record along the path.

Because it is designed for read-heavy workloads, Syndicate’s MS directories are

log-structured, and meant to be cached by other gateways. When a user gateway

walks a directory for the first time, it fetches the entire log and caches it indefinitely.

When it walks it again, it only fetches the new log entries from the MS, and re-

plays them locally to obtain the current state of the directory. Meanwhile, the MS

asynchronously prunes a directory’s log as entries are updated or removed, thereby

keeping the “steady state” size of the directory log at O(n) for n entries.

As a result, a user gateway can expect an O(n) time and space overhead when

fetching a directory for the first time, and O(k) time and space overhead when syn-

chronizing its log after k Publish operations on the directory’s children have been

processed (each metadata record has a constant size, takes constant time to parse,

and takes a constant amount of time to cache if the user gateway implements directo-

ries with a hash table). The worst-case time and space bound for fetching a directory

occurs when the MS is receiving many Publish requests to the directory’s children at

the time of read. In this case, the bound is O(n+ k) for k additional (uncompressed)

Publishes.

In practice, k is small relative to n since Syndicate is used with read-heavy work-

loads. Often times, datasets are write-once read-many, so k can be zero. In addition,

a volume’s directory structure is expected to be broad and shallow. With the datasets

explored in this thesis, scientific workflows tend to store their data as many files within

a single directory, and scientific workflows sharing a volume tend to create their own

top-level directories to store their data.
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3.2.6 Programming Model

Because Syndicate’s gateways are already designed to fulfill special roles in the sys-

tem, each gateway has its own programming model. This helps developers avoid

re-implementing boilerplate logic, and instead focus on helping the gateway fulfill its

designated role.

However, some commonalities exist. Syndicate gateways implement HTTP servers

to serve chunks to one another, in order to remain compatible with existing CDNs.

Similarly, they implement HTTP clients to pull chunks from the CDNs, and from

existing Web-accessible storage services and datasets.

Each gateway’s programming model is inspired by the fast CGI protocol [36],

whereby the server spins up one or more long-lived “worker” subprocesses to handle

a particular kind of request (e.g. defined by a canonical HTTP path). This gives

developers a way to implement long-lived stateful aggregation driver logic. The ag-

gregation drivers run as stateful fast CGI workers, and the service drivers run as

stateless libraries that are loaded by the aggregation drivers as needed.

Syndicate’s driver model distinguishes between the logical representation of a

record, the application representation of the record, and the on-the-wire represen-

tation of the record. The logical representation is simply a flat byte array (i.e. a file),

with additional metadata describing the block boundaries and ownership information

contained within the manifest.

Application-facing gateways (i.e. UGs in Syndicate) are free to represent data

to the application in any way they want. For example, a UG implementation may

represent a data record as a SQL database. Such a UG would require applications

to interact with the data via SQL commands. The implementation would translate

the commands into reads and writes on the record’s bytes at the logical layer. Syndi-

cate implements a UG programming library and SDK to allow developers to provide

application-specific interfaces.

119



ge
t_
ch
un
k(
)

pu
bl
is
h(
)

ac
qu
ir
e(
)

di
sc
ov
er
()

pu
sh
()

ac
qu
ir
e(
)

Dataset

service driver library
serialize(), deserialize()

service driver library
serialize(), deserialize()

pu
bl
is
h(
)

more
data?

new or
modified
data!

crawl dataset

Lookup
foo

Ask MS /
foo is af3a49

foo: 
af3a49

[urls]

P
ublish foo? Y

es
/N

o

Cloud Storage

service driver library
serialize(), deserialize()

name,
byte-offset,
byte-len,
rename hint,
truncate hint,
delete hint

(fallback)

Metadata
Service

(fallback)

HTTP server HTTP serverApp Interface

Acquisition
Gateway

User
Gateway

Replica
Gateway

Figure 3.7: Syndicate driver model overview. Each gateway controls how it serializes
and deserializes its chunks, but otherwise each type of gateway has a unique driver
profile.

Syndicate’s aggregation driver model also gives gateways the ability to control

a record’s chunks’ on-the-wire representation. This allows the developer to control

how the networks that connect gateways view the data. For example, the developer

can implement end-to-end encryption by encrypting and decrypting chunks as they

are transmitted and received, thereby hiding data from the networks. As another

example, the developer can buffer and send batches of chunks between gateways on-

the-wire independently of the logical and application representations. An overview of

the driver model is seen in Figure 3.7.

On-the-wire Processing

All gateway drivers implement a serialize() and deserialize() method to trans-

late a logical block or manifest to its on-the-wire representation and back. The

serialize() method is called whenever the gateway sends data or caches it to disk,

and the deserialize() method is called whenever the gateway receives data or loads

it from its on-disk cache.
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Unlike the remainder of a gateway’s methods, these methods are always invoked

whenever a chunk is loaded or stored by the gateway.

Acquisition Gateway Service Drivers

The AG driver model is designed to handle datasets that can change from external

modifications. For example, the iRODS AG driver subscribes to the iRODS event

queue, which allows it to get notified when files it indexes change. This allows it to

push updates for them to the MS in order to ensure that the state of the backend

dataset is accurately reflected by the volume.

Aggregation Driver: An AG only needs to implement the Publish stage of the

aggregation driver model, since it will never initiate access or mutate flows. Its

Publish stage is implemented as a method that the AG repeatedly calls. It takes

nothing as input, but outputs new record metadata and a hint as to whether or not

to create, update, or delete the record on the MS. The implementation is allowed to

block the AG in the event that the backend dataset has not changed.

Service Driver: When another gateway asks for a block from one of the records,

the AG forwards it to its service driver in order to fetch the bytes from the dataset

(the read() method). The AG will automatically generate manifests on request.

User Gateway Drivers

The UG driver model is designed to pull chunks from RGs and AGs, and push new

chunks to RGs. Unlike the other gateways, the UG driver model gives developers a

chance to have the UG connect to one or more CDNs to fetch chunks.

Aggregation Driver: The UG is mainly concerned with reading and writing data,

and only allows the developer to customize the Discover, Acquire, and Publish stages.

The UG itself handles communication with the MS to Discover new data, but it lets

the driver code decide whether or not a given access should contact the MS. This stage
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is implemented as a method that takes the record metadata as input, and outputs

a yes/no response as to whether or not to contact the MS. This way, the driver can

implement whatever view of the data the application needs by ensuring that the UG

Discovers new data at the right times (but with the constraint of only being able to

present views of data as it had existed at some point in the past).

The UG driver model defines the Acquire stage as a method that takes some

metadata about the chunk to fetch as input, and returns as output a URL that, when

resolved by the UG, will return the particular chunk’s data. The Acquire stage may

invoke the service driver (described below) to connect to underlying network caches

in-between upstream RGs and AGs, and may carry out any pre-fetching in order

to place the data such that the URL it generates will resolve to the data. As an

optimization, the UG supports a handful of widely-used protocols by default (HTTP,

FTP, local disk), so often times Acquire stage implementation only needs to generate

the appropriate URL.

The UG’s Publish stage is invoked whenever the application either creates a record

or synchronizes its state. The stage is defined as a method that takes new record

metadata as input, and outputs new record metadata for the UG to send to the MS.

If the metadata is unchanged, then no information is sent to the MS. This not only

allows the developer to control the circumstances under which new data is exposed

to the volume, but also gives the developer a chance to carry out any side-effects of

doing so (such as logging the creation or modification of each record to a third party

for later audits).

Service Driver: The service driver in the UG is designed to be used to fetch data

that cannot be handled by one of the UG’s built-in protocol handlers. In the rare

case where the UG implementation is unable to carry out a data transfer on its own,

the the Acquire stage invokes the service driver to fetch the data, store it to local

disk, and feed the UG a file://-schemed URL that points to it.
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To carry out a mutate flow, the UG serializes blocks and manifests and sends them

to all RGs in the volume. The mutate flow succeeds only if all RGs acknowledge

successful replication. Developers do not have the ability to control when or how

mutate flows are processed beyond controlling their on-the-wire serialization. Instead,

developers are given the ability to control how RGs handle chunks once they are

received.

Replica Gateway Drivers

RGs allow the developer to customize how data will be stored. RGs do not initiate

any access or mutate flows of their own, but instead participate in flows initiated by

UGs. As such, the RG driver model complements the UG driver model— it allows

developers to customize the Push and Acquire stages.

Aggregation Driver: The RG driver model gives the developer the ability to load,

store, or delete chunks. It gives the driver code insights as to whether or not a chunk

is a block or a manifest, and which bytes in the record it represents. This gives the

developer the ability to reason about how individual chunks affect the view of the

whole record.

The Push stage is defined as a method that takes the chunk and chunk metadata as

input, and returns success or failure. Its responsibility is to make the chunk persistent,

such that any subsequently-executed Acquire stage from any RG in the same volume

will successfully fetch the chunk data (barring network errors). The implementation

is allowed to contact other RGs and their running driver processes in order to make

this guarantee (such as to implement a total ordering on chunk writes).

The Acquire stage complements the Push stage. It is defined as a method that

takes the chunk metadata as input and returns the previously-Pushed chunk as out-

put.
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Service Driver: The Acquire and Push stages each call into the service driver to

load, store, or delete the raw bytes. The service driver translates the chunk metadata

into chunk-specific addresses, which it uses to access or remove the data in a service-

specific way.

3.2.7 Administration

Syndicate divides administrative responsibilities between volume owners and gateway

owners. Each user that owns a gateway in a volume can control the storage and

aggregation driver code it runs. This is necessary to ensure that each organization

retains the ability to control which code it runs. In the UG case, this allows each

scientist to independently tailor their view of the data to their workflow. In the

AG case, this allows labs to preserve how their data is presented to the world even

when the underlying dataset changes its data format or access semantics. In the RG

case, this allows labs to preserve data availability and serialization even when the

underlying storage systems are changed out. A volume owner retains the ability to

unilaterally control all other fields of the volume’s certificate graph.

Administrating a gateway is similar to managing a .ssh directory. As long as a

computer has the appropriate private keys, it can run the gateway. This allows the

user to run a single logical gateway across as many computers as need be, provided

that the set of computers has the same network address (e.g. they could be positioned

behind a commodity HTTP load-balancer which has the gateway’s network address).

Volume administration is designed to be carried out from the volume owner’s

personal device, and only their personal device. The volume owner is not required

to trust a third-party service to execute the certificate graph update. Instead, to

propagate changes to the certificate graph, the volume owner uses the Syndicate

administrative tool to first replicate the new, signed certificate graph to one or more

existing storage services that the gateways know how to access (e.g. the tool can
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replicate the data to an HTTP-addressable cloud storage provider). Once the new

certificate graph state is available, the tool contacts the MS and each gateway via

their certificate-listed network addresses to instruct them to reload their views of the

graph. The tool includes the certificate version vector information in the request, so

the remote gateways will be able to determine the freshness of the fetched certificate

graph state in addition to its authenticity. If all gateways in the volume acknowledge

success, then the volume will have been reloaded by the time the next access or

mutate flow executes. Even then, gateways will not participate in a flow unless they

have the latest view (and the MS will NACK messages from gateways if they do not

report the latest version).

The tool itself offers a simple set of CRUD (Create, Read, Update, and Delete)

commands for users, volumes, and gateways, as well as a “list” command that can

select objects by field value. When combined with an SSI system, the tool does

not require users to interact with public keys at all (since each user, including the

user that manages the MS, registers their public keys under an easy-to-remember

persistent name in the SSI’s blockchain).

Because Syndicate volumes are readable and writeable by many users, and because

a single MS can host many volumes, there additionally exists an “admin” organization

that has the power to unilaterally alter the MS state. Only an admin user can create

and delete users and change individual users’ quotas. The organization that pays the

bills for the MS controls the admin user.

3.3 Discussion

Both Gaia and Syndicate minimize the marginal cost of adding support for existing

services by imposing a communication discipline between the services’ endpoints and

the application, in the form of chunks and record-specific hints. This keeps the service
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drivers isolated from both applications and higher-level aggregation logic, so they can

be reused in many contexts. There is little difference between their service driver

models and implementations.

Gaia and Syndicate both minimize the marginal cost of adding support for new

storage semantics as well. In Gaia’s case, a user can alter their data’s storage se-

mantics simply by (1) standing up a publicly-routable Gaia node that adds the new

rules, and (2) updating her nodes’ routing information to send access flows through

it. The process is analogous in Syndicate: a volume owner adds or updates an AG or

RG to implement the new functionality, and the UGs automatically take advantage

of it. Neither the applications nor the storage systems need to be modified to take

advantage of the new feature.

These costs are minimized in SDS systems because gateways are designed as com-

posable units of I/O processing. By keeping differences between systems-of-systems

confined to individual but interchangeable gateways, SDS enables each volume to

adapt to changes without disrupting applications.

Minimizing the cost of cross-organizational coordination requires identifying or-

ganizations by the network paths that data take when a volume’s principals read and

write it. In Gaia’s case, each organization is represented as a (user,application) pair,

since application state is only writable by the owner’s devices and is only readable by

the users she allows. Gaia enables users to control how their data is accessed simply

by changing the code that executes in response to their queries.

In Syndicate’s case, an organization is any group of scientists’ computers that in-

teract with the same datasets. The cross-organizational coordination difficulties come

from scientists trying to share data with one another. On the read path, Syndicate

reduces the coordination costs between data publishers and data consumers by inter-

posing an AG. This way, a data-publishing lab can store data however they want as

long as there exists an AG that can translate the data into the formats required by
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the consumers. Either the publishing group or the consuming group can run the AG.

Once the AG driver code is written and published, all consumers can get the same

consistent view of the data and the same access semantics without having to get the

data producers to commit to a particular publishing strategy.

A similar story describes Syndicate’s write path. Either the data producer or data

consumer can stand up an RG to ingest the incoming data, but the presence of the

RG allows the producer and consumer to independently choose their data formats

and write semantics. As long as the RG can do the proper translations, users that

write to the volume do not need to worry about the choices the data recipients make

(and vice versa for the producers).

The availability of a separate UG ensures that producers and consumers can keep

their applications forward-compatible with future AGs and RGs. The UG provides

the application-expected interfaces, formats, and access semantics, so programs and

workflows written today can continue working even as Syndicate’s other gateways

evolve. This ensures that scientists who get their workflows working with one UG

can continue to run them, without having to worry about changes to AG and RG

deployments.

3.4 Implementation Details

Syndicate is implemented in 30,000 lines of C++ and 36,000 lines of Python 2. Gaia

is implemented in 14,000 lines of Python 2 (this count includes the peer network

implementation, but not the SSI system implementation that it uses to identify zone

file hashes). The SSI system that Gaia relies on (the Blockstack Naming Service [144])

is implemented in 39,000 lines of Python 2 (13,000 lines implement the blockchain

indexer and name database, and 26,000 implement the client that queries the indexer

and sends transactions).
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Both Gaia and Syndicate have read-write drivers for local disk, Amazon S3 [10],

Dropbox [64], Google Drive [96], and a Kademlia DHT [130], as well as read-only

drivers for HTTP, FTP, and WebDAV resources. Service drivers are written in Python

2 and are less than 200 lines of code each. Service drivers for Gaia are easily ported

to Syndicate and vice versa.

Syndicate is the designated value-add storage system for Internet2 [110] infras-

tructure such as OpenCloud [151], and allows researchers to mount public datasets

as Docker [62] containers with a single command [42]. Gaia is the designated storage

system for Blockstack [7], a network for building decentralized applications.
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Chapter 4

Applications

This chapter presents three applications built with Syndicate and Gaia. In all cases,

the ability to control end-to-end semantics within SDS (instead of the application)

enables developers to tackle difficult data management techniques, in ways that both

preserve backwards-compatibility with existing applications and preserve forward-

compatibility with future storage features. Applications do not need to be modified

to leverage new commodity services, and data flows and gateway placement let de-

velopers consistently solve data management problems across multiple applications.

4.1 Serverless Groupware

Groupware is a common category of Web application that allow users to collaborate

via data-sharing. Groupware applications include shared to-do lists, calendars, doc-

uments, contact lists, and so on. Multiple users read and write to the same storage

medium in order to coordinate their activities.

The data storage story for groupware today requires each user to be able to see

a consistent view of her data, regardless of which of her devices read or write it.

Since groupware is often used in sensitive settings such as corporations, users have an

expectation of privacy—by default, their state is only visible to their devices. Users
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must explicitly share data with other users (or the public), and if they do so, their

shared data is visible to all other users on all of their devices.

In conventional groupware software, this is achieved by running a shared server.

The users in the same user group have read and write access to the server’s state, and

the server resolves conflicts between writes and enforces access controls. In addition,

the server takes advantage of its global view of the users’ state to build up derived

state like edit histories and backups. From a data policy perspective, all users trust

one organization composed of the server and all of the user groups’ devices.

In multi-organization settings, or in settings where users do not directly know

one another, implementing shared groupware is more challenging. Each user (or

subgroups of users) have different policies regarding how their data is to be shared.

For example, a user’s personal calendar should not be shared with work colleagues.

What is needed is a groupware system where users can self-organize into user groups

with which to share data, in a way where users can easily authenticate one another

and establish trust relationships with minimal coordination. This is achieved with a

Gaia groupware library.

The groupware library differs from existing groupware software in two key ways.

First, it lets each user host their data on whichever cloud services (or servers) they

choose, while preserving end-to-end storage semantics for groupware applications.

Second, it gives each user the ability to vet each other user in the system by having

users prove ownership of existing social media accounts. This latter feature allows

users to self-organize into their own per-application organizations with minimal coor-

dination. By posting machine-checkable proofs-of-ownership on social media that are

cryptographically linked to accounts in Gaia’s SSI system (henceforth referred to as

“social proofs”), a user can easily vet other users when deciding to share groupware

data with them. For example, users can leverage social proofs to prove that they work

in the same company, or go to the same school, or have the same shared interests.
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4.1.1 Motivation

Groupware software falls into two categories: in-house groupware servers that the

users of an organization must maintain themselves, or outsources groupware servers

that run in third party servers. There are undesirable trade-offs for both types of

groupware. In the first case, users incur an ongoing operational cost for keeping the

software up-to-date and keeping the server running. The advantage, however, is that

they unilaterally control all aspects of the server’s data storage—including how often

it gets backed up, who can view the data, what kinds of derived state it makes, what

version(s) of the software it runs, and so on.

The second type of groupware is increasingly popular. Companies like Microsoft

and Google each have suites of software-as-a-service offerings that take the operational

responsibilities out of the user’s hands [84] [135]. The advantage is that the SaaS

offerings have potentially higher uptime and are managed by experts, and are available

at a predictable cost to users no matter how easy or hard it is to maintain it. The

downside, however, is that the SaaS provider has global visibility into the users’

data, regardless of the users’ desired privacy settings. If the SaaS provider is hacked,

their groupware data can be exposed to the public. If the SaaS provider goes out of

business, the groupware data can be lost forever. If the SaaS provider changes its

API, then any custom integrations with the platform break.

There does not exist a middle ground where users can share their data in a way

that is convenient for them (like what SaaS offers), but with the policy controls they

would get by running an in-house groupware server. The serverless groupware library

for Gaia fulfills this need.

4.1.2 Role of SDS

Gaia enables the best of both worlds. Users get all of the operational convenience of

SaaS with the privacy and data controls of having their own servers. Importantly,
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Gaia allows users to select whichever storage providers they want without affecting

the design of the groupware software. In addition, ancillary functionality like search

indexing can be implemented in Gaia gateways and reused in other applications by

way of the global relational database design pattern described in the previous chapter.

The users rely in Gaia’s SSI system to bootstrap data confidentiality and authen-

ticity. The gateways in Gaia ensure that all data is signed and encrypted when it

leaves the device, such that only the user’s designated recipients (if any) can view

it. In addition, the groupware software uses Gaia to ensure that applications are

isolated from one another at the volume level—an application client can only access

application-specific state.

A key operational concern of groupware systems is that they must only allow users

to view one another’s data with the owner’s permission. Gaia’s gateways enable this

by allow users to implement data-specific checks when sharing data. This is achieved

by giving users the ability to create and vet one another’s social proofs. Importantly,

the social proofs are verified automatically by the software and presented to the user

as part of the permission-granting user experience.

4.1.3 Design

The groupware software is designed to run within the Web browser. The application

logic runs as a Web page, and loads and stores the user’s credentials and data via

a co-located Gaia node. This allows decouples the user experience and application

functionality from the user’s shared storage concerns. For example, one user can

store their data on Dropbox and another user can store theirs on Google Drive, but

the application can access each user’s data regardless via the Gaia node. A system

overview is given in Figure 4.1.
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alice.id: {
   delegation={pubkeys=[...], trusted_sigs=[...]},
   apps=[{certgraph=..., dev_id=..., version=...}],
   social_proofs=[...]
}

SSI DB

2-of-3 device 
signature quorum

alice.id’s TODO list
● …
● …
● …

Gaia
node

Gaia
node

alice.id’s 
TODO lists

Storage Service

alice.id’s TODO list
● …
● …
● …

Gaia
node

$ORIGIN alice.id
trusted_pubkeys TXT “[...]”
num_sigs TXT “2”

Gaia
node

(private Gaia nodes)

social proof 
check driver

(private Gaia node)

Gaia
node

Figure 4.1: Design of serverless groupware with the Gaia SDS system. Alice lists
signed certificate graphs in her SSI user account data, as well as the list of her
personal devices’ public keys and social proofs. While Alice can write to her storage
from her private Gaia nodes, she can make her data available via a public Gaia node
as long as her SSI account contains enough social proofs that she is a valid application
user. Bob uses this public gateway to discover and read her shared data.

Setup

A user receives a volume for each groupware application she uses. When she signs

up for a specific application, the groupware software inserts an application-specific

set of keys into the user’s SSI account information, indexed under the application’s

name. To provide confidentiality, the user has the option of encrypting this routing

information such that only her trusted peers can discover that she uses it. Her other

devices and other users’ devices inspect her account in the SSI system to determine

which keys to use to authenticate the data she writes, as well as discover how to access

her storage (i.e. which Gaia nodes to contact, which storage providers to contact,

etc.).
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Sign-in

The groupware software employs device-specific keypairs to allow the user to sign in

via multiple devices. When the user signs in for the first time, her device creates a

volume for her and registers all of her devices as belonging to the same volume owner.

Then, when the user signs in from a different device, she can still read and write data

to her existing volume and administrate it.

The software ensures that her devices are aware of each other via a “delegation

record” in her SSI account. The delegation record lists all of the user’s device IDs

and their public keys. This way, when the user creates a new volume, the software

automatically grants all devices the volume owner privileges. To the user, it appears

that they simply began using the app from a separate device, just as they would have

had it been a conventional Web groupware application.

If the user wants to add or remove a device, she must re-generate her delegation

record with the current set of device public keys. To do this securely, the software

requires a quorum of signatures from a trusted subset of her devices (configurable by

the user). A delegation record will only be considered valid if it is accompanied by

a sufficient number of signatures from this trusted device set. For example, a user

might require a signature from two of three of her devices in order to add a fourth

device or remove the third, and in doing so tolerate the loss of one of her three devices.

This way, the user can control which devices are allowed to write to her data while

tolerating the loss or compromise of a pre-configured set of them.

Both the quorum threshold and the public keys of the trusted devices are listed in

the user’s SSI zone file. Since changing the zone file requires a blockchain transaction

in the SSI system, there will be a widely-replicated auditable log of each user’s device

key rotations. This makes it easy for users (and their collaborators) to check key

lifetimes, and makes it risky for attackers to attempt to change keys (since they

cannot do so silently).
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When the user signs in, the groupware library creates a gateway for the device

she is using if one does not exist already. Her device will sign the new certificate

graph for the app’s volume and make it available in her SSI account. The software

authenticates data from the user by (1) looking up the user’s ID in the SSI system,

(2) extracting the trusted device public keys and quorum threshold from the zone file,

(3) validating the delegation record, and (4) validating the certificate graph against

the delegation record. The software caches monotonically-increasing version numbers

for the certificate graphs locally to prevent stale certificate graphs from being reused.

Reading and Writing Data

Since a user gives each application its own volume, a groupware application like a

shared calendar spans the set of users’ devices. Gaia ensures that when the appli-

cation client is loaded, it only has visibility into the application-specific volumes the

users have created (i.e. so a malicious or buggy application cannot read another

application’s state).

The groupware storage interface references data by its volume key and owner

user. For example, to read Bob’s file today.cal, Alice’s application client would call

get(‘‘today.cal’’, ‘‘bob.id’’), where bob.id is Bob’s username in the under-

lying SSI system. All the while, Gaia ensures that Alice’s calendar application only

discovers the routing information to Bob’s calendar volume.

Read Authorization

When writing shared data, the user must ensure that it is readable by a given

set of other users. How does the writer identify these other users, and how can the

software identify users as belonging to particular organizations? The groupware li-

brary addresses these problems by both allowing the writer to specify other individual
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readers, and by allowing the writer to specify which social proofs a reader must have

(as well as a way to vet them).

The user is free to choose which proofs are required for their application, depend-

ing on the application. For example, a cryptocurrency investment application could

require a user to produce a signed KYC (know-your-customer) attestations from the

government and the user’s bank that prove that the user is an accredited investor.

This proof would be signed and stored in a social media platform that the groupware

library can crawl (such as AngelList [12]).

Once a Gaia gateway knows which social media proofs are required to read a key

value, it will only accept read requests from users who present the requisite proofs. To

facilitate this check, users insert URLs to the proofs within their SSI account linked

to their names in the SSI system (which the Gaia gateway looks up on-the-fly).

Searching

Public groupware data is readily indexed by anyone who wishes to stand up a Gaia

database instance to crawl the set of application-specific volumes. In addition, private

groupware data can still be indexed—either by a trusted, private Gaia database, or

by downstream user groups.

To implement private search in a user group, the groupware software ensures that

the local device’s Push stage indexes the contents of the file before encrypting and

replicating it. The Push stage encrypts the index data with the viewers’ public keys,

so the viewers will be able to search for the file by keyword.

The index itself is application-specific, but can do things such as associate search

terms to file names and word counts. The index data is structured as a per-user prefix

tree, so that a search query only needs to fetch a narrow subset of the index to find

files with the search term.
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A global untrusted relational database can accelerate delivery of encrypted in-

dex files to downstream readers. Trusted readers asynchronously fetch, decrypt, and

incrementally reconstruct the writer’s index locally to service search queries. De-

pending on the sizes of the index and the number of users, the application may take

different strategies for fetching the encrypted index—for example, a large user group

may employ a private trusted instance of a Gaia relational database that can eagerly

build up a search index, whereas a small user group may simply fetch and reconstruct

each other users’ indexes as needed.

4.1.4 Implementation

The groupware library implementation is the work of multiple contributors. It

is implemented in two parts: Javascript library that facilitates user sign-ins and

application-specific volume creation, discovery, reads, and writes, and a UI that

allows users to manage their social proofs. It was developed in collaboration with

Blockstack Public Benefit Corporation [34].

Several applications have been independently built by Blockstack community

members with the groupware library. Examples include:

• Blockstack To-Dos: This is a private to-do list application that uses single-

reader Gaia volumes to store private user to-do lists.

• Graphite: This is a Google Docs work-alike [107]. Users store and share docu-

ments and spreadsheets via multi-reader Gaia volumes. The data is encrypted

by default, so that only the designated readers can access it. It makes use of a

Gaia database to facilitate secure document discovery—the database discovers

encrypted pointers to the encrypted document, so that only the intended recip-

ient can access the data. It also offers end-to-end encrypted messaging, where

messages are replicated to Gaia volumes for long-term storage.
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• Blockstagram: This is an Instagram work-alike that allows users to securely

share photos via multi-reader Gaia volumes [3]. Photos are encrypted with the

recipients’ public keys before being replicated, thereby providing end-to-end

confidentiality. It was developed by a team of eight Web application developers

with no prior experience with Gaia (or Blockstack, Gaia’s SSI system) in less

than 36 hours at a hackathon in Berlin [180].

• Stealthy.im: This is an end-to-end encrypted chat application, where users

can securely send text and pictures real-time [181]. It uses multi-reader Gaia

volumes to store chat data, and uses a Gaia database to discover and invite

users to chat. A similar Gaia-powered application is Hermes [103].

• Coins: This is a private cryptocurrency portfolio application that uses single-

reader Gaia volumes to securely and confidentially store the user’s cryptocur-

rency holdings [196]. It allows the user to track the worth of their holdings

without exposing them to anyone outside of the user’s computer.

• Publik: This is a microblogging application that uses multi-reader Gaia vol-

umes to share blog posts [123]. A Gaia database for indexing hashtags and user

posts is under development.

• Bellweathr: This is a business analytics program that uses machine learning

in the user’s Web browser to help a business owner identify patterns in customer

purchases [25]. Business owners use Gaia to load and store encrypted copies of

their customer data and trained models, thereby ensuring that it will remain

private. Equivalent applications today require business owners to expose their

customer data to third parties, which puts both they and their customers at

risk to hackers and security mishaps.

All of these applications use Gaia and its SSI system to load, store, and share user

data. The SSI system implementation (the Blockstack Naming Service [144]) removes
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the need for per-app password databases and per-app identity services, and Gaia

removes the need for per-app data silos. Users can share data from one application

to another [145] without the application’s permission or cooperation.

The applications Graphite, Blockstagram, Stealthy.im, and Hermes all rely on a

global database instance to discover other application users. They are not coupled to

a specific instance; anyone can deploy a new global database if the default instance

misbehaves or is not trusted.

4.1.5 Discussion

The usefulness of SDS is apparent in its ability to implement its users’ data-hosting

policies independently of the applications. Each user can keep their groupware data

on the storage providers of their choice, and in doing so, control their availability,

durability, and access control independently of one another and independently of

the applications. For example, a user’s Gaia node can programmatically delete old

Stealthy.im messages without Stealthy.im’s permission. As another example, a user’s

Gaia node can limit access to its owner’s Graphite documents by denying reads from

hosts outside its local area network.

At the same time, application developers do not need to care about hosting user

data, and do not need to worry about coupling their data to specific storage systems.

All of the third-party applications above do not rely on application servers.

As an optimization, their respective developers deploy Gaia global databases to

help users discover one another. For example, Stealthy.im implements an invite mech-

anism using a Gaia global database, and Graphite uses a Gaia global database to

help users discover shared files. However, the developer is not required to deploy

and maintain a global database. Gaia global databases only host soft-state in the

application, and any user can instantiate their own global database and derive the

same database state. This means that as long as at least one user is interested in

139



preserving Stealthy.im’s invite system or Graphite’s document discovery system, they

can do so without the developer’s help.

The expressive power given to developers by the aggregation driver model is ap-

parent in the ability to control read and write access based on whether or not the

requesting user has made particular social proofs. The social proof check code only

needed to be written once, and it now works across all groupware applications and all

cloud services. The expressive power is also apparent in the ability to automatically

generate private search indexes in response to reads and writes.

The main difficulty with giving users direct control over their groupware data

today is that it forced them to run a shared groupware server (or collectively trust

someone to do so on their behalf). By instead implementing what used to be server-

side functionality as aggregation driver stages, the library removed the need for a

shared server while preserving each user’s control over their data.

4.2 End-to-End Encrypted Email

The ability for SDS systems to instantiate application-specific data flows gives users

the power to enforce data transmission and storage concerns in existing protocols

as well. This is demonstrated by using Syndicate to construct end-to-end encrypted

email that addresses long-standing usability concerns that impede the widespread use

of PGP [206].

4.2.1 Motivation

Encrypted email is not a new concept. However, it has proven notoriously difficult

to deploy [201] [163] due to the need for users to manage private keys. In addition,

deploying end-to-end encrypted email over legacy SMTP servers and clients leaves

users vulnerable to two security flaws: users can only achieve end-to-end encryption

140



if they all share keys, and users can accidentally leak other users’ cleartext when

including new users in an email thread.

Using Private Keys

Even if users had a good understanding of public key cryptography, they must still

contend with key distribution and key revocation. Key distribution is not addressed

by the encrypted email systems studied. However, existing methods—key escrows,

certificate authorities (e.g. S/MIME [159], DANE [104], x.509 [52]), and webs-of-trust

are difficult to use securely, and easy to use incorrectly.

Key escrows and certificate authorities are “centralized” entities that often live

outside of a users’ organizations, which makes it difficult for users to reason about

their trustworthiness. Only organizations whose data policies admit a trusted third

party can make use of these services. Trusting a third party for such a task carries

the risk of compromise: if a widely-used certificate authority is compromised, it can

lead to widespread data exposure. Users may not discover until after harm has been

done to them, such as identity theft.

Webs of trust do a better job than centralized key servers at preserving organi-

zational autonomy because they allow each organization to unilaterally decide which

other organizations to trust. However, there is a high coordination cost in main-

taining them. This is because trust is not transitive by nature—if Alice trusts Bob

and Bob trusts Charlie, it does not follow that Alice trusts Charlie. Users in each

organization need to be wary of the degree to which to trust their peers, and wary

of the trust judgments their peers will make. Moreover, they must curate their webs

of trust to account for changes in the organization. For example, if Bob is fired from

his job, then all of Bob’s coworkers must update their webs of trust to stop trusting

his email signing key.
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Key revocation adds another layer of complexity. Key revocation certificates and

signed key expiration dates do not go far enough in making encrypted email usable.

If a user loses both their private key and their key revocation certificate, then they

have to get other users to re-establish trust in them from scratch. If the user’s private

key is compromised, then the attacker can send arbitrary emails before the user can

transmit their key revocation certificate. If the user loses their revocation certificate,

or if the attacker can stop the certificate from reaching the victims, then the user

cannot stop an attacker with their compromised private key.

Contacting other Users

Even if users could reliably distribute and revoke public keys, conventional email

clients still allow users to communicate with others in insecure ways. Users can

bring harm to themselves by accidentally sending email in the clear when they meant

to encrypt it. Also, users can bring harm to others by accidentally divulging their

communications by carbon copying their cleartext in an email to a user who does not

use encryption.

Neither existing SMTP clients (including Web clients) nor SMTP servers address

these problems. SMTP clients do not help users with key distribution or revocation,

and they do not help the user discover whether or not they have the right key. Web

SMTP clients are even less secure, because the Web client offloads transmission to

a remote server (which now must be trusted by the user). If the user wants to use

another device to send an email, such as a public terminal, they have to divulge a

private key to the device.

SMTP is already ill-suited for encrypted communications because at a minimum

the email’s sender and recipient must be readable by all SMTP servers between the

sender and recipients. Also, due to its store-and-forward architecture, any messages

accidentally sent in the clear will be stored by the servers for an indefinite amount
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of time. Users do not get to choose which servers store and forward messages, and

users cannot “unsend” messages if they discover that they sent them to the wrong

recipient.

4.2.2 Role of SDS

This thesis presents a backwards-compatible mail system built on top of Syndicate.

Unlike conventional email, the Syndicate email system automatically encrypts data

end-to-end and ensures that users discover each other’s current public keys by way

of its SSI system. User can do the following with this system:

• Automate key management. Users do not need to interact with keys at all.

Users do not need to trust external key escrows or certificate authorities, and

they do not need to participate in webs of trust. Instead, users rely on Syn-

dicate’s blockchain-powered SSI system to discover each other’s current public

keys.

• Control where emails are hosted and who can request them. A user’s

message contents will not be relayed through the SMTP network, but will in-

stead be hosted in one or more storage hosts of the user’s choosing. Recipients

will instead download and decrypt the message once they have discovered where

it is hosted and have obtained sufficient permission.

• Support sending to legacy users. The Syndicate email system does not

require both sender and recipient to use the same client in order to achieve

better security than legacy email. If the recipient does not use this new system,

the sender has the ability to contact the receiver while preserving sender-chosen

security properties. For example, the sender can share the message body via a

trusted private shared cloud storage folder that only the sender and receiver can
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access, and send the URL to the message body via SMTP. Only the recipient

will be able to access the data.

• Safely use untrusted devices. This secure email system uses Syndicate’s

SSI system to allow users to derive short-lived throw-away keys for signing and

encrypting messages on untrusted devices, like public terminals. The keys are

automatically distributed and revoked.

4.2.3 Design

The Syndicate email system follows a similar design to the Internet Mail 2000 [27]

proposal. Users store their encrypted emails in a Syndicate volume, which they use

to selectively give recipients access to their messages. The system uses the SMTP

network to allow senders to inform receivers when they have new messages waiting

for them (Figure 4.2).

Setup

Each user stores their preferred email address in the SSI system. Alice sends a message

to Bob by looking up Bob’s account information in the SSI system, and then obtaining

his email address. In order to convince Alice that he is the “right” Bob (i.e. the Bob

she is looking for), he includes additional credentials in his SSI data, such as social

proofs or signed attestations from trusted third parties. The Syndicate email system

is not concerned with implementing a particular authentication strategy, but instead

gives users the ability to prove that various pieces of user-submitted identifying state

associated with the email address are signed by the same key that owns the email

address in the SSI system. For example, if Alice knows that Bob owns the website

www.bob.com, Bob could authenticate to Alice by hosting his SSI username and a

signature on www.bob.com and list a pointer to www.bob.com in his user account on

the SSI system.
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Figure 4.2: Design of end-to-end encrypted email with Syndicate SDS. Alice can
send email from both a personal device and a public terminal; the latter of which
gets assigned a temporary session key that expires shortly after being created. Bob’s
client detects new mail from Alice via the legacy SMTP network by receiving a signed
list of URLs that point to Alice’s chosen storage services. If Alice emails non-users
of this system, her UG employs a custom “message gateway” (MG) type to Push the
message payload to them while enforcing her custom security policies (such as “store
this message in a private shared Dropbox folder that the recipients can access and
email them the URL”).

The system is designed to accommodate multiple devices owned by the user by

storing all emails in a single volume that spans the user’s devices. Each device has

its own key-pair in the volume certificate graph, which is used to create gateways

specific to that device. The user has an “admin” email account (i.e. an account that

is tied to the Syndicate volume owner account that stores her emails). The admin

account is controlled from a trusted device and is used to add or revoke permission

to communicate from other devices.

When a user signs up for the system for the first time, she downloads and installs

a mailer daemon that implements an SMTP and IMAP endpoint locally. The user

points their preferred email client to the local mailer daemon to send and receive
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messages. In addition, the daemon implements an HTTP interface for serving the

mail client encrypted messages from the Syndicate volume.

The mailer daemon prompts the user to generate a device-specific Syndicate user

account and two gateways (a UG and an RG) when it is installed. The user does so

by using her admin account. The installer wizard gives the user the option of pre-

allocating keys for her devices and their gateways, which can be fetched and installed

on untrusted devices on-the-fly without requiring her to use her admin account again.

Their keypairs are encrypted with a password of the user’s choice, and stored to the

user’s volume.

Signing In

Each device the user sends mail from receives its own keypair. Each device-specific

key is associated with an optional expiry timestamp and revocation certificate, which

are stored in the user’s Syndicate volume for safekeeping.

Signing in with a new device requires ensuring that the device-specific private key

is available. For devices the users trust, this is achieved simply by (1) installing the

software, and (2) allowing the device to register its public key with the user’s account

in the SSI system. An untrusted device, such as a public kiosk, would receive a key

with an expiry date and revocation certificate. When the user signs out of the device,

she would “activate” the revocation certificate by appending a signed timestamp

to it and moving it to a canonical path in her volume. Other users’ clients would

discover and process it automatically when receiving a message, thereby ensuring

that the kiosk does not use the private key after the user is done with it. The key

expiry timestamp ensures that the key expires nonetheless if the user is unable to

successfully sign out (i.e. unable to post the revocation certificate).

The device-specific key state includes the device-specific user account and the

device-specific gateway keys that the mailer daemon will use to interact with the
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volume. Each devices’ gateways only write to one directory of the volume, and mark

their files as read-only by other devices (which the MS enforces). The mailer daemon

develops a coherent view of the mailboxes by listing all of the devices’ directory states.

In addition to creating device-specific Syndicate keys, the software also creates

a generic read-only UG and read-only RG whose private keys are publicly readable

and exposed in the volume. These gateways are meant to allow recipients to access

the volume’s ciphertext, so the designated recipient can decrypt them. They are

configured in the certificate graph to only have read capabilities, and to only serve

on localhost. This ensures that all of the user’s other gateways will ignore them,

and that anyone can run them on their computers to access the inbox data.

Sending and Receiving Mail

The mailer daemon implements a Syndicate UG and RG (e.g. as subprocesses). The

UG implements the SMTP and HTTP endpoints, and the RG uploads messages to

the user’s preferred storage service, such as their personal Dropbox folder or a S3

bucket.

When the UG receives an outgoing message, its serialize() driver method in-

spects the message for the recipient, and automatically looks up the public key in

the SSI system to encrypt the message to the recipient before sending it to the RG.

This way, the sender is never involved with selecting the key for a recipient user. The

software additionally makes a copy of the sent message encrypted with the sender’s

public key, and stores it into the device’s “sent” mailbox.

The mailer daemon informs the recipient that they have a message waiting for

them by sending a small amount of discovery information to the recipient’s email

address via SMTP. This discovery information is signed by the sender, to prove its

authenticity to the recipient. It identifies the path to the message in the volume, as

well as the hash of the ciphertext.
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The recipient’s mailer daemon polls the user’s SMTP inbox for discovery messages.

When it finds one, it fetches, authenticates, and decrypts the associated message from

the sender’s volume, and locally stores it so the user’s mail client can read it as a

normal email. It does so automatically as part of the deserialize() driver method

in the UG—this driver method only succeeds if the message could be authenticated.

The discovery message’s sender email address is used to look up the user’s device keys

in the SSI system to perform the authentication. This way, the receiver never needs

to select the key for the sender to authenticate the message.

The sender must host the email contents for the recipient until either the recipient

downloads it. Once the recipient daemon has fetched the cleartext, he encrypts and

backs up a copy via its RG for safe-keeping. The sender can delete the messages

she sent at any time, thereby granting her the opportunity to “un-send” an email’s

message body if she can do so before the recipient fetches it. The sender can garbage-

collect old messages once she is sure the recipient has fetched them, or once the

information is no longer relevant. For example, the sender could simply delete all

messages she sent over one month ago.

If the sender includes multiple recipients, or includes a new recipient part-way

through the email chain, their mailer daemon detects this and ensures that the pre-

vious conversation is kept secret. This is achieved by having the local RG in the

mailer daemon remember which email threads have which recipients, and ensure that

their respective messages are re-encrypted before transmission. This conversation

metadata is encrypted and stored on the user’s volume, so it is accessible from all

devices’ RGs. This decreases the likelihood that a user accidentally divulges cleartext

in carbon copies on the email client—the message would simply fail to send if the

user did this.
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Legacy Compatibility

As with PGP before it, the Syndicate-powered email system requires both sender and

recipient to use it in order to realize the full benefits. Unlike PGP, the developer can

ensure that certain safety features are in place if only the sender uses the software.

This is made possible by Syndicate’s aggregation driver programming model.

It is important to recognize that when it comes to email, the correct way to

send a message depends on the sender, the recipient, the content, and the context in

which it is sent. For example, two friends exchanging vacation photos do not need

the same security guarantees as an anonymous informant communicating with a law

enforcement agent.

One of the major drawbacks of PGP is that cannot work if either the sender or

recipient do not use it. This significantly limits the set of senders and recipients.

Moreover, PGP-encrypted messages are easy to spot in SMTP traffic, which makes

it easy for network eavesdroppers to identify users who have something to hide.

What is needed is for senders and receivers to be able to communicate even if

one of them does not use PGP-like encryption. The approach taken here is to make

it easy for the sender to control how the message will be delivered, while allowing

messages to be discovered by the recipient over legacy SMTP. The sender is free to

set up the delivery process to implement the security guarantees on a case-by-case

basis, subject to what she knows about the recipient and subject to the contents of

the message. For example:

• The sender can encrypt the message with a password known to the recipient,

and send the message body in a common document format, like Microsoft Word

or PDF, that the recipient can open and decrypt with already-installed software.

This can provide the confidentiality of PGP.
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• The sender can replicate the message to a shared private storage provider like

a Dropbox folder or private git repository, and send the recipient the URL

over SMTP. This process can be carried out via HTTPS. While this does not

provide the same degree of end-to-end confidentiality and authenticity as PGP,

it guarantees that as long as the certificate authorities and shared storage are

trusted, then only the sender, the recipient, and the storage provider can view

the message (but SMTP servers see nothing).

• The sender can select which network to use to transmit the data, based on

the recipient. For example, an enterprise user could require all messages sent

to the company SMTP server must be sent through the corporate VPN. The

aggregation driver would refuse to send messages unless it detected that the

VPN was available. This ensures that all email messages sent by employees are

visible only to the company and the recipient.

These examples do not provide the same guarantees of PGP, but they are better

than relying only on legacy SMTP for email. While they can all be done today

in an ad-hoc manner without SDS today, Syndicate lets users ensure that they are

all executed automatically and consistently. Moreover, the way these features are

implemented allows them to be reused in multiple different contexts, giving senders

the ability to combine different features to create a custom message transmission

process.

Addressing legacy compatibility is a practical application of Syndicate’s custom

gateway types. The deployment designed so that the RG’s Push driver stage (1)

reassembles the Pushed chunks received from the UG (embedded in the email client)

back into the original email, (2) scans the certificate graph for gateways with a type

identifier specific to the email client (the “MG” gateway in Figure 4.2), and (3)

forwards the reassembled email to them for further processing.
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When the MG receives the message, it inspects the message headers and runs a

user-specified program based on the recipient address. The user-specified program is

responsible for actually transmitting the email. For example, each of the above ex-

amples can be implemented with separate programs that are invoked as subprocesses

that take the message as input and carry out the actual transmission.

The transmission programs themselves are part of the email-type gateway’s driver.

The user deploys them to her volume by updating the certificate graph. Since the

volume spans all of her devices, each of her devices will have the most up-to-date

transmission programs available whenever the user sends a message.

Search Indexing

Since all messages are encrypted client-side, there is no option for server-side message

indexing. Instead, the user’s RGs incrementally build up a word-to-email index as

part of their Push stage logic, just as they do in the serverless groupware example.

The index itself is encrypted with the user’s public keys, so it is visible only on the

user’s devices. In fact, the code to maintain the users’ indexes can simply be re-used

by the RGs without affecting the design or implementation of the mail clients.

There are two reasons to offload search indexing to the RGs instead of allowing

applications to handle this. First, this preserves the index across all devices. This is

especially important for Web clients, which cannot easily store a large amount of state

locally on their own (HTML localStorage is limited to 5MB, for example). Second,

it makes it easier to implement additional features like spam filtering, described below.

Spam Filtering

A key usability problem with encrypted email is that the servers cannot filter spam,

since they cannot read the messages. This can be addressed in four ways within the

volume’s aggregation driver.
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Shared Spam Database. First, the aggregation driver is programmed to have

the RGs in a user’s volume build up a shared set of classification data from user

input. When the user moves data to the “spam” mailbox, the RG driver’s Push stage

generates and a feature vector from the cleartext and stores it in a shared storage

provider. This allows users to share each others’ spam feature information.

The shared storage itself is implemented as a separate, third party volume that

enforces write-once read-many access patterns, and tracks which users add which

features. That is, the RGs to the volume do not allow a record to be written more

than once, and do not allow records to be deleted (except by the volume owner). This

ensures that users do not accidentally clobber one another’s writes, and a malicious

user (such as a spammer) cannot erase the feature vectors. If it is later discovered that

a particular user’s records were written with malicious intent, they can be removed

by the volume owner.

This arrangement is similar to existing third party spam detectors such as

Spamhaus [179], where a third party aggregates spam information on behalf of many

users. The spam volume owner would aggregate the spam information to train a

spam classifier, and write the classifier parameters to the volume. A user’s mailer

daemon would connect to the volume in a read-only fashion to read the classifier

parameters, and use them to classify the user’s inbound messages as spam or not

spam. Because the volume is shared across many users (and can be replicated by

any user), the users are able to avoid spam-detection service lock-in because they

can (1) independently calculate the spam classifier parameters, and (2) come up with

their own, better classification system if the spam volume owner does not do a good

enough job.

Anyone can set up and run a collective spam filtering process. Users are free to

unilaterally decide which ones to use. Therefore, this approach does not infringe on

organizational autonomy.
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Sender Pays for Storage. The second anti-spam feature is that by design, the user

pays for storing messages to recipients. Since each recipient has a different public

key, the user must encrypt a message for each recipient. As a result, a spammer must

store a lot of state to spam many users at their own expense. This discourages, but

does not completely remove, bulk spam. This is similar to the Internet 2000 [27]

webmail proposal.

SSI Proofs of Payment. The third measure is to take advantage of the fact that

the SSI system is implemented on top of a public blockchain. This feature allows for

some interesting anti-spam mechanisms. A recipient can require the sender to include

a “proof-of-payment” on the message, generated by a transaction on the underlying

blockchain. This would have the effect of both rate-limiting spammers and making

emailing users prohibitively expensive to do at scale. It would also allow senders to

prioritize messages by paying higher fees. This is a technique that was successfully

employed by Earn [66], for example, whereby a user will only see a message if the

sender has paid a minimum amount of money required by the recipient.

SSI Social Proofs. The fourth measure is to re-use a concept from Gaia-powered

groupware to require that a sender provide sufficient proofs in the SSI system that

they are a legitimate human being, and not a bot. For example, a recipient can

enforce a default anti-spam policy whereby a sender must supply evidence in their

SSI account that they own at least five unique social media accounts, and that the

accounts undergo a minimum amount of activity. This makes it hard to send spam

at scale because (1) the spammer would need to circumvent all of the social media

systems’ anti-bot mitigations, and (2) if the spammer gets caught, they have to

register a new identity in the SSI system (necessitating a blockchain transaction).

Since the blockchain itself grows at a fixed rate, and since blockchain peers effectively

bid on the ability to write new transactions, a spammer could not easily register

many identities without paying a high price (i.e. the price gets higher the faster the
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spammer tries to register new identities). This allows the system to overcome the

limits of prior proof-of-work techniques [65] which either had a fixed proof-of-work

threshold or a threshold that increased independently of the system’s usage.

All four of these techniques would be implemented in part by the Acquire stage

of the mailer daemon’s RG. This ensures that all email clients automatically benefit

from these mechanisms without modification.

4.2.4 Implementation

The prototype system, SyndicateMail, is implemented in 4100 lines of Python and

1700 lines of Java. It implements end-to-end encryption across multiple devices and

offers legacy compatibility with SMTP.

The system is being refactored to use the search indexing logic from Gaia to

implement search indexing in Syndicate. The RG driver runs the indexing logic as a

subprocess in a node.js VM. The spam filtering is carried out simply by passing the

text through an existing spam-detecting system such as spamd [178] or spam-assassin

[16], and only forwarding the email text if it is not spam.

4.2.5 Discussion

In terms of the number of patches to write, it would be costly to implement this

email system without SDS. Each email client would need to be patched to store

its state to the storage provider of the user’s choice, whereas the use of Syndicate

ensures that storage services only need to be ported once. By moving data signing,

encryption, decryption, and verification to the storage layer, and using Syndicate’s

SSI system to bootstrap key trust, Syndicate enables the use of existing email clients

with encrypted email without forcing users to understand public-key cryptography.

By using gateways to represent the capabilities of each device, the system is able to
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provide the convenience users expect from Webmail without forcing them to manually

copy private keys between devices.

Filtering spam and preventing accidental cleartext disclosure are problems that

require the system to inspect email contents on the user’s behalf. This is achieved by

having the user’s RGs carry out this inspection locally, instead of forcing the user to

trust an external SMTP server to do so on their behalf. This is crucial to ensuring end-

to-end message confidentiality, and is required to be implemented at a layer beneath

email clients to ensure that the user’s choice of client does not alter the system’s

ability to ensure message confidentiality and prevent spam delivery. These problems

are both addressed by allowing the user to run application-specific aggregation driver

stages interposed between their personal devices and the rest of the network.

4.3 CDN-accelerated Scientific Data Staging

Scientific computing is increasingly conducted across multiple research groups. Data

is generated and stored in the labs where a scientific instrument or dataset is curated,

and then shared across the world with collaborators. Similarly, collaborator labs

publish their data analyses, which get downloaded by other labs (and classrooms) for

further consumption.

The third application presented here is to use Syndicate to implement a cross-

site data processing framework that allows scientists to take advantage of commodity

cloud storage and CDNs to host and deliver data to each lab. For dataset curators,

this reduces the task of exposing a dataset to collaborators to running a Syndicate AG

that can crawl the dataset (with a dataset-specific driver) and serve chunks of it to

downstream UGs. For dataset readers, this reduces the task of accessing a dataset to

fetching a dataset-specific Docker [62] image that mounts the dataset as a read/write
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filesystem backed by the dataset AG, an intermediate CDN, and the user’s personal

cloud storage.

4.3.1 Motivation

The main motivation for considering an SDS approach to scientific data storage is

that due to the nature of the data they gather, each lab will have its own data curation

policies, its own unique data access patterns, and its own data-sharing policies. There

is not a one-size-fits-all approach for hosting scientific data, and labs will need to tailor

their storage systems to meet their specific needs (especially since their needs change

over time, depending on the nature of the data they produce).

This need to accommodate changing data storage and access policies is evident

in the evolution and wide success of state-of-the-art scientific storage systems like

iRODS [158], which offer user-programmable policies (“rules” and “microservices”)

that allow individual scientists, project teams, and entire labs to programmatically

specify their curation policies and have them automatically enforced. In fact, iRODS

is considered to pioneer SDS concepts (Chapter 6).

The scientific data-sharing framework uses commodity CDNs and cloud storage

to help iRODS deployments handle “fan-out” data distribution cases, where many

labs across the wide area want to read existing datasets and write back changes that

will be incorporated into the iRODS dataset. CDNs would let individual iRODS

deployments scale up the number of reads they could service while preserving the

policies encoded in its rule sets and microservices. Commodity cloud storage would

allow users to host the results of their computations and share them with their lab

mates and peers before generating and preserving a “curated copy” of the data back

to iRODS.
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4.3.2 Challenges

Augmenting existing systems like iRODS with commodity infrastructure introduces

challenges of its own. It is not enough to simply place a CDN in between iRODS and

remote readers for three reasons:

• Protocol Incompatibility. CDNs are designed for Web content acceleration,

which means using HTTP as the data delivery protocol. However, iRODS does

not speak HTTP. A protocol translation layer is required.

• Cache Thrashing. CDNs are designed for caching lots of “small” files—i.e.

website assets like HTML or CSS that are not usually gigabytes in size. How-

ever, iRODS data can be extremely large, and clients may only even want a

small range of an iRODS file. Serving iRODS data with a CDN while getting

good bandwidth will require file-level fragmentation and reassembly on both

the producer’s and consumers’ endpoints.

• Cache Incoherency. iRODS is a read/write datastore. While some users are

reading from a file, another user can be writing to it. This can cause readers

to cache corrupt data, which in turn gets served to future readers by the CDN.

Avoiding this problem requires manual coordination between readers, writers,

and the cache operator.

In addition, sharing the results of local computations and generating a dataset to

write back to iRODS has its own challenges:

• Replica discovery. Suppose a scientist reads some data from iRODS, runs

some local jobs on the data, and saves the job’s results to the lab’s shared

Dropbox folder. How do the scientist’s peers find the data, so they can run

their own analysis on it? Today, they email the links to the peers or put the
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links on the lab website. However, this introduces a manual, tedious process for

sharing data. Can we automate data discovery with Syndicate?

• Replica write-back. A scientist’s collaborators do not always have access

to her lab’s iRODS deployment. How do her collaborators get their results

incorporated into her deployment? More specifically, how do they discover a

set of authentication credentials to use to do so? How does the data ingress

server authenticate the collaborator if they do not have an iRODS account?

Today, the solution is to find and email an iRODS user with sufficient privileges

and ask them to incorporate the changes. But can this be done automatically,

without requiring users in the loop?

As will be shown, these problems can be solved with the right configuration of

Syndicate gateways.

4.3.3 Role of SDS

The need for software-defined storage in scientific computing is not new. The labs

that gather and share scientific data must already do so according to data-specific

rules. These include rules governing storage aspects like national export controls,

disclosure of proprietary or potentially dangerous information, and even mundane

concerns like ensuring the data appears in the correct format.

Prior to systems like iRODS, these rules had to be enforced either within the

scientific computing applications, or within a bespoke storage system. Enforcing the

same rules across many labs’ applications poses a high cost of coordination, since each

lab’s applications must be audited for compliance. Enforcing a set of rules within a

bespoke storage system requires constructing a bespoke storage system for each rule

set. Allowing a storage system to have its curation rules programmed at runtime
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without changing the application-facing storage APIs is the “sweet spot” of SDS for

scientific computing.

This Syndicate-powered scientific data-sharing framework extends an existing sys-

tem (iRODS) with Syndicate to allow existing workflows to take advantage of com-

modity infrastructure (CDNs and cloud storage) without affecting the application-

facing storage APIs. Crucially, the data-sharing framework does so in a way that

preserves the data owner’s existing iRODS rules in a global setting, while allowing

the owner to specify additional rules within Syndicate to specifically control how data

is disseminated once it leaves iRODS.

4.3.4 Design

An iRODS system can store many different datasets, and each dataset can have its

own access control policies set by the owner. These are enforced internally by iRODS

when other users attempt to access the data.

The strategy for distributing each dataset to remote readers is to allow an iRODS

user to “export” their dataset by way of a Syndicate AG, and later “import” changes

to it by way of an RG. Both the AG and RG run with the permissions of the dataset

owner (Figure 4.3).

The AG crawls the owner’s dataset using an iRODS driver and exports individual

file metadata to the Syndicate MS. It runs within a demilitarized zone (DMZ) on the

network, linking the iRODS data to the outside world. It acts as an origin server to

the CDN and uses its iRDOS driver to load and serve file data as blocks and manifests

to downstream readers. A dataset owner can run many AGs, and can have different

AGs index different parts of the dataset.

The RG accepts inbound write requests from external users who want to incor-

porate their changes to the dataset owner’s files. It also runs in the DMZ, so it can

receive inbound requests. It uses the dataset owner’s credentials to access iRODS.
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Figure 4.3: Overview of CDN-accelerated scientific data. The iRODS deployment
is private, and accessible only via the AG and RG (which run in trusted networks).
Remote UGs leverage the MS and CDN to read cached but fresh data, regardless of
the CDN’s caching policies. When UGs write data, they do so via the trusted RG
which sends the changes to the proper datasets. All the while, the AG keeps the MS
metadata consistent with writes from non-Syndicate iRODS clients by subscribing to
a (iRODS-specific) message queue.

The dataset owner’s AG and RG operate in separate volumes—one for distributing

data to readers (backed by the AG), and one for accepting new data from writers

(backed by the RG). A remote user would mount the AG-backed volume for read-

only access, and would mount the RG-backed volume for read/write access. The AG-

backed volume is meant for sharing datasets with collaborators in wide-area settings

using commodity CDNs, while the RG-backed volume is meant for granting privileged

users the ability to save data back into the dataset. While it is possible for a user to

mount both datasets on the same host, in practice they mount one or the other.
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Read Authorization

Each AG acts as an origin server to one or more downstream CDNs. It does not have

direct contact with UGs at the edge, which initiate access flows. This is acceptable

for public datasets, where no read authentication is needed.

If read confidentiality is desired, the AG will encrypt its manifests and blocks with

the serialize() stage of its driver. It uses each UG’s public key from the certificate

graph to send it a shared secret. The encryption is deterministic, such that two

requests for the same chunk will resolve to the same ciphertext. This allows multiple

UGs to leverage the CDN for read availability without the CDN being trusted with

data confidentiality—UGs reading the same chunk will fetch the same ciphertext, and

the CDN will only cache one copy of the chunk’s ciphertext.

The two drawbacks of this configuration is that the CDN can still see access pat-

terns on the ciphertext, and anyone who can read from the CDN can fetch ciphertext.

This may allow unauthorized principals to infer information about the data being ac-

cessed. If scientists wish to avoid this outcome, then the solution is to use a trusted

CDN that will carry out authentication at the edge.

Regardless of the disposition of the CDN, the scientific applications are none the

wiser as to the authentication steps taken by the UG. This is because the UG’s driver

handles the interfacing with the CDN. If the UG needs a decryption key to read

chunks (i.e. for read confidentiality), then the volume owner can distribute them to

the UGs by sharing it through the certificate graph (encrypting the decryption key

with each UG’s public key). The UG fetches and decrypts the key automatically,

as part of its driver code. If the UG needs an access credential to the CDN (i.e.

for metadata confidentiality), then the volume owner can use the certificate graph

to encrypt and distribute it to remote UGs and write the CDN driver to submit the

credential to the CDN on read.
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Write Authorization

Each RG acts as an aggregation point for data generated by external UGs. Unlike

the read path, the UGs have direct contact with the RG on the write path. As such,

the UG’s Push stage can ensure data confidentiality across the wide area simply by

contacting the RG via a TLS channel using client-side certificates. The UG and

RG configurations in the certificate graph would be structured to include TLS keys

and certificates for each gateway, so the RG could authenticate UGs and UGs could

authenticate the RG.

Only the RG has write access to the iRODS deployment. The volume owner

installs its iRODS credentials via the certificate graph as well, ensuring that they are

confidential and up-to-date by encrypting them with the RG’s public key.

The RG has the ability to perform write authorizations on a per-file and even a

per-file-region basis. This is because the UG informs the RG which file it writes to

(i.e. as part of the manifest and block information it Pushes), and it informs the RG

whenever it renames or truncates a file. The RG has the ability to NACK operations

that do not conform to the volume owner’s policies. For example, a UG may be

denied a request to rename a file into a separate $HOME directory in order to prevent

users from gaining control of parts of the dataset.

Preserving Existing Policies

From iRODS’s perspective, the AG and RG are the only readers and writers to a

particular dataset. Moreover, their reads and writes reflect the global sequences of

reads and writes initiated by wide-area users. As such, the volume owner retains the

power to globally enforce her iRODS-specific rules on data accesses—any gateway-

initiated accesses must also conform to the already-deployed iRODS rules.
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The volume owner can also set per-user rules within her gateways’ drivers. Im-

portantly, iRODS does not need to be aware of the Syndicate users, nor aware of the

per-user policies that the gateways enforce, since they occur in a separate layer.

As a result, scientists do not need to do any extra work or carry out any extra

configuration steps to begin sharing their iRODS-hosted data with off-site users. All

of their iRODS-local access policies continue to apply, and the scientist has the option

of creating more-detailed rules within Syndicate. The only step the scientists must

take is starting up a publicly-accessible AG and RG, which will read and write to

their datasets on their behalf when remote users request it.

4.3.5 Implementation

The prototype data-sharing framework employs a variant of the Akamai [5] CDN

deployed on OpenCloud [151]—a federated computing platform similar to PlanetLab.

The CDN is operated by the OpenCloud developers and is made available to all

participating sites.

Several AGs have been deployed on top of the iRODS deployment at the Uni-

versity of Arizona, and registered as origin servers on the OpenCloud-hosted CDN.

In addition, several Docker images [184] and a dataset-mounting tool [42] have been

made available for the general public to try out the system.

When a user downloads and installs a read/write Docker image, she receives two

mounted volumes—the read-only volume containing the dataset, and a read/write

volume for writing the results of her experiment. She and her collaborators will see

each other’s results when they are written. Several RGs are deployed that will write

back her and other users’ results both to iRODS and to a temporary S3 bucket that

gets cleared every 24 hours.
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iRODS-compatible applications interface with iRODS through FUSE and through

a set of command-line utilities. The framework comes with a FUSE filesystem to

preserve compatibility.

A Hadoop filesystem plugin has been implemented that allows Hadoop computing

jobs to pull data from iRODS via Syndicate and the underlying CDN. The HDFS

plugin gives the job scheduler insight as to where Syndicate UGs have locally cached

chunks, so it can schedule tasks on nodes that already have the data present.

The iRODS-facing driver is 1900 lines of Python, of which 640 are specific to

iRODS, 375 are specific to the AG, and 375 are specific to the RG. The UG-specific

CDN interfacing driver is 100 lines of Python. The Hadoop plugin is 2300 lines of

Java.

4.3.6 Discussion

Again, the utility of using SDS to link existing scientific data stores to commodity

cloud infrastructure is that SDS allows users to “slap on” extra storage and data

distribution capacity with little effort. The marginal cost of adding support for new

storage and CDNs in terms of lines of code is small enough that it can be achieved

in as little time as a couple of hours, including testing.

The key benefit to iRODS users in particular is that the iRODS system needs

no special modification to be made compatible with the CDN. This is because SDS

effectively ports the CDN and storage to iRODS, instead of the other way around. In

doing so, iRODS-compatible applications (and even applications that only use iRODS

indirectly, such as Hadoop jobs) can transparently benefit from its extra availability

without having to overcome these aforementioned challenges.
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4.4 Remarks

In these sample applications, using an SDS system to host data addresses several

difficult problems. In all three examples, SDS provides semantic independence from

storage systems (i.e. portability). By both wrapping individual services behind well-

defined service driver models, and by allowing the volume owner to inject aggregation

driver logic in-between the application endpoints and the underlying services, the SDS

systems ensured that applications had access to a persistent data store that behaved

exactly they way they needed as if the application was using a purpose-built storage

system.

In all cases, the desired application-specific storage semantics were realized by

implementing gateways to handle unrelated storage concerns, and composing them

together into handle access and mutate flows. In the Gaia groupware-powered appli-

cations, users host their data on whatever storage providers they want while deploying

gateways to enforce arbitrary access controls and maintain globally-visible search in-

dexes. In the email example, users host their email in whatever storage providers

they want and deploy gateways to implement spam filtering, search indexes, message

prioritization. In the scientific data-sharing example, users augment existing storage

systems with the CDNs and cloud storage of their choice while deploying gateways to

preserve the original system’s global access control rules and end-to-end consistency

semantics. Being able to compose gateways was crucial to preserving storage seman-

tics across organizations, since in all cases there were sensitive operations like access

controls and encryption that could only be allowed to execute on certain computers.

The separation between aggregation drivers and service drivers proved useful in

practice. Having these two layers of indirection allows service drivers to be reused

across different applications, and even across different SDS systems. In doing so,

SDS reduced the marginal cost of adding support for new services to writing a single

driver. Neither the aggregation driver logic nor the application need to be patched

165



when a new service becomes available. Instead, a volume owner only needs to deploy

an updated service driver to her relevant gateways.

A slew of engineering problems were solved by designing the storage layers of these

applications to treat users as the de-facto data owners. For groupware, this enabled

gateways to authenticate and vet new users who would share their groupware data.

For email, this enabled gateways to discover the sender and recipient public keys

automatically and preserve end-to-end authenticity and confidentiality. For scientific

data sharing, this enabled gateways to identify and preserve dataset access controls

regardless of the infrastructure used to ship the data to external consumers.
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Chapter 5

Evaluation

This chapter presents performance numbers for Gaia and Syndicate. Ultimately, the

end-to-end performance of an SDS system depends on the decisions made in the

application-specific aggregation and service driver implementations. However, each

SDS system will impose measurable, predictable overheads on reads and writes. It

is important for developers to know where these overheads come from and how big

they are in order to make good driver and application design decisions. In light of

the measured overheads, this chapter gives developers recommendations on how to

implement their aggregation drivers to minimize the impact for specific workloads

and end-to-end semantics.

5.1 Overview

SDS systems offer developers a trade-off. On the one hand, the cost to developers

and users is some additional performance overhead on the read and write paths to

cloud services. This is because the data needs to be converted into access and mutate

flows comprised of manifests and chunks, which must be relayed through one or more

gateways en route to the cloud services. The SDS metadata service may also need to

be contacted in order to complete the operation.
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On the other hand, SDS systems offer significant gains over the status quo.

First, SDS systems greatly reduce the cost of building and maintaining system-of-

systems applications built on cloud services. By handling storage semantics and

inter-organizational trust relationships independent of applications, SDS systems al-

low developers to spend more time on their application business logic and less time

on addressing the users’ storage and trust concerns. Second, SDS applications give

organizations unilateral control over how their data is hosted, which frees developers

from having to be responsible for conforming to their hosting policies. Third, SDS

decouples application data from the application code, preventing users from being

locked into relying on a specific application. These gains are realized in each sample

application presented in Chapter 4.

Despite overheads, using a SDS system does not mean that application workloads

take more time or space than they would had the application avoided SDS. In fact,

the workload on the SDS system can be faster and require less space, depending on

the behavior of the service and aggregation drivers. For example, a service driver can

cache blocks on behalf of a slow service like Amazon Glacier [9], allowing a read-heavy

workload to execute faster with the SDS system than it would have if the workload

had to contact the service directly. As another example, an aggregation driver can

de-duplicate and compress chunks before sending them to service drivers, speeding up

data transmission and reducing the amount of storage space needed when compared

to directly writing to storage services.

This chapter describes and measures the time and space overheads in both Syn-

dicate and Gaia’s default access and mutate flow behaviors, and provides recommen-

dations on how to design an aggregation driver to minimize their impact on common

workloads. The measurement focus is on the efficiency of reads and writes—that is,

what fraction of time and space is used for loading and storing the application’s data.
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Some aggregation driver design recommendations distilled from these measurements

have already been used in real-world applications built on these SDS systems.

The efficiency measurement gives developers a way to measure the impact of their

service and aggregation driver implementations on the end-to-end overhead perceived

by the application. A higher efficiency implies higher application-perceived goodput.

Performant driver implementations maximize efficiency using tactics such as caching

MS-obtained data, or running access and mutate flow steps in parallel when possible.

To maximize efficiency, the developers need to first understand the SDS system’s

overheads in order to make good engineering decisions to minimize their impact on

reads and writes. But in order to write an effective aggregation driver, developers

need to know what overheads exist in a SDS system first.

5.2 Access Flows

An access flow runs in two steps: the Discover step translates the name of a record

into a manifest ID, and an Acquire step uses the manifest ID to fetch the block(s)

that contain the requested data. Both steps may be implemented in the aggregation

driver, but the SDS system supplies a default implementation if the aggregation driver

does not. This section presents the time and space overheads of the systems’ default

access flow behavior, so developers can better understand how to design aggregation

drivers and applications to minimize their effect on their workflows.

5.2.1 Overheads in Gaia

In both Gaia and Syndicate, the default behavior of the Discover step is to query the

metadata service. This adds measurable time overhead to the access flow’s execution,

comprised of a network round-trip plus the time required by the MS implementation

to look up the current manifest ID for the record.
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Gaia is designed for applications where each user is the owner of a volume that

contains all of their application-specific data. When using a Gaia-powered application,

the volume owner usually has only one device online—the one she is currently using.

To take advantage of this, Gaia provisions gateways to run both the Discover and

Acquire step on the volume owner’s personal device by default. The node itself

participates in the peer-to-peer metadata service, and in doing so maintains a local

copy of all of the users’ volume certificate graphs and pointers to Gaia metadata. In

addition, the node maintains a set of service drivers that its gateways can use to load

and store chunks on behalf of the organization that runs it.

The default Discover step in Gaia is to try to fetch the volume record from each

storage system it has a driver for. This includes looking up the volume owner’s public

key and certificate graph in the node’s local replica of the system’s set of zone files,

since this information is required to authenticate the record. The volume record

itself is stored in the volume owner’s chosen cloud storage services, meaning that the

gateway running the Discover step only has to ask its node’s co-located storage driver

to fetch it and decode it. In the worst case, the Discover step has to try each storage

service before succeeding.

The volume record contains the volume’s manifest ID (recall that a Gaia volume

only has a single manifest). This is passed to the Acquire step, which by default will

fetch each of the volume owner’s key space shards in parallel and reassemble them

into the list of keys available in the volume. Once the full set of keys are assembled,

the Acquire step can finally fetch the requested value (as a single chunk).

To fetch the value’s chunk, the default Acquire step looks at the volume record to

get a list of upstream Gaia gateways or storage providers that the volume owner has

listed as possibly storing a copy. The Acquire step iterates through them in order,

using one of the node’s service drivers to contact each service. Functionally speaking,

the act of asking an upstream Gaia gateway for the chunk is equivalent to asking a
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storage provider—to the requesting gateway, there is no difference in mechanism (i.e.

the upstream gateway is treated like a storage provider).

To summarize, the sources of overhead in Gaia’s default access flows stages are:

• Fetching the volume record in the Discover step. This adds both time

overhead in the form of a round-trip to a storage service, and a constant-space

overhead from having to store the volume record (which contains the manifest

IDs).

• Fetching the manifest in the Acquire step. This is the work required to

find the globally-consistent view of the manifest. Each device that can write to

a Gaia volume stores its own manifest, so a reader will need to fetch all of them

and merge them. This adds both a time overhead in the form of a round-trip to

a storage service (one per device manifest), and a O(kn) space overhead for n

keys and k devices. The time overhead of interest is the combined time required

to fetch all device manifests in parallel, and the time required to authenticate

each device’s signature. The space overhead is dominated by n, since k is the

number of devices the volume owner can use to write (which in practice is

small—on the order of 10 or fewer). Each key requires a constant amount of

space.

• Decoding and authenticating the chunk fetched from the Acquire

step. This adds a time overhead that is O(n) in the number of bytes, since the

chunk must be hashed.

Measured Overheads

Gaia’s read performance was evaluated for records whose sizes vary between 64K

and 640K, in intervals of 64K. These sizes were chosen to emulate the sizes of files

being stored. For example, a typical image would be around 640k (taken from Block-
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stagram [3]), a typical text document would be around 320k (taken from Graphite

Docs [107]), and the set of the user’s microblog posts would be around 64k (taken

from Publik [123]).

The read tests were done on a Gaia deployment that matches the cold start default

deployment given to each user. In this deployment, the user runs a local Gaia node

that Discovers and Acquires data from an upstream Gaia node. The upstream Gaia

node loads and stores data from Microsoft Azure Blob Storage [134] in response to

downstream Gaia requests. Anyone can read from it, but it only accepts writes from

users who have stored profiles that point to at least two social media accounts (i.e. in

order to prevent bots from abusing the system). In this test, no caching of any kind

was performed by the local Gaia node.

This test evaluates a production deployment of Gaia that serves over 15,000 users.

It is used by the majority of users of the Gaia-powered applications described in

Chapter 4.

An instrumented version of a Gaia node was used to evaluate 150 reads on these

file sizes on the live Gaia network. A single record was written to an empty volume

and read back 150 times from a single device. The overall read performance is shown

in Figure 5.1.

Unsurprisingly, the time taken to store data increases linearly with the amount of

data being stored. Storing a “small” file of 64K took a median of 0.836 seconds on

the cold path, and an average of 1.56 seconds with a standard deviation of 1.79.

Each read operation is composed of a Discover and Acquire stage. The perfor-

mance of both of these stages is shown in Figure 5.2.

As expected, the Discover stage time overhead is constant relative to the file size—

all that is happening in this stage is the constant-sized volume record is being loaded.

Also, as expected, the Acquire stage time increases with file size, since it includes the
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Figure 5.1: Box-and-whiskers plot of the overall read performance.

times taken to fetch the (single) manifest and fetch the (single) block. The Acquire

stage time overheads are further broken down in Figure 5.3.

In this test, the manifest size was constant, and took between 0.522 and 0.576

seconds to download in the median case. The times taken to download the record

increased with the record size, taking between 0.223 seconds (for 64K) and 0.448

seconds (for 640K) in the median cases.

The efficiency for each read was calculated for record sizes tested. Two efficiency

results were calculated. The “cold efficiency” is calculated as the time taken to fetch

the record data divided by the total running time of the access flow. This includes

fetching the volume record from the underlying cloud storage provider, despite the

fact that in practice this record can be safely cached. The “warm efficiency” is similar

to the “cold efficiency”, except the total running time of the access flow excludes the
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(a) Gaia Discover performance.
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(b) Gaia Acquire performance.

Figure 5.2: Box-and-whiskers plots of access flow stage performances in Gaia, for file
sizes between 64K and 640K in increments of 64K.
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(a) Times taken to fetch the manifest in the Acquire step, for given
key/value block sizes.
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Figure 5.3: Box-and-whiskers plots of the Acquire stage performance.
.
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time taken to fetch the volume record. This calculation reflects the act of caching the

volume record.

Both efficiencies are shown in Figure 5.4. Naturally, the efficiencies will tend

towards 1.0 for larger and larger record sizes. However, the act of caching the volume

record can significantly improve the read efficiency for small records.

Recommendations for Developers

Relative to fetching data directly from a storage provider, Gaia’s most noticeable time

overheads come from fetching and decoding all of the metadata and volume record

information required to request the data. Fortunately, these costs can be mitigated by

metadata-reading and metadata-writing strategies in their applications’ aggregation

drivers.

Metadata Caching

In applications that assume at most one writer per login session, the Gaia gateways

can cache data for the duration of the session. For example, the Gaia-powered Coins

application [196] assumes that the user only accesses the data from the same trusted

device. This application’s aggregation driver can spare users the cost of reloading

metadata on each read by having its Acquire and Publish steps maintain a coherent

local copy.

Some applications only need delta-consistency [40]. In such applications, users

are already expected to have to wait a few seconds for newly-written data to appear.

In this case, the Acquire step can be implemented to cache metadata for a particular

key for an application-configurable amount of time. For example, a social media

application could cache the metadata for a user’s avatar for a long time, since it is
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(a) The cold efficiency, which includes the time taken to fetch the volume
record over the network.
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Figure 5.4: Box-and-whiskers plots of Gaia’s read efficiencies.
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not expected that the user will change it frequently. This would save other readers

the cost of having to fetch the same metadata for it over and over.

The exact rules for how long to cache a given key/value pair’s metadata are

application-specific, and affect the end-to-end storage semantics of the volume. As

such, metadata caching is not part of Gaia’s default behavior. Instead, Gaia defers

to the aggregation driver to make these decisions.

In practice, the volume record is cached for the duration of the session. This

was omitted from the read test since the test was meant to measure overheads from

cold starts (in order to identify overhead points). Simply caching this record for the

duration of a login removes about 0.16 seconds from the read time.

Metadata Streaming

Some applications like online shared document editors need to access metadata

quickly from a small set of peers. In these cases, the Acquire and Publish steps of

the aggregation driver can augment the default read path by eagerly replicating their

metadata via a shared broadcast channel (such as a shared Web socket), in addition

to replicating it to cloud storage. This way, the Acquire step would listen for Publish

events from other peers, and eagerly update cached metadata before an application

read occurs. If the broadcast channel is down or starts dropping messages, the Acquire

step would fall back to fetching metadata via the slow path.

Discovering the broadcast channel can be achieved by placing hints in the volume

record in the Gaia MS, such as a set of Websocket URLs. On loading, the application

would allow the user to connect to other peers by querying the peers’ volume records

to find their broadcast channels of choice.

Not all applications need this feature, and even for applications that do need it,

the developer would need to select a broadcast channel that is capable of handling the
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application’s workload. As such, Gaia defers metadata streaming to the aggregation

driver implementation.

At least two Gaia-powered applications—Stealthy [181] and Hermes [103]—are

known to use this technique. Both are encrypted chat applications, and use a stream-

ing mechanism to accelerate message delivery instead of forcing clients to continuously

poll each others’ Gaia volumes. They both replicate message logs to Gaia so recipients

can read messages sent to them while they were away.

5.2.2 Overheads in Syndicate

In Syndicate, the Discover and Acquire steps always run on user gateways. In the

default case, the same user gateway runs both an access flow’s Discover and Acquire

steps.

The default behavior of Syndicate’s Discover step is to contact the cloud-hosted

MS for the latest manifest ID. Unlike Gaia, Syndicate’s metadata records are arranged

into a filesystem-like file hierarchy, and gateways do not need to obtain a full record

of the volume metadata in order to access blocks.

The time overhead of fetching a given metadata record in Syndicate is dependent

in how deep into the metadata hierarchy it is, since at a minimum the user gateway

will need to verify that its cached copies of the path’s directory logs are up-to-date.

If the directory’s log is not cached or has been modified since the last request, then

the overhead will also include fetching and synchronizing each directory log in the

path. The space overhead for processing the metadata path is simply the sum of the

metadata record fetched, plus the sum of the sizes of the directory logs.

The default behavior of the Acquire step in Syndicate is to first fetch the manifest

from an upstream gateway, and then fetch the relevant blocks from one or more

upstream gateways. It uses the metadata record from the Discover step to determine
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whether or not it needs to contact an acquisition gateway or the volume’s replica

gateways.

When reading a record whose data is hosted in a curated dataset, the user gate-

way’s default Acquire step always contacts the acquisition gateway that acts as its

coordinator. It determines which gateway this is using the metadata record acquired

in the Discover step. The acquisition gateway is not given any any specialized aggre-

gation driver logic by default. It responds to the user gateway by using its service

driver to fetch and serve the requested block or manifest from the underlying data

set.

When reading a record whose data is stored in a cloud storage provider, the user

gateway may choose from a set of replica gateways that may be able to access it. The

default behavior of the Acquire step in this case is to ask each replica gateway in order

of increasing gateway ID. Once the user gateway successfully fetches the manifest,

it fetches at most six blocks in parallel from the replica gateways. Similar to how

it fetches the manifest, the user gateway will try contacting each replica gateway in

sequence by replica ID for the block (but will process at most six blocks concurrently).

The choice of six parallel connections is inspired by the same implementation choice

made in Web browsers [37]. The replica gateways are not given any aggregation driver

logic for the Acquire step by default; they simply use their service drivers to fetch

and serve chunks from their services upon request.

To summarize, the overheads in Syndicate’s default access flow stages are:

• Synchronizing the metadata path’s directory logs. In the best case, all of

the path entries will be cached and up-to-date. In this case, the time overhead

is O(n) for n path entries, and O(dn) space overhead for d entries per directory

log. In the worst case, all path entries will not be cached. In this case, both

the time and space overheads are O(dn).
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• Fetching blocks and manifests through a replica or acquisition gate-

way. When servicing an application read, the user gateway does not fetch

the data directly from the cloud service or dataset, but instead contacts an up-

stream replica gateway or acquisition gateway to fetch it on its behalf. However,

this overhead is only incurred when the user gateway cannot load the requested

block or manifest from an upstream CDN.

• Fetching, authenticating, and decoding the manifest. This adds O(m)

time and space overhead in the best case (i.e. the first replica gateway contact

has the manifest), where m is the number of blocks in the record. In the worst

case, the time overhead is O(m + r) for r replica gateways, since in the worst

case the last replica gateway to be contacted out of the set of replica gateways

in the volume has the manifest.

• Searching for the correct replica gateway. Fetching a manifest or block

that is available only from replica gateways incurs at worst a O(g) overhead,

for g replica gateways. This is due to the simple but inefficient strategy of

contacting replica gateways in order by gateway ID. The g parameter is not

expected to change very often relative to the occurrence of reads and writes,

since the user is not expected to frequently add and remove gateways.

• Fetching and decoding the data as a set of blocks. A record that exceeds

the volume block size will be fetched piecemeal over HTTP. This adds O(n/b)

time and space overhead, where n is the number of bytes and b is the block

size. The overheads come from processing and discarding the HTTP headers.

In addition, each block will be hashed in order to authenticate it, yielding a

O(n/b) time overhead.
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Measured Overheads

Syndicate reads and writes data as fixed-sized blocks. Obviously, a larger block size

and a larger file size would improve the efficiency of Syndicate reads and writes, since a

greater fraction of the total operation time would be spent uploading or downloading

data. Therefore, read performance was measured on a small block size of only 1k,

and on a moderate block size of 10k, in order to emphasize read overheads in the

measurements.

File sizes were chosen between 10x and 100x the block size, in intervals of 10

blocks (meaning 10 different file sizes were tested per block size). Each file of each

size was downloaded 100 times to measure overheads. The read test was carried out

on a volume with one UG and one RG. The RG and MS ran on a Microsoft Azure

VM and stored metadata and chunks to the VM’s local disk.

The Discover step in these tests synchronized one directory (the root) and fetched

one metadata record. The Acquire step in these tests fetched a manifest representing

between 10 and 100 blocks. The size of the block’s metadata in the manifest is

constant—manifest sizes and download times are a function of the number of blocks

only. However, the size of the record metadata on the MS increases with the number

of blocks, since the MS stores a garbage-collection log for all blocks in the record.

Each garbage-collection entry is only 8 bytes.

The total read performances for 1K and 10K block sizes are shown in Figure 5.5.

These represent the times taken by all of the Discover and Acquire logic, including

the aforementioned overheads.

Figures 5.6 and 5.7 show the Discover and Acquire stage performances of Syndicate

access flows for 1K and 10K blocks, respectively. In both cases, the times taken by

the Discover step increase slightly for records with 80, 90, and 100 blocks. This is

due to the fact that the MS incurs extra disk overhead from loading the a metadata

record with a larger garbage-collection log. This could be optimized away.
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(a) Syndicate access flow performance with 1K blocks
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(b) Syndicate access flow performance with 10K blocks

Figure 5.5: Box-and-whiskers plots of end-to-end access flow performances in Syndi-
cate, for 1K and 10K block sizes.
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(a) Syndicate Discover performance with 1K blocks
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(b) Syndicate Acquire performance with 1K blocks

Figure 5.6: Box-and-whiskers plots of access flow stage performances in Syndicate,
for file sizes between 10K and 100K and a block size of 1K.
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(a) Syndicate Discover performance with 10K blocks
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(b) Syndicate Acquire performance with 10K blocks

Figure 5.7: Box-and-whiskers plots of access flow stage performances in Syndicate,
for file sizes between 100K and 1000K and a block size of 10K.
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Unsurprisingly, the Acquire stages increase in time as a linear function of the

number of blocks fetched. The spreads of the distributions increase with the number

of blocks because more blocks introduce more noise into the measurement. The time

taken to fetch records increases faster for 10K blocks than for 1K blocks.

The tasks of fetching the manifest ID and fetching the blocks for the Acquire

stages are further broken down in Figures 5.8 and 5.9.

The times taken to fetch the manifests are about the same across the record and

block sizes sizes measured. While the size of a manifest grows linearly with the number

of blocks, it does so via a small constant factor per block (48 bytes per block). The

times taken to fetch the blocks are the reason why the Acquire stage’s time increases

linearly with the record size.

Figures 5.10 and 5.11 plot the cold and warm efficiencies of Syndicate, for 1K

blocks and 10K blocks respectively. In both cases, the efficiencies approach 1.0 as

the record sizes increases. The warm efficiency excludes the time taken to fetch the

metadata record from the MS (i.e. by caching it locally). Caching metadata makes

a noticeable difference in the system’s efficiency for small files—it can be up to 33

Recommendations for Developers

Syndicate gives developers several options to manage read performance in the face

of these overheads. A few of these recommendations have been put into practice in

production settings.

Long Metadata TTL with Explicit Invalidation

Volumes of scientific data often have few writers. In cases where a volume is

backed by a dataset, the only writer would be the acquisition gateway that crawls

the dataset. In cases where a volume acts as a data dump or a scratch space, writes
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(a) Syndicate’s performance of fetching manifests with 1K blocks
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(b) Syndicate’s performance of fetching records of various sizes with 1K
blocks.

Figure 5.8: Box-and-whiskers plots of Syndicate’s Acquire stage performance with
1K blocks.
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(a) Syndicate’s performance of fetching manifests with 10K blocks
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(b) Syndicate’s performance of fetching the blocks for records of various
sizes with 10K blocks.

Figure 5.9: Box-and-whiskers plots of Syndicate’s Acquire stage performance with
10K blocks.
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(a) The cold efficiency for 1K blocks, which includes the time taken to
fetch the metadata record from the MS.
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(b) The warm efficiency, which assumes the metadata record is cached
and excludes it from the access flow’s running time

Figure 5.10: Box-and-whiskers plots of Syndicate’s read efficiencies for 1K blocks.
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(a) The cold efficiency for 1K blocks, which includes the time taken to
fetch the metadata record from the MS.
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(b) The warm efficiency, which assumes the metadata record is cached
and excludes it from the access flow’s running time

Figure 5.11: Box-and-whiskers plots of Syndicate’s read efficiencies for 10K blocks.
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happen only when a workload finishes, and occur on the same set of metadata paths

(e.g. each user or each workflow would write its dump to its own directory).

Developers can take advantage of these special cases to save round-trips to the MS.

The Publish steps of writer gateways can be programmed to broadcast a metadata

invalidation hint to all read-capable gateways in the volume. The MS would only be

contacted as a fallback.

This strategy is used in the scientific data-sharing application today in order to

improve the efficiency of reading small files.

Use a CDN

Syndicate was designed to be used with a CDN. Developers wishing to get the

best read performance would implement their Acquire step to contact one or more

CDNs that can pull down chunks from upstream replica gateways. This is highly

beneficial for read-heavy workloads, where most of the chunks can be cached close to

readers. This reduces the number of network round-trips and reduces the amount of

transit traffic out of cloud storage providers, all without violating end-to-end storage

semantics and organizational autonomy.

The performance boost developers can expect to see depends on the CDN lever-

aged and the size of the working set. However, the benefit to breaking data into

chunks is that developers can expect the CDN to accelerate reads even if only part

of the data is cached.

This strategy is used in the scientific data-sharing application today. The CDN—

an instance of the Akamai [5] CDN—is deployed on OpenCloud [151].

Gateway-local Block Cache
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Since Syndicate handles end-to-end semantics at a level above block transport,

each gateway can implement a write-coherent block cache in its Acquire stage. This

effectively adds multiple tiers to a commodity CDN—the first tier would be at the user

gateways, the CDN would be the shared middle tier, and the replica and acquisition

gateways would be the top tier. Syndicate gateways offer this feature as a built-

in option, but using it requires the developer to set the cache size first (which is

workload-specific).

This strategy is deployed in the scientific data-sharing application.

Chunk Advertisement

If the developer implements a gateway-local block cache in the Acquire step, a

complementary feature would be allowing gateways to advertise to one another which

chunks they have cached. If the Acquire step detects that a nearby peer has a cached

chunk, then it could fetch the chunk from the nearby peer instead of from an upstream

cache. This is useful in cluster computing, where host-to-host bandwidth is high but

bandwidth in and out of the cluster is comparatively low. It may be cheaper to fetch

a chunk from a cluster peer than an upstream CDN node.

This strategy is also useful for MapReduce [57]-style workflows, where the job

scheduler can query gateways to determine which chunks are already cached so it

can schedule jobs on hosts that already have the requisite data. This is a feature

implemented in Syndicate’s HDFS driver, for example.

This is not part of the default behavior because it makes assumptions about the

network bandwidth between gateways and assumptions about the threat model the

deployment faces. A wide-area Syndicate volume would not want this feature, because

it would disclose to the Internet information about which gateways could access which
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data, and thus give an attacker insight into which hosts to compromise in order to

exfiltrate it.

Chunk Compression

Syndicate gives developers the ability to control the wire-format of each chunk. If

the entropy of the data is low, then developers stand to gain by having their gateways’

serialize() and deserialize() driver methods compress and decompress chunks.

However, if the data has high entropy, then this strategy would be useless. Syndicate

does not do this by default, but instead defers to developers to make the right decision

based on their data.

Read-ahead

Many scientific workflows read sequentially. If this is the application’s behavior,

then the developer can program the Acquire step to pre-fetch blocks asynchronously.

This is useful if the application is reading variable-sized ranges of a file that straddle

block boundaries—the last block fetched in one read will be the first block fetched in

the next read, so keeping it local would save a round-trip.

Syndicate does not perform read-ahead by default because it cannot assume that

data reads are sequential. In a random-read workload, read-ahead would be more

wasteful than the default behavior. However, if the developers know that their appli-

cation has a read-sequential access pattern, then they can add this behavior to the

Acquire stage.
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Favor Shallow Metadata Hierarchies

Developers can reduce the amount of time spent querying metadata by organizing

their data into shallow directory hierarchies. This would cut down on the number of

round-trips to the MS to resolve a path. In addition, developers can ensure that their

directories do not get too big in order to minimize the cold-cache start-up time for a

user gateway to synchronize its metadata logs.

This strategy is used in the scientific data-sharing application.

5.3 Mutate Flows

A mutate flow has three steps: a Build step which constructs a new manifest for a

record that incorporates the modified blocks, a Push step which replicates the new

manifest and new blocks, and a Publish step which makes the mutation visible to

subsequent access flows. A SDS system supplies default implementations of these

steps, but they may be overwritten by the aggregation driver. This section presents

the time and space overheads the default steps in Gaia and Syndicate impose on top

of application writes, and presents a discussion on how developers can minimize them.

5.3.1 Overheads in Gaia

To handle writes, Gaia’s default strategy to process a mutate flow is to do so entirely

on the volume owner’s device. When the volume owner signs into the application, the

device’s Gaia node instantiates gateways with the Build, Push, and Publish stages in

order to service application writes for this session.

The Build stage takes the new key/value pair the application is trying to write, and

assembles a new key space shard to replicate. The Push stage takes the key’s value

and replicates it to the volume’s cloud storage services. This may include Pushing
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them to an upstream Gaia node, which carries out further processing (but to the

node doing the Push, the upstream Gaia node looks and behaves like another cloud

storage service). The Publish stage takes the new key space shard and replicates it

alongside the Pushed key value.

The default deployment of Gaia implements a couple of optimizations. First,

the Gaia node optimizes the execution of a mutate flow as a sequence of subroutine

calls. There is minimal overhead between passing control from a Build stage to

a Push stage, and from a Push stage to a Publish stage. Second, the Push and

Publish stages execute in parallel by default. This is because there often no logical

dependencies between them that require them to run sequentially.

The end-to-end default write overheads include:

• The time and space overheads of generating the new metadata. In

the Build step, the Gaia node will need to hash the key/value pair chunk and

append it to the manifest. This adds a O(n) time overhead, where n is the size

of the value. In addition, the Gaia node will need to ensure that it has a fresh

copy of the key shard before it can build a new key shard (i.e. before the mutate

flow executes, another mutate flow may have executed from another one of the

user’s devices).

• The time and space overheads in storing the new key shard. Each

new key added takes O(1) additional space to the volume’s manifest, and O(1)

additional space to the volume’s metadata. Storing the key shard adds a O(n)

time and space overhead for n records in the volume (since in the worst case,

a key shard can have as many records as there are keys in the volume). These

costs are incurred in the Publish step, where the volume’s manifest is replicated.
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Measured Overheads

Write overheads in Gaia were measured on the live Gaia network. Just as with

the read experiment, this test was conducted on a representative Gaia deployment

whereby the user runs a local Gaia node that will Push and Publish new data to

an upstream Gaia node, which in turn Pushes the data (as chunks) to a bucket in

Microsoft Azure.

The test wrote key/value pairs with sizes ranging between 64K and 640K, in

intervals of 64K, to simulate writing data from real-world Gaia applications. The

test wrote the files 150 times using an instrumented Gaia node to measure overheads.

Each run was from a cold start—there was no caching performed between requests.
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Figure 5.12: Box-and-whiskers plot of the overall write performance.
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The overall write performance for Gaia is shown in Figure 5.12. While the mea-

surement is noisy, the write times increase linearly with the file size. The source of

the noise comes from the fact that the upstream Gaia node is shared with many Gaia

users.

Figure 5.13 shows the Build, Push, and Publish stage performances in Gaia. In

this test, the Build stage includes the time taken to fetch a copy of the device manifest

to update. If the device manifest is cached, then the Build stage is extremely fast—

effectively the amount of time taken to hash the data and insert it into a hash table

and serialize the hash table to a string for upload.

The Push and Publish stages run in parallel in Gaia by default, so their measure-

ments are combined.

This test calculated the efficiency of Gaia’s write path in two ways—a “cold write

efficiency” which includes the cost of fetching the manifest in the Build stage, and a

“warm write efficiency” which excludes this step. Including both efficiency measures

is valuable to developers because often times, the manifest can be safely cached across

writes. Figure 5.14 reports both cold and warm efficiencies. The efficiency of the write

path improves somewhat when the manifest can be cached across writes.

Recommendations to Developers

Developers have a few strategies available to alter the performance of writes in Gaia.

The specific strategies taken ultimately depend on the workload and data being

stored.

Incremental Key Space Shard Writes

Some applications may have a large key space, but only need to carry out a

key/value writes at a time. The aggregation driver has an opportunity to reduce the
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(a) Gaia Build performance. Note that this includes the cost of fetching
the existing manifest before constructing a new one.

64
Kb

12
8K

b
19

2K
b

25
6K

b
32

0K
b

38
4K

b
44

8K
b

51
2K

b
57

6K
b

64
0K

b

File Size

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
(s

ec
on

ds
)

(b) Gaia Push/Publish performance (both stages execute in parallel).

Figure 5.13: Box-and-whiskers plots of mutate flow stage performances in Gaia, for
file sizes between 64K and 640K in increments of 64K.
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(a) The cold efficiency, which includes the time taken to fetch the volume
record over the network.
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(b) The warm efficiency, which assumes the volume record is cached and
excludes it from the mutate flow’s running time

Figure 5.14: Box-and-whiskers plots of Gaia’s write efficiencies.
.
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amount of time and space that need to be consumed to carry the write out by only

writing the new key metadata.

If the application only wrote one value, then only one key in the manifest would

be altered. The Build stage could be optimized to inspect the Gaia node’s key space

shard in-between writes, only pass along the delta between writes to the Push stage.

The Push stage would accumulate deltas from the Build stage, and combine them

into a single key shard in the backend storage service. Then, a subsequent Acquire

step would continue to fetch the key space shard as expected.

The reason this is not the default behavior is because patching a record efficiently

requires the cloud service to support a “range write” API call, whereby the client

specifies a byte offset and length as to where to write the given data. Most popular

cloud storage providers do not support this—they only allow clients to write whole

records. For these services, a Push stage could not efficiently write key shard deltas,

since it would need to load the entire key shard, patch it, and store the entire updated

key shard on each write. As such, this behavior would be added by developers in the

special case where they were using a suitable cloud storage provider.

Write Batching

Applications may not need all of their writes to be Published immediately. Instead,

a Publish can reflect many writes at once. This would be allowed if the application’s

storage semantics do not require all peers to see each others’ most-recent state. This

can lead to better overall performance for applications that frequently overwrite the

same key/value pairs—overwritten key/value pairs would not need to be replicated.

Applications that have semantics compatible with write-batching can not only

realize better performance than the default behavior, but also take advantage of

client-side libraries that offer more expressive storage interfaces. Examples include
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Compass [50], which provides a MongoDB-like interface, and sql.js [204], which

provides a client-side SQLite implementation. Both of these libraries are easily used

with Gaia, provided that the application’s storage semantics allow write-batching (i.e.

a Publish would take place in response to the application committing a transaction

in one of these APIs). In fact, Compass was designed specifically for Gaia by a third

party contributor.

5.3.2 Overheads in Syndicate

Syndicate’s default write strategy is make data as durable as possible. This is realized

by the default behaviors of replicating all manifests and blocks to all replica gateways

in the volume in the Push stage, and synchronously uploading the record’s metadata

to the Syndicate MS in the Publish stage.

User gateways invoke the Build, Push, and Publish stages on write. Since Syn-

dicate is designed to process scientific workloads, it expects multiple write-capable

user gateways to be online at once. However, it assumes that user gateways usually

(but not always) write to the same files that they coordinate. This is reasonable in

practice, since scientific computing loads are usually designed to run on many parallel

computers which share as little data with one another as possible.

In light of this, the default common-case behaviors of the Build, Push, and Publish

stages in Syndicate are to assemble a new manifest locally (Build), replicate the

manifest and blocks to all replica gateways (Push), and synchronously upload the

new metadata to the MS (Publish). Push and Publish are run automatically when a

record is close()’ed, if the application does not do so explicitly via a call to fsync().

These are the default behaviors of the user gateway carrying out the write is also the

coordinator.

If the writer gateway is not the coordinator, then it enlists the coordinator’s help

it carry out the write. The writer’s Push stage will first replicate the new blocks, and
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then synchronously request that the coordinator both Push a new manifest with the

requested changes and Publish new metadata that reflects it.

By default, replica gateways do not have any specialized aggregation driver logic

on the write path. They simply accept chunks from user gateways, and replicate them

with their service drivers.

To summarize, the write overheads in Syndicate are as follows:

• The time and space overheads of building a new manifest. By default,

a UG will incur a network round-trip when it Builds a new manifest for a record

that it does not coordinate. In addition, the UG will incur a round-trip to the

MS to ensure that the new manifest it is modifying is fresh when executing the

default Build implementation.

• The time and space overheads of storing new metadata. The record’s

coordinator will incur a network round-trip to the MS when Publishing new

data, and storing the new metadata incurs O(1) extra space. In the case where

the writer is not the coordinator, two network round-trips are incurred: one to

the MS and back, and one to the coordinator and back.

• The time and space overheads of storing a new manifest. The record’s

coordinator will incur a network round-trip to each replica gateway to store

the new manifest, and a network round-trip from each replica gateway to its

underlying storage services. This yields O(g) round-trips, where g is the number

of replica gateways. The manifest size is O(n) bytes for a record of n bytes, so

replicating and storing it to all gateways takes O(gn) time and space.

• The time overheads of storing blocks. Similar to manifests, replicating a

block takes two network round-trips (one for the replica gateway, and one for

the service).
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Measured Overheads

The overheads of writing in Syndicate were measured for the same block sizes and

record sizes as reads: records composed of 10 to 100 blocks (in intervals of 10 blocks)

for a “small” block size of 1K and a “medium” block size of 10K. The same UG,

RG, and MS in the read test were used in the write test. The total mutate flow

performances are shown in Figure 5.15.

Despite the noisy measurements, the amount of time taken to write records of

these sizes grows linearly with file size. For the 1K block measurement, the noise

in the measurements is mainly due to variations in the disk write performance and

chunk-writing scheduler in the UG. For the 10K block measurement, the noise is

mainly due to the Push stage (i.e. there is more variance in uploading large blocks).

This is visible in the Build, Push, and Publish performances in Figures 5.16, 5.17,

and 5.18, respectively.

The Build step occurs within the UG. In Syndicate, the Build step includes the

process of hashing the blocks and flushing them to a temporary storage location on

disk before it is replicated. While the effect is hard to see here due to the small

amount of data, the Build stage’s time increases linearly with the amount of data

being written, since the manifest includes the hashes of all blocks (Figure 5.16). The

Build stage with 1K blocks completes in less than 500 milliseconds, while the Build

stage with 10K blocks takes less than 750 milliseconds.

The Push stage replicates all blocks to the RG. The Push stage times show linear

increases with the number of blocks (Figure 5.17). In the 1K block size case, the

median Push stage completes within 1.9 and 2.5 seconds. In the 10K block size case,

the median Push stage completes within 3.5 and 8.1 seconds.

The Publish stage replicates the new manifest ID to the MS, as well as a garbage-

collection log. Because the garbage-collection log data that the UG replicates is

203



10
Kb

20
Kb

30
Kb

40
Kb

50
Kb

60
Kb

70
Kb

80
Kb

90
Kb

10
0K

b

File Size

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

Ti
m

e 
(s

ec
on

ds
)

(a) Syndicate mutate flow performance with 1K blocks
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(b) Syndicate mutate flow performance with 10K blocks

Figure 5.15: Box-and-whiskers plots of mutate flow performances in Syndicate, for
file sizes between 10K and 100K and a block size of 1K.
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(a) Syndicate Build stage performance with 1K blocks
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(b) Syndicate Build stage performance with 10K blocks

Figure 5.16: Box-and-whiskers plots of the Build stage performance, for 1K and 10K
blocks.
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(a) Syndicate Push stage performance with 1K blocks
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(b) Syndicate Push stage performance with 10K blocks

Figure 5.17: Box-and-whiskers plots of the Push stage performance, for 1K and 10K
blocks.
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(a) Syndicate Publish stage performance with 1K blocks
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(b) Syndicate Publish stage performance with 10K blocks

Figure 5.18: Box-and-whiskers plots of the Publish stage performance, for 1K and
10K blocks.
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proportional to the number of blocks written, it is expected that the amount of time

taken to replicate metadata will increase linearly with the size of the write.

However, due to the facts that only at most 100 blocks are replicated and that

the size of a garbage-collection entry is 8 bytes, this linear relationship is not visible.

Publish steps take between 640 milliseconds and 900 milliseconds across both the 1K

and 10K block size tests (Figure 5.18).

The write efficiencies of Syndicate are shown in Figure 5.19. As long as inter-

nal fragmentation can be avoided, using larger block sizes drastically improves the

system’s efficiency.

Recommendations for Developers

In addition to recommendations for aggregation driver developers for reads, some

performance enhancements can be devised for writes. These strategies depend on

the workload and the nature of the data, which is why they are not included in the

default behavior.

Write Coalescing

A lot of workflows write data sequentially, and in bursts. Developers can save

a set of round-trips to the replica gateways in the case where two sequential writes

straddle a block boundary by deferring replication of the straddled block.

Replica Gateway Selection

Developers are not required to replicate a chunk to all gateways. It is expected

that in situations where there are multiple choices for a data store, the aggregation
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(a) Syndicate write efficiency for 1K blocks.

10
0K

b
20

0K
b

30
0K

b
40

0K
b

50
0K

b
60

0K
b

70
0K

b
80

0K
b

90
0K

b

10
00

Kb

File Size

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

(b) Syndicate write efficiency for 10K blocks.

Figure 5.19: Box-and-whiskers plots of the efficiencies of Syndicate writes.
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driver will choose which chunk goes with which storage provider. This can be done

both to preserve end-to-end storage semantics, and to improve write performance.

Replica Gateway Chains

Syndicate supports custom gateway types. Developers can exploit this to imple-

ment chain replication [193] [187], whereby a set of replica gateways are arranged into

a sequence such that when receiving a chunk, the gateway stores it and forwards it to

the next gateway in the sequence. User gateways would only need to forward chunks

to the chain tip. The tip would have a “replica gateway” type, but the gateways in

the chain would have a distinct “chain replicator” type.

The aggregation driver would be written such that each replica gateway and chain

replicator gateway discover their types and locations in the topology from the certifi-

cate graph. The Push stage for each gateway would use this knowledge to determine

its next-hop gateway. This strategy is generalizable to arbitrary store-and-forward

topologies.

The performance advantage this would incur is that it would enable the same

degree of durability as replicating in parallel, but without the extra round-trips from

the user gateway. User gateways located behind underprovisioned network links would

notice the improvement, since they would not need to spend as much time pushing

chunks through a local bottleneck.

Chunk Patching

If the workload exhibits random-write behaviors, one strategy developers can em-

ploy is to implement a “patching” algorithm in their aggregation driver’s Push stage.

Instead of sending the entire chunk to a replica gateway, a user gateway would send
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only the byte ranges and offsets to the replica gateways. This would cut down on the

data the replica gateway needs to send, even if the block size in the volume was large.

The replica gateway would reassemble the patches into a block sometime before the

next read occurs—either eagerly as part of an internal garbage-collection algorithm,

or lazily as part of the get chunk() or serialize() driver methods.

5.4 Discussion

Both Syndicate and Gaia add measurable overheads when compared to reading and

writing directly to cloud storage. This should come as no surprise given the designs

of these two systems.

The overheads in both Gaia and Syndicate are due to three design factors: all

data is broken up and transmitted as blocks and manifests, all data passes through

one or more gateways en route to services that host it, and reads and writes may

incur an extra round-trip to the SDS system’s metadata service. The microbench-

marks presented here show that these overheads either increase the time and space

requirements by a constant factor, or are in a linear relationship with the amount of

data being read or written. The fact that the read and write efficiencies both increase

with the size of the data indicates that loading and storing the data to the underlying

storage services are the limiting factors to the system’s performance.

The benefits to users and developers the systems offer cannot be overstated. Us-

ing SDS systems has the same value proposition of using TCP/IP sockets instead of

layer-2 frames, or using filesystems instead of directly loading and storing disk sec-

tors. While both SDS and these systems impose measurable overhead and are less

performant than the alternatives, the gains that users and developers realize by using

them outweigh the performance loss.
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Regardless of the overheads SDS imposes, the case for SDS-powered applications

is becoming more and more apparent to non-academic and non-technical audiences.

The overheads may simply be perceived by users as the cost of achieving the gains SDS

provides. Implementing features such as end-to-end data privacy and data portability

is straightforward in SDS, since SDS systems already isolate applications from both

the storage they use and the trust relationships between users and organizations.

Users seem to appreciate this—Gaia-powered SDS applications like Graphite Docs

and Stealthy have been reported on in multiple mainstream news outlets [174] [83],

in which these very features are touted as technical remedies to problems that exist

in Google Docs and Facebook Messenger, respectively.
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Chapter 6

Related Work

The SDS approach described in this thesis is synthesized from ideas from several

different bodies of work. Individual concepts in SDS are based on time-tested design

principles and engineering techniques that have seen widespread usage. The main

contribution is a new way to apply many existing principles in a coherent fashion to

address long-standing challenges in the design of wide-area networked applications.

6.1 Software-defined Storage in Industry

Over the course of the development of this thesis, the term “software-defined storage”

has emerged as a marketing term in the software industry with a different meaning

than the one put forth in this thesis. In the industry, SDS refers to software that

implements some form of network-wide storage virtualization or storage emulation in

the context of a single organization (e.g. company or datacenter) [200].

Industry offerings that refer to themselves as “software-defined storage” focus on

implementing datacenter storage hardware as software, thereby decoupling datacenter

tenants and operators from specific vendors. This is a complementary to but funda-

mentally different problem from this work, which focuses on preserving wide-area

applications’ storage semantics in the face of changes to underlying storage systems.
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This work addresses the problem of preserving storage semantics across multiple or-

ganizational boundaries, whereas prior work focuses on applying storage provisioning

policies within a single organization.

6.1.1 Virtual Block Devices

One category of industry offerings that refers to itself as “software-defined storage”

focuses on implementing programmable block devices. Recent work on datacenter

storage networks have focused on providing abstractions similar to software-defined

networking (SDN) to manage VM disk I/O queues. In IOFlow [188], virtual block

devices are mapped into VMs as virtual hard drives, and the datacenter implements

a centralized storage control plane and distributed data plane to shape I/O traffic to

and from storage servers.

Some storage vendors have begun to refer to their existing iSCSI, NAS, and SAN

offerings as “software-defined storage” [71]. In particular, they tout the ability to

run the storage network controllers in software (whereas previously, they had been

implemented on dedicated hardware).

Another work that refers to itself as software-defined storage is software-defined

flash [153], where datacenter applications interact with solid-state disks (SSDs) via

a software-defined flash controller. This work focuses on improving utilization of

the hardware by allowing the application to directly control aspects of the hardware

that are typically left to the device driver or firmware (i.e. I/O scheduling, channel

utilization, provisioning, etc.).

While there is some conceptual overlap with the wide-area SDS work in this thesis

insofar as applying policies on storage data flows, the bulk of this prior work focuses

on applying policies on shaping IOP traffic. There is minimal focus on preserving

application-level semantics. Since these systems are always under the control of a
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single organization (i.e. the datacenter), there is no need for them to worry about

preserving organizational autonomy.

6.1.2 Storage System Emulation

Other industry offerings that refer to themselves as “software-defined storage” focus

on emulating existing storage systems, instead of specific pieces of hardware. This

allows tenants to move from one datacenter to another without having to rewrite the

storage interfacing logic. For example, industry offerings exist to provide compati-

bility with NFS, CIFS, SMB, and Amazon S3 (contemporary offerings include those

from Veritas [195], Scality [170], Acronis [2]).

Like this prior work, the work in this thesis implements storage system emulation

through service drivers. The difference between prior work and this thesis is the use

of aggregation drivers to allow multiple cloud storage systems to be combined while

preserving end-to-end semantics.

6.1.3 Storage Abstraction and Virtualization

Cloud storage gateways [157] are type of network appliance that sometimes refer to

themselves as “software-defined storage.” They allow an organization to apply certain

data management policies on organization-originated data bound for cloud storage.

These policies include transparent compression, de-duplication, encryption, access

logging and so on.

The wide-area SDS gateways described in this thesis act as “virtual” cloud storage

gateways after a fashion, in that they apply local data transformations in the form

of an aggregation driver stage. Unlike cloud storage gateways, SDS gateways exist

entirely in software and can be provisioned, duplicated, migrated, reprogrammed, and

arranged in a particular network topology on-the-fly.
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Software compatibility libraries like Apache libcloud [124] and various storage-

specific userspace filesystems [139] [64] [47] try to provide a uniform interface for

accessing disparate cloud storage resources. This is equivalent to what service drivers

do in SDS. However, these systems only provide a uniform syntactic interface (i.e.

a filesystem). The storage semantics are different for each back-end system—even

though two software compatibility libraries have the same interfaces, they cannot be

used interchangeably.

6.2 Operating System Storage Principles

SDS isolates application design from both the syntactic and semantic interfaces of

underlying storage systems, and facilitates code-reuse by allowing its components to

be recombined to create new functionality. This concept is inspired by well-established

operating system design principles.

6.2.1 Operating System Storage Design

The designs of virtual filesystem abstractions in various points of UNIX’s evolution

[113] [60] [156] [133] address this concern. Like SDS, they introduce two layers of

indirection —a set of filesystem drivers that overlay a set of block device drivers—to

isolate single-device semantics from cross-device semantics. This is analogous to the

concept of service drivers and aggregation drivers being logically distinct abstraction

layers. One layer provides a common “narrow waist” between the hardware and API,

and the other layer implements storage semantics for a host of applications “on top”

of the narrow waist.

The presence of two layers of indirection can also be found in the storage archi-

tectures of other multi-user non-UNIX operating systems like VMS [106], Microsoft
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Windows [59], and IBM System z [108]. This is an emergent design pattern in storage

systems with multiple back-ends, and this work in SDS echos this pattern.

One task performed by SDS systems is storage virtualization. Synthesizing logical

volumes from multiple devices [186] has been a mainstay in most UNIX-like operating

systems, and hierarchical storage management [202] has been used in production in

mainframes and workstations for decades. This is a use-case that can also be fulfilled

by SDS with the right storage drivers.

6.2.2 Composable Software Systems

SDS allows developers to construct complex storage systems by composing unrelated

stages of different aggregation drivers into a single driver. This design principle

is similar to the UNIX design philosophy [85], stackable filesystems [102], network

function virtualization systems like ONOS [26], and programmable network processors

like the Click modular router [114].

SDS aggregation drivers are constructed by chaining together a sequence of

reusable stages to form a program that controls the system’s end-to-end I/O pro-

cessing. This is analogous to how UNIX programs are built by chaining together

unrelated programs into pipelines, how stackable filesystems can be chained together

to implement complex storage semantics, how how Click router components can be

chained together to implement complex packet-processing programs, and how net-

work functions are chained together to implement complex network-wide processing.

In all cases, the developer synthesizes new functionality by swapping existing modules

in and out, as opposed to writing bespoke code for each use-case. SDS extends this

idea to multi-user, multi-network settings, and shows how different composable parts

can be combined by developers while operating in separate organizations.
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6.3 Secure Code Deployment

A major operational facet of SDS systems is the ability for volume owners to specify

and upgrade drivers at runtime. This allows them to preserve the storage semantics

of their volumes in face of changes in the underlying services. But in order to do

so, SDS systems must offer a way to securely deploy new driver code at run-time,

without interrupting the running system.

6.3.1 Secure Code Deployment

The concerns addressed by prior work like Stork [38], Raven [100], and The Update

Framework [167] revolve around ensuring end-to-end software authenticity and fresh-

ness, so that the remote hosts deploy the code the owner specifies without having

to trust any intermediate repositories. SDS must address this concern as well in the

deployment of driver code and configuration. This work in this thesis operate under

the additional constraint that upgrades must be atomic with respect to all ongoing

application-level operations.

6.3.2 Secure Remote Code Execution

The aggregation driver only executes successfully if all of its stages execute success-

fully, even though they run in separate organizations. This introduces the problem

of verifying that the remote processor executed the code as prescribed. Prior work in

secure remote execution focuses on new computational techniques, like implementing

homomorphic encryption [127], preserving auditable execution traces [192], or relying

on trusted hardware extensions in the remote computers [54].

SDS gateways complement this prior work in multi-host, multi-network settings

by ensuring that each gateway has a coherent view of the other gateways invoking its

driver code. A data flow only executes if all affected gateways can first verify that they
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each know what code each other gateway is running. It is possible to construct SDS

gateways that employ a secure computation techniques in this related work, and in

doing so, arrive at a data flow processing algorithm whose execution can be audited

end-to-end by concerned users. However, this is the responsibility of the gateway

implementation’s driver runtime environment.

6.4 Software-defined Networking

Software-defined networking (SDN) addresses similar types of problems for network

policy as SDS addresses for data policy. SDS builds on several design techniques

pioneered in SDN systems.

6.4.1 Control and Data Planes

Early SDN systems like 4D [97] and Ethane [39] introduced the concept of separat-

ing a distributed data-processing plane from a logically-central control plane. This

allowed SDN operators to specify top-down, globally-scoped policies for controlling

network traffic—a key innovation over earlier work in active networking [75]. SDS

applies this concept by separating data flow processing from configuration manage-

ment, whereby the volume owner operates the logically-central control plane for the

volume by manipulating a certificate graph.

Another key concept introduced by 4D is the notion of dedicated subsystems for

discovery of network elements and rule dissemination to them. SDS’s use of a self-

sovereign identity system and certificate graph addresses the same kinds of problems,

but for users and gateways instead of network elements.

SDN systems encourage open interfaces between their control and data planes. For

example, the OpenFlow specification [132] describes interfaces for network elements to

implement in order to participate in an SDN system. This removes a barrier to entry
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by allowing control planes and data planes to be implemented independently, leading

to a proliferation of different network operating systems [26] [98] [182] [28] [75].

SDS extends this concept for storage by encouraging the development of many

different type of gateways, which can be tailored to individual applications while

remaining compatible with an existing SDS system. Gateways share a common in-

terchange format (chunks), but allow developers to independently implement their

own APIs and custom behaviors. This was leveraged implement email-specific replica

gateways on top of Syndicate, for example.

6.4.2 Ease of Programmability

More recent work in SDN programmability, such as Frenetic [80] and Pyretic [137],

focuses on allowing developers to write a global flow control program in a familiar

language that compiles into individual flow rules. This work takes a similar approach

in the design of Syndicate’s aggregation drivers, whereby a single driver program is

automatically distributed and executed piecemeal across all of the volume owner’s

gateways.

6.5 Peer-to-peer Storage

SDS systems distribute data chunks in a peer-to-peer fashion, but use a logically

central metadata service to discover and route requests. In addition, they employ a

“trust-to-trust” user discovery layer [45] which SDS elements use to bootstrap trust in

one another. Prior works in distributed storage systems have faced similar challenges

to the ones that necessitated these SDS design elements, but have addressed them in

different ways.
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6.5.1 Content Discovery

Content discovery is an important aspect of distributed storage design. Prior work in

scalable distributed storage systems [197] [4] [101] [22] [90] [115] has shown the utility

of implementing separate metadata servers from data servers. This helps system

operators to better manage access control and consistency by placing the logic to do

so within one system component. SDS systems employ a metadata service to achieve

the same end, but such that metadata servers are not part of the trusted computing

base. In addition, SDS elements may be programmed to validate the metadata via

application-specific criteria.

In wide-area systems that span multiple organizations, a key difficulty with ad-

dressing content discovery is ensuring that the system can operate under organi-

zational churn. The solutions in prior work depend on who manages the content

discovery mechanism.

6.5.2 Single-stakeholder Content Discovery

Wide-area storage systems like Oceanstore [117], Pond [161], and Bonafide [44] im-

plement content discovery by relying on a federation of BFT nodes, which perform

write admission control and write serialization. While they are all able tolerate the

failures of other storage elements, the users of these systems do not participate in

content discovery and instead trust the federation to not be faulty.

SDS systems like Syndicate offer a more flexible approach. While Syndicate relies

on a central metadata service for content discovery, the service is only trusted to keep

data available. Moreover, each application, through the use of an aggregation driver,

can program its volumes to validate system metadata in arbitrary ways. This allows

the application to seamlessly control how much trust it places in metadata services

outside of its control. For example, in the limit the set of Syndicate gateways can
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maintain their own replicated log of metadata writes through their aggregation driver,

and use the log to monitor the metadata service for faults.

6.5.3 Multi-stakeholder Content Discovery

Prior wide-area storage systems like Shark [13], CoralCDN [81], Vanish [88],

OpenDHT [162], and BitTorrent [49] are designed with multi-stakeholder content

discovery mechanisms. Anyone can stand up additional nodes to help with content

discovery.

A key improvement in multi-stakeholder content discovery systems offered by SDS

is the use of a blockchain as a shared source of truth between storage elements. All

of the aforementioned prior works rely on DHTs or DSHTs [82] in order to scale

the number of records, and work by distributing routing information evenly across a

number of hosts while tolerating node churn and supporting fast queries.

The drawback with this approach is that they are vulnerable to Sybil attacks [63]

and route-censorship attacks [175]. This can cause to a loss of routing state, and can

possibly cause invalid or malicious routing state to be used. The two SDS systems

in this work avoid these problems by ensuring each node has a 100% replica of the

routing state (within the SSI system), and ensure that the state size grows at a fixed

rate by relying on a public blockchain as a rate-limiter. As a result, gateways in the

prototype SDS systems can discover one another and one another’s content as long

as at least one SSI node is reachable.

6.5.4 User Authentication

Peer-to-peer systems are often multi-user systems. To support multiple users, they

need to perform some form of user discovery and authentication. Most network

filesystems systems that run within a single organization (like NFS [168] and GFS [89])

use a trusted, centralized user directory, which allows users and administrators to
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enumerate user accounts and assign them easy-to-remember names without name

collisions. Federated filesystems like AFS [105] and Farsite [4] use a trusted, existing

public-key infrastructure to discover users in a similar fashion.

Other systems try to do without a centralized user directory, but at the expense

of removing human-friendly user identifiers. For example, SFS [131] eschews user

enumeration by addressing this problem with self-certifying paths, where users are

identified by public keys. Others like WheelFS [183] punt on user discovery altogether,

and require each operator to curate the public keys of trusted users out-of-band.

By relying on a self-sovereign identity system, SDS systems allow users to dis-

cover each other’s public keys without a centralized user directory, and without intro-

ducing human-unfriendly names. Certain PKI systems like attribute-based encryp-

tion [171] [35] try to enable this, but have the significant drawback that each user

must re-key if a single private key is compromised.

6.6 User-defined Storage Semantics

Different applications need to make different trade-offs in their storage. To accommo-

date this, prior work has provided control points to help them make these trade-offs.

SDS systems take this idea to its logical conclusion, where the application itself spec-

ifies a portable, reusable driver that defines its end-to-end semantics.

In their simplest forms, systems that offer user-defined consistency do so by allow-

ing the user to choose from a handful of built-in semantics that all reads and writes

to the data will follow. This includes systems like WheelFS [183], PRACTI [24], and

Bayou [155], where the user can tag files and sessions as needing to adhere to a certain

consistency models have a certain degree of durability.
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Some storage systems try to resolve write conflicts by deferring to user decisions.

These include version control systems like subversion [17] and git [68], and file storage

systems like Dropbox [64].

Other storage systems like Coda [112], COPS [125], and Ori [128] allow the user

to supply a conflict-resolution algorithm for handling conflicts. The algorithm is later

used by the system in order to resolve conflicts between replicas.

Systems that need high availability or high durability allow clients to choose replica

placement. These include programmable CDNs like CloudFlare [48] and Akamai [5],

as well as high-availability cloud storage like S3 [10]. Open-membership storage layers

that offer this include BitStore [119] and Storj [172].

In the context of SDS systems, developers materialize systems that address all

storage concerns within a single storage element—the aggregation driver. This al-

lows them maximum flexibility in addressing storage concerns. SDS helps developers

manage the associated complexity and development overhead of doing so by providing

an aggregation driver specification that facilitates component reuse and incremental

deployment.

6.7 Applications

This thesis described three sample SDS-powered applications, all of which have been

implemented in prior work but with significant constraints. Re-implementing them

with SDS helped to remove many of these constraints.

6.7.1 Encrypted Email

PGP [206] has long been the “gold standard” for encrypted communication over

email. It works by allowing users to send and receive encrypted messages over SMTP.

However, multiple usability studies [201] [163] have shown that users have a hard
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time interacting with cryptographic key pairs. Email clients like Enigmail [1] and

Mailvelope [126] attempt to alleviate some usability problems, but ultimately require

users to actively participate in key management and key discovery. All PGP-based

email requires both the sender and recipients to participate in order to realize message

confidentiality and authenticity.

The Syndicate-powered email application differs from prior work in that it removes

the need for humans to manage keys. In doing so, it provides a user experience

comparable with Webmail. The underlying SDS gateways automatically encrypt and

decrypt messages on endpoints, and provide multiple options for communicating with

legacy SMTP email users.

6.7.2 Groupware

Software that helps groups of users work on a shared task has been a significant

computer application since the late 1980s, with many early works focusing on various

ways to allow clients to interact with shared state on a server [20]. Many groupware

applications, such as video-conferencing, chat rooms, and document-sharing have

subsequently been realized as Web applications. Examples today include Microsoft

Office 365 [135], Google Docs [95], and Slack [176].

An architectural mainstay of most groupware systems is that they follow a client-

server model. The users run the client software on their computers (e.g. as a Web

page in a Web browser in contemporary systems) to interact with shared state hosted

on one or more servers. Clients are not assumed to be reliable, and do not host any

authoritative state. Instead, servers store the authoritative state of the system and

present clients with views of it.

What this means for groupware implementations is that most of the application’s

business logic runs on the servers. This is necessary in order to address global data

management concerns, such as access controls, concurrency handling, and replication.
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Since only the servers process operations on authoritative state, only the servers are

in a position to handle these concerns. In doing so, groupware servers pose a single

point of failure—if a groupware server fails, clients cannot interact with their data.

The serverless groupware library built on Gaia avoids this issue by separating the

business logic from the storage logic. Gaia still provides groupware applications with

the client-server computing model, but such that the role of the server is reduced

to loading and storing opaque blobs of data. Gaia instead moves application busi-

ness logic into an aggregation driver, which can be deployed, upgraded, and migrated

across a dynamic set of gateways at runtime. This provides a degree of operational

flexibility not seen in prior groupware implementations—a volume owner can trans-

parently migrate the groupware from one storage provider to another (to tolerate

changes in service providers), and from one set of gateways to another (to tolerate

changes in trust relationships and changes in host availability).

6.7.3 Scientific Data Set Staging

Related work on sharing scientific data across multiple networks includes work on ded-

icated sharing and transfer services like Globus [41], hosting data in highly-available

datacenters like ABoVE [141] and Cyverse [56], and relying on an array of network

caches to distribute data from one data origin to many downstream readers (like

CernVMFS [111]).

Scientific data transfer services allow labs to explicitly share and copy data from

one site to another. Globus allows scientists to pipe data between servers that the

requester can access, and allows scientists to share data from commodity cloud storage

to external data consumers. Like Globus, Syndicate encourages reusing commodity

cloud storage services for hosting data, and leverages existing identity management

services to authenticate data and transfer requests between organizations.

226



This thesis is not the first to propose using a network of commodity caches to

help distribute scientific data. CernVMFS [111] allows scientists at CERN to share

data with the world. CernVMFS implements a catalog service that functions like the

Syndicate MS and AG in that it provides an index over the available datasets, which

can be fetched out of band and used to read the data itself through the caches.

This work extends this concept by supporting reads and writes while preserving

cache coherency. Unlike CernVMFS, the Syndicate-powered data-sharing framework

allows the upstream datasets to be written to at runtime, while there are ongoing

reads. The AG and MS allow readers to discover the latest data without having to

rely on consistency hints from the caches (such as Etags or Last-Modified HTTP

headers).
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Chapter 7

Conclusion

Wide-area applications that leverage commodity infrastructure are difficult to keep

running in the face of changes in the underlying services. Services can go offline,

services can change their APIs and storage semantics, and services can fall outside

the trust domains of their users.

This thesis presents wide-area software-defined storage as a solution to these chal-

lenges. By giving developers the ability to implement end-to-end storage semantics

as a first-class storage element (an aggregation driver), SDS allows applications to

tolerate changes in both the underlying services and trust relationships between users

without modification. In addition, SDS embraces the fact that storage spans multiple

organizations, where each organization has its own data hosting policy. SDS allows

each organization to enforce its policies unilaterally without affecting the end-to-end

storage semantics. It achieves this by allowing users to choose the routes their reads

and writes take through the set of organizations.

This thesis explores the design principles of wide-area software-defined storage,

and distills several design principles for building such systems. To validate the princi-

ples in practice, this thesis presents two real-world implementations—Gaia and Syn-

dicate. Both systems allow applications to leverage commodity cloud services in the
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face of changes to both the service API and changes to the trust relationships users

have with them.

To demonstrate the feasibility of constructing SDS-powered applications, this the-

sis presents the design and implementation of three real-world applications: end-

to-end encrypted Webmail, decentralized groupware, and CDN-accelerated scientific

data staging. All three applications leverage a SDS system to ensure that application-

specific end-to-end semantics are applied across each participating organization, while

continuing to preserve each organization’s data policies. In each case, the SDS sys-

tems helps the application overcome several hard problems that have plagued prior

application designs: overcoming the usability challenge of public key management (for

email), removing central points of control (for groupware), and preserving end-to-end

consistency while relying on third-party CDNs (for scientific data-sharing).

This thesis gives microbenchmarks and performance numbers for the SDS proto-

types and sample applications. The overhead of the SDS system is acceptable, since

it does not affect the sample applications’ usability. SDS gives developers many op-

tions for controlling the end-to-end performance of reads and writes, allowing them

to produce performant applications despite the overheads.

Gaia, Syndicate, and the sample applications have all been released as open-

source [146] [185] [148] [166] [165].
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