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Abstract

Recorded audio narration plays a crucial role in many contexts including online

lectures, documentaries, demo videos, podcasts, and radio. However, editing audio

narration using conventional software typically involves many painstaking low-level

manipulations. Some state of the art systems allow the editor to perform select,

cut, copy and paste operations in the text transcript of the narration and apply the

changes to the waveform accordingly. However such interfaces do not support the

ability to synthesize new words not appearing in the transcript. While it is possible

to build a high fidelity speech synthesizer based on samples of a new voice, to operate

well they typically require a large amount of voice data as input as well as substantial

manual annotation.

This thesis presents a speech synthesizer tailored for text-based editing of

narrations. The basic idea is to synthesize the input word in a different voice using

a standard pre-built speech synthesizer and then transform the voice to the desired

voice using voice conversion. Unfortunately, conventional voice conversion does not

produce synthesis with sufficient quality for the stated application. Hence, this

thesis introduces new voice conversion techniques that synthesize words with high

individuality and clarity. Three methods are proposed: the first approach is called

CUTE, a data-driven voice conversion method based on frame-level unit selection and

exemplar features. The second method called VoCo is built on CUTE but with several

improvements that help the synthesized word blend more seamlessly into the context

where it is inserted Both CUTE and VoCo select sequences of audio frames from the

voice samples and stitch them together to approximate the voice being converted.

The third method improves over VoCo with deep neural networks. It involves two

networks: FFTNet generates high quality waveforms based on acoustic features, and

TimbreNet transforms the acoustic feature of the generic synthesizer voice to that of

a human voice.
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Chapter 1

Introduction

1.1 Text-based speech editing

Modern technology have vastly accelerated the spread of news and communication

of knowledge. We are blessed with many forms of media to keep us entertained and

informed: movies, podcast, YouTube videos, interactive online education, etc. And

every single one of them involves recording of audio narrations. After narration is

recorded, most of these applications require editing. Typical audio editing interfaces

present a visualization of the audio such as waveform and/or spectrogram (Figure 1.1)

and provide the user with standard select, cut, copy, paste and volume adjustment,

which are applied to the waveform itself. Many also support advanced operation

such time stretching, pitch bending and de-noising. Such tools often requires domain

knowledge to operate; the interaction can be cumbersome, especially for non-experts.

Researchers have addressed this problem by aligning the waveform with a

transcript of the narration, and providing an interface wherein the user can perform

cut-copy-paste operations in the text of the transcript. Whittaker and Amento [98]

show that this form of interface significantly reduces search and editing time, and is
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Figure 1.1: An example of conventional audio editing interface (Audacity)

preferred by users. State of the art video editing systems incorporate audio-aligned

transcript editors to facilitate search and editing tasks [6, 14] (Figure 1.2).

While cut-copy-paste operations are well supported, one aspect is conspicuously

missing from text-based audio editors: insertion. It is easy for a person to type a

new word not appearing in the transcript, but it is not obvious how to synthesize

the corresponding audio. Nevertheless, in many circumstances inserting a new word

or phrase during editing would be useful, for example replacing a misspoken word

or inserting an adjective for emphasis. Of course it is possible to record new audio

of just the missing word, but to do so requires access to the original voice talent.

Moreover, even when the the original narrator, microphone and acoustic environment

are available for a new recording, it remains difficult to match the audio quality of an

inserted word or phrase to the context around it. Thus the insertion is often evident

in the edited audio, even while methods like that of Germain et al. [28] can ameliorate

such artifacts. Regardless, just as it is easier to type for cut and paste, it is also easier

to type for insertion or replacement rather than record new audio.
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Figure 1.2: Script-based editing interface proposed by Rubin et al.. [69] This
interface supports navigating conversational recording via the transcript as well as
basic operations such as select, cut, copy and paste.

Thus, this dissertation focuses on synthesizing a word or short phrase to be

inserted into a narration, based on typing. The input is an existing recording coupled

with a transcript, as well as the text and location of the word to be inserted. With

the proliferation of voice-based interfaces, there now exist many high-quality text-to-

speech (TTS) synthesizers. The challenge is to automatically synthesize the inserted

word in a voice that sounds seamless – as if it were uttered by the same person in

the same recording as the rest of the narration (the target voice). While it is possible

to customize a speech synthesizer for a specific target, conventional approaches (e.g.,

Acapela Group [1]) start from a large corpus of example recordings (e.g., 10 hours)

and require many hours of human annotation (e.g., three months). Modern TTS

methods can produce full sentences (or paragraphs) with both clarity (that is, free of

noticeable artifacts like popping or muffling) and high individuality (that is, sounding

like the target). Our goal is to synthesize a word or short phrase (as opposed to a

full sentence) that reasonably matches the target voice in the context into which it

is inserted, with clarity and individuality, but based on a much smaller corpus that

lacks human annotation.
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Figure 1.3: Basic idea of proposed word synthesis method. When a user types the
word “hello”, we first synthesize it using an off-the-shelf generic speech synthesizer and
then transform it to the voice that we synthesize for using voice conversion technique.
Then the synthesized word is inserted into the actual recording based on user input.

The key idea of our approach (Figure 1.3) is to synthesize the inserted word

using a similar TTS voice (e.g., having correct gender) and then modify it to match

the target using voice conversion (making an utterance by one person sound as if

it was made by another). Voice conversion has been studied for decades, and the

idea of using voice conversion for TTS was proposed by Kain and Macon [36] in the

1990s. However, only recently have voice conversion methods been able to achieve

high individuality together with substantial clarity [47]. Unlike TTS, voice conversion

requires significantly less data to operate (20–60 minutes). However, state-of-the-art

voice conversion results remain inferior to that of TTS. This dissertation aims at

devising new voice conversion methods that close the gap for text-based editing of

audio narration.

1.2 Related work

1.2.1 Text-based speech editing

Audio editing tools such as Adobe Audition and Audacity allow experts to edit

waveforms in a multi-track timeline interface. Audio manipulation is achieved

by chaining low-level signal processing tools that require expertise and knowledge

to use. However, such general-purposed editing tools typically do not have a

specialized speech processing interface as they are unaware of the linguistic properties

4



Figure 1.4: An example of specialized speech processing interface (Praat).

of speech signal. Therefore research-oriented editing tools such as Praat [10] and

STRAIGHT [38] allow a user to view and manipulate acoustic and linguistic aspects

of speech in a timeline where audio waveform is presented synchronously with

annotations such as phonemes and pitch (Figure 1.4).

Based on similar design concept, recent research aims at connecting non-expert

users with sophisticated speech processing tools using text and a middle layer:

Whittaker and Amento presents a voicemail editing interface that boosts productivity

with text-based navigation and word-level copy-and-paste. The idea of using a script

to navigate a timeline is also employed by video authoring tools such as the work of

Casares et. al. [14], and recent versions of commercial software such as Avid Media

Composer. It is also adopted by video browsing and symmetrization tools such as

Video Digest [63] and SceneSkim [62]. Text can also be used as audio editing medium:

Berthouzoz et. al. created interview video editing tool that allows an editor to place

cuts and pauses by cutting words and adding pauses in the transcript [6]. They also

show “suitablility” scores as colors in the transcript to indicate suitable points to

place cuts. Later, Rubin et. al. presented an editing tool for audio stories that

support cut, copy and paste in text and selecting among different takes in the text

[69]. However, none of existing work support insertion and replacement words that

are not in the transcript, which is the focus of this thesis.
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1.2.2 Text-to-speech synthesis

There are two main-stream text-to-speech synthesis techniques: unit selection and

statistical parametric methods. Dating back to 1990s, unit selection-based methods

first process audio samples into units (usually segmented by phonemes) and synthesize

speech by selecting and concatenating units to match the text and desired prosody

[31]. A general process is to select units that match the linguistic feature of the text

input while maintaining smooth transition from the previous unit to the next. This is

achieved by minimizing a cost function that can be optimized using Viterbi algorithm.

Past research has evaluated different unit definition [41, 61], objective functions

[53] and searching algorithms that provide better efficiency [8]. As a data-driven

approach, the quality and naturalness depend heavily on data quantity and quality

[7]. Expressive TTS systems are often built over large databases [22] that consist over

10 hours of voice samples, manually selected and refined. Though the unit annotation

process can be automated using speech recognition techniques, human annotation is

still required to refine mis-annotated units. Because of the high cost, unit-selection-

based methods are incorporated in building high quality speech synthesizers for a

small number of voices.

On the other hand, statistical parametric methods synthesize speech by generating

acoustic features via a statistical models [91]. This statistical model represents

a generative process that maps linguistic feature extracted from text to acoustic

features, such as fundamental frequency (i.e.pitch or F0), and MFCC that represents

timbre. It further relies on a Vocoder that extract acoustic features from waveform

and resynthesize waveform based on generated acoustic features. The most popular

method is based on HMM where the hidden variables represent linguistic features and

the observation variables are acoustic features such as MFCC and F0 [102]. However,

the result often contain muffled artifact caused by statistical model and unrealistic

sounding Vocoder synthesis process. Later research has approached improving the
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vocoder [70, 38], prosodic expressiveness [84] and HMM replacement such as deep

neural networks [103]. One notable advantage of parametric speech synthesis is

its higher resilience to user controls such as emotional strength [72]. It is also

possible to train a generic HMM model across a range of speakers [82] and adapt

to a specific speaker with small amount of recorded speech [101]. However, one

persistent drawback of parameteric methods is audible artifact due to over-smoothed

parameter trajectories [93]. The vocoder and the acoustic features defined by the

vocoder introduces another layer of artifact as they are not perfect representation of

human speech [99]. These problems stops parametric TTS to be used in word insertion

and replacement as such artifacts are audible when blended with the original audio

recording, while unit-selection-based TTS has much less artifact but requires large

amount of data. To trade off between the benefits and problems associated with both

methods, hybrid approaches are proposed. One can use HMM to inform unit selection

targets [39] and costs [56]. However, such methods cannot reduce artifact completely.

With the rapid adoption of deep neural networks, researchers have been seeking

end-to-end solutions to TTS, transforming linguistic notation or acoustic feature

directly into waveforms without relying on a pre-defined vocoder. WaveNet is

such neural network proposed by Deepmind that generates natural sounding speech

sample by sample; the quality is unparalleled with parametric or unit-selection-based

synthesis method and therefore has become the most favored method in modern

TTS systems, for example Deep Voice [5, 4]. New applications have emerged, from

converting letter to speech, to on-the-wild TTS system that mimic a voice with

very limited samples. The WaveNet architecture is also adopted to solve other

problems, such as voice conversion [42], voice enhancement [86], de-noising [67] and

musical instrument synthesis [24]. Many of these efforts leverage WaveNet as a

vocoder. Moreover, it has been demonstrated that WaveNet WaveNet converts Mel

Ceptral and F0 back to waveform with unprecedented quality [73]. Unfortunately,
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original WaveNet takes tens of minutes to synthesize a second of audio; fast synthesis

techniques have been proposed to synthesize around 200 samples per second on a

CPU [58], but it’s still far from being real-time. On way to accelerate WaveNet scales

down the model size so as to reach real-time with a high-end CPU, but at the cost

of a substantial quality reduction (from 3.35 to 2.74 in the MOS test described in

Section 3.5.2) [4].

1.2.3 Voice conversion

Voice conversion can be used to create new text-to-speech synthesis voices with

relatively smaller data size [36]. Typical voice conversion methods represent voice

signals as parametric source-filter models in which the source approximates the vocal

cords that generate periodic or noise signals and the filter mimics the vocal tract

that shapes the source signal into the sounds we hear [87]. Then these methods

explicitly model a conversion function from one voice (source) to another (target)

in the parametric space. Given a new source (query), they apply the conversion

function and then re-synthesize actual signals from the converted parametric model.

The most classical conversion function is based on mapping over Gaussian Mixture

Models [90, 78]. Recent research has also explored probabilistic modeling [88], matrix

factorization [2] and deep neural networks [15, 19]. These approaches achieved

very low distortion in the parametric space but the output signal contains muffled

artifacts possibly not captured by the distortion measurement or introduced when re-

synthesizing from parametric representations of MFCC [19] or STRAIGHT [38]. The

artifacts tend to be perceptible when inserting a converted word between words of an

existing speech signal, and thus unsuitable for our word insertion application. More

recent work adopts WaveNet to convert source acoustic features to target waveform

direction [55] but the result sounds noisy and unstable for our application.
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In another thread of voice conversion research, algorithms concatenate segments

of a target speaker’s voice to approximate the query; a method called unit selection

is used to select these segments such that they are close to the source in content and

have a smooth transition from one segment to the next. Recent approaches in this

this thread differ in how units are defined and selected: for example Fujii et al. [27]

segment speech into phonemes and concatenates these phonemes to form new content.

Another thread of research performs frame-level unit selection (thereby increasing

the number of units) [23] to overcome the shortage of voice samples. Wu et al.

perform unit selection on exemplars [100], time-frequency speech segments that span

multiple consecutive frames [65]. Although these methods produce words without

muffled artifacts, they tend to have new problems with unnatural pitch contours and

noise due to discontinuity between units. However, when concatenating less units and

synthesizing short speech such as a word or phrase, these problems are less prominent.

1.3 Challenges

Both TTS and voice conversion are possible solutions for the word synthesis task

within text-based speech editing. But the current state of either direction displays

limitations: parametric TTS and voice conversion produces synthesis with robotic

sounding artifact; unit-selection and deep learning based TTS produces more natural

sounding audio but it requires much larger data (tens of hours) and computational

power. Unit-selection-based voice conversion is likely to deliver less artifact and does

not requires large amount of training data; but the current state of art still suffers

from noises due discontinuity at the concatenation area. Realizing these limitations,

this thesis focuses on improve the quality unit-selection-based voice conversion while

seeking alternative solutions to deep-learning based TTS that require much less data

(1 hour or less).
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1.4 Thesis overview

This thesis builds on parallel voice conversion, in which two voices speaking the same

sentences are provided as training data: the voice being converted is called source

voice and the voice being converted to is called target voice. Both voices speak

the same sentences in their own way and therefore the resulting speech recordings

have different length for the same sentence. One common step of parallel-data voice

conversion is to align parallel recordings frame by frame; each frame is represented

using an acoustic feature such as MFCC and spectrogram. Conventional voice

conversion maps the source frame’s acoustic feature to its aligned target frame’s

acoustic feature using a statistical model. And finally, a vocoder [85] is used to

synthesize waveform based on the converted target acoustic features. However,

this approach has two major drawbacks: over-smoothing artifacts caused by over-

simplification in the statistical model, and robotic sounding artifacts introduced

by the vocoder. To solve this problem, this thesis presents three new methods: a

data-driven voice conversion based on concatenating audio snippets of the target

voice; a word synthesis algorithm that utilizes data-driven voice conversion and deep-

learning-based method that learns the conversion function, the acoustic feature and

the vocoder at the same time. Thus, this thesis is divided into three main parts:

Chapter 2 introduces CUTE, a data-driven voice conversion method. The name

CUTE comes from four features of this voice conversion method: Concatenative,

meaning the synthesis is the result of concatenating audio snippets found in the

target voice; Unit-selection, meaning the target voice is organized into frames called

units and audio snippets are determined by selecting among all the frames; Triphone-

preselection, meaning the selection of frames is not based on all the frames but only the

frames that corresponding to the phonemes that we aim to synthesize; and Exemplar,

meaning the acoustic features we use are not acoustic feature of an individual frame

10



but rather 2k + 1 frame features concatenated with a triangular weighting (called

exemplar in speech recognition context [65]).

Chapter 3 introduces VoCo (short for Voice Conversion), a text-to-speech syn-

thesizer dedicated to word insertion and replacement in text-based speech editing

setting. When a new word is typed by a user, VoCo uses a existing TTS system to

synthesize that word in a robot voice and perform data-driven voice conversion to

synthesize the same word in the voice of the target speaker so that it can be seam-

lessly inserted into a real recording. VoCo also offers several advancements from the

proposed CUTE method. The most notable improvement is called Range Selection

algorithm that selects the starting and ending points of audio snippets directly via

dynamic programming. This method is a replacement of unit selection algorithm

that is conventionally used for speech synthesis and conversion. VoCo also introduces

alternative syntheses based on range selection algorithm that allows a user to choose

among different versions of synthesized words that varies in length and pitch contour.

An advanced editing interface allows a user to further adjust the pitch and duration

of each snippet or uses his/her own voice as input to modify the pitch and duration.

However, VoCo is unable to synthesize long passage and has a word synthesis

success rate of 60% based on CMU ARCTIC dataset. Chapter 4 takes a different route

and uses deep neural networks to perform voice conversion using. Two networks are

introduced: the first is called FFTNet, a real-time neural vocoder that transforms

acoustic features to waveform with high fidelity. The second is called TimbreNet

that transforms the acoustic features of a source voice into the acoustic features of a

target voice based on user-specified length and pitch contour. This method is called

Deep-VoCo, short for Deep Voice Conversion.

Finally, Finally, Chapter 5 summarizes the work and proposes potential directions

for future research.
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This dissertation weaves together and elaborates on papers that were presented

by this author at three conferences: IEEE ICASSP 2016 [33], and ACM SIGGRAPH

2017 [35], and IEEE ICASSP 2018 [34].
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Chapter 2

CUTE: a data driven method for

voice conversion

State-of-the art voice conversion methods re-synthesize voice from spectral represen-

tations such as MFCCs and STRAIGHT, thereby introducing muffled artifacts. We

propose a method that circumvents this concern using concatenative synthesis cou-

pled with exemplar-based unit selection. Given parallel speech from source and target

speakers as well as a new query from the source, our method stitches together pieces

of the target voice. It optimizes for three goals: matching the query, using long con-

secutive segments, and smooth transitions between the segments. To achieve these

goals, we perform unit selection at the frame level and introduce triphone-based pre-

selection that greatly reduces computation and enforces selection of long, contiguous

pieces. Our experiments show that the proposed method has better quality than

baseline methods, while preserving high individuality.

2.1 Background

The goal of voice conversion (VC) is to modify an audio recording containing the voice

of one speaker (the source) so that the identity sounds like that of another speaker
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(the target) without altering the speech content. Approaches to VC typically rely

on a training set of parallel utterances spoken by both the source and target. State

of the art parametric methods [83, 2] then explicitly model a conversion function

mapping from the source to the target in some feature space such as MFCC [19] or

STRAIGHT [37]. A new source utterance (the query) may be transformed into the

feature space and then mapped through the conversion function to match the target.

The output of such parametric methods must be re-synthesized from these features,

and artifacts are inevitable since these feature spaces do not perfectly model human

voice. Thus, the converted speech usually has a muffled effect [77] as a result of

re-synthesis.

Voice conversion can be used in many applications such as generating speech

synthesis voices with small samples [36] and bandwidth expansion [59]. In order to

avoid artifacts due to re-synthesis, an alternative to the parametric approach relies on

unit selection. The basic idea is to choose segments of the target speaker’s training

samples whose corresponding source samples sound like the query, while also seeking

smooth transitions between neighboring segments. Modern text-to-speech synthesis

systems [87] demonstrate that unit selection can generate high quality speech with

high individuality, which is crucial for VC. These systems require very large training

sets (many hours up to days) as well as substantial human annotation. Yet, in typical

VC applications, we have a limited training set (such as one hour) and usually no

manual effort.

Researchers have investigated several approaches for overcoming these limitations

in the context of unit selection. For example, the method of Fujii et. al. [27] and

Sndermann et. al. [80] relies on automatic speech recognition to generate phoneme

level annotations for units. As noted by the former, segmentation errors among the

phonemes yield significant artifacts. Another line of research reduces the need for
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very large datasets by performing frame-level unit selection (thereby increasing the

number of units) [23].

Wu et. al. further improve frame-level unit selection using exemplars [100], defined

as time-frequency speech segments that span multiple consecutive frames [65]. We

find that this method greatly reduces distortion from frame-based unit selection, but

there remains a significant quality gap between this approach and phoneme-level unit

selection where substantial user annotation is involved.

We introduce a hybrid method called CUTE that leverages four major components

described in various contexts in the literature:

• Concatenative synthesis

• Unit selection

• Triphone pre-selection

• Exemplar-based features

This combination offers a significant improvement over previous approaches such as

phoneme-based and exemplar-based unit selection. The basic idea of our method

is to concatenate segments from the target speaker’s voice so that they match the

query and form long consecutive segments, with smooth transitions between them.

To have sufficient units and flexibility in choosing the segments, we define unit

selection at the frame level. To enforce smooth transition, we compute features using

exemplars, concatenated spectral representations of multiple consecutive frames. To

better match the query prosody, we exchange the F0 contour of source and target

voices so that the query F0 is transformed and matched to the target F0 directly.

Finally, we introduce a triphone preselection method to sift the candidate list before

unit selection, ensuring large consecutive segments to be preserved in the candidate

list. To evaluate our method, we performed two listening tests with human subjects:

an XAB preference test and an ABX individuality test. The results show that our
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method offers significantly higher quality than two other unit selection based methods,

and that high individuality is maintained. The contributions in this chapter are:

• Adapting exemplar-based unit selection framework for concatenative synthesis.

• Using phonetic information to improve exemplar-based unit selection for voice

conversion.

• Experiments showing that the proposed method has better quality than baseline

methods, while preserving high individuality.

2.2 Exemplar-based unit selection for concatenate

synthesis

2.2.1 Pairing

Given the source speaker’s frame sequence X = {x1, x2, ..., xN} in the time domain

and the target speaker’s frame sequence Y = {y1, y2, ..., yM}, we first perform dynamic

time warping (DTW) to align the source voice to the target in order to obtain frame-

wise pairings A = {(xn1 , ym1), (xn2 , ym2), ..., (xnK
, ymK

)} where for n,m = 1, 2, ..., k,

nk ∈ [1..N ] and mk ∈ [1..M ]. We then construct a mapping function r(j) = Yj where

Yj = {y|nk = j, (xnk
, y) ∈ A}. This is the mapping we use to translate pairings to

actual frames.

2.2.2 Exemplar feature extraction

Having multiple parallel frames, we define an exemplar frame as two parallel sequences

of source and target frames with the central frame aligned. With a central frame
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(xnk
, ymk

), an exemplar frame is defined as:

 xnk−t ... xnk−1 xnk
xnk+1 ... xnk+t

ymk−t ... ymk−1 ymk
ymk+1 ... ymk+t

 (2.1)

We define our exemplar as a concatenation of the weighted features of the member

frames. Suppose a parallel frame (xnk
, ymk

) has feature vector fnk,mk
, then an

exemplar is:

[w−tfnk−t,mk−t, ..., w0fnk,mk
, ..., wtfnk+t,mk+t]

T (2.2)

The weights w−t:t are used to attenuate the influence of non-central frames, emphasiz-

ing the central frame. A triangule-shaped window function may be used for weights:

wi = ((t− |i|+ 1)/(t+ 1))β (2.3)

Here β > 0 is used to control the amount of attenuation - the higher the value, the

less emphasis on the non-central frames. An exemplar has better temporal resolution

than a large frame, which allows us to model transition between phonemes. Using

exemplars in unit selection also improves smoothness because similar exemplars share

similar contexts; when concatenating these frames using overlap-add, the overlapping

region is likely to produce less artifacts.

In this work, we define the weight function as a triangular function (β = 1) and

we use two sets of exemplars: (1) matching exemplars includes the MFCCs of the

source frames concatenated with the target frames’ F0 (in log space), denoted as

{A1, ..., AK}; we use these exemplars to match the spectral envelope and prosody

of the query. (2) concatenation exemplars are formed by the MFCCs and the F0

of the target frames, denoted as {B1, ..., BK}. These exemplars are used to enforce

transition smoothness between the selected frames.
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2.2.3 Pre-selection of candidates

The next several steps involve finding the exemplars that match the query. The first

step is to construct exemplars from {q1, .., qS} and calculate the exemplar features

{Q1, ..., QS} using the matching feature descriptors we defined in section 2.2.2.

Because the source F0s are in a different range of the target F0s, we adapted

logarithm Gaussian normalized transformation [19] to convert query F0 contour to

the target’s:

log pconv = µtgt +
σtgt
σscr

(log pscr − µscr) (2.4)

where µtgt and σ2
tgt are the mean and variance of the target voice’s log F0s; µscr and

σ2
scr are the mean and variance of the source voice’s log F0s. pscr and pconv are the

query and the converted F0s.

Then, for each query exemplar, we want to select one exemplar from the dataset

that resembles the query and makes a smooth transition to the next exemplar. The

Viterbi algorithm can be used for this purpose. However, it does not scale well

with the number of states (exemplars) [26]. We pre-select the candidates per query

exemplar in order to reduce run-time computation. One way to do this is to compute

K nearest neighbors and choose the candidates that are closest to queries [100]. In

this work, we found that pre-selecting exemplars that share the same phoneme as the

query exemplar generates better result. We will present our approach in Section 2.3.

Denote the candidates (indices of exemplars) for Qk as {ck1, ck2, ..., ckuk} where uk is

the number of candidates for the k-th query exemplar.

2.2.4 Optimization

The objective of matching is to select one candidate source frame per query so that

the corresponding target frames when concatenated together speak the same word as

the query and at the same time sound natural without artifacts, noise or unnatural
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prosody. To translate that into an optimization scheme, we want to minimize the

target cost T (qs, Acs,j) between the query qs and a candidate exemplar with index

cs,j and concatenation cost Cs(Bcs−1,i
, Bcs,j) between neighboring candidates with

subscripts cs−1,i and cs,j:

min
d1,...,dS

T (Q1, Ac1,d1 )

+
S∑
s=2

T (Qs, Acs,dj ) + Cs(Bcs−1,dj−1
, Bcs,dj

)

(2.5)

Note that different exemplar features are used for the matching and the concatenation

costs. One difference between this scheme and previous unit selection method is that

concatenation cost function varies over s. In other words, some statistics about the

query qs is used in calculating the cost function. Here are the equations we use to

calculate costs

T (Q,A) = ‖Q− A‖2 (2.6)

Cs(Bi, Bj) = d(Bi, Bj)P(i, j)R(E(qs)) (2.7)

In equation 2.7, d(Bi, Bj) is defined as the Euclidean distance between the first 2t

frames in exemplar Bi and the second last 2t frames from exemplar Bj, modeling the

smoothness at the overlapping region between frames. The second term is defined

as break costs, which prefers candidates that are originally neighbors; it also allows

skips and repeats, adding more flexibility in the query length.

P(i, j) =

{ 0, j − i = 1

cs, j − i = 2

cr, j − i = 0

cb, else

(2.8)
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cs, cr and cb are skip, repeat and break penalty multipliers. Through experiment,

we found 10, 2, 2 are reasonable choices for cb, cr and cs. The last term R(E(qs))

is penalty reduction considering the significance of the query. E(qs) extracts the

features for significance and in our experiment we define it as energy times periodicity

extracted using YIN [16] algorithm. It means we prefer breaks at silences and noisy

parts such as background noise or unvoiced consonants. Mapping R normalizes the

value to be in [0,1].

2.2.5 Translation and Concatenation

The last step is to convert exemplars to actual frames. Suppose we have selected

candidates with indices {c1, ..., cs}, we first remove the repeats and skips and then

translate them into target frames using the function r(j) = Yj defined in section 2.2.1.

Then we concatenate elements in sequences (Yc1 , Yc2 , ..., Ycs) to obtain a series of

frames. We obtain the final result using overlap-add [87].

2.3 Triphone preselection

We have observed two limitations in the above mentioned method: first, when the

query contains unfamiliar prosody (strong emphasis, high or low F0s), the query

exemplars might lack true nearest neighbors in the dataset and therefore are likely to

be matched to target exemplars with incompatible phonemes. Secondly, if a different

utterance of the same query word exists in the dataset, the above mentioned method

fails to extract the whole word most of the time. We think these problems have to

do with the fact that spectral envelope is not completely independent of prosody,

especially at extreme F0s and emphasis. As a result, different utterances of the same

word might have high gross spectral distances with each other, making several frames

of the word not appearing in the K nearest neighbors. To encourage concatenating
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long segments and reduce the negative effects of extreme prosody, we propose using

phonetic information to preselect the candidates.

2.3.1 Pre-selection using phonemes

To obtain phoneme segmentation, we first translate the transcripts into phoneme

sequences and then apply forced alignment to align phonemes to the target speaker’s

voice [74]. For each pair of source and target frames, we annotate it with a phoneme

label, such as “AH” or “P”. Then for each exemplar, we label it with its central

frame’s phoneme. In the pre-selection step, for each query exemplar, we include only

the candidates that share the same phoneme.

Using phoneme pre-selection, we guarantee that if other utterances of the same

query word exist in the dataset, their frames are included in the candidate lists. With

a proper break cost, we can extract a full word from the target speech to match the

query. This overcomes the issue faced by KNN pre-selection. Unit selection at the

frame level with phoneme pre-selection also outperforms phoneme-level unit selection

because it allows breaks in the middle of a phoneme, making it possible to form

longer or shorter phones. This approach is also robust to phoneme segmentation

errors since an incorrectly segmented frame is often dissimilar from the query and

thus excluded in the optimization step. The drawback of this method however is that

the candidate table gets very large for frequent phonemes such as vowels; because the

complexity of Viterbi algorithm scales with the squared size of candidates, this method

seems impractical for large datasets. Even if we select the K nearest candidates after

phoneme preselection, there is still chance of omitting frames that potentially make

up long sequences. Our solution to this drawback is to use Triphones to pre-select

the candidates.
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Figure 2.1: Decision graph for candidate preselection based on triphones

2.3.2 Decision graph for triphone pre-selection

A triphone is a three-phoneme sequence, composed of a center phoneme and

its two immediate neighbors. In tasks such as speech recognition and text-to-

speech synthesis, triphones are superior to phonemes as they capture contextual

information [64]. To preselect exemplar candidates, we propose labeling frames with

triphones instead of individual phones. Although the triphone vocabulary is large,

the number of instances per triphone is small. Therefore, we adopt a simple scheme

to deal with triphones nonexistent in the dataset: first, we look for candidates with

exact triphones; if we cannot find enough candidates (e.g. less than 10), we look for

candidates with similar diphones; and if we again fail to find sufficient candidates, we

apply monophone-based preselection and only include frames that are closest to the

query. One may also adopt decision trees used in speech recognition [30] to inform

triphone selection procedure.
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This preselection scheme has several merits: (1) The frames in the target dataset

having exactly the same phoneme sequence with the query will be present in the

candidate table. (2) Moreover, we can get away with only a few candidates per query

frame - following the decision table, if we find a correct triphone instance, we include

all candidate frames in that triphone; if not we look for diphones and include all of

them if they exist. If no matching diphone is found, we can include only a small

number of frames that has correct phoneme because there will be a break at this

point anyway. In this way, the number of candidates can be kept small resulting

in faster Viterbi computation. (3) Using the decision graph, the synthesis quality

improves with increasing amounts of data: the larger the dataset, the more likely we

have triphones in the candidate list.

2.4 Evaluation and Discussion

This section describes subjective and objective evaluations of our method, in

comparison with two other baseline methods in the literature. We use CMU

arctic corpus for these experiments [43]. We examined four conversion schemes

based on four voices: DBL-male to RMS-male (m2m), DBL-male to SLT-female

(m2f), SLT-female to RMS-male (f2m), and SLT-female to CLB-female (f2f). The

training data is composed of 800 utterances, while 20 utterances are used for

evaluation. Transcripts are aligned to utterances via forced alignment implemented

in p2fa-vislab1. No manual segmentation or adjustment is performed in these

experiments, so segmentation errors are prevalent.

We obtain frames using a 25ms analysis window and a 12.5ms hop size. To extract

exemplar features, we use 24-coefficient MFCCs, excluding the 0th energy coefficient,

and the YIN algorithm [16] for F0 detection. We compare our method (CUTE) with

two other unit selection voice conversion methods:

1https://github.com/ucbvislab/p2fa-vislab
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Figure 2.2: XAB test results. Our method (CUTE) has better quality than two
baseline methods (PUS and EUS – similar to those found in the literature). Label
‘all’ refers to aggregating the four preceding gender settings, while ‘lab’ refers to a
smaller experiment performed in the lab. Note that p-values ≈ 0 in all cases except
for EUS-m2f, EUS-f2m, and EUS-lab with p-values < 10−4.

1. Phoneme-level unit selection (PUS) [27]: We used the same phoneme segmen-

tation to extract the units. Unlike the experiments in the original paper, we did

not perform manual adjustment to phoneme segmentation. This is a baseline

used to show that using frame-level concatenation and phonetic pre-selection

can overcome segmentation problems.

2. Exemplar-based unit selection (EUS) [100]: This method is similar to our

method without triphone-based preselection and penalty reduction terms in

the Viterbi algorithms. In our experiments, we notice that noisy discontinuities

are substantially reduced via triphone-based preselection.

2.4.1 Subjective Evaluation

To compare the quality of the proposed method to the two baseline methods, we

conducted a subjective evaluation using an XAB test, as follows. We shuffle the order

of the 20 utterances, of which 16 are used to compare methods, and the remaining

four are used as a validation described below. For each utterance, we randomly select
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one out of four voice conversion settings (m2m, m2f, f2m, and f2f) and one of the two

baseline methods. The subject is shown three tracks: the reference track (X) followed

by two other tracks (A&B) – CUTE track and the baseline method, in random order.

A subject is asked to choose which sample (A or B) sounds more like the reference

track X. In the four validation tests, the A&B tracks (in random order) are our

method and a duplicate of the reference track X, which should easily be selected as

the preferred track. We assume that when a subject fails any validation tests they

are not paying careful attention, and we omit the data for all 20 utterances from that

experiment. For load-balancing on conversion tasks and methods, we ensure that

each assignment will contain all permutations of (conversion settings, method) twice

and validation tests once for each conversion setting.

We recruited subjects on the Amazon Mechanical Turk (MTurk), a crowdsourcing

platform that has become a common tool for perceptual and other human subjects

experiments [52]. In each task (called a HIT) the subject provided the 20 XAB

answers described above. Of 100 HITs we retain 95 valid results with 1520 (95× 16)

individual responses. As seen in Figure 2.2, our method (CUTE) is almost always

preferred when comparing to phoneme-level unit selection (PUS), with p-values ≈ 0

in all four cases. The lower quality of PUS is possibly due to segmentation errors

and insufficient units. CUTE is also strongly preferred over the exemplar-based unit

selection method (EUS) for same-gender voice conversion. For cross-gender tests, the

margin is smaller, but significant.

In order to corroborate these outcomes obtained on MTurk, we also ran a duplicate

experiment with only a dozen subjects recruited in the research lab at Adobe. Of

these, only 9 passed the validation test, insufficient data to break out the four separate

gender settings. Nevertheless, the aggregate results (labeled ‘lab’ in the figure) were

similar to the aggregate from MTurk (labeled ‘all’).
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Figure 2.3: ABX individuality test results. The performance of subjects is compared
between identifying voices for real samples and synthetic samples generated using the
proposed method.

We hypothesize two reasons for the significant improvement in CUTE: first, CUTE

overcomes phoneme segmentation errors by selecting new concatenation points: if

the query has two phonemes and in the candidate table there is no consecutive paths

between them, CUTE finds the best concatenation points within both phonemes that

produces the least cost. The new cut points are not necessarily at the recognized

boundaries that may deviate from the true boundary. Secondly, with triphone

preselection, we can reduce noise of concatenating small segments by enforcing less

breaks with a large break penalty. Triphone preselection ensures that these larger

segments are phonetically consistent with the source. Note that having a large

break penalty is not effective in pure frame-level unit selection as it over-smooths

the distance and thus may select chunks that are not phonetically consistent.

We also conducted 100 ABX tests on MTurk, in order to test if our method

preserves individuality claimed in the phoneme-level unit selection method [27]. In

these tests, a subject is presented with Person A’s and Person B’s voice samples

(same gender) and then an unknown sample X. The task is to choose which voice (A

or B) is that of the sample X. In these tests, X can be either an actual voice sample

from A or B, or generated using our proposed method (CUTE). As shown in Figure

26



2.3, the subjects have similar performance on generated samples and on real samples,

meaning individuality is well preserved in CUTE.

The audio clips and results of the experiments described in this section may be

found at http://voxogram.com/CUTE/.

2.4.2 Objective Evaluation

As an objective evaluation, we computed Mel-cepstral distortion (MCD) [88] to

measure the distortion between the target voice sample and the converted samples.

The results contradict the subjective evaluation results – MCDs of samples generated

by our method are about 1dB higher than those generated by EUS even though the

synthesized samples have better perceptual quality verified in the subjective listening

tests. We hypothesize two explanations: (1) we use query F0s to control the output

and therefore the prosody may vary from the target sample; as noted before, the

spectral envelope may vary with prosody – a natural sounding sample can have high

distance to other versions of it. (2) MCD is an over-smoothed measure of the spectral

envelope, artifacts and noises are evened out. We found that having a low break cost

would result in much lower MCD, but because of many breaks, the output sounds

noisy.

2.5 Summary and Discussion of CUTE

We have proposed a concatenative voice conversion method based on exemplars and

phonetic pre-selection of units. We defined two types of exemplars, target exemplar

and concatenation exemplar, to allow controlling the prosody with source examples

and enforce concatenation smoothness in the target samples. Using phoneme

information to pre-select the phonemes, we ensure the longest possible phonetically

correct segments to be used in concatenative synthesis. Experiments demonstrate that
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our CUTE method has better quality than previous exemplar-based voice conversion

methods and high individuality comparable to real samples. One limitation is that it

still suffers from the lack-of-data problem faced by phoneme-based unit selection

– sometimes the result is phonetically correct but unsatisfactory in prosody due

to the lack of samples with appropriate F0s. It also relies on speech recognition

for phoneme segmentation. Future work includes refining pre-selection to balance

phonetic correctness and prosodic continuity.
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Chapter 3

VoCo: Text-based Insertion and

Replacement in Audio Narration

Editing audio narration using conventional software typically involves many painstak-

ing low-level manipulations. Some state of the art systems allow the editor to work

in a text transcript of the narration, and perform select, cut, copy and paste opera-

tions directly in the transcript; these operations are then automatically applied to the

waveform in a straightforward manner. However, an obvious gap in the text-based

interface is the ability to type new words not appearing in the transcript, for example

inserting a new word for emphasis or replacing a misspoken word. While high-quality

voice synthesizers exist today, the challenge is to synthesize the new word in a voice

that matches the rest of the narration. This chapter presents a system that can syn-

thesize a new word or short phrase such that it blends seamlessly in the context of

the existing narration. Our approach is to use a text to speech synthesizer to say

the word in a generic voice, and then use voice conversion to convert it into a voice

that matches the narration. Offering a range of degrees of control to the editor, our

interface supports fully automatic synthesis, selection among a candidate set of alter-

native pronunciations, fine control over edit placements and pitch profiles, and even
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guidance by the editor’s own voice. The chapter presents studies showing that the

output of our method is preferred over baseline methods and often indistinguishable

from the original voice.

3.1 Introduction

Recorded audio narration plays a crucial role in many scenarios including animation,

computer games, demonstration videos, documentaries, and podcasts. After narra-

tion is recorded, most of these applications require editing. Typical audio editing

interfaces present a visualization of the audio waveform and provide the user with

standard select, cut, copy and paste operations (in addition to low-level operations

like time stretching, pitch bending, or envelope adjustment), which are applied to

the waveform itself. Such interfaces can be cumbersome, especially for non-experts.

Researchers have addressed this problem by aligning the waveform with a transcript

of the narration, and providing an interface wherein the user can perform cut-copy-

paste operations in the text of the transcript. Whittaker and Amento [98] and Ru-

bin et al. [69] show that this form of interface significantly reduces search and editing

time, and is preferred by users. State of the art video editing systems incorporate

audio-aligned transcript editors to facilitate search and editing tasks [6, 14].

While cut-copy-paste operations are supported, one aspect remains conspicuously

missing from text-based audio editors: insertion. It is easy for a person to type a

new word not appearing in the transcript, but it is not obvious how to synthesize

the corresponding audio. Nevertheless, in many circumstances inserting a new word

or phrase during editing would be useful, for example replacing a misspoken word

or inserting an adjective for emphasis. It is possible to record new audio of just the

missing word, but to do so requires access to the original voice talent. Moreover,

even when the original narrator, microphone and acoustic environment are available

30



for a new recording, it remains difficult to match the audio quality of an inserted

word or phrase to the context around it. Thus the insertion is often evident in the

edited audio, even while methods like that of Germain et al. [28] can ameliorate such

artifacts. Regardless, just as it is easier to type than to edit audio waveforms for cut

and paste operations, it is also easier to type for insertion or replacement rather than

record new audio.

This chapter introduces a method for synthesizing a word or short phrase to

be inserted into a narration, based on typing. The input is an existing recording

coupled with a transcript, as well as the text and location of the word to be inserted.

With the proliferation of voice-based interfaces, there now exist many high-quality

text-to-speech (TTS) synthesizers. The challenge in our problem is to automatically

synthesize the inserted word in a voice that sounds seamless in context – as if it were

uttered by the same person in the same recording as the rest of the narration (the

target voice). While it is possible to customize a speech synthesizer for a specific

target, conventional approaches (e.g., Acapela Group [1]) start from a large corpus

of example recordings (e.g., 10 hours) and require many hours of human annotation.

Our goal is to synthesize a word or short phrase (as opposed to a full sentence) that

reasonably matches the target voice in the context into which it is inserted, but based

on a much smaller corpus that lacks human annotation. Moreover, the synthesized

voice should have clarity (be free of noticeable artifacts like popping or muffling) and

individuality (sound like the target).

The key idea of our approach is to synthesize the inserted word using a similar TTS

voice (e.g., having correct gender) and then modify it to match the target using voice

conversion (making an utterance by one person sound as if it was made by another).

Voice conversion has been studied for decades, and the idea of using voice conversion

for TTS was proposed by Kain and Macon [36] in the 1990s. However, only recently

have voice conversion methods been able to achieve high individuality together with
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substantial clarity, for example the recent CUTE algorithm of Jin et al. [33]. Based

on a triphone model of human voice, CUTE performs a dynamic programming

optimization to find and assemble small snippets of the target voice from the corpus,

such that when concatenated they resemble the TTS word. This approach has related

ideas from computer graphics research, for example the image analogies method of

Hertzmann et al. [29] and the HelpingHand approach of Lu et al. [48].

This chapter introduces a method called VoCo that builds on CUTE and makes

several improvements suitable for our problem: (1) it improves synthesis quality by

introducing range selection to replace frame-level unit selection; (2) to accelerate

the optimization for use in our interactive application, it introduces a new two-

stage optimization approach (dynamic programming for selecting phoneme sequences,

followed by range selection to choose audio frames that match those phonemes); (3) it

introduces the notion of exchangeable triphones to achieve clarity with a smaller

corpus (20-40 minutes) than earlier methods; (4) it optimizes matching the context

of the insertion; and (5) for cases where the default output is unsatisfactory in quality

or prosody, it supports interfaces by which novices and/or experts can improve the

results – by choosing among a variety of alternative versions of the synthesized word,

adjusting the edit boundaries and pitch profiles of the concatenated audio clips, and

even adjusting the synthesis using the editor’s own voice.

We present studies showing that words synthesized by VoCo are perceived

as more natural than those produced by baseline methods (TTS and CUTE).

Moreover, the studies show that VoCo produces output that, more often than not, is

indistinguishable from the voice of the target speaker when inserted into a sentence.

These studies are conservative in the sense that the goal of being indistinguishable

from the target voice (for careful listeners) is stronger than the goal of being plausible

or acceptable in edited narration (for casual listeners). Finally, we describe another

study wherein an expert audio engineer painstakingly assembles snippets of the corpus
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to synthesize new words, and even this arduous process produces results that are

audibly inferior those of VoCo.

3.2 Related Work

Our approach offers several connections to work in computer graphics. The

optimization over triphones described in 3.4.3 builds on the seminal Video Rewrite

work of Bregler et al. [11]. Likewise, research like that of Stone et al. [76] and

Levine et al. [45] shows how natural gestures of animated characters can be driven

by speech. Finally our approach is closely related to work that relies on optimization

for example-based synthesis of textures over a scalar variable like time or arc-

length [48, 49].

Audio editing tools such as Adobe Audition and Audacity allow experts to edit

waveforms in a timeline interface. Audio manipulation is achieved by chaining

low-level signal processing tools that require expertise and knowledge to use.

However, such general-purpose editing tools typically do not have a specialized

speech processing interface, as they are unaware of the linguistic properties of

the signal. Therefore research-oriented speech editing tools such as Praat [10] and

STRAIGHT [38] allow a user to manipulate phonetic and linguistic aspects of speech

in a timeline where audio is presented synchronously with other properties such as

phonemes and pitches. Similar to this idea, recent research in this scope aims at

connecting average users with sophisticated speech processing tools using text and a

middle layer: Whittaker and Amento presents a voicemail editing interface that boosts

productivity with text-based navigation and word-level copy-and-paste. The idea of

using script to navigate a timeline is also employed by video authoring tools such

as the work of Casares et. al. [14], and recent versions of commercial software such

as Avid Media Composer. It is also adopted by video browsing and symmetrization
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tools such as Video Digest [63] and SceneSkim [62]. In speech editing, text is not

only used for browsing but editing as well: Berthouzoz et al. [6] created interview

video editing tool that allows an editor to place cuts and pauses by cutting words

and adding pauses in the transcript. They also show “suitablility” scores as colors

in the transcript to indicate suitable points to place cuts. Later, Rubin et al. [69]

presented an editing tool for audio stories that support cut, copy and paste in text

and selecting among different takes in the text. One important aspect of text-based

speech editing, however, is missing from these approaches – word replacement and

insertion, crucial for words that do not exist in the transcript. This is the main focus

of our work.

Kain and Macon [36] showed how to create new TTS voices with relatively little

data using voice conversion. Typical voice conversion methods represent voice

signals as parametric source-filter models in which the source approximates the vocal

cords that generate periodic or noise signals and the filter mimics the vocal tract

that shapes the source signal into the sounds we hear [87]. Then these methods

explicitly model a conversion function from one voice (source) to another (target) in

the parametric space. Given a new source (query), they apply the conversion function

and then re-synthesize actual signals from the converted parametric model. The most

classical conversion function is based on mapping over Gaussian Mixture Models

[90, 78]. Recent research has also explored other forms of probabilistic modeling [88],

matrix factorization [2] and deep neural networks [15, 19]. These approaches achieved

very low distortion in the parametric space but the output signal contains muffled

artifacts possibly not captured by the distortion measurement or introduced when

re-synthesizing from parametric representations of MFCC [19] or STRAIGHT [38].

The artifacts tend to be perceptible when inserting a converted word between words

of an existing speech signal, and thus unsuitable for our word insertion application.
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In another thread of voice conversion research, algorithms concatenate segments of

a target speaker’s voice to approximate the query; a method called unit selection is

used to select these segments such that they are close to the source in content and have

a smooth transition from one segment to the next [31]. Recent approaches in this this

thread differ in how units are defined and selected: for example Fujii et al. [27] segment

speech into phonemes and concatenate these phonemes to form new content. Another

thread of research performs frame-level unit selection (thereby increasing the number

of units) to overcome the shortage of voice samples [23]. Wu et al. [100] perform

unit selection on exemplars, time-frequency speech segments that span multiple

consecutive frames [65]. Although these methods produce words that are free from

muffled artifacts, they tend to have new problems with unnatural pitch contours and

noise due to discontinuities between units. The recent CUTE method Jin et al. [33]

further reduces distortion by a hybrid approach using phoneme-level pre-selection

and frame-level unit selection. Our method VoCo builds on CUTE and has several

improvements for better performance in word insertion.

3.3 Editing Interface

Our goal is to make editing narrations as simple as text editing for both novices

and experts, while providing a range of customization options for motivated and

advanced editors. To achieve this goal, our interface inherits the basic cut-copy-paste

functionality of the speech editor of Rubin et al. [69]. In addition our interface allows

a user to type new words (via insert or replace) and then automatically synthesize and

blend them into the audio context. A non-expert user can customize the synthesized

words by selecting among a number of alternative results. More experienced editors

can adjust the length, pitch and amplitude of the stitched audio snippets to further

refine the synthesis.
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Figure 3.1: Main Editing Interface. An editor can cut, copy and paste text in the
transcript in order to effect changes in the narration. Our main contribution is that
the editor can also replace existing words or type new words not in the narration (in
this case replacing papers with videos) and our system will synthesize a result that
matches the voice of the speaker.

3.3.1 Text-based Editor

To start, a user selects an audio recording and its corresponding transcript. Our

system aligns the loaded audio recording with the transcript and builds a customized

voice synthesizer based on the voice characteristics of the selected recording (Section

4.1.2). Then, the main editing interface launches, shown in Figure 3.1. The upper

part visualizes the audio waveform segmented by individual words. The lower part

displays the transcript and provides a text pad in which users can perform edits.

When playing back the audio, two cursors appear in synchronized locations in both

the audio and the text. A user can move the cursor by clicking on either the waveform

or the text. Basic operations including delete, cut, copy and paste are allowed in the

text editor. These operations will be reflected immediately in the audio visualizer.
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The primary contribution of this paper is that a user can also insert and replace words

via typing; the synthesizer will then synthesize the new words in the voice of the

person in the given recording and blend them into context as seamlessly as possible.

An edit button will appear and can be clicked if the user chooses to customize the

synthesis.

3.3.2 Alternative Syntheses

There are multiple ways to speak the same word, and therefore it is natural to provide

a user with alternative synthesis results. As shown in Figure 3.2, the alternative

results are organized in a list. Via radio buttons, the user can quickly listen to all

the alternatives, and then optionally change modes (by a checkbox) to listen to how

each alternative sounds in the context of the full sentence. Studies presented in 3.5

show that in general allowing the user to select among alternatives produces a more

natural sounding result.

Figure 3.2: Interface presenting alternative results. When the editor is not satisfied
with the default synthesis, this interface allows them to explore and choose among
several alternative pronunciations.
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3.3.3 Manual Editing

To allow users with audio editing skills to customize the synthesis result, we introduce

two advanced editing options which can be applied sequentially. Recall that the

synthesized word is created by stitching together snippets of words from the target

voice corpus. By clicking on the Edit button in the alternative syntheses window,

a user is presented with a new window containing multiple audio tracks that depict

these snippets. In Figure 3.3, a user can adjust the boundaries of the snippets, change

the lengths and find new stitching points. After previous changes are confirmed, a

second window appears (Figure 3.4) that allows the user to adjust the pitch contour

of each snippet (shown as a graph of dots) either by dragging handles or by choosing

one of a pre-selected set of pitch profiles shown at the bottom of the window. This

window also allows the editor to adjust the amplitude and/or duration of each snippet

by dragging the top or sides of the box that surrounds it. Finally, as an alternative

to manually adjusting the pitch and timing, a user can speak into a microphone

to demonstrate how a target word should be spoken. The target word will then

be re-synthesized taking into account the users’ pitch and timing features. Studies

presented in 3.5 show that manual editing can further improve on words selected via

alternative syntheses.

3.4 Algorithms

Our word replacement and insertion tasks require synthesizing new audio based on

typed text, a process often referred to as text-to-speech (TTS) synthesis. State of

the art commercial TTS systems rely on a large corpus with a significant amount of

manual annotation [93], neither of which is available in our setting. In order to build

a target TTS synthesizer for an arbitrary target voice with a relatively small amount
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Figure 3.3: More advanced users can have fine-grain control over the boundaries of
audio snippets selected by our algorithm.

of data and no manual annotation, we perform voice conversion with the following

procedure:

1. Corpus preparation - We first align the target speaker’s speech samples to

the transcript using a forced alignment algorithm [74]. This method converts

the transcript to phoneme sequences and then establishes the mapping between

phonemes and speech samples in time. This step is also used by existing text-

based speech editors such as that of Rubin et al. [69].

2. TTS selection and preparation - Given the target speaker’s speech recording

and transcript, we first choose an existing synthetic voice, the source TTS, which

sounds similar to the target. This is done by sampling several sentences from

the target speaker’s narration, and synthesizing the same content in a variety

of TTS voices. Then we calculate the acoustic distances between the target and

each of the TTS voices using Mel-Cepstral Distortion (MCD) [44], a metric that

measures spectral difference between two audio samples. We use the TTS voice

with the lowest MCD distance to the target, as the source TTS voice.
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Figure 3.4: Advanced editors can manually adjust pitch profile, amplitude and snippet
duration. Novice users can choose from a pre-defined set of pitch profiles (bottom),
or record their own voice as an exemplar to control pitch and timing (top).

3. Building a voice converter - We build a voice converter based on parallel

samples of the source and target voices. Since we have the target narration

and transcript, we use the source TTS to synthesize the parallel speech in the

source speaker’s voice. We therefore do not need a pre-existing parallel speech

corpus. Similar to the target voice, we segment the source voice into phonemes

using forced alignment. The segmented audio and transcript (both source and

target) serve as the training data for the proposed data-driven voice converter

(Section 3.4.1 through 3.4.4).

4. Synthesis and blending - Given a new word, we synthesize the corresponding

audio using the source TTS, transform the result using the trained voice

converter to make it sound like the target speaker, and finally insert the

synthesized word into the given context using cross fade.
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3.4.1 CUTE voice conversion

In this section we describe CUTE, the voice conversion method recently introduced

by Jin et al. [33]. As noted above, we use voice conversion to convert our source

voice (produced by TTS) to match our target voice. CUTE is a data-driven voice

conversion approach that uses the source voice as a query and searches for snippets

of the target voice that as much as possible sound similar to the query, while also

matching at the stitch boundaries. CUTE first segments both the source and target

audio into small, equally-sized windows called frames. It then needs to find the

optimal sequence of frames of the target voice in order to perform the synthesis.

It does so via an optimization that minimizes two costs: matching cost between the

selected target and the source frames and concatenation cost between adjacent frames.

This optimization can be performed via dynamic programming, much as drawing

gestures are stitched together in the HelpingHand approach of Lu et al. [48]. For

interactive performance, CUTE relies on triphone preselection, which limits the search

space to a small number of candidate frames, and is crucial in preserving synthesis

quality. In particular, rather than using the KNN algorithm as in HelpingHand,

CUTE selects candidates that are phonetically consistent with the query, meaning

they share a similar sequence of triphones. 3.4.2–3.4.4 offer several quality and

performance improvements over CUTE. Nevertheless, we briefly describe CUTE here

as a baseline approach for voice conversion in our system:

1. Frame-by-frame alignment: First, we segment the audio into frames (in our

implementation, the window size is 25ms and consecutive frames overlap by 5ms%).

Next, we apply Dynamic Time Warping (DTW) to align the source frames with the

target frames using a distance metric defined as the Euclidean distance between the

corresponding MFCC features [54].

2. Feature extraction and exemplars: For both source and target voices, we

extract the per-frame MFCC and F0 feature vectors. The F0 vectors representing the
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fundamental frequency (also referred to as pitch) are normalized to the target voice’s

F0 range using a logarithmic Gaussian normalized transformation [88]. We concate-

nate the feature vectors of 2n + 1 consecutive frames into exemplars [100]. These

exemplars not only encode frequencies, but also temporal variation in frequencies.

Using the frame alignment from the first stage, we combine the source MFCC

exemplars and target F0 exemplars into joint matching exemplars. Minimizing

distance between the query and matching exemplars helps the synthesized voice

sound like the query. Likewise, the target MFCC and F0 exemplars are combined into

concatenation exemplars ; minimizing the distance between neighboring concatenation

exemplars encourages smoothness at stitch boundaries.

3. Triphone preselection: For performance, this step removes frames that are

unlikely to be selected in the matching step. Based on phoneme segmentation, each

frame is assigned a phoneme label. These labels are further converted to triphones

– a phoneme and its two neighbors. For example, the triphones for the word “user”

(phonemes: Y UW1 Z ER0) are

(st)_Y_UW1, Y_UW1_Z, UW1_Z_ER0, Z_ER0_(ed)

where (st) and (ed) label the beginning and the end of a sentence. For each query

frame (source voice), frames (target voice) that share the same triphone label are

selected as candidate matches. If there are no exact triphone matches, CUTE selects

the frames in which either the first two or last two phonemes (called diphones) match

with the query triphone. Likewise, if no diphones are available, candidates that only

match the central phoneme (monophone) are selected. This way, frames that are

most phonetically similar to the query are preserved for the next step.

5. Matching: In the speech synthesis literature, this matching step is called

unit selection [87]. Based on the candidate table, the Viterbi algorithm [26] is

used to select one candidate frame per query frame such that the sum of two

cost functions are minimized. The first is matching cost, defined as the Euclidean
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distance between the query exemplar and the candidate’s matching exemplar. The

second is concatenation cost designed to characterize the distortion introduced by

concatenating two candidates. It is the product of three terms, break cost, smoothness

cost and significance cost. The two cost functions together, aim to choose candidates

that result in the least number of breaks and if there are breaks, they are in the least

significant part of the synthesis and their transition is smooth.

6. Concatenation: Consider sequences of consecutive frames as audio snippets

– we need to combine these snippets at their stitch points. We use the WSOLA

algorithm of Roelands and Verhelst [68] to find the overlapping areas between adjacent

snippets where the waveforms are most similar to one another, and blend the snippets

together using a cross-fade.

We have implemented CUTE for our application, and as shown by experiments

described in 3.5, the quality of the synthesized result is often satisfactory. However,

CUTE has several drawbacks in our context. First, CUTE is slow whenever matching

triphones are not found in the preselection stage. In that case CUTE falls back on

diphones or monophones, of which there is a much larger candidate pool, making

the candidate table very large. Second, the CUTE algorithm searches for snippets

that match at internal stitch boundaries, but does not optimize for blending an

inserted word into its context – sometimes leading to audible artifacts. Third, CUTE

has difficulty with accents. Suppose the source and target speakers use different

pronunciations (both of which are valid) for the same word in the same context.

When synthesizing the same word, CUTE cannot emulate the target speaker’s accent

because of mismatched phonemes between the query and the candidates. Finally,

CUTE sometimes fails to synthesize natural sounding prosody. This is especially the

case when we have limited training data, as the selected segments might have pitch

discontinuities at the stitch boundaries.
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In the remainder of this section we introduce several improvements to CUTE

that address these limitations: use of Exchangeable Triphones allows for alternative

pronunciations. Dynamic Triphone Preselection further minimizes the search space

while preserving meaningful candidates. Range Selection replaces the traditional Unit

Selection described above with a faster method for selecting audio snippets directly.

Finally we introduce an approach for generating Alternative Synthesis Results that all

tend to sound reasonable but emphasize different characteristics of the target voice.

3.4.2 Exchangeable Triphones

Recall that when CUTE cannot find an exact triphone match, it falls back on diphones

or monophones, which leads to a much larger candidate set containing worse matches,

which impacts quality and performance. Here we introduce two types of exchangeable

triphones that expand the triphone matching to include similar triphones that lead

to only a slightly different pronunciation, while maintaining a much smaller search

space than the diphone fallback.

Word-based Exchangeable Triphones come from a word-to-phoneme dictionary

like the one used in the aforementioned forced alignment process [74]. Some of the

triphones in a word are exchangeable because alternative pronunciations of the word

exist. For example the word “this” has two pronunciations, DH IH1 S and DH AH0 S,

in the dictionary. So when we search for one of those triphones in our corpus, we will

accept the other as a valid match as well.

Accent Exchangeable Triphones are not defined in dictionaries, but rather are

discovered via the phoneme alignment component of the DTW-based source to

target alignment process outlined above in the first stage of the CUTE algorithm

(Section 3.4.1). In that stage, we discover cases where the source tends to utter one

triphone whereas the target utters a different triphone, when saying the same text.

Figure 3.5 shows an example of such phoneme alignment. In this example (third
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Figure 3.5: Alignment of two phoneme sequences (source above and target below).
Red lines indicate a match whereas blue lines show mismatching phonemes (and thus
suggest potential accent mappings).

and fourth rows), we find that D AH0 N and D IH1 N are exchangeable. Therefore,

just as with word-based exchangeable triphones above, we allow matches between

these triphones when searching the corpus. This allows for a target speaker with a

particular accent to be better matched with the more generic source TTS voice.

3.4.3 Dynamic Triphone Preselection (DTP)

When a query triphone has no matches in the corpus, the CUTE algorithm instead

fills the candidate table with diphones or monophones as described above. This

is somewhat ameliorated by the exchangeable triphones introduced in the previous

section. Nevertheless, the problem can still occur. Since the complexity of the

Viterbi algorithm scales quadratically with the number of candidates, having a large

number of inferior candidates (matching only the diphones and monophones parts)

is undesirable. Moreover, not all diphones are necessary. When the matching step

imposes a large break penalty for snippet boundaries, only segments with the smallest

number of breaks tend to be selected. Therefore we can remove candidates that might

result in larger number of breaks from the candidate table. Essentially what we do

is perform a dynamic programming optimization at the phoneme level, to reduce the

45



Figure 3.6: Dynamic triphone preselection. For each query triphone (top) we find
a candidate set of good potential matches (columns below). Good paths through
this set minimize differences from the query, number and severity of breaks, and
contextual mismatches between neighboring triphones.

set of candidates to only those triphone sequences with the optimal number of breaks.

This hugely accelerates the frame-level search that follows (Section 3.4.4).

To construct an optimally compact frame candidate table, we first perform

Dynamic Triphone Preselection, or DTP, at the phoneme level to obtain a triphone

candidate table. We call audio frames spanning a phoneme, a phoneme segment. One

triphone can have multiple matching phoneme segments. The goal of DTP is to select

a small set of segments per query triphone such that the sequences of frames that

have the minimal number of breaks are contained. In other words, this method finds

optimal paths through phoneme segments that contain minimal number of breaks

and then merges them into the candidate table.

The method is illustrated in Figure 3.6. For each query triphone q, we first

initialize its candidate table with all matching Triphones, with exchangeable triphones

also included. Similar to the triphone preselection step, when exact matches are
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unavailable, diphones and monophones are used instead. Between neighboring

phonemes, some segments are consecutive (dotted links) in the original target speech

and some are not. Non-consecutive phoneme segments will surely introduce a break

in the matching step and thus should be minimized with priority. We also want

to minimize the number of neighboring Triphone segments that do not match, e.g.

sp S I and P I G, because they are likely to cause audible distortion when they are

stitched together. Finally, we should also minimize the number of Diphones and

Interchangeable Triphones because they are an approximation to the desired Triphone

in the query. Putting all these criteria together, this problem is to minimize an

energy function of matching cost (similarity between query Triphone and a candidate

Triphone segment) and concatenation cost (whether there is a break and whether a

segment matches its previous segment’s Triphone). This is very similar to those in the

matching step of CUTE and HelpingHand [48], and can be solved with the Viterbi

Algorithm. Figure 3.6 shows an example optimal solution. Note that there could be

multiple optimal paths, and all of them should be included. Finally, we retain only

the triphone segments that are included in the optimal paths and omit the rest. The

retained segments form the input to the range selection step that follows.

3.4.4 Range Selection

In the matching step of the CUTE algorithm, the preselected triphones are translated

into corresponding frames and the optimal sequence of frames are selected using

the unit selection. This section introduces a new method called Range Selection,

to replace Unit Selection. Instead of selecting individual frames and indirectly

encouraging continuity using a high concatenation cost, Range Selection selects ranges

of consecutive frames directly by choosing their starting and ending boundaries so that

the sequences sound similar to the query in terms of phonemes and pace and contain

little distortion at stitching points (Figure 3.7).
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Figure 3.7: Range selection objective illustrated. The blue bars are the query
phonemes with length proportional to their duration. The gray wider bar are
candidate segments; consecutive segments are visually next to each other. The orange
bar depicts one possible selection of the candidates while the arrows show where
stitching occurs between the selected range of segments.

Selecting a range of frames instead of individual ones offers several advantages: (1)

it allows the definition of similarity at the sequence level and thus more sophisticated

similarity measures such as Mel-Cepstral Distortion can be used; (2) it is an order

of magnitude faster than frame level unit selection – by a factor of average number

of frames per phoneme; and (3) it includes duration of phonemes as part of the cost

function, offering explicit controls on the pace of the resulting synthesis – it is superior

to the skip and repeat costs in unit selection, which do not have a direct influence on

the duration of the synthesized signal.

Based on pre-selected phoneme segments, Range Selection finds a small set of

subsequences from those segments or “range”, expressed by its starting and ending

frame numbers. We use 〈s, t〉 to present a range from Frame s to Frame t. Since

dynamic triphone preselection (Section 3.4.3) ensures that breaks will only occur

once per phoneme, we can limit the number of ranges selected per phoneme to be at

most two (e.g. Phoneme I in Figure 3.7). It means for each query phoneme, at most
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two candidate segments are considered, and the ranges we select from them are their

subsequences.

Since only one break is allowed per phoneme, the break will occur in one of the two

locations: (Case 1) inside a phoneme, e.g., the break inside Phoneme I in Figure 3.7;

and (Case 2) between two phonemes, e.g., the break between Phoneme G and R in

Figure 3.7. In Case 1, the range selected must cover the beginning of phoneme (first

candidate of Phoneme I) because otherwise it will introduce one more break, violating

the rule. Then it will transition to either another candidate in the same phoneme

(second candidate of Phoneme I) or to the next phoneme (phoneme G transitioning

to R). Note that transitioning to another candidate of the same phoneme means a

second range is selected and the second range must extend to the end of the phoneme

(second candidate of Phoneme I); otherwise an extra break will occur. In Case 2,

there should be only one range selected inside the phoneme because if there are two,

one more break is introduced.

To optimize for similarity, smooth transition and pace, we define an objective

function in the following way. Let Rij be the j-th candidate segment for Phoneme i

chosen by DTP. Each segment can be represented with two numbers, the beginning

and ending frame indices, Rij = 〈bij, eij〉 = {bij, bij + 1, ..., eij}. Let variable Rik be

the k-th selected range for phoneme i, where Rik = 〈sik, tik〉. Define the set of ranges

selected for Phoneme i as Ri = {Rik | k ∈ (1, Ki)} where Ki ∈ 1, 2 is the number

of ranges selected for Phoneme i. Range Selection minimizes the following function:

Ors =
n∑
i=1

(αS(qi,Ri) + βL(qi,Ri)) +
n∑
i=1

Ci +
n∑
i=2

Di (3.1)

where qi is the i-th query phoneme; Functions S and L measure similarity cost and the

duration cost between the query phoneme and the selected ranges Ri. Their weights

are controlled by a constant value alpha and beta. Functions Ci and Di are two types
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of concatenation costs that penalizes concatenating ranges that are dissimilar to one

another at the boundaries [17]. Ci is used for a concatenation point in the middle

of a segment (Case 1) and Di for a concatenation point at the beginning (Case 2).

Through our experiments, we found that balancing between concatenation, similarity

and duration cost (α = 1 and β = 6) is most likely to produce good results. The above

optimization problem can be solved efficiently with dynamic programming, described

in the next section.

3.4.5 Dynamic Programing for Range Selection

Range selection aims to find a small set of consecutive frames (ranges) that are similar

to the query and then combine them together to obtain the final synthesis result.

In this section, we present the algorithmic details and more precise mathematical

definitions about Range Selection. To recap, a range , denoted as 〈s, t〉, is defined

as a sequence of frames starting from index s to t. The j-th candidate segment

of phoneme i is Rij = 〈bij, eij〉. Our objective is to select ranges Rik = 〈sik, tik〉

that minimizes Equation 3.1. We denote the collection of ranges selected for i-th

phoneme as Ri = {Rik | k ∈ (1, Ki)}, assuming there are Ki ranges selected for

that phoneme (Ki ∈ {1, 2}).

In Equation 3.1, the concatenation costs Ci and Di are defined as follows:

Ci =

 0 if Ki = 1

C(ti1, si2) if Ki = 2
Di = C(ti−1,Ki−1

, si1)

where function C(t, s) represents the distortion transitioning from Frame t to Frame

s. In this section, we define C(t, s) as the Euclidean distance between the exemplar

feature of Frame t to that of Frame s. For other cost functions in Equation 3.1, we

define similarity cost S as Mel-Cepstral Distortion and the duration cost L(r1, r2) as

the log of the ratio between the length of r1 and the length of r2.
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Because we limit the number of ranges per phoneme to be at most two, there are

two types for each phoneme (1) choose two ranges, one starts from phoneme boundary

(we call it Pre) and the other ends at a phoneme boundary (we call it Post). (2)

choose only 1 range, starting and ending in the same phoneme segment; we call its

starting point Start and ending point End.

This allows us to use dynamic programming to solve the general optimization

defined in equation 3.1 efficiently. Let ni be the number of candidates for phoneme

i. For a segment 〈bij, eij〉j=1...ni
, the only valid ranges set for each query phoneme i

should belong to one of the following two sets: Pre(i)×Post(i) ≡ {{rpre, rpost}|rpre ∈

Pre(i), rpost ∈ Post(i)} and Start(i) ⊗ End(i) ≡ {< b, e > |j ∈ [ni], b ∈

Start(i, j), e ∈ End(i, j), b < e} where,

Pre(i) = {〈bij, bij + k〉|j ∈ [ni], k ∈ [eij − bij]}

Post(i) = {〈bij + k, eij〉|j ∈ [ni], k ∈ [eij − bij]}

Start(i, j) = {bij, bij + 1, ..., eij − 1}

End(i, j) = {bij + 1, bij + 2, ..., eij}

Start(i) =

ni⋃
j=1

Start(i, j), End(i) =

ni⋃
j=1

End(i, j)

For example, if a segment contains frame 1 through 3, then the above four sets are:

Pre = {〈1, 2〉, 〈1, 3〉}, Post = {〈1, 3〉, 〈2, 3〉}, Start = {1, 2} and End = {2, 3}. And

the valid ranges are: Pre×Post = {{〈1, 2〉, 〈1, 3〉}, {〈1, 2〉, 〈2, 3〉}, {〈1, 3〉, 〈1, 3〉}, {〈1, 3〉, 〈2, 3〉}}

and

Start ⊗ End = {{〈1, 2〉}, {〈1, 3〉}, {〈2, 3〉}}. Because we are looking at one phoneme

here (i = 1), we omit i from the equation. We can assume these sets are ordered for

simplicity.

Now the task becomes selecting a subset of these valid ranges to minimize the

objective function. First we prepare a minimal cost table: for each phoneme i,
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Figure 3.8: Range selection algorithm illustrated. Above: the frames selected by
dynamic triphone preselection, numbered by frame indices. Below: the dynamic
programming table, where each box shows the frame-range it represents; the
connections between boxes show dynamic programming dependencies. The orange
boxes and connections show an example solution, wherein frame ranges 1-4, 5-6, 10-
11 and 12-13 are selected.

we create a note for each of the elements in the above 4 sets, Pre(i), Post(i),

{Start(i, j)}j and {End(i, j)}j. Let F (Pre, i, j) be the corresponding frames of j-

th element in set Pre(i) and Mpre,i,j be its minimal cost. We do the same for Post,

Start and End. Then we can derive the following dynamic programming algorithm

that selects a transition path through the table that combines ranges to obtain a

minimal cost M :

For Start and Pre, their preceding ranges are always from the previous phoneme.

Therefore, the minimal cost M is defined to be the smallest of all their preceding

ranges ’ minimal costs M plus concatenation cost C. If the ranges are consecutive,
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the concatenation cost is 0. Here is the complete mathematical definition.

MPre,i,j = min(

min
t
{MPost,i−1,t + C(FPost,i−1,t, FPre,i,j)},

min
t
{MEnd,i−1,t + C(FEnd,i−1,t, FPre,i,j)})

MStart,i,j = min(

min
t
{MPost,i−1,t + C(FPost,i−1,t, FStart,i,j)},

min
t
{MEnd,i−1,t + C(Fpost,i−1,t, FStart,i,j)})

For each Post range, when combined with a preceding Pre range, they form a valid

range choice for the current phoneme. Then we can use the corresponding frames

to determine the similarity cost and the duration cost. If Pre and Post are not

consecutive, then there will be a concatenation cost. Therefore,

MPost,i,j = min
t
{MPre,i,t + αS(qi, {FPre,i,t, FPost,i,j})

+ βL(qi, {FPre,i,t, FPost,i,j})

+ C(FPre,i,t, FPost,i,j)}

in which the definition of α, β, S and L follows the same definition used in Equation

1. Similarly, combining an End range with a Start range forms a valid range choice

that defines the similarity and duration cost. Since there is only one range selected,

there is no concatenation cost. Therefore,

MEnd,i,j = min
t
{MStart,i,t + αS(qi, {〈FStart,i,t, FEnd,i,j〉})

+ βL(qi, {〈FStart,i,t, FEnd,i,j〉})}
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Using back trace, we can extract the selected ranges that produce the minimal cost.

Figure 3.8 shows an example selection result. When combined, the final selected

frames form two consecutive: segments: 1-6 and 10-13.

Range Selection is more efficient than Unit selection. Suppose each query phoneme

lasts m frames and has n candidates. Unit selection has a complexity of O(mn2)

per phoneme with the Viterbi algorithm. In Range selection, however, the list

of candidates per phoneme contain O(n) rows and only 2 columns (Figure 3.8).

Therefore, the complexity of Range selection per phoneme is O(n2). Because of

the efficiency, we can mass produce selection results for all possible values of α and

β, which leads to alternative Syntheses (Section 3.4.6).

3.4.6 Alternative Syntheses

While the default range selection method uses predefined α and β values in our

experiments, alternative syntheses can be produced by using different combinations

of α and β. Since α is the weight of similarity, the higher the value of α, the closer to

the query the synthesis sounds will be, in both pitch and timbre. A higher α is more

likely to lead to stitching distortion while a lower α is likely to lead to a smoother

synthesis result since it is less restricted in terms of pitch and timbre. Similarly,

higher β makes the duration of the synthesis closer to the query while lower β is

less restrictive in terms of duration. Since range selection is effecient, we can quickly

produce a grid of results, varying α and β in log space (Figure 3.9).

Though there are many of cells in the grid, only a handful sound unique. We

group synthesis results using the same phoneme segments and color-code the grid

by group. Inside each group, we retrieve a representative result by choosing the one

with the minimal number of breaks. The most representative nodes in Figure 3.9 are

marked with dots. These comprise the alternatives presented to the user, as shown

in Figure 3.2.

54



3.5 Experiments and Results

This section describes some synthesis results, as well as several studies wherein we

asked subjects to evaluate the quality of these results. The audio files used in these

experiments can be found at our project web page: http://gfx.cs.princeton.edu/

pubs/Jin_2017_VTI/

3.5.1 Synthesis Examples

In this section we show some example results from our speech synthesis algorithm to

demonstrate how our proposed method achieves the goals of contextual smoothness

Figure 3.9: Alternative syntheses. A grid of results produced by varying values of
α and β for range selection. Each cell represents one alternative, and they are color
coded such that similar results have the same color.
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and having as few breaks as possible. The CMU Arctic dataset [43] is used in these

experiments.

Figure 3.10 shows a first example, where we synthesize the word “purchase” and

insert into a recording where it is surrounded by silence. Multiple copies of the word

“purchase” exist in the corpus, but because they are all chained with neighboring

context words they would be unsuitable for simply copying into a silent context.

Instead, our algorithm finds a different combination of audio pieces where PUR is

from “pursue” (preceded by silence) and ASE is from the ending of “this” (followed

by silence). Between those fragments, the middle part of “speeches” connects them.

Note that because of exchangeable triphones, Z and S are allowed to be matched.

Query 

N AA1 T

NOT

sp

sp

P ER0 S UW1

PURSUE

DHAH0

THE

Query 

M IH1NAH0T

MINUTE

S P IY1 CH AH0 Z

SPEECHES

sp

sp

Query 

F AO1 R

FOR

DH AH0 S

THIS

sp

sp

sp PURCHASE sp

Figure 3.10: Synthesis example: the word “purchase” placed in a silent context (not
audibly linked to neighboring words). The query is above, segmented by where breaks
occur in the synthesis result. The text beneath it shows the spans of words. The
following three chunks of waveform show the snippets of audio that are concatenated
during synthesis (green, purple, green). For visualization, the query waveform is
stretched or compressed to match the length of chunks below.
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The next example is a homophone. The query is “prophet” without context. The

result we obtained has no break at all. It is one solid piece of the word “profit”.

This demonstrates our approach not only finds exact word matches if they exist, it

also finds homophones if they fit. The two lines below this paragraph show the query

and the piece(s) used to synthesize that query. The first row is the query’s phoneme

decomposition. Then the row below it shows information about a piece, including

sentence ID, frame numbers, phonemes and words contained in this piece.

Query: P R AA1 F AH0 T (prophet)

u0518: (334-407) P|R|AA1|F|AH0|T (profit)

The third example is alternative synthesis. When putting the word “poison”

between “the” and “of the strange vegetation”, we obtain alternative combinations

of pieces that have different prosody and styles:

Query: P OY1 Z AH0 N (poison)

COMBINATION 1:

u0277: (359-448) P|OY1|Z|AH0|N (poisonous)

COMBINATION 2:

u0277: (359-402) P|OY1 (poisonous)

u0412: (107-120) Z (is)

u0519: (243-277) Z|AH0|N (is in)

COMBINATION 3:

u0141: (309-354) P|OY1 (pointing)

u0020: (073-121) Z|AH0|N (clubs and)

Although the second alternative combination has the largest number of breaks, it

sounds most natural within the context. It is selected in the sampling method because

it has competitive pitch continuity with other alternative syntheses. Also note that

we select segments across words if there is no silence detected between them.
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3.5.2 Mean Opinion Score Test

We conducted two experiments in Technical Turk to evaluate our methods. The first

one is a Mean Opinion Score (MOS) test [51] that asks subjects to rate the quality of

the inserted synthetic words. The second one is an identification test where subjects

will tell whether they think a sentence has been edited or not. Four voices, two

male and two female, from the CMU Arctic dataset, are used to create test samples.

We used the first 800 utterances (40 minutes) for training and the remaining 332

utterances for word replacement. We randomly choose 44 words that spans 4 to

11 phonemes from 44 different sentences. For each sentence, we remove the chosen

word, synthesize the word and insert it in the same location to create a recording

with one word altered. We synthesize the same word using various other methods for

comparison. There are 6 conditions where sentences are made:

• Synth. We use the source TTS voice to synthesize the word and put into

context.

• CUTE. Based on our word synthesis framework, we use CUTE instead of VoCo

for the voice conversion.

• Auto. Our method using pre-defined α and β values in range selection.

• Choose. We manually choose one synthesis from a number of alternatives (up

to 16), if it improves on Auto above.

• Edit. We use the editing interface to further refine the synthesis, if it improves

on Auto/Choose.

• Real. the actual recording without modification.

In each MOS test, we present a subject with a recording drawn randomly from 44

sentences and 6 conditions above. They are informed that each sentence has one word
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Synth CUTE AutoChoose Edit Real
1

2

3

4

5
Male2(BDL)

all(44)

edited(25)

Synth CUTE AutoChoose Edit Real
1

2

3

4

5
Female1(SLT)

all(44)

edited(23)

Synth CUTE AutoChoose Edit Real
1

2

3

4

5
Male1(RMS)

all(44)

edited(23)

Synth CUTE AutoChoose Edit Real
1

2

3

4

5
Female2(CLB)

all(44)

edited(11)

Figure 3.11: These mean opinion score tests show that VoCo synthesis results are
generally perceived as higher quality than those of baseline methods, scored on a
Likert scale from 1=bad to 5=excellent.

corrupted but restored by a computer program. They are asked to listen and rate the

quality of the restored sentence on a Likert scale: 1 = bad (very annoying), 2 = poor

(annoying), 3 = fair (slightly annoying), 4 = good (perceptible but not annoying)

and 5 = excellent (imperceptible, almost real). They can play the recording multiple

times.

On Amazon Mechanical Turk, we launched 400 HITs, 100 per voice. At the

beginning of each HIT, we use a warmup question to get the subject familiar to the

voice they are about to hear, where they are asked to choose a word heard in a long

sentence. In each HIT, a subject is presented with 32 different sentences in which 24

of them are made of 4 instances from the above 6 conditions. From a held-out set
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of sentences, we add 4 more instances of the “Real” condition and 4 more cases of

badly edited “Synth” condition to validate that the subject is paying attention and

not guessing randomly. For the data to be retained, the subject may make at most

one mistake on these validation tests, by either rating < 3 on “Real” examples or > 3

on “Synth” examples. The sentences and conditions are globally load-balanced using

a database, so that we cover every sentence-condition combination a similar number

of times.

In the end, we collected 365 valid HITs (out of 400 issued). For each condition

per voice, we average all the ratings to produce the bar plot shown in Figure 4.8.

The blue bars show average rating of all sentences while the yellow bars only include

sentences that were manually edited (because it improved on the automatic method).

From the blue bars, we can see that the MOS is ascending in the order of Synth,

CUTE, Auto, Choose, Edit and Real. The average scores for Auto, Choose and

Edit are both over “Good” and they significantly outperform CUTE that resides in

the range of “fair”. For the male voice “RMS” specifically, the rating is very close

to “Real” example. From the results on Edited examples, we can see all methods

generally have reduced rating because these examples are hard to synthesize and thus

require editing. We also notice that “Edit” consistently outperform “Choose”, which

indicates that manual editing is useful in improving quality for some sentences.

3.5.3 Identification Test

In the Identification test, a subject is presented one sentence drawn from the six

conditions described above (Synth, CUTE, Auto, Choose, Edit and Real) and

informed that there may or may not be one word edited using a computer. The task

is to identify if the recording is original or edited. In this experiment, we released

440 HITs on Mechanical Turk, 110 for each voice. These HITs incorporate the same

warm-up question as in the MOS test, as well as the same procedure relying on held-
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SynthCUTE AutoChooseEdit Real
0

0.2

0.4

0.6

0.8

1
Female1(SLT)

all(44)

edited(23)

SynthCUTE AutoChooseEdit Real
0

0.2

0.4

0.6

0.8

1
Female2(CLB)

all(44)

edited(11)

SynthCUTE AutoChooseEdit Real
0

0.2

0.4

0.6

0.8

1
Male1(RMS)

all(44)

edited(23)

SynthCUTE AutoChooseEdit Real
0

0.2

0.4

0.6

0.8

1
Male2(BDL)

all(44)

edited(25)

Figure 3.12: Identification tests show that VoCo synthesis results are more likely
identified as original recordings than other baseline methods, shown here as a fraction
of people who identify the recordings as original.

out sentences for validation with at most one mistake allowed. Each HIT contains

24 actual test sentences drawn randomly from the six conditions, together with 8

validation sentences. The sentences and conditions are load-balanced such that no

sentence is repeated during a HIT, and globally all pairs of sentence and condition

are covered roughly uniformly.

For this experiment we collected 391 valid HITs in total (out of 440 issued). For

each method in each voice, we compute the percentage of subjects who think the

recordings they heard are original. As with the MOS tests, we show both the results

for all sentences as well as just the edited sentences in Figure 4.10. From the blue bars

(all sentences), we observe that the likelihood of a synthesis being identified as original
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ascends in the order: Synth, CUTE, Auto, Choose, Edit. The chance that Auto is

confused with an actual recording is on average 57% for the female voices and 68%

for the male voices which is significantly higher than those of CUTE (43% and 53%).

Based on Fisher’s exact test, Auto improves on CUTE with p << 1×10−16, indicating

that our fully-automatic approach performs significantly better than a state of the

art method for this task. Likewise Choose improves over Auto with p < 2 × 10−5,

meaning that choosing among alternatives improves the results, at least in some cases.

We also find that Edit improves on Choose (p < 0.027 using Fisher exact test), with

significance even though manual editing is used only in difficult cases where choosing

among alternatives does not yield adequate results.

For the Edit condition, the chance of being confused with actual recordings is 71%

for female voices and 76% for male voices. This performance gap between female and

male voices is reduced with alternative syntheses and manual editing. Note, however,

that this gap is not observed at all in the MOS test, where our method performs

equally well on female and male voices. We speculate that this difference is observed

because males voices generally sound noisier than female voices, and the noise obscures

discontinuities introduced by piecing together audio snippets. Evidence supporting

this hypothesis is revealed in Figure 3.13. The probability of a synthesized word

being identified as real is plotted as a function of the number of breaks points in

synthesizing a word using the fully automatic method. For female voices there is a

strong descending trend whereas the trend is less strong for male voices.

3.5.4 Human synthesis

VoCo makes it possible for non-experts to insert and replace words in audio narration

by typing. But does it make editing easier and/or generate better results for audio

experts? To answer these questions, we asked two audio experts to manually create

new words and insert them into a sentence using software tools with which they were
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Figure 3.13: Identification test results as a function of number of breaks in the
synthesis. For female voices, the result degrades significantly as the number of breaks
increase while in male voices, the trend is less strong.

familiar. One expert chose to work with the open-source audio editor Audacity1 while

the other used commercial application Adobe Audition.2 Four words – mentioned,

director, benefit and television – were were picked for the task because they contain

non-trivial numbers of phonemes and there were sufficient triphones to synthesize

them in the corpus. The experts were presented with 80 seconds of recordings,

selected so as to ensure that there were abundant material to create those specific

words. We used only 80 seconds of recordings to narrow the search space and thereby

save human search time, thus measuring an upper bound of human performance. The

actual human performance on a real corpus that contains tens of minutes of recordings

should be considerable worse than what is demonstrated in our experiment. For

comparison, we also synthesized these words using VoCo and the Synth voice as a

baseline, each based on the same corpus.

We clocked the time the experts spent to create each new word: Expert 1 spent

15-27 minutes and Expert 2 spent 30-36 minutes per word. For comparison, VoCo

only takes about one minute to process the 80-second corpus, and less than a second

1http://www.audacityteam.org/
2http://www.adobe.com/products/audition.html
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mentioned director benefit television
0

1

2

3

4

5
Synth Expert1 Expert2 VoCo

Figure 3.14: Mean opinion scores for experts and algorithms replacing words in
sentences with synthesized words: mentioned, director, benefit and television. VoCo
outperforms the experts, while Synth provides a baseline.

to synthesize each word. We also performed an MOS test on Mechanical Turk for

the manually-edited words as well as two automatic methods – VoCo and Synth.

There are 16 unique tests in total (4 words crossed with 4 conditions), and each

unique test was shown twice per HIT (which contained 32 tests in total, presented

in random order). Since the subject answered each question twice, we were able to

reject data from subjects whose answers were inconsistent (more than 2 points apart

on a question). Thus we collected 48 valid HITs, the results of which are shown in

Figure 3.14. From the MOS scores, we can see that VoCo outperforms human editing

in all four cases. Also the results of the generic synthesizer were considered no better

than those of the experts, since they are in a voice that’s slightly different from the

voice used in the sentence. This study suggests that VoCo makes word insertion more

efficient and effective than manual editing by audio experts.

3.6 Summary and Discussion of VoCo

This chapter describes an algorithm that supports text-based editing of audio

narrations by augmenting the relatively straightforward cut-copy-paste operations
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with the more challenging operations insert and replace. Our studies suggest that

when synthesized words are inserted in the context of a spoken sentence, the modified

sentence is often perceived as indistinguishable from other sentences spoken in the

same voice. With alternative syntheses and manual editing, the “authenticity”

of the synthesized word is further strengthened. Moreover, even in cases where

subjects can recognize the sentence as edited, it would still have acceptable quality

for many applications. In cases where a new word is desired (or needed), the only

alternative approaches are to re-record the audio, or to recruit an expert audio

engineer to painstakingly assemble the word (more than 20 minutes per word on

average, according to our study, to yield words that were of inferior quality to those

produced by VoCo). Therefore, we believe the proposed system offers a valuable

improvement over the state of the art.

Nevertheless, there are several limitations in this approach that suggest areas for

future work. First, our ultimate goal is to synthesize words with such consistently

high quality that they will be rarely or never recognizable as edited. Our approach

relies on MFCC and pitch features for determining compatible areas of waveform to

be stitched together. We believe the factor that could improve the quality of our

synthesized words would be to design or find features that were optimized specifically

for our problem.

Second, our method relies on a hand-crafted energy function to select an “optimal”

synthesis result, but this function is not well correlated with human perception. We

believe it may be possible to design a more suitable energy function for our problem

via a data-driven approach that may even be voice-specific.

Finally, our method can currently only synthesize a word or short phrase. This

limitation mainly stems from the challenge of synthesizing a voice with natural

prosody over longer sequences of words. Since the prosody of generic TTS systems

is generally unnatural, our approach inherits this defect. One idea we would like to
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investigate is the use of the audio editor’s voice as the query, instead of the generic

TTS voice. The editor could enunciate the query with a particular prosody, and this

would guide the synthesized result. The main challenge is that in this scenario there

is no aligned synthetic voice to guide the voice conversion process towards the target

voice. However it may be possible by applying many-to-one voice conversion to the

editor’s voice [89]. An alternate approach might build on the recent WaveNet work of

van den Oord et al. [57] which shows that deep learning can effectively model human

prosody by learning directly from audio samples.
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Chapter 4

Deep-VoCo: word synthesis based

on deep neural networks

Like every other data-driven speech synthesis technique such as the MOS test

described in Section 3.5.2., the quality of VoCo depends largely on the quality of

data and data processing. Experiments shown in Section 3.5 displays 60% success

rate on the CMU ARCTIC dataset; the synthesis quality deteriorite as the number

of snippets goes up. Therefore the proposed VoCo method does not scale to long

sentence synthesis where more breaks between snippets are required. There are

multiple cause to this imperfection: first, certain triphones or phonemes may be scarce

in the training data; the synthesis quality may drop when no matching triphones are

available. Second, for each triphone, there may be limited variation of pitch contours

and duration, resulting in overly long or short synthesis and inconsistent pitch at the

concatenation boundary. Thirdly, VoCo is based on parallel voice conversion that

heavily relies on good alignment between the source (TTS voice) and the target

(human voice that we want to synthesize). Alignment error in frame alignment

and forced alignment described in Section 4.1.2 will impact synthesis quality as the

incompatible snippets may be selected as a result. Finally, VoCo uses an acoustic
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distance metric that is far from being consistent to human hearing. Although pre-

selection methods are proposed to overcome this problem, Range selection is still

based on similarity and concatenation costs that are defined using these acoustic

features. Therefore, this chapter explores an alternative direction to speech synthesis

with the help of neural networks.

As stated in Section 1.2.2, parametric speech synthesis suffers from oversmoothing

and muffled artifact; this is caused over-simplification of statistical models and the

vocoder, a processor that synthesizes waveform from acoustic features such as MFCC

and F0. Recently, a neural network based synthesizer called WaveNet is introduced by

DeepMind [57]; unlike traditional speech synthesis based on hand crafted feature and

vocoding process, WaveNet generates waveform directly from linguistic features such

as phoneme sequence and F0. Recent work demonstrates that WaveNet can be used

as a vocoder and the resulting synthesis quality is highly preferred over other existing

numeric vocoders such as STRAIGHT and WORLD. WaveNet opens a gate to high

fidelity speech synthesis and experiments show that the synthesis result is very close

to real human speech making them hard to tell from real recordings [73]. However,

the proposed method only works for Google’s own voice samples; and it requires large

amount of data supply (26 hours) and computation, making it unsuitable for VoCo

application. As the third part of my thesis work, I aim to explore alternative neural

network structures that synthesize high-fidelity speech with small amount of voice

samples (less than 1 hour) and acceptable computational complexity comparable to

that of VoCo. The proposed method has two parts: a neural vocoder that turns

acoustic features into waveform in real time with the same quality as WaveNet; and

a voice conversion network that transform a TTS voice to the target voice based on

less than 1 hour of training data. The former is called FFTNet, introduced in Section

4.1 and the latter is called TimbreNet introduced in 4.2. Section 4.3 evaluates the
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vocoder first and then evaluates both network jointly with the word replacement task

conducted in Section 2.4.

4.1 FFTNet: a real-time speaker-dependent neu-

ral vocoder

We introduce FFTNet, a deep learning approach synthesizing audio waveforms.

Our approach builds on the recent WaveNet project, which showed that it was

possible to synthesize a natural sounding audio waveform directly from a deep

convolutional neural network. FFTNet offers two improvements over WaveNet. First

it is substantially faster, allowing for real-time synthesis of audio waveforms. Second,

when used as a vocoder, the resulting speech sounds more natural, as measured via

a “mean opinion score” test.

4.1.1 Introduction

The WaveNet project introduced a deep learning architecture capable of synthesizing

realistic sounding human speech based on linguistic features and F0 pitch [57].

Though it was surprising to many researchers that a plausible waveform could

be synthesized directly as the output of a convolutional neural network, it has

subsequently been confirmed by many follow-on projects. The approach has many

applications, including the classical text-to-speech (TTS) problem [21]. While

WaveNet and others initially addressed TTS starting from linguistic features, ensuing

work showed that speech could be synthesized directly from input text [97, 75]. The

approach has also been adapted to other problems, including voice conversion [66, 42],

speech enhancement [67], and musical instrument synthesis [57, 24].

Despite the impressive quality of the synthesized waveform, the WaveNet approach

still suffers from several drawbacks: it requires substantial training corpus (roughly
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30 hours), the synthesis process is slow (40 minutes to produce a second of audio),

and the result contains audible noise. Recent work by Tamamori et al. [85] showed

that WaveNet could also be used as a vocoder [20], which generates a waveform from

acoustic features. Working from acoustic features, the training process is effective

with a substantially smaller corpus (roughly one hour) [9] while still producing

higher quality speech than baseline vocoders like MLSA [32]. Several research efforts

have addressed the problem of computational cost. Paine et al. [58] introduce an

algorithmic improvement for the same architecture called Fast WaveNet, which can

synthesize a second of audio in a roughly a minute. The Deep Voice approach

of Arik et al. [5] is able to achieve real-time synthesis by reducing the WaveNet

model size significantly, but at the expense of noticeably reduced voice quality.

Concurrent with our work, the WaveNet team also achieved huge performance gains

by introducing a new deep learning network architecture that leverages parallelism

on a GPU cluster [95].

This chapter introduces FFTNet, an alternative deep learning architecture,

coupled with several improved techniques for training and synthesis. WaveNet

downsamples audio via dilated convolution in a process that resembles wavelet

analysis. In contrast the FFTNet architecture resembles the classical Fast Fourier

Transform (FFT) [18], and uses substantially fewer parameters than the analogous

WaveNet model. FFTNet models produce audio more quickly (> 70× faster) than

the Fast WaveNet formulation [58], thereby enabling real-time synthesis on a single

CPU. Moreover, we show that when used as a vocoder, FFTNet produces higher

quality synthetic voices, as measured by a MOS test described in Section 3.5.2. We

also show that the FFTNet training and synthesis techniques can improve the original

WaveNet approach such that the quality of the synthesized voice is on par with that

of the FFTNet architecture (albeit much slower to synthesize). Finally, we note that
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the FFTNet architecture could also be leveraged in a variety of other deep learning

problems such as classification tasks and autoencoders.

4.1.2 Method

Similar to WaveNet, our method generates waveforms one sample at a time based

on previously generated samples and an auxiliary condition, but has a simpler

architecture. In this section, we first briefly introduce WaveNet, then the proposed

architecture called FFTNet, and finally a set of training and synthesis techniques

essential in building a high quality FFTNet vocoder.

WaveNet vocoder

WaveNet [57] is a neural network architecture that has been used in audio synthesis

to predict one audio sample at a time based on previously generated samples and

auxiliary conditions, such as a sequence of phonemes and fundamental frequencies

(F0). The prediction is based on the posterior distribution of sample values quantized

using µ-law. When the auxiliary conditions are acoustic features, such as Mel Cepstral

Coefficients (MCC) and pitch, WaveNet can be used as a Vocoder, which generates

a waveform from these features. It makes no assumption on how speech is generated

and has been shown to generate significantly more natural and clear speech than

conventional vocoders.

The basic building block of WaveNet is dilated causal convolution [94]: given

signal f , dilation d and kernel k, dilated convolution at time step t is defined as

(k ∗d f)t =
∑

i kift−di. If we replace the multiplication between ki and ft−di with

1 × 1 convolution (conv1x1), we get a layer of 1-D dilated convolutional neural

network, or DCNN. WaveNet is constructed by stacking a series of DCNN layers with

exponentially increasing dilation factors for each subsequent layer: 20, 21, 22, ...2n. At
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each layer, a gated activation structure is used:

z = tanh(Wf ∗d x+ Vf ∗d h)� σ(Wg ∗d x+ Vg ∗d h)

where x is the output from the previous layer and serves as the input for the current

layer; Wf and Wg are convolution kernels for the filters and the gates; Vf and Vg

represent conv1x1 on the auxiliary conditions h (F0 and MCC); and � is element-

wise dot product. The final output of a layer is obtained by another conv1x1 on z.

The original WaveNet proposed to use skip connections – an additional conv1x1 is

applied to z to obtain a new output s; then s of all layers are summed together to

become a skip output. To further increase nonlinearity, more conv1x1 and ReLU

layers are applied on top of the skip output and finally a softmax layer is used to

produce the posterior distribution of quantized sample values.

With dilated convolution, a n-layer network has a receptive field of 2n meaning as

many as 2n previous samples can influence the synthesis of the current sample, which

leads to superior synthesis quality. However, since WaveNet synthesizes one sample at

a time, to generate one second of audio sampled at 16kHz, the causal dilated network

needs to be applied 16,000 times. Faster methods have been proposed [58], which

can produce 200 samples per second, but the performance is still far from real-time

on personal computers. We aim to design a vocoder with a simpler (thus faster) yet

equally powerful architecture.

FFTNet architecture

Highlighting the nodes that influence the prediction of the new sample, we see a

reversed binary tree structure as shown in Figure 1. This dilated convolution structure

resembles wavelet analysis - in each step filtering is followed by down-sampling.

This observation inspired us to explore an alternative structure to wavelet based
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Figure 4.1: Dilated convolution in WaveNet

on the Cooley-Tukey Fast Fourier Transform (FFT) [18]. Given an input sequence

x1, x2, ..., xn, FFT computes the k-th frequency component fk from time-domain series

x0, ..., xN−1 by

fk =
N−1∑
n=0

xne
−2πink/N =

N/2−1∑
n=0

x2ne
−2πi(2n)k/N

+

N/2−1∑
n=0

x2n+1e
−2πi(2n+1)k/N

Denote
∑N−1

n=0 xne
−2πink/N as f(n,N) and the above equation can be simplified as

f(n,N) = f(2n,N/2) + f(2n+ 1, N/2)

= f(4n,N/4) + f(4n+ 1, N/4)

+ f(4n+ 2, N/4) + f(4n+ 3, N/4) = ...

One can think of xn as a node with K channels (e.g. 256 quantization channels)

and the term e−2πi(2n)k/N as a transformation function, then each term f(n,N) =

f(2n,N/2) + f(2n + 1, N/2) is analogous to applying a transformation to previous

nodes x2n and x2n+1 and summing up their results. If we use conv1x1 as the
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transformation, we can create a network that resembles the FFT as shown in Figure 2.

In other words, given input x0:N defined as a 1D series (x0, x1, ..., xN−1), each FFTNet

layer clips the input into two halves (xL = x0:N/2 and xR = xN/2:N), performs separate

conv1x1 transformation to each half and then sums up the results:

z = WL ∗ xL +WR ∗ xR (4.1)

where WL and WR are conv1x1 weights for xL and xR. Instead of using a gated

activation structure, FFTNet uses a simple ReLU followed by a conv1x1 to produce

inputs for the next layer, namely x = ReLU(conv1x1(ReLU(z))), which reduces

computation cost. Stacking n layers will give an input size of 2n. The auxiliary

conditions are transformed by conv1x1 and then added to z. i.e.,

z = (WL ∗ xL +WR ∗ xR) + (VL ∗ hL + VR ∗ hR) (4.2)

where hL and hR are the two halves of the condition vector h and VL and VR are

conv1x1 weights. Note that if the condition information is stationary along the time

axis, one may use V ∗ hN instead of (VL ∗ hL + VR ∗ hR).

To use FFTNet as a vocoder, we define ht as F0 and MCC features at time t. To

generate the current sample xt, we use the previously generated samples xt−N :t and

auxiliary condition ht−N+1:t+1 (shifted forward by 1) as the network input. In our

experiments, the auxiliary condition is obtained as follows: first we take an analysis

window of size 400 every 160 samples. Then we extract the MCC and F0 features

for each overlapping window. For the ht corresponding to the window centers, we

assign the computed MCC and F0 values (26 dimensions in total). For the ht that

are not located at the window centers, we linearly interpolate their values based on

the assigned ht in the last step.
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Figure 4.2: FFTNet architecture: given size-8 inputs, they are first divided into
two halves; each passed through a different 1×1 convolution layer and then summed
together. The summed size-4 output will pass through ReLU and then another 1×1
convolution and ReLU before repeating the the same operation.

Finally, FFTNet uses a fully connected layer followed by a softmax layer (size 1

with K = 256 channels) as the last two layers to produce the posterior distribution of

the new sample’s quantized values. To determine the final value of the current sample,

one can use argmax or perform random sampling from the posterior distribution, but

we propose an alternative strategy in Section 2.3.2.

4.1.3 Training Techniques

In this section, we introduce a set of techniques that are essential for training an

FFTNet to produce results of similar quality to WaveNet. Our experiments indicate

that these techniques can also improve WaveNet synthesis quality.
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Zero padding

WaveNet uses zero-padding during dilated convolution. The same idea can be applied

to FFTNet. Given a sequence of length M , the input x1:M (M > N) is shifted to the

right by N samples with zero padding. The N padded zeros are denoted as x−N :0

where ∀j < 0, xj = 0. Equation 1 becomes

z0:M = WL ∗ x−N :M−N +WR ∗ x0:M

Our experiments show that without zero padding, the network tends to produces

noise or gets stuck (outputting zeros) when the inputs are nearly silent. Zero-padding

during training allows the network to generalize to partial input. We recommend using

training sequences of length between 2N and 3N so that a significant number (33% -

50%) of training samples are partial sequences. In this work, we apply zero-padding

to both WaveNet and FFTNet in our experiment.

Conditional sampling

Both WaveNet and FFTNet are classification networks - the last softmax layer

produces a posterior distribution over 256 categories. Like every classifier, the

prediction error comes from two sources: training error and true error. True error

mainly corresponds to noise, and resides in the unvoiced parts of the signal. To

synthesize noise, we rely on the network to learn the noise’s distribution by the

output posterior distribution on which we use random sampling to obtain the sample’s

value. Training error comes from the model itself; and the prediction strategy that

gives the minimal training error is argmax. However, argmax is not suitable for

simulating signals that contain true noise, since it always chooses the center of a noise

distribution leading to zero noise in the synthesis output. Instead of using argmax

universally, we propose to use different prediction strategies for unvoiced and voiced
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Figure 4.3: Conditional sampling: WaveNet and FFTNet model noise by matching
the posterior distribution to the noise’s distribution (b). Therefore to generate noise
(a), we randomly sample from the posterior distribution (b). For periodic signals (d),
we double the log of the posterior distribution (e), to obtain a cleaner distribution
(f); for aperiodic signals, the posterior distribution remains the same (c).

sounds (Figure 3). For unvoiced sounds, we randomly sample from the posterior

distribution; and for voiced sounds, we take the normalized logits (the input values

before softmax), multiply it by a constant c > 1 and pass it through the softmax

layer to obtain a posterior distribution where random sampling is performed. In this

way, the posterior distribution will look steeper while the original noise distribution

is preserved. In this work, we use c = 2.

Injected noise

Due to the training error, the synthesized samples always contain some amount of

noise; during synthesis, the network will generate samples that get noisier over time.

They serve as network input to generate the next sample, adding more and more

randomness to the network. When the noise builds up, the output sample might drift
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leading to clicking artifacts. To avoid such drift, the network needs to be robust to

noisy input samples. We achieve this by injecting random noise to the input x0:M

during training. We determine the amount of noise to inject into the input based on

the amount of noise the network is likely to produce. In this work, we observe that

the prediction is often one category (out of 256) higher or lower than the ground-truth

category and thus, we inject Gaussian noise centered at 0 with a standard deviation

of 1/256 (based on 8 bit quantization).

Post-synthesis denoising

Our experiments show that the injected noise eliminates the clicking artifact almost

perfectly for FFTNet but introduces a small amount of random noise to voiced

samples. Therefore, we apply a spectral subtraction noise reduction [46] to reduce the

injected noise for the voiced samples. The reduction is proportional to the amount of

noise injected during training. It is possible to apply noise reduction to the unvoiced

samples as well, but it may result in artifacts. Therefore, we reduce the amount of

noise reduction applied to the unvoiced samples by half.

4.2 TimbreNet: voice conversion based on RNN

and bottlenecked FFTNet

This section introduces TimbreNet, a voice conversion method based on recurrent

neural networks. Given acoustic features of a source voice (in this thesis, an off-the-

shelf speech synthesizer), TimbreNet generates the acoustic features of a target voice

(real human voice that we want to synthesize) according to pre-defined phoneme

duration. The generated acoustic feature can be further combined with F0 to

synthesize waveform using FFTNet proposed in the last section. The pre-defined
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phoneme duration and F0 can be learned from data [96], extracted from source voice

using normalization [88], or defined by user.

TimbreNet consists of an encoder net that encode acoustic features of source voice

into a sequence of hidden states, and a decoder net that maps these hidden states

to target acoustic features. Unlike sequence-to-sequence models [81], the decoder net

does not determine total duration based on a “terminate” token; rather, it uses a

predefined frame-level mapping from the source frames to target frames as a local

attention mechanism and fixed total duration. The attention mechanism is called

implicit alignment in this context, which is akin to local-p attention mechanism

[50]. Since this proposed method avoids training sequence-to-sequence model, it is

quick to train (a matter of hours) and has real-time performance at inference time.

Section 4.2.1 introduces the notion of implicit alignment, Section 4.2.2 introduces its

architecture and Section 4.2.3 shows how to combine it with FFTNet to produce the

best performance.

4.2.1 Implicit alignment

Traditional parallel voice conversion is based on frame-level alignment: given the

source and target voice speaking the same utterances, acoustic features are extracted

frame-by-frame and then aligned using dynamic time warping [54]. The assumption

is that for each target frame, there is one and only one source frame that contains

the corresponding acoustic content; and most parametric voice conversion method

is based on inferring the acoustic feature of a target frame from its aligned source

frame’s features, utilizing a statistical model learned from training data. However,

this assumption is an over-simplification due to three problems: first, parallel speech is

imperfect. In case when the target has missing phonemes (linked words) and when the

source has additional silences, the target frames will have to map to source frames that

do not have the matching acoustic content. Second, DTW used in previous works is
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based on L2 distance of MFCCs, a feature that in many cases inconsistent with human

hearing. This problem may result in alignment errors, introducing incompatible

source and target pairs. Lastly, the same phoneme may be spoken differently by

different speakers, while frames within these phonemes should be aligned, but often

than not they will cause alignment errors once again due to the problem of MFCC

distance metrics. When alignment error occurs, the synthesized target frame may

sound different or not as sharp. This is potential cause of oversmoothing problem in

most parametric voice conversion and noises heard in data driven voice conversion.

To rethink about frame-by-frame alignment, let’s first consider the scenario when

a human speaker repeating the word “hello” in a unfamiliar foreign language after

hearing a native speaker saying that word. Often the person listen the entire word,

memorize the sound component of the word (for example phonemes) and repeat the

word using what he/she own way of repeating those sounds components. If the word

he/she is learning is long, it is also likely that he/she will ask the native speaker to

speak syllable by syllable and repeat each syllable in the same manner. The short

word example is in analogous to a sequence-to-sequence model, where the source voice

is encoded and memorized before it is decoded using target’s way of speaking. The

second case is as if the target voice is generated by part under the influence of the

corresponding part from the source voice. It is no longer a frame-by-frame alignment;

the determination of a target frame feature is influenced by a sequence of source

frames and its context as well.

Hence, we introduce the concept of implicit alignment: for each target frame, it

is influenced by a collection of source frames or none of the source frames (silences).

The term “influenced” means there exists a function that determine which frames in

the source would influence the generation of a target frame and another function that

infers the target frame based on the selected source frames. The former function is

akin to attention mechanism used in sequence-to-sequence models [50]. The second
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Figure 4.4: Demonstration of implicit alignment: conventional frame-to-frame
alignment is one-to-one correspondence in non-decreasing manner computed by
dynamic time warping algorithm. Implicit alignment maps multiple source frames
to a target frame. The generation of a target frame’s acoustic feature is based on
a summarization of these source frames (called context vector) and neighbor target
frames.

function should take the context feature (summarization from the source frame based

on attention mechanism) to generate the target frame with the consideration of the

target frame’s context. This idea is illustrated in Figure 4.4. Section 4.2.2 propose a

network that learns implicit alignment and the mapping jointly using recurrent neural

networks.

4.2.2 Architecture

TimbreNet is consisted of two recurrent neural networks, an encoder net and a

decoder net. The encoder net first transform the input source acoustic feature

into a higher-dimensional embedding space using 1 × 1 convolution (1x1conv for

short) and then encode the sequence using an Bi-directional LSTM. The hidden

layers of LSTM at each time step is regarded as the output of the encoder net,

denoted as {H1, H2, ..., Hn}. The decoder net starts with a Bi-directional LSTM

that has the same number of time step as the number of frames of the target.
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Denote the hidden layers of this LSTM as {D1, D2, ..., Dm} As fore-mentioned in

Section 4.2.1, each target frame Dj is generated under the influence of a collection of

source frames; this relationship is reflected using a weighting vector {a1, a2, ..., an}

over the hidden layers of the encoder net. The input to each time step of the

decoder net is decided by this weighting - a linear combination of encoder net’s

hidden layers: zj =
∑n

i=1 aiHi while each ai is determined by a function evaluating

the interaction between Hi and the hidden layer of the previous time step Dj−1, for

example ai = W concat(Hi, Dj−1) where concat concatenates two vectors and W is

a learnable vector (same dimensionality as concat(Hi, Dj−1) transposed). zj is called

a context vector. This formulation is exactly global attention mechanism used in

sequence to sequence models. The hidden layers of bi-directional LSTM is further

connected to an uni-directional LSTM which is followed by several convolutional

layers. In this work, a 5× 1 convolutional layer and a 1x1conv are used to generate

the acoustic features of the target voice.

However, the global attention mechanism mentioned above is computationally

heavy and often outputs a weighting vector {a1, a2, ..., an} that has energy all over

the input sequence. Therefore we adopt the idea of local-p attention mechanism

[50] in this work utilizing the frame-to-frame alignment used in traditional voice

conversion. Instead of computing the weight vector across all encoder net’s layers,

we only compute for those that are around a key frame based on this frame-to-frame

alignment. The precise steps are as follows: first, extract 12-coefficient MFCC features

for source and target and transform them into exemplars as in Section 2.2.2. Then,

perform forced alignment on source and target and align phonemes using the method

proposed in Section 3.4.2. Define a distance metric between source and target frame

as the L2 distance of MFCC exemplars added with a phoneme matching cost. If

the phoneme of the target frame aligns with the phoneme of the source frame, no

cost is added, otherwise, a large amount of cost is added. Finally, we use dynamic
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time warping (Section 2.2.1) to compute the best pairing based on this metric. My

experiment shows that computing frame alignment this way produces better result

than naively perform time warping on the L2 of 12-coefficient MFCC features directly.

Now we have a sequence of pairing in which one target frame can be associated

with multiple source frames that are consecutive. To further produce one-to-one

mapping, we define the center frame of all associated source frames as the one single

source frame aligned to the target frame. The implicit alignment is a span of source

frames surrounding this center frame. In this work where frames are extracted every

160 samples, a radius of 6 frames is used. This means 13 frames are considered in the

implicit alignment. This length is often longer than a phoneme, making the alignment

more robust to alignment errors. When computing context vector zj for target frame

j which is aligned with to frame i in the source, only {aj−6, ..., aj+6} are considered.

Namely zj =
∑6

t=−6 ai+tHi+t. The entire TimbreNet architecture is illustrated in

Figure 4.5.

4.2.3 Bottlenecked FFTNet

The last piece of puzzle is determining which acoustic feature to use for TimbreNet.

One could adopt the mel-spectrogram features that were used in TacoTron [73] but

our experiment shows poor result using one hour of training data. TimbreNet seems

to overfit significantly even if we use high drop rate (50%) with very small hidden

layer size (64). However, the performance gets much better if using 24-coefficient

MGC with energy [92]. This means the network will generate Timbre of the sound

while F0 is to be determined using a separate process such as another RNN mapping

phoneme to pitch contour [96].

Although using MGC as acoustic feature achieves significantly better result than

mel-spectrogram, the synthesis result (using FFTNet built from MGC+F0) still suffer

from audible oversmoothing artifact and noise component that is stronger than using
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Figure 4.5: TimbreNet illustrated: the input (source acoustic features) are passed
through 1x1conv and then a bidirectional LSTM. For each target frame, a context
vector is produced based on the implicit alignment. The context vector is served as
input to another Bidirectional LSTM followed by a uni-directional LSTM and several
convolutional layers that outputs the final acoustic features for the target frames.

the true MGC+F0 extracted from real recordings. Figure 4.6 shows an example

generated MGC compared to the true MGC. I hypothesize two main causes of

oversmoothing problem: first, MGC feature is based on log-spectra, an estimator

that is inconsistent [71] resulting in noisy MGC estimation; secondly, MGC still

contains fair amount of pitch information and when F0 and the pitch content of

MGC are incompatible, FFTNet tends to generate “flatter” posterior distribution,

resulting more noises. Therefore, I hope to develop a new acoustic feature that

is independent from F0 and has less noise than MGC. One way is to use lower-

order MGC with artificial oversmoothing artifact injected during FFTNet training;

however, this method requires tuning for the best oversmoothing artifact simulation

for different dataset. The final solution however learns a new acoustic feature by

simultaneously learning the feature andFFTNet for specific dataset.
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Figure 4.6: TimbreNet generated MGCs compared to ground true MGCs. Visually,
the generated MGC does not reproduce the details that true MGCs have.

This is called a bottlenecked FFTNet. Instead of mixing the axillary condition

directly into FFTNet layers based on Equation 4.1, we first transform the condition

using convolutional neural networks. The first layer is a 1 × 5 convolution increase

the channel of input from 24 (dimension of MGCs without the energy term) to a

much higher number (e.g. 64). The resulting tensor is passed through a ReLU and

then a 1× 1 convolution reducing the channel number to a much lower one (e.g. 6).

This 6-dimensional representation of MGC is called a bottleneck feature. Finally, the

energy term is concatenated to the bottleneck feature, resulting in 7 dimensions. Then

this 7-dimensional vector is upsampled and used as axillary condition for FFTNet.

This feature transformation network and the FFTNet are trained jointly. Because of

the low dimensional nature of this feature, containing F0 information is unfavorable

because F0 is already observed in another axillary condition. To preserve as much

of information about MGC as possible, this low dimensional feature should be rid

of all F0 information. The first convolution also serves are a smoother to make the

resulting acoustic feature more stable locally. Figure 4.7 shows a comparison between

the original MGC and the learned bottleneck feature.
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Figure 4.7: A comparison among the waveform, the original MGC feature (without
the energy component) and the learned bottleneck feature. The dotted lines show
the phoneme boundaries. Visually the bottleneck feature does not have the variation
that MGC feature has and corresponds strongly with phoneme boundaries.

Finally, during TimbreNet training, we replace the target voice’s acoustic feature

with the bottleneck feature. The generated bottleneck feature looks much closer to

the true bottleneck feature than the generate MGC to the true MGC. Auditorily, the

resulting synthesis has much less oversmoothing artifact and less noise as well. We

demonstrate our result in Section 4.3.
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4.3 Evaluation

4.3.1 FFTNet

To evaluate our algorithm, we conduct both a subjective listening test using mean-

opinion score (MOS) described in Section 3.5.2 to measure synthesis quality, and an

objective test to measure spectral and cepstral distortion.

Experimental setup

Four voices, two male (BDL,RMS) and two female (SLT,CLB), from the CMU Arctic

dataset [43] are used in our experiments. The first 1032 utterances (out of 1132)

are used for training and the remaining are used for evaluation. The waveforms

are quantized to 256 categorical values based on µ-law. 25-coefficient Mel Cepstral

Coefficients (with energy) and F0 are extracted from the original samples. We build

4 networks for each voice, 2 WaveNets and 2 FFTNets. For each type of network,

we used two training strategies: Strategy one is with zero padding but without using

the other techniques in Section 2.3; Strategy two applies all techniques in Section 2.3.

The WaveNet we implemented contains two stacks of 10-layer dilated convolution

(d = 20, 21, ..., 29) with 256 dilation and 128 skip channels. The total receptive field

is 2048 samples. We experimented with different numbers of channels and found

the current configuration the best for the vocoder. The FFTNet implementation

contains 11 FFT-layers with 256 channels, which also has a receptive field of 2048.

Note that this FFTNet has less than 1M parameters and with proper caching [58],

the computation cost for generating one second of audio (16kHz) is only around

16GFLOPs; it means a modern CPU can generate audio samples in real-time. In

each training step, a minibatch of 5× 5000-sample sequences are fed to the network,

optimized by the Adam algorithm [40] with a training rate 0.001. We set the variance

of injected noise to be 1/256. In each minibatch, all sequences come from different
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Figure 4.8: Mean opinion score (MOS) test results show that the proposed method
FFT+ improves synthesis quality over the original WaveNet WN, and that our train-
ing/synthesis techniques (+) improve both original WaveNet and naive FFTNet (FFT).
The bottom table shows the average MOS across four voices.

utterances; we trained WaveNet by 200,000 steps and FFTNet by 100,000 steps to

ensure convergence.

In our implementations, synthesis using FFTNet is more than 70 times faster than

Fast WaveNet [58], requiring only 0.81 second to generate one second of audio on a

laptop CPU (2.5 GHz Intel Core i7). The audio clips and results of the experiments

described in this section may be found at our project web page.1

We conducted a Mean Opinion Score (MOS) test described in 3.5.2 that asks sub-

jects to rate the quality of the synthetic utterances. Our subjects were recruited via

Amazon Mechanical Turk (AMT), a micro-task platform popular for crowdsourcing

experiments [12]. We recruited participants from the United States who have an ap-

1http://gfx.cs.princeton.edu/pubs/Jin 2018 FAR
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proval rate over 90% to ensure the reliability of the study results. We also designed

a validation test to ensure that subjects are paying attention and rejected those who

fail on those tests. AMT has been used for conducting MOS tests in various domains

[25, 33, 35]. It has been shown to be effective for various kinds of listening tests

[13, 60] and can provide a large number of diverse participants in a short amount of

time. We evaluated six conditions for each utterance:

MLSA MLSA filter

WN WaveNet with only zero-padding

FFTN FFTNet with only zero-padding

WN+ WaveNet with techniques in Section 2.3

FFTN+ FFTNet with techniques in Section 2.3

Real the actual recording

In each task (called a HIT ), a subject is presented with 32 different sentences

in which 24 of them are made of 4 instances from each of the above 6 conditions.

From a held-out set of sentences, we add 4 more instances of the “Real” condition

and 4 more cases of badly edited “Fake” (3 bit A-law encoded) condition to validate

that the subject is paying attention and not guessing randomly. For the data to be

retained, the subject may make at most one mistake on these validation tests, by

either rating < 3 on “Real” examples or > 3 on “Fake” examples. We launched 480

HITs (120 per voice) and retained 446 after validation.

4.8 shows a bar chart for the MOS test with the error bars indicating standard

deviation across utterances. The proposed training technique improves both WaveNet

and FFTNet significantly with an ANOVA test p-value less than 10−9 for both

networks. The proposed network FFT+ also improves on WN with a p-value of < 10−20.

Both WN+ and FFT+ have significant overlap with the real examples in MOS scores.

The proposed method FFT+ has a slightly lower MOS than WaveNet WN+ (with an
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MCD (dB) RMSE (dB)
voice slt clb rms bdl slt clb rms bdl
mlsa 2.76 3.03 3.62 3.28 8.05 9.14 8.80 8.25
WN 4.47 4.04 4.60 3.05 9.71 9.65 9.38 8.29

WN+ 4.57 4.13 4.41 3.28 9.80 8.95 9.74 8.67
FFT 5.24 5.07 4.82 4.23 10.39 9.77 10.33 10.13

FFT+ 4.73 4.69 4.41 3.82 9.88 9.58 9.89 9.64

Table 4.1: Comparison of distortion between natural speech and synthetic speech
based on Average MCD and RMS

insignificant p-value); but it is significantly faster, as noted above. It is also worth

noting that FFT has similar quality to the baseline method MLSA (insignificant p-value)

due to noisy artifacts; this implies the training and synthesis techniques are essential

to make FFTNet work well.

We evaluated the distortion between the original and the synthesized speech using

RMSE and MCD [85]. RMSE measures frequency domain difference between two

signals; and MCD measures the difference in the cepstral domain, which reflects

whether the synthesized speech can capture the characteristics of the original speech.

Both measurements are in dB. The result is shown in Table 1.

The result shows that MLSA tends to preserve most of the cepstral and spectral

structure while the MOS test puts it in a significantly lower tier as it generates audible

over-smoothing artifacts. The techniques introduced in Section 2.3 do not reduce

distortion in WaveNet but they significantly improve FFTNet in both metrics. Also,

note that the WaveNet with the proposed techniques performs significantly better in

subjective evaluation than the one without. This result also contradicts MCD and

RMSE.

4.3.2 DeepVoCo

To evaluate DeepVoCo, we conducted MOS test and identification test as described

in Section 3.5. We selected two voices from CMU ARCTIC dataset, one male (BDL)
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and one female (SLT). For each voice, we first build an FFTNet with bottlenecked

feature with a dimensionality of 8. The initial acoustic feature used to train the

bottlenecked feature is 25-coefficient MGC. F0 is regarded as a second auxiliary

condition in addition to the bottlenecked feature. The network is trained using the

techniques described in Section 4.1.3 for 100K steps (batch size of 6 × 6000) using

Adam optimizer (0.0005 learning rate). The injected has a max amplitude of 0.003

and is sampled using a uniform distribution. The receptive field is set to 2048 and

the channels in FFTNet is set to 256.

To create training data for TimbreNet, we take the first 800 utterances (30

minutes) for each voice and convert their MGC features into bottlenecked features

based on the learned network. Then we use the same synthesizer used in VoCo

to produce the source utterances and extracted their 25-coefficient MGC features

and F0. Then we compute alignment using the method described in Section ??.

Finally we train a TimbreNet to convert source voice’s MGC features into the target’s

bottlenecked features. For each minibatch, we only use one parallel sequence at a time

because every time the network is structure is different based on implicit alignment.

Therefore, a small learning rate (1e-5) is used and we train the network 10K iterations.

To synthesize a word for word replacement, we use the source synthesizer to speak

the entire sentence with the new word in it and convert it to the target voice using

FFTNet. Note that the alignment we use to generate new samples is uniform

alignment, meaning each source frame is mapped the a target frame at the same

time stamp. The source voice’s F0 is also transferred to the target using the pitch

normalization function used in Section 2.2.3. We generate the entire sentence using

FFTNet and cut out the word from the synthesized sentence and insert it into the

recording being edited.

We conducted the experiments on Mechanical turk using the same setting as we

used in VoCo: in MOS test, for each sentence we remove and replace a word with
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a synthesized word and ask a user to rate the quality of the synthesized word on a

scale of one to five. In identification test, a user is presented with a sentence with a

word replaced in the same way as described above or an actual recording; the task is

to identify if the sentence contains a synthesized word or not. Both experiments are

conducted in the same way as in Section 3.5 except that the conditions we compare

are different, listed below:

• Synth. We use the source TTS voice to synthesize the word and put into

context.

• CUTE. Based on VoCo synthesis framework, we use CUTE as the voice

conversion method.

• VoCo. VoCo method using pre-defined α and β values in range selection.

• Deep. Deep VoCo method described above.

• Real. the actual recording without modification.

For each voice we collected valid 120 HITs for both tests, totaling 480 samples per

condition. The MOS test result is shown in Figure 4.9, and identification test result

is shown in Figure ??.

From the result we can see that DeepVoCo improves over VoCo both male and

female voices, pushing the average MOS to 4.3 and identification test score above

70%. It means words synthesized by DeepVoCo are confused for real recordings at a

probability of 70% or more for CMU ARCTIC dataset. Auditorily, words synthesized

by DeepVoCo do not have the “click” like sound that VoCo has. The examples that

failed the identification test are those that contain slight amount of noise, which

we theorize is caused by uncommon combination between the F0 and the generated

bottlenecked features. Using an alternative F0 contour generated by external process

or user input other than transferring from the source may fix the problem. It also
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Figure 4.9: These mean opinion score tests show that DeepVoCo synthesis results
are generally perceived as higher quality than those of baseline methods, scored on a
Likert scale from 1=bad to 5=excellent.
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Figure 4.10: Identification tests show DeepVoCo synthesis results are more likely
identified as original recordings than other baseline methods, shown here as a fraction
of people who identify the recordings as original.

worth noting that DeepVoCo closes the quality gap between female and male voice

because it is not a concatenative method and therefore free from artifact caused by

stitching audio snippets of different pitch contour.

4.4 Summary and Discussion of Deep-VoCo

This chapter introduces FFTNet, a neural network that generates waveforms one

sample at a time based on previously generated samples and axillary conditions.

Unlike WaveNet, FFTNet uses a simple architecture mimicking the Fast Fourier

Transform (FFT) that makes it possible to generate audio samples in real-time. We

also propose a set of training and synthesis techniques that improve the synthesis

quality of both FFTNet and WaveNet. Experiments demonstrate that when used as
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a vocoder, FFTNet generates higher-quality speech than the original WaveNet, and

on par with WaveNet as improved by our training and synthesis techniques.

This chapter then introduces TimbreNet, a voice conversion neural network that

transforms a source voice’s acoustic features into a target voice’s acoustic features.

It is based on two recurrent neural networks, encoder net and decoder net, bridged

by implicit alignment, similar to attention mechnism used in sequence-to-sequence

models. Because transforming MGC directly results in oversmoothing artifact, this

chapter proposed learning a new bottleneck feature jointly with FFTNet and use this

feature as the target acoustic feature instead. Experiment shows that TimbreNet is

preferred over VoCo method in word replacement task.
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Chapter 5

Conclusion

5.1 Summary

This thesis aims at enabling word synthesis in text-based speech editing with text-

to-speech synthesis (TTS); while existing high fedelity TTS requires tens of hours of

training data, this work takes a different route by using a generic TTS to synthesize a

robotic version of the input text and then utilizing voice conversion to transform

the robotic voice into the desired human voice. While existing voice conversion

method contains artifact, my thesis work focuses on devising new voice conversion

techniques so that the synthesized word can be seamlessly inserted or replaced with

existing words in an actual recording. In particular, three methods are proposed:

the first is called CUTE, a data-driven voice conversion method based on frame-

level unit selection and exemplar features; experiments show that CUTE is preferred

over other unit-selection based voice conversion method in parallel voice conversion

task. The second method is called VoCo, a TTS system built on CUTE with several

improvement including a unit-selection replacement called range selection algorithm

that performs stabler and faster than unit selection framework. Mechanical turk

experiments show that about 60% of the time, the synthesized word is confused as
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real recorded words based on CMU ARCTIC dataset. To close further improve the

synthesis quality and potentially make it possible to synthesize long sentences, the

third method, called Deep-VoCo, uses deep learning to perform voice conversion in

the VoCo TTS system. This method involves two novel neural networks: FFTNet, a

neural vocoder that generates high quality waveform samples from acoustic features

such as MCC and F0; and TimbreNet, a encoder-decoder network that transforms the

generic TTS voice into the desired human voice in their acoustic feature space. This

thesis shows FFTNet, the acoustic feature used in voice conversion and TimbreNet

can be effectly trained jointly with less than one hour of data; and the resulting TTS

system can be potentially used to synthesize long sentences as well.

5.2 Limitations and Future Work

There are several limitations in this thesis that suggest areas for future work. First,

our ultimate goal is to synthesize passages that are longer than just a word or short

phrase, with such consistently high quality that they are rarely recognizable as edited.

This requires that the synthetic voice is not only sounds like the target person in

timbre but in prosody (pitch and duration) as well. This is particularly challenging

problem in general. The proposed deep-learning-based approach is able to synthesize

sentences, but it relies on pre-defined prosody. Our current approach uses the source

speaker’s prosody which is unaware of the target speaker’s prosodic characteristics.

Therefore, an immediate continuation of this research is to explore prosody modeling.

There has been success in modeling prosody using RNN [96] and implicitly modeling

F0 together with timbre using mel-spectrogram features [97] based on large data

(20hours+). Unfortunately, our experiments show limited result over one hour data.

Possible solution may lie in the area of adaptation, i.e.learning a generic model based
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on a collection of speaker data and adapt the learned model to new speaker via fine

tuning.

Another issue with deepVoCo has to do with sampling rate. Although we

demonstrated real-time and high-quality performance of FFTNet at 16KHz sample

rate, most of the audio product is at 44.1KHz or more. Unfortunately, at such sample

rate FFTNet tend to require about 10 times longer to train and substantial increase

in model size, resulting in laggy performance. Future work in FFTNet may consider

band completion techniques that upsamples 16K speech signal to 44.1K with a process

that’s more efficient than sample by sample.

One advantage of VoCo over DeepVoCo is its short pre-processing time. Given

one hour of audio, VoCo takes about 15 minutes using a CPU to ready the data

for word synthesis while DeepVoCo requires a GPU to train the networks. In our

experiment, FFTNet requires 12 hours to train and TimbreNet requires 3 hours

based on A NVidia 1080 GTX GPU. Therefore, it is beneficial to develop new training

techniques that shorten the training time for new voices. One way is to use adaptation

described above. Another way is to build a speaker-independent FFTNet based on

large population using speaker encoding [3].

Although the proposed methods in this thesis are primarily designed for text-based

editing of audio narrations, they can be applied to generic TTS and voice conversion

as well. The proposed neural network can be re-targeted to many other applications,

including:

Many-to-one voice conversion: with the help of generic speech recognition it is

possible to turn deepVoCo into many-to-one voice conversion by replacing the current

acoustic feature with a new feature consistent with posteriorgrams [79]. As a result,

any voice recognizable by the stated speech recognition engine can be converted into

a common voice without training. It is useful in many applications, such as voice

over, voice disguise, and for entertainment purposes.
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Voice beautification: instead of transforming the entire voice, another appli-

cation is to modify certain aspects of a voice to sound like another, such as adding

accent and making a voice sound thicker and heavier. One application is to beautify

a voice by learning from a collection of professional voices and convert a voice of a

non-professional to sound more like them.

Singing synthesis: it is also possible to add singing to a TTS voice. Since

FFTNet is a general purpose speaker-dependent vocoder, one can train it over singing

samples and use the F0 (pitch) as axillary conditions together with the bottleneck

feature. TimbreNet on the other hand, can take in F0, duration and phonemes as

input to generate the bottleneck feature for FFTNet. With this architecture, a user

create singing voice by providing a music score and align text (broken down into

phonemes) to notes.
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[78] Yannis Stylianou, Olivier Cappé, and Eric Moulines. Continuous probabilistic
transform for voice conversion. IEEE Transactions on Speech and Audio
Processing, 6(2):131–142, 1998.

[79] Lifa Sun, Kun Li, Hao Wang, Shiyin Kang, and Helen Meng. Phonetic
posteriorgrams for many-to-one voice conversion without parallel data training.
In Multimedia and Expo (ICME), 2016 IEEE International Conference on,
pages 1–6. IEEE, 2016.

[80] David Sundermann, Harald Hoge, Antonio Bonafonte, Hermann Ney, Alan
Black, and Shri Narayanan. Text-independent voice conversion based on unit
selection. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2006), May 2006.

[81] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

[82] Makoto Tachibana, Shinsuke Izawa, Takashi Nose, and Takao Kobayashi.
Speaker and style adaptation using average voice model for style control in

105



hmm-based speech synthesis. In 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 4633–4636. IEEE, 2008.

[83] Shinnosuke Takamichi, Tomoki Toda, Alan W Black, and Satoshi Nakamura.
Modulation spectrum-constrained trajectory training algorithm for gmm-based
voice conversion. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2015), 2015.

[84] NOSE Takashi, Junichi Yamagishi, Takashi Masuko, and Takao Kobayashi.
A style control technique for hmm-based expressive speech synthesis. IEICE
TRANSACTIONS on Information and Systems, 90(9):1406–1413, 2007.

[85] Akira Tamamori, Tomoki Hayashi, Kazuhiro Kobayashi, Kazuya Takeda,
and Tomoki Toda. Speaker-dependent wavenet vocoder. In Proceedings of
Interspeech, pages 1118–1122, 2017.

[86] Ke Tan, Jitong Chen, and DeLiang Wang. Gated residual networks with dilated
convolutions for supervised speech separation. In Proc. ICASSP, 2018.

[87] Paul Taylor. Text-to-Speech Synthesis. Cambridge University Press, 2009.

[88] Tomoki Toda, Alan W Black, and Keiichi Tokuda. Voice conversion based
on maximum-likelihood estimation of spectral parameter trajectory. IEEE
Transactions on Audio, Speech, and Language Processing, 15(8):2222–2235,
2007.

[89] Tomoki Toda, Yamato Ohtani, and Kiyohiro Shikano. One-to-many and many-
to-one voice conversion based on eigenvoices. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2007), pages IV–1249,
2007.

[90] Tomoki Toda, Hiroshi Saruwatari, and Kiyohiro Shikano. Voice conversion
algorithm based on gaussian mixture model with dynamic frequency warping
of straight spectrum. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP 2001), pages 841–844, 2001.

[91] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura. Speech
parameter generation algorithms for hmm-based speech synthesis. In Acoustics,
Speech, and Signal Processing, 2000. ICASSP ’00. Proceedings. 2000 IEEE
International Conference on, volume 3, pages 1315–1318 vol.3, 2000.

[92] Keiichi Tokuda, Takao Kobayashi, Takashi Masuko, and Satoshi Imai. Mel-
generalized cepstral analysis-a unified approach to speech spectral estimation.
In Third International Conference on Spoken Language Processing, 1994.

[93] Keiichi Tokuda, Yoshihiko Nankaku, Tomoki Toda, Heiga Zen, Junichi Yam-
agishi, and Keiichiro Oura. Speech synthesis based on hidden markov models.
Proceedings of the IEEE, 101(5):1234–1252, May 2013.

106
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