
RESOURCE MANAGEMENT FOR ADVANCED

DATA ANALYTICS AT LARGE SCALE

HAOYU ZHANG

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISER: PROFESSOR MICHAEL J. FREEDMAN

JUNE 2018

© Copyright by Haoyu Zhang, 2018.

All rights reserved.

Abstract

The rapidly growing size of data and the complexity of analytics present new challenges

for large-scale data analytics systems. Modern distributed computing frameworks need to

support not only embarrassingly parallelizable batch jobs, but also advanced applications

analyzing text and multimedia data using complex queries and machine learning (ML)

models. Given the computation and storage costs of advanced data analytics, resource man-

agement is crucial. New applications and workloads expose vastly different characteristics

which make traditional scheduling systems inadequate, and at the same time offer great

opportunities that lead to new system designs for better performance.

In this thesis, we present resource management systems that significantly improve cloud

resource efficiency by leveraging the specific characteristics of advanced data analytics

applications. We present the design and implementation of the following systems:

(i) VideoStorm: a video analytics system that scales to process thousands of vision

queries on live video streams over large clusters. VideoStorm’s offline profiler generates

resource-quality profiles for vision queries, and its online scheduler allocates resources to

maximize performance in terms of vision processing quality and lag.

(ii) SLAQ: a cluster scheduling system for approximate ML training jobs that aims to

maximize the overall model quality. In iterative and exploratory training settings, better

models can be obtained faster by directing resources to jobs with the most potential for

improvement. SLAQ allocates resources to maximize the cluster-wide quality improvement

based on highly-tailored model quality predictions.

(iii) Riffle: an optimized shuffle service for big-data analytics frameworks that signifi-

cantly improves I/O efficiency. The all-to-all data transfer (i.e., shuffle) in modern big-data

systems (such as Spark and Hadoop) becomes the scaling bottleneck for multi-stage an-

alytics jobs, due to the superlinear increase in disk I/O operations as data volume grows.

Riffle boosts system performance by merging fragmented intermediate files and efficiently

scheduling the merge operations.

iii

Taken together, this thesis demonstrates a novel set of methods in both job-level and

task-level scheduling for building scalable, highly-efficient, and cost-effective resource man-

agement systems. We have performed extensive evaluation with real production workloads,

and our results show significant improvement in resource efficiency, job completion time,

and system throughput for advanced data analytics.

iv

Acknowledgments

I am deeply grateful to my advisor, Mike Freedman, for his guidance, support, and

encouragement in the past five years. Working with Mike is always productive and inspiring.

His pursuit of high standards in research greatly motivated me to conduct impactful work

and make intellectual contributions in computer systems. Mike has always been patient and

encouraging, and opened for me the gates of scientific research in distributed systems and

various other areas. My Ph.D. life would not have been so rewarding and enjoyable without

my advisor.

I feel extremely fortunate to have Kyle Jamieson, Kai Li, Wyatt Lloyd, and Jennifer

Rexford as my thesis committee members. Jen has been an awesome mentor who gave

constructive suggestions and kind support on both research and graduate life. Kai, Kyle,

and Wyatt provided their insightful advice and benevolent help with my research work at

different stages of my Ph.D. study. I am also thankful to Nick Feamster for being my general

exam committee member. I have experienced an engaging and collaborative academic

environment in the systems and networking lab thanks to these amazing professors.

During my internship at Microsoft Research, I received tremendous support from my

mentors Ganash Ananthanarayanan and Peter Bodik. Ganesh is always sharp with his

questions, and always persistent in overcoming technical challenges. Peter is an impressive

system designer and an experienced system builder. Their vision and passion profoundly

influenced me in every aspect of being a good researcher.

I benefit immensely from my internship at the Facebook BigCompute group. My men-

tors Brian Cho and Ergin Seyfe guided me through every step of engineering a production-

quality system, from code reviewing to datacenter deployment, from internal tools to cross-

team communication. They demonstrated to me how to build scalable and reliable systems

with real-world impact. Brian also helped me dedicatedly during the whole process of

formalizing the research project and writing the paper.

v

I sincerely appreciate the professional and personal friendship with my outstanding

collaborators at Princeton. I am grateful to Xiaozhou and Xin for the diligent work and

thought-provoking discussions during our collaboration on research projects. I am indebted

to Naga who worked closely with me on the first research project at Princeton. I thank

Logan and Andrew for their hard work and contributions to the SLAQ project. I would also

like to thank my collaborators and coauthors from Microsoft Research, Facebook, Barefoot

Networks, Cornell, and UC Berkeley.

I had a great time working together with the SNS group current and former members,

and I would like to give special thanks to Marcela, Daniel, Amy, Sid, and Aaron for reading

and helping me improve paper drafts. I had so much joy and fun during the time I spent with

my friends Yihan, Linpeng, Zhen, Yushan, Zhenyu, Zhixing, Zeyu, Annie, Xinyi, Nanxi,

Yinda, Yichen, Haipeng, Li, Zhuqi, Qian, Wei, Haowen, Chengwei, Tongxin, Yapeng,

Yitong, Xiaoyu, Lin, Yunxi, Xueying, Shiyu, and Dannie. Thank you all for making this

journey enjoyable.

This dissertation work is supported by National Science Foundation (NSF) Awards

CNS-0953197 (CAREER) and IIS-1250990 (BIGDATA).

Finally, I wish to thank my parents for their unconditional love and support. They have

always believed in me and gave me the strength to complete what I started.

vi

To my parents.

vii

Contents

Abstract . iii

Acknowledgments . v

List of Tables . xii

List of Figures . xiii

1 Introduction 1

1.1 Advanced Data Analytics Systems . 1

1.2 Challenges for Existing Big-Data Platforms 3

1.3 Overview of Resource Management . 5

1.4 Contributions . 7

2 VideoStorm: Live Video Analytics with Approximation and Delay Tolerance 10

2.1 System Description . 14

2.1.1 VideoStorm Architecture . 14

2.1.2 Video Queries Specification . 15

2.2 Making the Case for Resource Allocation 16

2.2.1 Motivating Example . 16

2.2.2 Real-world Video Queries . 19

2.2.3 Summary and Challenges . 21

2.3 VideoStorm Design Overview . 21

2.4 Resource-Quality Profile Estimation . 22

viii

2.4.1 Profile estimation is expensive . 23

2.4.2 Greedy exploration of configurations 23

2.5 Resource Management . 25

2.5.1 Utility: Combining Quality and Lag 25

2.5.2 Resource Allocation . 27

2.5.3 Query Placement . 30

2.5.4 Enhancements . 31

2.6 VideoStorm Implementation . 32

2.6.1 Implementation Details . 32

2.6.2 Interfaces for Query Transforms 33

2.7 Evaluation . 33

2.7.1 Setup . 34

2.7.2 Performance Improvements . 35

2.7.3 VideoStorm’s Key Features . 39

2.7.4 Scalability and Efficiency . 42

2.8 Related Work on Stream Processing Systems 43

2.9 Conclusion . 45

3 SLAQ: Quality-Driven Scheduling for Distributed Machine Learning 46

3.1 Background and Motivation . 49

3.1.1 ML Training: Iterative Optimization Process 50

3.1.2 Retraining Machine Learning Models 53

3.1.3 Current Practices in ML Training 54

3.1.4 Cluster Scheduling Systems . 55

3.2 System Overview . 56

3.3 Design . 58

3.3.1 Normalizing Quality Metrics . 58

3.3.2 Measuring and Predicting Loss . 61

ix

3.3.3 Scheduling Based on Quality Improvements 66

3.4 Implementation . 68

3.5 Evaluation . 69

3.5.1 Methodology . 69

3.5.2 System Performance . 70

3.5.3 Robustness of Prediction . 73

3.5.4 Scalability and Efficiency . 75

3.6 Discussion . 75

3.7 Related Work on Scheduling ML Systems 77

3.8 Conclusion . 79

4 Riffle: Optimized Shuffle Service for Large-Scale Data Analytics 80

4.1 Background and Motivation . 83

4.1.1 Shuffle: All-to-All Communications 84

4.1.2 Efficient Storage of Intermediate Data 86

4.1.3 Current Practices and Existing Solutions 88

4.2 System Overview . 91

4.3 Design . 93

4.3.1 Merging Shuffle Intermediate Files 93

4.3.2 Best-Effort Merge . 98

4.3.3 Handling Failures . 98

4.3.4 Load Balancing on Disaggregated Architecture 99

4.3.5 Discussion . 101

4.4 Implementation . 102

4.5 Evaluation . 104

4.5.1 Methodology . 104

4.5.2 Synthetic Workload . 106

4.5.3 Production Workload . 109

x

4.6 Related Work on Shuffle Optimization . 111

4.7 Conclusion . 113

5 Conclusion 114

5.1 Summary of Contributions . 114

5.2 Open Issues and Future Work . 116

5.3 Concluding Remarks . 118

Bibliography 119

xi

List of Tables

2.1 Tables (a) and (b) show queries A and B with three configurations each,

resource demand D and quality Q. Tables (c) and (d) show the time and

capacity R, and for each query the chosen configuration C, demand D,

allocation A, achieved quality Q, and lag L for the fair and performance-

based schedulers. Notice in (d) that query B achieves higher quality between

times 10 and 22 than with the fair scheduler in (c), and never lags beyond

its permissible 8s. 17

2.2 Notations used, for query k. 25

2.3 Latency of VideoStorm’s actions. 42

3.1 Summary of ML algorithms, types, and the optimizers and datasets we

used for testing. The algorithms include K-Means, Logistic Regression

(LogReg), Support Vector Machine (SVM), SVM with polynomial kernel

(SVMPoly), Gradient Boosted Tree (GBT), GBT Regression (GBTReg),

Multi-Layer Perceptron Classifier (MLPC), Latent Dirichlet Allocation

(LDA), and Linear Regression (LinReg). 59

4.1 Datasets for 4 production jobs used for Riffle evaluation. Each row shows

the total size of shuffle data in a job, the number of tasks in its map and

reduce stages, and the average size of shuffle blocks. 105

xii

List of Figures

1.1 Hierarchical resource management system. 5

2.1 VideoStorm system architecture. 14

2.2 VideoStorm query for license plate reader. 15

2.3 Resource-quality profiles for real-world video queries including Licence

Plate Reader, DNN Classifier, and Object Tracker. For simplicity, we plot

one knob at a time. 19

2.4 VideoStorm scheduler components. 22

2.5 Resource-quality for license plate query on a 10 minute video (414 config-

urations); x-axis is resource demand to keep up with live video. Generating

this took 20 CPU days. The black dashed line is the Pareto boundary. . . . 24

2.6 Examples for the second (UQ) and third terms (UL) in Equation 2.1.

(Left) Query 1’s quality goal is relatively lenient, QM
1 = 0.2, but its utility

grows slowly with increase in quality beyond QM
1 . Query 2 is more stringent,

QM
2 = 0.6, but its utility grows sharply thereon.

(Right) Query 1 has lag target of LM
1 = 5 beyond which it incurs a penalty.

Query 2 has a stricter lag goal of LM
2 = 1 and also its utility drops much

faster with increased lag. 26

xiii

2.7 VideoStorm outperforms the fair scheduler as the duration of burst of

queries in the experiment is varied. Without its placement but only its allo-

cation (“VideoStorm MaxMin (Allocation Only)”), its performance drops

by a third. 34

2.8 (Top) CPU Allocation for burst duration N = 150s, and (bottom) quality

and lag averaged across all queries in each of the three categories. 37

2.9 Impact of αL. Queries with higher αL have fewer overdue frames. 38

2.10 VideoStorm vs. fair scheduler as the number of queries in the burst during

the experiment is varied. 38

2.11 Q1 migrated between M1 and M2. Resource for the only lag-tolerant query

Q4 (on M2) is reduced for Q1. 39

2.12 We show three queries on a machine whose resource demands in their

profiles are synthetically doubled, halved, and unchanged. By learning the

proportionality factor µ (2.12(c)), our allocation adapts and converges to

the right allocations (2.12(a)) as opposed to without adaptation (2.12(b)). . 40

2.13 Overheads in scheduling and running queries. 43

3.1 Cumulative time to achieve different percentages of loss reduction with

four jobs: Logistic Regression (LogReg), Support Vector Machine (SVM),

Latent Dirichlet Allocation (LDA) and Multi-Layer Perceptron Classifier

(MLPC). Job convergence is defined to be 1/10000 of initial loss reduction. 52

3.2 Retrain machine learning models. 53

3.3 Accuracy (top) and loss function values (bottom) of a job with resources

allocated by a quality-aware scheduler and a fair scheduler. Accuracy (per-

centage of correctly predicted data points) is evaluated on a testing dataset

at the end of each training iteration. The more resources allocated to a job,

the faster an iteration can be finished. 56

3.4 Running ML training jobs with SLAQ. 57

xiv

3.5 Normalized ∆Loss for ML algorithms. 60

3.6 Predicting loss values with 3 methods. 63

3.7 Comparing loss improvement and runtime between SLAQ and fair scheduler. 71

3.8 Resource allocation across jobs. At the beginning, jobs with the greatest

25% loss allocated vast majority of resources; towards the end, the differ-

ence in loss shrinks, the allocation is more spread out. 72

3.9 The performance difference between SLAQ and a fair resource scheduler is

more significant under workloads with greater contention, e.g., jobs arriving

with a mean arrival time of 4s compared to 10s. 73

3.10 SLAQ loss / runtime prediction and overhead. 74

4.1 DAG representation of a Spark job, which joins data processed from two

tables and uses groupByKey to aggregate the key-value items, then filters

the data to get the final results. 85

4.2 When the number of tasks in each stage grows, the shuffle time and the

number of I/O requests increase quadratically, and the average shuffle fetch

size in each request decreases. 88

4.3 Shuffle-spill trade-off when varying number of map tasks (with fixed num-

ber of reduce tasks). Bulky tasks (left) incur more spill overhead, while tiny

tasks (right) incur significant shuffle overhead. 88

4.4 Riffle runs a shuffle merge scheduler as part of the analytics framework

driver, and a merger instance per physical node. Since a physical node

is typically sliced into a few executors, each running multiple tasks, it’s

common to have hundreds of tasks per job executed on each node. 91

4.5 Merging intermediate files with Riffle. 92

4.6 Riffle merge policies. 94

xv

4.7 Riffle mergers trigger only sequential disk I/O for efficiency. The shadow

sections of the input and output files are asynchronously buffered in memory

to ensure sequential I/O behavior. 96

4.8 Multiple Riffle jobs on a disaggregated architecture balances the merge

requests leveraging the power of two choices. 100

4.9 Riffle performance improvement in runtime with synthetic workload. 4.9(a)

and 4.9(b) show the wall clock time to complete stages and tasks, and 4.9(c)

plots the total reserved CPU time representing the job resource efficiency.

Map time includes time to execute both map tasks and Riffle merge opera-

tions. Reduce time includes time to perform both shuffle fetch and reduce

tasks. No complex data processing is in the synthetic applications, so shuf-

fle fetch dominates the reduce time. Dashed lines show the performance

with best-effort merge. 104

4.10 Riffle I/O performance during shuffle. The dashed lines show best-effort

merge performance. 107

4.11 Riffle performance improvement with production workload. 108

4.12 Number of shuffle I/O requests (million), including all additional I/O re-

quests in Riffle mergers. 110

xvi

Chapter 1

Introduction

1.1 Advanced Data Analytics Systems

Advanced data analytics is a broad category of queries that can help human discover inter-

pretable patterns, understand causal relationships, and make informed decisions in practical

problems by analyzing a large amount of data. Compared to simple data analytics which

only involves easily parallelizable operators on partitions of data, advanced data analytics

queries have broader capability and better expressiveness. These queries are becoming

increasingly important to gain deep insights and drive operational improvements based

on sophisticated processing logic on massive amounts of data, which in turn present new

efficiency, scalability, and reliability challenges to underlying systems.

From structured data to multimodal data. The development of data acquisition, stor-

age, and retrieval techniques brings a revolutionary transformation to data analytics systems.

The focus of big-data research has expanded from structured or semi-structured data of text

and numerical types, to unstructured multimodal data such as still images, audios, videos,

and interconnected corpus with links and click behaviors. Video processing, among others,

has a wide variety of commercial and security applications. Security cameras in buildings

are deployed for surveillance and business intelligence (i.e., identifying people and their

1

actions), while cameras deployed at street intersections are used for traffic control (e.g.,

counting car volumes) and crime prevention.

Computer vision researchers and developers offer a wide variety of vision analytics

modules focusing on different types of video processing tasks. Modules exist for purposes of

security (e.g., motion detection, loitering, unattended luggage), traffic management (license

plate recognition, parking violations), city planning (counting cars, bicycles, jay walking),

or retail management (recognizing and monitoring customers in a store). These applications

are drawing a growing interest from both academic research and commercial companies to

design new systems [102, 116, 195, 198].

From handcrafted expert systems to machine learning models. Handcrafted expert

systems encode enormous human knowledge to handle particular problems by mimicking

the way that human experts think and solve them [57]. However, constructing such models

typically requires strong expertise in domain specific knowledge and mathematics, and diffi-

cult to evolve as the accuracy requirement and model complexity continue to grow. Machine

learning (ML) becomes an increasingly important tool for large-scale data analytics; it has

been successfully deployed for online search, marketing, healthcare, machine translation,

and information security.

Compared to expert systems, ML training is computationally expensive and usually

requires multiple passes over the entire datasets. The model performance depends on the

entire training stack including model structures, optimization algorithms, software architec-

ture of the training frameworks, and computing hardwares. It is challenging to efficiently

manage system resources and facilitate time-sensitive ML training on large datasets.

From simple queries to multi-stage computation jobs. Large-scale batch analytics

queries are prevalently used in large companies holding and constantly generating big data.

Distributed data analytics engines, such as Spark [191], MapReduce [81], and Dryad [105],

2

are widely used for executing SQL queries and user-defined functions (UDFs), performing

graph analytics [89], and preprocessing and postprocessing datasets in ML jobs.

Based on the business requirements, data processing pipelines are often expressed as a

combination of multiple relational queries and complex procedural algorithms [51]. Accord-

ingly, the big-data frameworks need to perform multiple stages of filtering, transformation,

joining, and repartitioning the datasets during the job execution. Multi-stage operations

trigger the datasets to be frequently exchanged between distributed machines, which incur

huge network and storage I/O overhead and, without close attention, significantly impair

the scalability and performance.

1.2 Challenges for Existing Big-Data Platforms

The challenge in analyzing massive data using advanced queries arises from the fact that

the volume and complexity of data processing grow much faster than hardware speed and

capacity improvements. We focus on the data and complexity challenge in the context of

limited hardware resources in clusters.

The data challenge. Video cameras constantly generate large volume of data, and some-

times require the data to be processed almost in real time. It has been reported that major

cities all around the world have millions of cameras deployed [55, 99].

Datasets used for training ML models are also growing. The Netflix movie rating

dataset [28] includes more than 100 million user ratings of 17,000 movies, and the Ima-

geNet dataset [82] includes over 14 million images of thousands of categories. In the deep

learning era, we are likely to see more of such datasets to become available.

As for batch processing, the Spark deployment at Facebook processes tens of PBs of

data per day. One single job processing a key dataset analyzes hundreds of TBs of newly

generated data per day. The data volume is typically more than 10 times larger than the

available memory, which makes it impossible to cache the entire dataset inside memory.

3

The complexity challenge. Video analytics, due to highly complicated processing logic,

can have extremely high resource demands. Tracking objects in video is a core primitive

for many scenarios, but the best tracker [145] in the VOT Challenge 2015 [121] processes

only 1 frame per second on an 8-core machine. Some of the most accurate Deep Neural

Networks for object recognition, another core primitive, require 30GFlops to process a

single frame per second [165].

For ML workloads, a training job typically takes more than one thousand of steps for the

model to converge. Moreover, ML training is not a one-time effort. ML practitioners need

to repeatedly train the same model to explore and find the best feature set, hyperparameter

configurations, and model structures; it has been reported that people need to explore up to

thousands of hyperparameter combinations to get the best model [134].

Executing multi-stage batch processing queries also involve high resource demand. For

example, more than 50% of the production jobs at Facebook are multi-stage jobs that require

multiple passes on the data. While one can tune the resource allocation and execution plan

to get the best performance of a job, this solution is untenable for thousands of jobs at

Facebook. Each job has different characteristics (e.g., distribution and skew of data) which

also change over time depending on outside factors such as Facebook user behavior, so it is

not possible to find the optimal plans without tedious experimentation.

Limited cluster resources. Despite the growing resource demands for advanced data

analytics, the underlying hardware and cloud resources, unfortunately, can no longer get

fast or cheap quickly enough after the end of Moore’s Law [173]. The slowdown in the

increase of integration density and clock frequency makes it more difficult to meet the

various requirements of data analytics applications—they cannot reckon that performance

gains come effortlessly from new-generation hardware. Advanced data analytics jobs at

large scale urge the efficient allocation of cloud resources for performance and scalability.

4

Job 1

Task-level

Scheduler

Worker Machine 1

Task

Executor

Task

Executor

Job m

Task-level

Scheduler

Cluster Manager

Job-level Scheduler

Worker Machine n

Task

Executor

Task

Executor

allocate executors

assign tasks

Figure 1.1: Hierarchical resource management system.

1.3 Overview of Resource Management

Resource management systems are widely used for the coordination and execution of con-

current job contending for shared resources in datacenters. Each cluster machine is typi-

cally sliced into smaller executors (virtual machines or containers) for efficient resource

multiplexing (i.e., hosting tasks from multiple concurrent jobs) and failure isolation. Re-

sources of distributed computing frameworks are typically managed by hierarchical sched-

ulers [19, 20, 59, 103].

In general, the resource manager can be organized in a two-layer architecture, as shown

in Figure 1.1. The job-level scheduler is in charge of allocating resources between multiple

concurrent jobs, For example, fair schedulers [3,59,65,79,87,91,100,181] are widely used

as job-level resource managers for big-data frameworks. They take resource demands from

individual jobs, and mostly allocate resources based on fairness. Extending the functionality

of fair allocation, cluster schedulers nowadays also support a rich set of scheduling policies

such as reservation, deadline, and priority [79, 84, 114].

The task-level scheduler, on the other hand, decides how to assign tasks on multiple task

executors for each job. Task is the basic executing unit to schedule and launch inside a job.

5

For example, a task in the context of batch processing is an instance of several operations

processing one partition of the dataset; task in stream processing is commonly dealing

with data items arrived in a specific time window. Key to designing an efficient task-level

scheduler for big-data frameworks is to generate an intelligent execution plan of dividing a

job into tasks, and to dispatch a large amount of tasks on multiple executors.

With the data and complexity challenges presented by advanced data analytics, resource

management is crucial. We observe that it is essential for the cluster schedulers to under-

stand the specific characteristics and core requirements from various advanced applications

in order to achieve better efficiency and cost-effectiveness of resources, as well as high

performance of applications.

Traditional cluster schedulers treat individual tasks as black boxes, and thus schedule

resources according to general policies and strategies, including fairness (max-min fairness,

dominant resource fairness), priorities, and deadlines. Being agnostic to workload specific

characteristics, the general-purpose job schedulers fall short to meet various requirements

of these applications, and the general-purpose task schedulers cannot achieve the most

efficient resource allocation when executing jobs.

In fact, advanced data analytics expose new opportunities to optimize scheduling deci-

sions. Our key insight is that by leveraging application-specific features, we can optimize

resource scheduling decisions and achieve better performance for advanced data analytics.

In this thesis, we present the design of resource management systems for three scenarios

in advanced data analytics applications which significantly improve resource efficiency and

system performance.

• We observe that vision analytics workloads expose a unique quality-delay-resource

trade-off, and our system, VideoStorm, takes advantage of this trade-off to jointly

optimize processing quality and lag with multiple concurrent queries.

6

• ML training is typically an iterative process with diminishing returns. We designed

SLAQ, a quality-driven scheduler to optimize the cluster-wide performance of dis-

tributed ML jobs on shared resources.

• We identify that the scaling bottleneck of multi-stage batch processing jobs is the

fragmented I/O requests during shuffle operations. We built Riffle to optimize the

shuffle service for efficient task execution that scales to process petabytes of data.

1.4 Contributions

VideoStorm [195] is a video analytics system that scales to processing thousands of

live video streams over large clusters. The system leverages important features of video

analytics queries, namely the resource-quality trade-off with multi-dimensional configura-

tions, and the variety in quality and lag goals. At its core, VideoStorm contains an offline

profiler that efficiently generates the query’s resource-quality profile for its different knob

configurations, and an online scheduler jointly maximizes the quality and minimizes the lag

of streaming video queries. In doing so, it uses the generated profiles, and lag and quality

goals. It allocates resources to each query and picks its configuration (knob values) based

on the allocation. We evaluated VideoStorm using real video analytics queries over video

datasets from operational traffic cameras from cities we partnered with. The VideoStorm

scheduler outperforms fair scheduling of resources by as much as 80% in quality of queries

and 7× in terms of lag.

SLAQ [197] is a cluster scheduling system for ML training jobs that aims to maximize

the overall job quality. SLAQ dynamically allocates resources based on job resource de-

mands, intermediate model quality, and the system’s workload. The intuition behind SLAQ

is that in the context of approximate ML training, more resources should be allocated to jobs

that have the most potential for quality improvement. SLAQ leverages the fact that most ML

training algorithms are implemented as an iterative optimization process. By continually

7

monitoring the history of quality improvement and runtime, SLAQ generates highly-tailored

and accurate quality predictions for future training iterations. SLAQ estimates the impact

of resource allocation on model quality, and explores the quality-runtime trade-offs across

multiple jobs. Based on this information, SLAQ adjusts their resource allocations of all

running jobs to best utilize the limited cluster resources. The SLAQ scheduler is designed to

be dynamic and fine-grained, so that resource allocations can adapt quickly to jobs’ quality

and the system’s workload changes. We evaluate various distinct ML training algorithms on

datasets collected from various online sources. We found that SLAQ improves the average

quality by up to 73% and reduces the average delay by up to 44% compared to fair resource

scheduling.

Riffle [196] is an optimized shuffle service for big-data analytics frameworks that sig-

nificantly improves I/O efficiency and scales to processing PB-level data. Riffle boosts

shuffle performance and improves resource efficiency by converting large amounts of small,

random shuffle I/O requests into much fewer large, sequential I/O requests. At its core,

Riffle consists of a centralized scheduler that keeps track of intermediate shuffle files and

dynamically coordinates merge operations, and a shuffle merge service which runs on each

physical cluster node and efficiently merges the small files into larger ones with little re-

source overhead. Riffle has to be efficient in handling shuffle files without using much

computation or storage resources, is easy to configure to best fit different storage systems

and hardware, and is robust and efficient when handling merge operation failures. We run

experiments of Riffle on a representative mix of Facebook’s production jobs processing

100s of TB of data: Riffle reduces disk I/O requests by up to 10x and the end-to-end job

completion time by up to 40%.

Practical deployment of systems. We further demonstrate the applicability and reliability

of our approaches by the experience of deploying them in real-world systems. VideoStorm

is used as the core scheduling module for Microsoft’s live video analytics platform, which is

8

currently deployed and running in the traffic departments of Bellevue, WA and Cambridge,

U.K. processing live streams from thousands of operational traffic cameras. The Riffle-

enabled Spark is fully deployed in the disaggregated clusters at Facebook. It is constantly

processing data analytics jobs daily on tens of petabytes of newly generated data per day.

Our experience running Riffle shows significant performance improvement on production

jobs in Facebook’s datacenters with hundreds of physical machines.

9

Chapter 2

VideoStorm: Live Video Analytics with

Approximation and Delay Tolerance

Video cameras are pervasive; major cities worldwide like New York City, London, and

Beijing have millions of cameras deployed [55, 99]. Cameras are installed in buildings

for surveillance and business intelligence, while those deployed on streets are for traffic

control and crime prevention. Key to achieving the potential of these cameras is effectively

analyzing the live video streams.

Organizations that deploy these cameras—cities or police departments—operate large

clusters to analyze the video streams [12, 17]. Sufficient bandwidth is provisioned (fiber

drops or cellular) between the cameras and the cluster to ingest video streams. Some

analytics need to run for long periods (e.g., counting cars to control traffic light durations)

while others for short bursts of time (e.g., reading the license plates for AMBER Alerts1).

Video analytics can have very high resource demands. Tracking objects in video is a core

primitive for many scenarios, but the best tracker [145] in the VOT Challenge 2015 [121]

processes only 1 frame per second on an 8-core machine. Some of the most accurate Deep

Neural Networks for object recognition, another core primitive, require 30GFlops to process

1AMBER Alerts are raised in U.S. cities to identify child abductors

10

a single frame [165]. Due to the high processing costs and high data-rates of video streams,

resource management of video analytics queries is crucial. We highlight two properties of

video analytics queries relevant to resource management.

Resource-quality trade-off with multi-dimensional configurations. Vision algorithms

typically contain various parameters, or knobs. Examples of knobs are video resolution,

frame rate, and internal algorithmic parameters, such as the size of the sliding window

to search for objects in object detectors. A combination of the knob values is a query

configuration. The configuration space grows exponentially with the number of knobs.

Resource demand can be reduced by changing configurations (e.g., changing the resolution

and sliding window size) but they typically also lower the output quality.

Variety in quality and lag goals. While many queries require producing results in real-

time, others can tolerate lag of even many minutes. This allows for temporarily reallocating

some resources from the lag-tolerant queries during interim shortage of resources. Such

shortage happens due to a burst of new video queries or “spikes” in resource usage of

existing queries (for example, due to an increase in number of cars to track on the road).

Indeed, video analytics queries have a wide variety of quality and lag goals. A query

counting cars to control the traffic lights can work with moderate quality (approximate car

counts) but will need them with low lag. License plate readers at toll routes [36, 38], on

the other hand, require high quality (accuracy) but can tolerate lag of even many minutes

because the billing can be delayed. However, license plate readers when used for AMBER

Alerts require high quality results without lag.

Scheduling large number of streaming video queries with diverse quality and lag goals,

each with many configurations, is computationally complex. Production systems for stream

processing like Storm [9], StreamScope [131], Flink [1], Trill [71], and Spark Stream-

ing [192] allocate resources among multiple queries only based on resource fairness [19,

20, 59, 88, 108] common to cluster managers like Yarn [3] and Mesos [100]. While simple,

11

being agnostic to the quality and lag of queries makes fair sharing far from ideal for video

stream analytics.

We present VideoStorm, a video analytics system that scales to processing thousands

of live video streams over large clusters. Users submit video analytics queries containing

many transforms that perform vision signal processing on the frames of the incoming video.

At its core, VideoStorm contains a scheduler that efficiently generates the query’s resource-

quality profile for its different knob configurations, and then jointly maximizes the quality

and minimizes the lag of streaming video queries. In doing so, it uses the generated profiles,

and lag and quality goals. It allocates resources to each query and picks its configuration

(knob values) based on the allocation.

Challenges and Solution. The major technical challenges for designing VideoStorm can

be summarized as follows: (i) There are no analytical models for resource demand and

quality for a query configuration, and the large number of configurations makes it expensive

to even estimate the resource-quality profile. (ii) Expressing quality and lag goals of indi-

vidual queries and across all queries in a cluster is non-trivial. (iii) Deciding allocations

and configurations is a computationally hard problem exponential in the number of queries

and knobs.

To deal with the multitude of knobs in video queries, we split our solution into offline

(or profiling) and online phases. In the offline phase, we use an efficient profiler to get

the resource-quality profile of queries without exploring the entire combinatorial space of

configurations. Using greedy search and domain-specific sampling, we identify a handful

of knob configurations on the Pareto boundary of the profile. The scheduler in the online

phase, thus, has to consider only these configurations.

We encode quality and lag goals of a query in a utility function. Utility is a weighted

combination of the achieved quality and lag, with penalties for violating the goals. Penalties

allow for expressing priorities between queries. Given utilities of multiple queries, we

12

schedule for two natural objectives—maximize the minimum utility, or maximize the total

utility. The former achieves fairness (max-min) while the latter targets performance.

Finally, in the online phase, we model the scheduling problem using the Model-

Predictive Control [142] to predict the future query lag over a short time horizon, and

use this predicted lag in the utility function. The scheduler considers the resource-quality

profile of queries during allocation, and allows for lagging queries to “catch up.” It also

deals with inevitable inaccuracies in resource usages in the resource-quality profiles.

While we focus VideoStorm on video analytics using computer vision algorithms, ap-

proximation and lag are aspects that are fundamental to all machine learning algorithms. To

that end, the techniques in our system are broadly applicable to all stream analytics systems

that employ machine learning techniques.

Contributions. Our contributions are as follows:

1. We designed and built a system for large-scale analytics of live video that allows

users to submit queries with arbitrary vision processors.

2. We efficiently identify the resource-quality profile of video queries without exhaus-

tively exploring the combinatorial space of knob configurations.

3. We designed an efficient scheduler for video queries that considers their resource-

quality profile and lag tolerance, and trades off between them.

We considered streaming databases with approximation [42, 73, 144] as a starting point

for our solution. However, they only consider the sampling rate of data streams and used

established analytical models [77] to calculate the quality and resource demand. In contrast,

vision queries are more complex black-boxes with many more knobs, and do not have

known analytical models. Moreover, they optimize only one query at a time, while our

focus is on scheduling multiple concurrent queries.

Deployment on 101 machines in Azure show that VideoStorm’s scheduler allocates

resources in hundreds of milliseconds even with thousands of queries. We evaluated using

13

Machine ManagerMachine ManagerWorker Process

transform

track object

transform

classify object

Worker 2

Worker Process

transform

detect license
plates

Worker Process

transform

decode

transform

b/g subtract

control flow data flow
query1 query2

Worker 1

VideoStorm Manager
Scheduler + Profiler

Machine Manager

transform

decode

Machine Manager

Figure 2.1: VideoStorm system architecture.

real video analytics queries over video datasets from live traffic cameras from several large

cities. Our offline profiling consumes 3.5× less CPU resources compared to a basic greedy

search. The online VideoStorm scheduler outperforms fair scheduling of resources [3, 65,

100] by as much as 80% in quality of queries and 7× in terms of lag.

2.1 System Description

In this section, we describe the high-level architecture of VideoStorm and the specifications

for video queries.

2.1.1 VideoStorm Architecture

The VideoStorm cluster consists of a centralized manager and a set of worker machines

that execute queries, see Figure 2.1. Every query is a DAG of transforms on live video that

is continuously streamed to the cluster; each transform processes a time-ordered stream of

messages (e.g., video frames) and passes its outputs downstream.

Figure 2.1 shows two example queries. One query runs across two machines; after

decoding the video and subtracting the background, it sends the detected objects to another

machine for tracking and classification. The other query for detecting license plates runs

14

1 "name": "LicensePlate",

2 "transforms": [

3 {"id": "0",

4 "class_name": "Decoder",

5 "parameters": {

6 "CameraIP": "134.53.8.8",

7 "CameraPort": 8100,

8 "@OutputResolution": "720P",

9 "@SamplingRate": 0.75 }

10 },

11 {"id": "1",

12 "input_transform_id": "0",

13 "class_name": "OpenALPR",

14 "parameters": {

15 "@MinSize": 100,

16 "@MaxSize": 1000,

17 "@Step": 10 }

18 }]

Figure 2.2: VideoStorm query for license plate reader.

on a single machine. We assume there is sufficient bandwidth provisioned for cameras to

stream their videos into the cluster.

Every worker machine runs a machine manager which start worker processes to host

transforms. The machine manager periodically reports resource utilizations as well as status

of the running transforms to the VideoStorm manager. The scheduler in the manager uses

this information to allocate resources to queries. The VideoStorm manager and the machine

managers are not on the query data path; videos are streamed directly to the decoding

transforms and thereon between the transforms.

2.1.2 Video Queries Specification

Queries submitted to the VideoStorm manager are strung together as pipelines of transforms.

Figure 2.2 shows a sample VideoStorm pipeline with two transforms. The first transform

decodes the live video to produce frames that are pushed to the second transform to find

license plate numbers using the OpenALPR library [29].

15

Each transform contains an id and class_name which is the class implementing the

transform. The input_transform_id field specifies the transform whose output feeds into

this transform, thus allowing us to describe a pipeline. VideoStorm allows arbitrary DAGs

including multiple inputs and outputs for a transform. Source transforms, such as the

“Decoder”, do not specify input transform, but instead directly connect to the camera source

(specified using IP and port number).

Each transform contains optional knobs (parameters); e.g., the minimum and maximum

window sizes (in pixels) of license plates to look for and the step increments to search

between these sizes for the OpenALPR transform (more in §2.4). Knobs whose values can

updated dynamically start with the ‘@’ symbol. The VideoStorm manager updates them as

part of its scheduling decisions.

2.2 Making the Case for Resource Allocation

We make the case for resource management in video analytics clusters using a simple

example (§2.2.1) and real-world video queries (§2.2.2).

2.2.1 Motivating Example

Cluster managers such as Yarn [3], Apollo [65], and Mesos [100] commonly divide re-

sources among multiple queries based on resource fairness. Being agnostic to query quality

and lag preferences, fair allocation is the best they can do. Instead, scheduling for perfor-

mance leads to queries achieving better quality and lag.

The desirable properties of a scheduler for video analytics are: (1) allocate more re-

sources to queries whose qualities will improve more, (2) allow queries with built-up lag

during resource shortage to “catch up” in later processing, and (3) adjust query configuration

based on the resource allocated.

16

(a) Query A

C D Q

A1 1 0.6

A2 2 0.7

A3 3 0.8

(b) Query B

C D Q

B1 1 0.1

B2 2 0.3

B3 3 0.9

(c) Fair allocation

Query A Query B

Time R C D A Q L C D A Q L

0 4 A2 2 2 0.7 - B2 2 2 0.3 -

10 2 A1 1 1 0.6 - B1 1 1 0.1 -

22 4 A2 2 2 0.7 - B2 2 2 0.3 -

(d) Performance-based allocation

Query A Query B

Time R C D A Q L C D A Q L

0 4 A1 1 1 0.6 - B3 3 3 0.9 -

10 2 A1 1 1 0.6 - B3 3 1 0.9 -

22 4 A1 1 1 0.6 - B2 2 3 0.3 8s

38 4 A1 1 1 0.6 - B3 3 3 0.9 -

Table 2.1: Tables (a) and (b) show queries A and B with three configurations each, resource
demand D and quality Q. Tables (c) and (d) show the time and capacity R, and for each
query the chosen configuration C, demand D, allocation A, achieved quality Q, and lag L

for the fair and performance-based schedulers. Notice in (d) that query B achieves higher
quality between times 10 and 22 than with the fair scheduler in (c), and never lags beyond
its permissible 8s.

Tables 2.1(a) and 2.1(b) shows two example queries A and B with three knob con-

figurations each (Ax and Bx, respectively). Query A’s improvement in quality Q is less

pronounced than B’s for the same increase in resource demand D. Note that D is the re-

source to keep up with the incoming data rate. Query A cannot tolerate any lag, but B can

tolerate up to 8 seconds of lag. Lag is defined as the difference between the time of the

last-arrived frame and the time of the last-processed frame, i.e., how much time’s worth of

frames are queued-up unprocessed.

17

Let a single machine with resource capacity R of 4 run these two queries. Its capacity R

drops to 2 after 10 seconds and then returns back to 4 after 12 more seconds (at 22 seconds).

This drop could be caused by another high-priority job running on this machine.

Fair Scheduling. Table 2.1(c) shows the assigned configuration C, query demand D,

resource allocation A, quality Q and lag L with a fair resource allocation. Each query selects

the best configuration to keep up with the live stream (i.e., keeps its demand below its

allocation). Using the fair scheduler, both queries get an allocation of 2 initially, picking

configurations A2 and B2 respectively. Between times 10 to 22, when the capacity drops to

2, the queries get an allocation of 1 each, and pick configurations A1 and B1. At no point

do they incur any lag.

Performance-based Scheduling. As Table 2.1(d) shows, a performance-based scheduler

allocates resources of 1 and 3 to queries A and B at time 0; B can thus run at configuration

B3, achieving higher quality compared to the fair allocation (while A’s quality drops only

by 0.1). This is because the scheduler realizes the value in providing more resources to B

given its resource-quality profile.

At time 10 when capacity drops to 2, the scheduler allocates 1 unit of resource to each

to the queries, but retains configuration B3 for B. Since resource demand of B3 is 3, but B

has been allocated only 1, B starts to lag. Specifically, every second, the lag in processing

will increase by 2/3 of a second. However, query B will still produce results at quality 0.9,

albeit delayed. At time 22, the capacity recovers and query B has built up a lag of 8 seconds.

The scheduler allocates 3 resource units to B but switches it to configuration B2 (whose

demand is only 2). This means that query B can now catch up—every second it can process

1.5 seconds of video. Finally, at time 38, all the lag has been eliminated and the scheduler

switches B to configuration B3 (quality 0.9).

18

480p 576p 720p 900p1080p
FUaPe 5esRlutiRQ

0.0
0.2
0.4
0.6
0.8
1.0

4uality CP8

(a) Licence Plate: resolution
(sampling rate fixed to 0.12)

0.1 0.2 0.3 0.4
6aPSliQg Rate

0.0
0.2
0.4
0.6
0.8
1.0

4uality C38

(b) Licence Plate: sampling rate
(resolution fixed to 480P)

0.2 0.4 0.6 0.8 1.0
6aPSliQg Rate

0.0
0.2
0.4
0.6
0.8
1.0

4uality CP8

(c) DNN: sampling rate

DI6T HI6T 68RF 6IFT
2bMHFt 0DSSiQg 0HtUiF

0.0
0.2
0.4
0.6
0.8
1.0

4uDOity CP8

(d) Tracker: object mapping metric

Figure 2.3: Resource-quality profiles for real-world video queries including Licence Plate
Reader, DNN Classifier, and Object Tracker. For simplicity, we plot one knob at a time.

The performance-based scheduler exhibited the three properties listed above. It allocated

resources to optimize for quality and allowed queries to catch up to built-up lag, while

accordingly adjusting their configurations.

2.2.2 Real-world Video Queries

Video analytics queries have many knob configurations that affect output quality and re-

source demand. We highlight the resource-quality profiles of four real-world queries—

license plate reader, car counter, DNN classifier, object tracker—of interest to the cities we

are partnering with and obtained videos from their operational traffic cameras (§2.7.1). For

clarity, we plot one knob at a time and keep other knobs fixed. Quality is defined as the F1

score ∈ [0, 1] (the harmonic mean between precision and recall [177]) with reference to a

labeled ground truth.

19

License Plate Reader. The OpenALPR library [29] scans the video frame to detect po-

tential plates and then recognizes the text on plates using optical character recognition.

In general, using higher video resolution and processing each frame will detect the most

license plates accurately. Reducing the resolution and processing only a subset of frames

(e.g., sampling rate of 0.25) dramatically reduces resource demand, but can also reduce the

quality of the output (i.e., miss or incorrectly read plates). Figures 2.3(a) and 2.3(b) plots

the impact of resolution and sampling rate2 on quality and CPU demand.

Car Counter. Resolution and sampling rate are knobs that apply to almost all video

queries. A car counter monitors an “area of interest” and counts cars passing the area. In

general, its results are of good quality even on videos with low resolution and sampling

rates (plots omitted).

Deep Neural Network (DNN) Classifier. Vision processing is employing DNNs for key

tasks including object detection and classification. Figure 2.3(c) profiles a Caffe [112] DNN

model trained with the widely-used ImageNet dataset [82] to classify objects into 1,000

categories. We see a uniform increase in the quality of the classification as well as resource

consumption with the sampling rate. As DNN models get compressed [93, 94], reducing

their resource demand at the cost of quality, the compression factor presents another knob.

Object Tracker. Finally, we have also profiled an object tracker. This query continuously

models the “background” in the video, identifies foreground objects by subtracting the

background, and tracks objects across frames using a mapping metric. The mapping metric

is a key knob (Figure 2.3(d)). Objects across frames can be mapped to each other using

metrics such as distance moved (DIST), color histogram similarity (HIST), or matched over

SIFT [30] and SURF [31] features.

2Sampling rate of 0.75 drops every fourth frame from the video.

20

Resource-quality profiles based on knob configurations is intrinsic to video analytics

queries. These queries typically identify “events” (like license plates or car accidents), and

using datasets where these events are labeled, we can empirically measure precision and

recall in identifying the events for different query configurations.

In contrast to approximate SQL query processing, there are no analytical models to

estimate the relationship between resource demand and quality of video queries and it

depends on the specific video feeds. For example, reducing video resolution may not reduce

OpenALPR quality if the camera is zoomed in enough. Hence queries need to be profiled

using representative video samples.

2.2.3 Summary and Challenges

Designing a scheduler with the desirable properties in §2.2.1 for real-world video queries

(§2.2.2) is challenging.

First, the configuration space of a query can be large and there are no analytical models

to estimate the resource demand and result quality of each configuration.

Second, trading off between the lag and quality goals of queries is tricky, making it

challenging to define scheduling objectives across all queries in the cluster.

Third, resource allocation across all queries in the cluster each with many configurations

is computationally intractable, presenting scalability challenges.

2.3 VideoStorm Design Overview

The VideoStorm scheduler is split into offline profiling and online scheduling phases (Fig-

ure 2.4). In the offline phase, for every query, we efficiently generate its resource-quality

profile – a small number of configurations on the Pareto curve of the profile, §2.4. This

dramatically reduces the configurations to be considered by the scheduler.

21

Workers

start / stop / migrate query / transform

Profiler §5

query
Scheduler

Resource

Allocation

§6.2

Placement

§6.3

query profile

configuration changes

report machine, query stats

(periodic)

resource changes

(periodic)

(periodic)

utility func.

§6.1

offline online

WorkersWorkers

Figure 2.4: VideoStorm scheduler components.

In the online phase, the scheduler periodically (e.g., every second) considers all running

queries and adjusts their resource allocation, machine placement, and configurations based

on their profiles, changes in demand and/or capacity (see Figure 2.4). We encode the

quality and lag requirements of each individual query into its utility function, §2.5.1. The

performance goal across all queries in a cluster is specified either as maximizing the

minimum utility or the sum of utilities, §2.5.2 and §2.5.3.

2.4 Resource-Quality Profile Estimation

When a user submits a new query, we start running it immediately with a default profile

(say, from its previous runs on other cameras), while at the same time we run the query

through the offline profiling phase. The query profiler has two goals. 1) Select a small subset

of configurations (Pareto boundary) from the resource-quality space, and 2) Compute the

query profile, Pk, i.e., the resource demand and result quality of the selected configurations.

The profile is computed either against a labeled dataset or using the initial parts of the

video relative to a “golden” query configuration which might be expensive but is known to

produce high-quality results.

22

2.4.1 Profile estimation is expensive

We revisit the license plate reader query from §2.2.2 in detail. As explained earlier, frame

resolution and sampling rate are two important knobs. The query, built using the Ope-

nALPR library [29], scans the image for license plates of size MinSize, then multiplicatively

increases the size by Step, and keeps repeating this process until the size reaches MaxSize.

The set of potential license plates is then sent to an optical character recognizer.

We estimate the quality of each knob configuration (i.e., combination of the five knobs

above) on a labeled dataset using the F1 score [177], the harmonic mean between precision

and recall, commonly used in machine learning; 0 and 1 represent the lowest and highest

qualities. For example, increasing MinSize or decreasing MaxSize reduces the resources

needed but can miss some plates and decrease quality.

Figure 2.5 shows a scatter plot of resource usage vs. quality of 414 configurations

generated using the five knobs. There is four orders of magnitude of difference in resource

usage; the most expensive configuration used all frames of a full HD resolution video and

would take over 2.5 hours to analyze a 1 minute video on 1 core. Notice the vast spread in

quality among configurations with similar resource usage as well as the spread in resource

usage among configurations that achieve similar quality.

2.4.2 Greedy exploration of configurations

We implement a greedy local search to identify configuration with high quality (Q) and low

demand (D); see Table 2.2. Our baseline profiler implements hill-climbing [162]; it selects

a random configuration c, computes its quality Q(c) and resource demand D(c) by running

the query with c on a small subset of the video dataset, and calculates X(c) = Q(c)−βD(c)

where β trades off between quality and demand. Next, we pick a neighbor configuration

n (by changing the value of a random knob in c). If X(n) > X(c), then n is better than c

in quality or resource demand (or both); we set c = n and repeat. When we cannot find a

23

0

0.2

0.4

0.6

0.8

0.01 0.1 1 10 100 1000

q
u
a
lit

y,
 F

1
 s

c
o
re

resource demand [CPU cores, log scale]

Figure 2.5: Resource-quality for license plate query on a 10 minute video (414 configura-
tions); x-axis is resource demand to keep up with live video. Generating this took 20 CPU
days. The black dashed line is the Pareto boundary.

better neighbor (i.e., our exploration indicates that we are near a local optimum), we repeat

by picking another random c.

Several enhancements significantly increase the efficiency of our search. To avoid

starting with an expensive configuration and exploring its neighbors, (which are also likely

to be expensive, thus wasting CPU), we pick k random configurations and start from the one

with the highest X(c). We found that using even k = 3 can successfully avoid starting in an

expensive part of the search space. Second, we cache intermediate results in the query’s

DAG and reuse them in evaluating configurations with overlapping knob values.

While our simple profiler is sufficiently efficient for our purpose, sophisticated hyperpa-

rameter searches (e.g., [166]) can potentially further improve its efficiency.

Pareto boundary. We are only interested in a small subset of configurations that are on

the Pareto boundary P of the resource-quality space. Let Q(c) be the quality and D(c)

the resource demand under configuration c. If c1 and c2 are two configurations such that

Q(c1)≥ Q(c2) and D(c1)≤ D(c2), then c2 is not useful in practice; c1 is better than c2 in

both quality and resource demand. The dashed line in Figure 2.5 shows the Pareto boundary

of such configurations for the license plate query. We extract the Pareto boundary of the

explored configurations and call it the resource-quality profile P of the query.

24

Term Description

Ck set of configurations of query k

Pk profile of query k

ck ∈ Ck specific configuration of query k

Qk(c) quality under configuration c

Dk(c) resource demand under configuration c

Lk,t measured lag at time t

Uk utility

QM
k (min) quality goal

LM
k (max) lag goal

ak resources allocated

Table 2.2: Notations used, for query k.

We can generate the same profile as the baseline profiler on the license plate query with

3.5× less CPU resources (i.e., 5.4 CPU hours instead of 19 CPU hours).

2.5 Resource Management

In the online phase, the VideoStorm cluster scheduler considers the utilities of individual

queries and the cluster-wide performance objectives (defined in §2.5.1) and periodically

performs two steps: resource allocation and query placement. In the resource allocation

step, §2.5.2, the scheduler assumes the cluster is an aggregate bin of resources and uses an

efficient heuristic to maximize the cluster-wide performance by adjusting query allocation

and configuration. In the query placement step, §2.5.3, the scheduler places new queries to

machines in the cluster and considers migrating existing queries.

2.5.1 Utility: Combining Quality and Lag

Each query has preferences on the desired quality and lag. What is the minimum quality

goal (QM)? How much does the query benefit from higher quality than the goal? What is

the maximum lag (LM) it can tolerate and how sensitive are violations to this goal? (See

25

0

3

6

0 0.5 1

UQ

quality Q

query 1

query 2

QM
1 QM

2

-6

-3

0

0 5 10

UL

lag L [sec]

query 1

query 2

LM
1

LM
2

Figure 2.6: Examples for the second (UQ) and third terms (UL) in Equation 2.1.
(Left) Query 1’s quality goal is relatively lenient, QM

1 = 0.2, but its utility grows slowly
with increase in quality beyond QM

1 . Query 2 is more stringent, QM
2 = 0.6, but its utility

grows sharply thereon.
(Right) Query 1 has lag target of LM

1 = 5 beyond which it incurs a penalty. Query 2 has a
stricter lag goal of LM

2 = 1 and also its utility drops much faster with increased lag.

Table 2.2 for notations.) We encode these preferences in utility functions, an abstraction

used extensively in economics [139, 161] and computer systems [46, 113].

Our utility function for a query has the following form, where (x)+ is the positive part

of x. We omit the query index k for clarity.

U(Q,L) =UB +UQ(Q)+UL(L)

=UB +αQ · (Q−QM)+−αL · (L−LM)+

(2.1)

UB is the “baseline” utility for meeting the quality and lag goals (when Q = QM and

L = LM). The second term UQ describes how the utility responds to achieved quality Q

above QM, the soft quality goal; the multiplier αQ and QM are query-specific and set based

on the application analyzing the video. Results with quality below QM are typically not

useful to the users.

The third term, UL, represents the penalty for results arriving later than the maximum

lag goal of LM. 3 Recall that lag is the difference between the current time and the arrival

time of the last processed frame, e.g., if at time 10:30 we process a frame that arrived at

3Multiplier αL is in (1/second), making UL dimensionless like UQ.

26

10:15, the lag is 15 minutes. Similar to latency SLOs in clusters, there is no bonus for lag

being below LM. See Figure 2.6 for examples of UQ and UL in queries.

Scheduling objectives. Given utilities of individual queries, how do we define utility or

performance of the whole cluster? Previous work has typically aimed to maximize the

minimum utility [126, 136] or sum of utilities [126, 133], which we adopt. When deployed

as a “service” in the public cloud, utility will represent the revenue the cluster operator

generates by executing the query; penalties and bonuses in utility translate to loss and

increase in revenue. Therefore, maximizing the sum of utilities maximizes revenue. In

a private cluster that is shared by many cooperating entities, achieving fairness is more

desirable. Maximally improving the utility of the worst query provides max-min fairness

over utilities.

To simplify the selection of utility functions in practical settings, we can provide only

a few options to choose from. For example, the users could separately pick the minimum

quality (40%, 60%, or 80%) and the maximum lag (1, 10, or 60 minutes) for a total of

nine utility function templates. Users of cloud services already make similar decisions;

for example, in Azure Storage [67], they separately select data redundancy (local, zone, or

geo-distributed) and data access pattern (hot vs. cool).

2.5.2 Resource Allocation

Given a profile Pk and a utility function Uk for each query k, the scheduler allocates

resources ak to the queries and picks their query configuration (ck ∈ Pk). The scheduler

runs periodically (e.g., every few seconds) and reacts to arrival of new queries, changes in

query demand and lag, and changes in resource capacity (e.g., due to other high-priority

non-VideoStorm jobs).

27

Scheduling Using Model-Predictive Control

The scheduler aims to maximize the minimum or sum of query utilities, which in turn

depend on their quality and lag. A key point to understand is that while we can near-

instantaneously control query quality by adjusting its configuration, query lag accumulates

over time if we allocate less resources than query demand.

Because of this accumulation property, the scheduler cannot optimize the current per-

formance, but only aims to improve performance in the near future. We formulate the

scheduling problem using the Model-Predictive Control (MPC [142]) framework; where

we model the cluster performance over a short time horizon T as a function of query config-

uration and allocation. In each step, we select the configuration and allocation to maximize

performance over the near future (described in detail in §2.5.2).

To predict future performance, we need to predict query lag; we use the following

formula:

Lk,t+T (ak,ck) = Lk,t +T −T
ak

Dk(ck)
(2.2)

We plug in the predicted lag Lk,t+T into the utility function (Equation 2.1) to obtain the

predicted utility.

Scheduling Heuristics

We describe resource allocation assuming each query to contain only one transform, which

we relax in §2.5.4.

Maximizing sum of utilities. The optimization problem for maximizing sum of utilities

over time horizon T is as follows. Sum of allocated resources ak cannot exceed cluster

28

resource capacity R.

max
ak,ck∈Pk

∑k Uk(Qk(ck),Lk,t+T) (2.3)

s.t. ∑k ak ≤ R

Maximizing the sum of utilities is a variant of the knapsack problem where we are trying

to include the queries at different allocation and configuration to maximize the total utility.

The maximization results in the best distribution of resources (as was illustrated in §2.2.1).

When including query k at allocation ak and configuration ck, we are paying cost of ak

and receiving value of uk =Uk(Qk(ck),Lk,t+T). We employ a greedy approximation based

on [80] where we prefer queries with highest value of uk/ak; i.e., we receive the largest

increase in utility normalized by resource spent.

Our heuristic starts with ak = 0 and in each step we consider increasing ai (for all queries

i) by a small ∆ (say, 1% of a core) and consider all configurations of ci ∈ Pi. Among these

options, we select query i (and corresponding ci) with largest increase in utility.4 We repeat

this step until we run out of resources or we have selected the best configuration for each

query. (Since we start with ak = 0 and stop when we run out of resources, we will not end

up with infeasible solutions.)

Maximizing minimum utility. Below is the optimization problem to maximize the mini-

mum utility predicted over a short time horizon T . We require that all utilities be ≥ u and

we maximize u.

max
ak,ck∈Pk

u (2.4)

s.t. ∀k : Uk(Qk(ck),Lk,t+T)≥ u

∑k ak ≤ R

4We use a concave version of the utility functions obtained using linear interpolation to ensure that each
query has a positive increase in utility, even for small ∆.

29

We can improve u only by improving the utility of the worst query. Our heuristic is

thus as follows. We start with ak = 0 for all queries. In each step, we select query

i = argmink Uk(Qk(ck),Lk,t+T) with the lowest utility and increase its allocation by a

small ∆, say 1% of a core. With this allocation, we compute its best configuration ci

as argmaxc∈Pi
Ui(Qi(c),Li,t+T). We repeat this process until we run out of resources or we

have picked the best configuration for each query.

2.5.3 Query Placement

After determining resource allocation and configuration of each query, we next describe the

placement of new queries and migration of existing queries. We quantify the suitability of

placing a query q on machine m by computing a score for each of the following goals: high

utilization, load balancing, and spreading low-lag queries.

(i) Utilization. High utilization in the cluster can be achieved by packing queries in to

machines, thereby minimizing fragmentation and wastage of resources. Packing has several

well-studied heuristics [91, 152]. We define alignment of a query relative to a machine

using a weighted dot product, p, between the vector of machine’s available resources and

the query’s demands; p ∈ [0,1].

(ii) Load Balancing. Spreading load across the cluster ensures that each machine has

spare capacity to handle changes in demand. We therefore prefer to place q on a machine

m with the smallest utilization. We capture this in score b = 1− M+D
Mmax

∈ [0,1], where M is

the current utilization of machine m and D is demand of query q.

(iii) Lag Spreading. Not concentrating many low-lag queries on a machine provides

slack to accumulate lag for some queries when resources are scarce, without having to resort

to migration of queries or violation of their lag goal LM. We achieve this by maintaining

high average LM on each machine. We thus compute score l ∈ [0,1] as the average LM after

placing q on m.

30

The final score sq,m is the average of the three scores. For each new query q, we place it

on a machine with the largest sq,m. For each existing query q, we migrate from machine m0

to a new machine m1 only if its score improves substantially; i.e., s(q,m1)− s(q,m0)> τ .

2.5.4 Enhancements

Incorrect resource profile. The profiled resource demand of a query, Dk(ck), might not

exactly correspond to the actual query demand, e.g., when demand depends on video content.

Using incorrect demand can negatively impact scheduling; for example, if Dk(c) = 10, but

actual usage is Rk = 100, the scheduler would estimate that allocating ak = 20 would reduce

query lag at the rate of 2×, while the lag would actually grow at a rate of 5×. To address this,

we keep track of a running average of mis-estimation µ = Rk/Dk(c), which represents the

multiplicative error between the predicted demand and actual usage. We then incorporate

µ in the lag predictor from Equation 2.2, Lk,t+T (ak,ck) = Lk,t +T −T
ak

Dk(ck)
(1

µ).

Machine-level scheduling. As most queries fit on a single machine, we can respond

to changes in demand or lag at the machine-level, without waiting for the cluster-wide

decisions. We therefore execute the allocation step from §2.5.2 on each machine, which

makes the scheduling logic much more scalable. The cluster-wide scheduler still runs the

allocation step, but only for the purposes of determining query placement and migration.

DAG of transforms. Queries consisting of a DAG of transforms could be placed across

multiple machines. We first distribute the query resource allocation, ak, to individual

transforms based on per-transform resource demands. We then place individual transforms

to machines as described in §2.5.3 while accounting for the expected data flow across

machines and network link capacities.

31

2.6 VideoStorm Implementation

We now discuss VideoStorm’s key implementation details and the interfaces implemented

by transforms.

2.6.1 Implementation Details

In contrast to widely-deployed cluster frameworks like Yarn [3], Mesos [100] and Cos-

mos [65], we highlight the differences in VideoStorm’s design. First, VideoStorm takes the

list of knobs, resource-quality profiles and lag goals as inputs to allocate resources. Sec-

ond, machine-level managers in the cluster frameworks pull work, whereas the VideoStorm

manager pushes new queries and configuration changes to the machine-managers. Fi-

nally, VideoStorm allows machine managers to autonomously handle short-term fluctua-

tions (§2.5.4)

Flow control. We implemented flow control across transforms of a query to minimize the

buffering inside the query pipeline, and instead push queuing of unprocessed video to the

front of the query. This helps for two reasons. First, decoded frames can be as much as

300× larger than the encoded video (from our benchmarks on HD videos). Buffering these

frames will significantly inflate memory usage while spilling them to disk affects overall

performance. Second, buffering at the front of query enables the query to respond promptly

to configuration changes. It prevents frames from being processed by transforms with old

inconsistent knob values.

Migration. As described in §2.5.3, VideoStorm migrates queries depending on the load

in the cluster. We implement a simple “start-and-stop” migration where we start a copy

of a running query/transform on the target machine, duplicate its input stream to the copy,

and stop the old query/transform after a short period. The whole process of migration is

32

data-lossless and takes roughly a second (§2.7.3), so the overhead of duplicated processing

during the migration is very small.

Resource Enforcement. VideoStorm uses Job Objects [39] for enforcing allocations.

Similar to Linux Containers [22], Job Objects allow controlling and resizing the CPU/mem-

ory limits of running processes.

2.6.2 Interfaces for Query Transforms

Transforms implement simple interfaces to process data and exchange control information.

• Processing. Transforms implement byte[] Process(header, data) method. header

contains metadata such as frame id and timestamp. data is the input byte array, such

as decoded frame. The transform returns another byte array with its result, such as the

detected license plate. Each transform maintains its own state, such as the background

model.

• Configuration. Transforms can also implement Update(key, value) to set and update

knob values to change query configuration at runtime.

2.7 Evaluation

We evaluate the VideoStorm prototype (§2.6) using a cluster of 101 machines on Microsoft

Azure with real video queries and video datasets. Our highlights:

1. VideoStorm outperforms the fair scheduler by 80% in quality of outputs with 7×

better lag. (§2.7.2)

2. VideoStorm is robust to errors in query profiles and allocates nearly the same as

correct profiles. (§2.7.3)

3. VideoStorm scales to thousands of queries with little systemic execution overheads.

(§2.7.4)

33

0 100 200 300 400
Burst Duration, N (seconds)

0.0

0.5

1.0

U
til

ity

Fair VideoStorm MaxMin (Allocation Only) VideoStorm MaxMin

(a) Utility

0 100 200 300 400
Burst Duration, N (seconds)

0.0

0.5

1.0

Q
ua

lit
y

(b) Quality

0 100 200 300 400
Burst Duration, N (seconds)

0

10

20

Fr
am

es
 (%

) L
ag

gi
ng

B
ey

on
d

G
oa

l
(c) Lag

Figure 2.7: VideoStorm outperforms the fair scheduler as the duration of burst of queries
in the experiment is varied. Without its placement but only its allocation (“VideoStorm
MaxMin (Allocation Only)”), its performance drops by a third.

2.7.1 Setup

Video Analytics Queries. We evaluate VideoStorm using four types of queries described

and profiled in §2.2.2—license plate reader, car counter, DNN classifier, object tracker.

These queries are of major interest to the cities we are partnering with in deploying our

system.

Video Datasets. The above queries run on video datasets obtained from real and oper-

ational traffic cameras in Bellevue and Seattle cities for two months (Sept.–Oct., 2015).

In our experiments, we stream the recorded videos at their original frame-rate (14 to 30

fps) and resolution (240P to 1080P) thereby mimicking live video streams. The videos

span a variety of conditions (sunny/rainy, heavy/light traffic) that lead to variation in their

processing workload. We present results on multiple different snippets from the videos.

34

Azure Deployment. We deploy VideoStorm on 101 Standard_D3_v2 instances on Azure’s

West-US cluster [13]. Standard_D3_v2 instances contain 4 cores of the 2.4GHz Intel Xeon

processor and 14GB RAM. One machine ran the VideoStorm global manager on which no

queries were scheduled.

Baseline. We use the work-conservative fair scheduler as our baseline. It’s the widely-

used scheduling policy for cluster computing frameworks like Mesos [100], Yarn [3] and

Cosmos [65]. When a query, even at its best configuration, cannot use its fair share, it

distributes the excess resources among the other queries. The fair scheduler places the same

number of queries evenly on all available machines in a round-robin fashion.

Metric. The three metrics of interest to us are quality, frames (%) exceeding the lag goal

in processing, and utility (§2.5.1). We compare the improvement (%); if a metric (say,

quality) with VideoStorm and the fair scheduler is XV and X f , we measure
XV−X f

X f
×100%.

2.7.2 Performance Improvements

Our workload consists of a mix of queries with lenient and stringent goals. We start with

a set of 300 queries picked from the four types (§2.7.1) on 300 distinct video datasets at

the beginning of the experiment. 60% of these queries have a lag goal LM of 20s while the

remaining are more lenient with a lag goal of 300s. All of them have a quality goal QM of

0.25. We set the lag multiplier αL = 1 for these long-lived video analyses.

Burst of N seconds: At a certain point, a burst of 200 license plate queries arrive and last

for N seconds (which we will vary). These queries have a lag goal QL of 20s, a high quality

goal (1.0), and higher αL = 2. They mimic short-term deployment of queries like AMBER

Alerts with stringent accuracy and lag goals. We evaluate VideoStorm’s reaction to the burst

of queries up to several minutes; note that the improvements will carry over when tolerant

delay and bursts are much longer.

35

Maximize the Minimum Utility (MaxMin)

We ran a series of experiments with burst duration N from 10 to 400 seconds. Figure 2.7(a)

plots the minimum query utility achieved in each of the experiments, when VideoStorm

maximizes the minimum utility (§2.5.2). For each point in the figure, we obtain the mini-

mum utility, quality and lag over an interval that includes a minute before and after the N

second burst. VideoStorm’s utility (“VideoStorm-MaxMin”) drops only moderately with

increasing burst duration. Its placement and resource allocations ensure it copes well with

the onset of and during the burst. Contrast with the fair scheduler’s sharp drop with N.

The improvement in utility comes due to smartly accounting for the resource-quality

profile and lag goal of the queries; see Figures 2.7(b) and 2.7(c). Quality (F1 score [177];

∈ [0, 1]) with the fair scheduler is 0.2 lower than VideoStorm to begin with, but reduces

significantly to nearly 0.5 for longer bursts (higher N), while quality with VideoStorm stays

at 0.9, or nearly 80% better. The rest of VideoStorm’s improvement comes by ensuring that

despite the accumulation in lag, fewer than 5% of the frames exceed the query’s lag goal

whereas with the fair scheduler it grows to be 7× worse.

How valuable is VideoStorm’s placement? Figure 2.7 also shows the “VideoStorm

MaxMin (Allocation Only)” graphs which lie in between the graphs for the fair scheduler

and VideoStorm. As described in §2.5.3, VideoStorm first decides the resource allocation

and then places them onto machines to achieve high utilization, load balancing and spread-

ing of lag-sensitive and lag-tolerant queries. As the results show, not using VideoStorm’s

placement heuristic (instead using our baseline’s round-robin placement) considerably low-

ers VideoStorm’s gains.

Figure 2.8(top) explains VideoStorm’s gains by plotting the allocation of CPU cores

in the cluster over time, for burst duration N = 150s. We group the queries into three

categories — the burst of queries with 20s lag goal and quality goal of 1.0, those with

20s lag goal, and 300s lag goal (both with quality goal of 0.25). We see that VideoStorm

36

0 50 100 150 200 250
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

S
ha

re
 o

f C
lu

st
er

 C
P

U
s Lag Goal=300s Lag Goal=20s High-Quality, Lag Goal=20s

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

Lag Goal=300s Lag Goal=20s High-Quality, Lag Goal=20s

0 50 100 150 200 250
Time (seconds)

0
20
40
60
80

100
120

La
g

(s
ec

)

Figure 2.8: (Top) CPU Allocation for burst duration N = 150s, and (bottom) quality and
lag averaged across all queries in each of the three categories.

adapts to the burst and allocates nearly 60% of the CPU cores in the cluster to the burst of

license plate queries which have a high quality and tight lag goals. VideoStorm also delays

processing of lag-tolerant queries (allocating less than 10% of CPUs). Figure 2.8(bottom)

shows the resulting quality and lag, for queries in each category. We see that because the

delay-tolerant queries have small allocation, their lag grows but stays below the goal. The

queries with 20s lag goal reduce their quality to adapt to lower allocation and keep their lag

(on average) within the bound.

Impact of αL. Figure 2.9 plots the distinction in treatment of queries with the same

lag goal (LM) but different αL and quality goals. While the figure on the left shows that

VideoStorm does not drop the quality of the query with QM = 1.0, it also respects the

difference in αL; fewer frames of the query with αL = 2 lag beyond the goal of 20s (right).

This is an example of how utility functions encode priorities.

37

0 100 200 300 400
Burst Duration, N (seconds)

0.80
0.85
0.90
0.95
1.00

Q
ua

lit
y

Lag Goal=20s, ®L=1 High Quality, Lag Goal=20s, ®L=2

0 100 200 300 400
Burst Duration, N (seconds)

0
2
4
6
8

10

Fr
am

es
 (%

) L
ag

gi
ng

 B
ey

on
d

G
oa

l

Figure 2.9: Impact of αL. Queries with higher αL have fewer overdue frames.

50 100 150 200 250 300
Number of New Queries

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

Fair Scheduler

(a) Quality

50 100 150 200 250 300
Number of New Queries

0
5

10
15
20

Fr
am

es
 (%

) L
ag

gi
ng

B
ey

on
d

G
oa

l

VideoStorm MaxMin

(b) Lag

Figure 2.10: VideoStorm vs. fair scheduler as the number of queries in the burst during the
experiment is varied.

Maximize the Total Utility (MaxSum)

Recall from §2.5.2 that VideoStorm can also maximize the sum of utilities. We measure

the average utility, quality, and frames (%) exceeding the lag goal; maximizing for the total

utility and average utility are equivalent. VideoStorm achieves 25% better quality and 5×

better lag compared with the fair scheduler.

Per Query Performance. While MaxMin scheduling, as expected, results in all the

queries achieving similar quality and lag, MaxSum priorities between queries as the burst

duration increases. Our results show that the license plate query, whose utility over its

resource demand is relatively lower, is de-prioritized with MaxSum (reduced quality as well

as more frames lagging). With its high quality (1.0) and low lag (20s) goals, the scheduler

has little leeway. The DNN classifier, despite having comparable resource demand does not

suffer from a reduction in quality because of its tolerance to lag (300s).

38

0
10
20
30

M
1
 C

PU

0 50 100 150 200
Time (seconds)

0
10
20
30

M
2
 C

PU

Q1 (migrated) Q2 Q3 Q4 (lag-tolerant)

Figure 2.11: Q1 migrated between M1 and M2. Resource for the only lag-tolerant query Q4

(on M2) is reduced for Q1.

Varying the Burst Size

We next vary the size of the burst, i.e., number of queries that arrive in the burst. Note

that the experiments above had varied the duration of the burst but with a fixed size of

200 queries. Varying the number of queries in the burst introduces different dynamics and

reactions in VideoStorm’s scheduler. We fix the burst duration to 200s. Figure 2.10 plots

the results. The fair allocation causes much higher fraction of frames to exceed the lag goal

when the burst size grows. VideoStorm better handles the burst and consistently performs

better. Note that beyond a burst of 200 queries, resources are insufficient even to satisfy the

lowest configuration (least resource demand), causing the degradation in Figure 2.10(b).

2.7.3 VideoStorm’s Key Features

We now highlight VideoStorm’s migration of queries and accounting for errors in the re-

source demands.

Migration of Queries

Recall from §2.5.3 and §2.6 that VideoStorm migrates queries when necessary. We evaluate

the value of migration by making the following addition to our experiment described at the

39

0 100 200 300 400 500
Time (seconds)

15
20
25
30
35
40
45

C
P

U
 (w

/ a
da

pt
at

io
n)

Accurate Twice Half

(a) With Adaptation

0 100 200 300 400 500
Time (seconds)

15
20
25
30
35
40
45

C
P

U
 (w

/o
 a

da
pt

at
io

n)

(b) Without Adaptation

0 100 200 300 400 500
Time (seconds)

0.0

0.5

1.0

1.5

2.0

¹

(c) µ Over Time

Figure 2.12: We show three queries on a machine whose resource demands in their profiles
are synthetically doubled, halved, and unchanged. By learning the proportionality factor µ

(2.12(c)), our allocation adapts and converges to the right allocations (2.12(a)) as opposed
to without adaptation (2.12(b)).

beginning of §2.7.2. During the experiment, we allocate half the resources in 50% of our

machines to other non-VideoStorm jobs. After a few minutes, the non-VideoStorm jobs

complete and leave. Such jobs will be common when VideoStorm is co-situated with other

frameworks in clusters managed by Yarn [3] or Mesos [100]. We measure the migration

time, and compare the performance with and without migration.

Figure 2.11 plots the timeline of two machines, M1 and M2; M1 where a non-

VideoStorm job was scheduled and M2 being the machine to which a VideoStorm query

40

Q1, originally on M1, was migrated. Q1 shifts from running on M1 to M2 in only 1.3s. We

migrate Q1 back to M1 when the non-VideoStorm job leaves at ∼ 150s.

Shifting Q1 to M2 (and other queries whose machines were also allocated non-

VideoStorm jobs, correspondingly) ensured that we did not have to degrade the quality or

exceed the lag goals. Since our placement heuristic carefully spread out the queries with

lenient and stringent lag goals (§2.5.3), we ensured that each of the machines had sufficient

slack. As a result, when Q1 was migrated to M2 which already was running Q2 and Q4,

we could delay the processing of the lag-tolerant Q4 without violating any lag goals. The

allocations of these delayed queries were ramped up for them to process their backlog as

soon as the queries were migrated back.

As a consequence, the quality of queries with migration is 12% better than without

migration. Crucially, 18× more frames (4.55% instead of 0.25%) would have exceeded the

lag goal without migration.

Handling Errors in Query Profile

VideoStorm deals with difference between the resource demands in the resource-quality

profile and the actual demand by continuously monitoring the resource consumption and

adapting to errors in profiled demand (µ in §2.5.4). We now test the effectiveness of our

correction.

We synthetically introduce errors in our profiles, as if they were profiles with errors,

and use the erroneous profiles for our resource allocation. Consequently, the actual resource

demands when the query executes do not match. In the workload above, we randomly

make the profile to be half the actual resource demand for a third of the queries, twice the

demand for another third, and unchanged (accurate) for the rest. VideoStorm’s adaptive

correction ensures that the quality and lag of queries with erroneous profiles are nearly

99.6% of results obtained if the profiles were perfectly accurate.

41

Mean Standard

Action Duration (ms) Deviation (ms)

Start Transform 60.37 3.96
Stop Transform 3.08 0.47
Config. Change 15 2.0
Resource Change 5.7 1.5

Table 2.3: Latency of VideoStorm’s actions.

In Figure 2.12, we look at a single machine where VideoStorm placed three license plate

queries, one each of the three different error categories. An ideal allocation (in the absence

of errors) should be a third of the CPU to each of the queries. Figure 2.12(b), however,

shows how the allocation is far from converging towards the ideal without adaptation,

because erroneous profiles undermine the precision of utility prediction. In contrast, with

the adaptation, despite the errors, resource allocations converge to and stay at the ideal

(Figure 2.12(a)). This is because the µ values for the queries with erroneous profiles are

correctly learned as 2 and 0.5; the query without any error introduced its profile has its µ

around 1 (Figure 2.12(c)).

2.7.4 Scalability and Efficiency

Latency of VideoStorm’s actions. Table 2.3 shows the time taken for VideoStorm to start

a new transform (shipping binaries, process startup), stop a transform, and change a 100-

knob configuration and resource allocation of 10 running queries. We see that VideoStorm

allows for near-instantaneous operations.

Scheduling Decisions. Figure 2.13(a) plots the time taken by VideoStorm’s scheduler.

Even with thousands of queries, VideoStorm make its decisions in just a few seconds.

This is comparable to the scalability of schedulers in big data clusters, and video analytics

clusters are unlikely to exceed them in the number of queries. Combined with the low

latency of actions (Table 2.3), we believe VideoStorm is sufficiently scalable and agile.

42

500 1000 2000 4000 8000
Number of Queries

0
1
2
3
4
5
6

S
ch

ed
ul

in
g

 T
im

e
(s

)

Number of Machines
100 200 500 1000

(a) Scheduling Scalability

Car Counter
0

10
20
30
40
50
60
70

La
te

nc
y

(m
s)

Vanilla
DAG Local

Single Transform
DAG Distributed

(b) Overheads

Figure 2.13: Overheads in scheduling and running queries.

Transform Overheads. Finally, we measure the overhead of running a vision algorithm

inside VideoStorm. We compare the latency in processing a frame while running as a

vanilla process, inside a single transform, as a DAG of transforms on one machine, and as

a DAG distributed across machines. Figure 2.13(b) shows that the overheads are limited.

Running as a single transform, the overhead is < 3%. When possible, VideoStorm places

the transforms of a query DAG locally on one machine.

2.8 Related Work on Stream Processing Systems

Cluster schedulers. Cluster schedulers [3, 65, 79, 84, 91, 100, 181] do not cater to the

performance objectives of streaming video analytics. They take resource demands from

tasks (not the profiles), mostly allocate based on fairness/priorities, and do not resize running

containers, key to dealing with resource churn in VideoStorm (§2.6).

Deadline-Based Scheduling. Many systems [46, 79, 84, 114, 180] adaptively allocate

resources to meet deadlines of batch jobs or reduce lag of streaming queries. Scheduling

in real-time systems [110, 184] has also considered using utility functions to provide (soft)

deadlines to running tasks. Crucially, these systems do not consider approximation together

with resource allocation to meet deadlines and do not optimize across multiple queries and

servers.

43

Streaming and Approximate Query Processing Systems. Load shedding has been a

topic of interest in streaming systems [54, 144] to manage memory usage of SQL operators

but they do not consider lag in processing. Aurora, Medusa, and Borealis [42, 69, 73] and

follow-up works [170, 171, 175, 176, 187] use QoS graphs to capture lag and sampling rate

but they consider them separately and do not trade-off between them, a key aspect in our

solution. In contrast to JetStream [156], that degrades data quality based on WAN band-

widths, VideoStorm identifies the best knobs to use automatically and adjusts allocations

jointly across queries. Stream processing systems used in production [1, 9, 131, 192] do

not consider load-shedding, and resource-quality trade-off and lag in their design; Google

Cloud Dataflow [44] requires manual trade-off specifications. Approximation is also used

by recent [43, 48, 178] and older [96, 111] batch querying systems using statistical models

for SQL operators [77].

Relative to the above literature, our main contributions are three-fold: (i) considering

quality and lag of video queries together for multiple queries using predictive control, (ii)

dealing with multitude of knobs in vision algorithms, and (iii) profiling black-box vision

transforms with arbitrary user code (not standard operators).

Utility functions. Utility functions are used extensively throughout economics [139,161],

compute science [97,113,119,133], and other disciplines to map how users benefit from per-

formance [104,120,172]. In stream processing systems, queries describe their requirements

for throughput, latency, and fraction of dropped tuples [46, 68, 122, 170]. With multiple

entities, previous work has typically maximized the minimum utility [126, 136] or sum of

utilities [126, 133], which is what we also use. Utility elicitation [60, 64, 70] helps obtain

the exact shape of the utility function.

Autonomic Computing. Autonomic computing [52, 56, 61, 140, 151, 168] allocate re-

sources to VMs and web applications to maximize their quality of service. While some of

44

them used look-ahead controllers based on MPC [142], they mostly ignored our main issues

on the large space of configurations and quality-lag trade-offs.

2.9 Conclusion

VideoStorm is a video analytics system that scales to processing thousands of video streams

in large clusters. Video analytics queries can adapt the quality of their results based on

the resources allocated. The core aspect of VideoStorm is its scheduler that considers the

resource-quality profiles of queries, each with a variety of knobs, and tolerance to lag in

processing. Our scheduler optimizes jointly for the quality and lag of queries in allocating

resources. VideoStorm also efficiently estimates the resource-quality profiles of queries.

Deployment on an Azure cluster of 101 machines show that VideoStorm can significantly

outperform a fair scheduling of resources, the widely-used policy in current clusters.

45

Chapter 3

SLAQ: Quality-Driven Scheduling for

Distributed Machine Learning

Machine learning (ML) is an increasingly important tool for large-scale data analytics, in-

cluding online search, marketing, healthcare, and information security. A key challenge

in analyzing massive amounts of data with ML arises from the fact that model complex-

ity and data volume is growing much faster than hardware speed improvements. Thus,

time-sensitive machine learning on large datasets necessitates the use and efficient manage-

ment of cluster resources. Three key features of ML are particularly relevant to resource

management.

ML algorithms are intrinsically approximate. ML algorithms generally consist of two

stages: training and inference. The training stage builds a model from a training dataset (e.g.,

images with labeled objects), and the inference stage uses the model to make predictions on

new inputs (e.g., recognizing objects in a photo). ML models are intrinsically approximate

functions for input-output mapping. We use quality to measure how well the model maps

input to the correct output.

46

ML training is typically iterative with diminishing returns. While the inference stage

is often lightweight and can run in real-time, the training stage is computationally expensive

and usually requires multiple passes over large datasets. It generates a low-quality model

at the beginning and improves the model’s quality through a sequence of training iterations

until it converges. In general, the quality improvement diminishes as more iterations are

completed.

Training ML is an exploratory process. ML practitioners retrain their models repeat-

edly to explore feature validity [50], tune hyperparameters [107, 128, 134, 166], and adjust

model structures [94] before they operationalize their final model, which is deployed for

performing inference on individual inputs. The goal of retraining is to get the final model

with the best quality. Since ML training jobs are expensive, practitioners in experimental

environments often prefer to work with more approximate models trained within a short

period of time for preliminary validation and testing, rather than wait a significant amount

of time for a better trained model with poorly tuned configurations. In fact, algorithm tuning

is an empirical process of trial and error that can take significant effort, both human and

machine. With the exponential growth of data volume, the cost of decision making on

model configurations will likely continue to increase.

Many ML frameworks have been developed [14, 18, 41, 138] to run large-scale training

jobs in clusters with shared resources. Existing schedulers primarily focus on resource

fairness [3, 19, 59, 87, 100, 106], but are agnostic to model quality and job runtime. Dur-

ing a burst of job submissions, equal resources will be allocated to jobs that are in their

early stages and could benefit significantly from extra resources as those that have nearly

converged and cannot improve much further. This is not efficient.

We present SLAQ, a cluster scheduling system for ML training jobs that aims to maxi-

mize the overall job quality. SLAQ dynamically allocates resources based on job resource

demands, intermediate model quality, and the system’s workload. The intuition behind

47

SLAQ is that in the context of approximate ML training, more resources should be allo-

cated to jobs that have the most potential for quality improvement.

SLAQ leverages the fact that most ML training algorithms are implemented as an iter-

ative optimization process. By continually monitoring the history of quality improvement

and runtime, SLAQ generates highly-tailored and accurate quality predictions for future

training iterations. SLAQ estimates the impact of resource allocation on model quality, and

explores the quality-runtime trade-offs across multiple jobs. Based on this information,

SLAQ adjusts their resource allocations of all running jobs to best utilize the limited cluster

resources. The SLAQ scheduler is designed to be dynamic and fine-grained, so that resource

allocations can adapt quickly to jobs’ quality and the system’s workload changes.

Challenges and solutions. In designing SLAQ, we had to overcome several technical

challenges.

First, ML training algorithms measure the quality of models with tens of different

metrics, which makes it difficult to compare the training progress of different jobs. SLAQ

normalizes these metrics using the reduction of loss values. These intermediate quality

measures are reported directly by the application APIs. Our normalization effectively

unifies the quality measures for a broad set of ML algorithms.

Second, SLAQ should be able to precisely predict the impact that an extra unit of re-

sources would have on the quality and runtime of ML training jobs. Previous work [179]

predicts a job’s runtime based on its computation and communication structure, but it re-

quires that the job be analyzed or profiled offline. Unfortunately, the significant overhead of

this offline analysis is prohibitive for our exploratory setting. SLAQ uses online prediction:

it predicts the time and quality of the coming iterations based on statistics collected from

previous iterations.

SLAQ supports configurable high-level goals when scheduling jobs. When maximizing

the aggregate quality improvement, it can best utilize the cluster resources and achieve a

48

higher total quality gain across all jobs. When maximizing the minimum quality, SLAQ

can achieve the equivalent of max-min fairness applied to quality (rather than resource

allocation).

While we designed our scheduler for ML training applications, SLAQ can schedule

many applications with approximate intermediate results. Some approximate jobs produce

partial results at intermediate points of the application’s run [194], while others generate

approximate results from samples to avoid scanning entire datasets [43]. Improvement in

the quality of these systems’ results also diminishes with more processing time [200]. To

that end, SLAQ’s techniques are broadly applicable to other data analytics systems that

employ iterative approximation approaches.

On the other hand, while SLAQ works with a large class of important ML algorithms,

some non-convex ML algorithms are not currently supported. The convergence properties

and optimization of these algorithms are being actively studied, and we leave scheduling

support for these algorithms to future work.

We implemented SLAQ as a new scheduler within the Apache Spark framework [191].

SLAQ can use its quality-driven scheduling for many of the ML algorithms available in

MLlib [138], Spark’s machine learning package. In fact, SLAQ supports unmodified ML ap-

plications using existing MLlib optimizers, as well as applications using new optimization

algorithms with only minor modifications. We evaluate various distinct ML training algo-

rithms on datasets collected from various online sources. We found that SLAQ improves

the average quality by up to 73% and reduces the average delay by up to 44% compared to

fair resource scheduling.

3.1 Background and Motivation

The past several years has seen a rapid increase in both the volume of data used to train

ML models and the size and complexity of these models. Growth in the performance of

49

the underlying hardware, however, has not caught up, thus placing higher demands on the

computational resources used for this purpose.

An important way that data scientists cope with these demands is to leverage more

approximate models for preliminary testing, in order to exclude bad trials and iterate to

the right configuration. A significant amount of time and resource usage can potentially be

saved because of the iterative nature of ML optimization algorithms, and the diminishing

returns of quality improvements during the training iterations. Today’s schedulers, however,

do not provide a ready means to follow this strategy; a traditional max-min fair sched-

uler (similarly, the dominant resource fair scheduler [87]) ensures fair resource allocation

without considering the potential of these resources to improve model quality.

This section motivates and provides background for SLAQ. §3.1.1 describes the iterative

nature of the ML training process and how it is characterized by diminished returns. We

introduce the exploratory training process in §3.1.2 and describe current practices in §3.1.3.

We discuss the problems with existing cluster schedulers and propose our quality-aware

scheduler in §3.1.4.

3.1.1 ML Training: Iterative Optimization Process

The algorithms used for the ML training process typically include a dataset specification, a

loss function, an optimization procedure, and a model [90]. A machine learning model is a

parametric transformation fθ : X 7−→ Y that maps input variables to output variables, and it

typically contains a set of parameters θ which will be regularly adjusted during the training

process. The loss function represents how well the model maps training examples to correct

output, and is often combined with a regularization term to incorporate generalizability.

Training machine learning models can be summarized as optimizing the model parameters

to minimize the loss function when applying the model on a dataset.

When the machine learning model is nonlinear, most loss functions can no longer be

optimized in closed form. Algorithms such as Gradient Descent, L-BFGS and Expectation

50

Maximization (EM) are widely used in practice to iteratively solve the numerical optimiza-

tion of the loss function. As the sizes of the dataset and model grow, the batch algorithms

can no longer solve the optimization problem efficiently. Instead, various new algorithms

have been proposed to improve the efficiency of the optimization process in an iterative

and distributed fashion. For example, stochastic gradient descent (SGD) [62] reduces com-

putationally complexity by evaluating the loss function and gradient on a randomly drawn

subset of the overall dataset in each iteration.

The training process with the iterative optimization algorithms can be viewed as a

refinement loop of the model. After initializing the parameter values (e.g., with random

values), the optimization algorithms calculate changes on parameters in order to reduce the

loss function, and update the model with new parameter values. This process continues until

the decrease in the loss function falls below a certain threshold, or until a preset number of

iterations have elapsed.

Another approach that some ML algorithms take is ensemble learning. Instead of

training a complicated model with a large number of parameters, these algorithms focus

on aggregating results from multiple diverse but small submodels. For example, boosting

algorithms improve the accuracy of the model classifier by examining the errors in results,

adding new submodels to the ensemble, and adjusting the weights of the set of submodels.

Boost aggregating (bagging) algorithms train multiple submodels on different subsets of the

training data by sampling with replacement. The training process of the ensemble models

involves both iteratively refining each submodel, and iteratively adding new submodels or

adjusting the weights of existing components.

When training a machine learning model, the first several iterations generally boost the

quality very quickly. This is because the initial parameters of a model are generally set

randomly. However, for most ML training algorithms, the quality improvements are subject

to diminishing returns; iterations in later stages continue to cost the same amount of compu-

tational resources while making only marginal improvements on model quality as the results

51

0 20 40 60 80 100
Cumulative Time %

0
20
40
60
80

100

Lo
ss

 R
ed

uc
tio

n
%

LogReg
SVM

LDA
MLPC

Figure 3.1: Cumulative time to achieve different percentages of loss reduction with four jobs:
Logistic Regression (LogReg), Support Vector Machine (SVM), Latent Dirichlet Allocation
(LDA) and Multi-Layer Perceptron Classifier (MLPC). Job convergence is defined to be
1/10000 of initial loss reduction.

finally converge. For example, error in gradient descent algorithms on convex optimization

problems often converges approximately as a geometric series [66]. Theoretically, at the kth

iteration, the loss function reduction is O(µk), where µ is the convergence rate (|µ|< 1). In

general, loss reduction (quality improvement) diminishes as more iterations are completed.

Figure 3.1 plots the relative cumulative time to achieve different percentages of loss

reduction. For example, it takes 20% time for the SVM job to reduce loss by 95%, and

80% time to further reduce it until convergence. Jobs for ML algorithm debugging and

model tuning only require the training process to be almost completed to tell potentially

good configurations from bad trials, and thus could save a lot of time and resources.

The law of diminishing returns applies in many other data analytics systems in addition

to machine learning. Sampling-based approximate query processing systems compute

approximate results by processing only a sample of the entire dataset in order to reduce

resource usage and processing delay [43, 48, 53, 178]. Databases can also take advantage

of online aggregation to incrementally refine the approximated results of SQL aggregate

queries [96, 153, 194]. Using the error or uncertainty as a measurement of quality in these

queries, we can observe that in most cases the convergence rate of these metrics are also

monotonically decreasing.

52

Collect Data

Extract Features

Train ML

Models

Adjust Feature Space

Tune Hyperparams

Restructure Models

Figure 3.2: Retrain machine learning models.

3.1.2 Retraining Machine Learning Models

Training machine learning models is not a one-time effort. ML practitioners often train a

model on the same dataset multiple times for exploratory purposes. This process provides

early feedback to practitioners and helps direct their search for high quality models.

Feature engineering. Many ML algorithms require a featurized representation of the

input data for efficient training and inference. For example, a speech recognition algorithm

utilizes the discretized frequency features extracted from continuous sound signals with

Fourier transforms and knowledge about the human ear [174]. Identifying exactly the

useful features that yield the best quality relies on both domain knowledge and many

training experiments.

Hyperparameter tuning. Many ML models expose hyperparameters that describe the

high-level complexity or capacity of the models. Optimal values of these hyperparameters

typically cannot be learned from the training data. Examples of hyperparameters include

the number of hidden layers in a neural network, the number of clusters in a clustering

algorithm, and the learning rate of mode parameters. It is desirable to explore different

combinations of hyperparameter values, train multiple models, and use the one that gives

the best result.

Model structure optimization. To ship ML models and run inference tasks on mobile

and IoT devices, large models need to be compressed to reduce the energy consumption

53

and accelerate the computation. Various model compression techniques have been devel-

oped [94, 125]. These methods usually prune the unnecessary parameters of the model,

retrain the model with the modified structure, and then prune again. This requires training

the same job multiple times to get the best compression without compromising the quality

of the model.

In addition, the interactions between features, hyperparameters and model structures

make it even harder to search for the best model configuration. For example, features are

often correlated with one another, and modifying the set of features also requires recalibrat-

ing the hyperparameters (such as learning rate). Expensive model configuration decisions

demand highly efficient resource management in shared clusters.

3.1.3 Current Practices in ML Training

When exploring the ML model configuration space, users often submit training jobs with

either a time cutoff or a loss value cutoff. Both monitoring heuristics are widely used in

practice but have significant drawbacks.

Training ML models within a fixed time frame often results in unpredictable quality.

This is because it is often difficult to predict a priori what the loss values will be at the

deadline. More importantly, when a training job shares cluster resources with other jobs,

the number of iterations completed by the deadline also depends on the cluster’s workload

and the scheduler’s decisions.

A fixed loss (or fixed ∆loss) cutoff is also difficult to reason about. Loss values in

different algorithms are different in magnitude and have completely different meanings

(further explained in §3.3.1). Additionally, with more complicated model structures and

training algorithms, it is not rare to see the convergence rate of loss function fluctuate due

to stochastic methods and model staleness [74]. Fixed loss values also make users lose the

potential to gain further improvement on the training.

54

Some users choose to manually monitor the loss function values during the training

process and stop the job when they think the models are good enough. However, large-

scale ML jobs could take hours or even days to complete, which makes the monitoring

impractical.

In the context of exploratory ML training, it is desirable to explore the quality-runtime

trade-off across multiple concurrent jobs. SLAQ automates this process and obviates the

need for the user to reason about arbitrary trade-offs. SLAQ flexibly fulfills a broad range

of requirements for quality and delay of ML trainings, from approximate but timely models,

to more traditional accurate model training. It allows users to stop jobs early before perfect

convergence, and obtain a model with a loss function converged enough with much shorter

latency.

3.1.4 Cluster Scheduling Systems

A cluster scheduler is responsible for managing resource allocation across multiple jobs.

Modern data analytics frameworks (such as Hadoop [2], Spark [191], etc.) typically have

two layers of scheduling: the job-level scheduler allocates resources to concurrent jobs

running on the workers, while the task-level scheduler focuses on assigning tasks within a

job to the available workers.

Existing job-level schedulers (Yarn [3], Mesos [100], Apollo [65], Hadoop Capac-

ity [19], Quincy [106], etc.) mostly allocate resources based on resource fairness or prior-

ities. For ML training jobs, however, these schedulers often make suboptimal scheduling

decisions because they are agnostic to the progress (quality improvement) within each job.

We argue that the scheduler should collect quality and delay information from each job and

dynamically adjust the resource allocation to optimize for cluster-wide quality improve-

ment.

SLAQ is a fine-grained job-level scheduler: it focuses on the allocation of cluster

resources between competing ML jobs, but does so over short time intervals (i.e., hundreds

55

0 50 100 150 200 250 Time0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Quality-Aware Fair Resource

0.0
0.6
1.2
1.8
2.4
3.0

Lo
ss

Figure 3.3: Accuracy (top) and loss function values (bottom) of a job with resources allo-
cated by a quality-aware scheduler and a fair scheduler. Accuracy (percentage of correctly
predicted data points) is evaluated on a testing dataset at the end of each training iteration.
The more resources allocated to a job, the faster an iteration can be finished.

of milliseconds to a few seconds). Scheduling on short intervals ensures the continued

rebalancing of resources across jobs, whose iteration time varies from tens to hundreds of

milliseconds.

In a shared cluster with multiple users constantly submitting their training jobs, Fig-

ure 3.3 shows how the accuracy and loss values of one job change over time. With the

fair scheduler, the job receives its fair share of cluster resources throughout its lifetime.

A key observation here is that if we had given this job more resources in its early stages,

its accuracy (loss) could have increased (decreased) much faster. SLAQ does exactly this,

allocating more resources to the job when its potential improvement is large. In particular,

the job was able to achieve 90% accuracy within a much shorter time frame (70s) with

SLAQ than with the fair scheduler (230s). Especially for exploratory training jobs, this

level of accuracy is frequently sufficient.

3.2 System Overview

SLAQ is a cluster management framework that hosts multi-tenant approximate ML training

jobs running on shared resources. A centralized SLAQ scheduler coordinates the resource

allocation of multiple ML training jobs. As shown in Figure 3.4(a), each job is composed

56

Worker
Worker

Update

Model

Job
Worker

Data Shards

Model Replica 𝑓"
#

Model 𝑓"

Tasks

Send

Task

(a) Distributed ML Training

Worker

Scheduler

1

Worker3

Worker2

Worker3

3

2

1

1

Prediction

Resource

Allocation
Job #1

Job #2

Job #3

(b) Scheduler Architecture

Figure 3.4: Running ML training jobs with SLAQ.

of a set of tasks. Each task processes data based on the ML algorithm on a small partition

of the dataset, and can be scheduled to run on any node. The driver program contains the

iterative training logic, generates tasks for each iteration, and tracks the overall progress

of the job. In the case of training ML models, a task generates an update to the model

parameters based on a partition of the training dataset. The duration of a task typically

ranges from tens of milliseconds to a few seconds. When the tasks finish processing the

data, the updates from all tasks are aggregated and sent back to the job driver program to

update the primary copy of the model.

Similar to many cluster management systems, SLAQ divides machines into smaller

workers, which is the minimum unit of resource to run a task. Figure 3.4(b) shows that each

job driver, at a certain time, can send tasks to the workers allocated to that job in the cluster.

The SLAQ scheduler directly communicates with the drivers of currently running jobs

to track their progress and update their resource allocation periodically. At the beginning

of each scheduling epoch, SLAQ allocates resources between all the jobs based on system

workload, the demands, and progress of the jobs. The scheduler reclaims workers back from

some job drivers, and reallocates them to other jobs for better system-wide performance

57

goals. Note that this is very different from many of the existing cluster managers [3, 19]

which only statically allocate resources to jobs before they get started.

We made this decision because of two reasons. First, unlike general batch processing,

jobs that train ML models are typically iterative and usually need longer time to complete.

Scheduling only at the start of the job is too coarse-grained and can easily lead to starvation

or underutilization of system resources. Second, the quality improvement of the training

jobs often changes rapidly (as described in §3.1.1). Fixed allocation makes the scheduler

unable to adapt to jobs’ changes in quality improvement and resource demands.

3.3 Design

This section describes the mechanisms by which SLAQ addresses its key challenges. First,

how to normalize quality measures between distinct jobs in order to determine how quickly

they are increasing (or not) in quality relative to one another (§3.3.1). Second, how SLAQ

uses jobs’ resource usage and quality information to precisely predict the impact of resource

allocation in an online fashion (§3.3.2). Third, how SLAQ allocates resources to maximize

system-wide quality improvement (§3.3.3).

3.3.1 Normalizing Quality Metrics

As explained in §3.1.1, ML training algorithms are designed to be an optimization process

which iteratively minimizes a loss function, and thus improves the model’s quality. ML

algorithms use various different measurement metrics to indicate the quality of model

training. Though comparing a single job’s quality improvement across iterations is simple,

comparing these metrics across different jobs presents a challenge. To schedule for better

overall quality, we need to compare the quality metrics across different jobs. This enables

SLAQ to trade off resources and quality between jobs.

58

Algorithm Type Optimization Algorithm Dataset

K-Means Clustering Lloyd Algorithm Synthetic
LogReg Classification Gradient Descent Epsilon [32]
SVM Classification Gradient Descent Epsilon
SVMPoly Classification Gradient Descent MNIST [27]
GBT Classification Gradient Boosting Epsilon
GBTReg Regression Gradient Boosting YearPredictionMSD [26]
MLPC Classification L-BFGS Epsilon
LDA Clustering EM / Online Algorithm Associated Press Corpus [11]
LinReg Regression L-BFGS YearPredictionMSD

Table 3.1: Summary of ML algorithms, types, and the optimizers and datasets we used for
testing. The algorithms include K-Means, Logistic Regression (LogReg), Support Vector
Machine (SVM), SVM with polynomial kernel (SVMPoly), Gradient Boosted Tree (GBT),
GBT Regression (GBTReg), Multi-Layer Perceptron Classifier (MLPC), Latent Dirichlet
Allocation (LDA), and Linear Regression (LinReg).

One straightforward solution is to use a universal metric such as accuracy to measure the

model quality. Accuracy represents the percentage of correctly predicted data points, and

the range is always from 0 to 1. Similarly, the F1 score, ROC curve, and confusion matrix

also measure the model quality taking the false positive and false negative ratios and multi-

class results into consideration [154]. While these metrics are intuitively understandable

to classification algorithms, they are not applicable to non-classification algorithms such

as regression or unsupervised learning. In addition, accuracy and similar metrics require

constructing a model and evaluating that model against a labeled validation set, which

introduces an additional overhead to the job.1

Loss normalization. In contrast to the accuracy metrics, the loss function is calculated

by the algorithm itself in each iteration, incurring no additional overhead. However, each

algorithm’s loss function has a different real-world interpretation. The range, convexity,

and monotonicity of the loss functions depend on both the models and the optimization

algorithms [90]. Directly normalizing loss values requires a priori knowledge of the loss

range, which is impractical in an online setting.

1Validation is commonly used in ML training to prevent overfitting. Due to the overhead, however, model
evaluation on the validation set is usually performed once every several iterations, not every iteration.

59

0 30 60 90 120
Iteration

−0.2
0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 ¢
Lo

ss K-Means
LogReg
SVM

SVMPoly
GBT
GBTReg

MLPC
LDA
LinReg

Figure 3.5: Normalized ∆Loss for ML algorithms.

For example, clustering algorithms (e.g., K-Means) use the sum of squared distances

to the cluster centroids as the loss function. Classification and regression algorithms (e.g.,

SVM, Linear Regression, etc.) commonly use hinge or logistic gradient loss which repre-

sents discrepancy of prediction on the training data. The range of the measured values can

vary by orders of magnitude: K-Means on our synthetic dataset reduces the loss from 300

down to 0, and the range highly depends on the absolute coordinates of the data points; on

the other hand, SVM on a handwritten digit recognition dataset [27] reduces the loss from

1 down to 0.4. Unfortunately, there are no known analytical models to predict these ranges

without actually running the training jobs.

Based on the convergence properties of loss functions (further explained in §3.3.2), we

choose to normalize the change in loss values between iterations, as opposed to the loss

values themselves. Most optimizers used in training algorithms try to reduce the values

of loss functions, and for convex optimization problems, the values decrease monotoni-

cally [66]. The convergence rate, because of the diminishing returns, generally decreases in

later iterations. So for a certain job, we normalize the change of loss values in the current

iteration with respect to the largest change we have seen so far.

Figure 3.5 shows the normalized changes of loss values for common ML algorithms

(summarized in Table 3.1). Because a loss function eventually converges to a certain value,

the corresponding change of loss values always converges to 0. As a result, even though

the set of algorithms have diverse loss ranges, we observe that they generally follow similar

60

convergence properties, and can be normalized to decrease from 1 to 0. This helps SLAQ

track the progress of different training jobs, and, for each job, correctly project the time to

reach a certain loss reduction with a given resource allocation.

SLAQ supports a large class of important ML algorithms, but currently does not support

some non-convex optimization algorithms due to the lack of convergence analytical models.

3.3.2 Measuring and Predicting Loss

After unifying the quality metrics for different jobs, we proceed to allocate resources for

global quality improvement. When making a scheduling decision for a given job, SLAQ

needs to know how much loss reduction the job would achieve by the next epoch if it was

granted a certain amount of resources. We derive this information by predicting (i) how

many iterations the job will have completed by the next epoch (§3.3.2), and (ii) how much

progress (i.e., loss reduction) the job could make within these iterations (§3.3.2).

Prediction for iterative ML training jobs is different from general big-data analytics

jobs. Previous work [45, 179] estimates job’s runtime on some given cluster resources

by analyzing the job computation and communication structure, using offline analysis or

code profiling. As the computation and communication pattern changes during ML model

configuration tuning, the process of offline analysis needs to be performed every time, thus

incurring significant overhead. ML prediction is also different from the estimations to

approximate analytical SQL queries [43, 194] where the resulting accuracy can be directly

inferred with the sampling rate and analytics being performed. For iterative ML training

jobs, we need to make online predictions for the runtime and intermediate quality changes

for each iteration.

Runtime Prediction

SLAQ is designed to work with distributed ML training jobs running on batch-processing

computational frameworks like Spark and MapReduce. The underlying frameworks help

61

achieve data parallelization for training ML models: the training dataset is large and gets

partitioned on multiple worker nodes, and the size of models (i.e., set of parameters) is

comparably much smaller. The model parameters are updated by the workers, aggregated

in the job driver, and disseminated back to the workers in the next iteration.

SLAQ’s fine-grained scheduler resizes the set of workers for ML jobs frequently, and we

need to predict the iteration of each job’s iteration, even while the number and set of workers

available to that job is dynamically changing. Fortunately, the runtime of ML training—at

least for the set of ML algorithms and model sizes on which we focus—is dominated by

the computation on the partitioned datasets. SLAQ considers the total CPU time of running

each iteration as c ·S, where c is a constant determined by the algorithm complexity, and S

is the size of data processed in an iteration. SLAQ collects the aggregate worker CPU time

and data size information from the job driver, and it is easy to learn the constant c from

a history of past iterations. SLAQ thus predicts an iteration’s runtime simply by c · S/N,

where N is the number of worker CPUs allocated to the job.

We use this heuristic for its simplicity and accuracy (validated through evaluation in

§3.5.3), with the assumption that communicating updates and synchronizing models does

not become a bottleneck. Even with models larger than hundreds of MBs (e.g., Deep Neural

Networks), many ML frameworks could significantly reduce the network traffic with model

parallelism [129] or by training with relaxed model consistency with bounded staleness [78],

as discussed in §3.6. Advanced runtime prediction models [167] can also be plugged into

SLAQ.

Loss Prediction

Iterations in some ML jobs may be on the order of 10s–100s of milliseconds, while SLAQ

only schedules on the order of 100s of milliseconds to a few seconds. Performing scheduling

on smaller intervals would be disproportionally expensive due to scheduling overhead and

lack of meaningful quality changes. Further, as disparate jobs have different iteration

62

0 20 40 60 80 100
Iteration

−50
0

50
100
150

Lo
ss

 F
un

ct
io

n

Real Strawman Curve Weighted Curve

(a) Predicting loss values 10 iterations in advance.

1 5 10
Number of Predicted Iterations

0
10
20
30
40
50
60

P
re

di
ct

io
n

E
rr

or
 % Strawman Curve Weighted Curve

(b) Average loss prediction errors when predicting 1, 5
and 10 iterations in advance.

Figure 3.6: Predicting loss values with 3 methods.

periods, and these periods are not aligned, it does not make sense to try to schedule at

“every” iteration of the jobs.

Instead, with runtime prediction, SLAQ knows how many iterations a job could com-

plete in the given scheduling epoch. To understand how much quality improvement the job

could get, we also need to predict the loss reduction in the following several iterations.

A strawman solution is to directly use the loss reduction obtained from the last iteration

as the predicted loss reduction value for the following several iterations. This method

actually works reasonably well if we only need to predict one or two iterations. However,

this could perform poorly in practice when the number of iterations per scheduling epoch

is higher. This could be the case, for example, when the training dataset is small or an

abundance of resources is allocated to the job.

We can improve the prediction accuracy by leveraging the convergence properties of

the loss functions of different algorithms. Based on the optimizers used for minimizing the

loss function, we can broadly categorize the algorithms by their convergence rate.

63

Algorithms with sublinear convergence rate. First-order algorithms in this category2

have a convergence rate of O(1/k), where k is the number of iterations [95]. For example,

gradient descent is a first-order optimization method which is well-suited for large-scale and

distributed computation. It can be used for SVM, Logistic Regression, K-Means, and many

other commonly used machine learning algorithms. With optimized versions of gradient

descent, the convergence rate could be improved to O(1/k2).

Algorithms with linear or superlinear convergence rates. Algorithms in this category3

have a convergence rate of O(µk), |µ|< 1. For example, L-BFGS, which is a widely used

Quasi-Newton Method, has a superlinear convergence rate which is between linear and

quadratic. It can be used for SVM, Neural Networks, and others.

Distributed optimization algorithms. Optimization algorithms like gradient descent re-

quire a full pass through the complete dataset to update the model’s parameters. This

can be very expensive for large jobs which have data partitions stored on multiple nodes.

Distributed ML training benefits from stochastic optimization algorithms. For example,

stochastic gradient descent (SGD) processes a mini-batch (samples extracted from a subset

of the training data) at a time and updates the parameters in each step. The significant

efficiency improvement of SGD comes at the cost of slower convergence and fluctuation in

loss functions. In terms of number of iterations, however, SGD still converges at a rate of

O(1/k) with properly randomized mini-batches.

With the assumptions of loss convergence rate, we use curve fitting to predict future loss

reduction based on the history of loss values. For the set of machine learning algorithms we

consider, we use the history of loss values at a certain time to fit a curve f (k) = 1
ak2+bk+c

+d

for sublinear algorithms, or f (k) = µk−b + c for linear and superlinear algorithms.

2Assume the loss function f is convex, differentiable, and ∇ f is Lipschitz continuous.
3Assume the loss function f is convex and twice continuously differentiable, optimization algorithms can

take advantage of the second-order derivative to get faster convergence.

64

Algorithm 1 Maximizing Total Loss Reduction
– epoch: scheduling time epoch
– num_cores: total number of cores available
– alloc: number of cores allocated to jobs
– prior_q: priority queue containing jobs and their loss reduction values if allocated with one extra core

1: function PREDICTLOSSREDUCTION(job)
2: pred_loss = PREDICTLOSS(job,alloc[job],epoch)
3: pred_loss_p1 = PREDICTLOSS(job,alloc[job]+1,epoch)
4: return pred_loss− pred_loss_p1

5: function ALLOCATERESOURCES(jobs)
6: for all job in active jobs do

7: alloc[job] = 1
8: num_cores = num_cores−1
9: pred_loss_red = PREDICTLOSSREDUCTION(job)

10: prior_q.enqueue(job, pred_loss_red)

11: while num_cores > 0 do

12: job = prior_q.dequeue()
13: alloc[job] = alloc[job]+1
14: num_cores = num_cores−1
15: pred_loss_red = PREDICTLOSSREDUCTION(job)
16: prior_q.enqueue(job, pred_loss_red)

17: return alloc

We further improve the prediction accuracy using exponentially weighted loss values.

Intuitively, loss values obtained in the near past are more informative for predicting the loss

values in the near future. The weights assigned to loss values decay exponentially when new

iterations finish, and the parameters of the curve equations get adjusted for each prediction.

Figure 3.6 shows the loss values predicted using the different methods described above.

The strawman solution works well when predicting only one iteration in advance, but

degrades quickly as the number of iterations to predict increases. The latter scenario is

likely because SLAQ makes a scheduling decision once every epoch, which typically spans

multiple iterations. In contrast, as shown in Figure 3.6(b), the weighted curve fitting method

achieves a low average prediction error of 3.5% even when predicting up to 10 iterations in

advance.

65

3.3.3 Scheduling Based on Quality Improvements

With accurate runtime and loss prediction, SLAQ allocates cluster CPUs to maximize the

system-wide quality. SLAQ can flexibly support different optimization metrics, including

both maximizing the total (sum) quality of all jobs, as well as maximizing the minimum

quality (equivalent to max-min fairness) across jobs.

Maximizing the total quality. We schedule a set of J jobs running concurrently on the

shared cluster for a fixed scheduling epoch T , i.e., a new scheduling decision can only be

made after time T . The optimization problem for maximizing the total normalized loss

reduction over a short time horizon T is as follows. Sum of allocated resources a j cannot

exceed the cluster resource capacity C.

max
j∈J

∑ j Loss j(a j, t)−Loss j(a j, t +T)

s.t. ∑ j a j ≤C

When including job j at allocation a j, we are paying cost of a j and receiving value

of ∆l j = Loss j(a j, t)−Loss j(a j, t +T). The scheduler prefers jobs with highest value of

∆l j/a j; i.e., we want to receive the largest gain in loss reduction normalized by resource

spent.

Algorithm 1 shows the resource allocation logic of SLAQ. We start with a j = 1 for each

job to prevent starvation. At each step we consider increasing ai (for all queries i) by one

unit (in our implementation, one CPU core) and use our runtime and loss prediction logic

to get the predicted loss reduction. Among these queries, we pick the job j that gives the

most loss reduction, and increase a j by one unit. We repeat this until we run out of available

resources to schedule.

Maximizing the total loss reduction targets the cost-effectiveness of cluster resources.

This is desirable not only on clusters used by a single company which may have high

66

resource contention, but potentially even on multi-tenant clusters (clouds) in which revenue

could be directly associated with the total quality progress (loss reduction) of ML jobs.

Maximizing the minimum quality. Below is the optimization problem to minimize the

maximum loss value (or equivalently, maximizing the minimum quality) over time horizon

T . With a set of J jobs running concurrently, this scheduling policy makes sure no one is

falling behind. We require that all loss values be no bigger than l and we minimize l.

min
j∈J

l

s.t. ∀ j : Loss j(a j, t +T)≤ l

∑ j a j ≤C

The system quality, in this case, is represented by the loss value l of the worst job j. The

only way we can improve it is to reduce the loss value of j. Our heuristic is thus as follows.

We start with a j = 1, and at each step we pick job i = argmin jLoss j(a j, t +T). We increase

its allocation ai by one unit, recompute Lossi(ai, t +T), and repeat this process until we run

out of resources.

Maximizing the minimum quality achieves max-min fairness in model quality. It is

especially useful for ML applications that include multiple collaborative models, and the

overall quality is determined by the lowest quality of all the submodels. For example,

a security application for network intrusion detection should train multiple collaborative

models identifying distinct attacking patterns with max-min fairness in quality.

Prioritize jobs on shared clusters. The above scheduling policies are based on the as-

sumptions that all the concurrently running jobs have equal importance, and thus they will

be treated equally when comparing their quality. This can be easily adjusted to account for

jobs with different importance by adding a weight multiplier to the jobs, identically to how

max-min fairness can be easily changed to weighted max-min fairness.

67

For example, a cluster may host experiment jobs and production jobs for ML training,

and a higher weight should be assigned to jobs for production uses. With the same training

progress, a job with a higher weight will get its loss reduction proportionally amplified

by the scheduler compared to a normal job. Thus, high-priority jobs generally get more

iterations finished with SLAQ.

Mixing ML with other types of jobs. SLAQ can also run non-ML jobs sharing the same

cluster with approximate ML jobs. For non-ML jobs, the scheduler falls back to fairness or

reservation based resource allocation. This effectively reduces the total capacity C available

to all approximate ML jobs. SLAQ follows the same algorithms to maximize the total or

minimum quality under varying resource capacity C.

3.4 Implementation

We implemented SLAQ within the popular Apache Spark framework [191], and utilize its

accompaning MLlib machine learning library [138]. Spark MLlib describes ML workflow

as a pipeline of transformers, and it provides a set of high-level APIs to help design ML

algorithms on large datasets. Many commonly used ML algorithms are pre-built in MLlib,

including feature extraction, classification, regression, clustering, collaborative filtering,

and so on. These algorithms can easily be extended and modified for specific use cases.

The SLAQ prototype is implemented based on the Spark job scheduler. Multiple jobs

place the ready tasks into task pools, which are then controlled and dispatched by SLAQ

scheduler. The driver programs of ML jobs continually report their loss value information

for each iteration they finish.

Token bucket. SLAQ uses a token bucket algorithm to implement the resource allocation

policies described in §3.3.3. At each scheduling epoch, CPU time of all allocated cores is

added to each job as tokens. SLAQ assigns tasks to available workers, and keeps track of

68

how many tokens are consumed by those tasks by collecting Spark worker statistics. Tasks

are throttled if the corresponding job has used up its tokens.

Running unmodified ML applications. ML applications written using Spark MLlib

can directly run on SLAQ without any modifications. This is because SLAQ extends the

underlying optimizers (e.g., SGD, L-BFGS, etc.) APIs to report loss values at each iteration.

We cover most library algorithms provided in MLlib. Even when it is necessary to add new

library algorithms, one can easily adopt SLAQ by reporting loss values using SLAQ’s API.

This is a one-line modification in most of the algorithms present in MLlib.

3.5 Evaluation

In this section, we present evaluation results on SLAQ. We demonstrate that SLAQ (i)

provides significant improvement on quality and runtime for approximate ML training jobs,

(ii) is broadly applicable to a wide range of ML algorithms, and (iii) scales to run a large

number of ML training algorithms on clusters.

3.5.1 Methodology

Testbed. Our testbed consists of a cluster of 20 instances of c3.8xlarge machines on

Amazon EC2 Cloud. Each worker machine has 32 vCPUs (Intel Xeon E5-2680 v2 @ 2.80

GHz), 60GB RAM, and is connected with 10Gb Ethernet links.

Workload. We tested our system with the most common ML algorithms derived from

MLlib with minor changes, including (i) classification algorithms: SVM, Neural Network

(MLPC), Logistic Regression, GBT, and our extension to Spark MLlib with SVM polyno-

mial kernels; (ii) regression algorithms: Linear Regression, GBT Regression; (iii) unsuper-

vised learning algorithms: K-Means clustering, LDA. Each algorithm is further diversified

69

to construct different models. For example, SVM with different kernels, and MLPC Neural

Network with different numbers of hidden layers and perceptrons.

Datasets. With the algorithms, our models are trained on multiple datasets we collected

from various online sources with modifications, as well as on our synthetic datasets. The

datasets span a variety of types (plain texts [11], images [27], audio meta features [26], and

so on [21]). The size of the distinct datasets we use in each run is more than 200GB. In

the experiments, all the training datasets are cached as Spark Dataframes in cluster shared

memory. We set the fraction of data sample processed at each iteration to be 100%, i.e., the

entire training data is processed in every iteration.

Baseline. The baseline we compare against is a work-conserving fair scheduler. It is

the widely-used scheduling policy for cluster computing frameworks [3, 19, 87, 100, 106].

The fair scheduler evenly divides available resources to all active jobs. It also dynamically

adjusts resource allocations to fair share when new jobs join and old jobs leave the system.

3.5.2 System Performance

Scheduler Quality and Runtime Improvement

To evaluate job quality improvement, we first run a set of 160 ML training jobs with different

algorithms, model sizes, and datasets on the shared cluster of 20 nodes. In the experiment,

jobs are submitted to the cluster with their arrival time following a Poisson distribution

(mean arrival time 15s). A job is considered fully converged when its normalized loss

reduction is below a very small value, in this case, the loss reduction at the 100th iteration.4

We compare the aggregate quality and runtime of these jobs between SLAQ and the fair

scheduler.
4Recall that the loss reduction for each iteration is independent of the amount of resources the job is

allocated; the resource allocation instead dictates the amount of wall-clock time each iteration takes.

70

0 100 200 300 400 500 600 700 800
Time (seconds)

0.00
0.05
0.10
0.15
0.20

Lo
ss

Fair Resource SLAQ

(a) Average of normalized loss values.

80 85 90 95 100
Loss Reduction %

10
20
40

100
200

Ti
m

e
(s

ec
on

ds
) Fair Resource SLAQ

(b) Time to achieve loss reduction percentage.

Figure 3.7: Comparing loss improvement and runtime between SLAQ and fair scheduler.

Figure 3.7(a) shows the average normalized loss values across running jobs with SLAQ

and the fair scheduler in an 800s time window of the experiment. When a new job arrives,

its initial loss is 1.0, raising the average loss value of the active jobs; the spikes in the figure

indicate new job arrivals. Yet because SLAQ allocates resources to maximize the total

quality improvement (loss reduction), the average loss value of all active jobs using SLAQ

is much lower than with the fair scheduler. In particular, SLAQ’s average loss value is 0.49

at each scheduling epoch, which is 73% lower than that of the fair scheduler.

Figure 3.7(b) shows the average time it takes a job to achieve different loss values. As

SLAQ allocates more resources to jobs that have the most potential for quality improvement,

it reduces the average time to reach 90% (95%) loss reduction from 71s (98s) down to 39s

(68s), 45% (30%) lower. At the very end of the job execution, further iterations take longer

time as the job quality is less likely to be improved. Thus, in an environment where users

submit exploratory ML training jobs, SLAQ could substantially reduce users’ wait times.

71

0 100 200 300 400 500 600 700 800
Time (seconds)

0

20

40

60

80

100

S
ha

re
 o

f C
lu

st
er

 C
P

U
s

(%
)

Bottom 50% Jobs Second 25% Jobs Top 25% Jobs

Figure 3.8: Resource allocation across jobs. At the beginning, jobs with the greatest 25%
loss allocated vast majority of resources; towards the end, the difference in loss shrinks, the
allocation is more spread out.

Figure 3.8 explains SLAQ’s benefits by plotting the allocation of CPU cores in the cluster

over time. Here we group the active jobs at each scheduling epoch by their normalized loss:

(i) 25% jobs with high loss values; (ii) 25% jobs with medium loss values; (iii) 50% jobs

with low loss values (almost converged). With a fair scheduler, the cluster CPUs should

be allocated to the three groups proportionally to the number of jobs. In contrast, SLAQ

adapts to the job quality improvement, and allocates much more computation resource to

(i) and (ii). In fact, jobs in group (i) take 60% of cluster CPUs, while jobs in group (iii),

despite having 50% of the population, get only 22% of cluster CPUs on average. SLAQ

transfers many resources from nearly converged jobs to the jobs that have the most potential

for significant quality improvement, which is the underlying reason for the improvement in

Figure 3.7.

Handling Different Workloads

The achieved qualities of training jobs strongly depend on the cluster workload. As the

workload increases, it becomes more important to efficiently utilize the resources. In this

experiment, we vary the mean arrival time of new jobs, which in turn varies the number of

concurrent jobs, and observe how SLAQ and the fair scheduler handle resource contention

under different workloads.

72

4 6 8 10
Mean Job Arrival Time (s)

10

30

50

70

Ti
m

e
to

 R
ea

ch
 9

0%

Fair Resource

4 6 8 10
Mean Job Arrival Time (s)

10

30

50

70

Ti
m

e
to

 R
ea

ch
 9

5%

SLAQ

Figure 3.9: The performance difference between SLAQ and a fair resource scheduler is
more significant under workloads with greater contention, e.g., jobs arriving with a mean
arrival time of 4s compared to 10s.

Figure 3.9 illustrates that SLAQ achieves a greater relative benefit over a fair schedule

under more contentious or aggressive workloads. We start with a mean arrival time of

10s (or equivalently, 6 new jobs per minute). Under the light workload, the computation

resources are relatively abundant for each job, so the time to reach 90% (95%) loss reduction

is similar for both schedulers, with SLAQ performing 23% (20%) better.

As we increase the system workload with smaller mean job arrival times, cluster re-

source contention increases. SLAQ allocates resources to the jobs with the greatest poten-

tial. As a result, when the mean arrival time is 4s (15 new jobs per minute), SLAQ achieves

an average time for jobs to reach 90% (95%) loss reduction that is 44% (30%) less than the

fair scheduler.

3.5.3 Robustness of Prediction

SLAQ relies on an estimate of the expected loss reduction of a job, given a certain resource

alloction (see §3.3.2). To ensure stability, SLAQ makes a reallocation decision only once per

scheduling epoch. Thus, the scheduler requires (i) the loss predictor to precisely estimate

the loss values at least a few iterations in advance, and (ii) the runtime predictor to accurately

report how long each iteration takes with a certain number of allocated cores.

Figure 3.10(a) plots the loss prediction error for the types of ML algorithms we tested

(Table 3.1). We compare the loss prediction error relative to the true values for 10 iterations,

73

LDA
GBT

LinReg
SVM

MLPC
LogReg

SVMPoly
10-4

10-3

10-2

10-1

100

P
re

di
ct

io
n

E
rr

or
 %

0.1
0.0

0.40.4
1.1

0.2

1.20.6

4.84.7 6.14.3

52.5

3.6

Strawman Weighted Curve

(a) Predicting the next 10th iteration.

32 64 96 128 160 192 224 256
Number of Cores

101

102

103

104
Ite

ra
tio

n
Ti

m
e

(s
)

2347 2307 2323 2318 2394 2398 2406 2406

10K 100K 1M 10M

(b) Average CPU time to finish each iteration.

1000 2000 4000 8000 16000
Number of Workers

0.0

0.5

1.0

1.5

2.0

S
ch

ed
ul

in
g

Ti
m

e
(s

) 1000 2000 3000 4000 Jobs

(c) Scheduling time.

Figure 3.10: SLAQ loss / runtime prediction and overhead.

with both strawman and weighted curve fitting methods of §3.3.2. Our prediction achieves

less than 5% prediction errors for all the algorithms.

Recall that SLAQ uses a simple heuristic to estimate the iteration runtime with N cores.

To demonstrate that each iteration’s CPU time is c ·S (c as a constant), regardless of how

many workers are allocated, we evaluate the total CPU time to complete an iteration with

a fixed data size S. We vary the number of workers (32 cores each) between 1 and 8 and

training neural network models of sizes from 10KB to 10MB. Figure 3.10(b) illustrates that,

at least for ML models smaller than tens of MB, communication and model synchronization

74

do not affect processing time. Therefore, when dynamically changing N, an iteration’s time

can simply be estimated as c ·S/N. We discuss extending SLAQ to large models in §3.6.

3.5.4 Scalability and Efficiency

Figure 3.10(c) plots the time taken by SLAQ to schedule tens of thousands of concurrent

jobs on large clusters (simulating both the jobs and worker nodes). SLAQ makes its schedul-

ing decisions in between hundreds of milliseconds to a few seconds, even when scheduling

4000 jobs across 16K worker cores. These decisions are made each scheduling epoch, a

timeframe of a few seconds. As shown in Figure 3.6, the more iterations in advance SLAQ

predicts, the larger potential error it will incur. The agility of SLAQ enables the scheduler

to predict only a few iterations in advance for each ML training job, adjusting its resource

allocation decisions frequenty to meet the jobs’ quality goals. SLAQ’s scheduling time

is comparable to the scalability of schedulers in many big data clusters today, leading us

to conclude that SLAQ is sufficiently fast and scalable for (rather aggressive) real-world

needs.

3.6 Discussion

Communication overhead. SLAQ is tested with ML models that have a moderate num-

ber of parameters. Recent developments in distributed frameworks for training ML models,

especially deep neural networks (DNN), incur more communication and synchronization

overhead between the ML job driver and worker nodes. For example, with a large number

of perceptrons and multiple layers, a DNN model can grow to tens of GBs [124, 146].

Since our current implementation is based on Spark, the driver essentially becomes a

single-node parameter server [10], which is responsible for gathering, aggregating, and

distributing the models in every iteration. This communication overhead—due to Spark’s

architecture—limits our ability to train large models.

75

Several solutions have been proposed to mitigate the communication overhead problem.

Model parallelization using architectures based on parameter servers or graph computing

proportionally scale the model serving nodes with the workers [14,41,129,189]. With these

optimized frameworks, SLAQ’s performance improvement based on online prediction and

scheduling heuristics should apply to large ML models.

Distributed ML training with relaxed consistency. Distributed ML frameworks used

in practice leverage a relaxed consistency model with bounded staleness [78] to reduce

the communication costs during model synchronization. The convergence progress of the

underlying ML training algorithms is typically robust to a certain degree of fluctuation and

slack, so the efficiency improvement obtained from the parallelism outweighs the staleness

slowdown on convergence rate.

A commonly used execution model with bounded staleness is Bulk Synchronous Par-

allel (BSP), which allows multiple workers to individually update on partitioned training

data and only synchronizes their models every several iterations [74, 143, 189]. We can

extend SLAQ to support these frameworks by collecting the batch iteration time on each

worker, and the model quality and communication time at each synchronization barrier to

help estimate the loss reduction under the two levels of iterativeness. In fact, the conver-

gence property of ML training is also studied in [143] with the BSP execution model under

various conditions (e.g., varying communication latency and cluster sizes).

Non-convex optimization. SLAQ’s loss prediction is based on the convergence property

of the underlying optimizers and curve fitting with the loss history. Loss functions of non-

convex optimization problems are not guaranteed to converge to global minima, nor do they

necessarily decrease monotonically. The lack of an analytical model of the convergence

properties interferes with our prediction mechanism, causing SLAQ to underestimate or

overestimate the potential loss reduction.

76

One solution to this problem is to let users provide the scheduler with hint of their

target loss or performance, which could be acquired from state-of-the-art results on similar

problems or previous training trials. The convergence properties and optimization of non-

convex algorithms is being actively studied in the ML research community [63, 123]. We

leave modeling the convergence of these algorithms to future work.

3.7 Related Work on Scheduling ML Systems

Approximate computing systems. Many systems [43,48,53,96,111,178] allow users to

get approximate results with significantly reduced job completion time. Online aggregation

databases [96, 194] generate approximate results and iteratively refine the quality. While

we designed SLAQ for iterative ML training jobs, our techniques are broadly applicable to

scheduling data analytics systems that iteratively refine their results.

Scheduling ML systems. Large-scale ML frameworks [14, 33, 41, 72, 129, 138, 163] opti-

mize the computation and resource allocation for multi-dimensional matrix operators within

a training job. These systems greatly accelerate the training process and reduce job’s syn-

chronization overhead. As a cluster scheduler, SLAQ could support different underlying

ML frameworks (with modifications) in the future, and allocate resources at the job level to

optimize across different ML training jobs.

ML model search. Several systems [166,167] are designed to accelerate the model search-

ing procedure. TuPAQ [167] uses a planning algorithm to discover hyperparameter settings

and exclude bad trials automatically. SLAQ is designed for ML training in general ex-

ploratory settings on multi-tenant clusters. Automated model search systems could work in

conjuction with SLAQ for faster decisions and better cluster utilization.

77

Cluster scheduling systems. Existing cluster schedulers [3,19,59,87,100,106] primarily

focus on resource fairness, job priorities, cluster utilization, or resource reservations, but do

not take job quality into consideration. They mostly ignore the quality-time trade-off, and

the quality trade-off between jobs. This trade-off space is crucial for ML training jobs to

get approximate results with much less resource usage and lower latency.

Estimation of resource usage and runtime. Ernest [179] predicts job quality and run-

time based on the internal computation and communication structures of large-scale data an-

alytics jobs. CherryPick [45] improves cloud configuration selection process using Bayesian

Optimization. Despite the generality, these systems require jobs to be analyzed offline.

When users debug and adjust their models, the computation structure is likely to change

very often, and thus the offline analysis will bring significant overhead. NearestFit [76]

provides a progress indicator for a broad class of MapReduce applications with online

prediction. SLAQ uses also online prediction to avoid offline overhead, and leverages the

iterative nature of ML training jobs to improve the accuracy of prediction.

Deadline-based scheduling. Many systems [46, 79, 114, 180] utilize scheduling to meet

deadlines for batch processing jobs or to reduce lag for streaming analytics jobs. Jockey [84]

uses a combination of offline prediction and dynamic resource allocation to ensure batch

processing queries meet their latency SLAs while minimizing their impact on other jobs

sharing the cluster. Instead of hard deadlines, some real-time systems [110, 184] use soft

deadlines and penalize additional delay beyond the deadlines. However, these systems

mainly consider the quality-runtime trade-offs for a single job, instead of optimizing across

multiple approximate jobs.

78

3.8 Conclusion

In this chapter we present SLAQ, a quality-driven scheduling system designed for large-

scale ML training jobs in shared clusters. SLAQ leverages the iterative nature of ML

algorithms and obtains application-specific information to maximize the quality of models

produced by a large class of ML training jobs. Our scheduler automatically infers the mod-

els’ loss reduction rate from past iterations, and predicts future resource consumption and

loss improvements online for subsequent allocation decisions. As a result, SLAQ improves

the overall quality of executing ML jobs faster, particularly under resource contention.

79

Chapter 4

Riffle: Optimized Shuffle Service for

Large-Scale Data Analytics

Large-scale data analytics systems are widely used in many companies holding and con-

stantly generating big data. For example, the Spark deployment at Facebook processes 10s

of PB newly-generated data every day, and a single job can process 100s of TB of data.

Efficiently analyzing massive amounts of data requires underlying systems to be highly

scalable and cost effective.

Data analytics frameworks such as Spark [191], Hadoop [2], and Dryad [105] com-

monly use a DAG of stages to represent data transformations and dependencies inside a

job. A stage is further broken down to tasks which process different partitions of the data

using one or more operations. Data transformations for grouping and joining data require

all-to-all communication between map and reduce stages, called a shuffle operation. For

example, a reduceByKey operation in Spark requires each task in the reduce stage to retrieve

corresponding data blocks from all the map task outputs. Jobs that execute shuffle are

prevalent—over 50% of Spark data analytics jobs executed daily at Facebook involve at

least one shuffle operation.

80

The amount of data processed by analytics jobs is growing much faster than the memory

available. At Facebook, data can be 10x larger than the total memory resource allocated to

a job, and thus the shuffle intermediate data has to be kept on disks for scalability and fault

tolerance purposes. The fast-growing data and complexity of analytics pose a fundamental

performance tension in big-data systems.

Research work highly encourages running a large number of small tasks. Recent

work [47, 115, 147–149] illustrates the benefit of slicing jobs into small tasks: small tasks

improve the parallelism, reduce the straggler effect with speculative execution, and speed

up end-to-end job completion. Solutions have also been presented to minimize task launch

time [132] as well as scheduling overhead [150] for a large number of small tasks.

However, engineering experience often argues against running too many tasks. In

fact, large jobs processing real-world workloads observe significant performance degrada-

tion because of excessive shuffle overhead [6, 7, 40]. While the tiny tasks execution plan

works well with single-stage jobs, it introduces significant I/O overhead during shuffle op-

erations in multi-stage jobs. Engineers often execute jobs with fewer bulky, slow tasks to

mitigate shuffle overhead, paying the price of stragglers and inefficient large tasks that do

not fit in memory.

We observe that the root cause of the slowdown is due to the fact that the number of

shuffle I/O requests between map and reduce stages grows quadratically as the number

of tasks grows, and the average size per request actually shrinks linearly. At Facebook,

data is preserved on spinning disks for fault tolerance, so a large amount of small, random

I/O requests (e.g., 10s or 100s of KB) during shuffle leads to a significant slowdown of

job completion and resource inefficiency. Executing jobs with large numbers of tasks over

splits the I/O requests, further aggravating the problem. Thus, neither approach for tuning

the number of tasks provides efficient performance at large scales.

81

We present Riffle, an optimized shuffle service for big-data analytics frameworks that

significantly improves I/O efficiency and scales to processing PB-level data. Riffle boosts

shuffle performance and improves resource efficiency by converting large amounts of small,

random shuffle I/O requests into much fewer large, sequential I/O requests. At its core,

Riffle consists of a centralized scheduler that keeps track of intermediate shuffle files and

dynamically coordinates merge operations, and a shuffle merge service which runs on each

physical cluster node and efficiently merges the small files into larger ones with little

resource overhead.

Challenges and solutions. In designing Riffle, we had to overcome several technical

challenges.

First, Riffle has to be efficient in handling shuffle files without using much computation

or storage resources. Riffle overlaps the merge operations with map tasks, and always

accesses large chunks of data sequentially with minimal disk I/O overhead when performing

merge operations. To reduce the additional delay caused by stragglers, Riffle allows users to

set a best-effort merge threshold, so that reducers consume some late-arriving intermediate

outputs in unmerged form, together with the majority of outputs in merged form.

Second, Riffle should be easy to configure to best fit different storage systems and

hardware. While merging files generally reduces the number of I/O requests, making the

block sizes too large leads to only marginal improvement in I/O requests but slowdown in

merge operations. Riffle explores the inherent trade-off between maximizing the gain of

large request sizes and minimizing the overhead of aggressive merges, and supports merge

policies with different fan-ins and target block sizes, to get the best efficiency for disk I/Os

and merge operations.

Third, Riffle must tolerate failures during merge and shuffle. Since failure is the norm

at large scale, we must handle failures without affecting correctness or incurring additional

slowdown in job execution. Riffle keeps track of intermediate files in both merged and

82

unmerged forms, and on failure falls back to files in unmerged format within the scope of

failure.

Finally, Riffle should not create prohibitive overhead. The merge operations of Riffle

come at the cost of reading and writing more shuffle data for the merged intermediate

files. Riffle makes this trade-off a performance win, by issuing all merge requests as large,

sequential requests, keeping the overhead significantly less than the savings. In terms of

space, the intermediate files are soon garbage collected after job completion, so they occupy

disk space only temporarily.

We implemented the Riffle shuffle service within the Apache Spark framework [5].

Riffle supports unmodified Spark applications and SparkSQL queries [51]. This paper

presents the results of Riffle on a representative mix of Facebook’s production jobs process-

ing 100s of TB of data: Riffle reduces disk I/O requests by up to 10x and the end-to-end

job completion time by up to 40%.

4.1 Background and Motivation

The past several years has seen a rapid increase in the amount of data that is being generated

and analyzed every day. Distributed data analytics engines, like Spark [191], MapRe-

duce [81], Dryad [105], are widely used for executing SQL queries and user-defined func-

tions (UDFs) on large datasets, or preprocessing and postprocessing in machine learning

jobs. The key challenge in analyzing massive amounts of data arises from the fact that

the volume and complexity of data processing is growing much faster than hardware speed

and capacity improvements. Riffle aims to solve the problem at large scale by significantly

improving the efficiency of hardware resource usage.

This section motivates and provides background for Riffle. §4.1.1 briefly reviews the

DAG computation model commonly used in big-data analytics frameworks. §4.1.2 dis-

cusses the memory constraints of data processing, and the quadratic relationship between

83

data volume and disk I/O during shuffle. §4.1.3 presents existing solutions to mitigate the

problem, and explains why they fall short in fundamentally solving the problem at large

scale.

4.1.1 Shuffle: All-to-All Communications

Data analytics frameworks typically use a DAG to represent the computation logic of a

job, with stages as its vertices, and the dependencies between stages as its edges. A stage

is further comprised of a set of tasks, each processing a partition of the datasets. A task

typically includes a pipeline of one or more programmer specified operators that need to

be applied to transform a data partition from input to output. Tasks in the first and last

stages of a job are responsible to read in data from external sources (e.g., file systems,

table storage, streams) and persist results, while tasks in the middle stages take the output

generated by tasks in the previous stage as input, perform the transformation based on the

specified operators, and then generate data for tasks in the next stage. Data dependencies

thus can be classified in two types [191]: narrow dependencies, where the partition of data

processed by a child task only depends on one parent task output, and wide dependencies,

where each child task processes outputs from multiple or all parent tasks.

For example, Figure 4.1(a) is a logical view of a Spark job. It applies transformations

(map and filter) on data from two separate tables, joins and aggregates the items over each

key (a certain field of items) using groupByKey. After filtering, it stores the output data

in the result table. Figure 4.1(b) shows the Spark execution plan of this job. For narrow

dependencies (map and filter), Spark pipelines the transformations on each partition and

performs the operators in a single stage. Internally, Spark tries to keep the intermediate data

of a single task in memory (unless the size of data cannot fit), so the pipelined operators (a

filter operator following a map operator in Stage 1) can be performed efficiently.

Spark triggers an all-to-all data communication, called shuffle, for the wide dependency

between Stages 1 (map) and 2 (reduce). Each map task reads from a data partition (e.g.,

84

map filter

map

join,

groupBy
filter

(a) Logical operators.

Stage 1 Stage 2

(b) DAG execution plan.

Figure 4.1: DAG representation of a Spark job, which joins data processed from two tables
and uses groupByKey to aggregate the key-value items, then filters the data to get the
final results.

several rows of a large table), transforms the data into the intermediate format with the map

task operators, sorts or aggregates the items by the partitioning function of the reduce stage

(e.g., key ranges) to produce blocks of items, and saves the blocks to on-disk intermediate

files. The map task also writes a separate index file which shows the offsets of blocks

corresponding to each reduce task. To organize reduce stage data with groupByKey, each

reduce task brings together the designated data blocks and performs reduce task operators.

By looking up the offsets in index files, each reduce task issues fetch requests to the target

blocks from all the map output files. Thus, data that was originally partitioned according to

table rows are processed and shuffled to data partitioned according to reduce key ranges.

The large amount of intermediate files, written by the map tasks and read by the subse-

quent reduce tasks, are persisted on disks in both Spark and MapReduce for fault tolerance

purposes. For large jobs, 10s to 100s of TB, or even PB of data are generated during each

shuffle. Between stages with wide dependencies, each reduce task requires reading data

blocks from all the map task outputs. If the intermediate shuffle files were not persisted,

even a single reduce task failure could lead to recomputing the entire map stage. In fact,

85

failure of tasks or even cluster nodes is the norm at large scale deployment of big-data

frameworks [102, 118, 182], so it is crucial to persist shuffle data for strong fault tolerance.

As a result, shuffle is an extremely resource intensive operation. Each block of data

transferred from a map task to a reduce task needs to go though data serialization, disk and

network I/O, and data deserialization. Yet shuffle is heavily used in various types of jobs—

those requiring data to be repartitioned, grouped or reduced by key, or joined all involve

shuffle operations. At Facebook, we observe that over 50% of our daily batch analytics jobs

have at least one shuffle operations. A key approach to better completion time and resource

efficiency of these jobs is improving the performance of shuffle operations.

4.1.2 Efficient Storage of Intermediate Data

Even though there is a trend towards keeping data in memory wherever possible to improve

resource efficiency [4, 75, 83, 127], in real-world settings the amount of data is growing

much faster than the available memory, which makes it infeasible to keep the data entirely

in memory. For example, a job at Facebook processes data that is over 10x larger than the

allocated resources. Instead intermediate data must be pushed to permanent storage for

scalability and fault tolerance.

At Facebook, the current generation of warehouse clusters use HDDs for permanent

storage. For large amount of data, this is significantly more cost effective than SSDs given

current hardware [92, 117]. With spinning HDDs, the number of IOPS (I/O Operations Per

Second) available is a limiting factor for the system throughput. While HDDs continue

to grow in capacity, the available IOPS will not increase accordingly due to the physical

limits of mechanical spin time [188]. Thus, we must be careful to use IOPS wisely for

intermediate data, both for disk spills and shuffles.

Disk spill I/O. When the size of the data partition assigned to a task exceeds the memory

limit, the task has to spill intermediate data to permanent storage. Disk spills can incur a

86

significant amount of additional overhead because of the increasing disk I/O and garbage

collection.

For example, assume that a map task processes a partition of 4GB input data, and runs

with 8GB memory.1 Data have to be decompressed and deserialized from disks to get the

in-memory objects. This process effectively enlarges the original data, in practice, by about

4x. Thus, reading and processing 2GB input data already consumes the entire memory.

The map task has to perform the operations and sort the result items by keys according

to the reduce partition function. To do so, it (1) reads in the first 2GB data, performs the

computation, and spills a temporary output file on disk; (2) similarly, reads, processes, and

spills the second 2GB data; (3) merges the two temporary files into one using external

merge sort. The overhead of repeated disk I/O and serialization significantly slows down

the task execution and harms resource efficiency.

Shuffle I/O. To avoid disk spills, the task input size (S) should be appropriate to fit in

memory, and thus is determined by the underlying hardware. As the size of job data

increases, the number of map (M) and reduce (R) tasks has to grow proportionally. Because

each reduce task needs to fetch from all map tasks, the number of shuffle I/O requests M ·R

increases quadratically, and the average block size S
R

for each fetch decreases linearly.

Figure 4.2 shows the job completion time when we keep the task input size fixed at

512MB (incurring no disk spills), and increase the number of tasks in both stages from 300

to 10,000. We see that the shuffle time grows quadratically from 100 to over 4,000 seconds.

This is because the number of shuffle fetch requests increases rapidly (30K to 100M), as

the average size of each request shrinks (1.7MB to 50KB).

Since disks are especially inefficient in handling large amounts of small, random I/O

requests, jobs suffer a severe slowdown at large scale. Our goal is to improve the efficiency

1In practice, only a portion of memory can be used to cache data and the remaining is reserved by the
runtime and program. The example ignores this discussion for simplicity.

87

0 5000 10000
Number of Tasks

0

1000

2000

3000

4000

S
hu

ffl
e

Ti
m

e
(s

ec
)

Shuffle Time

0

40

80

120

R
eq

ue
st

 C
ou

nt
 /
10

6

I/O Request

(a) Shuffle time and I/O requests.

0 5000 10000
Number of Tasks

0

500

1000

1500

S
iz

e
(K

B
)

Shuffle Fetch Size

(b) Average I/O request size.

Figure 4.2: When the number of tasks in each stage grows, the shuffle time and the number
of I/O requests increase quadratically, and the average shuffle fetch size in each request
decreases.

300 400 500 600 700 800 900
1000

2000
4000

8000
10000

Number of Map Tasks

0

1000

2000

3000

Ti
m

e
(s

ec
)

Shuffle Spill

Figure 4.3: Shuffle-spill trade-off when varying number of map tasks (with fixed number
of reduce tasks). Bulky tasks (left) incur more spill overhead, while tiny tasks (right) incur
significant shuffle overhead.

by reducing the IOPS requirement of the underlying storage systems for large-scale data

analytics.

4.1.3 Current Practices and Existing Solutions

Several solutions have been previously proposed to mitigate the problem of large amounts

of small, random I/O requests during shuffle. We discuss the limitations of these solutions,

and explain why they fall short in fundamentally solving the problem at large scale.

88

Reducing the number of tasks per stage. By tuning the number of tasks in job execution

plan, engineers look for the optimal performance trading off between shuffle and spill I/O

efficiency [7]. Since the number of I/O requests is determined by the corresponding map

and reduce tasks, using fewer tasks reduces the total number of shuffle fetches, and thus

improves the shuffle performance. However, this approach inevitably enlarges the average

size of input data and creates very bulky, slow tasks with disk spilling overhead.

For example, Figure 4.3 shows how the shuffle and spill runtime changes when varying

the number of map tasks in a job processing 3TB data. Towards the left, smaller number

of tasks implies larger task partition sizes, making the shuffle operations more efficient. At

the same time, larger tasks also mean each task needs to spill more data, slowing down the

task completion time. In this case, at around 1,000 tasks the job reaches its optimal value in

terms of the total runtime of shuffle and spill.

However, tuning the number of tasks is untenable to apply across the thousands of jobs

at Facebook. Each job has different characteristics (e.g., distribution and skew of data), so

it is not possible to find the optimal point without tedious experimentation. In addition,

data characteristics change over time, depending on outside factors such as Facebook user

behavior. Jobs are typically configured in favor of having more tasks, which allows room

for data growth.

More importantly, the effects of having a small number of bulky tasks can be very

detrimental for job execution in production: such tasks run very slowly due to additional

I/O and garbage collection overhead [148]. In practice we see that task number tuning could

assign GBs of data to a single task, causing the tasks to run over 60 minutes. Bulky tasks

amplify the straggler problem, in that jobs get significantly delayed if a few tasks become

stragglers or retry after failure, and speculative execution can only provide limited help in

these cases [47, 149].

89

Aggregation servers for reducers. Another solution is to use separate aggregation pro-

cesses in front of each reducer to collect the fragmented shuffle blocks and batch the disk

I/O for shuffle data. The in-memory buffering in the aggregators ensures sequential disk ac-

cess when writing shuffle data, which can later be read by reduce tasks all at once. However,

directly applying this approach to process 100s of TBs or PBs of data is still infeasible. One

aggregator instance per reduce task could consume a large amount of computation (for task

bookkeeping) and memory (for disk I/O buffering) resources for large jobs, so the solutions

can only be applied at relatively small scale [159]. In addition, because each reduce task

collects data from all the map tasks, even failure of a single aggregation process leads to

data corruption and requires the entire map stage to be recomputed. As jobs further scale

in number of processes and runtime, the frequency of aggregation process failures (due to

machine or network failures, etc.) increases. The high cost of failure recovery makes the

solution inadequate for deployment at large scale.

To improve Hadoop shuffle performance, Sailfish [157] leverages a new file system

design to support multiple insertion points to store aggregated intermediate files. Besides

the fact that it requires modification to file systems, the solution also impairs the fault

tolerance: to recover a single corrupted aggregation file, a large number of map tasks need

to be re-executed. Compromising fault tolerance leads to frequent re-computation and thus

harms system performance at Facebook scale.

Instead of trading fault tolerance for I/O efficiency, our goals of designing an optimized

shuffle service include highly efficient shuffle I/O performance, little resource overhead to

the clusters, and no additional failures caused by the shuffle optimization. Riffle provides

its service as a long-running process on each physical node, and requires much less memory

space and almost no computation overhead compared to existing solutions. Riffle operates

on persisted disk files and saves results as separate files, so the service failures will not lead

to any recomputation of stages or tasks. In the rest of the paper, we will show how Riffle’s

design and implementation meet these design goals in detail.

90

Worker NodeWorker Node
TaskTaskTasks Worker Machine

Task Task Task Task

File System

ExecutorExecutor

Riffle Shuffle Service

Driver

Job / Task

Scheduler

Riffle

Merge

Scheduler

assign

report task

statuses

report merge

statuses

send merge

requests

Figure 4.4: Riffle runs a shuffle merge scheduler as part of the analytics framework driver,
and a merger instance per physical node. Since a physical node is typically sliced into a
few executors, each running multiple tasks, it’s common to have hundreds of tasks per job
executed on each node.

4.2 System Overview

Riffle is designed to work with multi-stage jobs running on distributed data analytics frame-

works that involve all-to-all data shuffle between different stages. We describe how Riffle

works with cluster managers and data analytics frameworks, as shown in Figure 4.4.

Shuffle merge scheduler. Tasks in data analytics frameworks are assigned by a global

driver program. As explained in §4.1, the driver converts a data processing job to a DAG

of data transformations, with several stages separated by shuffle operations. Tasks from the

same stage can be executed in parallel on the executors, while tasks in the following stage

typically need to be executed after the shuffle. The intermediate shuffle files are persisted

on local or distributed file systems (e.g., HDFS [164], GFS [86], and Warm Storage [16]).

Riffle includes a shuffle merge scheduler on the driver side, which keeps track of task

execution progress and schedules merge operations based on configurable strategies and

policies. In practice, it is common to have hundreds of tasks assigned per physical node

in processing large-scale jobs. The Riffle scheduler collects the state and block sizes of

intermediate files generated by all tasks, and issues merge requests when the shuffle files

meet the merge criteria (§4.3.1).

91

Optimized Shuffle Service

merge

request

map

map

map

reduce

reduce

reduce

reduce

reduce

reduce

reduce

map

map

map

merge

request

Application Driver

Merge Scheduler

Worker-Side Merger

Figure 4.5: Merging intermediate files with Riffle.

Shuffle service with merging. Data analytics frameworks provide an external shuffle

service [25, 35] to manage the shuffle output files. A long-running shuffle service instance

is deployed on each worker node in order to serve the shuffle files uninterruptedly, even if

executors are killed or reallocated to other jobs running concurrently on the cluster with

dynamic resource allocation policies [87, 100]. Riffle runs a merger instance as part of the

shuffle service on each physical node, which performs merge operations on shuffle output

files.

The shuffle merge scheduler directly communicates with all the registered merger in-

stances where some of the job tasks are executed, to send out merge requests and collect

results from the mergers. Figure 4.5 illustrates the shuffle service side merger combining

multiple intermediate shuffle files into larger files. Each mapper outputs data such that items

are partitioned into the reducer it belongs to (indicated here by color). Without Riffle, each

reducer would read partitions from all map outputs, which can be on the order of tens of

thousands per reducer. Riffle merges the shuffle files block by block to preserve the reducer

partitioning. After the merge operations, a reducer only needs to fetch a significantly smaller

92

number of large blocks from the merged intermediate files instead. Note that these merge

operations are performed on compressed, serialized data files. This process significantly

improves the shuffle I/O efficiency without incurring much resource overhead.

4.3 Design

This section describes the mechanisms by which Riffle addresses its key challenges. We

explain the merge strategies and policies in the driver side scheduler, and the execution of

merge operations in the worker side merger in §4.3.1. We discuss how Riffle minimizes

the merge overhead with best-effort merging (§4.3.2), handles merge failures (§4.3.3), and

balances merge requests using power of choices in disaggregated architecture (§4.3.4). We

analyze Riffle’s performance benefit in §4.3.5.

4.3.1 Merging Shuffle Intermediate Files

Riffle is designed to work with existing data analytics frameworks by introducing shuffle

merge operations in the shuffle service instances coordinated by the driver. Specifically, Rif-

fle builds additional communication channels between the scheduler and mergers, allowing

the driver to issue requests and coordinate mergers.

The merge scheduler starts merge operations immediately as map outputs become avail-

able, according to merge policies (§4.3.1). This causes most merges to overlap with the

ongoing map stage, hiding their merge time if they finish before the map stage. When the

map stage finishes, outstanding merge requests can incur additional delay, which makes

policy configuration and merger efficiency (§4.3.1) important.

After the map tasks and merge operations finish, the driver launches reduce tasks in

the subsequent stage, and broadcasts the metadata (location, executor id, task id, etc.) of

all the map outputs to the executors hosting reduce tasks. With Riffle, the driver sends out

93

Block 1

Block 2

Block R

…

Block 1

Block 2

Block R

…

Block 1

Block 2

Block R

…

…

Block 1

Block 2

Block R

…

N files

(a) Greedy N-way Merge.

Block 1

Block 2

Block R

…

Block 1
Block 2

Block R

…

Block 1

Block 2

Block R

…

…

Block 1

Block 2

Block R

…

total average block size

> merge threshold

(b) Fixed Block Size Merge.

Figure 4.6: Riffle merge policies.

metatdata of the merged files instead of the original map output files, so the reduce tasks

can fetch corresponding blocks from the merged files with more efficient reads.

Merge Scheduling Policies

Merge with fixed number of files. Users can configure Riffle to merge a fixed number of

files. For N-way merge, the scheduler sends a merge request to the merger whenever there

are N map output files available on that node (Figure 4.6(a)). The merger, upon receiving

this request, performs the merge by reading existing shuffle files, grouping blocks based

on reduce partitions, and generating a new pair of shuffle output file and index file as the

merge result.

Merge with fixed block size. In real-world settings, we observe a large variance in block

sizes of the shuffle output files (Figure 4.6(b)). Some shuffle blocks themselves are large

enough, leading to few fragmented reads; some are very tiny and we need to merge tens

or hundreds of them to make shuffle reads efficient. Riffle also supports fixed block size

merge. In this case, the driver sends out a merge request when the accumulated average

shuffle block size across all partitions exceeds a configurable threshold. The Riffle scheduler

94

avoids merging files that already have large blocks, and merges more files with tiny blocks

for better I/O efficiency.

Configuring the merge policy. While merging files generally leads to more efficient

shuffle, merging too aggressively can exacerbate the merge operation delay. Merge request

processing is limited by the disk writing speed. For example, Riffle mergers achieve nearly

the sequential speed at about 100MB/s when writing the merged files in our current deploy-

ment. The larger the merged output file is, the longer the merge operation will take. Riffle’s

file and block size based policies provide flexibility to trade off between shuffle and merge

efficiency on a per-job basis.

In addition, these policies allow Riffle to be applied to file systems with different I/O

characteristics. For example, if a file system provides 2MB unit I/O size, larger requests

will be split into multiple 2MB chunk reads. Merging aggressively to get gigantic block

files only provides marginal benefits for shuffle reads. In this case, Riffle’s merge policy

can be configured to a lesser number of files or smaller block size.

Efficient Worker-Side Merger

Upon receiving a merge request, the worker-side merger performs the merge operation

and generates new shuffle files, as shown in Algorithm 2. A merge request includes a

list of completed map task IDs. The merger locates the shuffle files previously generated

by those tasks, and their accompanying index files which contain offsets of file blocks

corresponding to individual reduce tasks. For each shuffle file, the merger allocates a buffer

for asynchronously reads and caches its index file (normally no larger than a few tens of KB)

in memory. The merger also allocates a separate buffer to asynchronously write the merged

output file. During merge, it goes through each reduce partition, asynchronously copies

over the corresponding blocks from all specified files into the merged file, and records the

offsets in the merged index.

95

Algorithm 2 Merging Intermediate Shuffle Files
– files: shuffle files to be merged in request
– index_files: accompanying index files, which has offsets of shuffle file blocks corresponding to each

reduce task
– out_file: merged shuffle file
– out_index: index file for the merged shuffle file
– offset: integer tracking offset of merged file

1: function MERGESHUFFLEFILES(in_ids,out_id)
2: for all id in in_ids do

3: files[id] = OPENWITHASYNCREADBUFFER(id)
4: index_files[id] = CACHEDINDEXFILE(id)

5: out_file = OPENWITHASYNCWRITEBUFFER(out_id)
6: out_index = NEWINDEXFILE(out_id)
7: offset = 0
8: for p = 1.. number of reduce partitions do

9: for all id in in_ids do

10: start = index_files[id].GETOFFSET(p)
11: end = index_file[id].GETOFFSET(p+1)
12: length = end− start

13: BUFFEREDCOPY(out_file,offset,files[id],start, length)
14: offset = offset+ length

15: APPENDINDEX(out_index,offset)

16: FLUSHBUFFERANDCLOSE(out_file)
17: PERSISTINDEXFILE(out_index)
18: return out_file,out_index

Block 65

Block 66

…

Block 67

…

Block 65

Block 66

…

Block 67

…

Block 65

Block 66

…

Block 67

…

…

Block 65-1

Block 65-2

Block 65-m

…

Block 66-1

Block 66-2

Block 66-m

…

B
u
ff
e
re

d
 R

e
a
d

B
u
ffe

re
d
 W

rite

Merge

Figure 4.7: Riffle mergers trigger only sequential disk I/O for efficiency. The shadow
sections of the input and output files are asynchronously buffered in memory to ensure
sequential I/O behavior.

Riffle ensures the merge operation is efficient and lightweight on the worker side. First,

Riffle merges compressed, serialized data files in their raw format on disks, incurring

minimal computation overhead during merge. Second, the mergers prefetch data from

original shuffle files, aggregate the blocks belonging to same reducers, and asynchronously

write blocks into the result file. Thus, they always read and write large chunks of data

sequentially, leading to minimal disk I/O overhead when performing merge operations.

96

Memory Management. The major resource overhead on the workers comes from the

in-memory buffers for reading the original shuffle output files and writing the merged file,

as shown in Figure 4.7. Buffering files ensures large, sequential disk I/O requests, at the

cost of more memory consumption when the number of files and the number of concurrent

merge operations grow.

For example, assume that we keep a 4MB read buffer and a 20MB write buffer. To

merge 20 shuffle files, the merger has to buffer 80MB data for all input files, and 20MB for

the output file, ending up consuming 100MB memory. Using a dedicated buffer for each

file parallelizes the reads and writes and accelerates the merge speed. However, since a

merger is responsible to handle hundreds of map output files per job generated by tens of

executors on the worker node, the memory consumption can be significant when handling

a large number of concurrent merge requests.

Riffle deploys mergers with a fixed memory allocation on each physical node. Upon

receiving a new merge request, the merger estimates the memory consumption of processing

the request based on the fan-in (i.e., number of files) and average block sizes, and only starts

the operation if there is enough memory. When exceeding the memory limit, new incoming

merge requests will be queued up and waiting for the memory to become available. We

find that allocating 6–8GB of memory to a merger is sufficient to process 10–20 concurrent

merge requests in most use cases.2 With this configuration, Riffle mergers can achieve

nearly sequential disk I/O speed when writing merged files. Given that each physical node

typically has 256GB or even larger memory in modern datacenters, and tens of GB of

memory per machine is reserved for OS and framework daemons, we consider the memory

overhead of Riffle acceptable.

2 The memory allocation of the merger determines the number of concurrent requests it can handle. In
general, increasing the memory space leads to higher merge throughput, until a certain point where the
effective disk output rate becomes a limiting factor.

97

4.3.2 Best-Effort Merge

When processing large-scale jobs with Riffle, there are usually some merger processes still

working on performing merge operations while most of the other mergers have already

completed the assigned requests. These merge stragglers exist mainly for two reasons.

First, there are always shuffle files that are generated by the final few map tasks, and the late

merge operations need to wait for these tasks to complete before starting to merge. Second,

the mergers on the worker nodes could also crash and get restarted, which slows down the

pending merge requests on that node. We find that when deployed at large scale, Riffle

merge stragglers can sometimes significantly increase the end-to-end job completion time.

To alleviate the delay penalty caused by stragglers, we introduce best-effort merge,

which allows the driver to mark the map stage as finished and start to launch reduce tasks

when most merge operations are done on workers. Riffle allows users to configure a percent-

age threshold, and when the completed merge operations exceed this threshold, the driver

does not wait for additional merge requests to return. The job execution directly proceeds

to the reduce stage, and all pending merge operations are cancelled by the driver to save

resources.

When using best-effort merge, the Riffle driver sends to reducers the metadata for

merged shuffle files for successful merge operations, and the metadata of original unmerged

files for cancelled merge operations. By eliminating merge stragglers, best-effort merge

improves the end-to-end job completion time as well as the overall resource efficiency

despite a small portion of shuffle fetches being done on less efficient unmerged files. We

demonstrate this improvement in §4.5.2.

4.3.3 Handling Failures

Since failure is the norm at scale, Riffle must guarantee the correctness of computation

results, and should not slow down the recovery process when failures happen. This requires

Riffle to efficiently handle both merge operation failures and loss of shuffle files. To handle

98

these cases well, Riffle keeps both the original, unmerged files as well as the merged files

on disks.

A merge operation can fail if the merge service process crashes, or merging takes

too long and the request times out. When that happens, Riffle is designed to fall back

to original unmerged files in similar manner to best-effort merge. This leads to a slight

performance degradation during shuffle, while avoiding delaying the map stage. Correctness

is guaranteed in the same way as best-effort merge, by the Riffle driver sending a mixture

of metadata for merged and unmerged files to reduce tasks.

Spark and Hadoop deal with shuffle data loss or corruption by recomputing only the

map tasks that generated the lost files. Riffle follows this strategy if unmerged files are

lost, but can recover faster if only merged files are lost. For lost merged files, the original

shuffle file is used as a fallback, avoiding any recomputations in the map stage while slightly

degrading shuffle by fetching more files. Note that this is different from previous solutions

using aggregators to collect data on the reducer side. Sailfish [157] modifies the underlying

file system with a new file format that supports multiple insertion points for reduce block

aggregation. However, a data loss which involves a single chunk of the aggregated file

requires re-execution of all map tasks which appended to that chunk. Thus, data losses can

lead to heavy recomputation for the tasks in the map stage, and it falls short to meet our key

requirement of efficient failure handling.

4.3.4 Load Balancing on Disaggregated Architecture

Recent development in datacenter resource disaggregation [15, 85, 130] replaces individ-

ual servers with a rack of hardware as the basic building block of computing. The new-

generation disaggregated architecture provides efficiency through gains in flexibility, la-

tency, and availability. At Facebook, disaggregated clusters are widely used: the compute

nodes (with powerful CPUs and memory) and storage nodes (with weaker CPUs and large

disk space) on separate racks. The distributed file system abstracts away the physical file

99

1

k

Merger

Merger

Merger

Merger

Merger

…

Job 1 Driver

Job 2 Driver

…

Job k Driver

request 1

request k

Figure 4.8: Multiple Riffle jobs on a disaggregated architecture balances the merge requests
leveraging the power of two choices.

locations, and leverages fast network connections to achieve high I/O performance across

all storage nodes. While deploying a data analytics framework such as Spark on the dis-

aggregated clusters, all workers experience nearly homogeneous rates reading and writing

files regardless of their physical locations in the storage nodes.

Riffle on disaggregated clusters runs one merger process on each compute node. In the

context of resource disaggregation, merge operations are no longer limited to work with

“local” shuffle files generated from the same physical nodes. In fact, the driver can send a

request to an arbitrary merger to merge a number of available shuffle output files generated

by multiple executors on different physical nodes. For example, when the fixed block

size policy is used, the driver will pick a merger and send out a merge request whenever

the accumulated average block sizes of shuffle files generated by all workers exceed the

minimum merging block size.

Because of the merger memory limits, merge requests can queue up when the cluster

experiences high workload (as described in §4.3.1). Note that the mergers, located on the

physical nodes, are shared across all concurrent jobs running on the cluster. The Riffle

enabled drivers need to consider the workload of mergers when sending out their requests,

so that the merge operations are balanced among the mergers.

In order to efficiently balance the dynamic merge workload in a distributed manner,

Riffle leverages “power of two choices” [141]. As shown in Figure 4.8, each driver only

needs to query the pending merge workload of two (or a few) randomly picked mergers and

100

choose the one with the shortest queue length. Theoretical analysis and experiments [135,

150] show that the approach can efficiently balance the distributed dynamic requests while

incurring little probing overhead.

4.3.5 Discussion

Analysis of I/O operation savings. Assume a two-stage job has M map tasks and R

reduce tasks. The total amount of data it processes is T . To simplify the discussion, we

assume the partitions of processed by all tasks can fit in memory (i.e., no disk spills). With

unmodified shuffle, the number of total shuffle I/O requests is M ·R.

Using N-way complete merge, M
N

merged files are generated by the mergers. During

shuffle, each reducer only sends M
N

read requests. Assuming data is evenly partitioned, the

total shuffle I/O requests during is now M
N
×R.

Merge operations also trigger additional I/O. Specifically, a complete merge of all

intermediate files requires an additional read and write of T data. Since Riffle mergers only

incur sequential disk I/O, the total number of I/O requests is 2 · T
s

, where s is the buffer size

in the Riffle mergers. Putting them together, the total number of I/O requests is

M

N
×R+2 ·

T

s

For example, assume a job processing 100GB data uses 1,000 map tasks and 1,000

reduce tasks. It triggers 1,000,000 I/O requests during shuffle. If the Riffle merger uses

10MB I/O buffers, then with 40-way merge, the total number of I/O requests becomes

1000
40 ×1000+2× 100GB

10MB
=45,000, reduced by 22x.

This calculation does not consider the effect of disk spills. In fact, Riffle’s efficient

merge alleviates the quadratic increase of shuffle I/O. Thus users can run much smaller

tasks instead of bulky tasks, which further reduces disk IOPS requirement due to less spills.

101

Note that the amount of additional I/O incurred by Riffle is similar to that required in

Sailfish [157]. More specifically, the chunkservers and chunksorters in Sailfish also need

to make a complete pass reading and writing shuffle data to reorganize the key-values and

generate new index files. Both systems move this process off the critical path to unblock

the execution of map and reduce tasks. Riffle’s configurable merge policy and best-effort

merge mechanism further minimize the merge overhead. In contrast, ThemisMR [158]

provides exactly twice I/O property. Compared with Riffle and Sailfish, it completely

avoids materializing intermediate files to disks, at the cost of impaired fault tolerance. Thus,

the solution only applies to relatively small scale deployment.

Deployment on different clusters. Riffle works best when there are multiple executors

processing tasks on each physical machine. As computing nodes getting larger and more

powerful, it is desirable to slice them into smaller executors for efficient resource multiplex-

ing (i.e., shared by multiple concurrent jobs) and failure isolation. In addition, Riffle fits

well with recent research and industry trends in resource disaggregation, where merge oper-

ations are no longer limited to “local” files (§4.3.4). Large jobs running on small machines

can still benefit from Riffle: in this case, tasks in map stage come in waves, ending up with

many shuffle files on each physical node to merge.

4.4 Implementation

We implemented Riffle with about 4,000 lines of Scala code added to Apache Spark 2.0.

Riffle’s modification is completely transparent to the high-level programming APIs, so

it supports running unmodified Spark applications. We implemented Riffle to work on

both traditional clusters with collocated computation and storage, and the new-generation

disaggregated clusters. Riffle as well as its policies and configurations can be easily changed

on a per-job basis. It is currently deployed and running various Spark batch analytics jobs

at Facebook.

102

Garbage collection. Storage space, compared to other resources, is much cheaper in the

system. As described in §4.3.3, Riffle keeps both unmerged and merged shuffle output files

on disks for better fault tolerance. Both types of shuffle output files share the lifetime of the

running Spark job, and are cleaned up by the resource manager when the job ends.

Correctness with compressed and sorted data. Compression is commonly used to re-

duce I/O overhead when storing files on disks. The data typically needs to go through

compression codecs when transforming between its on-disk format and in-memory rep-

resentation. Riffle concatenates file blocks directly in their compressed, on-disk format

to avoid compression encoding and decoding overhead. This is possible because the data

analytics frameworks typically use concatenation friendly compression algorithms. For ex-

ample, LZ4 [24] and Snappy [34] are commonly used in Spark and Hadoop for intermediate

and result files.

Merging the raw block files breaks the relative ordering of the key-value items in the

blocks of merged shuffle files. If a reduce task does require the data to be sorted, it cannot

assume the data on the mapper side is pre-sorted. Sorting in Spark (default) and Hadoop

(configurable) on reduce side uses the TimSort algorithm [37], which takes advantage of the

ordering of local sub-blocks (i.e., segments of the concatenated blocks in merged shuffle

files) and efficiently sorts them. The algorithm has the same computational complexity as

Merge Sort and in practice leads to very good performance [8]. The sorting mechanism

ensures that reducer tasks will get the correctly ordered data even with the Riffle merge

operations. In addition, since merge will not affect the internal ordering of data in sub-

blocks (i.e., sorted regions in map outputs), the sorting time using TimSort with Riffle will

be the same as the no merge case.

103

No Merge 5 10 20 40
N-Way Merge

0

100

200

300

400

500

Ti
m

e
(s

ec
)

Map Stage Reduce Stage

(a) Stage runtime.

No Merge 5 10 20 40
N-Way Merge

4

16

64

256

Ti
m

e
(s

ec
)

min p25 p50 p75 max

(b) Reduce task runtime.

No Merge 5 10 20 40
N-Way Merge

0K

100K

200K

300K

Ti
m

e
(s

ec
)

Reserved CPU Time

(c) Reserved CPU time.

Figure 4.9: Riffle performance improvement in runtime with synthetic workload. 4.9(a)
and 4.9(b) show the wall clock time to complete stages and tasks, and 4.9(c) plots the
total reserved CPU time representing the job resource efficiency. Map time includes time
to execute both map tasks and Riffle merge operations. Reduce time includes time to
perform both shuffle fetch and reduce tasks. No complex data processing is in the synthetic
applications, so shuffle fetch dominates the reduce time. Dashed lines show the performance
with best-effort merge.

4.5 Evaluation

In this section, we present evaluation results on Riffle. We demonstrate that Riffle signif-

icantly improves the I/O efficiency by increasing the request sizes and reduces the IOPS

requirement on the disks, and scales to process 100s of TB of data and reduces the end-to-

end job completion time and total resource usage.

4.5.1 Methodology

Testbed. We test Riffle with Spark on a disaggregated cluster (see §4.3.4). The computa-

tion blade of the cluster consists of 100 physical nodes, each with 56 CPU cores, 256GB

104

Data Map Reduce Block

1 167.6 GB 915 200 983 K
2 1.15 TB 7,040 1,438 120 K
3 2.7 TB 8,064 2,500 147 K
4 267 TB 36,145 20,011 360 K

Table 4.1: Datasets for 4 production jobs used for Riffle evaluation. Each row shows the
total size of shuffle data in a job, the number of tasks in its map and reduce stages, and the
average size of shuffle blocks.

RAM (with 200GB allocated to Spark executors), and connected with 10Gbps Ethernet

links. Each physical node is further divided into 14 executors, each with 4 CPU cores and

14 GB memory. In total, the jobs run on 1,414 executors. 8GB memory on each physical

node is reserved for in-memory buffering of the Riffle merger instance. The storage blade

provides a distributed file system interface, with 100MB/s I/O speed for sequential access

of a single file. Our current deployment of file system supports 512KB unit I/O operation.

We also use emulated IOPS counters in the file system to show the performance benefit

when the storage is tuned with larger optimal I/O sizes.

Workloads and datasets. We used four production jobs at Facebook with different sizes

of shuffle data, representing small, medium and large scale data processing jobs, as shown

in Table 4.1. To isolate the I/O behavior of Riffle, in §4.5.2 we first show the experiment

results on synthetic workload closely simulating Job 3: the synthetic job generates 3TB

random shuffle data and uses 8,000 map tasks and 2,500 reduce tasks. With vanilla Spark,

each shuffle output file, on average, has a 3TB/8000/2500 = 150KB block for each reduce

task (approximating the 147KB block size in Job 3). Without complex processing logic,

experiments with the synthetic job can demonstrate the I/O performance improvement with

Riffle. We further show the end-to-end performance with the four production jobs in §4.5.3.

Metrics. Shuffle performance is directly reflected in the reduce task time, since each

reduce task needs to first collect all the blocks of a certain partition from shuffle files, before

105

it can start performing any operations. To show the performance improvement of Riffle, we

focus on measuring (i) task, stage, and job completion time, (ii) reduction in the number of

shuffle I/O requests, and (iii) the total resource usage in terms of reserved CPU time and

estimated disk IOPS requirements.

Baseline. In the experiments with the synthetic workload, we compare the time and re-

source efficiency of Riffle with different merge policies. In the experiments with real-world

workloads, we compare the performance improvement of Riffle against the engineering

tuned execution plans (numbers of map and reduce tasks in Table 4.1) that have best shuffle-

spill trade-offs with vanilla Spark.

4.5.2 Synthetic Workload

Stage and Task Completion Time

We compare the performance improvement of Riffle when doing 5-way, 10-way, 20-way

and 40-way merge, respectively. The merged shuffle files will on average get 750KB,

1.5MB, 3MB and 6MB block sizes.

Map and reduce stage execution time. Figure 4.9(a) shows the map and reduce stage

completion time when running the job with vanilla Spark (“no merge”) vs. Riffle with

different merge policies (note the log scale on x-axis). As N grows, the merge operation

generates larger block files, yet also takes longer time to finish. Since Riffle merge opera-

tions block the execution of reduce stage, map is only considered as completed when the

merge is done. We see the map stage time increases gradually from 174 to 343 seconds.

Despite the delay in map, we have a much larger reduction in the reduce stage time, which

drops from 474 to 81 seconds. Overall, the job completion time (i.e., sum of the two stages)

drops from 648 down to 424 seconds, 35% faster.

106

No Merge 5 10 20 40
N-Way Merge

0

1500

3000

4500

6000

S
iz

e
(K

B
)

Read Block Size

0

2000

4000

6000

8000

R
eq

ue
st

 C
ou

nt

Number of Reads

(a) Shuffle I/O requests.

No Merge 5 10 20 40
N-Way Merge

10
20
40
80

160
320
640

E
st

im
at

ed
 IO

P
S

 /
10

6 IO Size: 512K 1M 2M 4M

(b) IOPS requirement with different unit I/O sizes.

Figure 4.10: Riffle I/O performance during shuffle. The dashed lines show best-effort merge
performance.

Improvement with best-effort merge. Riffle uses best-effort merge mechanism (§4.3.2)

to further reduce the delay penalty of merge operations. In Figure 4.9(a), the dashed lines

show the results of best-effort merge (threshold = 95%). We can see the map stage overhead,

compared to full merge, is much smaller (343 down to 226 seconds with 40-way merge),

while the reduce stage time stays almost the same. Overall, the job completes 53% faster

compared with vanilla Spark.

To better understand the reduce stage time improvement, we break down the stage time

by plotting the distribution of all task completion time. We show the minimum, 25/50/75

percentile, and maximum for different merge policies in Figure 4.9(b) (note the log scale

of both axes). Similarly, results with best-effort merge are in dashed lines. The medium

task time is reduced from 44 seconds (no merge) down to 10 seconds (40-way merge). The

improvement comes from the fact that a reduce task only has to issue hundreds of large

reads, as opposed to thousands of small reads, after the merge.

Improvement in Resource Efficiency

We measure the resource efficiency via metrics reported by the cluster resource manager.

Figure 4.9(c) shows the total reserved CPU time. When merge is disabled, the entire job

takes 293K reserved CPU seconds to finish; with over 20-way merge, the reserved CPU

time is reduced to 207K seconds, or by 29%. In addition, when we enable best-effort merge,

107

Job1 Job2 Job30

50

100

To
ta

l T
as

k
E

xe
cu

tio
n

Ti
m

e
/ D

ay
s

No Merge 512K 1M 2M 4M

Job4 0

400

800

1200

(a) Map (top) and reduce (bottom) stage runtime.

Job1 Job2 Job30

20

40

60

M
ed

ia
n

R
ed

uc
e

Ta
sk

 /
m

in No Merge 512K 1M 2M 4M

Job4 0

20

40

60

(b) Median reduce task runtime.

Job1 Job2 Job30

50

100
R

es
er

ve
d

C
P

U
 D

ay
s

No Merge 512K 1M 2M 4M

Job4 0

400

800

1200

(c) Reserved CPU time.

Figure 4.11: Riffle performance improvement with production workload.

the saving in job completion time is also reflected in the resource efficiency—the total

reserved CPU time is further decreased down to 145K seconds. That means we can finish

the job with only 50% of the computation resource.

Note that the synthetic workload rules out the heavy data computation from the jobs,

in order to isolate the I/O performance during shuffle. With production jobs, the overall

resource efficiency also highly depends on the nature of the specific data processing logic.

However, we expect to see the same resource efficiency gains when considering the shuffle

operations alone.

I/O Performance

Figure 4.10(a) demonstrates how the number and size of shuffle fetch requests change with

different merge policies. The average read size (left y-axis) increases from 150KB (no

merge) to up to 6.2MB (40-way merge), and the number of read requests (right y-axis)

decreases from 8,000 down to 200. With best-effort merge, since shuffle files are partially

merged, each reduce task still has to read 5% of data from the unmerged block files. With

108

40-way merge, we observe an average of 589 read requests per task, and the average read

request size of 2.1MB. Riffle effectively reduces the number of fetch requests by 40x (10x)

with complete (best-effort) merge.

To show the performance implication of the underlying file system, we look at the IOPS

requirement for running the job with different policies. We measure the IOPS requirement

with 512KB unit I/O size provided in our current deployment, and the estimated IOPS

counters when the file system supports larger I/O sizes. Figure 4.10(b) shows how the

shuffle IOPS changes (note the log scale of both axes) with different merge policies. We

can see that Riffle reduces the job IOPS from 360M with no merge down to 22M (37M), or

by 16x (9.7x), with complete (best-effort) 40-way merge. We see the 10x reduction carries

over as we increase the file system I/O sizes to 1M, 2M or even larger.

4.5.3 Production Workload

In this section, we demonstrate Riffle’s improvement in processing 4 production jobs, rep-

resenting small (Job 1), medium (Job 2 and Job 3), and large (Job 4) jobs at Facebook

Compared with synthetic workload, the production jobs are different in several ways:

• They involve heavy computation in each task, instead of only I/O in the synthetic

case;

• Jobs are deployed in real settings with limited memory resources that best fit the

hardware configurations, and data will be spilled to disks if the memory space is

insufficient;

• The block sizes of the intermediate shuffle files vary based on the user data distribution

and the partitioning functions, and Riffle should merge based on block sizes instead

of a fixed fan-in.

Improvement in I/O performance and end-to-end job completion time is crucial to

production workload. For instance, Job 4 is processing a key data set, which is in the

109

Job1 Job2 Job30

5

10

15

20

S
hu

ffl
e

IO
 R

eq
ue

st
s

/ 1
06

No Merge 512K 1M 2M 4M

Job4 0

200

400

600

800

Figure 4.12: Number of shuffle I/O requests (million), including all additional I/O requests
in Riffle mergers.

most upstream data pipeline for many other jobs under the same namespace. It processes

hundreds of TB of data and consumes over 1,000 CPU days to finish. Accelerating this job

will not only improve resource efficiency significantly, but also help improve the landing

time of many subsequent jobs. We show the performance of Riffle with fixed block size

merge, varying the block size threshold (512KB, 1MB, 2MB, and 4MB for first three jobs,

and 2MB for the last job). All the experiments enable best-effort merge with a threshold of

95%.

Stage and task completion time. Figure 4.11(a) shows that Riffle significantly helps

decrease the reduce stage time by 20–40% for medium to large scale jobs, without affecting

the map time much. Compared to the gain in synthetic workload, Riffle gets less relative

time reduction because of the fixed computing cost in the tasks. Note that in the case of

running small-scale jobs (like Job 1), Riffle does not help because of the delay penalty

incurred by the additional merge requests. Figure 4.11(b) further explains that the saving of

reduce stage time comes from shorter reduce task time. The reduce task can be shorten by

up to 42% (39%) when running medium (large) scale jobs.

Resource efficiency. The big saving in job completion time leads to more efficient re-

source usage. Figure 4.11(c) measures the resource usage of running the jobs. We can see

that Riffle in general saves 20–30% reserved CPU time for medium to large scale jobs.

110

Figure 4.12 compares the total I/O requests during shuffle. Riffle reduces the total

shuffle I/O requests by 10x for Jobs 2 and 3, and by 5x for Job 4. For Jobs 2 and 3, Riffle

effectively converts the average request size from the original 100–150KB (see Table 4.1) to

512KB or larger, and thus significantly reduces the number of read requests needed during

shuffle operations. Similarly, for Job 4, Riffle increases the average 360KB reads to 2MB

and thus reduces the number of I/O requests.

Riffle incurs additional I/O requests for merging shuffle files. The mergers use up to

64MB in-memory buffers to ensure that the merge operations only issue large, sequential

I/O requests to disks. The overhead of merge I/O requests is almost negligible compared

with the order of magnitude savings in shuffle I/O requests.

4.6 Related Work on Shuffle Optimization

Shuffle optimization in big-data analytics. ThemisMR [158] improves the performance

of MapReduce jobs by ensuring the intermediate data (including shuffle and spill) are not

repetitively accessed through disks. However, the solution does not avoid large amounts

of small random I/O during shuffle. In addition, as the paper stated, ThemisMR eliminates

the task-level fault tolerance, and thus only applies to relatively small scale deployment.

TritonSort [160] minimizes disk seeks by carefully designing the layout of output files with-

out using huge in-memory buffers. However, since it targets the specific sorting problem,

the solution can hardly generalize to other data analytics jobs. Sailfish [157] leverages a

new file system design to support multiple insertion points to aggregate intermediate files.

However, it requires modifications to file systems, and a single corrupted aggregation file

requires recomputation of a large number of map tasks.

Parameter tuning for data analytics frameworks. Previous work [58, 137, 190, 199]

provide guidelines on how to best configure system parameters (such as number of tasks

in each stage) with given cluster resources. Starfish [98] is a self-tuning system which

111

provides high performance without requiring users to understand the Hadoop parameters.

However, the tuning process for a large number of jobs is expensive, and jobs have to be

retuned when their characteristics such as the distribution and skew of input data change

over time.

IOPS optimization. Sailfish [157] leverages a new file system design to support multiple

insertion points to aggregate intermediate files. However, it requires modifications to file

systems, and a single corrupted aggregation file requires recomputation of a large number

of map tasks. Hadoop-A [186] accelerates Hadoop by overlapping map and reduce stages,

and uses RDMA to speed up the data collection process. However, this solution relies

on the reducer task to collect and buffer intermediate data in memory, which limits its

scalability and fault tolerance. Recent development on hardware accelerates the handling of

I/O requests and starts to get deployed in big-data analytics and storage systems [169, 185],

but they do not targets the problem of small, random shuffle fetch for large-scale jobs.

The case for tiny tasks. Recent work [115, 148, 150] proposes tiny tasks which run

faster and lead to better job completion time when investigating the performance of data

analytics jobs. While solutions have been studied to minimize the task launch time [132]

and overcome the scheduler overhead [150], tiny tasks hit the performance bottleneck of

shuffle when used for large-scale jobs with multiple stages. Riffle merges intermediate files

and significantly improves shuffle efficiency, so that the jobs can benefit from both fast task

execution and efficient shuffle with small tasks.

Straggler mitigation. The original MapReduce paper [81] introduces the straggler prob-

lem. Previous work on data analytics leverages speculative execution [47, 49, 193] or

approximate processing [43, 48, 178] to mitigate stragglers. Riffle avoids merge stragglers

using best-effort merge, which allows shuffle files to be partially merged to avoid waiting

for merge stragglers and accelerate job completion.

112

4.7 Conclusion

In this chapter we present Riffle, an optimized shuffle service for big-data analytics frame-

works that significantly improves the I/O efficiency and scales to process large production

jobs at Facebook. Riffle alleviates the problem of quadratically increasing I/O requests

during shuffle by efficiently merging intermediate files with configurable policies. We de-

scribe our experience deploying Riffle at Facebook, and show that Riffle leads to an order

of magnitude I/O request reduction and much better job completion time.

113

Chapter 5

Conclusion

5.1 Summary of Contributions

This dissertation contributes a number of techniques that achieve high efficiency and cost-

effectiveness on cluster resource usage for advanced data analytics. These methods have

been designed, implemented, and evaluated in production systems at large companies that

analyze batch and stream data from real-world workloads and scales to process petabytes

of data. Based on the idea of leveraging application-specific characteristics to design cus-

tomized resource management systems, we manage to build highly-efficient, scalable, and

fault-tolerant data frameworks for key scenarios including video analytics, distributed ma-

chine learning, and multi-stage batch processing. More specifically, this dissertation demon-

strates the design and evaluation of the following systems.

• For scheduling stream processing on video data, we designed and built VideoStorm

that allows users to submit queries with arbitrary vision processors. We efficiently

generate resource-quality profiles for video queries without exhaustively exploring

the combinatorial space of knob configurations. At its core, VideoStorm has an

efficient scheduler for video queries that considers their resource-quality profile and

lag tolerance, and trades off between them.

114

• For scheduling distributed ML training jobs, we built SLAQ, a fine-grained cluster

scheduling system for running approximate ML training jobs on shared resources.

Instead of targeting resource fairness, the system optimizes for overall training quality.

SLAQ uses a normalization mechanism to unify quality measurement metrics even

for different ML algorithms on different datasets. With the normalized quality metric,

SLAQ’s online prediction algorithm precisely estimate the quality and runtime for

future iterations of the training process.

• For improving I/O efficiency of task execution in large-scale batch processing, we

designed and implemented Riffle, which consists of a centralized scheduler that keeps

track of intermediate shuffle files and dynamically coordinates merge operations, and

a shuffle merge service which runs on each physical cluster node and efficiently

merges the small files into larger ones with little resource overhead. Riffle resolves

the contention between individual task efficiency and inter-stage I/O efficiency, and

takes practical concerns like stragglers and fault tolerance into consideration.

• We implemented and deployed these systems, and evaluated the performance with

real-world workloads we collected from collaborators such as operational cameras

from the Bellevue Traffic Departments and production workloads from Facebook, as

well as various online sources. Our experiments show significant improvement in

system throughput and job completion time.

Our experience deploying these systems demonstrated the reliability and applicability

of our approaches. VideoStorm is currently deployed and running in Bellevue, WA and

Cambridge, U.K. for resource management on platforms processing live streams from

thousands of operational traffic cameras. As the core resource manager, VideoStorm works

with other layers of the analytics stack [23,101,109] together to make it easy and affordable

to deploy real-time, low-cost, and accurate video analytics. Riffle is part of Facebook’s

Spark deployment, running on clusters with hundreds of physical machines, processing

thousands of data analytics jobs daily on tens of petabytes of newly generated data per day.

115

Our experience running Riffle at Facebook show significant performance improvement on

production workloads.

5.2 Open Issues and Future Work

Performance-driven scheduling for geo-distributed resources. Recent development in

geo-distributed and edge computing efficiently handle large volumes of data originated from

different sites. Previous work focus on aggregating and analyzing the geo-distributed data

with limited bandwidth in the wide-area networks [155,156,183,198]. By carefully placing

the different tasks (operators) of a processing pipeline to different locations, the systems

can best utilize the WAN bandwidth and thus reduce the data processing latency.

Multimedia data processing is a perfect match for geo-distributed data analytics. While

VideoStorm processes video streams centralized or on-premises datacenters, the deployment

requires sufficient WAN bandwidth through fiber drops or excessive cellular data. In fact,

cameras are edge devices and can be equipped with chips for data preprocessing. One

natural next step for VideoStorm is to support task and operator placement for video data

considering the limitation of both the computation and network resources on edge devices

and clusters. In addition to resource heterogeneity, multiple analytics queries can be kicked

off concurrently. It presents an opportunity to jointly optimize query performance by

carefully merging shared upstream operators in the processing pipelines, but also makes

it harder for the planning of each query execution since the resource constraint becomes

dynamic when shared with other queries. New scheduling algorithms should be designed

to take the dynamic resource budget into consideration, and allocate resources to pipelined

tasks to maximize the quality of the end results.

Leveraging approximate scheduling for automated hyperparameter tuning. Hyper-

parametre tuning is an important topic in machine learning. Many ML researchers have

brought up with different approaches to explore the hyperpameter space and find the best

116

combination. Existing solutions include (1) grid search, which evenly samples trials across

the configuration space; (2) random search, which randomly picks next points in the config-

uration space; and (3) Bayesion optimization [166], which chooses the next point with the

highest probability that can lead to high model quality based on previous trials, with some

assumptions of the quality distribution of the underlying configuration space. For each trial

with a certain combination of hyperparameters, ML practitioners have to train the same

model with a fixed number of iterations or until it converges.

We ask an orthogonal question from the system’s perspective: how to improve the

training efficiency on each individual trial? With SLAQ’s prediction mechanism, we can

automatically terminates those trainings that are not promising to beat the best result we’ve

already got, and speed up the hyperparameter search process. To do so, an approximation

method is required to precisely estimate the convergence point, so that the scheduler can

compare the predicted quality with past trials and early stop non-promising trials. This

could prevent a large amount of computation from being wasted on useless combinations,

and accelerate those that generate models with quality close to the optimal. To make the

system practical and beneficial to ML practitioners, the system needs to provide a set of

clearly defined APIs and theoretical analysis to ensure a bounded quality of the result. For

example, it would be helpful for the users to know that within a certain confidence range,

the model from the approximate search system is at most 1% less accurate compared with

the best possible model.

Automate the shuffle configuration for different deployment and workloads. Riffle

and other related systems [157, 158] take different approaches to optimize the shuffle per-

formance with vastly different assumptions of the scale of deployment and datasets. In

essence, shuffle optimization is making a trade-off between scalability, performance, and

fault tolerance. Riffle and Sailfish achieves better scalability by introducing an additional

pass of the on-disk shuffle files, while the ThemisMR system aggregates the shuffle data in

117

memory. Riffle achieves better scalability and can process PB-level data, but incurs merge

operation overhead.

Systematic measurement should be done to demonstrate and compare their performance

under different use cases. While Riffle has been deployed and running efficiently in Face-

book’s highly-scalable Spark platform, we cannot assume that every deployment of big-data

frameworks is with thousands of machines and processing petabytes of data. For a medium

to small deployment, it will be helpful to compare various performance metrics, and provide

guidelines to help users choose and configure the systems to best fit their specific workloads

and resources.

5.3 Concluding Remarks

Advanced data analytics queries are becoming increasingly important to gain deep insights

and drive crucial decisions from large volumes of data. The rapidly growing data, the

complexity of analytics, and the various query requirements present an unprecedented

challenge to big-data systems with only limited resources. With the recent development of

data acquisition (such as Internet-of-Things devices) and processing techniques (such as

deep learning), the data volume and complexity will likely continue to increase.

This dissertation argues that efficient and intelligent resource management can signifi-

cantly improve the performance of advanced data analytics. By leveraging the application

specific characteristics, the schedulers can make well-informed resource allocation deci-

sions targeting the cluster-wide system performance. In addition to the demonstrated use

cases, future big-data systems will soon see various new types of data and workloads. We

believe the design principles will carry over and be broadly applicable to new scenarios and

applications to conquer the resource management challenges.

118

Bibliography

[1] Apache Flink. https://flink.apache.org/.

[2] Apache Hadoop. Retrieved 02/08/2017, URL: http://hadoop.apache.org.

[3] Apache Hadoop NextGen MapReduce (YARN). https://hadoop.apache.org/

docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html.

[4] Apache Ignite. https://ignite.apache.org/.

[5] Apache Spark. http://spark.apache.org/.

[6] Apache Spark Performance Tuning—Degree of Parallelism. https://tinyurl.

com/y93l4lbu.

[7] Apache Spark @Scale: A 60 TB+ Production Use Case. https://code.facebook.
com/posts/1671373793181703/.

[8] Apache Spark the Fastest Open Source Engine for Sorting a Petabyte. https://

databricks.com/blog/2014/10/10/spark-petabyte-sort.html.

[9] Apache Storm. https://storm.apache.org/.

[10] Arimo TensorSpark. https://github.com/adatao/tensorspark.

[11] Associated Press Dataset - LDA. http://www.cs.columbia.edu/~blei/lda-c/.

[12] Avigilon. http://avigilon.com/products/.

[13] Azure Instances. https://azure.microsoft.com/en-us/pricing/details/

virtual-machines/.

[14] Caffe2. https://github.com/caffe2/caffe2.

[15] Facebook Disaggregate: Networking recap. https://code.facebook.com/posts/
1887543398133443/.

[16] Facebook’s Disaggregate Storage and Compute for Map/Reduce. https://tinyurl.
com/ycewlve7.

[17] Genetec. https://www.genetec.com/.

119

https://flink.apache.org/
http://hadoop.apache.org
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html
https://ignite.apache.org/
http://spark.apache.org/
https://tinyurl.com/y93l4lbu
https://tinyurl.com/y93l4lbu
https://code.facebook.com/posts/1671373793181703/
https://code.facebook.com/posts/1671373793181703/
https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html
https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html
https://storm.apache.org/
https://github.com/adatao/tensorspark
http://www.cs.columbia.edu/~blei/lda-c/
http://avigilon.com/products/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://github.com/caffe2/caffe2
https://code.facebook.com/posts/1887543398133443/
https://code.facebook.com/posts/1887543398133443/
https://tinyurl.com/ycewlve7
https://tinyurl.com/ycewlve7
https://www.genetec.com/

[18] H2O: Open Source Platform for AI. https://docs.h2o.ai.

[19] Hadoop Capacity Scheduler. https://hadoop.apache.org/docs/r2.4.1/

hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html.

[20] Hadoop Fair Scheduler. https://hadoop.apache.org/docs/r2.4.1/

hadoop-yarn/hadoop-yarn-site/FairScheduler.html.

[21] LibSVM Data. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/.

[22] Linux Containers LXC Introduction. https://linuxcontainers.org/lxc/

introduction/.

[23] Live Video Analytics - Microsoft Research. https://www.microsoft.com/en-us/
research/project/live-video-analytics/.

[24] LZ4: Extremely Fast Compression Algorithm. http://www.lz4.org.

[25] MapReduce-4049: Plugin for Generic Shuffle Service. https://issues.apache.

org/jira/browse/MAPREDUCE-4049.

[26] Million Song Dataset. https://labrosa.ee.columbia.edu/millionsong/.

[27] MNIST Database. http://yann.lecun.com/exdb/mnist/.

[28] Netflix Prize). https://www.netflixprize.com/.

[29] Open ALPR. http://www.openalpr.com.

[30] OpenCV Documentation: Introduction to SIFT (Scale-Invariant Feature Transform).
http://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html.

[31] OpenCV Documentation: Introduction to SURF (Speeded-Up Robust Features).
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_

surf_intro/py_surf_intro.html.

[32] PASCAL Challenge 2008. http://largescale.ml.tu-berlin.de/

instructions/.

[33] PyTorch. http://pytorch.org/.

[34] Snappy: A Fast Compressor/Decompressor. https://google.github.io/

snappy/.

[35] Spark Configuration: External Shuffle Service. https://spark.apache.org/docs/
latest/job-scheduling.html.

[36] SR 520 Bridge Tolling, WA. https://www.wsdot.wa.gov/Tolling/520/default.
htm.

120

https://docs.h2o.ai
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://www.microsoft.com/en-us/research/project/live-video-analytics/
http://www.lz4.org
https://issues.apache.org/jira/browse/MAPREDUCE-4049
https://issues.apache.org/jira/browse/MAPREDUCE-4049
https://labrosa.ee.columbia.edu/millionsong/
http://yann.lecun.com/exdb/mnist/
https://www.netflixprize.com/
http://www.openalpr.com
http://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html
http://largescale.ml.tu-berlin.de/instructions/
http://largescale.ml.tu-berlin.de/instructions/
http://pytorch.org/
https://google.github.io/snappy/
https://google.github.io/snappy/
https://spark.apache.org/docs/latest/job-scheduling.html
https://spark.apache.org/docs/latest/job-scheduling.html
https://www.wsdot.wa.gov/Tolling/520/default.htm
https://www.wsdot.wa.gov/Tolling/520/default.htm

[37] Tim Sort. http://wiki.c2.com/?TimSort.

[38] Turnpike Enterprise Toll-by-Plate, FL. https://www.tollbyplate.com/index.

[39] Windows Job Objects. https://msdn.microsoft.com/en-us/library/windows/
desktop/ms684161(v=vs.85).aspx.

[40] Working with Apache Spark. https://tinyurl.com/yaekw6rm.

[41] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-
lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: A System for Large-scale Machine Learning. In USENIX OSDI,
2016.

[42] Abadi, Daniel J and others. The Design of the Borealis Stream Processing Engine.
In CIDR, Jan. 2005.

[43] S. Agarwal, B. Mozafari, A. Panda, Milner H., S. Madden, and I. Stoica. BlinkDB:
Queries with Bounded Errors and Bounded Response Times on Very Large Data. In
ACM EuroSys, Apr. 2013.

[44] Tyler Akidau et al. The Dataflow Model: A Practical Approach to Balancing Correct-
ness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-order Data Processing.
VLDB, Aug. 2015.

[45] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. CherryPick: Adaptively Unearthing the Best Cloud
Configurations for Big Data Analytics. In USENIX NSDI, 2017.

[46] Lisa Amini, Navendu Jain, Anshul Sehgal, Jeremy Silber, and Olivier Verscheure.
Adaptive Control of Extreme-Scale Stream Processing Systems. In IEEE ICDCS,
July 2006.

[47] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effective
Straggler Mitigation: Attack of the Clones. In USENIX NSDI, 2013.

[48] Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren, Ion Stoica,
Adam Wierman, and Minlan Yu. GRASS: Trimming Stragglers in Approximation
Analytics. In USENIX NSDI, Apr. 2014.

[49] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi Lu,
Bikas Saha, and Edward Harris. Reining in the Outliers in Map-reduce Clusters
Using Mantri. In USENIX OSDI, 2010.

[50] Michael Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael
Cafarella, Arun Kumar, Feng Niu, Yongjoo Park, Christopher Ré, and Ce Zhang.
Brainwash: A Data System for Feature Engineering. In CIDR, 2013.

121

http://wiki.c2.com/?TimSort
https://www.tollbyplate.com/index
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684161(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684161(v=vs.85).aspx
https://tinyurl.com/yaekw6rm

[51] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. Spark SQL: Relational Data Processing in Spark. In ACM SIGMOD, 2015.

[52] Alvin AuYoung, Amin Vahdat, and Alex C Snoeren. Evaluating the Impact of Inac-
curate Information in Utility-Based Scheduling. In Proceedings of the Conference

on High Performance Computing Networking, Storage and Analysis, Nov. 2009.

[53] Brian Babcock, Surajit Chaudhuri, and Gautam Das. Dynamic Sample Selection for
Approximate Query Processing. In ACM SIGMOD, 2003.

[54] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load Shedding for Aggregation
Queries over Data Streams. In IEEE ICDE, Mar. 2004.

[55] David Barrett. One Surveillance Camera for Every 11 People in Britain, Says CCTV
Survey. https://tinyurl.com/y8t7j2s6, 2013.

[56] Anton Beloglazov and Rajkumar Buyya. Energy Efficient Resource Management in
Virtualized Cloud Data Centers. In IEEE CCGRID, May 2010.

[57] Arie Ben-David and Eibe Frank. Accuracy of Machine Learning Models Versus
"Hand Crafted" Expert Systems – A Credit Scoring Case Study. Expert Systems with

Applications, 36(3):5264–5271, Apr. 2009.

[58] Josep Lluís Berral, Nicolas Poggi, David Carrera, Aaron Call, Rob Reinauer, and
Daron Green. ALOJA-ML: A Framework for Automating Characterization and
Knowledge Discovery in Hadoop Deployments. In Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015.

[59] Arka Bhattacharya, David Culler, Eric Friedman, Ali Ghodsi, Scott Shenker, and Ion
Stoica. Hierarchical Scheduling for Diverse Datacenter Workloads. In ACM SoCC,
Nov. 2013.

[60] Jim Blythe. Visual Exploration and Incremental Utility Elicitation. In AAAI, July
2002.

[61] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic Placement of Virtual
Machines for Managing SLA Violations. In IFIP/IEEE International Symposium on

Integrated Network Management, 2007.

[62] LÃl’on Bottou and Olivier Bousquet. The Tradeoffs of Large Scale Learning. In
NIPS, 2008.

[63] N. Boumal, P.-A. Absil, and C. Cartis. Global Rates of Convergence for Nonconvex
Optimization on Manifolds. ArXiv e-prints, abs/1605.08101, May 2016.

[64] Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans. Regret-based
Utility Elicitation in Constraint-based Decision Problems. In IJCAI, 2005.

122

https://tinyurl.com/y8t7j2s6

[65] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. Apollo: Scalable and Coordinated Scheduling for
Cloud-Scale Computing. In USENIX OSDI, 2014.

[66] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004.

[67] Brad Calder et al. Windows Azure Storage: A Highly Available Cloud Storage
Service with Strong Consistency. In ACM SOSP, 2011.

[68] Don Carney, Uğur Çetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and Mike
Stonebraker. Operator Scheduling in a Data Stream Manager. In VLDB, 2003.

[69] Don Carney, UÇğur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring
Streams: a New Class of Data Management Applications. In VLDB, 2002.

[70] Urszula Chajewska, Daphne Koller, and Ronald Parr. Making Rational Decisions
Using Adaptive Utility Elicitation. In AAAI, 2000.

[71] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John Wernsing, and DeLine Rob. Trill: A High-Performance Incremental
Query Processor for Diverse Analytics. In USENIX NSDI, 2014.

[72] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems. ArXiv e-prints,
abs/1512.01274, 2015.

[73] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur
Cetintemel, Ying Xing, and Stan Zdonik. Scalable Distributed Stream Processing.
In CIDR, Jan. 2003.

[74] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project Adam: Building an Efficient and Scalable Deep Learning Training System.
In USENIX OSDI, Broomfield, CO, 2014.

[75] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy,
and Russell Sears. MapReduce Online. In USENIX NSDI, 2010.

[76] Emilio Coppa and Irene Finocchi. On Data Skewness, Stragglers, and MapReduce
Progress Indicators. In ACM SoCC, 2015.

[77] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. Synopses
for Massive Data: Samples, Histograms, Wavelets, Sketches. Foundations and Trends

in Databases, 4(1-8211;3), Jan. 2012.

123

[78] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu
Kumar, Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B. Gibbons, Garth A.
Gibson, and Eric P. Xing. Exploiting Bounded Staleness to Speed Up Big Data
Analytics. In USENIX ATC, 2014.

[79] Carlo Curino, Djellel E. Difallah, Chris Douglas, Subru Krishnan, Raghu Ramakr-
ishnan, and Sriram Rao. Reservation-based Scheduling: If You’re Late Don’t Blame
Us! Nov. 2014.

[80] George B. Dantzig. Discrete-Variable Extremum Problems. Operations Research

5(2): 266âĂŞ288, 1957.

[81] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In USENIX OSDI, 2004.

[82] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR, 2009.

[83] Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Shark: Fast Data Analysis Using Coarse-grained Distributed
Memory. In ACM SIGMOD, 2012.

[84] Andrew D Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo Fon-
seca. Jockey: Guaranteed Job Latency in Data Parallel Clusters. In ACM EuroSys,
2012.

[85] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network Requirements for Resource
Disaggregation. In USENIX OSDI, 2016.

[86] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.
In ACM SOSP, 2003.

[87] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. Dominant Resource Fairness: Fair Allocation of Multiple Resource
Types. In USENIX NSDI, 2011.

[88] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Choosy: Proportional
Sharing for Datacenter Jobs with Constraints. In ACM EuroSys, 2013.

[89] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. GraphX: Graph Processing in a Distributed Dataflow
Framework. In USENIX OSDI, 2014.

[90] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

[91] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-Resource
Packing for Cluster Schedulers. In ACM SIGCOMM, 2014.

124

[92] Laura M. Grupp, John D. Davis, and Steven Swanson. The Bleak Future of NAND
Flash Memory. In USENIX FAST, 2012.

[93] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wolman,
and Arvind Krishnamurthy. MCDNN: An Approximation-Based Execution Frame-
work for Deep Stream Processing Under Resource Constraints. In ACM MobiSys,
2016.

[94] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep
Neural Network with Pruning, Trained Quantization and Huffman Coding. ArXiv

e-prints, abs/1510.00149, Oct. 2015.

[95] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning: Data Mining, Inference and Prediction. Springer, 2nd edition, 2009.

[96] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. Online Aggregation. In ACM

SIGMOD, 1997.

[97] Adolfo Hernando, Ricardo Sanz, and R Calinescu. A Model-Based Approach to the
Autonomic Management of Mobile Robot Resources. In International Conference

on Adaptive and Self-Adaptive Systems and Applications, 2010.

[98] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A Self-tuning System for Big
Data Analytics. In CIDR, pages 261–272, 2011.

[99] Frank Hersey. China to have 626 million surveillance cameras within 3 years. https:
//tinyurl.com/ycgsyy9w, 2017.

[100] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph,
Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In USENIX NSDI, 2011.

[101] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodík, Paramvir Bahl, Matthai Phili-
pose, Phillip B. Gibbons, and Onur Mutlu. Focus: Querying large video datasets
with low latency and low cost. ArXiv e-prints, abs/1801.03493, 2018.

[102] Qi Huang, Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav Tverdokhlib,
Amit Yajurvedi, Paul Dapolito VI, Xifan Yan, Maxim Bykov, Chuen Liang, Mohit
Talwar, Abhishek Mathur, Sachin Kulkarni, Matthew Burke, and Wyatt Lloyd. SVE:
Distributed Video Processing at Facebook Scale. In ACM SOSP, 2017.

[103] Chien-Chun Hung, Leana Golubchik, and Minlan Yu. Scheduling Jobs Across Geo-
distributed Datacenters. In ACM SoCC, 2015.

[104] David E Irwin, Laura E Grit, and Jeffrey S Chase. Balancing Risk and Reward in a
Market-Based Task Service. In IEEE International Symposium on High Performance

Distributed Computing, 2004.

125

https://tinyurl.com/ycgsyy9w
https://tinyurl.com/ycgsyy9w

[105] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed Data-parallel Programs from Sequential Building Blocks. In ACM Eu-

roSys, 2007.

[106] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. Quincy: Fair Scheduling for Distributed Computing Clusters. In
ACM SOSP, 2009.

[107] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff
Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. Population Based Training of Neural
Networks. ArXiv e-prints, abs/1711.09846.

[108] J.M. Jaffe. Bottleneck Flow Control. IEEE Transactions on Communications,
29(7):954–962, 1981.

[109] S. Jain, V. Nguyen, M. Gruteser, and P. Bahl. Panoptes: Servicing Multiple Appli-
cations Simultaneously Using Steerable Cameras. In 16th ACM/IEEE International

Conference on Information Processing in Sensor Networks (IPSN), Apr. 2017.

[110] E. Douglas Jensen, Peng Li, and Binoy Ravindran. On Recent Advances in Time/Util-
ity Function Real-Time Scheduling and Resource Management. IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing,
2005.

[111] Chris Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra. Scalable Ap-
proximate Query Processing with the DBO Engine. ACM Transactions on Database

Systems, 33(4):23, 2008.

[112] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional Architecture
for Fast Feature Embedding. In ACM International Conference on Multimedia, 2014.

[113] Ramesh Johari and John N Tsitsiklis. Efficiency Loss in a Network Resource Allo-
cation Game. Mathematics of Operations Research, 29(3):407–435, 2004.

[114] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Íñigo Goiri, Subru Krishnan, Janardhan
Kulkarni, and Sriram Rao. Morpheus: Towards Automated SLOs for Enterprise
Clusters. In USENIX OSDI, 2016.

[115] S. Kambhampati, J. Kelley, C. Stewart, W. C. L. Stewart, and R. Ramnath. Managing
Tiny Tasks for Data-Parallel, Subsampling Workloads. In 2014 IEEE International

Conference on Cloud Engineering, 2014.

[116] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. No-
Scope: Optimizing Neural Network Queries over Video at Scale. VLDB, 10(11),
Aug. 2017.

126

[117] Vamsee Kasavajhala. Solid State Drive vs. Hard Disk Drive Price and Performance
Study: A Dell Technical White Paper. Dell PowerVault Storage Systems, May 2011.

[118] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An Analysis of
Traces from a Production MapReduce Cluster. In IEEE/ACM International Confer-

ence on Cluster, Cloud and Grid Computing (CCGrid), 2010.

[119] Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate Control for Communica-
tion Networks: Shadow Prices, Proportional Fairness and Stability. Journal of the

Operational Research Society, 49(3):237–252, 1998.

[120] Jeffrey O Kephart. Research Challenges of Autonomic Computing. In ACM ICSE,
2005.

[121] Matej Kristan, Jiri Matas, Ales Leonardis, Michael Felsberg, Luka Cehovin, Gustavo
Fernandez, Tomas Vojir, Gustav Hager, Georg Nebehay, and Roman Pflugfelder. The
Visual Object Tracking (VOT) Challenge Results. In IEEE ICCV Workshops, Dec.
2015.

[122] Vibhore Kumar, Brian F Cooper, and Karsten Schwan. Distributed Stream Manage-
ment Using Utility-Driven Self-Adaptive Middleware. In IEEE ICAC, 2005.

[123] S. Lacoste-Julien. Convergence Rate of Frank-Wolfe for Non-Convex Objectives.
ArXiv e-prints, abs/1607.00345, July 2016.

[124] Quoc V. Le, Rajat Monga, Matthieu Devin, Greg Corrado, Kai Chen, Marc’Aurelio
Ranzato, Jeffrey Dean, and Andrew Y. Ng. Building High-Level Features Using
Large Scale Unsupervised Learning. ArXiv e-prints, abs/1112.6209, 2011.

[125] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal Brain Damage. In NIPS.
1990.

[126] Ron Levy, Jay Nagarajarao, Giovanni Pacifici, Mike Spreitzer, Asser Tantawi, and
Alaa Youssef. Performance Management for Cluster Based Web Services. In Inte-

grated Network Management VIII, pages 247–261. Springer, 2003.

[127] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Tachyon:
Reliable, Memory Speed Storage for Cluster Computing Frameworks. In ACM SoCC,
2014.

[128] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Efficient Hyperparameter Optimization and Infinitely Many Armed Bandits.
ArXiv e-prints, abs/1603.06560.

[129] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning with the Parameter Server. In USENIX OSDI, 2014.

127

[130] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. Disaggregated Memory for Expansion and
Sharing in Blade Servers. In ACM ISCA, 2009.

[131] Wei Lin, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and Lidong Zhou.
StreamScope: Continuous Reliable Distributed Processing of Big Data Streams. In
USENIX NSDI, Mar. 2016.

[132] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski, and Ding
Yuan. Don’t Get Caught in the Cold, Warm-up Your JVM: Understand and Eliminate
JVM Warm-up Overhead in Data-Parallel Systems. In USENIX OSDI, Savannah,
GA, 2016.

[133] Steven H Low and David E Lapsley. Optimization Flow Control-I: Basic Algorithm
and Convergence. IEEE/ACM Transactions on Networking, 7(6):861–874, 1999.

[134] Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based Hyperpa-
rameter Optimization through Reversible Learning. 2015.

[135] S. T. Maguluri, R. Srikant, and L. Ying. Stochastic Models of Load Balancing and
Scheduling in Cloud Computing Clusters. In IEEE INFOCOM, 2012.

[136] Peter Marbach. Priority Service and Max-Min Fairness. In IEEE INFOCOM, 2002.

[137] M. D. McKay, R. J. Beckman, and W. J. Conover. A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output from a Computer
Code. Technometrics, 42(1):55–61, Feb. 2000.

[138] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean Owen,
Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and
Ameet Talwalkar. MLlib: Machine Learning in Apache Spark. ArXiv e-prints,
abs/1505.06807, 2015.

[139] Robert C. Merton. Continuous-Time Finance. Blackwell, 1990.

[140] Dorian Minarolli and Bernd Freisleben. Utility-Based Resource Allocation for Vir-
tual Machines in Cloud Computing. In IEEE Symposium on Computers and Commu-

nications, pages 410–417, 2011.

[141] Michael Mitzenmacher. The Power of Two Choices in Randomized Load Balancing.
12(10):1094–1104, Oct. 2001.

[142] Manfred Morari and Jay H Lee. Model Predictive Control: Past, Present and Future.
Computers & Chemical Engineering, 23(4):667–682, 1999.

[143] Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I. Jordan. SparkNet:
Training Deep Networks in Spark. ArXiv e-prints, abs/1511.06051, 2015.

128

[144] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,
Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.
Query Processing, Resource Management, and Approximation in a Data Stream
Management System. In CIDR, 2003.

[145] Hyeonseob Nam and Bohyung Han. Learning Multi-Domain Convolutional Neural
Networks for Visual Tracking. ArXiv e-prints, abs/1510.07945, 2015.

[146] Karl Ni, Roger A. Pearce, Kofi Boakye, Brian Van Essen, Damian Borth, Barry Chen,
and Eric X. Wang. Large-Scale Deep Learning on the YFCC100M Dataset. ArXiv

e-prints, abs/1502.03409, 2015.

[147] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and Scott Shenker. Mono-
tasks: Architecting for Performance Clarity in Data Analytics Frameworks. In ACM

SOSP, 2017.

[148] Kay Ousterhout, Aurojit Panda, Joshua Rosen, Shivaram Venkataraman, Reynold
Xin, Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. The Case for Tiny Tasks in
Compute Clusters. Santa Ana Pueblo, NM, 2013.

[149] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. Making Sense of Performance in Data Analytics Frameworks. In USENIX

NSDI, 2015.

[150] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: Dis-
tributed, Low Latency Scheduling. In ACM SOSP, 2013.

[151] Pradeep Padala, Kang G Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad
Singhal, Arif Merchant, and Kenneth Salem. Adaptive Control of Virtualized Re-
sources in Utility Computing Environments. In ACM SIGOPS Operating Systems

Review, volume 41, pages 289–302, 2007.

[152] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuristics for Vector
Bin Packing. In Microsoft Research Technical Report, Jan. 2011.

[153] Niketan Pansare, Vinayak R. Borkar, Chris Jermaine, and Tyson Condie. Online
Aggregation for Large MapReduce Jobs. 4(11), 2011.

[154] D.M.W. Powers. Evaluation: From Precision, Recall and F-Measure to ROC, In-
formedness, Markedness & Correlation. Journal of Machine Learning Technologies,
2(1):37–63, 2011.

[155] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya Akella,
Paramvir Bahl, and Ion Stoica. Low Latency Geo-distributed Data Analytics. In
ACM SIGCOMM, 2015.

[156] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek Pai, and Michael J. Freedman.
Aggregation and Degradation in JetStream: Streaming Analytics in the Wide Area.
In USENIX NSDI, 2014.

129

[157] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein, Mike Ovsiannikov, and
Damian Reeves. Sailfish: A Framework for Large Scale Data Processing. In ACM

SoCC, 2012.

[158] A. Rasmussen, M. Conley, R. Kapoor, V.T. Lam, G. Porter, and A. Vahdat.
ThemisMR: An I/O-efficient MapReduce. Technical Report (University of California,

San Diego. Department of Computer Science and Engineering), 2012.

[159] Alexander Rasmussen, Vinh The Lam, Michael Conley, George Porter, Rishi Kapoor,
and Amin Vahdat. Themis: An I/O-efficient MapReduce. In ACM SoCC, 2012.

[160] Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha, Rad-
hika Niranjan Mysore, Alexander Pucher, and Amin Vahdat. TritonSort: A Balanced
Large-scale Sorting System. In USENIX NSDI, 2011.

[161] Brian T Ratchford. Cost-Benefit Models for Explaining Consumer Choice and Infor-
mation Seeking Behavior. Management Science, 28(2):197–212, Feb. 1982.

[162] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2nd edition, 2003.

[163] Frank Seide and Amit Agarwal. CNTK: Microsoft’s Open-Source Deep-Learning
Toolkit. In KDD, 2016.

[164] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
Hadoop Distributed File System. In IEEE 26th Symposium on Mass Storage Systems

and Technologies (MSST), 2010.

[165] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. ArXiv e-prints, abs/1409.1556, 2014.

[166] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian Optimization
of Machine Learning Algorithms. In NIPS, Dec. 2012.

[167] Evan R. Sparks, Ameet Talwalkar, Daniel Haas, Michael J. Franklin, Michael I. Jor-
dan, and Tim Kraska. Automating Model Search for Large Scale Machine Learning.
In ACM SoCC, 2015.

[168] Malgorzata Steinder, Ian Whalley, David Carrera, Ilona Gaweda, and David Chess.
Server Virtualization in Autonomic Management of Heterogeneous Workloads. In
IFIP/IEEE International Symposium on Integrated Network Management, 2007.

[169] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu Stoica, Bernard Metzler,
Nikolas Ioannou, and Ioannis Koltsidas. Crail: A High-Performance I/O Architecture
for Distributed Data Processing. IEEE Data Eng. Bull., 40(1):38–49, 2017.

[170] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stone-
braker. Load Shedding in a Data Stream Manager. In VLDB, 2003.

130

[171] Nesime Tatbul, UÇğur Çetintemel, and Stan Zdonik. Staying Fit: Efficient Load
Shedding Techniques for Distributed Stream Processing. In VLDB, 2007.

[172] Gerald Tesauro, Rajarshi Das, William E Walsh, and Jeffrey O Kephart. Utility-
Function-Driven Resource Allocation in Autonomic Systems. In ICAC, 2005.

[173] Thomas N. Theis and H. S. Philip Wong. The End of Moore’s Law: A New Beginning
for Information Technology. Computing in Science and Engg., 19(2):41–50, Mar.
2017.

[174] Yoh’ichi Tohkura. A Weighted Cepstral Distance Measure for Speech Recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 35:1414–1422,
1987.

[175] Yi-Cheng Tu, Mohamed Hefeeda, Yuni Xia, Sunil Prabhakar, and Song Liu. Control-
Based Quality Adaptation in Data Stream Management Systems. In Database and

Expert Systems Applications, 2005.

[176] Yi-Cheng Tu, Song Liu, Sunil Prabhakar, and Bin Yao. Load Shedding in Stream
Databases: a Control-Based Approach. In VLDB, 2006.

[177] C. J Van Rijsbergen. Information Retrieval. Butterworth, 2nd edition, 1979.

[178] Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan, Michael J.
Franklin, and Ion Stoica. The Power of Choice in Data-aware Cluster Scheduling. In
USENIX OSDI, 2014.

[179] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht, and
Ion Stoica. Ernest: Efficient Performance Prediction for Large-Scale Advanced
Analytics. In USENIX NSDI, Santa Clara, CA, 2016.

[180] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. ARIA: Automatic
Resource Inference and Allocation for Mapreduce Environments. In ICAC, 2011.

[181] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune,
and John Wilkes. Large-scale cluster management at Google with Borg. In ACM

EuroSys, 2015.

[182] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing Cloud
Computing Hardware Reliability. In ACM SoCC, 2010.

[183] Ashish Vulimiri, Carlo Curino, P. Brighten Godfrey, Thomas Jungblut, Jitu Padhye,
and George Varghese. Global Analytics in the Face of Bandwidth and Regulatory
Constraints. In USENIX NSDI, Oakland, CA, 2015.

[184] Ernesto Wandeler and Lothar Thiele. Real-Time Interfaces for Interface-Based De-
sign of Real-Time Systems with Fixed Priority Scheduling. In Proceedings of the

5th ACM International Conference on Embedded Software, pages 80–89, 2005.

131

[185] Y. Wang, R. Goldstone, W. Yu, and T. Wang. Characterization and Optimization of
Memory-Resident MapReduce on HPC Systems. In IEEE 28th International Parallel

and Distributed Processing Symposium, 2014.

[186] Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg, and Dhiraj Sehgal.
Hadoop Acceleration Through Network Levitated Merge. In Proceedings of Inter-

national Conference for High Performance Computing, Networking, Storage and

Analysis, 2011.

[187] Yuan Wei, Vibha Prasad, Sang H Son, and John A Stankovic. Prediction-Based QoS
Management for Real-Time Data Streams. In IEEE RTSS, 2006.

[188] Caesar Wu and Rajkumar Buyya. Cloud Data Centers and Cost Modeling: A Com-

plete Guide To Planning, Designing and Building a Cloud Data Center. Morgan
Kaufmann Publishers Inc., 1st edition, 2015.

[189] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming Wu, Wei Li,
and Lidong Zhou. Tux2: Distributed Graph Computation for Machine Learning. In
USENIX NSDI, 2017.

[190] Tao Ye and Shivkumar Kalyanaraman. A Recursive Random Search Algorithm for
Large-scale Network Parameter Configuration. 2003.

[191] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-
tributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing.
In USENIX NSDI, 2012.

[192] Matei Zaharia, Tathagatha Das, Haoyuan Li, Tim Hunter, Scott Shenker, and Ion
Stoica. Discretized Streams: Fault-Tolerant Streaming Computation at Scale. In
ACM SOSP, 2013.

[193] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.
Improving MapReduce Performance in Heterogeneous Environments. In USENIX

OSDI, 2008.

[194] Kai Zeng, Sameer Agarwal, and Ion Stoica. iOLAP: Managing Uncertainty for
Efficient Incremental OLAP. In ACM SIGMOD, 2016.

[195] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose, Paramvir
Bahl, and Michael J. Freedman. Live Video Analytics at Scale with Approximation
and Delay-Tolerance. In USENIX NSDI, 2017.

[196] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J. Freedman.
Riffle: Optimized Shuffle Service for Large-Scale Data Analytics. In ACM EuroSys,
2018.

[197] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman. SLAQ:
Quality-Driven Scheduling for Distributed Machine Learning. In ACM SoCC, 2017.

132

[198] Tan Zhang, Aakanksha Chowdhery, Paramvir Bahl, Kyle Jamieson, and Suman
Banerjee. The Design and Implementation of a Wireless Video Surveillance System.
In ACM MobiCom, 2015.

[199] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue Liu,
Kunpeng Song, and Yingchun Yang. BestConfig: Tapping the Performance Potential
of Systems via Automatic Configuration Tuning. In ACM SoCC, Santa Clara, CA,
2017.

[200] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI magazine,
17(3):73, 1996.

133

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Advanced Data Analytics Systems
	1.2 Challenges for Existing Big-Data Platforms
	1.3 Overview of Resource Management
	1.4 Contributions

	2 VideoStorm: Live Video Analytics with Approximation and Delay Tolerance
	2.1 System Description
	2.1.1 VideoStorm Architecture
	2.1.2 Video Queries Specification

	2.2 Making the Case for Resource Allocation
	2.2.1 Motivating Example
	2.2.2 Real-world Video Queries
	2.2.3 Summary and Challenges

	2.3 VideoStorm Design Overview
	2.4 Resource-Quality Profile Estimation
	2.4.1 Profile estimation is expensive
	2.4.2 Greedy exploration of configurations

	2.5 Resource Management
	2.5.1 Utility: Combining Quality and Lag
	2.5.2 Resource Allocation
	2.5.3 Query Placement
	2.5.4 Enhancements

	2.6 VideoStorm Implementation
	2.6.1 Implementation Details
	2.6.2 Interfaces for Query Transforms

	2.7 Evaluation
	2.7.1 Setup
	2.7.2 Performance Improvements
	2.7.3 VideoStorm's Key Features
	2.7.4 Scalability and Efficiency

	2.8 Related Work on Stream Processing Systems
	2.9 Conclusion

	3 SLAQ: Quality-Driven Scheduling for Distributed Machine Learning
	3.1 Background and Motivation
	3.1.1 ML Training: Iterative Optimization Process
	3.1.2 Retraining Machine Learning Models
	3.1.3 Current Practices in ML Training
	3.1.4 Cluster Scheduling Systems

	3.2 System Overview
	3.3 Design
	3.3.1 Normalizing Quality Metrics
	3.3.2 Measuring and Predicting Loss
	3.3.3 Scheduling Based on Quality Improvements

	3.4 Implementation
	3.5 Evaluation
	3.5.1 Methodology
	3.5.2 System Performance
	3.5.3 Robustness of Prediction
	3.5.4 Scalability and Efficiency

	3.6 Discussion
	3.7 Related Work on Scheduling ML Systems
	3.8 Conclusion

	4 Riffle: Optimized Shuffle Service for Large-Scale Data Analytics
	4.1 Background and Motivation
	4.1.1 Shuffle: All-to-All Communications
	4.1.2 Efficient Storage of Intermediate Data
	4.1.3 Current Practices and Existing Solutions

	4.2 System Overview
	4.3 Design
	4.3.1 Merging Shuffle Intermediate Files
	4.3.2 Best-Effort Merge
	4.3.3 Handling Failures
	4.3.4 Load Balancing on Disaggregated Architecture
	4.3.5 Discussion

	4.4 Implementation
	4.5 Evaluation
	4.5.1 Methodology
	4.5.2 Synthetic Workload
	4.5.3 Production Workload

	4.6 Related Work on Shuffle Optimization
	4.7 Conclusion

	5 Conclusion
	5.1 Summary of Contributions
	5.2 Open Issues and Future Work
	5.3 Concluding Remarks

	Bibliography

