
Privacy Infrastructure for Content

and Communications

Anne Marissa Edmundson

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Nick Feamster

June 2018

© Copyright by Anne Marissa Edmundson, 2018.

All rights reserved.

Abstract

Citizens’ privacy is coming under greater threat as an increasing number of entities can

access user data. A powerful adversary, such as a nation-state, can gain access to user

data using a broad range of techniques, from privately tapping wires and collecting

traffic to serving warrants or subpoenas for user data. Protecting user privacy in

the face of these types of activities is challenging. Existing protocol encryption such

as TLS is not sufficient, since a wide range of data, from DNS lookups to server

access logs, may be visible to eavesdroppers or subject to data requests. In this

dissertation, I develop new techniques that demonstrate that three aspects of the

existing Internet infrastructure, specifically routing, hosting, and naming, can be

used to counter surveillance.

First, I study the current state of routing by measuring which countries are on

the paths between users and popular websites. I then evaluate different methods for

routing Internet traffic around unfavorable countries, and based on these findings, I

design and implement RAN, a lightweight system that routes a client’s web traffic

around specified countries with no modifications to client software.

Second, I describe modifications to content hosting that prevent a powerful ad-

versary such as a nation-state from gaining access to a user’s requests for certain

Web content. In today’s Internet, Content Distribution Networks (CDNs) have rich

information both about the content they are serving and the users who are requesting

that content. Access to this type of information makes CDNs a target for requests for

data about users’ browsing activities. To counter this threat, I developed Oblivious

CDN (OCDN), which hides from the CDN both the content it is serving and the

users who are requesting that content.

In the last part of this dissertation, I explore how the naming infrastructure cur-

rently compromises client privacy by looking at conventional DNS as well as onion

services. I highlight fundamental issues with both types of domain lookups, and

iii

present Oblivious DNS (ODNS) as a new approach to protecting privacy by decou-

pling client identities from the domains they are looking up.

iv

Acknowledgements

Many people have helped make this work possible, none moreso than my advisor.

I’d like to thank Nick Feamster, for his guidance and encouragement throughout the

course of my studies. He taught me how to find problems grounded in reality and

how to communicate my research in an impactful way. His influence will always be

seen in my research tastes and methods.

I owe many thanks to my dissertation readers, Jen Rexford and Ed Felten, as well

as my dissertation examiners, Prateek Mittal and Arvind Narayanan. Their advice

and insightful feedback has strengthened this work immensely.

My time at Princeton has led me to work with wonderful collaborators in various

research groups. I owe a particular debt to Jen Rexford, who always made time to

discuss research, and who has made me a better researcher, writer, and person. I am

grateful to have worked with Prateek Mittal, who showed me the value (and effort)

in real-world adoption of novel solutions. I had the great fortune of having Ed Felten

as an advisor for the first couple years of my studies. His support and faith in me

allowed me to explore my academic interests freely.

At the Center for Information Technology Policy and in Princeton’s Security &

Privacy research group, I had the opportunity to collaborate across disciplines and

work with some incredibly talented researchers. I am particularly thankful to those

that I worked with: Anna Kornfeld-Simpson, Josh Kroll, Marcela Melara, Yixin Sun,

Roya Ensafi, Paul Schmitt, Laura Roberts, and Philipp Winter.

I never would have pursued a graduate degree without early and honest advice

from faculty at Berkeley and Cornell. I am particularly thankful to David Wagner,

who helped me discover my passion for research. His mentorship set me on the path

to graduate school. I am indebted to Cynthia Sturton for her continued support from

the very start. Her advice has been invaluable. I’d also like to express gratitude to

Fred Schneider, for his candid thoughts and always checking up on me.

v

And most importantly, I would like to thank my family—my parents, Ellen and

Neil, and my sister, Lexi. There are no words to express how truly grateful I am for

all of the opportunities they have given me.

The work in this dissertation was supported in part by the National Science Foun-

dation under a CNS ANET Award (#1518882) and by the Department of Defense

(DoD) through the National Defense Science & Engineering Graduate Fellowship

(NDSEG) Program.

vi

To my parents and sister.

vii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xii

List of Figures . xiv

1 Introduction 1

1.1 Internet Architecture & Associated Privacy Risks 2

1.2 Outline . 5

2 Background 7

2.1 Data Capture & Collection Methods 7

2.2 Users’ Expectations of Privacy Protection 9

2.3 Existing Countermeasures . 11

2.4 Legal Battles . 13

2.4.1 Who gets access to stored data and does it depend on where it

is located? . 13

2.4.2 Where can data be transferred to and from? 14

3 Routing: Nation-State Routing for Privacy 17

3.1 State of Surveillance and Interference 22

3.2 Characterizing Transnational Detours 23

3.2.1 Measurement Approach and Challenges 24

viii

3.2.2 Results . 29

3.3 Feasibility of Routing Around Nation-States 35

3.3.1 Measurement Approach . 35

3.3.2 Avoidability Metrics . 37

3.3.3 Results . 39

3.4 RAN: Routing Around Nation-States 43

3.4.1 Threat Model . 44

3.4.2 Design Goals . 44

3.4.3 Overview . 46

3.4.4 Periodic Path Measurement 46

3.4.5 PAC File Generation . 48

3.4.6 Extending RAN with Content Provider Support 49

3.5 Implementation and Deployment . 50

3.5.1 Other Considerations . 51

3.6 Evaluation . 52

3.6.1 Country Avoidability . 52

3.6.2 Performance . 53

3.6.3 Storage and Measurement Costs 55

3.7 Discussion . 56

3.8 Related Work . 57

4 Hosting: CDN Design to Prevent Surveillance 60

4.1 Background . 63

4.1.1 Content Distribution Networks 63

4.1.2 What CDNs Can See . 65

4.1.3 Open Legal Questions . 66

4.2 Threat Model and Security Goals . 68

4.2.1 Threat Model . 68

ix

4.2.2 Security and Privacy Goals for OCDN 69

4.2.3 Performance Considerations 70

4.3 OCDN Design . 71

4.3.1 Hiding Content . 72

4.3.2 Hiding Clients’ Identities . 75

4.3.3 Incentives for Running OCDN 78

4.3.4 Design Alternatives . 78

4.3.5 Design Enhancements . 79

4.4 OCDN Protocol . 82

4.4.1 Publishing Content . 82

4.4.2 Retrieving Content . 84

4.4.3 Clients Joining & Leaving . 86

4.4.4 Partial Deployment . 86

4.5 Implementation . 89

4.6 Security Analysis . 91

4.7 Performance Analysis . 94

4.7.1 OCDN Overhead . 95

4.7.2 Scalability . 98

4.8 Discussion . 98

4.9 Related Work . 100

5 Naming: Privacy-Preserving DNS 103

5.1 Background . 106

5.1.1 DNS . 106

5.1.2 Existing Approaches . 107

5.2 Design . 109

5.2.1 Overview . 109

5.2.2 ODNS Protocol . 111

x

5.3 Practical Challenges . 114

5.3.1 Performance . 115

5.3.2 Privacy & Security . 116

5.4 Implementation . 116

5.5 Performance Evaluation . 118

5.5.1 Microbenchmarks: DNS Query Overhead 118

5.5.2 Macrobenchmarks: Page Load Time 120

5.5.3 Effect of Caching . 121

5.6 Related Work . 122

6 Conclusion 126

6.1 Future Work . 127

6.2 Final Remarks . 128

Bibliography 129

xi

List of Tables

3.1 Fraction of paths (to the Alexa Top 100 domains and associated third

party domains) terminating in a country by default. The fraction in

each cell represents the fraction of paths originating in the country at

the top of the column and ending in the country indicated in the first

cell of the same row. 30

3.2 Fraction of paths (to the Alexa Top 100 domains and associated third

party domains) that a country transits by default. The fraction in each

cell represents the fraction of paths originating in the country at the

top of the column that transit or end in the country indicated in the

first cell of the same row. 31

3.3 Avoidance values for different techniques of country avoidance. The

upper bound on avoidance is 1.0 in most cases, but not all. It is com-

mon for some European countries to host a domain, and therefore the

upper bound is slightly lower than 1.0. The upper bound on avoid-

ance of the United States is significantly lower than the upper bound

on avoidance for any other country; .886, .790, .844, and .765 are the

upper bounds on avoidance of the United States for paths originating

in Brazil, Netherlands, India, and Kenya, respectively. 40

4.1 Design decisions associated with hiding content from a CDN. 72

xii

4.2 The design decisions associated with content requests and responses,

and what these decisions provide. 75

4.3 The security and privacy features offered by related systems. To our

knowledge, OCDN is the first to address confidentiality at the CDN. . 91

xiii

List of Figures

2.1 Responses from survey respondents, who were asked: “When using Tor,

who do you want to protect yourself from?” The blue bars represent

malicious actors that systems in this dissertation address. 10

3.1 Measurement pipeline to study Internet paths from countries to pop-

ular domains. 24

3.2 Mapping country-level paths from traceroutes. 27

3.3 Comparison of path endpoints between the Alexa Top 100 and the

Alexa Top 1000. For simplicity, we have removed the long tail of

countries that are the endpoint for less than 1% of the measured paths.

The countries listed on the x-axis are the countries in which paths

terminate. 28

3.4 Fraction of country code top-level domains that are hosted locally. For

example, 46% of .br domains are hosted in Brazil. 32

3.5 The number of Alexa Top 100 US Domains hosted in different countries. 33

3.6 The countries that tromboning paths from the Netherlands, Brazil,

and Kenya transit. 33

3.7 Measurement approach for country avoidance with open DNS resolvers. 36

3.8 Measurement approach for country avoidance with overlay network

relays. 37

3.9 RAN architecture. 47

xiv

3.10 The locations and ASNs for RAN relays. 51

3.11 The effect of the number of relays on avoidance, for a client in the

Netherlands. We tested RAN with up to nine relays. 53

3.12 The ratio of RAN throughput to direct throughput. The points on

the graph show measurements from the Resilient Overlay Networks

(RON [5]) system and thus represent the performance of overlay net-

work that is solely designed to improve reliability. 54

3.13 Time to First Byte for RAN and direct paths. 55

4.1 The relationships between clients, the CDN, and content publishers in

CDNs today. 64

4.2 The relationships between clients, exit proxies, CDNs, and origin

servers in OCDN. 71

4.3 How content is published in OCDN. k is shared between the origin

server and the corresponding exit proxy; the CDN has no knowledge

of k. 81

4.4 Steps for retrieving content in OCDN when a client is prioritizing per-

formance and goes directly to an exit proxy. 87

4.5 Steps for retrieving content in OCDN when a client is prioritizing pri-

vacy and proxies a request through two other clients before reaching

the exit proxy. This figure shows that the request is sent sequentially

through peers, and the response is sent in a multicast manner back to

the clients. 87

4.6 How an origin server certifies an exit proxy and distributes its shared

key to an exit proxy. In step (1), the exit proxy sends his self-certifying

ID in the Additional section of the DNS message. 89

xv

4.7 The implementation of our OCDN prototype. The solid line repre-

sents how OCDN communicates between the components; the dotted

line represents how a traditional CDN would communicate. α repre-

sents the latency between the client and the exit proxy; we simulate

additional clients on this path by increasing α. 90

4.8 Time to First Byte measurements with and without OCDN. 95

4.9 Time to complete a request with and without OCDN. 96

4.10 Time to First Byte and time to complete a request with varying the

file size and latency; this latency correspondes to α in Figure 4.7. . . 97

4.11 Overhead of different operations performed by OCDN. 97

5.1 In a typical DNS lookup, a recursive resolver sees DNS queries and

responses, as well as the IP addresses that issue the queries. 105

5.2 Overview of interacting components in ODNS. 110

5.3 ODNS protocol. 112

5.4 ODNS protocol for key distribution and selecting the optimal author-

itative server. 113

5.5 Prototype setup. 117

5.6 ODNS overhead. The median resolution time for ODNS is 14.1 mil-

liseconds. 118

5.7 Overhead of different operations performed in the ODNS protocol. . . 119

5.8 Overhead of ODNS on DNS queries using an authoritative server in

Georgia and an authoritative server in New York City. 120

5.9 Page load time for various web pages using ODNS and conventional

DNS. The left bar in the figure is using conventional DNS and the right

bar represents the time it takes using ODNS. 121

5.10 Overhead of ODNS with varying upstream caches. 122

xvi

Chapter 1

Introduction

The growth of the global Internet has led to innovative applications and solutions

that it was never intended for, and consequently exposes troves of unprotected data

about its users. Over the years, it has become common — and almost necessary — to

conduct most of our activities via the Internet: communication, shopping, banking,

education, news, e-commerce, research, and politics.

Internet users often inherently trust the structure of the Internet to keep their

information private, whereas companies and organizations are typically (publicly)

blamed for privacy malpractices. Unfortunately, the systems and protocols that allow

the Internet to operate as it does today also allow a third party to learn information

about Internet users. The Internet was originally designed for different purposes, and

therefore privacy was not a priority; more recently, privacy has come to the forefront

as an important issue that needs to be addressed — particularly with the growing

number and type of applications the Internet is used for.

Data can be gathered from different parts of the Internet infrastructure by moni-

toring traffic or gaining access to stored data (such as logs or content). These meth-

ods can be used on multiple components of the Internet’s architecture, allowing an

attacker to learn rich information about an Internet user; they can learn a user’s

1

traffic patterns, what content they requested, and sometimes personal information

sent across the network or stored in the user’s data on a provider’s server.

This type of attacker has already been realized, which we discuss in more detail

in the next chapter, yet there has been little work on allowing users to control who

can monitor or access their data. As we explain below, the Internet infrastructure

in practice today leaves a lot to be desired in terms of private communications and

content — it forces the user to decide between privacy and being able to participate

in online society, including all the applications that the Internet presently supports.

This dissertation presents new methods to improve the Internet infrastructure in

a way that preserves user privacy, while allowing the components of the Internet to

function as they currently do. The new systems we design are a first step in showing

how technology may be able to shape privacy debates concerning data flows and data

storage.

1.1 Internet Architecture & Associated Privacy

Risks

The Internet consists of a variety of systems and protocols that allow users to generate

and access content across the world. Here we break apart the different components

that make up the Internet and describe the details of the components that are the

focus of this dissertation. First, we take a look at what data Internet users may be

wishing to access and how it is stored. Second, we explain the system used to identify

the location of the data they are accessing. And third, we describe the protocols used

to route both a user’s request to the data they are accessing and the corresponding

response back to the user.

2

Hosting Content. Oftentimes, people use the Internet to access information

quickly and easily without concerning themselves with the information’s geographic

location. In this case, we assume this information is a web page or set of web

pages. Each web page is stored on at least one web server; sometimes a web page is

replicated across many web servers, such is the case in content distribution networks

(CDNs). Additionally, a web page may contain a number of resources, such as

images or scripts, that may be stored on different web servers. When a user wishes

to access a web page, they are accessing content from a set of web servers potentially

located anywhere around the world. Each web server is run by an operator, and each

operator can learn information about the content that is hosted on his server as well

as the IP address (and potentially, the identity) of the user accessing the content on

his server. Even if the content is encrypted at rest (when stored on the web server),

it is often decrypted by the operator before being sent (even if using TLS), allowing

the operator to still learn information about both the content and the requestor.

Naming Content. For the Internet to work, there must be a way to locate the

correct web server(s) corresponding to a user’s request. This is done via the Domain

Name System (DNS), which translates a domain name (www.cs.princeton.edu) to

an IP address (128.112.136.51), and each web server has a unique IP address that

allows traffic to be routed to the server. The translation of a domain name to an

IP address is discussed in more depth in Chapter 5. It is important to note that

DNS queries are very rarely encrypted and therefore reveal information about the

client’s IP address as well as what domain she is requesting. Additionally, even if

DNS queries were encrypted, research has shown that a web page can be identified

just based on the size and location of 3rd party resources [97].

Routing to Content. After learning where the requested content is located, the

protocols that make up the Internet must determine the correct path of networks in

3

www.cs.princeton.edu

which to access the content. The Internet is a network of networks, and when content

is requested, packets are sent through a set of these networks to reach the destination.

There are many layers and protocols in Internet routing, but the one the that is most

applicable to this work is the Border Gateway Protocol (BGP). BGP determines how

to route a user’s request from her local machine to the appropriate web server(s)

by selecting the optimal path of networks to traverse. While BGP is still lacking

an operational security mechanism (despite many proposals), security protocols have

been adopted at other layers of the routing stack; for example, HTTPS has become

more widespread, especially with the rise of the Let’s Encrypt project [2]. While this

is a major step in the right direction, there are still many sites that do not support

HTTPS by default; moving a site to HTTPS is not an easy task — it requires that

all third party domains also support HTTPS. Even sites that do support HTTPS can

be compromised; ISPs sometimes terminate (or man-in-the-middle) TLS connections

for network management purposes, and can therefore learn the content that a given

client is requesting.

Routing protocols, DNS, and web servers are just a few of the necessary pieces

that allow the Internet to operate; and despite the importance of these systems and

protocols, they can leave an enormous amount of data at the hands of an adversary

who conducts surveillance. Each component is susceptible to this type of adversary

on its own, but because each component is vulnerable, the attack surface is even

greater. And while proposals to secure and increase privacy of the Internet are not

recent ideas, the largest obstacle in adopting secure and privacy-enhancing protocols

is typically convincing all parties involved that: 1) the effort to adopting the protocol

is worthwhile, 2) that the new protocol will provide useful protections, and 3) the

new protocol will not significantly hinder functionality and performance. And while

adopting security protocols in the infrastructure is difficult, it is, in a way, easier

to quantify and justify the need for security in comparison to privacy; examples of

4

security protocols which have been adopted (at least partially) include DNSSEC and

HTTPS.

Addressing the privacy issues of the Internet infrastructure is a challenging prob-

lem; each component — routing, hosting, naming — is susceptible to surveillance,

either by maliciously monitoring traffic or by requesting data via a warrant or sub-

poena. Actors who have the capabilities to perform either of these activities include

nation-state actors, (resolver or CDN) operators, or a combination of nation-states

and operators; we detail a potential adversary more in Chapter 2.

Over time, attackers evolve, becoming more sophisticated, and having access to

more and better resources. To defend against stronger adversaries, users need privacy-

preserving technologies to protect their data as it traverses the Internet. In addition

to evolving attackers, technology is rapidly changing — and will continue to change

— and yet policy covering the Internet and privacy is not changing at a similar pace.

We need to design systems, such as improvements to the Internet infrastructure, to

help shape policy debates in the future.

1.2 Outline

The rest of this dissertation is as follows. Chapter 2 gives a primer on surveillance

techniques that are addressed by this work, as well as some existing countermeasures

and approaches taken by both end-users and technology companies. Additionally,

we provide evidence of users’ privacy expectations, in particular their level of con-

cern about a powerful adversary that has the capabilities of conducting surveillance.

Lastly, we discuss the current legal landscape as it pertains to surveillance and privacy

law; we highlight past influential cases as well as ongoing debates.

We explore the current state of Internet routing at a country-level granularity in

Chapter 3 as a first step in determining which countries are in the position to con-

5

duct surveillance on their domestic infrastructure. After describing our measurement

methods for analyzing country-level paths to popular destinations, we propose two

different methods that an end-user can use to control the country-level paths of their

Internet traffic. Then we develop RAN, Routing Around Nation-states, a system that

uses measurements to allow end-users to easily route around a given country without

any changes to the underlying routing protocols.1

In Chapter 4, we analyze how certain hosting providers are susceptible to — and

often targets of — surveillance. In particular, we look at CDNs, content distribution

networks, from a privacy perspective. We design OCDN, Oblivious Content Distri-

bution Networks, an ecosystem in which current CDNs can operate as normal, while

providing protections for end-users and the CDN itself. 2

The naming component of the Internet is designed in a way that does not support

the privacy of users’ data from surveillance actors; Chapter 5 discusses the privacy

risks with DNS; in light of the vulnerabilities found in conventional DNS, we then

introduce ODNS, Oblivious DNS, as a way to protect users from surveillance and/or

data requests.3

We conclude and present avenues for future work in Chapter 7.

1This is joint work with Roya Ensafi, Nick Feamster, and Jennifer Rexford; parts of this work
have been published [49,51,53] and presented [50,52].

2This is joint work with Paul Schmitt, Nick Feamster, and Jennifer Rexford; parts of this work
have been published in [55].

3This is joint work with Paul Schmitt, Nick Feamster, and Jennifer Rexford; parts of this work
have been presented [6, 54].

6

Chapter 2

Background

In this chapter, we discuss how a third party can collect data, provide evidence that

users care about an adversary learning information about them, and highlight some

existing, yet insufficient countermeasures to this type of surveillance. The last part of

this chapter provides a brief overview of the ongoing legal and policy issues regarding

data privacy.

2.1 Data Capture & Collection Methods

This dissertation addresses an adversary who attempts to learn information about a

user’s traffic, content requests, or browsing patterns. There are two primary ways

that an adversary may do so: 1) traffic collection and 2) data requests.

Traffic Collection. The methods used by an adversary to conduct surveillance

and gather traffic information can include tapping wires or monitoring traffic. This

method has been realized, as evidence by the Snowden Revelations in 2013; a joint

NSA and GCHQ project called MUSCULAR involved secretly wiretapping commu-

nications links in both Yahoo and Google’s internal networks [125]. This is just a

singular example of surveillance, and there could be many other instances that we

are not yet aware of. Recently, it has been made public that the German govern-

7

ment has been wiretapping one of the largest IXPs in the world, DE-CIX, since

2009 [179]. In addition to privately tapping wires, we have seen governments propose

(and sometimes adopt) legislation allowing wiretapping. For example, in November

2016, Great Britain passed the Investigatory Powers Act, which allows the British

government to intercept and collect a user’s data without the user’s knowledge [94].

Similarly, the Netherlands started enforcing the Intelligence and Security Services

Act in January of 2018; this law gives the Dutch government the power to conduct

un-targeted surveillance and large-scale interception of and analysis of communica-

tion [48]. While these examples showcase efforts to increase traffic collection in the

West, many regimes across the globe have been, and continue to conduct surveil-

lance; in 2013, major Indian telecom companies agreed to share real-time data on

Blackberry calls and services with the Indian government [147]. In that same year,

Pakistan ordered Blackberry to shut down all encrypted messaging services, and when

Blackberry refused to comply, Pakistan ordered the ban of Blackberry’s encryption

services to Pakistani citizens [155]. China, a known censor, also monitors its citizens

online activities; a recent study found that the Chinese government issues surveillance

(and filtering) keywords for use on social video platforms, and found that many of the

keywords are related to criticism of the government [106]. During the May 2014 coup

d’etat in Thailand, researchers found highly dynamic information controls within the

country—including a military order that required ISPs to monitor (and censor) the

publication of online content which could lead to unrest in the country [150]. An-

other regime that has been increasing their surveillance (and censorship) capabilities

is that of the Russian government; Russian Federal Security Services can conduct

lawful surveillance by using an interception tool called SORM (System of Operative-

Investigative Measures) [156]. Telecom operators must install SORM equipment and

the Russian government does not need to supply a warrant to collect information

from operators. As seen from this list of examples, despite the amount of traffic

8

monitoring increasing around the world, each regime conducts and addresses traffic

collection and monitoring of their own citizens differently. It is also important to

note that many governments also have the authority to monitor and collect traffic

outside of their countries’ borders, and the laws governing international traffic are

often different from those governing domestic traffic [143].

Data Requests. An adversary can issue data requests by serving warrants or

subpoenas to companies, providers, or operators that have access to user information.

Oftentimes companies publish transparency reports that indicate how many data

requests they receive, how many user accounts are affected by the data requests,

and sometimes which government issued the request. Consistently across technology

companies, the number of data requests being received and the number of accounts

affected by the data requests has been increasing every year. For example, Google

received about 13,000 data requests in 2011, but as of 2016 they have received about

40,000 data requests [139]. Most recently, Microsoft has published information for the

first half of 2017, reporting that they received 25,367 requests, which affected 44,831

accounts/users [112]. While these are large numbers of data requests, they don’t paint

the full picture; these numbers do not include National Security Letters (NSLs), which

are data requests that are accompanied by a gag order, requiring companies to keep

the data request a secret.

2.2 Users’ Expectations of Privacy Protection

While we have seen concrete examples of how an adversary can — and does — gain

access to user data via both traffic capture/collection and data requests, building

systems that preserve privacy will only be beneficial if users are willing to use them.

The reasons that a user may want to use such a system are clear, she wants to keep

her traffic, content requests, and browsing patterns private from third parties.

9

To understand if users are interested in Internet privacy and value it, we conducted

a survey on users’ expectations of privacy protections in their online activities.1 We

analyzed 527 survey responses submitted via an online form. For context, we asked

respondents how knowledgeable they are about Internet privacy and security; about

59% said they were either an expert or highly knowledgeable, whereas 40% said

they were moderately or mildly knowledgeable. Less than 1% responded by saying

they knew nothing of Internet privacy and security. With this in mind, we asked

respondents who they are attempting to protect themselves from online when using an

anonymity system. Figure 2.1 shows the results, which highlight that the majority of

respondents are concerned with a government-level adversary — the type of adversary

that can conduct surveillance and issue data requests.

Figure 2.1: Responses from survey respondents, who were asked: “When using Tor,
who do you want to protect yourself from?” The blue bars represent malicious actors
that systems in this dissertation address.

In addition to the survey responses, we can see that Internet users are concerned

about nation-state surveillance when they raise issues in the court systems. For

example, an EU citizen, concerned about his online privacy, filed many complaints

stating that Facebook is following European data protection laws, which eventually

led to the nullification of the Safe Harbor agreement (an agreement made to protect

EU citizens’ data when transferred to the United States by U.S. companies). We

1This is joint work with Philipp Winter, Laura Roberts, Marshini Chetty, and Nick Feamster.

10

discuss this case in more detail in Section 2.4. Cases such as this give us reason

to believe that improving the Internet infrastructure to increase privacy would be

important to many Internet users around the world.

2.3 Existing Countermeasures

While encryption seems like the obvious solution to protecting the privacy of data

in motion, there are many reasons why cryptography is not a panacea. Specifically,

there are still a number of ways that a skilled adversary, such as a nation state, can

learn information. First, the mere presence of communication between two parties

may be revealing. Additionally, there has been a wide variety of research in the area of

website fingerprinting, which can reveal information about the content based on size,

content, and location of third-party resources. Some unencrypted communication may

reveal information about the content of other (encrypted) communication; DNS traffic

is extremely revealing and often unencrypted [174]. Finally, some ISPs terminate

TLS connections, thereby conducting man-in-the-middle attacks on encrypted traffic

for network management purposes; these purposes could be to block online video

streaming (as done on Gogo’s in-flight Internet [74]), or to issue copyright notices on

websites (as Comcast has previously done [85]). Thus, existing encryption practices

cannot protect data in motion from a nation state adversary. Additional systems are

needed to conceal the nature or extent of communications in these scenarios.

One strategy is to obfuscate the existence of communications from the adversaries

that may wish to discover it; a user could use an anonymity or censorship circumven-

tion system. One such system, Tor, uses a series of relays and layered encryption [46].

Tor protects data in motion from surveillance, but is still susceptible to correlation and

fingerprinting attacks, which allows the adversary to learn user data [65,76,152,159].

11

Virtual Private Networks (VPNs) have also been used to circumvent censorship;

a proposed system that uses VPNs is VPNGate [124]. While VPNs protect the data

in motion on a portion of the path, they leave the data susceptible to snooping on

the portion of the path that is not covered by the VPN. Additionally, using a VPN

requires the client to trust the VPN provider, which a nation state could demand

data from.

In recent years, companies have taken action to prevent a government from over-

reaching and requesting large amounts of user data. While companies fight data

requests in court, they are now setting up separate infrastructure that provides po-

tentially privacy-enhancing characteristics. In 2015, Microsoft set up a data center

in Germany that is technically owned by a Deutsche Telekom subsidiary, T-Systems;

this could potentially provide Microsoft with the plausible deniability necessary to

refuse responding to a data request. As this is a new mechanism, it is not clear how

this will play out in the courts when a government requests data stored in this spe-

cific data center. IBM has recently followed suit by establishing a data center (also

in Germany) to give users more control over their data.

There has also been a recent push by governments to prevent surveillance con-

ducted by foreign governments on their own citizens. For example, in light of the

Snowden revelations, Brazil has taken extreme measures to avoid United States

surveillance of Brazilian citizens; Brazil is laying an underwater fiber cable directly

from Fortaleza, Brazil to Portugal in the hopes of avoiding traffic traversing the

United States. Brazil has also replaced their government email system (which used

to be Microsoft Outlook) with a home-grown system called Expresso. Germany has

also made a push to keep traffic local so as to avoid foreign surveillance. They have

established National Routing, which specifies that if an email’s sender and receiver

are located in Germany, then the email must not cross German borders. There are

also a number of countries, such as Russia, that are pressuring large technology com-

12

panies (which are mostly located in the United States) to store their citizens’ data

locally (as opposed to in the United States) in hopes of avoiding U.S. surveillance.

2.4 Legal Battles

Policies and legal cases typically involve one of two types of data: data in motion

or data at rest. Data in motion refers to communications or data that are en route

between Internet endpoints, and users should thus be concerned about an adversary

who conducts surveillance anywhere on the path to the content, such as nation-state

adversaries operating in different jurisdictions (where the laws and policies may be

drastically different than those governing the region where the client or data are

located). Data at rest refers to stored data, such as the content stored on a web

server. When describing the legal landscape of data privacy, we will discuss the two

types of data as the policies governing them often differ.

2.4.1 Who gets access to stored data and does it depend on

where it is located?

This question pertains specifically to stored data — data at rest. Our analysis of the

current legal and policy decision on accessing stored data will focus on those decisions

and laws made in the United States.

While some companies want to protect their customers’ data from government

access (such as Microsoft, mentioned in Section 2.3), not all cases side with the user.

In April 2017, New York’s highest court ruled that Facebook is not allowed to ask

an appellate court to reject a search warrant ordering them to hand over information

from hundreds of accounts [62]. Facebook’s argument was that the search warrants

were so broad that they were essentially an unconstitutional search. This blow to

Facebook’s attempt at expanding privacy protections for their users motivates the

13

general need for systems that preserve the privacy of data at rest. Additionally, a

recently passed piece of legislation, the CLOUD Act, will allow: 1) foreign police

to collect peoples’ communications from U.S. companies without a U.S. warrant, 2)

foreign countries to demand personal data stored in the U.S., 3) foreign police to

collect data about a person without notifying the person, and 4) empower U.S. police

to demand any data regardless of the person’s citizenship or the data’s location [144].

The past few months have also seen a proposal for a United Nations Global war-

rant; this would allow the issuing of international surveillance warrants or interna-

tional data access warrants (IDAWs) base on international law [138]. Complementary

technology can prevent overreach that results in access to broad amounts of data, thus

potentially also resolving ambiguities or laws that are unfavorable towards user pri-

vacy.

Takeaways. Companies have been issued data requests for years, but the number

of requests has increased each year, resulting in more and more users being affected

by the requests. The only way companies typically fought these data requests were

in the courts, which led to a variety of outcomes; more recently, companies are trying

new methods of fighting data requests. The work in this dissertation is complimentary

to these approaches; Chapters 4 and 5 introduce new technical methods to fight and

prevent data requests.

2.4.2 Where can data be transferred to and from?

This question primarily targets data flows — data in motion. Data in motion is

subject to different data protection requirements and privacy legislation based on

which region the data is traversing. The history of privacy of data flows primarily

shows that privacy protection laws greatly vary between jurisdictions, and that the

agreements and frameworks made are still very much in flux. It is still unclear what

the future of EU-US data transfer will be, but technologists have a role among these

14

policy makers as well; technology can be designed to protect data privacy, as well as

to prevent an overreaching government from access to a different jurisdiction’s data.

While the frameworks governing data privacy are being negotiated between dif-

ferent nation states and governing entities, they are not the only ones that are con-

cerned about data privacy protections. In fact, it was an EU citizen who brought a

case against the Safe Harbor agreement, which eventually rendered it invalid; Max

Schrems, an Austrian citizen, challenged the transfer of his data to the U.S. by Face-

book [148].

The Privacy Shield addresses data transfers that start in the EU and end in the

US, but the law does not mention intermediate countries on the path. For example,

data transferred from the EU to the US may traverse Canada en route; once traffic

enters a specific country (even if neither the client nor server are located in that

country), it becomes subject to that country’s policies on surveillance and censorship.

As a result, data in motion protections can be compromised solely because the path

taken to access information traverses an unfavorable jurisdiction. These issues go

far beyond EU personal data being accessed by the U.S.; recent research has shown

that Internet traffic suffers “collateral damage” simply because it is routed through a

specific jurisdiction [7]. This study found that Korean traffic to German web sites (.de

domains) often suffers “collateral damage” in the sense that it is censored because

the path traverses an Autonomous System (AS) known for censorship within China.

This case is generalizable to both nation state level surveillance and censorship, and

recently certain countries, such as Brazil, have taken extreme measures to avoid

routing their Internet traffic through the United States for this exact reason [22].

Several ongoing debates concern the privacy of data in motion. Some govern-

ments are demanding backdoors in encrypted communication applications, and other

governments are trying to issue subpoenas for encrypted communications [56, 176].

On the other side, many companies are trying to keep their clients’ data (in motion)

15

secure; one example of this is the increased use of end-to-end encryption in commu-

nication applications. End-to-end encryption is a step in the direction of protecting

privacy using technology. It has become increasingly common for governments to crit-

icize technologies that use end-to-end encryption; for example, the United Kingdom

recently stated that they should have access to WhatsApp messages when necessary

(this was in response to the recent terror attacks in London) [167]. The recent actions

taken by many governments, not just the UK, should motivate technologists to design

systems with cross- jurisdiction data flows in mind.

Takeaways. The policies governing data flows, particularly data flows between

the European Union and the United States have been challenged and re-written due

to privacy concerns. The most common approach to maintaining privacy of data in

transit is using end-to-end encryption; Chapter 3 introduces an orthogonal approach

of routing data around a given region (or jurisdiction).

16

Chapter 3

Routing: Nation-State Routing for

Privacy

When Internet traffic enters a country, it often becomes subject to that country’s

domestic laws and policies. As a result, users, ISPs, and governments need to

determine—and control—which countries their traffic is traversing. Discovering which

countries an end-to-end path traverses and providing mechanisms to avoid certain

countries may help users avoid the practices and laws of particular countries. One

motivation for avoiding a certain geographic region is to evade surveillance and other

types of interference. In some cases, avoiding certain countries may also lower costs

or improve performance, where technologies that certain countries use (e.g., firewalls,

traffic shapers) throttle network traffic speeds.

An increasing number of countries have passed laws that facilitate mass surveil-

lance of networks within their territory [67, 92, 103, 123]. While governments and

citizens alike may want to divert their Internet traffic from countries that perform

surveillance (notably, the United States [36, 45, 146]), this is a challenging problem

with no known, effective solutions. Additionally, both users and ISPs may wish to

prevent these international detours for performance and cost reasons; previous work

17

has shown that tromboning paths—paths that start and end in the same country, but

also traverse a foreign country—are common [78,151].

With the increasing pervasiveness of encryption (and the efforts of Let’s En-

crypt [2]), Internet security is improving, but defending against large-scale surveil-

lance activities requires not only encryption, but also mechanisms for controlling

where traffic goes in the first place: end-to-end encryption conceals some information

content, but it does not protect all sensitive information. First, many websites do

not fully support encrypted browsing by default; a recent study showed that more

than 85% of the most popular health, news, and shopping sites do not encrypt by de-

fault [174]; migrating a website to HTTPS can be challenging, and doing so requires all

third-party domains on the site (including advertisers) to use HTTPS. Second, even

encrypted traffic may still reveal a lot about user behavior: the presence of any com-

munication at all may be revealing, and website fingerprinting can reveal information

about content merely based on the size, content, and location of third-party resources

that a client loads [97]. Recent work studying Internet of Things (IoT) devices has

shown that passive network observers can learn sensitive information about users even

when traffic is encrypted [9]; this highlights the risks of large-scale surveillance in the

IoT ecosystem. DNS traffic is also revealing and is almost never encrypted [174].

Additionally, ISPs often terminate TLS connections, conducting man-in-the-middle

attacks on encrypted traffic for network management purposes [74]. And, of course,

encryption offers no solution to interference, degradation, or blocking of traffic that

a country might perform on traffic that crosses its borders. Finally, a nation-state

may collect and store encrypted traffic; if the encryption is defeated in the future,

a nation-state may be able to discover the contents of previous communications.

This has already been realized, according to documents leaked from the National

Security Agency (NSA) and Government Communications Headquarters (GCHQ):

“A 10-year NSA program against encryption technologies made a breakthrough in

18

2010 which made ‘vast amounts’ of data collected through internet cable taps newly

‘exploitable”’ [140].

In this chapter, we study two questions: (1) Which countries do default Internet

routing paths traverse?; (2) What methods can help governments (or citizens, ISPs,

etc.) better control transnational Internet paths? We actively measure the paths

originating in twenty countries to the most popular websites in each of these respective

countries. Our analysis in this chapter focuses on five countries—Brazil, Netherlands,

Kenya, India, and the United States—for a variety of reasons. For example, Brazil

has made a concerted effort to avoid traversing certain countries such as the United

States through extensive buildout of Internet Exchange Points (IXPs) [28]. The

Netherlands has one of the world’s largest IXPs and relatively inexpensive hosting.

Kenya is one of the most well-connected African countries, but it is still thought to

rely on connectivity through Europe and North America for many destinations, even

content that might otherwise be local (e.g., local newspapers) [34, 63, 64, 78]. We

highlight many trends that are common across all of the countries we study; we have

also released detailed statistics on all twenty countries that we measure on the project

website and intend to update these regularly.

In contrast to all previous work in this area, we measure router-level forwarding

paths, as opposed to analyzing Border Gateway Protocol (BGP) routes [100, 151],

which can provide at best only an indirect estimate of country-level paths to popular

sites. Although BGP routing can offer some information about paths, it does not

necessarily reflect the path that traffic actually takes, and it only provides AS-level

granularity, which is often too coarse to make strong statements about which countries

that traffic is traversing. In contrast, we measure routes from RIPE Atlas probes [141]

in each country to the Alexa Top 1000 domains for each country; we directly measure

the paths not only to the websites corresponding to themselves, but also to the sites

hosting any third-party content on each of these sites.

19

While using direct measurements provides these benefits, there are a number of

challenges associated with determining which countries a client’s traffic is traversing.

First, performing direct measurements is more costly than passive analysis of BGP

routing tables; RIPE Atlas, in particular, limits the rate at which one can perform

measurements. As a result, we had to be strategic about the origins and destina-

tions that we selected for our study. We study twenty geographically diverse coun-

tries, focusing on countries in each region that are making active attempts to thwart

transnational Internet paths. Second, IP geolocation—the process of determining the

geographic location of an IP address—is notoriously challenging, particularly for IP

addresses that represent Internet infrastructure, rather than end-hosts. We cope with

this inaccuracy by making conservative estimates of the extent of routing detours, and

by recognizing that our goal is not to pinpoint a precise location for an IP address as

much as to achieve accurate reports of significant off-path detours to certain coun-

tries or regions. (Section 3.2 explains our method in more detail; we also explicitly

highlight ambiguities in our results.) Finally, the asymmetry of Internet paths can

also make it difficult to analyze the countries that traffic traverses on the reverse path

from server to client; our study finds that country-level paths are often asymmetric,

and, as such, our findings represent a lower bound on transnational routing detours.

We first characterize the current state of transnational Internet routing detours

(Section 3.2). By analyzing the last hop of routing detours, we can determine where

clients’ are retrieving popular content from. To put the measured location of content

into context, we explore hosting diversity by first measuring the Alexa Top 1000

domains and comparing the location of path endpoints to that of the Alexa Top 100

domains. We find that there is no significant difference between the results in the two

domain sets, and therefore focus on the Alexa Top 100 domains and all associated

third party domains. We find that only 45% of the Alexa Top 100 domains in Brazil

are hosted in more than one country (other countries studied showed similar results);

20

in many cases, that country is one that clients may want to avoid. Second, even

if hosting diversity can be improved, routing can still force traffic through a small

collection of countries. Despite strong efforts made by some countries to ensure their

traffic does not transit certain countries [21, 23–25, 88], their traffic still does so. For

example, over 50% of the top domains in Brazil and India are hosted in the United

States, and over 50% of the paths from the Netherlands to the top domains transit the

United States. About half of Kenyan paths to the top domains traverse the United

States and Great Britain (but the same half does not traverse both countries). Much

of this phenomenon is due to “tromboning”, whereby an Internet path starts and

ends in the same country, yet transits an intermediate country; for example, about

13% of the paths that we explored from Brazil tromboned through the United States.

Infrastructure building alone is not enough. ISPs in respective regions need better

encouragements to interconnect with one another to ensure that local traffic stays

local.

Next, we explore the extent to which clients can avoid certain countries to popular

destinations (Section 3.3). We explore two techniques: using the open DNS resolver

infrastructure and using overlay network relays to route Internet traffic around an

unfavorable country. Our results demonstrate that these techniques can be effective

for clients in certain countries; of course, the effectiveness of these approaches natu-

rally depends on where content is hosted for that country and the diversity of Internet

paths between ISPs in that country and the respective hosting sites. For example, our

results show that clients in Brazil can completely avoid Spain, Italy, France, Great

Britain, Argentina, and Ireland (among others), even though the default paths to

many popular Brazilian sites traverse these countries. We also find that some of the

most prominent surveillance states are also some of the least avoidable countries. For

example, many countries depend on ISPs in the United States, a known surveillance

state, for connectivity to popular sites and content. Additionally, overlay network

21

relays can increase performance by keeping local traffic local: by using relays in the

client’s country, fewer paths trombone out of the client’s country.

Finally, we design, implement, and deploy RAN, a system that allows a client to

access web content while avoiding the traversal of a specified country (Section 3.4).

We implemented RAN for end-users, but ISPs can also deploy RAN proxies to provide

country avoidance as a service to its customers. RAN uses a series of overlay network

relays to automatically route a client’s traffic around a specified country. We evaluate

RAN to assess its ability to avoid certain countries, as well as the effect on end-to-

end performance. We also discuss the usability and and scalability of the system.

Our evaluation shows that RAN can effectively avoid many different countries and

introduces minimal performance overhead.

3.1 State of Surveillance and Interference

We focused on traffic originating in five countries:

Brazil. Brazil is actively trying to avoid having their traffic transit the U.S. They

have been building IXPs, deploying underwater cables to Europe, and pressuring large

U.S. companies to host content within Brazil [20,21,23–27,88]. These efforts to avoid

a specific country led us to investigate whether they have been successful.

Netherlands. First, the Netherlands is beginning to emerge as a site where servers

are located for cloud services, such as Akamai. Second, the Netherlands is where a

large IXP is located (AMS-IX). Third, they are drafting a mass surveillance law [123].

Analyzing the Netherlands will allow us to see what effect AMS-IX and the emergence

of cloud service hosting has had on traffic.

22

Kenya. Previous research on the interconnectivity of Africa [63,78] led us to explore

the characterization of an African country’s interconnectivity. We chose Kenya for

three reasons: 1) it terminates many submarine cable landings; 2) it has relatively

high Internet access and usage; and 3) it has more than one IXP [10,161].

India. India has one of the highest number of Internet users in Asia, second only

to China, which has already been well-studied [165,172].

United States. We chose to study the United States because of how inexpensive it

is to host domains there, the prevalence of Internet and technology companies located

there, and because it is a known surveillance state.

When analyzing which countries Internet traffic traverses, we gave additional at-

tention to countries that have known laws and practices inolving surveillance of or

interference with Internet traffic. These countries include, the “Five Eyes” [61, 110]

(the United States, Canada, United Kingdom, New Zealand, and Australia), as well

as France, Germany, Poland, Hungary, Russia, Ukraine, Belarus, Kyrgyzstan, and

Kazakhstan. Countries such as China, Iran, and Russia, are not only surveilling, but

are also censoring, blocking, and interfering with traffic that crosses their borders.

We have studied surveillance states in more detail, and that information is available

in our technical report [51].

3.2 Characterizing Transnational Detours

In this section, we describe our measurement methods, the challenges in conducting

them, and our findings concerning the transnational detours of default Internet paths.

23

1.Connect to

VPNs and curl

2.Extract

3rd party domains

VPNs
3.Send

DNS queries

RIPE Atlas

Traceroutes

6.Collect

responses

4.Collect
responses

IN

US
KE

Domains &
Subdomains

NL 5.Traceroutes
to all IPs

Domain:IPs
Subdomains:IPs

 Alexa top
100

domains

BR

Figure 3.1: Measurement pipeline to study Internet paths from countries to popular
domains.

3.2.1 Measurement Approach and Challenges

Overview of approach Figure 3.1 shows the process that we use to discover end-

to-end Internet paths from our respective vantage points to various domains. We

first use VPNs to establish various vantage points in the countries of interest; then,

we use curl to download corresponding webpages for each of those popular domains,

including all subdomains that are embedded in the site’s top-level webpage (1,2).

We extract all of these domain names (3) and resolve them to their corresponding

IP addresses (4); we then perform traceroutes to each of those IP addresses (5).

Figure 3.2 describes how we translate an IP-level traceroute to a country-level path.

We geolocate each IP address, removing unknown hops; we then de-duplicate the

country-level path. Although it is seemingly straightforward, this approach entails a

number of limitations and caveats, which we describe in the rest of this section.

Resource Limitations

We currently focus our measurements on five countries due to resource limitations.

The iPlane [118] and Center for Applied Internet Data Analysis (CAIDA) [30] projects

maintain large repositories of traceroute data, neither of which are suitable for our

study. iPlane has historical data as far back as 2006. Unfortunately, because iPlane

uses PlanetLab [132] nodes, which are primarily hosted on the Global Research and

Education Network (GREN), iPlane measurements may not be representative of typ-

ical Internet users’ traffic paths [14]. CAIDA runs traceroutes from different vantage

24

points around the world to randomized destination IP addresses that cover all /24s;

in contrast, we focus on paths to popular websites from a particular country.

We run active measurements that better represent paths of a typical Internet user.

To do so, we run DNS and traceroute measurements from RIPE Atlas probes, which

are hosted all around the world in many different types of networks, including home

networks [141]. RIPE Atlas probes can use the local DNS resolver, which provides

the router-level path to a destination that a user is likely to see in that country.

Conducting measurements from a RIPE Atlas probe costs a certain amount of

“credits”, which restricts the number of measurements that we can run. RIPE Atlas

also imposes rate limits on the number of concurrent measurements and the number

of credits that an individual user can spend per day. We address these challenges in

two ways: (1) we reduce the number of measurements we must run on RIPE Atlas

probes by conducting traceroute measurements to a single IP address in each /24

(as opposed to all IP addresses returned by DNS) because all IP addresses in a /24

belong to the same AS, and should therefore be located in the same geographic area;

(2) we use a different method—VPN connections—to obtain a vantage point within

a foreign country, which is still representative of an Internet user in that country. We

are forced to use an alternative vantage point to RIPE Atlas probes because these

probes do not support all operations that our methods require (such as requesting the

webpage). While VPN connections provide the necessary functionality in the correct

country, RIPE Atlas probes are more representative of typical Internet users, as they

are often hosted in home networks, therefore we decide to use RIPE Atlas probes

when possible and VPN connections when necessary.

Path Asymmetry

The reverse path (i.e., the path from the server to the client) is just as important

as (and often different from) the forward path. Previous work has shown that paths

25

between Internet endpoints are often asymmetric [80]. Most work on path asymmetry

has been done at the AS level [68, 79, 80, 129], but not at the country level; our

measurements can consider only the forward path (from client to domain or relay),

not the reverse path from the domain or relay to the client.

We also (separately) measured path asymmetry at the country granularity. If

country-level paths were symmetric, then the results of our measurements would

be representative of the forward and reverse paths. If the country-level paths are

asymmetric, then our measurement results only provide a lower bound on the number

of countries that traffic between two endpoints may traverse. Using 100 RIPE Atlas

probes and eight Amazon EC2 instances, we ran traceroute measurements from every

probe to every EC2 instance and from every EC2 instance to every probe (the EC2

instances were located in the United States, Brazil, Canada, Ireland, Germany, Japan,

Australia, and Singapore). After mapping the IP addresses to countries, we analyzed

the paths for symmetry. First, we compared the set of countries on the forward path

to the set of countries on the reverse path; we found that about 30% of the paths

were symmetric at the country level. We compared the number of countries on the

forward and reverse paths to determine how many reverse paths traversed a subset

of the countries in the respective forward path; this situation occurred for 55% of the

paths. This level of asymmetry suggests that our results are a lower bound on on

how many countries a client’s path traverses en route to a web site. It also suggests

that while providing lower bounds on transnational detours is feasible, designing

systems to completely prevent these detours on both forward and reverse paths is

challenging. If tools that shed light on the reverse path between endpoints (e.g.,

Reverse Traceroute [102]) see more widespread deployment, the characterizations and

avoidance techniques that we develop in this work could be extended to include reverse

paths.

26

Traceroutes of
BR,NL,KE,IN,US

Traceroute to 104.28...
1. 176.6...
2. 149.6….
3. 154.25….
4. 130.117...
5. 154.25….
6. *
7. 104.28...

Country
Mapping

Remove
Unknown hops

Country Level Path

 FR-GR-US
 ….

IP to country
1. FR
2. GR
3. US
4. None
5. US
6. None
7.US

Country level
path

Figure 3.2: Mapping country-level paths from traceroutes.

Traceroute Origin and Destination Selection

Each country hosts 75 to several hundred RIPE Atlas probes. Because of resource

restrictions, we could not use all of the probes in each country. We selected the set

of probes that had unique ASes in the country to get the widest representation of

origination (starting) points.

To determine how many websites we must measure to sufficiently capture client

paths to popular websites in a country, we first compare the country-level paths from

a small set of vantage points to the Alexa Top 100 domains and to the Alexa Top

1000 domains. The proportion of paths that transited (and ended in) each country

are similar in both cases; the paths to the top 1000 domains exhibit a longer tail of

countries that transit or host content, likely because these domains are less popular

and therefore hosted in more obscure locations. Otherwise, the results are similar.

Figure 3.3 shows this comparison. Therefore, we used the Alexa Top 100 domains in

each of the respective countries as our destinations, as well as the third-party domains

that are requested as part of an original web request.

To obtain the third-party domains that are hosted on each popular website, we

use curl to retrieve the homepage for each respective domain from within the country

that is hosting the vantage point in question. RIPE Atlas probes do not support these

types of Web requests; instead, we establish a VPN connection within each of these

27

Figure 3.3: Comparison of path endpoints between the Alexa Top 100 and the Alexa
Top 1000. For simplicity, we have removed the long tail of countries that are the
endpoint for less than 1% of the measured paths. The countries listed on the x-axis
are the countries in which paths terminate.

countries to curl each domain and extract the third-party domains; we curl from

the client’s location in case web sites are customizing content based on the region of

the client.

Country Mapping

Accurate IP geolocation is challenging [57,58,73,77,89,101,133]. We use MaxMind’s

geolocation service to map IP addresses to their respective countries [120], which is

known to contain inaccuracies. Fortunately, our study does not require high-precision

geolocation; we are more interested in providing accurate lower bounds on detours at

a much coarser granularity. Fortunately, previous work has found that geolocation

at a country-level granularity is more accurate than at finer granularity [91]; a recent

study on geolocation accuracy found that the MaxMind database used in this work

has a country-level coverage rate of 95% and a country-level accuracy rate of 79%

(this is significantly better than the city-level coverage rate—53%—and city-level

accuracy rate—67% [71]. In light of these concerns, we post-processed our IP to

28

country mapping by removing all IP addresses that resulted in a ‘None’ response

when querying MaxMind, which causes our results to underestimate of the number of

countries that paths traverse. It is important to note that removing ‘None’ responses

will always tend to underestimate the set of countries in the path. Figure 3.2 shows

an example of this post-processing.

Traceroute Accuracy and Completeness

Our study is limited by the accuracy and completeness of traceroute. Anomalies

can occur in traceroute-based measurements [11], but most traceroute anomalies do

not cause an overestimation in states that manipulate or monitor traffic. The in-

completeness of traceroutes, where a router does not respond, causes our results to

underestimate the number of states that interfere with network traffic.

IPv4 vs. IPv6 Connectivity

We collect and analyze only IPv4 paths. IPv6 paths likely differ from IPv4 paths as

not all routers that support IPv4 also support IPv6. A comparable study of IPv6-level

paths is an avenue for future work.

3.2.2 Results

Table 3.1 shows five of the countries that we studied along the top of the table and

the countries that host their content along in each row. A “-” represents the case

where no paths ended in that country. For example, the United States is the endpoint

of 77.4% of the paths that originate in Brazil, and no Brazilian paths terminated in

South Africa. Table 3.2 shows the fraction of paths that transit (or end in) certain

countries, with a row for each country that is transited. We report on measurements

conducted on January 31, 2016, and we are continuing to run these measurements

and publish the data. We have published our data to a repository [42].

29

Terminating in
Originating in

Bra
zil

N
et

he
rla

nd
s

In
di

a
K
en

ya

U
ni

te
d

St
at

es

Brazil .169 - - - -

Canada .001 .007 .015 .006 -
United States .774 .454 .629 .443 .969

France .001 .022 .009 .023 .001
Germany .002 .013 .014 .028 .001
Great Britain - .019 .021 .032 .002
Ireland .016 .064 .027 .108 .001
Netherlands .013 .392 .101 .200 .024
Spain .001 - - - -

Kenya - - - .022 -
Mauritius - - - .004 -
South Africa - - - .021 -

United Arab Emirates - - - .011 -
India - - .053 .002 -
Singapore - .002 .103 .027 -

Table 3.1: Fraction of paths (to the Alexa Top 100 domains and associated third party
domains) terminating in a country by default. The fraction in each cell represents
the fraction of paths originating in the country at the top of the column and ending
in the country indicated in the first cell of the same row.

Finding 3.2.1 (Hosting Diversity) About half of the top domains in each of the

five countries studied are hosted in a single country. The other half are located in two

or more different countries.

Hosting diversity reflects how many unique countries host a domain. The more coun-

tries host a domain, the greater the likelihood that a client can find a path to that

domain that avoids a certain country. As a separate measurement experiment, we

queried DNS from 26 vantage points around the world, in geographically diverse lo-

cations. We then mapped the IP addresses in the DNS responses to countries to

determine how many unique countries host a domain. Figure 3.5 shows the fraction

of domains in the Alexa Top 100 that are hosted in different numbers of countries; we

can see two common hosting cases: (1) CDNs and (2) a single hosting country. This

30

shows that many domains are hosted in a single unique country, which leads us to our

next analysis—where are these websites hosted, and which countries are traversed on

the way to reach these locations.

Finding 3.2.2 (Domain Hosting) The most common destination, regardless of

originating country, is the United States.

Table 3.1 shows the fraction of paths that are hosted in various countries. Despite

the extent of country-level hosting diversity, the majority of paths from all of the

countries we studied terminate in a single country; 77%, 45%, 63%, 44%, and 97%

of paths originating in Brazil, Netherlands, India, Kenya, and the United States,

respectively, are currently reaching content located in the United States. Our results

Transit through
Originating in

Bra
zil

N
et

he
rla

nd
s

In
di

a
K
en

ya

U
ni

te
d

St
at

es

Brazil 1.00 - - - -

Canada .013 .007 .016 .008 .081
United States .844 .583 .715 .616 1.00

France .059 .102 .104 .221 .104
Germany .005 .050 .032 .048 .008
Great Britain .024 .140 .204 .500 .006
Ireland .028 .106 .031 .133 .006
Netherlands .019 1.00 .121 .253 .031
Spain .176 .004 - - -

Kenya - - - 1.00 -
Mauritius - - - .322 -
South Africa - - - .334 -

United Arab Emirates - - - .152 -
India - - 1.00 .058 -
Singapore - .002 .270 .040 .003

Table 3.2: Fraction of paths (to the Alexa Top 100 domains and associated third party
domains) that a country transits by default. The fraction in each cell represents the
fraction of paths originating in the country at the top of the column that transit or
end in the country indicated in the first cell of the same row.

31

also show the Netherlands is a common hosting location for paths originating in the

Netherlands, India, and Kenya.

Finding 3.2.3 (Domestic Traffic) All of the countries we studied (except for the

United States) host content for a small percentage of the paths that originate in their

own country; they also host a small percentage of their respective country-code top-

level domains.

Only 17% of paths that originate in Brazil also end there, and only 5% and 2% of

Indian and Kenyan paths, respectively, end in the originating country. For Kenya,

24 out of the Top 100 Domains are .ke domains, but only 5 of the 24 are hosted

within Kenya. 29 out of 40 .nl domains are hosted in the Netherlands; four of 13

.in domains are hosted in India; 18 of 39 .br domains are hosted in Brazil. Figure

3.4 shows these results. As one might expect, all .gov domains were hosted in their

respective country.

Finding 3.2.4 (Transit Traffic) The United States and Great Britain are on more

paths than any other (foreign) country.

Figure 3.4: Fraction of country code top-level domains that are hosted locally. For
example, 46% of .br domains are hosted in Brazil.

32

0 5 10 15 20

Number of Countries that Host a Domain

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
om

ai
ns

Single Location CDNs

Figure 3.5: The number of Alexa Top 100 US Domains hosted in different countries.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Paths

Ireland
Switzerland

Norway
Spain

Austria
Italy

Germany
Sweden
France

Great Britain
United States

(a) The Netherlands.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Paths

Ireland
New Zealand

Mexico
China

France
Great Britain

Canada
Italy

Spain
United States

(b) Brazil.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Paths

Italy
Netherlands

France
Tanzania

South Africa
United States

India
UA Emirates
Great Britain

Mauritius

(c) Kenya.

Figure 3.6: The countries that tromboning paths from the Netherlands, Brazil, and
Kenya transit.

84% of Brazilian paths traverse the United States, despite Brazil’s strong efforts

to avoid United States surveillance [20, 21, 23–26]. Although India and Kenya are

geographically distant, 72% and 62% of their paths also transit the United States.

Great Britain and the Netherlands are on many of the paths from Kenya and

India: 50% and 20% of paths that originate in Kenya and India, respectively, transit

Great Britain. Many paths likely traverse Great Britain and the Netherlands due

to the presence of large Internet Exchange Points (i.e., LINX, AMS-IX). Mauritius,

South Africa, and the United Arab Emirates transit 32%, 33%, and 15% of paths

33

from Kenya. There are direct underwater cables from Kenya to Mauritius, and from

Mauritius to South Africa [160].

Finding 3.2.5 (Tromboning Traffic) Brazilian and the Netherlands paths often

trombone to the United States, despite the prevalence of IXPs in both countries.

Figure 3.6 shows the fraction of paths that trombone to different countries for the

Netherlands, Brazil, and Kenya. 24% of all paths originating in the Netherlands (62%

of domestic paths) trombone to a foreign country before returning to the Netherlands.

Despite Brazil’s strong efforts in building IXPs to keep local traffic local, many of their

paths still trombone to the U.S. This is due to IXPs being seen as a threat by com-

peting commercial providers; providers are sometimes concerned that interconnection

will result in making business cheaper for competitors and stealing of customers [134].

Brazilian providers may see one another as competitors and therefore as a threat

at IXPs, which causes them to peer with international providers instead of other

local providers [134]. Additionally, we see Brazilian paths trombone to Spain and

Italy. We see Italy often in tromboning paths because Telecom Italia Sparkle is one

of the top global Internet providers [12]. MaxMind’s geolocation sometimes mislabels

IP addresses to be in Spain when they are actually located in Portugal. Despite

our inability to disambiguate Spain and Portugal, some of the issues associated with

tromboning, such as performance, are still pertinent. We are not aware of specific

laws in either of these countries that would make this distinction important from a

policy or legal aspect, either.

Tromboning paths that originate in Kenya most commonly traverse Mauritius,

which is expected considering the submarine cables between Kenya and Mauritius.

Additionally, a cable from Mombasa, Kenya to Fujairah, United Arab Emirates likely

explains why many paths include these countries.

34

Finding 3.2.6 (United States as an Outlier) The United States hosts 97% of

the content that is accessed from within the United States, and only five foreign

countries—France, Germany, Ireland, Great Britain, and the Netherlands—host con-

tent for the other 3% of paths.

We find that Brazilian, Dutch, Indian, and Kenyan paths often transit the U.S.

The results from studying paths that originate in the United States are drastically

different from those of the other four countries. The majority of locally popular

content in these countries is hosted outside of the respective country, which is shown

in Table 3.1; in contrast, the United States hosts 97% of the content that is accessed

from within the country. Only 13 unique countries are ever on a path from the United

States to a webpage in our dataset, whereas 30, 30, 25, and 38 unique countries are

seen on the paths originating in Brazil, Netherlands, India, and Kenya, respectively.

3.3 Feasibility of Routing Around Nation-States

We now explore the extent to which overlay networks and Internet protocols like

DNS can improve path diversity and help clients route around specific countries. We

explore and evaluate possible methods to (1) increase path diversity with the use of

overlay nodes and (2) discover additional website replicas by diverting DNS queries

through global open DNS resolvers. In this section, we develop an avoidance metric

and algorithm, and evaluate the effectiveness of open resolvers and overlay nodes to

avoid specific countries.

3.3.1 Measurement Approach

Country Avoidance with Open Resolvers If content is replicated on servers

in different parts of the world, open DNS resolvers located around the world may be

able to help clients discover a more diverse set of replicas.

35

Open DNS resolvers

Traceroutes

Domains &
Subdomains

1.Send
DNS queries

2.Collect
responses

Domain:IPs
Subdomains:IPs

VPNs

3.Connect
to VPNs

4.Traceroute
to all IPs

5.Collect
responses

Figure 3.7: Measurement approach for country avoidance with open DNS resolvers.

We must use a different measurement approach than that described in the previous

section because instead of locally resolving the domains, we resolve them using an

open resolver. Figure 3.7 illustrates our measurement approach for this study, which

utilizes open DNS resolvers located around the world [93]. These open DNS resolvers

may provide different IP addresses in the DNS responses, which represent different

locations of content replicas. The measurement study in Section 3.2.1 used RIPE

Atlas probes to traceroute to the IP addresses in DNS response; in contrast, for

this portion of the study, we initiate a VPN connection to the client’s country and

traceroute (through the VPN connection) to the IP addresses in the DNS responses

returned by the open resolvers.

Country Avoidance with Relays An overlay network of relay nodes could help

clients route around countries or access content that is hosted in a different country;

this section performs measurements to evaluate the feasibility of such an approach.

Figure 3.8 shows the steps in our measurement experiment. After selecting potential

relay nodes, we perform traceroute measurements from the country of origin to each

relay (1’,2’), and from each relay to the set of top 100 domains in the original country

(1,2,3). We then analyze these traceroutes using the approach shown in Figure 3.2

to determine the resulting country-level paths.

36

1’. Connect
to VPNs

3.Traceroute
to all IPs

Amazon EC2 & VPS

Amazon EC2 & VPS

1. ssh to
Relays

2. Resolve Domains
(using local resolver)

Traceroutes

Domains &
Subdomains

VPNs

2’.Traceroute

3’.Collect
Responses

4.Collect
Responses

Figure 3.8: Measurement approach for country avoidance with overlay network relays.

We use eight EC2 instances, one in each geographic region (United States, Ire-

land, Germany, Singapore, South Korea, Japan, Australia, Brazil), as well as four

Virtual Private Server (VPS) machines (France, Spain, Brazil, Singapore), which are

virtual machines. Combining these two sets of machines allows us to evaluate country

avoidance with a geographically diverse set of relays. By selecting an open resolver

in each country that also has a relay in it we can keep the variation in measurement

methods low, leading to a more accurate comparison of country avoidance methods.

3.3.2 Avoidability Metrics

We introduce a new metric, avoidability, to measure how often a client in one country

can avoid another specific country. Using the proposed metric and algorithm, we can

compare how well the different methods achieve country avoidance for any (X, Y)

pair of countries.

Avoidability metric We introduce an avoidability metric to quantify how often

traffic can avoid Country Y when it originates in Country X. Avoidability reflects

the fraction of paths that originate in Country X and do not transit Country Y. We

calculate this value by dividing the number of paths from Country X to domains

that do not traverse Country Y by the total number of paths from Country X. The

37

resulting value is in the range [0,1], where 0 means the country is unavoidable for

all of the domains in our study, and 1 means the client can avoid Country Y for

all domains in our study. For example, there are three paths originating in Brazil:

(1) BR → US, (2) BR → CO → None, (3) BR → ∗ ∗ ∗ → BR.1 After processing

the paths as described in Section 3.2.1, the resulting paths are: (1) BR → US,

(2) BR → CO, (3) BR → BR. The avoidance value for avoiding the United States

would be 2/3 because two out of the three paths do not traverse the United States.

This metric represents a lower bound, because it is possible that the third path timed

out (∗ ∗ ∗) because it traversed the United States, which would make the third path:

BR→ US → BR, and would cause the avoidance metric to drop to 1/3.

Avoidability algorithm with relays Measuring the avoidability of Country Y

from a client in Country X using relays entails two components: (1) Is Country Y on

the path from the client in Country X to the relay? (2) Is Country Y on the path from

the relay to the domain? For every domain, our algorithm checks if there exists at

least one path from the client in Country X through any relay and on to the domain,

and does not transit Country Y. The algorithm (Algorithm 1) produces a value in

the range [0,1] that can be compared to the output of the avoidability metric.

Avoidability algorithm with open resolvers Recall from the measurement

pipeline for avoidance with open resolvers, described in Section 3.3.1, that the re-

sulting data are traceroutes from the client in Country X to all IP addresses in all

open DNS resolver responses. To avoid a country, there must exist at least one path

from the client in Country X to the domain for the client to be able to avoid Country

Y when accessing the domain. The country avoidance value is the fraction of domains

accessible from the client in Country X without traversing Country Y.

1∗ ∗ ∗ denotes a hop in traceroute that timed out, and therefore resulted in no IP address.

38

Algorithm 1 Avoidability Algorithm (with relays). This is the method to calculate
the avoidability of a given country when using relays. paths1 is the set of country-
level paths from client vantage points to relays, paths2 is the set of country-level
paths from relays to destination domains.

1: function CalcAvoidance(set paths1, set paths2, string c)
2: set suitableRelays
3: for each (relay, path) in paths1 do
4: if c not in path then
5: suitableRelays← path

6: set accessibleDomains
7: for each (relay, domain, path) in paths2 do
8: if relay in suitableRelays then
9: if c not in path then

10: accessibleDomains← domain
11: D ← number of all unique domains in paths2
12: A← length of accessibleDomains
13: return A/D

Upper bound on avoidability Although the avoidability metric provides a way

to quantify how avoidable Country Y is for a client in Country X, some domains

may be hosted only in Country Y, so the avoidance value would never reach 1.0. For

this reason, we measured the upper bound on avoidance for a given pair of (Country

X, Country Y) that represents the best case value for avoidance. This algorithm is

shown in Algorithm 2; it analyzes the destinations of all domains from all relays and

if there exists at least one destination for a domain that is not in Country Y, then this

increases the upper bound value. An upper bound of 1.0 means that every domain

that we measured is hosted (or has a replica) outside of Country Y. This value puts

the avoidance values in perspective for each (Country X, Country Y) pair.

3.3.3 Results

We examine the effectiveness of relays for country avoidance, as well as for keeping

local traffic local. Table 3.3 shows avoidance values; the top row shows the countries

we studied and the left column shows the country that the client aims to avoid. Table

3.3 shows two trends: (1) the ability for a client to avoid a given Country Y increases

with the use of relays; and (2) certain countries such as the United States, the United

39

Algorithm 2 Avoidance Upper Bound Algorithm. This is the method used to cal-
culate the upper bound on avoidance when using relays. For example, if a domain is
solely hosted in a single country, then that country is unavoidable — this algorithm
takes this case into account.
1: function CalcUpperbound(set relayDomainPaths, string c)
2: zeros(domainLocations)
3: for each (r, d, p) in relayDomainPaths do
4: dest← last item in p
5: domainLocations[d]← dest

6: set accessibleDomains
7: for each domain in domainLocations do
8: if domainLocations[domain] 6= set[c] then
9: accessibleDomains← domain

10: D ← all unique domains in relayDomainPaths
11: A← length of accessibleDomains
12: return A/D

Kingdom, and other countries that are known to perform interference on traffic are

also often the most difficult countries to avoid.

N
o

R
ela

y

O
pe

n
R
es

ol
ve

rs

R
ela

ys

N
o

R
ela

y

O
pe

n
R
es

ol
ve

rs

R
ela

ys

N
o

R
ela

y

O
pe

n
R
es

ol
ve

rs

R
ela

ys

N
o

R
ela

y

O
pe

n
R
es

ol
ve

rs

R
ela

ys

N
o

R
ela

y

O
pe

n
R
es

ol
ve

rs

R
ela

ys

Country to Avoid Brazil Netherlands India Kenya United States

Brazil 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Canada .98 1.00 1.00 .99 1.00 1.00 .98 .98 .98 .99 .99 .99 .92 1.00 1.00
United States .15 .19 .62 .41 .57 .63 .28 .45 .65 .38 .55 .40 0.00 0.00 0.00

France .94 .98 1.00 .89 .96 .99 .89 .98 1.00 .77 .89 .98 .89 .99 .99
Germany .99 .99 1.00 .95 .98 .99 .96 .97 .99 .95 .99 1.00 .99 .99 1.00
Great Britain .97 .97 1.00 .86 .87 .99 .79 .79 1.00 .50 .71 .97 .99 .99 1.00
Ireland .97 .98 .99 .89 .97 .99 .96 .99 .99 .86 .98 .99 .99 .99 .99
Netherlands .98 .98 .99 0.00 0.00 0.00 .87 .98 .99 .74 .98 .99 .97 .99 .99
Spain .82 1.00 1.00 .99 .99 .99 1.00 .99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Kenya 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00
Mauritius 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .67 .97 .99 1.00 1.00 1.00
South Africa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .66 .87 .66 1.00 1.00 1.00

United Arab
Emirates

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .84 1.00 .99 1.00 1.00 1.00

India 1.00 1.00 1.00 .99 1.00 1.00 0.00 0.00 0.00 .94 .94 1.00 .99 1.00 1.00
Singapore .99 .99 1.00 .99 .99 1.00 .73 .92 .94 .96 .96 1.00 .99 .99 1.00

Table 3.3: Avoidance values for different techniques of country avoidance. The upper
bound on avoidance is 1.0 in most cases, but not all. It is common for some European
countries to host a domain, and therefore the upper bound is slightly lower than
1.0. The upper bound on avoidance of the United States is significantly lower than
the upper bound on avoidance for any other country; .886, .790, .844, and .765 are
the upper bounds on avoidance of the United States for paths originating in Brazil,
Netherlands, India, and Kenya, respectively.

40

Avoidability with Open Resolvers

A given country is more avoidable (higher avoidance value) when open resolvers are

used as a tool for country avoidance.

Finding 3.3.1 (Open Resolver Effectiveness) Using open DNS resolvers for

country avoidance achieves more country avoidance than using local resolvers and no

better avoidance than using relays for clients in most countries.

For Brazilian paths, open resolvers only achieve 4% more avoidability than using

local resolvers when avoiding the United States, whereas relays achieve 47% more

avoidance. On the other hand, open resolvers are about as effective as relays are for

avoidance for paths originating in the United States.

Avoidability with Relays

Finding 3.3.2 (Relay Effectiveness) For 84% of the (Country X, Country Y)

pairs shown in Table 3.3 the avoidance with relays reaches the upper bound on avoid-

ance.

In almost every (Country X, Country Y) pair, where Country X is the client’s coun-

try (Brazil, Netherlands, India, Kenya, or the United States) and Country Y is the

country to avoid, the use of an overlay network makes Country Y more avoidable

than the default routes. The one exception we encountered is when a client is located

in Kenya and wants to avoid South Africa, where, as mentioned, all paths through

our relays exit Kenya via South Africa.

Finding 3.3.3 (Relays Achieve Upper Bound) Clients in the U.S. can achieve

the upper bound of avoidance for all countries—relays help clients in the U.S. avoid

all other Country Y unless the domain is hosted in Country Y.

41

Relays are most effective for clients in the United States. On the other hand, it is

much more rare for (Kenya, Country Y) pairs to achieve the upper bound, showing

that it is more difficult for Kenyan clients to avoid a given country. This is not to

say that relays are not effective for clients in Kenya; for example, the default routes

to the top 100 domains for Kenyans avoid Great Britain 50% of the time, but with

relays this percentage increases to about 97% of the time, and the upper bound is

about 98%.

Finding 3.3.4 (U.S. is Least Avoidable) The ability for any country to avoid the

U.S. is significantly lower than its ability to avoid any other country in all three

situations: without relays, with relays, and the upper bound.

Despite increasing the ability to avoid the U.S., relays are less effective at avoiding

the U.S. compared to all other Country Y. Clients in India can avoid the U.S. more

often than clients in Brazil, Netherlands, and Kenya, by avoiding the U.S. for 65%

of paths. Even using relays, Kenyan clients can only avoid the U.S. 40% of the

time. Additionally, the upper bound for avoiding the U.S. is significantly lower in

comparison to other countries.

Finding 3.3.5 (Keeping Local Traffic Local) Using relays decreased both the

number of tromboning paths, and the number of countries involved in tromboning

paths.

Where there were relays located in one of the five countries that we studied, we

evaluated how well the relays kept local traffic local. This evaluation was possible

for the U.S. and Brazil. Tromboning Brazilian paths decreased from 13.2% without

relays to 9.7% with relays; when relays are used, all tromboning paths go only to the

U.S. With the relays, we see only 1.3% tromboning paths for a U.S. client, compared

to 11.2% without relays. The 1.2% of paths that trombones from the U.S. traverse

Ireland.

42

Comparing Avoidance Techniques

From the results shown in Table 3.3, we can see that using open DNS resolvers for

country avoidance is, for the most part, less effective than using overlay network re-

lays. Only 4% of the (origin country, country to avoid)-pairs shown in the table have

a higher avoidance value when using open resolvers in comparison to overlay network

relays. For this reason, we design and implement our system, RAN, solely using over-

lay network relays (and not open DNS resolvers). These few instances where relays

were less effective could be remedied by increasing the number and/or geographic

diversity of the relays, resulting in the open resolvers providing no additional avoid-

ance after the relays. We discuss the system and the implementation of the relays in

further detail in the next few sections.

3.4 RAN: Routing Around Nation-States

From our experience conducting measurement studies of Internet paths, we have

identified a number of obstacles standing in the way of building such systems. These

primarily include a lack of possible measurement methods to learn reverse paths—

these are crucial because paths are asymmetric even at the country level—and a lack

of knowledge about the locations in which content is replicated.

We can surmount many of these obstacles if content providers contributed to

the surveillance avoidance system. To address the issue of path asymmetry, the

reverse path could be measured from within the provider and used to determine if an

unfavorable country is on the reverse path; this could be used in conjunction with our

measurements of the forward path. In addition, content providers could strategically

publish DNS records such that when a client receives a DNS response, it is for a

content replica that allows her to avoid a given country. A content provider could

43

also replicate content in specific regions to allow clients to access replicas without

traversing a specific country.

We take an approach at designing a system that is a first to route traffic around a

given country without the help of providers. Because the design does not assume any

cooperation from content providers, the system does not (and cannot) always ensure

that some Internet path avoids a particular country.

3.4.1 Threat Model

RAN addresses an adversary who is restricted to a specific region of the world. The

adversary can be passive, and conduct surveillance, or active, and interfere with

traffic. We realize that a country’s surveillance capabilities are not limited to the

infrastructure within its borders, but a country typically can only interfere and ma-

nipulate traffic within its borders. For the purposes of this system, we assume the

adversary can only view and manipulate traffic within its borders.

An adversary who taps routers around the world, splices undersea fiber cables, or

participates in surveillance in foreign states is out of the scope of this work; while

RAN does not address this type of attacker, RAN does protect against an attacker

whose interference and monitoring capabilities are limited to a specific land mass.

3.4.2 Design Goals

Our measurement results motivate the design and implementation of a relay-based

avoidance system, RAN, with the following design goals.

• Country Avoidance. The primary goal of RAN is to avoid a given coun-

try when accessing web content. RAN should provide clients a way to route

around a specified country when accessing a domain. This calls for the role of

44

measurement in the system design and systematizing the measurement methods

discussed earlier in the paper.

• Usability. RAN should require as little effort as possible from clients. Clients

should not have to download or install software, collect any measurements, or

understand how the system works. This requires a way for clients to auto-

matically and seamlessly multiplex between relays (proxies) based on different

destinations. RAN uses a Proxy Autoconfiguration (PAC) file to support this

function. PAC files are supported on many types of devices, including mobile

devices (smartphones, tablets, etc.). Additionally, this is a mechanism that is

already being used in systems and tools. Many Internet users that use a VPN

have already used a PAC file; when a user establishes a VPN connection, his

device’s proxy settings are modified to point to a PAC file.

• Scalability. This country avoidance system should be able to scale to large

numbers of users. Therefore, RAN should be able to handle the addition of

relays, as well as be cost-effective in terms of resources required. This requires

clever measurement vantage points, such that each vantage point is representa-

tive of more than one client. The PAC file allows RAN to grow with the number

of clients and also supports incremental deployment.

• Non-goals. There are some challenges that RAN does not attempt to solve; in

particular, it does not provide anonymity; it routes around countries, but it does

not attempt to keep users anonymous in the event that traffic can be observed.

RAN also does not address domestic interference or surveillance. For example,

a client in the United States cannot use RAN to avoid network interference by

the United States.

45

3.4.3 Overview

RAN comprises (1) an overlay network of relays; and (2) an oracle that directs clients

to the appropriate relays, as shown in Figure 3.9. RAN’s relays are TCP proxy

servers that allow clients to access web content without installing custom software.

RAN uses the measurement methods described in Section 3.3 to learn paths between

clients, relays, and domains; these results are stored at the oracle, which uses the

data to decide which relay a client in some location should use for accessing a certain

domain while avoiding a certain country. The oracle periodically computes paths for

many combinations of client AS, destination, and country. A client can then query

the oracle to determine the appropriate relay to use to avoid a certain country en

route to a particular destination.

After describing our threat model and enumerating our design goals for RAN, we

explain each component of the system in more detail.

3.4.4 Periodic Path Measurement

RAN measures all paths using traceroute, which is then mapped to the country

level using the same methods as described in Section 3.2 and shown in Figure 3.2.

The paths we measure are the: forward paths from the client to each relay; forward

paths from each relay to each domain; forward paths from the client to each domain;

and reverse paths from each relay to the client. The portion of the reverse path from

the domains to the relays is challenging to measure due to a lack of vantage points

in ASes of common destinations. As discussed in Section 3.2.1, we found that the

forward and reverse paths are asymmetric at the country level, and therefore RAN

cannot make any guarantees about which countries are on the path between domains

and relays even though it has calculated the paths from relays to domains. Despite

the lack of knowledge about this part of the reverse path, we can reason about possible

scenarios. If the client’s traffic is encrypted, then a country on this part of the reverse

46

RIPE Atlas → Relays
RIPE Atlas → Domains
Relays → Domains
Relays → RIPE Atlas

PAC
(Section 5.3)

Path Computation

Offline

Browser
Proxy Config

(Section 5.3)

Periodic Path Measurement
(Section 5.2)

Oracle

Figure 3.9: RAN architecture.

path that the client wishes to avoid cannot perform any traffic correlation attacks or

website fingerprinting attacks, as the country cannot see who the client is (necessary

for website fingerprinting) and does not have access to more than one part of the path

(necessary for traffic correlation attacks).

Client-to-Relay Paths. To avoid requiring the client to install custom software,

RAN measures client-to-relay paths from RIPE Atlas probes that serve as vantage

points for the ASes where RAN clients might be. RAN selects probes that are geo-

graphically close the client (e.g., in the same country). The oracle triggers the probe

to run traceroutes to each relay. After collecting the responses, the oracle maps the

IP-level paths to country-level paths and stores the results.

Relay-to-Client Paths. The RAN relays perform traceroutes to the IP addresses

of RIPE Atlas probes, which represent client ASes. They then derive country-level

paths; the oracle learns these paths from each relay.

Relay-to-Server Paths. Relays perform traceroutes to each domain. As with

paths to clients, relays derive country-level paths and send them to the oracle.

47

Client-to-Server Paths. In case a path from a client to a domain does not pass

through the country specified to avoid by default, then none of the proxies should be

used. These paths are measured using the RIPE Atlas probes in similar locations

as the clients, and the oracle triggers traceroutes from each of them to each of the

domains. Corresponding country-level paths are stored at the oracle.

RAN must recompute these paths as they change. To our knowledge, there has

not been any previous work on how often country-level paths change; prior work has

explored how often AS-level paths change. We measured the country-level paths from

a RIPE Atlas probe to the Alexa Top 100 domains once per day for a month to see how

stable country-level paths are. Across the measured domains, we found the average

time between path changes to be about five days. Therefore, RAN re-computes the

paths every five days to incorporate the most recent country-level paths; note that

the time between path re-computations is partially due to resource constraints on the

RIPE Atlas network (as described in Section 3.2.1), but with more resources paths

can be re-computed more often.

3.4.5 PAC File Generation

The oracle follows four steps to decide which relay a client should use to access a

specific domain: (1) If the default path from the client to the domain does not pass

through the specified country, then do not use any of the relays. (2) Otherwise, for all

the paths from the client to the relays, select suitable relays, which are relays where

the country to avoid is not on the forward or reverse path between the client and re-

lay. (3) From this set, if there is a path from a suitable relay to the domain that does

not include the specified country, then use that relay for that domain. (4) If there is

no path from the client through any of the relays to the domain that does not pass

through the specified country, then select the relay that provides the most avoidance

(measured by how many other domains that avoid the specified country). The oracle

48

Configuration 3.1: Example PAC file.

function FindProxyForURL (ur l , host){
i f ((shExpMatch (host , "*.google.com")))

return "PROXY 1.2.3.4:3128" ;
i f ((shExpMatch (host , "*.twitter.com")))

return "PROXY 5.6.7.8:3128" ;
return "DIRECT" ;

}

applies this decision process to each domain, which results in a mapping of domains to

relays that can be used to avoid the given country. To facilitate automatic multiplex-

ing between relays, RAN utilizes Proxy Autoconfiguration (PAC) files, which define

how browsers should choose a proxy when fetching a URL. In the example PAC file in

Configuration 3.1, proxy 1.2.3.4:3128 should be used when accessing www.google.com,

but proxy 5.6.7.8:3128 should be used when accessing www.twitter.com. The oracle

uses the mapping of domains to relays to generate a PAC file, which specifies which

domains should be accessed through which proxy. The PAC file is published online

to a URL of the format <client country> <country to avoid> pac.pac. The client

uses this URL to specify their proxy configuration. Paths are re-computed every five

days, so the contents of the PAC file are also updated every five days.

3.4.6 Extending RAN with Content Provider Support

While the current version of RAN does not include support by content providers, it

can be easily, incrementally, extended to do so without any fundamental changes to

the system. This would simply require providers (or a CDN) to collect and share

traceroute data from their server locations to different client and proxy locations;

RAN would then convert the traceroute data to country level paths and incorporate

them into the calculation of the PAC files. For content hosted in public clouds, we

could set up our own VM in those same data centers and have RAN collect the reverse

path traceroute data to use when creating the PAC files.

49

Content provider participation beyond gathering traceroute data would be even

more beneficial and would lead to more extensive changes to RAN. Some of the help

that content providers and CDNs could provide include publishing domain names that

embed information about which country to avoid, strategically publish DNS records

such that clients can take advantage of open DNS resolvers, and replicating content

in diverse geographic locations.

3.5 Implementation and Deployment

Our implementation of RAN includes relays, an oracle, and a client. RAN is open

source and written in Python; the oracle is written in just 175 lines of code and the

relay is written in just under 200 lines of code. RAN is currently deployed globally, and

any user may use it today. We have released an anonymized source code repository,

complete with usage instructions [136].

We assume that users and machines that operate relays are trustworthy, and

therefore the system runs securely. This implementation of RAN allows a client to

avoid a single country at a time; attacks on RAN, such as Denial of Service attacks

and targetted surveillance of the relays, are outside the scope of this work.

Relays. The current deployment has ten relays, one in each of the following coun-

tries: Brazil, Germany, Singapore, Japan, Australia, France, United States, United

Kingdom, Netherlands, and Canada; Figure 3.10 shows these relay locations, along

with their corresponding ASes. These relays operate as Ubuntu Virtual Private

Servers (VPSes) with Squid as the proxy server and the RAN Relay software.

Oracle. The oracle software runs on a Fujitsu RX200 S8 server with dual, eight-core

2.8 GHz Intel Xeon E5 2680 v2 processors with 256GB RAM running RedHat Linux.

50

Figure 3.10: The locations and ASNs for RAN relays.

Client. To evaluate the RAN deployment, we set up a client machine in the Nether-

lands, which simply accesses web content and uses the PAC file generated by the

oracle.

3.5.1 Other Considerations

Adding relays and oracles. To add a relay, the system operator must set up a

machine as a proxy server, install the relay software, and update the oracle’s list of

relays. From that point onward, paths will be computed to and from the new relay,

and clients will begin using the new proxy. Adding an oracle requires installing the

oracle software on a different machine, and specifying the client locations handled

by that oracle (e.g., one oracle handles clients in North America and Europe, and

another handles clients elsewhere). Both oracles will publish the PAC files to the

same server, which causes no changes for the client.

Failed relays and oracles. Unresponsive relays are handled by the PAC file. The

PAC file allows the oracle to specify multiple proxies in a sequential order, such that

if the first proxy fails, then the client uses the second proxy (and so on). This feature

can be used to specify all of the relays that have a path to the domain. Among other

mechanisms, we can detect a failed oracle by determining that its PAC file is older

51

than one hour. Detecting a failed oracle could trigger a backup oracle to re-compute

the PAC files periodically. Because oracles are stateless, failover is straightforward.

Without backup oracles, clients can still use the system when the oracle fails. The

clients will simply be using stale paths, which are likely (but not guaranteed) to be

functional, since country-level paths change infrequently.

3.6 Evaluation

We evaluate RAN’s ability to avoid a given country, its performance, and its storage

and measurement costs.

3.6.1 Country Avoidability

We measured RAN’s effectiveness in achieving country avoidance. We did so by first

calculating the number of default paths that avoid a given country. Then we added

a single relay, and calculated how many domains the client could access without

traversing through the given country. We repeated this approach for the remaining

relays. We conducted the evaluation under the condition that the client wished to

avoid different countries when accessing the Netherlands top 100 domains; Figure 3.11

shows these results. Each line represents the fraction of domains accessible while

avoiding the country that the line represents. For example, 46% of domains are

accessible without traversing the U.S. when RAN is not being used (zero relays), and

if RAN is used, then 63% of domains are accessible without traversing the U.S.

RAN helps a client avoid a foreign country, as the fraction of domains accessible

without traversing the specified country without RAN is lower than with RAN. Ad-

ditionally, adding the first relay provides the greatest benefit, while subsequent relays

offer diminishing returns. Figure 3.11 clearly shows that avoiding the U.S. is much

more difficult (or impossible) than any other country. Only 63% of domains can be

52

accessed while avoiding the U.S., whereas almost all domains can be accessed while

avoiding any other given country.

It is important to note that RAN cannot guarantee that a country is avoided

because for some domains, the path must go through the unfavorable country, as

evidenced by our results for avoiding the United States. Despite this lack of guaran-

tees, the system reduces the number of requests that transit the unfavorable country;

additionally, the client can learn which domains are not accessible without passing

through the unfavorable country, and can then decide whether or not to fetch that

page.

3.6.2 Performance

To measure the performance of RAN, we measure both the throughput and latency.

To measure throughput, we ran wget for each of the top 100 domains from the

client machine in the Netherlands using an oracle-generated PAC file. Because dif-

ferent relays could have been used to avoid a single domain, the oracle selected a

0 1 2 3 4
Number of Relays

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
no

fD
om

ain
sA

cc
es

se
dw

hil
eA

vo
idi

ng
aC

ou
ntr

y

United States
Ireland
France
Germany
United Kingdom
India

Figure 3.11: The effect of the number of relays on avoidance, for a client in the
Netherlands. We tested RAN with up to nine relays.

53

10−1 100 101

Ratio of RAN throughput to direct throughput (logscale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
D

om
ai

ns

Figure 3.12: The ratio of RAN throughput to direct throughput. The points on the
graph show measurements from the Resilient Overlay Networks (RON [5]) system and
thus represent the performance of overlay network that is solely designed to improve
reliability.

random relay from those that would allow the client to avoid the country. The oracle

generated ten PAC files for a client in the Netherlands who wishes to avoid the United

States, randomly selecting a relay for domains that could have used different relays,

and wget was used for the top 100 domains for each PAC file generated. Based on the

wget output, we calculate the number of seconds to access content using our system

and take the average across the ten experiments.

Figure 3.12 shows a CDF of the ratio of RAN throughput to direct throughput.

The throughput of RAN is not significantly worse than that of default paths. In some

cases the performance of RAN is better than that of default paths. Such improvements

could be a result of the relays keeping local traffic local, or due to a closer content

replica being selected. These results show that RAN’s performance is comparable

to the performance of accessing domains without RAN. Figure 3.12 also compares

RAN’s throughput to RON’s throughput, illustrated with the red dots; these data

points are taken directly from the RON paper [5]. RAN performs worse than RON

(x < 1), which is expected, as the detours that RAN introduces inherently inflate

54

0.0 0.2 0.4 0.6 0.8 1.0

Time to First Byte (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
D

om
ai

ns
With RAN
Direct

Figure 3.13: Time to First Byte for RAN and direct paths.

paths. Interestingly, both RON and RAN improve throughput for a similar fraction

of samples (x > 1).

To measure the latency of RAN, we ran curl to each of the top 100 domains from

the client in the Netherlands, using the ten oracle-generated PAC files to allow the

client to select the appropriate relays. This experiment allowed us to measure the time

to first byte (TTFB) for web downloads; we found the average TTFB when accessing

content using RAN and found the TTFB when using direct paths; Figure 4.10 shows

these results. The median TTFB for direct paths is 68.5 ms; for RAN paths the

median is 100.8 ms; 90th percentile TTFB is 22.5 ms and 40.4 ms, respectively.

3.6.3 Storage and Measurement Costs

As the number of clients increases, and hence the number of paths being computed

increases, the amount of storage must remain reasonable. The storage used by paths

can be calculated as DR + 2CR + CD where D is the number of domains; R is the

number of relays; and C is the number of ASes from which RAN measures. The

storage required for a single client, 100 domains, and nine relays is 480 KB. Because

there is a single PAC file for all clients in a country, C will grow much slower than

55

if there was a different PAC file for each individual client. There are 196 countries;

if RAN computed paths and a PAC file for each country, with 100 domains, and

three relays required storage would be only 94 MB, making it feasible to increase the

number of relays and domains.

RIPE Atlas credits are also a limited resource. Cost is proportional to C ·(R+D).

Each traceroute costs 60 RIPE Atlas credits, so one set of measurements for one client,

100 domains, and nine relays costs 6,180 credits; because these paths are updated each

hour, then the daily credit cost is 148,320 credits. In return for hosting a RIPE Atlas

probe, we earn 216,000 credits per day, which will support our existing prototype. To

provide for more clients, more domains, or more resources, we can tune the system

to re-compute paths less frequently, as we discuss in Section 4.8.

3.7 Discussion

Avoiding multiple countries We have studied only the extent to which Internet

paths can be engineered to avoid a single country. Yet, avoiding a single country

may force an Internet path into other unfavorable jurisdictions. Future work should

explore the feasibility of avoiding multiple countries or perhaps even entire regions.

Evolution over time Our study is based on a snapshot of paths. Over time, paths

change, hosting locations change, IXPs are built, submarine cables are laid, and the

countries conducting network interference change. We are continuing to collect the

measurements that we have presented in this paper to facilitate future exploration of

how these characteristics evolve over time.

Isolating DNS diversity vs. path diversity In our experiments, the overlay

network relays perform DNS lookups from geographically diverse locations, which

provides some level of DNS diversity in addition to the path diversity that the relays

56

inherently provide. This approach somewhat conflates the benefits of DNS diversity

with the benefits of path diversity and in practice may increase clients’ vulnerability

to surveillance, since each relay is performing DNS lookups on each client’s behalf.

We plan to conduct additional experiments where the client relies on its local DNS

resolver to map domains to IP addresses, as opposed to relying on the relays for both

DNS resolution and routing diversity.

ISPs controlling country avoidance Future work includes modifying RAN to

be implemented within an ISP. Adding country avoidance functionality within ISPs

(government-controlled or otherwise) allows ISPs to provide this as a transparent

service to customers. A government that wishes to control which countries its citizens’

traffic is traversing might deploy RAN in the country’s ISPs.

Additional RAN features The oracle could add additional steps in the decision

chain introduced in Section 3.4.5 that take into account relay and path loads. For

example, if multiple relays provide a path to a domain that does not traverse the

specified country, then the decision between the suitable proxies could be determined

based on current relay load or performance. Our current implementation of RAN re-

computes all paths once per five days; we could only re-compute paths when necessary.

For example, a BGP monitoring system detect routing changes and trigger path

measurements.

3.8 Related Work

Nation-state routing analysis Shah and Papadopoulos recently measured in-

ternational routing detours, specifically, tromboning paths—paths that originate in

one country, cross international borders, and then return to the original country—

using public Border Gateway Protocol (BGP) routing tables [151]. The study dis-

57

covered 2 million detours each month out of 7 billion paths. Our work differs by

actively measuring Internet paths using traceroute, yielding a more precise (and ac-

curate) measurement of the paths, as opposed to analyzing BGP routes. Obar and

Clement analyzed traceroutes that started and ended in Canada, but tromboned

through the United States, and argued that this is a violation of Canadian network

sovereignty [126]. Karlin et al. developed a framework for country-level routing anal-

ysis to study how much influence each country has over interdomain routing [100].

Their work measures country centrality using BGP routes and AS-path inference; in

contrast, our work uses active measurements and measures avoidability of a given

country.

Mapping national Internet topologies Roberts et al. developed a method for

mapping national networks and identifying ASes that act as points of control [142].

Several studies have also characterized network paths within a country, including

Germany [170,171] and China [185], or a country’s interconnectivity [18,63,78]; these

studies focus on paths within a country, as opposed to paths that traverse multiple

countries.

Routing overlays and Internet architectures Alibi Routing uses round-trip

times to prove that that a client’s packets did not traverse a forbidden country or

region [114, 184]; RAN differs by measuring which countries a client’s packets tra-

verse. Our work then uses active measurements to determine the best path for a

client wishing to connect to a server. RON, Resilient Overlay Network, is an overlay

network that routes around failures [5], whereas our overlay network routes around

countries. ARROW introduces a model that allows users to route around ISPs [130],

but requires ISP participation, making it considerably more difficult to deploy than

RAN. ARROW also aims to improve fault-tolerance, robustness, and security, rather

than explicitly attempting to avoid certain countries; ARROW provides mechanisms

58

to avoid individual ISPs, but such a mechanism is at a different level of granularity,

because an ISP may span multiple countries. Zhang et al. presented SCION, a “clean-

slate” Internet architecture that provides route control, failure isolation, and explicit

trust information for communication [183]; SCION, however, requires fundamental

changes to the Internet architecture, whereas RAN is deployable today.

Circumvention systems Certain tools, such as anonymous communications sys-

tems or virtual private networks [40, 46, 70, 108, 109, 124, 131, 166, 168, 178], use a

combination of encryption and overlay routing to allow clients to avoid censorship

and surveillance. Tor is an anonymity system that uses three relays and layered en-

cryption to allow users to communicate anonymously [46]. In contrast, RAN does not

aim to achieve anonymity; instead, its aim is to ensure that traffic does not traverse a

specific country, a goal that Tor cannot achieve. Even tools like Tor do not inherently

thwart surveillance: Tor is vulnerable to traffic correlation attacks and some attacks

are possible even on encrypted user traffic. VPNGate is a public VPN relay system

aimed at circumventing national firewalls [124]. Unfortunately, VPNGate does not

allow a client to choose any available VPN endpoint, which makes it more difficult

for a user to ensure that traffic avoids a particular country. Neither of these systems

explicitly avoid or route around countries. Additionally, existing circumvention sys-

tems generally rely on encryption, which is different from RAN; prior research has

shown that websites can be fingerprinted based on size, content, and location of third

party resources, which reveals information about the content a user is accessing [174].

Finally, ISPs often execute man-in-the-middle attacks on TLS connections to perform

network-management functions [74].

59

Chapter 4

Hosting: CDN Design to Prevent

Surveillance

As Content Distrubtion Networks (CDNs) host an increasing amount of content from

a diversity of publishers, they are fast becoming targets of requests for data about their

content and who is requesting it, as well as requests for takedown of material ranging

from alleged copyright violations to offensive content. The shifting legal and political

landscape suggests that CDNs may soon face liability for the content that they host.

For example, the European Union has been considering laws that would remove safe

harbor protection on copyright infringement for online service providers if they do not

deploy tools that can automatically inspect and remove infringing content [59]. In the

United States, various laws under consideration threaten aspects of Section 230 of the

Communications Decency Act, which protects CDNs from federal criminal liability

for the content that they host. Tussles surrounding speech, from copyright violations

to hate speech, are currently being addressed in the courts, yet the legal outcomes

remain ambiguous and uncertain, sometimes with courts issuing opposing rulings in

different cases. And while this legal landscape is still changing, CDN operators have

the capability to observe an enormous amount of information about both clients and

60

content. Not only is this a privacy concern if the CDN operator wishes to monitor

traffic, but also if the CDN operator is served with a data request. Regardless of

the legal and policy outcomes, CDNs are increasingly in need of technical protections

against the monitoring and collection of clients’ data and content that they serve.

Towards this end, we design and implement a system that allows clients to retrieve

web objects from one or more CDNs, while preventing the CDNs from learning either

(1) the content that is stored on the cache nodes; or (2) the content that clients

request. We call this system an oblivious CDN (OCDN), because the CDN is oblivious

to both the content it is storing and the content that clients request.

OCDN allows clients to request individual objects with identifiers that are en-

crypted with a key that is shared by an open proxy and the origin server that is

pushing content to cache nodes, but is not known to any of the CDN cache nodes.

To do so, the origin server publishes content encrypted with a shared key, which is

subsequently shared with a proxy that is responsible for routing requests for objects

corresponding to that URL. A client forwards a request for content through a set of

peers (i.e., other OCDN clients) in a way that prevents both other clients and the

CDN from learning the client identity or requested content. After traversing one or

more client proxies, an exit proxy transforms the URL that it receives from a client

to an obfuscated identifier using the key that is shared with the origin server corre-

sponding to the identifier. Upon receiving that request from the exit proxy, the CDN

returns the object corresponding to the object identifier; that object is encrypted with

a key that is shared between the origin and the proxy. This approach allows a user to

retrieve content from a CDN without any node in the CDN ever seeing the URL or

the corresponding content, or even knowing the identity of the client that made the

original request. Using OCDN requires only minimal modification to existing clients;

clients can also configure aspects of the system to trade off performance for privacy.

61

Ensuring that the CDN operator never learns information about either (1) what

content is being stored on its cache nodes or (2) which objects individual clients are

requesting is challenging, due to the many possible inference attacks that a CDN

might be able to mount. For example, previous work has shown that even when web

content is encrypted, the retrieval of a collection of objects of various sizes can yield

information about the web page that was being retrieved [29, 128]. Similarly, URLs

can often be inferred from relative popularity in a distribution of web requests, even

when the requests themselves are encrypted. Additionally, the OCDN design assumes

a strong attack model (Section 4.2), whereby an adversary can request logs from the

CDN, interact with OCDN as a client, a proxy, or a publisher, and mount coordinated

attacks that depend on multiple such capabilities. Our threat model does not include

active attempts to disrupt the system (e.g., blocking access to parts of the system,

mounting denial of service attacks), but it includes essentially any type of attack that

involves observing traffic and even directly interacting with the system as a client or

a publisher.

The design of OCDN (Section 5.2) under such a strong attack model entails many

unique aspects and features. Because the system allows any client to join as a proxy,

even setting up the infrastructure is challenging. For example, an attacker could try

to join the system as a proxy with the intent of proxying for specific web content,

in an attempt to either disrupt or surveil those requests. To counter this threat,

OCDN uses consistent hashing to map object identifiers (i.e., URLs) to the proxy

responsible for ultimately routing traffic to the CDN that hosts the object; to ensure

that publishers only communicate keys to the proxies responsible for their content,

each proxy must prove its identity to the respective publisher using a proof that relies

on a self-certifying identifier.

Requesting and retrieving content, a process that we describe in detail in Sec-

tion 4.4, is challenging since neither the CDN nor the proxy must know which client

62

originated a request for a specific piece of content. The key exchange between an

origin server and its respective proxy protects the confidentiality of both the con-

tent and the identifier (i.e., the URL) from the CDN. To obfuscate the source of the

original request, clients construct a source route to an exit proxy, but the route can

be prepended with proxies that precede the client who originated the request. To

defend against various inference attacks, as well as to balance load, the OCDN design

allows publishers to use multiple CDNs to distribute the same content, ensuring that

no single CDN has access to information such as the relative popularity distribution

of all objects. To ensure that no single proxy learns the request pattern for a single

object, as well as to balance load, the design also can also use consistent hashing to

assign a set of proxes to a single object.

4.1 Background

We now outline how a CDN typically operates, including what information it has

access to by virtue of running a CDN. We also discuss some of the ongoing legal

questions that CDNs currently face.

4.1.1 Content Distribution Networks

CDNs provide content caching as a service to content publishers. A content publisher

may wish to use a CDN provider for several reasons:

• CDNs cache content in geographically distributed locations, which allows for

localized data centers, faster download speeds, and reduces the load on the

content publisher’s server.

• CDNs typically provide usage analytics, which can help a content publisher get

a better understanding of usage as compared to the publisher’s understanding

without a CDN.

63

Clients

CDN Origin Server

CDN can see
responses

CDN can see
content

Figure 4.1: The relationships between clients, the CDN, and content publishers in
CDNs today.

• CDNs provide a high capacity infrastructure, and therefore provide higher avail-

ability, lower network latency, and lower packet loss.

• CDNs’ data centers have high bandwidth, which allows them to handle and

mitigate DDoS attacks better than the content publisher’s server.

CDN providers usually have a large number of edge servers on which content

is cached; for example, Akamai has more than 216,000 servers in over 120 countries

around the world [4]. Having more edge servers in more locations increases the proba-

bility that a cache is geographically close to a client, and could reduce the end-to-end

latency, as well as the likelihood of some kinds of attacks, such as BGP (Border

Gateway Protocol) hijacking. This is evident when a client requests a web page; the

closest edge server to the client that contains the content is identified and the content

is served from that edge server. Most often, this edge server is geographically closer

to the client than the content publisher’s server, thus increasing the speed in which

the client receives the content. If the requested page’s content is not in one of the

CDN’s caches, then the request is forwarded to the content publisher’s server, the

CDN caches the response, and returns the content to the client.

64

4.1.2 What CDNs Can See

Because the CDN interacts with both content publishers and clients, as shown in

Figure 4.1, it is in a unique position to learn an enormous amount of information.

CDN providers know information about all clients who access data stored at the CDN,

information about all content publishers that cache content at CDN edge servers, and

information about the content itself.

Content. CDNs, by nature, have access to all content that they distribute, as well

as the corresponding URL. First, the CDN must use the URL, which is not encrypted

or hidden, to locate and serve the content. Therefore, it is evident that the CDN

already knows what content is stored in its caches. Because CDNs provide analytics

to content publishers, they keep track of cache hit rates, and how often content is

accessed. The CDN not only knows about the content identifier; it also also has access

to the plaintext content. A CDN performs optimizations on the content to increase

performance; for example, CDNs minimize CSS, HTML, and JavaScript files, which

reduces file sizes by about 20%. They can also inspect content to conduct HTTPS

re-writes; we discuss how OCDN handles these types of optimizations in Section 4.8.

In addition, requesting content via HTTPS does not hide any information from the

CDN; if a client requests a web page over HTTPS, the CDN terminates the TLS

connection on behalf of the content publisher. This means that not only does the

CDN know the content, the content identifier, but also it knows public and private

keys, as well as certificates associated with the content it caches.

Client information. Clients retrieve content directly from the CDN’s edge servers,

which reveals information about the client’s location and what the client is accessing.

CDNs can also see each client’s cross-site browsing patterns: CDNs host content

for many different publishers, which allows them to see content requests for content

65

published by different publishers. This gives an enormous amount of knowledge to

CDNs; for example, Akamai caches enough content around the world to see up to

30% of global Internet traffic [3]. The implications of a CDN having access to this

much information was evident when Cloudflare went public with the National Security

Letters they had received [41]; these National Security Letters demanded information

collected by the CDN and also included a gag order, which prohibits the CDN from

publicly announcing the information request.

Content publisher information. A CDN must know information about their

customers, the content publishers; the CDN keeps track of who the content publisher

is and what the publisher’s content is. The combination of the CDN seeing all content

in plaintext and the content’s linkability with the publisher, gives the CDN even

more power. Additionally, as mentioned previously, the CDN often holds some of

the publisher’s keys (including private keys), and the publisher’s certificates. This

has led to doubts about the integrity of content because a CDN can impersonate the

publisher from the client’s point of view [115].

4.1.3 Open Legal Questions

Various parties are battling in the courts over cases that pertain to user data requests

and intermediary liability. Large companies often have large numbers of users, which

makes them a target of data requests, for example by a government entity. Interme-

diary liability would impose criminal liability on an Internet platform (or a CDN) for

the content it provides on behalf of its customers or users. In the following section,

we highlight some of these cases, which all point to a key problem that CDNs face:

by knowing all the content that they distribute, CDNs may be burdened with the

legal responsibility because of the actions of their customers and clients.

66

User Data Requests. There are numerous open questions in the legal realm re-

garding which government can request data stored in different countries, which has

led to much uncertainty. A series of recent events have illustrated this uncertainty. In

the struggle over government access to user data, cases such as Microsoft vs. United

States (often known as the “Microsoft Ireland Case”) concerns whether the United

States Government should have access to data about U.S. citizens stored abroad,

given that Microsoft is a U.S. corporation.

Additionally, there have been user data requests asked of CDNs. The Cloudflare

CDN has been required to share data with FBI [41]; similarly, leaked NSA documents

showed that the government agency “collected information ‘by exploiting inherent

weaknesses in Facebook’s security model’ through its use of the popular Akamai

content delivery network” [87].

Intermediary Liability. More recently, questions on intermediary liability have

been in the spotlight. For example, many groups, including the Recording Indus-

try Association of America (RIAA) and the Motion Picture Association of America

(MPAA), have started targeting CDNs with takedown notices for content that al-

legedly infringes on copyright, trademarks, and patent rights; CDNs are a more con-

venient target of these takedown notices than the content provider because oftentimes

the content provider is either located in a jurisdiction where it is difficult to enforce

the takedown, or it is difficult to determine the owner of the content [38,39]. In 2017,

a district court ruled that Cloudflare is not protected from anti-piracy injuctions by

the Digital Millennium Copyright Act (DMCA); the RIAA obtained a permanent in-

junction against a site known as MP3Skull, which contained pirated content, and was

distributed by Cloudflare. The ruling did not specify that Cloudflare was enjoined

with MP3Skull under the DMCA, but rather that Cloudflare was helping MP3Skull

in evading the injunction (under Rule 65 of the Federal Rules of Civil Procedure) [47].

67

The role of a CDN as an intermediary has also come into question in new and

currently pending legislation, including a new German hate speech law and a bill

proposed by the U.S. Senate called Stop Enabling Sex Traffickers Act (SESTA). In

October 2017, Germany passed a new law that imposes large fines, upwards of five

million euros, on social media companies that do not take down illegal, racist, or

slanderous comments and posts within 24 hours [43]. The law targets companies such

as Facebook, Google, and Twitter, but could also apply to smaller companies, which

could be serviced by CDNs. In the latter case, it is an open question whether this

new law also applies to CDNs. In the United States, the SESTA bill makes Internet

platforms liable for their user’s illegal comments and posts [13]. SESTA can hold

CDNs liable for the content that they distribute (despite the CDN not being a party

in the content publishing); these types of laws can naturally lead to overblocking,

where an intermediary errs on the side of caution and censors more content than it

needs to.

4.2 Threat Model and Security Goals

In this section, we describe our threat model, outline the capabilities of the attacker,

and introduce the design goals and protections that OCDN provides.

4.2.1 Threat Model

Our threat model is a powerful adversary who has a variety of capabilities, including

both surveilling activities and joining the system in various capacities. We assume

that an adversary can gain access to the CDNs logs, which typically contains client

IP addresses and URLs for each request. This adversary could be the CDN itself

or a party who can compromise the CDN. Additionally, the adversary could join

OCDN as either a client or any number of clients, or as an arbitrary number of exit

68

proxies. The adversary could also act as an origin server (a content publisher). We

also assume that the adversary can coordiante several of these actions to learn more

information. For example, the adversary could join as a client and an exit proxy, and

access the CDN’s logs to observe how its own requests are obfuscated. Additionally,

the adversary can perform actions, such as generating requests as a client, or creating

content as a content publisher. The goal of this type of adversary is to learn about

the content being stored at the CDN and/or learn about which clients are accessing

which content.

The strong adversary that we consider has seen some precedent in practice: for

example, governments have demanded access to CDNs’ data [41]. Although one

possible adversary is a government requesting logs from the CDN, the government

could also be colluding with a CDN; the CDN operator might even be an adversary.

Our design does not defend against an attacker who attempts to actively disrupt

or block access to the system, such as by actively modifying content, disrupting com-

munications (e.g., through denial of service), or blocking access, content, or requests.

Prior work on securing CDNs has introduced methods to handle an actively malicious

adversary by preserving the integrity of content stored on CDN cache nodes [115].

We do not address an adversary that tampers, modifies, or deletes any data, content,

or requests.

4.2.2 Security and Privacy Goals for OCDN

To defend against the adversary described in Section 4.2.1, we highlight the design

goals for OCDN. Each stakeholder—in this case the content publisher, the CDN, and

the client—has different risks, and therefore should have different protections. All

three stakeholders can be protected by preventing CDNs from learning information,

decoupling content distribution from trust, and maintaining the performance benefits

of a CDN while reducing the probability of attacks. One strength of OCDN is that

69

it protects the origin server, the CDN itself, and the client, whereas existing systems,

such as Tor, only protect the client.

Prevent the CDN from knowing the content it is caching. First and fore-

most, the CDN should not have access to the information outlined in Section 5.1. By

limiting the information that the CDN knows, OCDN limits the amount of informa-

tion that an adversary can learn or request. OCDN should hide the content as well

as the URL associated with the content. If the CDN does not know what content it

is caching, then the CDN will not be able to supply an adversary with the requested

data and it will have a strong argument as to why it cannot be held liable for its

customers’ content.

Prevent the CDN from knowing the identity of users accessing content.

CDNs can currently see clients’ browsing patterns. OCDN should provide privacy

protections by hiding which client is accessing which content at the CDN. In addition,

it should hide cross-site browsing patterns, which a CDN is unique in having access

to. Some CDNs block legitimate Tor users because they are trying to protect cached

content from attacks, such as comment spam, vulnerability scanning, ad click fraud,

content scraping, and login scanning [37]; for example, Akamai blocks Tor users [105].

As a positive side effect, OCDN prevents privacy-conscious Tor users from being

blocked by CDNs. Finally, some CDNs, due to their ability to view cross site browsing

patterns, could de-anonymize Tor users [164], but OCDN would prevent a CDN from

compromising the anonymity of clients.

4.2.3 Performance Considerations

As one of the primary functions of a CDN is to make accessing content faster and more

reliable, OCDN should consider performance in design decisions. The performance

of OCDN will be worse than that of traditional CDNs because it is performing more

70

Origin Server X

Origin Server Y

Proxies

Client

Exits

CDN X

CDN Y

Figure 4.2: The relationships between clients, exit proxies, CDNs, and origin servers
in OCDN.

operations on content, but OCDN is offering confidentiality, whereas traditional CDNs

are not. OCDN should scale linearly with the number of clients in terms of load and

storage requirements on exit proxies; additionally, it should be able to scale with the

number of clients using the system, as well as with the growing number of web pages

on the internet.

4.3 OCDN Design

OCDN provides oblivious content distribution and comprises the following compo-

nents: clients, exit proxies, CDNs, and origin servers. Clients are the Internet users

who use the system to access content stored on CDN cache nodes; exit proxies are

proxies that obfuscate the requests and responses retrieved from the CDNs; and the

origin servers are the content publishers who are customers of the CDNs. Figure 4.2

shows how these components interact in the system. This section describes the de-

cisions made in the design of OCDN, and what functionality each decision provides.

We separate design decisions into two parts: 1) hiding content and 2) hiding clients.

We also highlight some additional options that the design of OCDN allows.

71

Design Decision Function

Shared Keys Hides content on cache nodes
from CDN.

Consistent Hashing Load balance requests across
proxies; ensure no proxy can con-
trol a given URL.

Self-Certifying Identifiers Authenticates exit proxies to ori-
gin servers.

DNS for Key Sharing Allows origin server to share
shared keys with exit proxies.

Table 4.1: Design decisions associated with hiding content from a CDN.

4.3.1 Hiding Content

We start by discussing how the system components communicate and authenticate

one another; Table 4.1 summarizes these decisions. We introduce shared keys be-

tween origin servers and exit proxies, how these keys are stored, how the exit proxies

authenticate themselves to origin servers, and how these keys are distributed.

Shared Keys. To prevent an adversary from learning information, the CDN must

not know anything about the content that it is caching. Therefore, the content and

the associated URL must be obfuscated before the CDN sees them. The content can

be obfuscated by encrypting it with a key that is not known to the CDN. Because

this must be done prior to any caching, the content publisher must generate a shared

key k to encrypt the content with. Encrypting the content alone does not hide much

from the CDN; the content identifier, or URL, must also be obfuscated, otherwise the

CDN can still reveal information about which clients accessed which URLs (which

is indicative of the content). In obfuscating the URL, the result should be fixed

and relatively small; these requirements reduce storage requirements and prevent

the adversary from guessing the URL based on the length of the obfuscated URL.

Unfortunately, using a simple hash allows an attacker to guess the content identifier by

hashing guesses and comparing with the hashes stored in the CDNs caches. Therefore,

the content publisher incorporates the use of the shared key k into the hash of the

72

URL by using a hash-based message authentication code (HMAC). Additionally, if

the domain supports HTTPS requests, then the content publisher must also encrypt

the associated certificate with the same key k.

The encrypted content and corresponding HMAC are sent to the CDN1 and stored

in its caches. The content publisher then shares the key k with an exit proxy. This key

allows the exit proxy to request encrypted content on behalf of clients by computing

the HMAC on the URL.

Consistent Hashing. Each exit proxy stores a mapping of URLs to their associ-

ated shared key k; for example, if an origin server has shared key k and publishes a

web page www.foo.com, then an exit proxy will store the mapping of www.foo.com

to k. The set of exit proxies jointly compute a distributed hash table where the key

is the URL (www.foo.com) and the value is the shared key (k). To assign (key,value)

pairs to exit proxies, OCDN uses consistent hashing [99, 116]. Consistent hashing

uses a hash function H(.) to generate identifiers for both exit proxies and for URLs;

the identifiers are H(exit ID) and H(URL). We discuss what exit ID is in the next

section on Self-Certifying Identifiers. After the hashes are computed, then they are

mapped to a point on an identifier circle (modulo 2m, where m is the length of iden-

tifier in bits); each URL (H(URL)) on the circle is assigned to the first exit proxy

(H(exit ID)) that is equal to or follows H(URL) on the circle. This hashing method

is used in OCDN because it provides: 1) an evenly distributed mapping of URLs to

shared keys among the exit proxies, 2) a way to prevent an exit proxy from choos-

ing which URL it wishes to be responsible for, and 3) a relatively small amount of

(key,values) to be moved when a new exit proxy is established (or removed).

1Most CDNs allow the publisher to decide on a push or pull model, but OCDN is compatible
with either approach.

73

Self-Certifying Identifiers. Consistent hashing uses identifiers for both the URLs

and the exit proxies. While the identifiers for URLs are straightforward (H(URL)),

the identifiers for exit proxies must provide more information; an exit proxy identifier

must be able to prove to an origin server that it is the exit proxy that is responsible for

the associated URL. If this validation was not part of OCDN, then any (potentially

malicious) exit proxy could request the shared key k from any or all origin servers.

To prevent a malicious exit proxy from learning any shared key k, the proxy must

be identified by a self-certifying identifer. This technique was first introduced in a

self-certifying file system [121]; it allows for other entities (such as origin servers)

to certify the exit proxy solely based on its identifier. The format of this identifier

(exit ID) is IP:hostID, where IP is the exit proxy’s IP address and hostID is a

hash of the exit proxy’s public key. A malicious exit proxy cannot choose where on

the consistent hashing ring it sits because it cannot frequently change and re-hash

its own IP address (whereas it could re-generate a new public key).2 When an exit

proxy is requesting the shared key k from an origin server, it sends its identifier and

its public key to the origin server. The origin server can then hash the exit proxy’s

public key and verify it against the hostID; this action serves as a proof of the exit

proxy’s position in the consistent hashing circle, and thus prevents a proxy from lying

about where it lies on the ring (and subsequently lying about which URL’s shared

key it is responsible for). Note that this exit ID is used on the consistent hashing

circle as H(IP) : H(hostID); the exit ID must be the same length as H(URL), so

the exit ID consists of the first half of the bits of H(IP) concatenated with the first

half of the bits of H(hostID).

2While a malicious exit proxy cannot specifically choose its location on the hashing ring, it could
recompute a public key until it finds a certain location on the hashing ring. This is limited by the
fact that the exit proxy’s IP address is part of its identifier, and we assume that the adversary
running the exit proxy cannot change IP addresses to a value of his choice or in a frequent manner.
A potential attack that an adversary can execute on a DHT using a consistent hashing scheme is a
Sybil attack, where the adversary runs many exit proxies to hopefully place himself in his desired
location on the hashing ring. We describe countermeasures to a Sybil attack in Section 4.6.

74

Design Decision Function

Spoofed Source Routes Hides origin of client request
from other clients, exit proxies,
and CDN.

Session Keys Hides URL and response from
other clients.

Multicast Response Allows CDN to return content
directly to client without know-
ing the client that requested the
content.

Table 4.2: The design decisions associated with content requests and responses, and
what these decisions provide.

DNS for Key Sharing. We have discussed how shared keys are generated, used,

and stored, and here we describe how they are shared. As previously stated, the origin

servers generate shared keys and must share them with the (correct) exit proxies.

OCDN uses DNS to do so. To retrieve a shared key k, an exit proxy sends a DNS

query to the origin server’s authoritative DNS, and it includes its identifier, exit ID,

and its public key in the Additional Info section of the query. The authoritative

DNS for the origin server validates the exit proxy by hashing the public key and

comparing it to the second part of exit ID, and verifying that the exit proxy is

responsible for its URL based on the consistent hashing circle. If the verification is

successful, then the authoritative DNS sends the shared key k encrypted under the

exit proxy’s public key, {k}PKexit
in the SRV record of the DNS response. The exit

proxy extracts k by decrypting with its private key, and stores it in its hash table.

4.3.2 Hiding Clients’ Identities

We make additional design choices that concern the requests that clients initiate and

the responses they receive. Table 4.2 highlights these decisions; we introduce session

keys, how requests are routed from clients to exit proxies, and how responses are

routed from exit proxies back to the original client.

75

Potentially Spoofed Source Routes. As previosuly described, exit proxies query

the CDN on behalf of clients, but the exit proxy should not be able to learn which

client sent which request. This obfuscation is accomplished by routing requests

through a series of other clients. In OCDN, each client is running a proxy and is

also a peer in this system; this peer-to-peer system of clients borrows the protocols

used for clients joining, leaving, and learning about other clients from the vast liter-

ature on peer-to-peer systems. A client routes a request through her peers by using

source routing; when the client generates a request, it also generates a source route,

which includes the addresses of a set of her peers. The last hop in the source route

is the exit proxy that is responsible for the shared key k associated with the URL in

her request. The client determines the correct exit proxy by looking this up in a local

mapping (which is retrieved from a central system that keeps the mapping of URLs

to exit proxies). It appends this source route to its request and forwards it to the

next peer in the route. When a peer receives a request, she simply forwards it on to

the next peer; this continues until the last hop in the source route, which is an exit

proxy.

Although it might initially appear as if it is easy to identify the client that initiated

a request as the first hop in the source route, OCDN allows each client to spoof source

routes; specifically, a client can prepend other peers in the route before it initiates a

request. For example, a client with identity C could generate a route to exit proxy E

that looks like C → G → F → E and can further obfuscate the source of the route

by prepending additional clients to the beginning of the route as follows:

D → A→ C → G→ F → E.

Neither G, F, nor E know who the original requestor was; from E’s point of view,

the original requestor could have been D, A, C, G, or F. Using a sequence of peers,

or even just knowing that a client can use a series of peers, hides the identity of the

client from other clients, exit proxies, and the CDN.

76

Session Keys for Request and Response Confidentiality. In addition to

shared keys between origin servers and exit proxies, OCDN uses session keys shared

between clients and exit proxies. Session keys provide confidentiality of the requested

URL and the response. When the client generates a request, it generates a session key

skey. and encrypts the URL in her request with this key, which provides {URL}skey.

The client must also share this session key with the exit proxy, so that the exit proxy

can learn the plaintext URL and subsequently compute the HMAC to query the

CDN. The client encrypts the session key with the exit proxy’s public key, result in

{skey}PKexit
, and appends this value as an additional header on the request. Because

her request could be forwarded through a set of client peers, this hides the URL of

the request from other clients.

When an exit proxy receives a request from a client, it first extracts the session key

skey by decrypting it with the proxy’s private key, and then the proxy decrypts the

URL with the session key. This operation yields the original plaintext URL. Using the

shared key k from the origin server, the proxy can then compute HMACk(URL) and

forward the request to the CDN. Upon receiving a response from the CDN, the exit

proxy then decrypts the content with the shared key k, and encrypts the content with

the session key skey before sending it to the client. When it receives the encrypted

response, the client can then decrypt it using skey.

Multicast Responses. Using session keys allows for a performance optimization

in sending responses back to clients. Instead of sending the encrypted response from

the exit proxy back to the client via the set of peers used in the source route, the

exit proxy can send it in a multicast manner to all clients that were on the source

route. The only client that knows skey is the true client that originated the request,

therefore none of the other clients can interpret the response, and it reduces the

latency for sending the response to the client.

77

4.3.3 Incentives for Running OCDN

As described in Sections 4.3.1 and 4.3.2, OCDN relies on the use of a system of

proxies. These include: 1) client proxies, and 2) exit proxies. For a client to join

the system, they must also run client proxy on his/her machine. On the other hand,

there is no requirement for a client, organization, or company to run an exit proxy;

despite this lack of requirement, we believe that both clients and companies have

enough incentives to run an exit proxy (or multiple exit proxies). Clients benefit

from running an exit proxy because it allows OCDN to perform better in terms of

both performance and privacy; when there are more exit proxies, then there is less

load put on each exit proxy, and there is a smaller chance that an attacker has access

to most exit proxies. Companies benefit from running an exit proxy for similar reasons

— performance and privacy —, but it could help Internet users access their content

quicker (assuming they have content cached by the CDN).

4.3.4 Design Alternatives

While our explanation of the design of OCDN describes a series of proxies that are run

by us, but are not trusted; here we describe alternative designs regarding the system

of proxies. The system will work with both a closed, trusted system of proxies, as

well as with an open (untrusted) system of proxies.

Closed System of Proxies. While the proxies in OCDN are not trusted, OCDN

could use a system of closed and trusted proxies. There are potential groups or

organizations that would support this type of system, and would be willing (and

trusted) to run the exit proxies. If the exit proxies were trusted, then parts of the

design of OCDN could be simplified; for example, if proxies were trusted, then OCDN

would not need to hide the identity of clients from the exit proxies, and could remove

spoofed source routes from the design. The primary drawback of this approach is

finding an organization that everyone could trust to run the exit proxies.

78

Open System of Proxies. In OCDN, exit proxies are not trusted with client

identities and information, which removes the need to find a universally trustworthy

organization. In an alternative approach, OCDN could use a completely open system

of proxies that are untrusted, which would allow anyone (clients, companies, etc.) to

run an exit proxy. The addition of an exit proxy follows the protocol in consistent

hashing for when a new node joins; some keys would be transferred to the new exit

proxy, and clients’ mapping of exit proxies will be updated. This allows for the load

to be split among more proxies and increases the geographic diversity of the exit

proxies.

4.3.5 Design Enhancements

Up to this point, we have discussed how OCDN is designed in the general case. Here

we describe some additional options that OCDN’s design can include.

Multiple CDNs. While describing the design decisions that went into OCDN, we

referred to a single CDN for simplicity. In reality, OCDN allows for many CDNs

to participate; distributing content across multiple CDNs could provide additional

privacy. Origin servers can also take advantage of multiple CDNs.

Encoding URLs. As described earlier, each URL is obfuscated by using a HMAC

and then stored on the CDN. An adversary could potentially correlate a URL’s pop-

ularity with its access patterns. To prevent this, OCDN allows origin servers to

generate multiple different encodings of its URLs, such that HMACk(enc1(URL)) 6=

HMACk(enc2(URL)). Each origin server could produce n different encodings of pop-

ular URLs, such that the popularity distribution seen by an adversary is a uniform

distribution of URL requests across all URLs. Another way to prevent correlation

based on access patterns is to keep the URL constant, but change the encryption

79

scheme; for example, the URL could be hashed and then encrypted with a random-

ized encryption scheme.

DHT Replicas. Each exit proxy’s hash table can be replicated by another (or many

other) exit proxies. This would provide less load per exit proxy, as well as redundancy

in case of failures. Additionally, the CDN can cache the content associated with a

given URL at more than one cache node; if only one exit proxy is responsible for a

given URL’s content, then it would likely only be cached at cache node closest to

the exit proxy. Having multiple exit proxies responsible for a URL’s content helps

decrease the load on the proxies while maintaining some of the performance benefits

of a CDN.

Partial Content. Different origin servers have different needs, and each origin

server might have different needs for different content. The design of OCDN allows

origin servers to publish some of their content on OCDN and some on other CDNs.

This is useful in a case where some content is more sensitive, while other content

needs better performance.

Pre-Fetch DNS Responses. One way to increase the performance of OCDN is

to pre-fetch DNS responses at the exit proxies. This would allow the exit proxy

to serve each client request faster because it would not have to send as many DNS

requests. Pre-fetching DNS responses would not take up a large amount of space, but

it also would not be a complete set of all DNS responses. Additionally, if the content

is moved between cache nodes at the CDN, then DNS response must also change;

therefore, the pre-fetched DNS responses should have a lifetime that is shorter than

the lifetime of the content on a cache node.

80

CDN Cache Node Origin Server

HMACk(URL)
{content}k
{certificate}k

Figure 4.3: How content is published in OCDN. k is shared between the origin server
and the corresponding exit proxy; the CDN has no knowledge of k.

Privacy vs. Performance Tradeoffs. There are two different modes that OCDN

can operate in, where one provides better performance, and the other provides better

privacy. In the first mode, the client can choose to send a request directly to the exit

proxy.

In this case, the exit proxy might be able to discover the identity of the client,

but the CDN would still not be able to map a request to the client that made the

request. Alternatively, the client can forward a request through a set of peers before

it reaches the exit proxy. In this case, the client can prepend other clients’ identifiers

(as previously described) to make it appear as though the request came from a dif-

ferent client. This action further obscures the relationship between the client and the

request. As another option, the client could only prepend other clients’identifiers but

simply forward the request directly to the exit proxy; this action provides the same

performance benefit as the first mode, but still offers some additional privacy benefits.

Although the last option would appear to strike the optimal balance between privacy

and performance, it cannot be the only option because the exit proxy would always

know that the true client is the previous hop in the source route. These modes of

operation provide clients with different ways to use the system both based on their

privacy preferences and the type of content they are requesting.

81

4.4 OCDN Protocol

Based on the design decisions discussed in the previous section, we specify the steps

taken to publish and retrieve content in OCDN.

4.4.1 Publishing Content

In order to publish content such that the CDN never sees the content, the publisher

must first obfuscate her content, as described in Section 5.2. Figure 4.3 shows the

steps taken to publish content.

The most important step in content publishing is obfuscating the data. We assume

that the origin server already has a public and private key pair, as well as a certificate.

To obfuscate the data the origin server will need to generate a shared key k.

Once the key is established, the origin server must first pad the content to the

same size for some range of original content sizes (i.e., if content is between length x

and y, then pad it to length z). The range of content sizes should be small, such that

this causes negligible padding overhead, but reduces the probability of identifying

the content based on the content length. This content padding is done to hide the

original content’s length, as it may be identifiable simply by its length. After content

is padded, then the content is divided into fixed size blocks and padded to some

standard length. Then each block is encrypted using the shared key k, resulting in a

set of encrypted blocks. Because the CDN does not have access to the shared key, it

cannot see what content it is caching.

Now that the content is obfuscated, the origin server must also obfuscate the

content’s identifier. To do so, she computes the HMAC of the URL using the shared

key k.

Once the identifier and the content are obfuscated with k, they can be pushed

to the CDN, or optionally to multiple CDNs. Recently, services have cropped up to

82

allow and help facilitate the use of multiple CDNs for the same content; an origin

server could use multiple CDNs’ services. This mechanism could be used in OCDN to

increase reliability, performance, and availability; an origin server can use a service,

such as Cedexis [33], to load balance between CDNs. We discuss the use of multiple

CDNs more in Section 4.4.4 on OCDN in partial deployment.

As the exit proxies use consistent hashing to divide keys among proxies while

balancing load, the origin server determines which exit proxy is correct (based on

the consistent hashing circle). The origin server then encrypts the shared key k with

the correct exit proxy’s public key PKexit. Figure 4.6 shows the steps for retrieveing

a shared key. First, the exit proxy sends a DNS request to the origin server’s au-

thoritative DNS server, including its self-certifying identifier and its public key (these

are both included in the Additional Info section of the DNS message). The origin

server hashes the exit proxy’s public key and verifies it against its self-certifying iden-

tifier; this acts as a proof of the exit proxy’s position in the consistent hashing circle.

If the origin is able to certify the exit proxy, then it will send the DNS response with

{k}PKproxy in the SRV record. The exit proxy will receive the encrypted shared key,

which it can decrypt with its private key.

Updating Content. For an origin server to update content, she must follow similar

steps as described in publishing content. Once she has updated the content on her

origin server, she must obfuscate it using the same steps: 1) pad the original content

length, 2) divide the content into fixed size blocks, and 3) encrypt the content blocks

with the shared key k. Because she is updating the content (as opposed to creating

new content), the obfuscated identifier will remain the same. The origin server signs

the updated obfuscated content with her private key, such that the CDN can verify

it was true origin server that sent the update.

83

Updating Keys. An origin server must be able to update keys in case of compro-

mise. To minimize the amount of time a key is compromised for, the origin server

specifies an expiration date and time for the key when it is originally generated. The

origin server periodically checks if the key is valid or not based on the expiration

timestamp. If the key is still valid, the origin server continues to use it. Otherwise,

the origin server generates a new key knew, computes HMACknew(URL), and encrypts

the content (and possibly certificate) with knew. The content publisher then follows

the same steps as in Updating Content to push the content to the CDN, and it

publishes knew encrypted with the exit proxy’s public key in it’s DNS SRV record.

The corresponding exit proxy must also be able to fetch this new key knew and

replace the expired key with it. When the exit proxy sees an incoming request for

a URL that uses key k, it first checks k’s timestamp. If valid, then it continues as

normal. Otherwise, it sends a DNS request to the publisher’s authoritative DNS, and

extracts {knew}PKproxy from the DNS response. The exit proxy then decrypts it to

obtain knew, updates its version of the key, and proceeds as normal.

4.4.2 Retrieving Content

The steps for a client to retrieve a web page that has been cached by OCDN are

shown in Figure 4.4, where the client forwards a request directly to an exit proxy;

Figure 4.5 shows the steps to retrieve content when the client forwards its request

through two peers. We assume the client has already joined the system, which is

described in more detail in Section 4.4.3; at this stage, the client has knowledge of

a subset of its peers (other OCDN clients) and a mapping of exit proxies and which

URLs they hold keys for. The client generates a request for a specific URL, and

looks up which exit proxy holds the key for that URL in its local mapping. Next, the

client selects a source route; this source route allows the client to specify which mode

of OCDN they would like to use: 1) no additional source route, which has better

84

performance, or 2) a source route, which has better privacy. If the client decides to

use the privacy-preserving mode, then she generates a source route, which includes

some of its peers, and could potentially include a false originator (as described in

Section 5.2). Before sending the request, the client generates a session key ksession

and encrypts it with the exit proxy’s public key. The client appends both the source

route and {ksession}PKproxy to the request and encrypts the URL with ksession such that

no other clients on the path can learn what the requested URL is. The client then

sends it onto the next proxy in the source route, which could be either another client

proxy or the exit proxy. The request is forwarded through all subsequent hops in the

source route until it reaches the exit proxy. The exit proxy decrypts {ksession}PKproxy

with its private key and stores the source route locally; it then decrypts the URL

with ksession.

The exit proxy then resolves the domain using its local resolver, which will redirect

it to the CDN’s DNS resolver. In order for the exit proxy to generate the obfuscated

identifier to query the cache node for the correct content, it must have the shared

key k that the origin server generated and obfuscated the content and identifier with.

The steps an exit proxy takes to retrieve the shared key were outlined in Section 4.4.1

and are shown in Figure 4.6.

Now that the proxy has obtained the shared key k from the origin server, it

can generate the obfuscated content identifier based on the request the client sent.

It computes the HMAC of the URL with the shared key. The proxy then sends the

(obfuscated) request to the edge server, where the CDN locates the content associated

with the identifier. The CDN returns the associated obfuscated content, which we

recall is the fixed-size blocks encrypted with the same shared key that the identifier

was obfuscated with. The proxy can decrypt the content blocks with the shared

key from the origin server, assemble the blocks, and strip any added padding, to

reconstruct the original content.

85

Lastly, the exit proxy must send the response back to the correct client without

knowing who the client is. First, the exit proxy fetches the session key ksession that

it stored for the corresponding incoming request, and it uses this key to encrypt the

response. Then, it looks up the source route it stored for the corresponding request

and uses a multicast technique to send to the encrypted response to all clients on the

source route. At this point, the exit proxy can delete the source route and session

key entries for this request/response. Only the original (true) client has ksession, so

only the original (true) client can decrypt the response. All other clients will discard

the encrypted response because they cannot decrypt it.

4.4.3 Clients Joining & Leaving

When a client joins OCDN, she will download OCDN client software. This includes

information about exit proxy mappings to URLs for which they hold a key, software

for modifying requests with session keys and source routes, and software for running

a proxy. Clients will learn about other clients in the system via a gossip protocol. We

do not detail this as gossip protocols have been studied extensively in the past [60,

104,169]. Similarly, when a client leave the system, this information is propogated to

its peers using a gossip protocol.

4.4.4 Partial Deployment

OCDN should be partially deployable, in the sense that if only some origin servers

participate or only some CDNs participate, then the system should still offer some

protections. We outline two different partial deployment possibilities below.

Deployment with Origin Servers’ Full Participation. One option for deploy-

ing OCDN is to ensure there is some set S of origin servers that participate fully

in the system. These publishers obfuscate their content, identifiers, and certificates,

86

Client Exit Proxy CDN

Generate session
key (skey), append
encrypted session
key as header,
encrypt URL

(1)

GET {URL}skey,
{skey}PKexit

(2)
Decrypt {skey}PK-1exit,
decrypt {URL}skey

GET HMACk(URL)

(3)
Retrieve {contentURL}k

{contentURL}k

(4)
Decrypt {contentURL}k,
encrypt {contentURL}skey

{contentURL}skey
(5)

Decrypt
{contentURL}skey

Figure 4.4: Steps for retrieving content in OCDN when a client is prioritizing perfor-
mance and goes directly to an exit proxy.

GET {URL}skey,
{skey}PK_exit

GET HMACk(URL)

{contentURL}k

{contentURL}skey

Figure 4.5: Steps for retrieving content in OCDN when a client is prioritizing privacy
and proxies a request through two other clients before reaching the exit proxy. This
figure shows that the request is sent sequentially through peers, and the response is
sent in a multicast manner back to the clients.

87

and most importantly, only have obfuscated data stored on the CDNs cache nodes.

S must be greater than one, otherwise the CDN can infer that a client accessing this

obfuscated content is actually accessing content that can be identified. This partial

deployment plan protects the privacy of the clients accessing the content created by

the set of origin servers S. It does not protect the clients’ privacy as completely

as full participation of all origin servers in OCDN because the CDN can still view

cross site browsing patterns among the origin servers that are not participating. It

is important to note though, that because the clients are behind proxies, the CDN

cannot individually identify users. The CDN can attribute requests to exit proxies,

but not to clients.

Deployment with Origin Servers’ Partial Participation. Some origin servers

may prioritize performance and availability. Therefore, they should have the option

to gradually move towards full participation by pushing both encrypted and plaintext

content to the CDN. In this partial deployment plan, we foresee some set of origin

servers fully participating with only encrypted content, some other set of origin servers

partially participating with both encrypted and plaintext content, and some last set

of publishers that are not participating. Unfortunately, if a publisher has the same

content that is both encrypted and plaintext content at a cache node, then an ad-

versary can correlate the access patterns on encrypted and plaintext content for the

origin server. In order to prevent this identification of the content, OCDN can use

encoded URLs (described in Section 5.2), which obfuscates the access patterns for a

given piece of content; this holds true if an origin server chooses to distribute its con-

tent in an encrypted manner using OCDN and in plaintext form on a different CDN.

In this case, the origin server can still encode its URLs in multiple ways to prevent

correlating access patterns between the encrypted and plaintext content. Therefore,

88

Exit Proxy

Authoritative DNS

Origin Server

Publisher publishes {k}PK_exit in
DNS SRV record

 (1) DNS lookup, sending
self-certifying ID

(3) SRV {k}PK_exit

(2) Certifies exit proxy is
responsible for this
server's content

Figure 4.6: How an origin server certifies an exit proxy and distributes its shared
key to an exit proxy. In step (1), the exit proxy sends his self-certifying ID in the
Additional section of the DNS message.

this deployment option allows for differing levels of participation in the system, while

still preserving the protections provided by OCDN.

4.5 Implementation

We have implemented a prototype of OCDN to demonstrate its feasibility and evalu-

ate its performance. Our implementation allows a client to send a request for content

through an exit proxy, which will fetch the corresponding encrypted content. Figure

4.7 shows our prototype; the solid line represents how OCDN communicates between

the components, and the dotted line represents how a traditional CDN would com-

municate in our prototype. Here we will discuss each component—client proxy, exit

proxy, and CDN—separately, and how they fit together.

CDN. As the design for OCDN requires encrypted content and identifiers to be

stored in the CDN, we cannot request content from real-world CDNs. Additionally,

we must evaluate the performance of OCDN in comparison to the same content, cache

locations, etc., so we set up a data storage server. This server is run on a Virtual

89

VPS in Chicago
(CDN)

VPS in Chicago
(Exit Proxy)

New York City
(Client)

Go Proxy Go Proxy lighttpd/1.4.33
Web Server

59.1 Mbits/sec
28.1 ms

3.0 Gbits/sec
.181 ms

67.6 Mbits/sec
29.4ms

Figure 4.7: The implementation of our OCDN prototype. The solid line represents
how OCDN communicates between the components; the dotted line represents how
a traditional CDN would communicate. α represents the latency between the client
and the exit proxy; we simulate additional clients on this path by increasing α.

Private Server (VPS) located in Chicago, USA. To access content, we set up a web

server on this VPS machine. To generate plaintext web content, we used Surge [15],

which allows us to generate a set of files that are representative of real-world web

server file distributions. In OCDN, the files are encrypted with a shared key k and

the obfuscated file name is the HMACk(file name). The shared keys are AES 256-bit

keys and OCDN uses SHA-256 for the hash function. Both the plaintext files and

encrypted files are stored on this web server, and for the purposes of evaluating our

prototype, act as a CDN in OCDN.

Exit Proxy. The exit proxy is the component that queries the CDN for encrypted

content on behalf of a client. We have implemented a web proxy in Go; this proxy

runs on a different VPS machine in Chicago, USA. In addition to proxying web

requests, the exit proxy also provides cryptographic functionality. When receiving a

request, it rewrites the URL in the request to be the HMACk(URL), and it parses the

headers to retrieve a specific header, X-OCDN, which contains the client’s session key

encrypted under the exit proxy’s public key. Our implementation uses 2048-bit RSA

for asymmetric encryption. After decrypting the session key, it stores it in memory

90

Preserves Preserves Protects
Integrity Confidentiality Client
at CDN at CDN Identity

Stickler [115]
R & C [122]
Tor [46]
OCDN

Table 4.3: The security and privacy features offered by related systems. To our
knowledge, OCDN is the first to address confidentiality at the CDN.

for use on the response. When it receives a response from the CDN, it decrypts the

content with the shared key k, and subsequently encrypts it with the session key

(both using AES 256-bit encryption). The exit then forwards the response onto the

client proxy.

Client Proxy. The client proxy acts on behalf of the client that is requesting con-

tent. This proxy uses the same implementation as the exit proxy, but provides dif-

ferent cryptographic functions on the requests and responses. When a client makes

a request, the client proxy generates a session key (AES 256-bit) and looks up the

correct exit proxy’s public key. The client proxy then adds a header to the request,

where X-OCDN is the key, the encrypted session key is the value. The client then

forwards this on to the exit proxy. When the client receives a response from the exit

proxy, it must decrypt the content with the session key it originally generated.

4.6 Security Analysis

We analyze and discuss how OCDN addresses different attacks. Table 4.3 shows what

security and privacy features OCDN provides in comparison to other related systems.

Popularity Attacks. An attacker that has requested or otherwise gained access

to CDN cache logs can learn information about how often content was requested.

Because not all content is requested uniformly, the attacker could potentially correlate

the most commonly requested content with very popular webpages. While this does

91

not allow the CDN to learn which clients are accessing the content, it can reveal

information about what content is stored on the CDN cache nodes. OCDN handles

this type of attacker by making the distribution of content requests appear fairly

uniform (not necessarily completely uniform). The content publisher (of popular

content) generates multiple encodings of their content and URLs, and encrypts each

one with the shared key k, such that they have multiple, different-looking copies of

their content. All of the content copies are pushed to the CDN and the key is shared

with the exit proxy.3 Now, the popular content does not appear as popular, and it

makes it difficult for an attacker to infer the popularity of the content.

Chosen Plaintext Attacks. An attacker could attempt to determine whether

a particular URL was being accessed by sending requests through specific OCDN

proxies and requesting access to the CDN cache logs, which contain the corresponding

obfuscated requests and responses. Blinding the clients’ requests with a random nonce

that is added by the proxy should prevent this attack.4 We also believe that such

an attack reflects a stronger attack: from a law enforcement perspective, receiving a

subpoena for existing logs and data may present a lower legal barrier than compelling

a CDN to attack a system.

Traffic Analysis Attacks. If a CDN itself is malicious and is attempting to

learn information about the content and/or clients, the CDN may act as a client

in the system. In this attack the (malicious) client sends a request for content and

the CDN can correlate the request with a content access at the CDN because they

have knowledge of both the CDN logs and the requests they are making as a client.

OCDN defends against this by using the exit proxies as mixes; each exit proxy is

receiving different requests from different clients and then forwarding the requests

on to the CDN. These exit proxies should mix the requests enough that the CDN

3This also provides load balancing for exit proxies that hold the shared key k for the popular
webpage because it distributes the load across multiple exit proxies (where each of these exit proxies
are responsible for one of the encodings).

4The blinding feature was not implemented as part of the prototype discussed in Section 5.4.

92

cannot conduct traffic analysis and determine which request corresponds to which

content on the CDN’s cache nodes. There has also been numerous studies that have

proposed and evaluated defenses against traffic analysis attacks [135, 180]; OCDN

could implement one of these solutions at the exit proxy.

Spoofed Content Updates. Because the CDN cache nodes do not know ei-

ther the content that they are hosting or the URLs corresponding to the content,

an attacker could masquerade as an origin server and could potentially push bogus

content for a URL to a cache node. There are a number of defenses against this

possible attack. This simplest solution is for CDN cache nodes to authenticate origin

servers and only accept updates from trusted origins; this approach is plausible, since

many origin servers already have a corresponding public key certificate through the

web PKI hierarchy. An additional defense is to make it difficult for to discover which

obfuscated URLs correspond to which content that an attacker wishes to spoof; this

is achievable by design. A third defense would be to only accept updates for content

from the same origin server that populated the cache with the original content.

Timing Attacks. An attacker who is passively observing traffic could poten-

tially correlate requests and responses based on timing information. To address this

type of attack, OCDN could employ techniques used in previous research, such as

implementing timing delays, at different proxies (either client or exit proxies).

Sybil Attacks. An adversary who runs many exit proxies can learn information

about many clients and many content requests as they are responsible for encrypt-

ing/decrypting many requests and responses. Previous work has analyzed the security

of DHTs in this context [69,177]. OCDN can employ a few different defenses to limit

the probability and size of a Sybil attack. To limit the number of exit proxies running

on a single machine, OCDN can limit the number of exit proxies with the same IP

address (which is a part of the exit proxy’s self-certifying identifier) to one; therefore,

the attack becomes more expensive as the number of machines the adversary must

93

control increases.5 This defense can be expanded to entire network prefixes; for ex-

ample, if a large (malicious) organization owns an entire prefix, they could launch

a Sybil attack using various IP addresses within their network. OCDN could limit

the number of IP addresses in a given prefix to either one (which may result in a

smaller set of exit proxies) or some small number (in which case the size of the Sybil

is extremely small and cannot achieve its goal of being in a certain location on the

hashing ring).

Flashcrowds. A flashcrowd is a large spike in traffic to a specific web page. An

attacker could see that some content on the CDN has just seen a surge in traffic

and correlate that with other information (for example, major world events). This

leaks information about what content the CDN is caching. Fortunately, the design

of OCDN can defend against this type of inference attack. The exit proxy can cache

content in the time of a flashcrowd, such that the CDN (and therefore the attacker)

does not see the surge in traffic.6

4.7 Performance Analysis

To evaluate how much overhead is caused by OCDN we measure the performance

of OCDN. In addition to understanding the latency and overhead produced by the

system, we also discuss the scalability of the design and show how OCDN scales well

with an increasing number of clients.

5Note also that this countermeasure prevents two or more exit proxies from being behind the
same NAT.

6This raises billing issues because the CDN can’t charge as much if edge servers don’t see as
many requests for the origin; fortunately, RFC 2227 describes a solution for this [154].

94

102 103 104 105 106 107

File Size (bytes)

0

100

101

TT
FB

 (s
)

OCDN
No OCDN

Figure 4.8: Time to First Byte measurements with and without OCDN.

4.7.1 OCDN Overhead

For measuring performance characteristics of OCDN, we use the implementation de-

scribed in Section 5.4. Figure 4.7 shows how our measurements reflect OCDN (solid

line) and a traditional CDN (dotted line).

Figure 4.8 shows the Time to First Byte (TTFB) for both OCDN and without

OCDN. We can see the the TTFB using OCDN grows linearly with file size, whereas

without OCDN TTFB remains fairly constant. Interestingly, we can see that there

are some fixed time operations that OCDN performs, which is visible by looking at

the smaller file sizes.

In addition to measuring TTFB, we measured the time it took to complete a

request (with and without OCDN); the results are shown in Figure 4.9. Again,

completion time grows linearly with file size, but for both OCDN and without OCDN;

while both follow the same pattern, the time to complete requests is, as expected,

longer using OCDN as it performs many cryptographic operations and proxies traffic

between the client and the CDN.

95

102 103 104 105 106 107

File Size (bytes)

0

100

101

Co
m

pl
et

io
n

(s
)

OCDN
No OCDN

Figure 4.9: Time to complete a request with and without OCDN.

As described in Section 5.4, our prototype included only a single client, but our

design allows for a client to proxy her request through additional clients. To simulate

this, we add latency between the client and the exit proxy, and measure both the

TTFB and time to complete a request when there are different values of latency,

which represent different numbers of clients on the path between the original client

and the exit proxy. Figure 4.10 shows the results for three different file sizes. The

bottom portion of each bar in the graph shows the TTFB, and the top portion shows

the additional time needed to complete the request. As expected, the TTFB grows

much slower as file size and latency increase; completion time grows more quickly

than TTFB as the file size and latency increase.

Finally, we measure the performance overhead of the individual operations used in

OCDN; figure 4.11 shows the overhead of different components of the system for three

different file sizes. We can see that some of the fixed cost/time operations include the

client locally looking up the correct exit proxy to use for a given URL and the exit

proxy generating the HMACk(URL). The operations that have the most overhead and

continue to grow with the size of the file are the exit proxy decrypting the response

96

0.5 15.5 30.5
File Size (MB)

0

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

)

Latency (ms)
0
100
300
500
700
900

TTFB
No OCDN
TTFB
No OCDN

Figure 4.10: Time to First Byte and time to complete a request with varying the file
size and latency; this latency correspondes to α in Figure 4.7.

0.5 15.5 30.5
File Size (MB)

0
100

101

102

103

104

105

106

Ti
m

e
(

s)

Client genSessionKey
Client addOCDNHeader
Client getExitProxy
Proxy getOriginKey

Proxy genMAC + Mangle URL
Proxy Decrypt Response
Proxy Encrypt Response
Client Decrypt

Figure 4.11: Overhead of different operations performed by OCDN.

with the shared key k, the exit proxy encrypting the response with the session key

ksession, and the client decrypting the response with the session key ksession.

97

4.7.2 Scalability

For evaluating performance, we are also concerned with how well OCDN will scale

with more users and more URLs. In particular, we need to reason about how much

load is put on the exit proxies as the system grows; clients do not bare much load in

the system as they simply proxy requests and the CDN is designed to handle high

numbers of requests, therefore, we limit our scalability analysis to the exit proxies.

As previously mentioned, we balance load among the proxies by using consistent

hashing to assign URLs to exit proxies. OCDN can additionally distribute load by

replicating exit proxies, meaning that two exit proxies can have the same distributed

hash table of shared keys. This way, both exit proxies can accept requests from clients

for the URLs they are responsible for. Also worth noting is that the exit proxy is

only recieving requests for the content corresponding to the shared keys it contains.

Therefore, as the number of clients grow, the exit proxy is still only responsible for

its set of shared keys and subsequent URLs. And as the number of URLs increase,

the additional load per proxy is still low because of the load balancing properties of

consistent hashing. We also discuss in Section 4.8 how clients can set up exit proxies;

this will further decrease the load per exit proxy because each exit proxy will be

responsible for a smaller number of shared keys/URLs.

4.8 Discussion

In this section, we discuss the various technical, political, and legal limitations of

OCDN, as well as possible avenues for future work.

OCDN limitations. CDNs become slightly limited in terms of the possible per-

formance optimizations when following OCDN’s design. For example, many CDNs

perform HTTPS re-writes on cached content, but this can only be done if the CDN

has access to the decrypted content. Similarly, the CDN needs the decrypted content

98

to perform minimizations on HTML, CSS, and Javascript files. While this likely in-

creases performance in traditional CDNs, it does not provide the greatest increase in

performance; content caching around the world is the greatest benefit to performance,

which OCDN preserves.

CDNs operated by content hosts. The design of OCDN assumes that the en-

tities operating the proxies and delivering content are distinct from original content

provider. In many cases, however—particularly for large content providers such as

Netflix, Facebook, and Google—the content provider operates their own CDN cache

nodes; in these cases, OCDN will not be able to obfuscate the content from the CDN

operator, since the content host and the CDN are the same party. Similarly, because

the CDN operator is the same entity as the original server, it also knows the keys

that are shared with the clients. As a result, the CDN cache nodes could also discover

the keys and identify both the content, as well as which clients are requesting which

content.

Legal questions and political pushback. Recent cases in the United States raise

some questions over whether a system like OCDN might face legal challenges from

law enforcement agencies. For example, the rise of end-to-end encryption in mes-

saging services (e.g. Signal, Threema, Telegram, Wire) has led to much controversy

and debate between tech companies and law enforcement (particularly on the topic

of “backdoors” to gain access to information) [145]. It remains to be seen whether

OCDN would face similar hurdles, but similar systems in the past have faced scrutiny

and pushback from law enforcement.

99

4.9 Related Work

To our knowledge, there has been no prior work on preventing surveillance at CDNs,

but there has been relevant research on securing CDNs, finding security vulnerabilities

in CDNs, and conducting different types of measurements on CDNs.

Securing CDNs. Most prior work on securing CDNs has focused on providing

content integrity at the CDN as opposed to content confidentiality (and unlinkability).

In 2005, Lesniewski-Laas and Kaashoek use SSL-splitting — a technique where the

proxy simulates an SSL connection with the client by using authentication records

from the server with data records from the cache (in the proxy) — to maintain

the integrity of content being served by a proxy [113]. While their work does not

explicitly apply SSL-splitting to CDNs, it is a technique that could be used for content

distribution. Michalakis et al., present a system for ensuring content integrity for

untrusted peer-to-peer content delivery networks [122]. Their system, Repeat and

Compare, use attestation records and a number of peers act as verifiers. More recently,

Levy et al., introduced Stickler, which is a system that allows content publishers

to guarantee the end-to-end authenticity of their content to users [115]. Stickler

includes content publishers signing their content, and users verifying the signature

without having to modify the browser. Unfortunately, systems like Stickler do not

protect against an adversary that wishes to learn information about content, clients,

or publishers; OCDN is complementary to Stickler.

There has been prior work in securing CDNs against DDoS attacks; Gilad et al.

introduce a DDoS defense called CDN-on-Demand [72]. They provide a complement

to CDNs, as some smaller organizations cannot afford the use of CDNs and therefore

do not receive the DDoS protections provided by them. CDN-on-Demand is a

software defense that relies on managing flexible cloud resources as opposed to using

100

a CDN provider’s service.

Security Issues in CDNs. More prevalent in the literature than defense are

attacks on CDNs. Recent work has studied how HTTPS and CDNs work to-

gether (as both have been studied extensively separately). Liang et al., studied 20

CDN providers and found that there are many problems with HTTPS practice in

CDNs [117]. Some of these problems include: invalid certificates, private key sharing,

neglected revocation of stale certificates, and insecure back-end communications; the

authors point out that some of these problems are fundamental issues due to the

man-in-the-middle characteristic of CDNs. Similarly, Zolfaghari and Houmansadr

found problems with HTTPS usage by CDNBrowsing, a system that relies on CDNs

for censorship circumvention [187]. They found that HTTPS leaks the identity of

the content being accessed, which defeats the purpose of a censorship circumvention

tool.

Research has also covered other attacks on CDNs, such as flash crowds and de-

nial of service attacks; Jung et al., show that some CDNs might not actually provide

much defense against flash events (and they differentiate flash events from denial of

service events) [98]. Su and Kuzmanovic show that some CDNs are more susceptible

to intentional service degradation, despite being known for being resilient to network

outages and denial of service attacks [158]. Additionally, researchers implemented

an attack that can affect popular CDNs, such as Akamai and Limelight; this attack

defeats CDNs’ denial of service protection and actually utilizes the CDN to amplify

the attack [163]. In the past year, researchers have found forwarding loop attacks

that are possible in CDNs, which cause requests to be served repeatedly, which sub-

sequently consumes resources, decreases availability, and could potentially lead to a

denial of service attack [35].

101

Recently, researchers have studied the privacy implications of peer-assisted

CDNs; peer-assisted CDNs allow clients to cache and distribute content on behalf of

a website. It is starting to be supported by CDNs, such as Akamai, but the design

of the paradigm makes clients susceptible to privacy attacks; one client can infur the

cross site browsing patterns of another client [96].

Measuring and Mapping CDNs. As CDNs have increased in popularity, and

are predicted to grow even more [182], much research has studied the deployment of

CDNs. Huang et al., have mapped the locations of servers, and evaluated the server

availability for two CDNs: Akamai and Limelight [90]. More recently, Calder et al.,

mapped Google’s infrastructure; this included developing techniques for mapping,

enumerating the IP addresses of servers, and identifying associations between clients

and clusters of servers [31]. Scott et al., develop a clustering technique to identify

the IP footprints of CDN deployments; this analysis also analyzes network-level in-

terference to aid in the identification of CDN deployments [149]. In 2017, researchers

conducted an empirical study of CDN deployment in China; they found that it is

significantly different than in other parts of the world due to their unique economic,

technical, and regulatory factors [181].

Other measurement studies on CDNs have focused on characterizing and quantify-

ing flash crowds on CDNs [173], inferring and using network measurements performed

by a large CDN to identify quality Internet paths [157], and measuring object size

distributions and request characteristics to optimize caching policies [16].

102

Chapter 5

Naming: Privacy-Preserving DNS

Almost all communication on the Internet today starts with a Domain Name System

(DNS) lookup. Before communicating with any Internet destination, a user applica-

tion typically first issues a Domain Name System (DNS) lookup, which takes a domain

name (e.g., google.com) and returns an IP address that the application should con-

tact. Today, the DNS requires the user to place tremendous trust in DNS operators,

who can see all of the DNS queries that a user issues. Whether the operator is an

Internet service provider (ISP) or some other third party is less concerning than the

fact that some single operator can observe and retain this sensitive information. This

chapter presents a system called ODNS which attempts to solve this problem.

Figure 5.1 illustrates the basic operation of DNS, as well as the privacy vulnerabil-

ities that it introduces for every Internet user. When a client generates a request for

foo.com, the client’s stub resolver first contacts its recursive DNS resolver. Assuming

that no DNS records are cached, the recursive sends the query to the root nameserver,

which refers the recursive to the authoritative server for .com, which in turn returns

a referral to the authoritative server for foo.com, which ultimately returns the IP

address for the name.

103

DNS queries and responses are not encrypted. As a result, they can reveal signif-

icant information about the Internet destinations that a user or device is communi-

cating with. For example, the domain names themselves may reveal the websites that

a user is visiting. In the case of smart-home Internet of Things (IoT) devices, the

DNS queries may reveal the types of devices in user homes. Previous work has also

demonstrated that DNS lookups can identify the websites that a user is visiting, even

when they are using an anonymizing service such as Tor [76]. The operator of a DNS

resolver may also retain information about DNS queries and responses—including the

IP addresses that query the domains and the DNS names that are queries.

A recursive DNS resolver can easily to link domain names with the IP addresses

who are querying them. A third party who can observe communication between a

client and a recursive resolver, a recursive resolver, or an authoritative server may be

privy to various pieces of this information, depending on which part of the DNS query

resolution they may see. Operators of recursive DNS resolvers may see individual IP

addresses coupled with the fully qualified domain name that accompanies the query.

A user’s Internet Service Provider (ISP) often operates the user’s default recursive

DNS resolver, giving the ISP potentially extraordinary access to DNS query informa-

tion. To mitigate this risk, several entities, including Google, Cloudflare [175], and

Quad9 [1] operate “open” recursive resolvers that anyone can use as an alternative

to the ISP’s DNS recursive resolver. Yet, when a user switches to an alternate DNS

recursive resolver, the privacy problem isn’t solved; rather, the user must trust the

operator of the DNS recursive instead of the ISP. Essentially, the user must decide

whether they trust their ISP or some other organization—some of which are even in

the business of collecting data about users.

Other approaches have layered encryption on top of DNS. For example, DNS-over-

TLS [81], DNS-over-DTLS [137], and DNS-over- HTTPS [86] send DNS queries over

an encrypted channel, which prevents an eavesdropper from learning the contents of

104

Figure 5.1: In a typical DNS lookup, a recursive resolver sees DNS queries and
responses, as well as the IP addresses that issue the queries.

a DNS lookup but does not prevent the operator of the recursive resolver from linking

queries and IP addresses. DNSCurve uses elliptic curve cryptography to encrypt DNS

requests and responses; it also authenticates all DNS responses and eliminates any

forged responses [17]. DNSCrypt encrypts and authenticates DNS traffic between a

client and a recursive resolver [44]. Neither of these approaches prevent the recursive

resolver from observing DNS queries and responses.

This work takes a different tack: Instead of merely shifting the trust anchor from

an ISP to some other third party, we seek to prevent a recursive DNS resolver from

ever associating IP addresses with the queries they make. To do so, we design,

implement, and deploy Oblivious DNS (ODNS), which (1) obfuscates the queries that

a recursive resolver sees from the clients that issue DNS queries; and (2) obfuscates the

client’s IP address from upper levels of the DNS hierarchy that ultimately resolve the

query (i.e., the authoritative servers). ODNS operates in the context of the existing

DNS protocol, allowing the existing deployed infrastructure to remain unchanged. A

105

client sends an encrypted query to a recursive resolver, which then forwards the query

to an authoritative DNS server that can resolve ODNS queries. The recursive resolver

never sees the DNS domain that the client queries, and the ODNS server never sees

the IP address of the client.

ODNS requires small changes to a client’s stub resolver, as well as to the author-

itative DNS server. The stub resolver must take an existing DNS name, encrypt it,

and append the ODNS domain to ensure that the query is forwarded to the ODNS

authoritative DNS server. The ODNS authoritative DNS server must also act as a

recursive DNS resolver, ultimately retrieving the DNS record that corresponds to the

client’s initial query. We implemented this functionality in a prototype stub resolver

and DNS authoritative server in Go. Our trace-driven evaluation shows that any

individual uncached DNS lookup is slower by about 10% (about 14 ms on average),

as a result of the cryptographic operations on the domain name. ODNS can take

advantage of caching, however, which reduces performance overhead significantly in

practice. Ultimately, the performance overhead on web page load times is negligible.

5.1 Background

We first take a look at how the existing DNS infrastructure is susceptible to traffic

monitoring and data requests. Then later in this section we highlight some existing

approaches and proposals and explain why they are not a complete solution to the

problem we are addressing.

5.1.1 DNS

Figure 5.1 shows how conventional DNS operates and how the different entities com-

municate. When a client generates a request for foo.com, it gets sent to his recursive

resolver. The recursive resolver may have a cached response for foo.com, and in that

106

case sends the response back to the client. If there is no cached response for foo.com,

the recursive sends the query onto the root nameserver, which responds with the

location of the TLD nameserver. The recursive then forwards the request onto the

TLD nameserver, which responds with the location of the authoritative nameserver.

The recursive sends the request to the authoritative nameserver, which responds with

the location of foo.com. This response is then forwarded on to the client.

DNS queries may reveal information that an Internet user may want to keep

private, including the websites that user is visiting and the IP address or IP subnet of

the device that issued the initial query. A third party who can observe communication

between a client and a recursive resolver, a recursive resolver, or an authoritative

server may be privy to various pieces of this information, depending on which part

of the DNS query resolution they may see. Operators of recursive DNS resolvers

may see individual IP addresses (which may correspond to an ISP subscriber, or

perhaps an individual end-device) coupled with the fully qualified domain name that

accompanies the query. Even in the case of authoritative resolvers, extensions to DNS

such as EDNS0 Client Subnet may reveal information about the user’s IP address or

subnet to authoritative DNS servers higher in the DNS hierarchy.

5.1.2 Existing Approaches

Many recent efforts protect certain, orthogonal aspects of privacy for users. However,

none of these approaches prevent the operator of a DNS server from learning which

IP addresses are issuing queries for particular domain names.

DNS-over-TLS. Conventional DNS queries are typically sent in clear text, which

allows eavesdroppers to learn all the DNS lookups performed. To prevent such an

eavesdropper, DNS-over-TLS was proposed, which sends DNS queries over an en-

crypted channel [81]. While this method prevents an eavesdropper from learning the

107

contents of a DNS lookup, it does not prevent a potentially malicious DNS operator

from learning and logging all DNS lookups.

DNS-over-DTLS. This method is similar to the previously mentioned DNS-over-

TLS, with the primary difference being that DNS-over-DTLS relies on UDP, whereas

DNS-over-TLS relies on TCP [137].

DNS-over-HTTPS. Like DNS-over-TLS and DNS-over-DTLS, this approach

provides confidentiality to DNS requests and responses, but uses a different transport

medium (HTTPS) [86].

Quad9. This approach provides both security and privacy features for DNS.

Quad9 uses IBM X-Force threat intelligence data at the recursive resolver to pre-

vent a client from accessing a malicious site [1]. Although this recursive resolver

does not store or distribute the DNS data passing through, it still allows a DNS

operator to observe this data. Once such information is retained, of course, it may

become vulnerable to other threats to user privacy, including data requests from law

enforcement.

1.1.1.1 Cloudflare recently released 1.1.1.1, which is a privacy-first consumer

DNS recursive resolver; it supports both DNS-over-TLS and DNS-over-HTTPS, and

also offers the feature of query name minimization [175]. While 1.1.1.1 only logs

data for 24 hours at the recursive resolver (for debug purposes), it is still susceptible

to a malicious DNS operator (or other adversary) saving that information before it is

purged. Furthermore, even though a DNS operator who aims to protect user privacy

may purge this information periodically, a user has no guarantee that information

that an operator learns might be retained, for operational or other purposes.

DNSCurve. This project improves DNS security by addressing message integrity

and confidentiality, as well as DNS availability. DNSCurve uses elliptic curve cryptog-

raphy to encrypt DNS requests and responses; it also authenticates all DNS responses

(and eliminates any forged responses) [17]. While DNSCurve drastically improves the

108

security features of conventional DNS, it does not prevent surveillance or monitoring

conducted at the recursive resolver.

DNSCrypt. DNSCrypt is another approach that encrypts and authenticates

DNS traffic between a client and a recursive resolver [44]. It also provides addi-

tional security features, such as preventing DNS spoofing. Like the other existing

approaches, DNSCrypt does not prevent monitoring of DNS traffic at the recursive

resolver.

5.2 Design

This section describes the design of ODNS, which operates seamlessly in the context

of the existing DNS. ODNS defends against an adversary that can (1) eavesdrop

on communications between clients and recursive resolvers, and between recursive

resolvers and authoritative name servers; (2) request data (via subpoena/warrant)

from any number of DNS operators; or (3) access data and logs (e.g., query logs) at

any DNS server.

5.2.1 Overview

Figure 5.2 summarizes the design. ODNS operates similarly to conventional DNS, but

adds two components: (1) each client runs a modified stub resolver; and (2) ODNS

runs an authoritative name server that also acts as a recursive DNS resolver for the

original DNS query:

• The client’s stub resolver obfuscates domain that the client is requesting (via

symmetric encryption), resulting in the recursive resolver being unaware of the

requested domain.

109

Figure 5.2: Overview of interacting components in ODNS.

• The authoritative name server for ODNS separates the clients’ identities from

their corresponding DNS requests, such that the name servers cannot learn who

is requesting specific domains.

Operators of recursive DNS resolvers see individual IP addresses and with the

fully qualified domain name that accompanies the query. Operators of authoritative

resolvers may also be able to learn information about the client by using one of the

extensions to DNS, such as EDNS0 Client Subnet. EDNS0 can reveal information

about the user’s IP address or subnet to authoritative DNS servers higher in the DNS

hierarchy (not only recursive DNS resolvers). ODNS hides a client’s IP address from

the authoritative name servers at different levels of the DNS hierarchy.

The recursive DNS resolver knows the client IP address but never sees the domain

that it queries. ODNS requires the client to use a custom local stub resolver, which

hides the requested domain from the recursive resolver. The ODNS stub resolver,

which runs at the client, encrypts the original DNS query for the ODNS authorita-

tive DNS server before it appends the .odns domain to the query, which causes the

recursive resolver to forward the encrypted domain name on to the ODNS authorita-

tive server.

When an ODNS authoritative DNS server receives a DNS query, it removes any

client information from the request (e.g., the client IP address, ENDS0 client subnet

110

information) before performing additional DNS lookups. The .odns name server then

acts as a recursive resolver.1 The authoritative server forwards any response to the

original recursive DNS resolver, which in turn sends the response to the client.

The recursive DNS resolver receives the request from the client, but cannot identify

the genuine domain. It parses the TLD (.odns) and forwards the request onto the

.odns authoritative server. Because the session key was originally encrypted with the

authoritative server’s public key, the authoritative server can decrypt the session key

with its private key, and subsequently decrypt the domain with the session key. The

authoritative server then acts as a recursive resolver and contacts the necessary name

servers to resolve the domain. Once an answer is obtained, the authoritative server

encrypts the domain with the session key, appends the .odns TLD and forwards the

response to the recursive DNS resolver. As explained by the use of session keys, the

recursive resolver cannot learn the domains a client requests, despite being able to

learn who the client is.

5.2.2 ODNS Protocol

Figure 5.3 shows the various steps involved in answering a client’s DNS request, which

proceeds as follows:

1. When a client generates a DNS request, the local stub resolver generates a

symmetric session key, encrypts the domain name with the session key, encrypts

the session key with the authoritative server’s public key, and appends the

.odns TLD to the encrypted domain. ({www.foo.com}k.odns.) The stub also

appends the session key encrypted under the .odns authoritative server’s public

key ({k}PK)

1For simplicity, we say that this authoritative server is for .odns domains, but any authoritative
DNS domain can run an ODNS server.

111

.odns
.odns
.odns
.odns
.odns
www.foo.com
.odns
.odns
.odns

Figure 5.3: ODNS protocol.

2. The client sends the query in the Additional Information portion of the DNS

query to the recursive resolver, which then sends it to the authoritative name

server for .odns.

3. The authoritative server for ODNS queries decrypts the session key, which it

uses to decrypt the domain in the query.

4. The authoritative server forwards a recursive DNS request to the appropriate

name server for the original domain, which then returns the answer to the ODNS

server.

5. The ODNS server returns the answer to the client’s recursive resolver.

Other authoritative DNS servers see incoming DNS requests, but these only see the

IP address of the ODNS authoritative resolver, which effectively proxies the DNS

request for the original client. The client’s original recursive resolver can learn the

client’s IP address, but cannot learn the domain names in the client’s DNS queries.

112

.odns

Figure 5.4: ODNS protocol for key distribution and selecting the optimal authorita-
tive server.

Georeplication and key distribution. ODNS supports georeplication. To direct

clients to the closest ODNS server instance ODNS’s authoritative servers have an

anycast IP address and a unique IP address. The client’s stub resolver sends a DNS

query to the anycast IP address; the response contains the authoritative server’s public

key IP address. Figure 5.4 summarizes this process in more detail. Specifically, the

client’s stub resolver sends a DNS query for special.odns. The recursive resolver

forwards the the query to the authoritative name server, which is anycasted. The

name server responds to the DNS query with a self-certifying name, such that the

name of the server is derived from the public key itself; this response is returned to

the client’s stub resolver via the recursive.

113

special.odns

5.3 Practical Challenges

This section describes specific modifications to the basic ODNS protocol to cope with

various practical limitations and considerations.

Protocol Constraints

OPT records and query length. In principle, a query could include the encrypted

session key in a special Resource Record (RR) in the “Additional Information” section

of the DNS message (known as an OPT), but we discovered that, in practice, most

open resolvers strip all OPT records before forwarding the query on to the nameserver;

in this case, ODNS cannot simply use an OPT to communicate the session key. ODNS

overcomes this challenge by placing the encrypted key in the QNAME field of the DNS

message; the QNAME field consists of 4 sets of 63 bytes, which limits both the key

size and encryption scheme used. For this reason, ODNS uses 16-byte AES session

keys and encrypts the session keys using the Elliptic Curve Integrated Encryption

Scheme (ECIES). Once the session key is encrypted, the resulting value takes up 44

bytes of the QNAME field. In the future, if OPT records are used by open resolvers,

the encrypted session key can be sent in that record, which would allow different key

sizes and encryption schemes to be used.

EDNS0 Client Subnet. our initial experiments, we found that Google’s open re-

solvers use EDNS0 client subnet, thereby revealing the client’s identity to the author-

itative server. We did not observe other open resolvers (such as Cloudflare’s 1.1.1.1

or Quad9’s 9.9.9.9) support the addition of the EDNS client subnet. Therefore,

clients wishing to get the privacy benefits of ODNS should not use Google’s open

resolvers in conjunction with ODNS.

114

5.3.1 Performance

Caching. ODNS cache queries at the ODNS authoritative server. As the ODNS

authoritative server is essentially an extra recursive resolver in the system, ODNS

is simply acts as the shared cache, in lieu of the shared cache that would ordinarily

exist at the ISP recursive resolver. further into the system; this decreases the time to

conduct a look up for the domain from the perspective of the authoritative server. In

addition to caching at the authoritative server, ODNS could also cache DNS responses

at the stub resolver; while this may provide some caching benefits on a per- client

basis, it does not provide cross-client caching benefits. It is important to note that

caching at the recursive resolver or the client’s stub local resolver would not provide

any performance enhancement for the client in this system. Each DNS query is

encrypted with a new session key k, thus two DNS queries for the same domain

do not appear the same to these resolvers ({www.foo.com}k1 6= {www.foo.com}k2);

therefore, if the resolver cached the response for {www.foo.com}k1, it would never see

a cache hit for that entry because subsequent lookups for www.foo.com appear as a

different URL.

Anycast. As mentioned in Section 5.2.2, the ODNS authoritative server is repli-

cated in a variety of geographical locations and are anycasted. Therefore, when a

recursive sends a DNS query to the ODNS authoritative server, it will be sending

it to the closest ODNS authoritative server. And because the recursive resolver (an

open resolver) is also anycast, both the recursive and the ODNS authoritative server

will be selected based on the client’s location without revealing the client’s location.

While this has a privacy benefit, it also exhibits a performance benefit; using anycast

authoritative servers and recursive resolvers allows a client to use the closest (and

likely fastest) servers.

115

www.foo.com
www.foo.com
www.foo.com
www.foo.com

5.3.2 Privacy & Security

Striping queries across multiple recursives. The client’s local stub resolver

typically forwards DNS queries on to the client’s recursive resolver, but ODNS sup-

ports forwarding the DNS queries on to open resolvers. ODNS can stripe DNS queries

across the many available open resolvers, which helps increase the privacy of the client

because the recursive resolver does not see all (obfuscated) DNS queries from the client.

If striping is enabled, then each open resolver only sees some portion of each client’s

obfuscated queries.

Denial of service attacks. ODNS’s authoritative DNS servers cannot check the

incoming IP address of queries, which could facilitate Denial of Service attacks. To

defend against DoS attacks, the client’s stub resolver can append bytes that indi-

cate the DNS query is sent from an ODNS-participating client stub resolver. The

authoritative can then check for these bytes and verify that it was sent via ODNS.

5.4 Implementation

We have designed ODNS to decouple any DNS query from the IP address that initi-

ated the query, while allowing the existing DNS infrastructure to remain unchanged.

We implement a prototype to evaluate the feasibility of ODNS by implementing a

stub resolver and an authoritative name server. ODNS simply runs on top of conven-

tional DNS, and no changes are made to the underlying DNS infrastructure. Figure

5.5 shows the details of our prototype implementation, and we detail the ODNS

components as follows.

Client. In our prototype, the client is a machine running in the New York City

area of the United States. It is used to perform our evaluation in Section 5.5 and

conducts DNS lookups for different domains.

116

Figure 5.5: Prototype setup.

Stub Resolver. We implemented a stub resolver that runs on each participating

client. The stub resolver is written in golang and performs the following actions. The

stub resolver is running on the same local machine as the client in our prototype

implementation in the New York City area. When the stub generates a session key,

the key that results is a 16 byte AES symmetric key. The stub encrypts the session key

with the authoritative’s public key, which is generated with ECIES using curve25519.

Recursive Resolver. ODNS requires no changes to the recursive resolver, and

therefore, our prototype uses the default recursive resolver for the client located at a

university.

ODNS Authoritative Server. We implemented two authoritative servers for

obliviousdns.com, which is written in golang (similar to the stub resolver). This

server essentially proxies a client’s DNS query by acting as a recursive resolver once

the domain is decrypted. One of the authoritative servers is running on a Virtual

Private Server (VPS) located in Georgia and the other is located in New York City.

Each authoritative server has a public/private key pair generated with ECIES using

curve25519.

Name Servers. ODNS requires no changes to the name servers, and therefore

uses the existing DNS infrastructure for sending and receiving queries/responses from

name servers.

117

obliviousdns.com

0 20 40 60 80 100 120 140
Resolution time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

ODNS
No ODNS

150 500 1000 2000

0.8

1.0

Figure 5.6: ODNS overhead. The median resolution time for ODNS is 14.1 millisec-
onds.

5.5 Performance Evaluation

We used the prototype setup described in Section 5.4 to evaluate the performance

overhead of ODNS in comparison to conventional DNS. It is important to note that

ODNS will incur some overhead due to the cryptographic operations it performs in

addition to the latency added by using additional resolvers, but ODNS also provides

protections that conventional DNS does not; these protections come at some cost,

which we explore more in this section.

5.5.1 Microbenchmarks: DNS Query Overhead

We first evaluated ODNS’s query overhead to that of conventional DNS by using the

dig command to issue DNS queries. We ran DNS queries on the Alexa Top 10,000

domains using both ODNS and conventional DNS. The results of this are shown in

Figure 5.6; we can see that ODNS takes longer to resolve domains, but follows the

same trend as conventional DNS. Based on these results, ODNS does not appear to

introduce significant overhead when resolving domains.

118

Enc
ryp

t D
om

ain

Enc
ryp

t K
ey

Dec
ryp

t K
ey

Dec
ryp

t D
om

ain

Auth
 R

ec
ur

siv
e

0

1

5

10

50

T
im

e
(m

s)

Figure 5.7: Overhead of different operations performed in the ODNS protocol.

After looking at the total overhead of ODNS, we benchmark the individual op-

erations performed in the ODNS protocol to attribute overhead to different parts of

the protocol. The results of these microbenchmarks are shown in Figure 5.7. We

can see that the cryptographic operations, and particularly the asymmetric crypto-

graphic operations, take the most time and therefore contribute the most to the total

overhead of ODNS.

Our implementation includes two authoritative servers — functionally equivalent

— in two different locations: Georgia and New York City. Recall that the client and

stub resolver are also located in the New York City area. To evaluate the effect of the

authoritative server’s geographic proximity to the client, we measured the overhead

using each of the authoritative servers. In this experiment, we used third party

resolvers upstream from the ODNS authoritative.2 Our results can be seen in Figure

5.8. Clearly, the overhead is significantly less when the authoritative server is closer

to the client; the average overhead when using the authoritative server in New York

City is about 5ms and the overhead when using the authoritative server in Georgia is

2This allows ODNS to gain the caching benefits of upstream resolvers.

119

0 20 40 60 80 100 120 140
Resolution time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Conventional DNS (1.1.1.1)
Conventional DNS (9.9.9.9)
Conventional DNS (8.8.8.8)
ODNS ATL (1.1.1.1 upstream)
ODNS ATL (9.9.9.9 upstream)
ODNS ATL (8.8.8.8 upstream)
ODNS NYC (1.1.1.1 upstream)
ODNS NYC (9.9.9.9 upstream)
ODNS NYC (8.8.8.8 upstream)

150 500 1000 2000

0.8

0.9

1.0

Figure 5.8: Overhead of ODNS on DNS queries using an authoritative server in
Georgia and an authoritative server in New York City.

about 14ms. The additional overhead is consistent with the round-trip time between

the client in New York City and the respective authoritative server.

5.5.2 Macrobenchmarks: Page Load Time

Next, we took a step back and looked at how ODNS would affect a typical Internet

user’s browsing experience by evaluating the overhead of a full page load; a full page

load consists of not only conducting a DNS lookup for the page, but also fetching

the page, and conducting any subsequent DNS lookups for embedded objects and

resources in the page. We fetched popular web pages that have a lot of content using

ODNS and then also using conventional DNS, and the results are shown in Figure

5.9. The left bar in the figure is using conventional DNS and the right bar represents

120

BBC

En
ga

dg
et

NY T
im

es

Po
liti

co

Wash
ing

ton
 Po

st WSJ
0

250

500

750

1000

1250

1500

1750

Ti
m

e
(m

s)

Receive
Send
SSL
Connect
DNS
Blocked
Wait

Figure 5.9: Page load time for various web pages using ODNS and conventional DNS.
The left bar in the figure is using conventional DNS and the right bar represents the
time it takes using ODNS.

the time it takes using ODNS. We see that there is no significant difference in page

load time between ODNS and conventional DNS because DNS lookups contribute

very little time to the entire page load process.

5.5.3 Effect of Caching

An important performance aspect of conventional DNS is caching — specifically

caching DNS responses at the recursive resolver. And as mentioned previously, ODNS

prevents any caching benefits at the recursive resolver, but allows caching at both the

stub resolver and at the authoritative server. To evaluate the effect of caching on

ODNS’s performance, we measured the overhead of ODNS where the authoritative

does not cache and acts as a second recursive resolver, and compared it to the over-

head of ODNS using upstream recursive resolvers and their associated caches. Figure

5.10 shows the results.

121

0 20 40 60 80 100 120 140
Resolution time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Conventional DNS (1.1.1.1)
Conventional DNS (9.9.9.9)
Conventional DNS (8.8.8.8)
ODNS ATL (1.1.1.1 upstream)
ODNS ATL (9.9.9.9 upstream)
ODNS ATL (8.8.8.8 upstream)
ODNS ATL (top10k cold)
ODNS ATL (top10k warm)
ODNS ATL (dnsperf warm)
ODNS NYC (1.1.1.1 upstream)
ODNS NYC (9.9.9.9 upstream)
ODNS NYC (8.8.8.8 upstream)
ODNS NYC (top10k cold)
ODNS NYC (top10k warm)
ODNS NYC (dnsperf warm)

150 500 1000 2000

0.8

0.9

1.0

Figure 5.10: Overhead of ODNS with varying upstream caches.

5.6 Related Work

There’s been a multitude of work on privacy and security as it pertains to DNS; here

we highlight some of that work, as well as some other existing and related tools.

DNS Privacy. Quad9 provides both security and privacy features for DNS.

Quad9 uses IBM X-Force threat intelligence data at the recursive resolver to prevent

a client from accessing a malicious site [1]. Although this recursive resolver does

not store or distribute the DNS data passing through, it still allows a DNS operator

to observe this data. Once such information is retained, of course, it may become

vulnerable to other threats to user privacy, including data requests from law enforce-

ment. Cloudflare recently released 1.1.1.1, which is a privacy-first consumer DNS

recursive resolver; it supports both DNS-over-TLS and DNS-over-HTTPS, and also

122

offers the feature of query name minimization [175]. While 1.1.1.1 only logs data

for 24 hours at the recursive resolver (for debug purposes), it is still susceptible to

a malicious DNS operator (or other adversary) saving that information before it is

purged. Furthermore, even though a DNS operator who aims to protect user privacy

may purge this information periodically, a user has no guarantee that information

that an operator learns might be retained, for operational or other purposes.

EncDNS protects the confidentiality of DNS messages in transit and from a DNS

operator [82]; however, EncDNS suffers from several shortcomings, including the in-

ability to share keys without using an out of band method directly, resulting in a

breach of the privacy characteristics that the protocol promises.3 In contrast to

ODNS and EncDNS, most proposed DNS privacy mechanisms are protecting against

an adversary, but not a DNS operator. For example, Zhu et al., propsoe T-DNS,

which applies TCP and TLS to DNS [186], and Castillo-Perez and Garcia-Alfaro

evaluate privacy-preserving DNS mechanisms, but show that they need additional

measures to enhance their security [32]. Similarly, Query Name Minimization is a

proposal that limits what name servers see in DNS queries, but a recursive resolver’s

operator still learns the domain requested and the corresponding client who requested

the domain [19]. Researchers have also pointed out how aspects of current (opera-

tional) DNS, such as prefetching, have privacy implications [107,153]. Federrath et al.

introduced a DNS anonymity service that employs broadcasting popular hostnames

and low-latency mixes for requesting less popular domains; unlike ODNS, this pro-

posed DNS anonymity service is a clean-slate architecture and requires fundamental

changes to the DNS infrastructure [66].

DNS Security. There have been a variety of proposals for securing DNS, in-

cluding DNS-over- TLS [81] and DNSSEC [111]. As mentioned in Section 5.1.2,

3Additionally, EncDNS code has been made publicly available for anyone to use; however, in
our analysis, we found that the implementation does not work, and that a client’s public key is sent
directly within a DNS query, identifying the client to both the recursive and authoritative servers.

123

DNS-over-TLS protects the privacy of the domain being requested in transit, but

does not prevent a recursive resolver’s operator from learning both the client who

issued the request and the content of the request. Some work has analyzed DNSSEC

in more detail; Osterweil et. al., develop SecSpider to monitor and detect errors in

the DNSSEC deployment [127]. While there have been many attacks on DNS, the

adoption of DNS security protocols is very limited; Herzberg and Shulman highlight

some of the issues with retrofitting security into DNS [83]. Researchers have also

combined DNSSEC features with BIND DNS software to implement a system that

prioritizes the integrity and availability of DNS [95]. Recent research has also seen

the introduction of new frameworks for monitoring DNS in the hopes of detecting

attacks [84,119].

Virtual Private Networks and Tor. There have been many proposed

anonymity systems and tools, including Virtual Private Networks (VPNs) and Tor.

Unfortunately, many VPN providers send unencrypted DNS queries to the client’s

ISP, and all VPN providers would be able to associte DNS queries and responses

with an individual client IP address. VPNGate uses different VPNs to contol where a

client appears to be located [124], but even this approach does not prevent operators

of DNS recursive resolvers from learning the domains being requested. The VPN

operators themselves also still have complete information about the domains and the

IP addresses that are querying them.

Tor uses layered encryption and a three-hop circuit to provide client anonymity [46].

Using Tor would not provide the same protections as ODNS because DNS is con-

ducted at the last hop of the three-hop circuit and is conducted however that machine

is configured. Additionally, the owner and operator of that machine (as well as the

local resolver’s operator) can learn what content is being requested. More recently,

researchers have analyzed how DNS works in Tor and found that fingerprinting

attacks can be performed based on DNS data [75]. The Tor Project has also designed

124

and implemented onion services/domains (previously hidden services), which provide

server anonymity; onion domain lookup does not usew DNS, but can only be accessed

via Tor and suffers from usability issues [8]. Recent work has highlighted how onion

domain name leakages are a source of privacy leakage as well [162].

125

Chapter 6

Conclusion

In this dissertation, we explored how different aspects of the Internet infrastructure

are susceptible to trafffic monitoring and data requests. In light of this vulnerability,

we propose new techniques and systems that enhance the privacy of content and

communications by protecting data in transit and at rest; these systems are designed

such that an eavesdropper cannot learn information and such that an overreaching

governing entity cannot issue data requests. Specifically, we analyze the routing,

hosting, and naming architectures and introduce systems that increase privacy while

using the underlying infrastructure, resulting in systems that are currently deployable.

Routing. We measured the current state of Internet routing, and in particular,

which countries (and corresponding governing entities) are on the path to popular

websites. We developed two techniques to route Internet traffic around an unfavorable

country, and incorporated one of the techniques into RAN.

Hosting. Focusing on CDNs, we used encryption techniques, self-certifying iden-

tifiers, and consistent hashing to design OCDN. OCDN operates in the current ecosys-

tem of users, CDNs, and content publishers, while protecting both users and CDNs

from traffic monitoring and data requests.

126

Naming. We first analyzed how conventional DNS allows DNS operators to

learn important user information, leading us to take a new approach to naming. We

introduced ODNS as a way to decouple clients’ identities from their DNS queries; it

runs on top of conventional DNS and can be deployed today.

6.1 Future Work

As this work has focused on introducing privacy infrastructure for three specific com-

ponents of the Internet architecture, there are many avenues of future work for other

infrastructure components. For example, there’s a need for future work in data pri-

vacy in the context of content providers; much of this work has had the goal of

protecting users and operators, but how can we also protect providers?

Another line of future work can improve the accuracy and completeness of the

systems proposed in this dissertation. With the cooperation of different entities,

these systems can be further improved, both from a privacy perspective, but also a

performance perspective. As an example, RAN would be greatly improved with the

participation of content providers because they have a unique vantage point in the

routing infrastructure. Content providers could provide more accurate information

on reverse paths, as well as optimize for the quickest path that does not traverse

an unfavorable region. Another example involves IXPs’ participation, which could

provide more route diversity in RAN.

The systems proposed in Chapters 3, 4, and 5, have been prototyped and evalu-

ated, but should be implemented and deployed at a larger scale in the future. Eval-

uating these systems with large numbers of users can provide insights that will be

helpful in the design of other related systems; some of these insights will be purely

technical, such as unforeseen scalability issues, but they could also shed light on which

entities might target these types of systems for an attack (and how they might attack

127

these systems). A large-scale deployment of this type of system will also potentially

provide some of the first political responses (and push-back) to technical systems.

As briefly discussed in Section 2.4, there is a variety of work that needs to be done

at the intersection of data privacy and physical data location. Ongoing court debates

are attempting to decide who can request access to data, when it is located in a differ-

ent jurisdiction, and when it is data about a client located in a different jurisdiction.

OCDN and ODNS are a first attempt at addressing this issue by preventing any entity

from requesting access to the data at a CDN and a recursive resolver, respectively.

More specifically, these systems ensure that the entity who holds the data (i.e.a CDN

or DNS operator) cannot provide a meaningful response to data requests.

6.2 Final Remarks

As emerging technologies continue to grow, evolve, and become ubiquitous in our

everyday lives, we must complement them with other technologies and infrastructure

that preserves and protects users’ privacy. As the courts are currently debating the

policies that govern users’ private data, technologists can — and should — design

and develop technology that can help shape future policy debates.

128

Bibliography

[1] Quad9. https://quad9.net/, 2018.

[2] Josh Aas. Let’s Encrypt: Delivering SSL/TLS Everywhere. 2014.

[3] Akamai Empowers Operators to Deploy Their Own Content Dis-
tribution Network. https://www.akamai.com/us/en/resources/

content-distribution-network.jsp.

[4] Akamai: Facts & Figures. https://www.akamai.com/us/en/about/

facts-figures.jsp.

[5] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Re-
silient overlay networks. In ACM Symposium on Operating Systems Principles
(SOSP), volume 35. ACM, 2001.

[6] Anne Edmundson and Paul Schmitt and Nick Feamster and Jennifer Rexford
and Allison Mankin. ODNS: Oblivious DNS. https://indico.dns-oarc.net/
event/28/contributions/522/attachments/468/773/ODNS_slides.pdf,
2018.

[7] Anonymous. The collateral damage of internet censorship by dns injection.
ACM SIGCOMM CCR, 42(3), 2012.

[8] Jacob Appelbaum and Alec Muffett. The ‘.onion’ special-use domain name.
2015.

[9] Noah Apthorpe, Dillon Reisman, and Nick Feamster. A Smart Home is
No Castle: Privacy Vulnerabilities of Encrypted IoT Traffic. arXiv preprint
arXiv:1705.06805, 2017.

[10] Assessment of the Impact of Internet Exchange Points – Empirical Study of
Kenya and Nigeria. http://www.internetsociety.org/sites/default/

files/Assessment%20of%20the%20impact%20of%20Internet%20Exchange%

20Points%20%E2%80%93%20empirical%20study%20of%20Kenya%20and%

20Nigeria.pdf.

[11] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger, Timur
Friedman, Matthieu Latapy, Clémence Magnien, and Renata Teixeira. Avoiding

129

https://quad9.net/
https://www.akamai.com/us/en/resources/content-distribution-network.jsp
https://www.akamai.com/us/en/resources/content-distribution-network.jsp
https://www.akamai.com/us/en/about/facts-figures.jsp
https://www.akamai.com/us/en/about/facts-figures.jsp
https://indico.dns-oarc.net/event/28/contributions/522/attachments/468/773/ODNS_slides.pdf
https://indico.dns-oarc.net/event/28/contributions/522/attachments/468/773/ODNS_slides.pdf
http://www.internetsociety.org/sites/default/files/Assessment%20of%20the%20impact%20of%20Internet%20Exchange%20Points%20%E2%80%93%20empirical%20study%20of%20Kenya%20and%20Nigeria.pdf
http://www.internetsociety.org/sites/default/files/Assessment%20of%20the%20impact%20of%20Internet%20Exchange%20Points%20%E2%80%93%20empirical%20study%20of%20Kenya%20and%20Nigeria.pdf
http://www.internetsociety.org/sites/default/files/Assessment%20of%20the%20impact%20of%20Internet%20Exchange%20Points%20%E2%80%93%20empirical%20study%20of%20Kenya%20and%20Nigeria.pdf
http://www.internetsociety.org/sites/default/files/Assessment%20of%20the%20impact%20of%20Internet%20Exchange%20Points%20%E2%80%93%20empirical%20study%20of%20Kenya%20and%20Nigeria.pdf

Traceroute Anomalies with Paris Traceroute. In The 6th ACM SIGCOMM
Internet Measurement Conference, pages 153–158. ACM, 2006.

[12] A Baker’s Dozen, 2015 Edition. http://research.dyn.com/2016/04/

a-bakers-dozen-2015-edition/.

[13] Balancing Child Protection and Digital Rights. https://medium.com/

@jmalcolm/balancing-child-protection-and-digital-rights-1b9c4ab0b93f.

[14] Suman Banerjee, Timothy G Griffin, and Marcelo Pias. The Interdomain Con-
nectivity of PlanetLab Nodes. In Passive and Active Network Measurement,
pages 73–82. Springer, 2004.

[15] Paul Barford and Mark Crovella. Generating representative web workloads for
network and server performance evaluation. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 26, pages 151–160. ACM, 1998.

[16] Daniel S Berger, Ramesh K Sitaraman, and Mor Harchol-Balter. Adaptsize:
Orchestrating the hot object memory cache in a content delivery network. In
14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 483–498. USENIX Association, 2017.

[17] Daniel J Bernstein. Dnscurve: Usable security for dns. dnscurve. org, 2009.

[18] Zachary S Bischof, John P Rula, and Fabián E Bustamante. In and Out of
Cuba: Characterizing Cuba’s Connectivity. In ACM Conference on Internet
Measurement Conference, pages 487–493. ACM, 2015.

[19] S. Bortzmeyer. DNS Query Name Minimisation to Improve Privacy. Work
in progress (Internet draft draft-bortzmeyer-dns-qname-minimisation-02), May
2014.

[20] Brazil Builds Internet Cable To Portugal To
Avoid NSA Surveillance. http://www.ibtimes.com/

brazil-builds-internet-cable-portugal-avoid-nsa-surveillance-1717417.

[21] Brazil Conference will Plot Internet’s Future Post NSA Spying. http://www.

reuters.com/article/us-internet-conference-idUSBREA3L1OJ20140422.

[22] Brazil Looks to Break from US Centric Internet. http://www.nbcnews.com/

technology/amp/brazil-looks-break-us-centric-intenet-4B11180299.

[23] Brazil Looks to Break from US Centric Internet. http://news.yahoo.com/

brazil-looks-break-us-centric-internet-040702309.html.

[24] Brazil to Host Global Internet Summit in Ongoing Fight
Against NSA Surveillance. https://www.rt.com/news/

brazil-internet-summit-fight-nsa-006/.

130

http://research.dyn.com/2016/04/a-bakers-dozen-2015-edition/
http://research.dyn.com/2016/04/a-bakers-dozen-2015-edition/
https://medium.com/@jmalcolm/balancing-child-protection-and-digital-rights-1b9c4ab0b93f
https://medium.com/@jmalcolm/balancing-child-protection-and-digital-rights-1b9c4ab0b93f
http://www.ibtimes.com/brazil-builds-internet-cable-portugal-avoid-nsa-surveillance-1717417
http://www.ibtimes.com/brazil-builds-internet-cable-portugal-avoid-nsa-surveillance-1717417
http://www.reuters.com/article/us-internet-conference-idUSBREA3L1OJ20140422
http://www.reuters.com/article/us-internet-conference-idUSBREA3L1OJ20140422
http://www.nbcnews.com/technology/amp/brazil-looks-break-us-centric-intenet-4B11180299
http://www.nbcnews.com/technology/amp/brazil-looks-break-us-centric-intenet-4B11180299
http://news.yahoo.com/brazil-looks-break-us-centric-internet-040702309.html
http://news.yahoo.com/brazil-looks-break-us-centric-internet-040702309.html
https://www.rt.com/news/brazil-internet-summit-fight-nsa-006/
https://www.rt.com/news/brazil-internet-summit-fight-nsa-006/

[25] Brazil’s President Tells U.N. That NSA Spying Violates Hu-
man Rights. http://www.usnews.com/news/articles/2013/09/24/

brazils-president-tells-un-that-nsa-spying-violates-human-rights.

[26] Brazil to Press for Local Internet Data Storage After NSA Spying. https:

//www.rt.com/news/brazil-brics-internet-nsa-895/, 2013.

[27] Brasil Internet Exchange Participants Diversity. http://ix.br/doc/nic.br.

ix.br.euro-ix-27th-berlin.20151027-02.pdf, 2015.

[28] Samuel Henrique Bucke Brito, Mateus AS Santos, Ramon dos Reis Fontes,
Danny A Lachos Perez, and Christian Esteve Rothenberg. Dissecting the largest
national ecosystem of public internet exchange points in Brazil. In Interna-
tional Conference on Passive and Active Network Measurement, pages 333–345.
Springer, 2016.

[29] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from
a distance: Website fingerprinting attacks and defenses. In ACM Conference
on Computer and Communications Security, pages 605–616. ACM, 2012.

[30] CAIDA: Center for Applied Internet Data Analysis. http://www.caida.org/

home/.

[31] Matt Calder, Xun Fan, Zi Hu, Ethan Katz-Bassett, John Heidemann, and
Ramesh Govindan. Mapping the expansion of Google’s serving infrastruc-
ture. In Conference on Internet Measurement Conference, pages 313–326. ACM,
2013.

[32] Sergio Castillo-Perez and Joaquin Garcia-Alfaro. Evaluation of two privacy-
preserving protocols for the DNS. In Information Technology: New Generations,
2009. ITNG’09. Sixth International Conference on, pages 411–416. IEEE, 2009.

[33] Cedexis. https://www.cedexis.com/.

[34] Josiah Chavula, Nick Feamster, Antoine Bagula, and Hussein Suleman. Quan-
tifying the Effects of Circuitous Routes on the Latency of Intra-Africa Internet
Traffic: A Study of Research and Education Networks. In International Confer-
ence on e-Infrastructure and e-Services for Developing Countries, pages 64–73.
Springer, 2014.

[35] Jianjun Chen, Jian Jiang, Xiaofeng Zheng, Haixin Duan, Jinjin Liang, Kang
Li, Tao Wan, and Vern Paxson. Forwarding-loop attacks in content delivery
networks. In Network and Distributed System Security Symposium (NDSS’16),
2016.

[36] Chinese Routing Errors Redirect Russian Traffic. http://research.dyn.com/
2014/11/chinese-routing-errors-redirect-russian-traffic/.

131

http://www.usnews.com/news/articles/2013/09/24/brazils-president-tells-un-that-nsa-spying-violates-human-rights
http://www.usnews.com/news/articles/2013/09/24/brazils-president-tells-un-that-nsa-spying-violates-human-rights
https://www.rt.com/news/brazil-brics-internet-nsa-895/
https://www.rt.com/news/brazil-brics-internet-nsa-895/
http://ix.br/doc/nic.br.ix.br.euro-ix-27th-berlin.20151027-02.pdf
http://ix.br/doc/nic.br.ix.br.euro-ix-27th-berlin.20151027-02.pdf
http://www.caida.org/home/
http://www.caida.org/home/
https://www.cedexis.com/
http://research.dyn.com/2014/11/chinese-routing-errors-redirect-russian-traffic/
http://research.dyn.com/2014/11/chinese-routing-errors-redirect-russian-traffic/

[37] Cloudflare: 94 Percent of the Tor Traffic We See is “Per Se
Malicious”. https://arstechnica.com/tech-policy/2016/03/

new-data-suggests-94-percent-of-tor-traffic-is-malicious/.

[38] Content Delivery Networks Aren’t Notorious Mar-
kets. https://medium.com/niskanen-center/

content-delivery-networks-arent-notorious-markets-2a448a549cf7.

[39] Content Delivery Networks (CDNs). https://www.eff.org/

free-speech-weak-link/cdn.

[40] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anony-
mous messaging system handling millions of users. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 321–338. IEEE, 2015.

[41] CREDO and Cloudflare Argue Against National Security Let-
ter Gag Orders. https://techcrunch.com/2017/03/23/

credo-and-cloudflare-argue-against-national-security-letter-gag-orders/.

[42] Data. https://bitbucket.org/ransom_research/data/.

[43] Delete Hate Speech or Pay Up, Germany Tells Social Media
Companies. https://www.nytimes.com/2017/06/30/business/

germany-facebook-google-twitter.html.

[44] Frank Denis and Yecheng Fu. Dnscrypt, 2015.

[45] Deutsche Telekom to Push for National Routing to Cur-
tail Spying. http://www.businessweek.com/news/2013-10-14/

deutsche-telekom-to-push-for-national.

[46] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-
Generation Onion Router. Technical report, DTIC Document, 2004.

[47] District court rules against Cloudflare in anti-piracy
suit. https://thestack.com/security/2017/03/29/

district-court-rules-against-cloudflare-in-anti-piracy-suit/.

[48] Dutch Senate votes in favor of dragnet surveil-
lance powers. https://www.bof.nl/2017/07/12/

dutch-senate-votes-in-favor-of-dragnet-surveillance-powers/.

[49] Anne Edmundson, Roya Ensafi, Nick Feamster, and Jennifer Rexford. A first
look into transnational routing detours. In ACM SIGCOMM Conference, pages
567–568. ACM, 2016.

[50] Anne Edmundson, Roya Ensafi, Nick Feamster, and Jennifer Rexford. Avoiding
Nation-State Surveillance. https://youtu.be/0 dQQ0BP0-s, 2016.

132

https://arstechnica.com/tech-policy/2016/03/new-data-suggests-94-percent-of-tor-traffic-is-malicious/
https://arstechnica.com/tech-policy/2016/03/new-data-suggests-94-percent-of-tor-traffic-is-malicious/
https://medium.com/niskanen-center/content-delivery-networks-arent-notorious-markets-2a448a549cf7
https://medium.com/niskanen-center/content-delivery-networks-arent-notorious-markets-2a448a549cf7
https://www.eff.org/free-speech-weak-link/cdn
https://www.eff.org/free-speech-weak-link/cdn
https://techcrunch.com/2017/03/23/credo-and-cloudflare-argue-against-national-security-letter-gag-orders/
https://techcrunch.com/2017/03/23/credo-and-cloudflare-argue-against-national-security-letter-gag-orders/
https://bitbucket.org/ransom_research/data/
https://www.nytimes.com/2017/06/30/business/germany-facebook-google-twitter.html
https://www.nytimes.com/2017/06/30/business/germany-facebook-google-twitter.html
http://www.businessweek.com/news/2013-10-14/deutsche-telekom-to-push-for-national
http://www.businessweek.com/news/2013-10-14/deutsche-telekom-to-push-for-national
https://thestack.com/security/2017/03/29/district-court-rules-against-cloudflare-in-anti-piracy-suit/
https://thestack.com/security/2017/03/29/district-court-rules-against-cloudflare-in-anti-piracy-suit/
https://www.bof.nl/2017/07/12/dutch-senate-votes-in-favor-of-dragnet-surveillance-powers/
https://www.bof.nl/2017/07/12/dutch-senate-votes-in-favor-of-dragnet-surveillance-powers/

[51] Anne Edmundson, Roya Ensafi, Nick Feamster, and Jennifer Rexford. Charac-
terizing and avoiding routing detours through surveillance states. arXiv preprint
arXiv:1605.07685, 2016.

[52] Anne Edmundson, Roya Ensafi, Nick Feamster, and Jennifer Rexford. Studying
Transnational Routing Detours through Surveillance State. https://ripe73.

ripe.net/archives/video/1431/, 2016.

[53] Anne Edmundson, Roya Ensafi, Nick Feamster, and Jennifer Rexford. Nation-
State Hegemony in Internet Routing. In Conference on Computing and Sus-
tainable Societies (COMPASS). ACM, 2018.

[54] Anne Edmundson, Paul Schmitt, and Nick Feamster. Oblivious DNS: Plugging
the Internet’s Biggest Privacy Hole. https://freedom-to-tinker.com/2018/
04/02/a-privacy-preserving-approach-to-dns/, 2018.

[55] Anne Edmundson, Paul Schmitt, Nick Feamster, and Jennifer Rexford. Ocdn:
Oblivious content distribution networks. arXiv preprint arXiv:1711.01478,
2017.

[56] Encryption App Signal Wins Fight Against FBI Sub-
poena and Gag Order. https://www.dailydot.com/layer8/

signal-subpoena-privacy-gag-order/.

[57] Brian Eriksson, Paul Barford, Bruce Maggs, and Robert Nowak. Posit: a
Lightweight Approach for IP Geolocation. ACM SIGMETRICS Performance
Evaluation Review, 40(2):2–11, 2012.

[58] Brian Eriksson, Paul Barford, Joel Sommers, and Robert Nowak. A Learning-
Based Approach for IP Geolocation. In Passive and Active Measurement, pages
171–180. Springer, 2010.

[59] EU Proposal for a Directive of The European Parliament and of the Council
on Copyright in the Digital Single Market. 2016. https://ec.europa.eu/

transparency/regdoc/rep/1/2016/EN/1-2016-593-EN-F1-1.PDF.

[60] Patrick T Eugster, Rachid Guerraoui, A-M Kermarrec, and Laurent Mas-
soulié. Epidemic information dissemination in distributed systems. Computer,
37(5):60–67, 2004.

[61] Eyes Wide Open. https://www.privacyinternational.org/sites/

default/files/Eyes%20Wide%20Open%20v1.pdf.

[62] Facebook Loses Appeal to Block Bulk Search War-
rants. https://www.nytimes.com/2017/04/04/nyregion/

facebook-bulk-search-warrants-new-york-state.html?_r=0.

133

https://ripe73.ripe.net/archives/video/1431/
https://ripe73.ripe.net/archives/video/1431/
https://freedom-to-tinker.com/2018/04/02/a-privacy-preserving-approach-to-dns/
https://freedom-to-tinker.com/2018/04/02/a-privacy-preserving-approach-to-dns/
https://www.dailydot.com/layer8/signal-subpoena-privacy-gag-order/
https://www.dailydot.com/layer8/signal-subpoena-privacy-gag-order/
https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-593-EN-F1-1.PDF
https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-593-EN-F1-1.PDF
https://www.privacyinternational.org/sites/default/files/Eyes%20Wide%20Open%20v1.pdf
https://www.privacyinternational.org/sites/default/files/Eyes%20Wide%20Open%20v1.pdf
https://www.nytimes.com/2017/04/04/nyregion/facebook-bulk-search-warrants-new-york-state.html?_r=0
https://www.nytimes.com/2017/04/04/nyregion/facebook-bulk-search-warrants-new-york-state.html?_r=0

[63] Rodérick Fanou, Pierre Francois, and Emile Aben. On the Diversity of Inter-
domain Routing in Africa. In International Conference on Passive and Active
Network Measurement, pages 41–54. Springer, 2015.

[64] Rodérick Fanou, Gareth Tyson, Pierre Francois, and Arjuna Sathiaseelan. Push-
ing the Frontier: Exploring the African Web Ecosystem. In International Con-
ference on World Wide Web, pages 435–445, 2016.

[65] Nick Feamster and Roger Dingledine. Location diversity in anonymity networks.
In ACM Workshop on Privacy in the Electronic Society, pages 66–76. ACM,
2004.

[66] Hannes Federrath, Karl-Peter Fuchs, Dominik Herrmann, and Christopher
Piosecny. Privacy-preserving DNS: analysis of broadcast, range queries and
mix-based protection methods. In European Symposium on Research in Com-
puter Security, pages 665–683. Springer, 2011.

[67] France Must Reject Law that Gives Carte Blanche to Mass Surveillance
Globally. https://www.amnesty.org/en/press-releases/2015/09/

france-must-reject-law-that-gives-carte-blanche-to-mass-surveillance-globally/.

[68] Lixin Gao. On inferring autonomous system relationships in the internet.
IEEE/ACM Transactions on Networking (ToN), 9(6):733–745, 2001.

[69] Roxana Geambasu, Jarret Falkner, Paul Gardner, Tadayoshi Kohno, Arvind
Krishnamurthy, and Henry M Levy. Experiences building security applications
on DHTs. Technical Report, UW-CSE-09–09–01, 2009.

[70] Nethanel Gelernter, Amir Herzberg, and Hemi Leibowitz. Two cents for strong
anonymity: The anonymous post-office protocol. Privacy Enhancing Technolo-
gies, 2:1–20, 2016.

[71] Manaf Gharaibeh, Anant Shah, Bradley Huffaker, Han Zhang, Roya Ensafi, and
Christos Papadopoulos. A look at router geolocation in public and commercial
databases. In Internet Measurement Conference, pages 463–469. ACM, 2017.

[72] Yossi Gilad, Amir Herzberg, Michael Sudkovitch, and Michael Goberman.
CDN-on-demand: an affordable DDoS defense via untrusted clouds. In Net-
work and Distributed Security Symposium (NDSS), 2016.

[73] Phillipa Gill, Yashar Ganjali, Bernard Wong, and David Lie. Dude, Where’s
That IP?: Circumventing Measurement-Based IP Geolocation. In USENIX
Conference on Security, pages 16–16. USENIX Association, 2010.

[74] Gogo Inflight Internet Serves up ’Man in the Middle’ with Fake
SSL. http://www.csoonline.com/article/2865806/cloud-security/

gogo-inflight-internet-serves-up-man-in-the-middle-with-fake-ssl.

html.

134

https://www.amnesty.org/en/press-releases/2015/09/france-must-reject-law-that-gives-carte-blanche-to-mass-surveillance-globally/
https://www.amnesty.org/en/press-releases/2015/09/france-must-reject-law-that-gives-carte-blanche-to-mass-surveillance-globally/
http://www.csoonline.com/article/2865806/cloud-security/gogo-inflight-internet-serves-up-man-in-the-middle-with-fake-ssl.html
http://www.csoonline.com/article/2865806/cloud-security/gogo-inflight-internet-serves-up-man-in-the-middle-with-fake-ssl.html
http://www.csoonline.com/article/2865806/cloud-security/gogo-inflight-internet-serves-up-man-in-the-middle-with-fake-ssl.html

[75] Benjamin Greschbach, Tobias Pulls, Laura M. Roberts, Philipp Winter, and
Nick Feamster. The Effect of DNS on Tor’s Anonymity. CoRR, abs/1609.08187,
2016.

[76] Benjamin Greschbach, Tobias Pulls, Laura M Roberts, Philipp Winter, and
Nick Feamster. The Effect of DNS on Tor’s Anonymity. 2017.

[77] Chuanxiong Guo, Yunxin Liu, Wenchao Shen, Helen J Wang, Qing Yu, and
Yongguang Zhang. Mining the Web and the Internet for Accurate IP Address
Geolocations. In INFOCOM 2009, IEEE, pages 2841–2845. IEEE, 2009.

[78] Arpit Gupta, Matt Calder, Nick Feamster, Marshini Chetty, Enrico Calandro,
and Ethan Katz-Bassett. Peering at the Internet’s Frontier: A First Look at
ISP Interconnectivity in Africa. In Passive and Active Measurement, pages
204–213. Springer, 2014.

[79] Yihua He, Michalis Faloutsos, and Srikanth Krishnamurthy. Quantifying Rout-
ing Asymmetry in the Internet at the AS Level. In Global Telecommunications
Conference, 2004. GLOBECOM’04. IEEE, volume 3, pages 1474–1479. IEEE,
2004.

[80] Yihua He, Michalis Faloutsos, Srikanth Krishnamurthy, and Bradley Huffaker.
On routing asymmetry in the internet. In Global Telecommunications Confer-
ence, 2005. GLOBECOM’05. IEEE, volume 2, pages 6–pp. IEEE, 2005.

[81] J. Heidemann, A. Mankin, D. Wessels, P. Hoffman, Z. Hu, and L. Zhu. Spec-
ification for DNS Over Transport Layer Security (TLS). Internet Engineering
Task Force (IETF), 2016.

[82] Dominik Herrmann, Karl-Peter Fuchs, Jens Lindemann, and Hannes Federrath.
EncDNS: A lightweight privacy-preserving name resolution service. In European
Symposium on Research in Computer Security, pages 37–55. Springer, 2014.

[83] Amir Herzberg and Haya Shulman. Retrofitting security into network protocols:
The case of dnssec. IEEE Internet Computing, 18(1):66–71, 2014.

[84] Cristian Hesselman, Giovane CM Moura, Ricardo de Oliveira Schmidt, and
Cees Toet. Increasing DNS security and stability through a control plane for
top-level domain operators. IEEE Communications Magazine, 55(1):197–203,
2017.

[85] Paul Hill. Comcast begins man-in-the-middle attacks to show
copyright notices on websites. https://www.neowin.net/news/

comcast-begin-man-in-the-middle-attacks-to-show-copyright-notices-on-websites,
2015.

[86] P. Hoffman and P. McManus. DNS Queries over HTTPS. https://tools.

ietf.org/html/draft-ietf-doh-dns-over-https-04, 2018.

135

https://www.neowin.net/news/comcast-begin-man-in-the-middle-attacks-to-show-copyright-notices-on-websites
https://www.neowin.net/news/comcast-begin-man-in-the-middle-attacks-to-show-copyright-notices-on-websites
https://tools.ietf.org/html/draft-ietf-doh-dns-over-https-04
https://tools.ietf.org/html/draft-ietf-doh-dns-over-https-04

[87] How the NSA & FBI made Facebook the perfect mass
surveillance tool. https://venturebeat.com/2014/05/15/

how-the-nsa-fbi-made-facebook-the-perfect-mass-surveillance-tool/.

[88] How Brazil Crowdsourced a Landmark Law. http://foreignpolicy.com/

2016/01/19/how-brazil-crowdsourced-a-landmark-law/, 2016.

[89] Zi Hu, John Heidemann, and Yuri Pradkin. Towards Geolocation of Millions of
IP Addresses. In ACM Conference on Internet Measurement Conference, pages
123–130. ACM, 2012.

[90] Cheng Huang, Angela Wang, Jin Li, and Keith W Ross. Measuring and evalu-
ating large-scale CDNs. In ACM IMC, volume 8, 2008.

[91] Bradley Huffaker, Marina Fomenkov, and K Claffy. Geocompare: A Comparison
of Public and Commercial Geolocation Databases. Proc. NMMC, pages 1–12,
2011.

[92] Investigatory Powers Bill: Snooper’s Charter Lacks Clarity,
MPs Warn. http://www.theguardian.com/law/2016/feb/01/

investigatory-powers-bill-snoopers-charter-lacks-clarity-mps-warn.

[93] Internet-Wide Scan Data Repository. https://scans.io/study/

washington-dns.

[94] Investigatory Powers Act: Britain’s online surveillance
laws explained. http://www.pocket-lint.com/news/

142641-investigatory-powers-act-britain-s-online-surveillance-laws-explained.

[95] MH Jalalzai, WB Shahid, and MMW Iqbal. DNS security challenges and best
practices to deploy secure DNS with digital signatures. In Applied Sciences and
Technology (IBCAST), 2015 12th International Bhurban Conference on, pages
280–285. IEEE, 2015.

[96] Yaoqi Jia, Guangdong Bai, Prateek Saxena, and Zhenkai Liang. Anonymity
in peer-assisted CDNs: Inference attacks and mitigation. Privacy Enhancing
Technologies, 2016(4):294–314, 2016.

[97] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syver-
son. Users Get Routed: Traffic Correlation on Tor by Realistic Adver-
saries. In CCS. ACM, 2013. http://www.ohmygodel.com/publications/

usersrouted-ccs13.pdf.

[98] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich. Flash
crowds and denial of service attacks: Characterization and implications for
CDNs and web sites. In International Conference on World Wide Web, pages
293–304. ACM, 2002.

136

https://venturebeat.com/2014/05/15/how-the-nsa-fbi-made-facebook-the-perfect-mass-surveillance-tool/
https://venturebeat.com/2014/05/15/how-the-nsa-fbi-made-facebook-the-perfect-mass-surveillance-tool/
http://foreignpolicy.com/2016/01/19/how-brazil-crowdsourced-a-landmark-law/
http://foreignpolicy.com/2016/01/19/how-brazil-crowdsourced-a-landmark-law/
http://www.theguardian.com/law/2016/feb/01/investigatory-powers-bill-snoopers-charter-lacks-clarity-mps-warn
http://www.theguardian.com/law/2016/feb/01/investigatory-powers-bill-snoopers-charter-lacks-clarity-mps-warn
https://scans.io/study/washington-dns
https://scans.io/study/washington-dns
http://www.pocket-lint.com/news/142641-investigatory-powers-act-britain-s-online-surveillance-laws-explained
http://www.pocket-lint.com/news/142641-investigatory-powers-act-britain-s-online-surveillance-laws-explained
http://www.ohmygodel.com/publications/usersrouted-ccs13.pdf
http://www.ohmygodel.com/publications/usersrouted-ccs13.pdf

[99] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In ACM Symposium
on Theory of Computing, pages 654–663. ACM, 1997.

[100] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. Nation-state Routing:
Censorship, Wiretapping, and BGP. arXiv preprint arXiv:0903.3218, 2009.

[101] Ethan Katz-Bassett, John P John, Arvind Krishnamurthy, David Wetherall,
Thomas Anderson, and Yatin Chawathe. Towards IP Geolocation Using De-
lay and Topology Measurements. In ACM SIGCOMM conference on Internet
Measurement, pages 71–84. ACM, 2006.

[102] Ethan Katz-Bassett, Harsha V Madhyastha, Vijay Kumar Adhikari, Colin
Scott, Justine Sherry, Peter Van Wesep, Thomas E Anderson, and Arvind Kr-
ishnamurthy. Reverse traceroute. In NSDI, volume 10, pages 219–234, 2010.

[103] Kazakhstan Will Require Internet Surveillance Back Doors. http://www.

engadget.com/2015/12/05/kazakhstan-internet-back-door-law/, 2015.

[104] Anne-Marie Kermarrec and Maarten Van Steen. Gossiping in distributed sys-
tems. ACM SIGOPS Operating Systems Review, 41(5):2–7, 2007.

[105] Sheharbano Khattak, David Fifield, Sadia Afroz, Mobin Javed, Srikanth Sun-
daresan, Vern Paxson, Steven J Murdoch, and Damon McCoy. Do You See
What I See? Differential Treatment of Anonymous Users. In Network and
Distributed System Security Symposium, 2016.

[106] Jeffrey Knockel, Masashi Crete-Nishihata, Jason Q Ng, Adam Senft, and Je-
didiah R Crandall. Every rose has its thorn: Censorship and surveillance on
social video platforms in china. In 5th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 15), 2015.

[107] Srinivas Krishnan and Fabian Monrose. DNS prefetching and its privacy im-
plications: when good things go bad. In USENIX Conference on Large-Scale
Exploits and Emergent Threats: Botnets, Spyware, Worms, and More, pages
10–10, 2010.

[108] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford.
Atom: Scalable anonymity resistant to traffic analysis. arXiv preprint
arXiv:1612.07841, 2016.

[109] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle. Privacy
Enhancing Technologies, 2016(2):115–134, 2016.

[110] Sir Stephen Lander. International Intelligence Cooperation: An Inside Perspec-
tive 1. Cambridge Review of International Affairs, 17(3):481–493, 2004.

137

http://www.engadget.com/2015/12/05/kazakhstan-internet-back-door-law/
http://www.engadget.com/2015/12/05/kazakhstan-internet-back-door-law/

[111] Matt Larson, Dan Massey, Scott Rose, Roy Arends, and Rob Austein. DNS
security introduction and requirements. 2005.

[112] Law Enforcement Requests Report. https://www.microsoft.com/en-us/

about/corporate-responsibility/lerr.

[113] Chris Lesniewski-Laas and M Frans Kaashoek. SSL splitting: Securely serving
data from untrusted caches. Computer Networks, 48(5):763–779, 2005.

[114] Dave Levin, Youndo Lee, Luke Valenta, Zhihao Li, Victoria Lai, Cristian
Lumezanu, Neil Spring, and Bobby Bhattacharjee. Alibi Routing. In The 2015
ACM Conference on Special Interest Group on Data Communication, pages
611–624. ACM, 2015.

[115] Amit Levy, Henry Corrigan-Gibbs, and Dan Boneh. Stickler: Defending against
malicious CDNs in an unmodified browser. arXiv preprint arXiv:1506.04110,
2015.

[116] Daniel Mark Lewin. Consistent hashing and random trees: Algorithms for
caching in distributed networks. PhD thesis, Massachusetts Institute of Tech-
nology, 1998.

[117] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao Wan, and Jianping Wu.
When HTTPS meets CDN: A case of authentication in delegated service. In
Security and Privacy (S&P), 2014 IEEE Symposium on, pages 67–82. IEEE,
2014.

[118] Harsha V Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas
Anderson, Arvind Krishnamurthy, and Arun Venkataramani. iPlane: An In-
formation Plane for Distributed Services. In The 7th Symposium on Operat-
ing Systems Design and Implementation, pages 367–380. USENIX Association,
2006.

[119] S. Marchal, J. François, C. Wagner, R. State, A. Dulaunoy, T. Engel, and
O. Festor. Dnssm: A large scale passive dns security monitoring framework. In
2012 IEEE Network Operations and Management Symposium, pages 988–993,
April 2012.

[120] MaxMind. https://www.maxmind.com/en/home.

[121] David Folkman Mazières. Self-certifying file system. PhD thesis, Massachusetts
Institute of Technology, 2000.

[122] Nikolaos Michalakis, Robert Soulé, and Robert Grimm. Ensuring content in-
tegrity for untrusted peer-to-peer content distribution networks. In USENIX
Conference on Networked Systems Design & Implementation, pages 11–11.
USENIX Association, 2007.

138

https://www.microsoft.com/en-us/about/corporate-responsibility/lerr
https://www.microsoft.com/en-us/about/corporate-responsibility/lerr
https://www.maxmind.com/en/home

[123] Netherlands New Proposal for Dragnet Surveillance Underway. https://edri.
org/netherlands-new-proposals-for-dragnet-surveillance-underway/,
2015.

[124] Daiyuu Nobori and Yasushi Shinjo. VPN gate: A Volunteer-organized Pub-
lic VPN Relay System with Blocking Resistance for Bypassing Government
Censorship Firewalls. In The 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 229–241, 2014.

[125] NSA infiltrates links to Yahoo, Google data centers worldwide, Snowden doc-
uments say. https://www.washingtonpost.com/world/national-security/
nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/

2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html?utm_

term=.ad3fb06d0888.

[126] Jonathan A Obar and Andrew Clement. Internet Surveillance and Boomerang
Routing: A Call for Canadian Network Sovereignty. In TEM 2013: The Tech-
nology & Emerging Media Track-Annual Conference of the Canadian Commu-
nication Association (Victoria), 2012.

[127] Eric Osterweil, Dan Massey, and Lixia Zhang. Deploying and monitoring DNS
security (DNSSEC). In Computer Security Applications Conference, 2009. AC-
SAC’09. Annual, pages 429–438. IEEE, 2009.

[128] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan Pen-
nekamp, Klaus Wehrle, and Thomas Engel. Website fingerprinting at internet
scale. In Network & Distributed System Security Symposium (NDSS). IEEE
Computer Society, 2016.

[129] Vern Paxson. End-to-end routing behavior in the internet. IEEE/ACM trans-
actions on Networking, 5(5):601–615, 1997.

[130] Simon Peter, Umar Javed, Qiao Zhang, Doug Woos, Thomas Anderson, and
Arvind Krishnamurthy. One tunnel is (often) enough. ACM SIGCOMM Com-
puter Communication Review, 44(4):99–110, 2015.

[131] Ania Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George
Danezis. The loopix anonymity system. arXiv preprint arXiv:1703.00536, 2017.

[132] PlanetLab. http://planet-lab.org/.

[133] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and Bamba
Gueye. IP Geolocation Databases: Unreliable? ACM SIGCOMM Computer
Communication Review, 41(2):53–56, 2011.

[134] Promoting the Use of Internet Exchange Points (IXPs): A Guide to Pol-
icy, Management and Technical Issues. https://www.internetsociety.org/

sites/default/files/Promoting%20the%20use%20of%20IXPs.pdf, 2012.

139

https://edri.org/netherlands-new-proposals-for-dragnet-surveillance-underway/
https://edri.org/netherlands-new-proposals-for-dragnet-surveillance-underway/
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html?utm_term=.ad3fb06d0888
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html?utm_term=.ad3fb06d0888
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html?utm_term=.ad3fb06d0888
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html?utm_term=.ad3fb06d0888
http://planet-lab.org/
https://www.internetsociety.org/sites/default/files/Promoting%20the%20use%20of%20IXPs.pdf
https://www.internetsociety.org/sites/default/files/Promoting%20the%20use%20of%20IXPs.pdf

[135] Charles Rackoff and Daniel R Simon. Cryptographic defense against traffic
analysis. In Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, pages 672–681. ACM, 1993.

[136] RAN. https://bitbucket.org/ransom_research/ran/.

[137] T. Reddy, D. Wing, and P. Patil. Specification for DNS over Data-
gram Transport Layer Security (DTLS). https://tools.ietf.org/html/

draft-ietf-dprive-dnsodtls-15, 2016.

[138] Report of the Special Rapporteur on the right to privacy. http://www.ohchr.
org/Documents/Issues/Privacy/A-HRC-31-64.doc.

[139] Requests for user information. https://transparencyreport.google.com/

user-data/overview?t=table.

[140] Revealed: How US and UK Spy Agencies Defeat Internet Pri-
vacy and Security. https://www.theguardian.com/world/2013/sep/05/

nsa-gchq-encryption-codes-security.

[141] RIPE Atlas. https://atlas.ripe.net/.

[142] Hal Roberts, David Larochelle, Rob Faris, and John Palfrey. Mapping Local In-
ternet Control. In Computer Communications Workshop (Hyannis, CA, 2011),
IEEE, 2011.

[143] Ira S Rubinstein, Gregory T Nojeim, and Ronald D Lee. Systematic government
access to personal data: a comparative analysis. International Data Privacy
Law, 4(2):96–119, 2014.

[144] David Ruiz. Responsibility Deflected, the CLOUD
Act Passes. https://www.eff.org/deeplinks/2018/03/

responsibility-deflected-cloud-act-passes, 2018.

[145] Christine Runnegar. Encryption and Law Enforcement Can Work
Together. https://www.internetsociety.org/blog/2017/10/

encryption-law-enforcement-can-work-together/, 2017.

[146] Russia Needs More Internet Security Says Putin. http://www.wsj.com/

articles/russia-needs-more-internet-security-says-putin-1412179448,
2014.

[147] Lidija Sabados. Indian government wiretapping. https://citizenlab.ca/

2013/01/indian-government-wiretapping/.

[148] Schrems v. Data Protection Commissioner. https://epic.org/privacy/

intl/schrems/.

140

https://bitbucket.org/ransom_research/ran/
https://tools.ietf.org/html/draft-ietf-dprive-dnsodtls-15
https://tools.ietf.org/html/draft-ietf-dprive-dnsodtls-15
http://www.ohchr.org/Documents/Issues/Privacy/A-HRC-31-64.doc
http://www.ohchr.org/Documents/Issues/Privacy/A-HRC-31-64.doc
https://transparencyreport.google.com/user-data/overview?t=table
https://transparencyreport.google.com/user-data/overview?t=table
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://atlas.ripe.net/
https://www.eff.org/deeplinks/2018/03/responsibility-deflected-cloud-act-passes
https://www.eff.org/deeplinks/2018/03/responsibility-deflected-cloud-act-passes
https://www.internetsociety.org/blog/2017/10/encryption-law-enforcement-can-work-together/
https://www.internetsociety.org/blog/2017/10/encryption-law-enforcement-can-work-together/
http://www.wsj.com/articles/russia-needs-more-internet-security-says-putin-1412179448
http://www.wsj.com/articles/russia-needs-more-internet-security-says-putin-1412179448
https://citizenlab.ca/2013/01/indian-government-wiretapping/
https://citizenlab.ca/2013/01/indian-government-wiretapping/
https://epic.org/privacy/intl/schrems/
https://epic.org/privacy/intl/schrems/

[149] Will Scott, Thomas Anderson, Tadayoshi Kohno, and Arvind Krishnamurthy.
Satellite: Joint analysis of CDNs and network-level interference. In 2016
USENIX Annual Technical Conference (USENIX ATC 16), pages 195–208.
USENIX Association, 2016.

[150] Adam Senft, Jakub Dalek, Irene Poetranto, Masashi Crete-Nishihata, , and
Aim Sinpeng. Information Controls during Thailand’s 2014 Coup. https:

//citizenlab.ca/2014/07/information-controls-thailand-2014-coup/.

[151] Anant Shah and Christos Papadopoulos. Characterizing International BGP
Detours. Technical Report CS-15-104, Colorado State University, 2015.

[152] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency mix
networks: Attacks and defenses. In European Symposium on Research in Com-
puter Security, pages 18–33. Springer, 2006.

[153] Haya Shulman. Pretty bad privacy: Pitfalls of DNS encryption. In Workshop
on Privacy in the Electronic Society, pages 191–200. ACM, 2014.

[154] Simple Hit-Metering and Usage-Limiting for HTTP. https://www.ietf.org/
rfc/rfc2227.txt.

[155] Amitpal Singh. Christopher Parsons On Pakistan’s Black-
berry Information Requests. https://citizenlab.ca/2015/12/

christopher-parsons-on-pakistans-blackberry-information-requests/.

[156] Andrei Soldatov and Irina Borogan. Russia’s surveillance state. World Policy
Journal, 30(3):23–30, 2013.

[157] Ao-Jan Su, David R Choffnes, Aleksandar Kuzmanovic, and Fabián E Busta-
mante. Drafting behind Akamai: Inferring network conditions based on CDN
redirections. IEEE/ACM Transactions on Networking (TON), 17(6):1752–1765,
2009.

[158] Ao-Jan Su and Aleksandar Kuzmanovic. Thinning Akamai. In ACM SIG-
COMM Conference on Internet Measurement, pages 29–42. ACM, 2008.

[159] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford,
Mung Chiang, and Prateek Mittal. Raptor: Routing attacks on privacy in tor.
In USENIX Security, pages 271–286, 2015.

[160] TeleGeography Submarine Cable Map. http://www.submarinecablemap.

com/.

[161] The East African Marine System. http://www.teams.co.ke/.

[162] Matthew Thomas and Aziz Mohaisen. Measuring the leakage of onion at the
root: A measurement of tor’s. onion pseudo-tld in the global domain name
system. In Workshop on Privacy in the Electronic Society, pages 173–180.
ACM, 2014.

141

https://citizenlab.ca/2014/07/information-controls-thailand-2014-coup/
https://citizenlab.ca/2014/07/information-controls-thailand-2014-coup/
https://www.ietf.org/rfc/rfc2227.txt
https://www.ietf.org/rfc/rfc2227.txt
https://citizenlab.ca/2015/12/christopher-parsons-on-pakistans-blackberry-information-requests/
https://citizenlab.ca/2015/12/christopher-parsons-on-pakistans-blackberry-information-requests/
http://www.submarinecablemap.com/
http://www.submarinecablemap.com/
http://www.teams.co.ke/

[163] Sipat Triukose, Zakaria Al-Qudah, and Michael Rabinovich. Content deliv-
ery networks: Protection or threat? In European Symposium on Research in
Computer Security, pages 371–389. Springer, 2009.

[164] The Trouble with Tor. https://blog.cloudflare.com/

the-trouble-with-tor/.

[165] Lokman Tsui. The panopticon as the antithesis of a space of freedom control
and regulation of the internet in china. China information, 17(2):65–82, 2003.

[166] Nirvan Tyagi, Yossi Gilad, Matei Zaharia, and Nickolai Zeldovich. Stadium:
A distributed metadata-private messaging system. IACR Cryptology ePrint
Archive, 2016:943, 2016.

[167] UK Targets WhatsApp Encryption After London At-
tack. http://www.rappler.com/technology/news/

165288-uk-targets-whatsapp-encryption-london-parliament-attack.

[168] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vu-
vuzela: Scalable private messaging resistant to traffic analysis. In Symposium
on Operating Systems Principles, pages 137–152. ACM, 2015.

[169] Werner Vogels, Robbert Van Renesse, and Ken Birman. The power of epidemics:
robust communication for large-scale distributed systems. ACM SIGCOMM
Computer Communication Review, 33(1):131–135, 2003.

[170] Matthias Wählisch, Sebastian Meiling, and Thomas C Schmidt. A Framework
for Nation-centric Classification and Observation of the Internet. In The ACM
CoNEXT Student Workshop, page 15. ACM, 2010.

[171] Matthias Wählisch, Thomas C Schmidt, Markus de Brün, and Thomas
Häberlen. Exposing a Nation-centric View on the German Internet–A Change
in Perspective on AS-level. In Passive and Active Measurement, pages 200–210.
Springer, 2012.

[172] Shaojung Sharon Wang and Junhao Hong. Discourse behind the Forbid-
den Realm: Internet surveillance and its implications on China’s blogosphere.
Telematics and Informatics, 27(1):67–78, 2010.

[173] Patrick Wendell and Michael J Freedman. Going viral: Flash crowds in an open
CDN. In ACM SIGCOMM Conference on Internet Measurement Conference,
pages 549–558. ACM, 2011.

[174] What ISPs Can See: Clarifying the Technical Landscape of the
Broadband Privacy Debate. https://www.teamupturn.com/reports/2016/

what-isps-can-see.

[175] What is 1.1.1.1? https://www.cloudflare.com/learning/dns/what-is-1.

1.1.1/, 2018.

142

https://blog.cloudflare.com/the-trouble-with-tor/
https://blog.cloudflare.com/the-trouble-with-tor/
http://www.rappler.com/technology/news/165288-uk-targets-whatsapp-encryption-london-parliament-attack
http://www.rappler.com/technology/news/165288-uk-targets-whatsapp-encryption-london-parliament-attack
https://www.teamupturn.com/reports/2016/what-isps-can-see
https://www.teamupturn.com/reports/2016/what-isps-can-see
https://www.cloudflare.com/learning/dns/what-is-1.1.1.1/
https://www.cloudflare.com/learning/dns/what-is-1.1.1.1/

[176] Whatsapp Encryption Keeps Us Safe: Attacking it is
Wrong. http://www.telegraph.co.uk/technology/2017/03/27/

whatsapps-encryption-keeps-us-safe-attacking-wrong/.

[177] Scott Wolchok, Owen S Hofmann, Nadia Heninger, Edward W Felten, J Alex
Halderman, Christopher J Rossbach, Brent Waters, and Emmett Witchel. De-
feating Vanish with Low-Cost Sybil Attacks Against Large DHTs. In NDSS,
2010.

[178] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
Dissent in numbers: Making strong anonymity scale. In OSDI, pages 179–182,
2012.

[179] World’s Biggest Internet Hub Sues German Government Over Surveillance.
http://fortune.com/2016/09/16/de-cix-surveillance-germany/.

[180] Charles V Wright, Scott E Coull, and Fabian Monrose. Traffic morphing: An
efficient defense against statistical traffic analysis. In NDSS, volume 9, 2009.

[181] Jingan Xue, David Choffnes, and Jilong Wang. CDNs Meet CN: An Empirical
Study of CDN Deployments in China. IEEE Access, 2017.

[182] The Zettabyte Era – Trends and Analysis – Cisco. http://www.

cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/vni-hyperconnectivity-wp.html.

[183] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig,
and David G Andersen. Scion: Scalability, control, and isolation on next-
generation networks. In Security and Privacy (S&P), 2011 IEEE Symposium
on, pages 212–227. IEEE, 2011.

[184] Dave Levin Zhihao Li, Stephen Herwig. Detor: Provably avoiding geographic
regions in tor. In USENIX Security 2017, 2017.

[185] Shi Zhou, Guo-Qing Zhang, and G-Q Zhang. Chinese Internet AS-level topol-
ogy. Communications, IET, 1(2):209–214, 2007.

[186] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin, and Nikita
Somaiya. Connection-oriented dns to improve privacy and security. In Security
and Privacy (SP), 2015 IEEE Symposium on, pages 171–186. IEEE, 2015.

[187] Hadi Zolfaghari and Amir Houmansadr. Practical censorship evasion leveraging
content delivery networks. In ACM SIGSAC Conference on Computer and
Communications Security, pages 1715–1726. ACM, 2016.

143

http://www.telegraph.co.uk/technology/2017/03/27/whatsapps-encryption-keeps-us-safe-attacking-wrong/
http://www.telegraph.co.uk/technology/2017/03/27/whatsapps-encryption-keeps-us-safe-attacking-wrong/
http://fortune.com/2016/09/16/de-cix-surveillance-germany/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Internet Architecture & Associated Privacy Risks
	1.2 Outline

	2 Background
	2.1 Data Capture & Collection Methods
	2.2 Users' Expectations of Privacy Protection
	2.3 Existing Countermeasures
	2.4 Legal Battles
	2.4.1 Who gets access to stored data and does it depend on where it is located?
	2.4.2 Where can data be transferred to and from?

	3 Routing: Nation-State Routing for Privacy
	3.1 State of Surveillance and Interference
	3.2 Characterizing Transnational Detours
	3.2.1 Measurement Approach and Challenges
	3.2.2 Results

	3.3 Feasibility of Routing Around Nation-States
	3.3.1 Measurement Approach
	3.3.2 Avoidability Metrics
	3.3.3 Results

	3.4 RAN: Routing Around Nation-States
	3.4.1 Threat Model
	3.4.2 Design Goals
	3.4.3 Overview
	3.4.4 Periodic Path Measurement
	3.4.5 PAC File Generation
	3.4.6 Extending RAN with Content Provider Support

	3.5 Implementation and Deployment
	3.5.1 Other Considerations

	3.6 Evaluation
	3.6.1 Country Avoidability
	3.6.2 Performance
	3.6.3 Storage and Measurement Costs

	3.7 Discussion
	3.8 Related Work

	4 Hosting: CDN Design to Prevent Surveillance
	4.1 Background
	4.1.1 Content Distribution Networks
	4.1.2 What CDNs Can See
	4.1.3 Open Legal Questions

	4.2 Threat Model and Security Goals
	4.2.1 Threat Model
	4.2.2 Security and Privacy Goals for OCDN
	4.2.3 Performance Considerations

	4.3 OCDN Design
	4.3.1 Hiding Content
	4.3.2 Hiding Clients' Identities
	4.3.3 Incentives for Running OCDN
	4.3.4 Design Alternatives
	4.3.5 Design Enhancements

	4.4 OCDN Protocol
	4.4.1 Publishing Content
	4.4.2 Retrieving Content
	4.4.3 Clients Joining & Leaving
	4.4.4 Partial Deployment

	4.5 Implementation
	4.6 Security Analysis
	4.7 Performance Analysis
	4.7.1 OCDN Overhead
	4.7.2 Scalability

	4.8 Discussion
	4.9 Related Work

	5 Naming: Privacy-Preserving DNS
	5.1 Background
	5.1.1 DNS
	5.1.2 Existing Approaches

	5.2 Design
	5.2.1 Overview
	5.2.2 ODNS Protocol

	5.3 Practical Challenges
	5.3.1 Performance
	5.3.2 Privacy & Security

	5.4 Implementation
	5.5 Performance Evaluation
	5.5.1 Microbenchmarks: DNS Query Overhead
	5.5.2 Macrobenchmarks: Page Load Time
	5.5.3 Effect of Caching

	5.6 Related Work

	6 Conclusion
	6.1 Future Work
	6.2 Final Remarks

	Bibliography

