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Abstract

Distributed representations of words, or word embeddings, computed using large text

corpora have become a popular way of encoding linguistic features for applications

in natural language processing. However, their power, in terms of the information

they encode and how this relates to performance on downstream tasks, is not theo-

retically understood. Drawing inspiration from results in compressed learning [7, 1],

we present a remarkable empirical property of word embeddings - they are more

efficient than random matrices for sparse recovery of Bag-of-Words vectors from lin-

ear compression. We discuss how this result can be understood by introducing a

new, efficiently-verifiable compressed sensing property guaranteeing exact recovery

of nonnegative signals that depends on geometric results connecting basis pursuit

and neighborly polytopes [10]. Finally, we analyze the extent to which different em-

beddings satisfy this property and how to connect these results to understand the

performance of these representations on downstream tasks.
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Chapter 1

Introduction

Much attention has been paid to using LSTMs [14] and similar models to compute text

embeddings [5, 9] for natural language processing (NLP). Once trained, the LSTM

can sweep once or twice through a given piece of text, process it using only limited

memory, and output a vector with moderate dimensionality (a few hundred to a few

thousand), which can be used to measure text similarity via cosine similarity or as a

featurization for downstream tasks.

The powers and limitations of this method have not been formally established.

For example, can such neural embeddings compete with and replace traditional lin-

ear classifiers trained on trivial Bag-of-n-Grams (BonG) representations? Tweaked

versions of BonG classifiers are known to be a surprisingly powerful baseline [27] and

have fast implementations [15]. They continue to give better performance on many

downstream supervised tasks such as IMDB sentiment classification [18] than purely

unsupervised LSTM representations [17, 13, 21]. Meanwhile there is evidence sug-

gesting that simpler linear schemes give compact representations that provide most

of the benefits of word-level LSTM embeddings [28, 3]. These linear schemes consist

of simply adding up, with a few modifications, standard pretrained word embeddings

such as GloVe or word2vec [20, 23].
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Results have shown the learnability of linear classifiers of samples compressed via

linear compression matrices satisfying certain strong compressed sensing properties

[7]. Similar theory has also been used to show how LSTM representations are at least

as good as Bag-of-n-Grams for linear classification, up to a dimension-dependent

approximation error; in this settings the LSTM can be seen as also computing a

compressed BonG representation, though in lower memory [1]. However, these results

depend on the encoding of words using i.i.d. random vectors (e.g. Rademacher or

Gaussian) in order to preserve BonG information; in practice, NLP practitioners

commonly use pretrained word embeddings, especially for linear classification tasks,

where they perform much better in practice. We will discuss what can be done

in a setting such as this one, where powerful theories of compressed sensing/sparse

recovery [8] may be more difficulty to apply. In doing so we make the following

contributions:

1. We present the empirical finding that using pretrained embeddings (GloVe /

word2vec) instead of random vectors improves the ability to preserve Bag-of-

Words (BoW) information, i.e. they are better for sensing BoW signals. This

finding is surprising as such embeddings do not satisfy standard compressed

sensing properties that guarantee recovery, and indeed their training objectives

seem to contradict our intuitions about what vectors are good for sensing, even

when restricting to certain sparse signal distributions.

2. We motivate some theoretical justification for this surprising finding using a

new sparse recovery property characterizing when nonnegative signals can be

reconstructed by `1-minimization using a geometric result in compressed sens-

ing. Unlike many guarantees for sparse recovery, whether local or global, this

condition can be efficiently verified for a given matrix and signal support.
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Most of this thesis is based on joint work with Sanjeev Arora, Nikunj Saunshi, and

Kiran Vodrahalli published in the Proceedings of the 6th International Conference on

Learning Representations (ICLR 2018) [1].
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Chapter 2

Related Work

2.1 Compressed Bag-of-n-Grams Representations

Representations of BonG vectors have been studied through the lens of compression by

[22], who computed representations based on classical lossless compression algorithms

using a linear program (LP). Their embeddings are still high-dimensional (d > 100K)

and quite complicated to implement. In contrast, linear projection schemes are sim-

pler, more compact, and can leverage readily available word embeddings. [21] also

used a linear scheme, representing documents as an average of learned word and

bigram embeddings. However, the motivation and benefits of encoding BonGs in

low-dimensions are not made explicit.

2.2 The Sparse Recovery Problem

The novelty in the current paper is the connection to compressed sensing, which is con-

cerned with recovering high-dimensional sparse signals x ∈ RN from low-dimensional

linear measurements Ax, specifically by studying conditions on matrix A ∈ Rd×N

4



when this is possible. In the noiseless case this is formulated as

minimize ‖w‖0 subject to Aw = z (2.1)

where A ∈ Rd×N is the design matrix and z = Ax is the measurement vector. Since

`0-minimization is NP-hard, a foundational approach is to use its convex surrogate,

the `1-norm, and characterize when the solution to (2.1) is equivalent to that of the

following LP, known as basis pursuit (BP):

minimize ‖w‖1 subject to Aw = z (2.2)

Related approaches such as Basis Pursuit Denoising (LASSO) and the Dantzig Se-

lector generalize BP to handle signal or measurement noise [12]; however, the word

embeddings case is noiseless so these methods reduce to BP. Note that throughout

this work we will say that an `1-minimization method recovers x from Ax if its optimal

solution is unique and equivalent to the optimal solution of (2.1).

An alternative way to approximately solve (2.1) is to use a greedy algorithm such

as matching pursuit (MP) or orthogonal matching pursuit (OMP), which pick basis

vectors one at a time by multiplying the measurement vector by AT and choosing the

column with the largest inner product [26].

2.3 Guaranteeing Perfect Recovery

One condition through which recovery can be guaranteed is the Restricted Isometry

Property (RIP):

Definition 2.3.1. A ∈ Rd×N is (k, ε)-RIP if for all k-sparse x ∈ RN

(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2
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A line of work started by [8] used the RIP property to characterize matrices A such

that (2.1) and (2.2) have the same minimizer for any k-sparse signal x; this occurs

with overwhelming probability when d = Ω
(
k log N

k

)
and
√
dAij ∼ N (0, 1) ∀ i, j or

√
dAij ∼ U{−1, 1} ∀ i, j.

Since the ability to recover a signal x from a representation Ax implies information

preservation, a natural next step is to consider learning after compression. [7] show

that for m i.i.d. k-sparse samples {(xi, yi)}mi=1 and a (2k, ε)-RIP matrix A, the hinge

loss of a classifier trained on {(Axi, yi)}mi=1 is bounded by that of the best linear

classifier over the original samples. Theorem 3.1.1 provides a generalization of this

result to any convex Lipschitz loss function.

RIP is a strong requirement, both because it is not necessary for perfect, stable

recovery of k-sparse vectors using Õ(k) measurements and because in certain settings

we are interested in using the above ideas to recover specific signals — those sta-

tistically likely to occur—rather than all k-sparse signals. The usual necessary and

sufficient condition to recover any vector x ∈ RN with index support set S ⊂ [N ] is

the local nullspace property (NSP), which is implied by RIP:

Definition 2.3.2 ([12]). A matrix A ∈ Rd×N satisfies NSP for a set S ⊂ [N ] if

‖wS‖1 < ‖wS‖1 for all nonzero w ∈ ker(A) = {v : Av = 0d}.

Theorem 2.3.1 ([12]). BP (2.2) recovers any x ∈ RN
+ with supp(x) = S from Ax iff

A satisfies NSP for S.

A related condition that implies NSP is the local restricted eigenvalue property

(REP):

Definition 2.3.3 ([24]). A matrix A ∈ Rd×N satisfies γ-REP for a set S ⊂ [N ] if

‖Aw‖2 ≥ γ
√
d‖w‖2 whenever ‖wS‖1 ≤ ‖wS‖1.

Lastly, a simple condition that can sometimes provide recovery guarantees is mu-

tual incoherence:

6



Definition 2.3.4. A ∈ Rd×N is µ-incoherent if maxa,a′ |aTa′| ≤ µ, where the maxi-

mum is taken over any two distinct columns a, a′ of A.

While incoherence is easy to verify (unlike the previous recovery properties), word

embeddings tend to have high coherence due to the training objective pushing together

vectors of co-occurring words.
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Chapter 3

Word Embeddings and

Compressed Sensing

In this section we discuss the connection between compressed sensing, sparse language

representations, and word embeddings. We first examine the compressed learning set-

ting of [7], whose work and subsequent results require an RIP property, which is only

efficiently satisfied by random vectors. However, while the word embedding matrix

arguably do not satisfy such a condition, we then show how they are surprisingly

good sensing vectors, in terms of the low-dimensionality they need to recover BoW

signals using `1-minimization. This property is further shown to be dependent on the

language distribution used to train the embeddings.

3.1 The Connection to Compressed Learning

Following the early breakthroughs in compressed sensing, [7] studied whether it is

possible to use its low-dimensional output as a surrogate representation for classifi-

cation. Their result, a learning-theoretic bound on the loss of an SVM classifier in

the compressed domain compared to the best classifier in the original domain, was

further generalized to handle Lipschitz losses over arbitrary sets [1]:
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Figure 3.1: IMDB performance of unigram (left) and bigram (right) linear LSTM
embeddings compared to the original word embedding dimension.

Theorem 3.1.1 ([1]). For any subset X ⊂ RN containing the origin let A ∈ Rd×N

be (∆X , ε)-RIP and let m samples S = {(xi, yi)}mi=1 ⊂ X × {−1, 1} be drawn i.i.d.

from some distribution D over X with ‖x‖2 ≤ R. If ` is a λ-Lipschitz convex loss

function and w0 ∈ RN is its minimizer over D then w.p. 1 − 2δ the linear classifier

ŵA ∈ Rd minimizing the `2-regularized empirical loss function `SA
(w) + 1

2C
‖w‖22 over

the compressed sample SA = {(Axi, yi)}mi=1 ⊂ Rd × {−1, 1} satisfies

`D(ŵA) ≤ `D(w0) +O

(
λR‖w0‖2

√
ε+

1

m
log

1

δ

)
(3.1)

for appropriate choice of C. Here ∆X = {x− x′ : x, x′ ∈ X} for any X ⊂ RN .

The result follows from an analysis of the distributional loss incurred by a classifier

ŵ in the original space to the loss incurred by Aŵ in the compressed space, together

with standard statistical learning arguments for regularized linear classifiers.

The application of this theorem to study the simplest linear schemes – BoW

vectors compressed as sums of word embeddings – directly follows if one uses standard

i.i.d. random ensembles for A. [1] further extend the result to an existence statement

about LSTMs – that there exists one with hidden dimension (memory) of size Õ
(
nT
ε2

)
9



that can compute a compression of a BonG vector of any document of length at most

T such that the compression is also RIP. Together with Theorem 3.1.1 this implies

that representations computed by such an LSTM are at least as powerful, up to an

approximation error that decreases in d, as BonGs for linear classification.

The results of [7, 1] depend heavily on the RIP properties of the compression ma-

trix A, which requires words to be represented by random d-dimensional embeddings.

In practice, however, NLP tasks are often solved us word embeddings - fixed vectors

such as word2vec [20] or GloVe [23] which are trained such that more similar words

have a higher cosine similarity, where similarity is defined as some function of how

often pairs of words occur together within a fixed window. Because word embeddings

may be highly coherent (e.g. synonyms) there exist k-sparse vectors for which the

embedding matrix will not preserve the norm within a reasonable distortion, and so

embeddings do not satisfy RIP by virtue of their objective.

Nevertheless, we see in Figure 3.1 that pretrained word embeddings have much

better performance as inputs to linear representation schemes (here the task is the

IMDB classification task [18] and vectors are trained on a large corpus of Amazon

reviews [19]) In fact, while representing documents as sums of random vectors causes

performance to increase much as Theorem 3.1.1 predicts – asymptotically approach-

ing BoW performance – word embeddings quickly match and even surpass it in the

unigram case. Based on the same intuitions that motivated their introduction in the

first place, it might make sense that word embeddings exhibit these superior prop-

erties; the corpus information they encode allows better generalization. However,

the same result challenges the compressed sensing view of [1] – that in reality LSTM

representations are computed by vectors that do not satisfy nice sparse recovery prop-

erties, and so their results do not extend to such practical settings. Answering this

question motivates the remainder of our work.
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Figure 3.2: Average F1-score of 200 recovered BoW vectors from SST (left) and IMDB
(right) compared to dimension. Pretrained word embeddings (SN trained on Amazon
reviews) need half the dimensionality of normalized Rademacher vectors to achieve
near-perfect recovery. Note that IMDB documents are on average more than ten
times longer than SST documents.

3.2 The Surprising Efficiency of Word Embed-

dings for Sparse Recovery

In recent years word embeddings have been discovered to have many remarkable

properties, most famously the ability to solve analogies [20]. The connection made

by [1] to compressed sensing indicates that they should have another: preservation of

sparse signals as low-dimensional linear measurements. To examine this we subsample

documents from the SST [25] and IMDB [18] classification datasets, embed them

as d-dimensional unigram embeddings z = Ax for d = 50, 100, 200, . . . , 1600 (where

A ∈ Rd×V is the matrix of word embeddings and x is a document’s BoW vector), solve

the following LP, known as Basis Pursuit (BP), which is the standard `1-minimization

problem for sparse recovery in the noiseless case:

minimize ‖w‖1 subject to Aw = z (3.2)

Success is measured as the F1 score of retrieved words. We use Squared Norm

(SN) vectors [2] trained on a corpus of Amazon reviews [19] and normalized i.i.d.
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Figure 3.3: F1-score of 1000 recovered BoWs compared to number of unique words.
Real documents (left) are drawn from the SST and IMDB corpora; random signals
(right) are created by picking words at random. For d = 200, pretrained embeddings
are better than Rademacher vectors as sensing vectors for natural language BoW but
are worse for random sparse signals.

Rademacher vectors as a baseline. SN is used due to similarity to GloVe and its

formulation via an easy-to-analyze generative model that may provide a framework

to understand the results, while the Amazon corpus is used for its semantic closeness

to the sentiment datasets.

Figure 3.2 and 3.3 show that pretrained embeddings require a lower dimension

d than random vectors to recover natural language BoW. This is surprising as the

training objective goes against standard conditions such as approximate isometry and

incoherence; indeed as shown in Figure 3.3 recovery is poor for randomly generated

word collections. The latter outcome indicates that the fact that a document is a

set of mutually meaningful words is important for sparse recovery using embeddings

trained on co-occurrences. We achieve similar results with other objectives (e.g.

GloVe/word2vec) and other corpora, although from Figure 3.4 we see that SN vectors

are most efficient and the only embeddings where normalizing is not needed for good

performance. We also see some sensitivity to the recovery method, as `1-minimization

methods work well but greedy methods, such as Orthogonal Matching Pursuit (OMP),

sometimes work poorly, likely due to their dependence on incoherence [26].
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Reviews
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English
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Recovery of IMDB Documents

F1
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GloVe (normalized/not normalized)
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Normalized Rademacher Vectors

Spherical Gaussian Vectors

Legend

Figure 3.4: Efficiency of pretrained embeddings as sensing vectors at d = 300
dimensions, measured via the F1-score of the original BoW. 200 documents from
each dataset were compressed and recovered in this experiment. For fairness, the
number of words V is the same for all embeddings so all documents are required
to be subsets of the vocabulary of all corpora. word2vec embeddings trained on
Google News and GloVe vectors trained on Common Crawl were obtained from public
repositories [20, 23] while Amazon and Wikipedia embeddings were trained for 100
iterations using a symmetric window of size 10, a min count of 100, for SN/GloVe
a cooccurrence cutoff of 1000, and for word2vec a down-sampling frequency cutoff
of 10−5 and a negative example setting of 3. 300-dimensional normalized random
vectors are used as a baseline.
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Chapter 4

A Geometric Understanding of

Bag-of-Words Recovery

As shown in Figure 3.3, the success of pretrained embeddings for linear sensing is

a local phenomenon; recovery is only efficient for naturally occurring collections of

words. However, applying statistical RIP/incoherence ideas [4] to explain this is ruled

out since they require collections to be incoherent with high probability, whereas word

embeddings are trained to give high inner product to words appearing together. Thus

an explanation must come from some other, weaker condition. The usual necessary

and sufficient requirement for recovering all signals with support S ⊂ [N ] is the local

nullspace property (NSP), which stipulates that vectors in the kernel of A not have

too much mass on S (see Definition 2.3.2). While NSP and related properties such

as restricted eigenvalue (see Definition 2.3.3) are hard to check, we can impose some

additional structure to formulate an intuitive, verifiable perfect recovery condition for

our setting.
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4.1 Nonnegative Signal Recovery

Apart from incoherence, recovery properties are often hard to show empirically. How-

ever, we are compressing BoW vectors, so our signals are nonnegative and we can

impose an additional constraint on (2.2):

minimize ‖w‖1 subject to Aw = z, w ≥ 0d (4.1)

The following geometric result provides guarantees for this nonnegative basis pursuit

(BP+) problem:

Theorem 4.1.1 ([10]). Consider a matrix A ∈ Rd×N and an index subset S ⊂ [N ] of

size k. Then any nonnegative vector x ∈ RN
+ with support supp(x) = S is recovered

from Ax by BP+ (4.1) iff the columns of A indexed by S comprise the vertices of a

k-dimensional face of the convex hull conv(A) of the columns of A together with the

origin.

The polytope condition is equivalent to nonnegative NSP (NSP+), a weaker form

of NSP:

Definition 4.1.1 ([11]). A matrix A ∈ Rd×N satisfies NSP+ for a set S ⊂ [N ] if

wS ≥ 0N =⇒
N∑
i=1

wi > 0 for all nonzero w ∈ ker(A).

Lemma 4.1.1. If A ∈ Rd×N satisfies NSP for some S ⊂ [N ] then it also satisfies

NSP+ for S.

Proof (Adapted from [11]). Since A satisfies NSP, we have ‖wS‖1 < ‖wS‖1. Then for

a nonzero w ∈ ker(A) such that wS ≥ 0 we will have

N∑
i=1

wi =
∑
i∈S

wi +
∑
j∈S

wj ≥ −
∑
i∈S

|wi|+
∑
j∈S

|wj| = −‖wS‖1 + ‖wS‖1 > 0

15



Lemma 4.1.2. BP+ recovers any x ∈ RN
+ with supp(x) = S from Ax iff A satisfies

NSP+ for S.

Proof. ( =⇒ ): For any nonzero w ∈ ker(A) such that wS ≥ 0, ∃ λ > 0 such

that x + λw ≥ 0N and A(x + λw) = Ax. Since BP+ uniquely recovers x, we have

‖x + λw‖1 > ‖x‖1, so NSP+ follows from the following inequality and the fact that

λ is positive:

0 < ‖x+ λw‖1 − ‖x‖1 =
N∑
i=1

(xi + λwi)−
N∑
i=1

xi = λ

N∑
i=1

wi

=⇒
N∑
i=1

wi > 0

( ⇐= ): For any x′ ≥ 0 such that Ax′ = Ax we have that w = x′ − x ∈ ker(A) and

wS = x′
S
≥ 0 since the support of x is S. Thus by NSP+ we have that

N∑
i=1

wi > 0,

which yields

‖x′‖1 − ‖x‖1 =
N∑
i=1

x′i −
N∑
i=1

xi =
N∑
i=1

wi > 0

Thus BP+ will recover x uniquely.

Lemma 4.1.2 shows that NSP+ is equivalent to the polytope condition in Theo-

rem 4.1.1, as they are both necessary and sufficient conditions for BP+ recovery.

4.2 The Supporting Hyperplane Property

Theorem 4.1.1 equates perfect recovery of a BoW vector via BP+ with the vectors

of its words being the vertices of some face of the polytope conv(A). The property

holds for incoherent columns since the vectors are far enough that no one vector is

inside the simplex formed by any k others. On the other hand, pretrained embeddings

satisfy it by having commonly co-occurring words close together and other words far

16



away, making it easier to form a face from columns indexed by the support of a BoW.

We formalize this intuition as the Supporting Hyperplane Property (SHP):

Definition 4.2.1. A matrix A ∈ Rd×N satisfies S-SHP for subset S ⊂ [N ] if its

columns are in general position and there is a hyperplane containing the set AS of

columns of A indexed by S such that the set of all other columns of A together with

the origin are on one side of the hyperplane.

4.2.1 Characterizing Nonnegative Sparse Recovery

We now show that the SHP hyperplane is the supporting hyperplane of the face of

conv(A) with vertices AS, from which it follows by Theorem 4.1.1 that SHP charac-

terizes recovery using BP+:

Theorem 4.2.1. BP+ recovers any x ∈ RN
+ with supp(x) = S from Ax iff A satisfies

S-SHP.

Proof. By Theorem 4.1.1 it suffices to show equivalence of A being S-SHP with the

columns AS forming the vertices of a k-dimensional face of conv(A), where we can

abuse notation to set A ∈ Rd×(N+1), with the extra column being the origin 0d, so

long as we constrain N + 1 6∈ S. A face F of polytope P is defined as its intersection

with some hyperplane such that all points in P\F lie on one side of the hyperplane.

( =⇒ ) Let F be the face of conv(A) formed by the columns AS. Then there

must be a supporting hyperplane H containing F . Since the columns of A are in

general position, all columns AS = A\AS lie in conv(A)\F and hence must all be on

one side of H, so H is the desired hyperplane.

17



( ⇐= ): A subset F ⊂ Rd is a face of conv(A) if for some hyperplane H = {v :

aTv − b = 0} we have F = conv(A) ∩H and conv(A)\F ⊆ H− = {v : aTv − b < 0},

where H− is the negative halfspace of H. Define the simplex

∆m = {λ ∈ [0, 1]m :
m∑
i=1

λi = 1}

Since A is S-SHP we have a hyperplane H = {v : aTv − b = 0} containing the

columns AS such that AS ⊂ H−. Thus aTAi−b = 0 ∀ i ∈ S and aTAi−b < 0 ∀ i /∈ S.

We also know that F = {
∑

i∈S λiAi : λ ∈ ∆|S|} ⊆ H by convexity of H. Since any

point y ∈ conv(A)\F can be written as y =
∑N+1

i=1 λiAi for some λ ∈ ∆N+1 such that

∃ j /∈ S such that λj 6= 0, we have that

aTy − b =
∑
i∈S

λi(a
TAi − b) +

∑
j /∈S

λj(a
TAj − b) =

∑
j /∈S

λj(a
TAj − b) < 0

This implies that conv(A)\F ⊆ H− and F = conv(A) ∩ H, so since the columns of

A are in general position F is a k-dimensional face of conv(A) whose vertices are the

columns AS.

Thus perfect recovery of a BoW via BP+ is equivalent to the existence of a

hyperplane separating embeddings of words in the document from those of the rest

of the vocabulary. Together with Lemmas 4.1.1 and 4.1.2 Theorem 4.2.1 also shows

that SHP is a weaker condition than the well-known nullspace property (NSP):

Corollary 4.2.1. If a matrix A ∈ Rd×N with columns in general position satisfies

NSP for some S ⊂ [N ] then it also satisfies S-SHP.

18



4.2.2 Verifying the Supporting Hyperplane Property

Recall that a matrix Rd×N satisfies S-SHP for S ⊂ [N ] if there is a hyperplane

containing the set of all columns of A indexed by S and the set of all other columns

together with the origin are on one side of it. Due to Theorem 4.2.1, checking S-

SHP allows us to know whether all nonnegative signals with index support S will be

recovered by BP+ without actually running the optimization on any one of them.

To see that this property can be checked efficiently (that is, in time polynomial in

the dimensions of A), we can consider the following feasibility problem over h ∈ Rd+1:

ÃT
i h = 0 ∀ i ∈ S and ÃT

i h+ ε ≤ 0 ∀ i 6∈ S

where Ã =

 A 0d

1T
N 1

 and ε > 0

Here the equality constraint enforces the property that the hyperplane contains

all support embeddings, while the inequality requires all non-support columns to be

on the same side of the hyperplane as the origin. Since scaling h does not affect the

constraint, if an h exists for any single ε > 0 it exists for all ε > 0. Therefore verifying

S-SHP for a matrix A is equivalent to seeing if these constraints are feasible; because

this can be determined by an LP, this shows that SHP is efficiently verifiable.

In practice such LPs are difficult to solve, so we can rewrite the optimization

property into the following constrained convex problem (for p ≥ 1)

min
h∈Rd+1

∑
i 6∈S

max
{
ÃT

i h+ ε, 0
}p

subject to ÃT
Sh = 0|S|

In our experiments we set ε = 1 and p = 3 (to get a C2 objective) and adapt

the second-order method from [6, Chapter 10]. Our implementation can be found

at https://github.com/NLPrinceton/sparse_recovery.
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4.3 Checking the Supporting Hyperplane Prop-

erty for Word Embeddings

Intuitively, words in the same document are trained to have similar embeddings and so

will be easier to separate out, providing some justification for why pretrained vectors

are better for sensing. We verify that SHP is indeed more likely to be satisfied by

such designs in Figure 4.1, which also serves as an empirical check of Theorem 4.2.1

since SHP satisfaction implies BP recovery as the latter can do no better than BP+.

We further compare to recovery using OMP/OMP+ (the latter removes negative

values and recomputes the set of atoms at each iteration); interestingly, while OMP+

recovers the correct signal from SN almost as often as BP/BP+, it performs quite

poorly for GloVe, indicating that these embeddings may have quite different sensing

properties despite similar training objectives.

As similarity properties that may explain these results also relate to downstream

task performance, we conjecture a relationship between embeddings, recovery, and

classification that may be understood under a generative model (see Section 4.4).

However, the compressed learning bounds of [7, 1] depend on RIP, not recovery, so

these experiments by themselves do not apply. They do show that the compressed

sensing framework remains relevant even in the case of non-random, pretrained word

embeddings.

4.4 Insights from a Generative Model

In the previous section we gave some intuition for why pretrained word embeddings

are efficient sensing vectors for natural language BoW by examining a geometric char-

acterization of local equivalence due to [10] in light of the usual similarity properties

of word embeddings. However, this analysis does not provide a rigorous theory for
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Figure 4.1: Proportion of 500 randomly sampled documents from SST (left) and
IMDB (right) that are perfectly recovered from linear measurements.
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our empirical results. In this section we briefly discuss a model-based justification

that may lead to a stronger understanding.

We need a model relating BoW generation to the word embeddings trained over

words co-occurring in the same BoW. As a starting point consider the model of [2],

in which a corpus is generated by a random walk ct over the surface of a ball in Rd;

at each t a word w is emitted w.p.

P(w|ct) ∝ exp〈ct, vw〉 (4.2)

Minimizing the SN objective approximately maximizes the corpus likelihood.

Thus in an approximate sense a document of length T is generated by setting

a context vector c and emitting T words via (4.2) with ct = c. This model is a

convenient one for analysis due its simplicity as well as the fact that the approximate

maximum likelihood document vector is the sum of the embeddings of words in the

document. Building upon the intuition established following Theorem 4.2.1 one can

argue that, if we have the true latent SN vectors, then embeddings of words in the

same document (i.e. emitted by the same context vector) will be close to each other

and thus easy to separate from the embeddings of other words.

However, we find empirically that not all of the T words closest to the sum of the

word embeddings (i.e. the context vector) are the ones emitted; indeed individual

word vectors in a document may have small, even negative inner product with the

context vector and still be recovered via BP. Thus any further theoretical argument

must also be able to handle the recovery of lower probability words whose vectors are

further away from the context vector than those of words that do not appear in the

document. We thus leave to future work the challenge of explaining why embeddings

resulting from this (or another) model provide such efficient sensing matrices for

natural language BoW.
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Chapter 5

Conclusion

We have demonstrated and analyzed a surprising new property of distributed word

embeddings: that they form more efficient sensing matrices for natural language Bag-

of-Words vectors. In an effort to understand this surprising finding, we have further

provided a new characterization of perfect recovery using nonnegative basis pursuit

via the Supporting Hyperplane Property (SHP), which we show is also efficiently ver-

ifiable via an LP. Using this understanding and experimental analysis of the recovery

behavior under different signal types, we proposed an explanation for our observa-

tions, although a full rigorous understanding is left to future work.

Though motivated by the problem of compressed learning [7, 1], our results demon-

strate only the recovery properties of word embeddings, and so an important direction

for future work is to find intermediate properties that both guarantee recovery and

provide bounds on the loss in the compressed domain. The information preservation

and recovery properties exhibited by these word embeddings may also have many

interesting NLP applications, especially if similar sensing properties can be induced

in n-gram embeddings. Besides improving classification performance [16], such repre-

sentations may also point to simple approaches for NLP settings with low-dimensional

encoding or decoding, such machine translation or language generation.
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