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Abstract

Low-dimensional vector embeddings, computed using LSTMs or simpler techniques,

are a popular approach for capturing the “meaning” of text and a form of unsupervised

learning useful for downstream tasks. However, their power is not theoretically un-

derstood. The current paper derives formal understanding by looking at the subcase

of linear embedding schemes. Using the theory of compressed sensing we show that

representations combining the constituent word vectors are essentially information-

preserving linear measurements of Bag-of-n-Grams (BonG) representations of text.

This leads to a new theoretical result about LSTMs: low-dimensional embeddings

derived from a low-memory LSTMs are provably at least as powerful on classification

tasks, up to small error, as a linear classifier over BonG vectors, a result that exten-

sive empirical work has thus far been unable to show. We also provide experimental

evidence for the theoretical results by using random vectors for words. Furthermore

using pretrained word embeddings such as GloVe and word2vec, we obtain strong,

simple and unsupervised baselines on standard benchmarks and in some cases obtain

state of the art performance among word-level methods.
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Chapter 1

Introduction

Much attention has been paid to using LSTMs [13] and similar recurrent models to

compute text embeddings [4, 7]. Once trained, the LSTM can sweep once or twice

through a given piece of text, process it using only limited memory and output a vector

with moderate dimensionality (a few hundred to a few thousand), which can be used

to measure text similarity via cosine similarity or as a featurization for downstream

tasks.

The powers and limitations of this method have not been formally established.

For example, can such neural embeddings compete with and replace traditional lin-

ear classifiers trained on trivial Bag-of-n-Grams (BonG) representations? Tweaked

versions of BonG classifiers are known to be a surprisingly powerful baseline [33] and

have fast implementations [15]. They continue to give better performance on many

downstream supervised tasks such as IMDB sentiment classification [19] than purely

unsupervised LSTM representations [18, 11, 23]. Even a very successful character-

level (and thus computation-intensive, taking a month of training) approach does

not reach BonG performance on datasets larger than IMDB [29]. Meanwhile there

is evidence suggesting that simpler linear schemes give compact representations that

provide most of the benefits of word-level LSTM embeddings [35, 3]. These linear
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schemes consist of simply adding up, with a few modifications, standard pretrained

word embeddings such as GloVe or word2vec [22, 27].

The current paper ties these disparate threads together by giving an information-

theoretic account of linear text embeddings. We describe linear schemes that preserve

n-gram information as low-dimensional embeddings with provable guarantees for their

performance compared to that of the sparse representation on linear text classification

task. The previous linear schemes, which used unigram information, are subcases of

our approach, but our best schemes can also capture n-gram information with low

additional overhead. Furthermore, the properties of word vectors used to prove good

performance on classification tasks also imply recovery of the unigram information

from the low-dimensional embedding. This suggests a deeper connection between

classification performance and sparse recovery/compressed sensing [6]. Our approach

also fits in the tradition of the older work on distributed representations of structured

objects, especially the works of [28] and [16]. The following are the main results

achieved by this new world-view:

1. Using random vectors as word embeddings in our linear scheme (instead of pre-

trained vectors) already allows us to rigorously show that low-memory LSTMs

are provably at least as good as the full BonG vector on every linear classifica-

tion task. This is a novel theoretical result in deep learning, obtained relatively

easily using ideas from compressed sensing. By contrast, extensive empirical

study of this issue has been inconclusive (apart from character-level models,

and even then only on smaller datasets [29]). Note also that empirical work by

its nature can only establish performance on some available datasets, not on all

possible classification tasks. We prove this theorem in Section 4.2 by providing

a nontrivial generalization of a result combining compressed sensing and learn-

ing [5]. In fact, before our work we do not know of any provable quantification

of the power of any text embedding.
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Figure 1.1: The pipeline for linear classification of unsupervised text representations.
The transducer could be LSTMs, BonGs or simple linear schemes

2. We study experimentally how our linear embedding scheme improves when it

uses pretrained embeddings (GloVe etc.) instead of random vectors. In addition

we study empirically the effect of increasing the word embedding dimension on

classification performance. Empirical results match results predicted by theory.

3. Section 5 provides empirical results supporting the above theoretical work, re-

porting accuracy of our linear schemes on multiple standard classification tasks.

Our embeddings are consistently competitive with recent results and perform

much better than all previous linear methods. Among unsupervised word-level

representations they achieve state of the art performance on both the binary and

fine-grained SST sentiment classification tasks [30]. Since our document rep-

resentations are fast, compositional, and simple to implement given standard

word embeddings, they provide strong baselines for future work.

This thesis is based on joint work with Sanjeev Arora, Mikhail Khodak and Kiran

Vodrahalli [1] published at ICLR 2018.
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Chapter 2

Related Work

Neural text embeddings are instances of distributed representations, long studied in

connectionist approaches because they decay gracefully with noise and allow dis-

tributed processing. An early problem formulation for distributed representations was

provided in [12] and [28] provided an elementary solution, the holographic distributed

representation, which represents structured objects using circular vector convolution

and has an easy and more compact implementation using the fast Fourier transform

(FFT). Plate suggested applying such ideas to text, where “structure” can be quanti-

fied using parse trees and other graph structures. Our method is also closely related

in form and composition to the sparse distributed memory system of [16]. The moti-

vation for these methods was to recover components of the original text using these

representations with simple operations. In the unigram case our embedding reduces

to the familiar sum of word embeddings, which is known to be surprisingly powerful

[35], and with a few tweaks even more so [3].

Representations of BonG vectors have been studied through the lens of com-

pression by [26], who computed representations based on classical lossless compres-

sion algorithms using a linear program (LP) to reduce the number of features used.

Though they work well on a few classification tasks, their embeddings are still high-
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dimensional (d > 100K) and quite complicated to implement. In contrast, linear

projection schemes are simpler, more compact, and can leverage readily available

word embeddings. [23] also used a linear scheme, representing documents as an aver-

age of learned word and bigram embeddings. However, the motivation and benefits

of encoding BonGs in low-dimensions are not made explicit. The novelty in the cur-

rent paper is the connection of distributed representations to compressed sensing,

which is concerned with recovering high-dimensional sparse signals x ∈ RN from

low-dimensional linear measurements Ax. We specifically study conditions on ma-

trix A ∈ Rd×N when this is possible and what they can say about performance on

downstream tasks. We build upon the previous work of [5] to prove learning under

compression in general settings.
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Chapter 3

Document Embeddings

In this section we define the two types of representations that our analysis will relate:

1. high-dimensional sparse BonG vectors counting the occurrences of each k-gram

for k ≤ n

2. low-dimensional dense representations, from simple vector sums to novel n-

gram-based embeddings and their concatenation

Although some of these representations have been previously studied and used, we

define them so as to make clear their connection via compressed sensing, i.e. that

representations of the second type are simply linear measurements of the first.

We now define some notation. Let V be the number of words in the vocabulary

and Vn be the number of n-grams (independent of word order), so that V = V1.

Furthermore set V sum
n =

∑
k≤n Vk and V max

n = maxk≤n Vk. We will use words/n-

grams and indices interchangeably, e.g. if (a, b) is the ith of V2 bigrams then the

one-hot vector e(a,b) will be 1 at index i. Where necessary we will use {, } to denote

a multi-set and (, ) to denote a tuple. For any m vectors vi ∈ Rd for i = 1, . . . ,m

we define [v1, . . . , vm] to be their concatenation, which is thus an element of Rmd.

Finally, for any subset X ⊂ RN we denote by ∆X the set {x− x′ : x, x′ ∈ X}.

6



3.1 The Bag-of-n-Grams Vectors

Assigning to each word a unique index i ∈ [V ] we define the Bag-of-Words (BoW)

representation xBoW of a document to be the V -dimensional vector whose ith entry is

the number of times word i occurs in the document. The n-gram extension of BoW

is the Bag-of-n-Grams (BonG) representation, which counts the number of times any

k-gram for k ≤ n appears in a document. Linear classification over such vectors has

been found to be a strong baseline [33].

For ease of analysis we simplify the BonG approach by merging all n-grams in the

vocabulary that contain the same words but in a different order. We call these fea-

tures n-cooccurrences and find that the modification does not affect performance sig-

nificantly. Formally for a document w1, . . . , wT we define the Bag-of-n-Cooccurrences

(BonC) vector as the concatenation

xBonC =

[
T∑
t=1

ewt , . . . ,
T−n+1∑
t=1

e{wt,...,wt+n−1}

]
(3.1)

which is thus a V sum
n -dimensional vector. Note that for unigrams this is equivalent to

the BoW vector.

3.2 Low-Dimensional n-Gram Embeddings

Now suppose each word w has a vector vw ∈ Rd for some d � V . Then given a

document w1, . . . , wT we define its unigram embedding as zu =
∑T

t=1 vwt . While this

is a simple and widely used featurization, we focus on the following straightforward

relation with BoW: if A ∈ Rd×V is a matrix whose columns are word vectors vw

then AxBoW =
∑T

t=1Aewt =
∑T

t=1 vwt = zu. Thus in terms of compressed sensing

the unigram embedding of a document is a d-dimensional linear measurement of its

Bag-of-Words vector.
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We could extend this unigram embedding to n-grams by first defining a represen-

tation for each n-gram as the tensor product of the vectors of its constituent words.

Thus for each bigram b = (w1, w2) we would have vb = vw1v
T
w2

and more generally

vg =
⊗n

t=1 vwt for each n-gram g = (w1, . . . , wn). The document embedding would

then be the sum of the tensor representations of all n-grams.

The major drawback of this approach is of course the blowup in dimension – n-

grams are dn dimensional – which in practice prevents its use beyond n = 2. To

combat this a low-dimensional sketch or projection of the tensor product can be

used, such as the circular convolution operator of [28]. Since we are interested in

representations that can also be constructed by a low memory LSTM, we instead

sketch this tensor product using the element-wise multiplication operation, which

we find also usually works better than circular convolution in practice. Thus for

the n-cooccurrence g = {w1, . . . , wn}, we define the distributed cooccurrence (DisC)

embedding ṽg = d
n−1
2

⊙n
t=1 vwt . The coefficient is required when the vectors vw are

random and unit norm to ensure that the product also has close to unit norm. In ad-

dition to their convenient form, DisC embeddings have nice theoretical and practical

properties: they preserve the original embedding dimension, they reduce to unigram

(word) embeddings for n = 1, and under mild assumptions they satisfy useful com-

pressed sensing properties with overwhelming probability (Lemma 4.2.1).

We define the DisC document embedding to be the nd-dimensional weighted con-

catenation, over k ≤ n, of the sum of the DisC vectors of all k-grams in a document:

z(n) =

[
C1

T∑
t=1

ṽwt , . . . , Cn

T−n+1∑
t=1

ṽ{wt,...,wt+n−1}

]
(3.2)

Here scaling factors Ck are set so that all spans of d coordinates have roughly equal

norm (for random embeddings Ck = 1; for word embeddings Ck = 1/k works well).

Note that since ṽwt = vwt we have z(1) = zu in the unigram case. Furthermore, as
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with unigram embeddings by comparing (3.1) and (3.2) one can easily construct a∑n
k=1 dn× V sum

n matrix A(n) such that z(n) = A(n)xBonC.

3.3 LSTM Representations

As discussed previously, LSTMs have become a common way to apply the expres-

sive power of RNNs, with success on a variety of classification, representation, and

sequence-to-sequence tasks. For document representation, starting with h0 = 0m an

m-memory LSTM initialized with word vectors vw ∈ Rd takes in words w1, . . . , wT

one-by-one and computes the document representation

ht = f(Tf (vwt , ht−1)) ◦ ht−1 + i(Ti(vwt , ht−1)) ◦ g(Tg(vwt , ht−1)) (3.3)

where ht ∈ Rm is the hidden representation at time t, the forget gate f , input gate

i, and input function g are a.e. differentiable nondecreasing elementwise “activa-

tion” functions Rm 7→ Rm, and affine transformations T∗(x, y) = W∗x + U∗y + b∗

have weight matrices W∗ ∈ Rm×d, U∗ ∈ Rm×m and bias vectors b∗ ∈ Rm. The LSTM

representation of a document is then the state at the last time step, i.e. zLSTM = hT .

Note that we will follow the convention of using LSTM memory to refer to the dimen-

sionality of the hidden states. Since the LSTM is initialized with an embedding for

each word it requires O(m2 +md+ V d) computer memory, but the last term is just

a lookup table so the vocabulary size does not factor into iteration or representation

complexity.

From our description of LSTMs it is intuitive to see that one can initialize the

gates and input functions so as to construct the DisC embeddings defined in the

previous section. We state this formally and give the proof in the unigram case (the

full proof appears in Appendix A):

9



Proposition 3.3.1. Given word vectors vw ∈ Rd, one can initialize an O(nd)-

memory LSTM (3.3) that takes in words w1, . . . , wT (padded by an end-of-document

token assigned vector 0d) and constructs the DisC embedding (3.2) (up to zero

padding), i.e. such that for all documents zLSTM = z(n).

Proof (Unigram Case). Set f(x) = i(x) = g(x) = x, Tf (vwt , ht−1) = Ti(vwt , ht−1) =

1d, and Tg(vwt , ht−1) = C1vwt . Then ht = ht−1 + C1vwt , so since h0 = 0d we have the

final LSTM representation zLSTM = hT = C1

∑t
t=1 vwt = z(1).

By Proposition 3.3.1 we can construct a fixed LSTM that can compute compressed

BonC representations on the fly and be further trained by stochastic gradient descent

using the same memory.

10



Chapter 4

LSTMs as Compressed Learners

Our main contribution is to provide the first rigorous analysis of the performance of

the text embeddings that we are aware of, showing that the embeddings of Section 3.2

can provide performance on downstream classification tasks at least as well any linear

classifier over BonCs.

Theorem 4.0.1. Let S = {(xi, yi)}mi=1 be drawn i.i.d. from a distribution D over

BonC vectors of documents of length at most T satisfying assumptions 1 and 2 above

and let w0 be the linear classifier minimizing the logistic loss `D. Then for dimension

d = Ω
(
T 2

ε2
log nV max

n

δ

)
and appropriate choice of regularization coefficient one can

initialize an O(nd)-memory LSTM over i.i.d. word embeddings vw ∼ Ud{±1/
√
d}

such that w.p. (1 − γ)(1 − 2δ) the classifier ŵ minimizing the `2-regularized logistic

loss over its representations satisfies

`D (ŵ) ≤ `D (w0) +O

(
‖w0‖2

√
ε+

1

m
log

1

δ

)
(4.1)

We make two mild simplifying assumptions on the BonC vectors for the theorem:

1. The vectors are scaled by 1
T
√
n
, where T is the maximum document length. This

assumption is made without loss of generality.

11



2. No n-cooccurrence contains a word more than once. While this is (infrequently)

violated in practice, the problem can be circumvented by merging words as a

preprocessing step.

The above theoretical bound shows that LSTMs match BonC performance as ε→

0, which can be realized by increasing the embedding dimension d (c.f. Figure 5.1).

4.1 Compressed Sensing and Learning

Compressed sensing is concerned with recovering a high-dimensional k-sparse signal

x ∈ RN from a few linear measurements; given a design matrix A ∈ Rd×N this is

formulated as

minimize ‖w‖0 subject to Aw = z (4.2)

where z = Ax is the measurement vector. As l0-minimization is NP-hard, research

has focused on sufficient conditions for tractable recovery. One such condition is the

Restricted Isometry Property (RIP), for which [6] proved that (4.2) can be solved by

convex relaxation:

Definition 4.1.1. A ∈ Rd×N is (X , ε)-RIP for some subset X ⊂ RN if ∀ x ∈ X

(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2 (4.3)

We will abuse notation and say (k, ε)-RIP when X is the set of k-sparse vectors. This

is the more common definition, but ours allows a more general Theorem 4.1.1 and a

tighter bound in Theorem 4.0.1.

Following these breakthroughs, [5] studied whether it is possible to use the low-

dimensional output of compressed sensing as a surrogate representation for classifica-

tion. They proved a learning-theoretic bound on the loss of an SVM classifier in the

12



compressed domain compared to the best classifier in the original domain. In this

work we are interested in comparing the performance of LSTMs with BonC repre-

sentations, so we need to generalize the [5] result to handle Lipschitz losses and an

arbitrary set X ⊂ RN of high-dimensional signals:

Theorem 4.1.1. For any subset X ⊂ RN containing the origin let A ∈ Rd×N be

(∆X , ε)-RIP and let m samples S = {(xi, yi)}mi=1 ⊂ X × {−1, 1} be drawn i.i.d.

from some distribution D over X with ‖x‖2 ≤ R. If ` is a λ-Lipschitz convex loss

function and w0 ∈ RN is its minimizer over D then w.p. 1 − 2δ the linear classifier

ŵA ∈ Rd minimizing the `2-regularized empirical loss function `SA(w) + 1
2C
‖w‖22 over

the compressed sample SA = {(Axi, yi)}mi=1 ⊂ Rd × {−1, 1} satisfies

`D(ŵA) ≤ `D(w0) +O

(
λR‖w0‖2

√
ε+

1

m
log

1

δ

)
(4.4)

for appropriate choice of C. Recall that ∆X = {x− x′ : x, x′ ∈ X} for any X ⊂ RN .

While a detailed proof of this theorem is spelled out in Appendix B, the main idea

is to compare the distributional loss incurred by a classifier ŵ in the original space

to the loss incurred by Aŵ in the compressed space. We show that the minimizer of

the regularized empirical loss in the original space (ŵ) is a bounded-coefficient linear

combination of samples in S, so its loss depends only on inner products between

points in X . Thus using RIP and a generalization error result by [31] we can bound

the loss of ŵA, the regularized classifier in the compressed domain. Note that to get

back from Theorem 4.1.1 the O(
√
ε) bound for k-sparse inputs of [5] we can set X to

the be the set of k-sparse vectors and assume A is (2k, ε)-RIP.

13



4.2 Proof of Main Result

To apply Theorem 4.1.1 we need the design matrix A(n) transforming BonCs into the

DisC embeddings of Section 3.2 to satisfy the following RIP condition (Lemma 4.2.1),

which we prove using a restricted isometry result for structured random sampling

matrices in Appendix C:

Lemma 4.2.1. Assume the setting of Theorem 4.0.1 and let A(n) be the nd × V sum
n

matrix relating DisC and BonC representations of any document by z(n) = A(n)xBonC.

If d = Ω
(
T 2

ε2
log nV max

n

δ

)
then A(n) is

(
∆X (n)

T , ε
)

-RIP w.p. 1 − γ, where X (n)
T is the

set of BonCs of documents of length at most T .

Proof of Theorem 4.0.1. Let Ŝ = {(A(n)xi, yi) : (xi, yi) ∈ S}, where A(n) is as in

Lemma 4.2.1. Then by the same lemma A(n) is
(

∆X (n)
T , ε

)
-RIP w.p. 1−γ, where X (n)

T

is the set of BonC vectors of documents of length at most T . By BonC assumption

(1) all BonCs lie within the unit ball, so we can apply Theorem 4.1.1 with ` the

logistic loss, λ = 1, and R = 1 to get that a classifier ŵ trained using `2-regularized

logistic loss over Ŝ will satisfy the required bound (4.1). Since by Proposition 3.3.1

one can initialize an O(nd)-memory LSTM that takes in i.i.d. Rademacher word

vectors vw ∼ Ud{±1/
√
d} such that zLSTM = z(n) = A(n)x ∀ x ∈ X (n)

T , this completes

the proof.
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Chapter 5

Empirical findings

Our theoretical results show that simple tensor product sketch-based n-gram embed-

dings can approach BonG performance and be computed by a low-memory LSTM.

In this section we compare these text representations and others on several standard

tasks, verifying that DisC performance approaches that of BonCs as dimensionality

increases and establishing several baselines for text classification. Code to reproduce

results is provided at https://github.com/NLPrinceton/text_embedding.

5.1 Convergence to BonG

We first analyze empirically how well our model approximates BonC performance.

As predicted by Theorem 4.0.1, the performance of random embeddings on IMDB

movie reviews classification [19] approaches that of BonC as dimension increases and

the isometry distortion ε decreases (Figure 5.1). In practice however, semantic word

embeddings such as GloVe [27], word2vec [22], SN [2] that preserve the “meaning”

of words have been successful at various NLP tasks such as analogies and improve

the performance of language models and various classification tasks. Even though

Theorem 4.0.1 says nothing about these pretrained embeddings, DisC embeddings

15
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Figure 5.1: IMDB performance of unigram (left) and bigram (right) DisC embeddings
compared to the original dimension.

constructed using these SN embeddings approach BonC performance much earlier,

surpassing it in the unigram case.

5.2 Performance on Tasks

We test classification on MR movie reviews [25], CR customer reviews [14], SUBJ

subjectivity dataset [24], MPQA opinion polarity subtask [34], SST sentiment classi-

fication (binary and fine-grained) [30], and IMDB movie reviews [19]. The first four

are evaluated using 10-fold cross-validation, while the others have train-test splits.

In all cases we use logistic regression with `2-regularization determined by cross-

validation. We further test DisC on the SICK relatedness and entailment tasks [20]

and the MRPC paraphrase detection task [8]. The inputs here are sentences pairs

(a, b) and the standard featurization for document embeddings xa and xb of a and b

is [|xa− xb|, xa� xb] [32]. We use logistic regression for SICK entailment and MRPC

and use ridge regression to predict similarity scores for SICK relatedness, with `2-

regularization determined by cross-validation. Since BonGs are not used for pairwise

tasks our theory says nothing about performance here; we include these evaluations

to demonstrate the versatility of our representations.
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Representation n d∗ MR CR SUBJ MPQA SST SST† IMDB

BonC (3.1)
1 V1 77.1 77.0 91.0 85.1 80.7 36.8 88.3
2 V sum

2 77.8 78.1 91.8 85.8 80.9 39.0 90.0
3 V sum

3 77.8 78.3 91.4 85.6 80.1 42.3 89.8

DisC (3.2)
1 1600 79.6 81.0 92.4 87.8 84.6 45.7 89.2
2 3200 80.1 81.5 92.6 87.9 85.5 46.4 89.4
3 4800 80.0 81.3 92.6 87.9 85.2 46.7 89.6

SIF1 1 1600 79.6 81.1 92.5 87.7 84.4 45.8 89.2
Sent2Vec2 1 700 76.2 78.7 91.2 87.2 80.2 31.0 85.5
Sent2Vec2 2 700 76.3 79.1 91.1 86.6 80.0 30.7 85.3
CFL3 5 100K+ 90.4

Paragraph Vec.4 74.8 78.1 90.5 74.2
skip-thoughts4 4800 80.3 83.8 94.2 88.9 85.1 45.8

SDAE5 2400 74.6 78.0 90.8 86.9
CNN-LSTM6 4800 77.8 82.0 93.6 89.4

byte mLSTM7 4096 86.8 90.6 94.7 88.8 91.7 54.6 92.2

∗ Vocabulary sizes (i.e. BonC dimensions) vary by task; usually 10K-100K.
† Fined-grained task with 5 classes.
1 [3] Reported performance of best hyperparameter using Amazon GloVe embed-
dings.

2,4,7 [23, 18, 29] Evaluated latest pretrained models. Note that the available skip-
thoughts implementation fails on the IMDB and MRPC tasks

3,5,6 [26, 11, 10] From publication (+emb version of last two).

Table 5.1: Evaluation of DisC and recent unsupervised word-level approaches on
standard classification tasks, with the character LSTM of [29] shown for comparison.
The top three results for each dataset are bolded, the best is italicized, and the best
word-level performance is underlined. We use normalized 1600-dimensional GloVe
embeddings [27] trained on the Amazon Product Corpus [21]

5.3 Discussions

We find that DisC representation performs consistently well relative to recent unsu-

pervised methods; among word-level approaches it is the top performer on the SST

tasks and competes on many others with skip-thoughts and CNN-LSTM, both con-

catenations of two LSTM representations. Our method does not require extravagant

computing resources unlike LSTM representations. It is useful as a strong baseline,

often beating BonCs and many more complicated approaches while taking much less

time to represent and train on documents than neural representations (Figure 5.3).
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Figure 5.2: IMDB performance compared
to training sample size.

estimated

Figure 5.3: Time needed to ini-
tialize model, construct document
representations, and train a lin-
ear classifier on a 16-core compute
node.

Rep. n SICK-R (r/ρ) SICK-E MRPC (Acc./F1)

DisC (3.2)
1 73.6 / 71.0 81.9 73.1 / 81.8
2 75.6 / 72.1 83.2 70.8 / 79.0
3 76.2 / 72.2 82.5 73.1 / 81.6

SIF 1 73.7 / 68.5 82.4 73.5 / 82.1
Sent2Vec 1 69.3 / 64.6 78.6 71.3 / 80.7
Sent2Vec 2 70.1 / 65.3 78.7 70.0 / 79.3

skip-thoughts 82.4 / 76.0 83.2
SDAE 73.7 / 80.7

CNN-LSTM 76.4 / 83.8

byte mLSTM 78.5 / 72.1 80.0 73.8 / 81.4

Model information is the same as that in Table 5.1.

Table 5.2: Performance of DisC and other recent approaches on pairwise similarity
and classification tasks. The top three results for each task are bolded and the best
is underlined.
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Chapter 6

Conclusion

In this paper we explored the connection between compressed sensing, learning, and

natural language representation. We first related LSTM and BonG methods via

word embeddings, coming up with simple new document embeddings based on ten-

sor product sketches. Then we studied their classification performance, proving a

generalization of the compressed learning result of [5] to convex Lipschitz losses and

a bound on the loss of a low-dimensional LSTM classifier in terms of its (modified)

BonG counterpart, an issue which neither experiments nor theory had been able to

resolve. Finally, we observed that using pretrained embeddings in DisC converge

much faster than random embeddings to BonG performance.

6.1 Future Work

The n-gram embeddings we suggest are simple, compositional and can be analyzed

formally. However these might not be the optimal embeddings for classification and

exploring simple methods to construct better n-gram embeddings [23], [17] could be

direction for future. Extending the theory to the case of pretrained word embeddings

(which are used extensively in practice) could give us a better understanding of our

current systems and could potentially guide us to better text representations.
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Appendix A

Proof of Proposition 3.3.1

Let f(x) = i(x) = g(x) = x with

Tf (vwt , ht−1) =

 1nd

0(n−1)d



Ti(vwt , ht−1) =



0d×nd · · · 0d×d
... I(n−2)d 0(n−2)d×d

...
. . . Id

...
. . . 0d×d

0(n−2)d×nd I(n−2)d 0(n−2)d×d


ht−1 +



1d

0(n−1)d

1d

0(n−2)d



Tg(vwt , ht−1) =



C1Id
...

Cnd
n−1
2 Id

Id
...

Id


vwt
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Substituting these parameters into the LSTM update (3.3) and using h0 = 0 we have

∀ t > 0 that

ht =



C1

t∑
τ=1

vwτ

...

Cnd
n−1
2

t−n+1∑
τ=1

⊙n
k=1 vwτ+k−1

vwt
...⊙n−1

k=1 vwt+k−n+1


=



C1

t∑
τ=1

ṽwτ

...

Cnd
n−1
2

t−n+1∑
τ=1

ṽ{wτ ,...,wτ+n−1}

ṽwt
...

ṽ{wt−n+2,...,wt}


Thus

hT =



C1

T∑
t=1

ṽwt

...

Cnd
n−1
2

T−n+1∑
t=1

ṽ{wt,...,wt+n−1}

ṽwT
...

ṽ{wT−n+2,...,wT }


=



z̃(n)

ṽwT
...

ṽ{wT−n+2,...,wT }



Note that ht ∈ R(2n−1)d so as desired the LSTM has O(nd)-memory. Although hT

contains (n−1)d more dimensions than z̃(n), by padding the end of the document with

an end-of-document token whose word vector is 0d the entries in those dimensions

will be set to zero by the update at the last step. Thus up to zero padding we will

have zLSTM = hT = z̃(n).
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Appendix B

Proof of Theorem 4.1.1

Throughout this section we assume the setting described in Theorem 4.1.1. Fur-

thermore for some constant C > 0 define the `2-regularization of the loss function `

as

L(w) = `(w) +
1

2C
‖w‖22

Lemma B.0.1. Let ŵ be the classifier obtained minimizing LS(w) = 1
m

m∑
i=1

`(wTxi, yi)+

1
2C
‖w‖22, where `(·, ·) is a convex λ-Lipschitz function in the first cordinate. Then

ŵ =
m∑
i=1

αiyixi (B.1)

where |αi| ≤ λC
m
∀ i. This result holds in the compressed domain as well.

Proof. If ` is an λ-Lipschitz function, its sub-gradient at every point is bounded by

λ. So by convexity, the unique optimizer is given by taking first-order conditions:

0 = ∂wLS(w) =
w

C
+

1

m

m∑
i=1

∂wT xi`(w
Txi, yi)xi

=⇒ ŵ =
C

m

m∑
i=1

−yi∂ŵT xi`(ŵ
Txi, yi)yixi (B.2)
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Since ` is Lipschitz, |∂wT xi`(wTxi, yi)| ≤ λ. Therefore the first-order optimal solution

(B.2) of ŵ can be expressed as (B.1) for some α1, . . . , αm satisfying |αi| ≤ λC
m
∀ i,

which is the desired result.

Lemma B.0.2. x, x′ ∈ X =⇒ (1+ε)xTx′−2R2ε ≤ (Ax)T (Ax′) ≤ (1−ε)xTx′+2R2ε

Proof. Since A is (∆X , ε)-RIP we have (1− ε)‖x−x′‖2 ≤ ‖A(x−x′)‖2 ≤ (1 + ε)‖x−

x′‖2. Also since 0N ∈ X , A is also (X , ε)-RIP and the result then follows by the same

argument as in [5, Lemma 4.2-3].

Corollary B.0.1. ‖ŵ‖22 ≤ λ2C2R2 and ‖ŵA‖22 ≤ λ2C2(1 + ε)2R2.

Proof. The first bound follows by expanding ‖ŵ‖22 and using ‖x‖2 ≤ R; the second fol-

lows by expanding ‖ŵA‖22, applying Lemma B.0.2 to bound inner product distortion,

and using ‖x‖2 ≤ R.

Lemma B.0.3. Let ŵ be the linear classifier minimizing LS. Then

LD(Aŵ) ≤ LD(ŵ) +O(λ2CR2ε)

Proof. By Lemma B.0.1 we can re-express ŵ using Equation B.1 and then apply the

inequality from Lemma B.0.2 to get

(Aŵ)T (Ax) =
m∑
i=1

αiyi(Axi)
T (Ax)

≤
∑

i:αiyi≥0

αiyi
(
(1− ε)xTi x+ 2R2ε

)
+

∑
i:αiyi<0

αiyi
(
(1 + ε)xTi x− 2R2ε

)
= ŵTx− ε

m∑
i=1

|αiyi|xTi x+ 2R2ε

m∑
i=1

|αiyi| ≤ ŵTx+ 3λCR2ε
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(Aŵ)T (Ax) =
m∑
i=1

αiyi(Axi)
T (Ax)

≥
∑

i:αiyi≥0

αiyi
(
(1 + ε)xTi x− 2R2ε

)
+

∑
i:αiyi<0

αiyi
(
(1− ε)xTi x+ 2R2ε

)
= ŵTx+ ε

m∑
i=1

|αiyi|xTi x− 2R2ε
m∑
i=1

|αiyi| ≥ ŵTx− 3λCR2ε

for any x ∈ RN . Since ` is λ-Lipschitz taking expectations over D implies

`D(Aŵ) ≤ `D(ŵ) + 3λ2CR2ε (B.3)

Substituting Equation B.1 applying Lemma B.0.2 also yields

‖Aŵ‖22 =
m∑
i=1

m∑
j=1

αiαjyiyj(Axi)
T (Axj)

≤
∑

i,j:αiαjyiyj≥0

αiαjyiyj
(
(1− ε)xTi xj + 2R2ε

)
+

∑
i,j:αiαjyiyj<0

αiαjyiyj
(
(1 + ε)xTi xj − 2R2ε

)
≤
∑
i,j

αiαjyiyjx
T
i xj +

∑
i,j

−|αiαjyiyj|εxTi xj + 2R2|αiαjyiyj|ε

≤ ‖ŵ‖22 + 3λ2C2R2ε

which implies

1

2C
‖Aŵ‖22 ≤

1

2C
‖ŵ‖22 +

3

2
λ2CR2ε (B.4)

Together the inequalities bounding the loss term (B.3) and the regularization term

(B.4) imply the result.
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Lemma B.0.4. Let ŵ be the linear classifier minimizing LS and let w∗ be the linear

classifier minimizing LD. Then with probability 1− γ

LD(ŵ) ≤ LD(w∗) +O
(
λ2CR2

m
log

1

γ

)

This result holds in the compressed domain as well.

Proof. By Corollary B.0.1 we have that ŵ is contained in a closed convex subset

independent of S. Therefore since ` is λ-Lipschitz, L is 1
C

-strongly convex, and

‖x‖2 ≤ O(R), we have by [31, Theorem 1] that with probability 1− γ

LD(ŵ)− LD(w∗) ≤ 2 [LS(ŵ)− LS(w∗)]+ +O
(
λ2CR2

m
log

1

γ

)

Then since by definition ŵ minimizes LS(w) we have that LS(ŵ) ≤ LS(w∗), which

substituted into the previous equation completes the proof.

Proof of Theorem 4.1.1. Applying Lemma B.0.4 in the compressed domain yields

`D(ŵA) ≤ `D(ŵA) +
1

2C
‖ŵA‖22 = LD(ŵA) ≤ LD(w∗A) +O

(
λ2CR2

m
log

1

γ

)

where w∗A minimizes LD. By definition of w∗A, LD(w∗A) ≤ LD(Aŵ), so together with

Lemma B.0.3 and the previous inequality we have

`D(ŵA) ≤ LD(Aŵ) +O
(
λ2CR2

m
log

1

γ

)
≤ LD(ŵ) +O

(
λ2CR2

(
ε+

1

m
log

1

γ

))

We now apply Lemma B.0.4 in the sparse domain to get

`D(ŵA) ≤ LD(w∗) +O
(
λ2CR2

(
ε+

1

m
log

1

γ

))
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where w∗ minimizes LD. By definition of w∗, LD(w∗) ≤ LD(w0) = `D(w0) + 1
2C
‖w0‖22,

so by the previous inequality we have

`D(ŵA) ≤ `D(w0) +
1

2C
‖w0‖22 +O

(
λ2CR2

(
ε+

1

m
log

1

γ

))

Substituting the C that minimizes the r.h.s. of this inequality completes the proof.
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Appendix C

Proof of Lemma 4.2.1

We assume the setting described in Lemma 4.2.1, where we are concerned with the

RIP condition of the matrix A(n) when multiplying vectors x ∈ X (n)
T , the set of BonC

vectors for documents of length at most T . This matrix can be written as

A(n) =



A1 0d×V2 · · · 0d×Vn

0d×V1
. . . . . .

...

...
. . . . . . 0d×Vn

0d×V1 · · · 0d×Vn−1 An


where Ap is the d × Vp matrix whose columns are the DisC embeddings of all p-

grams in the vocabulary (and thus A(1) = A1 = A, the matrix of the original word

embeddings). Note that from (3.1) any x ∈ X (n)
T can be written as x = [x1, . . . , xn],

where xp is a T -sparse vector whose entries correspond to p-grams. Thus we also have

A(n)x = [A1x1, . . . , Anxn].

Lemma C.0.1. If Ap is (2k, ε)-RIP w.p. 1−γ ∀ p ∈ [n] then A(n) is
(

∆X (n)
k , ε

)
-RIP

w.p. at least 1− nγ.
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Proof. By union bound we have that Ap is (2k, ε)-RIP ∀ p ∈ [n] with probability at

least 1− nγ. Thus by Definition 4.1.1 we have w.p. 1− nγ that ∀ x ∈ ∆X (n)
k

‖A(n)x‖22 =
n∑
p=1

‖Apxp‖22 ≤
n∑
p=1

(1 + ε)2‖xp‖22 = (1 + ε)2‖x‖22

Similarly, ‖A(n)x‖22 ≥ (1 − ε)2‖x‖22. From Definition 4.1.1, taking the square root of

both sides of both inequalities completes the proof.

Definition C.0.1 ([9]). Let D be a distribution over a subset S ⊂ Rn. Then the set

Φ = {φ1, . . . , φN} of functions φi : S 7→ R is a bounded orthonormal system (BOS)

with constant B if we have ED(φiφj) = 1i=j ∀ i, j and sups∈S |φi(s)| ≤ B ∀ i. Note

that by definition B ≥ 1.

Theorem C.0.1 ([9]). If d = Ω̃
(
B2k
ε2

log N
γ

)
for (ε, γ) ∈ (0, 1) and

√
dA is a d ×N

matrix associated with a BOS with constant B then A is (k, ε)-RIP w.p. 1− γ.

Lemma C.0.2. If d = Ω̃
(
T
ε2

log Vp
γ

)
and the word embeddings are drawn i.i.d. from

Ud{±1/
√
d} then for any p ∈ [n] the matrix Ap ∈ Rd×Vp of DisC embeddings is

(T, ε)-RIP w.p. 1− γ.

Proof. Note that by Theorem C.0.1 it suffices to show that
√
dAp is a random sam-

pling matrix associated with a BOS with constant B = 1. Let D = UV {±1} be the

uniform distribution over V i.i.d. Rademacher random variables indexed by words

in the vocabulary. Then by definition the matrix Ap ∈ Rd×Vp can be constructed by

drawing random variables x(1), . . . , x(d) i.i.d. from D and assigning to the ijth entry

of
√
dAp corresponding to the p-gram g = {g1, . . . , gp} the value φj

(
x(i)
)

=
∏p

t=1 x
(i)
gt ,

where each function φj : {±1}V 7→ R is uniquely associated to its p-gram. It remains

to be shown that this set of functions is a BOS with constant B = 1.

For any two p-grams g, g′ and their functions φi, φj we have ED(φiφj) =

Ex∼D
(∏p

t=1 xgtxg′t
)
, which will be 1 iff each word in g ∪ g′ occurs an even number
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of times in the product and 0 otherwise. Because all p-grams are uniquely defined

under any permutation of its words (i.e. we are in fact using p-cooccurrences) and

we have assumed that no p-gram contains a word more than once, each word occurs

an even number of times in the product iff g = g′ ⇐⇒ i = j. Furthermore we have

that |φi(x)| ≤ 1 ∀ x ∈ {±1}V ∀ i by construction. Thus according to Definition C.0.1

the set of functions {φ1, . . . , φVp} associated to the p-grams in the vocabulary is a

BOS with constant B = 1.

Proof of Lemma 4.2.1. Since d = Ω̃
(
T
ε2

log nV max
n

γ

)
, Lemma C.0.2 implies that Ap is

(2T, ε)-RIP w.p. 1− γ
n
∀ p ∈ [n]. Applying Lemma C.0.1 yields the result.
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