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Abstract

As an initial assessment, over 480,000 labeled virtual images of normal highway driv-

ing were readily generated in Grand Theft Auto V’s virtual environment. Using these

images, a CNN (Convolutional Neural Network) and a RNN (Recurrent Neural Net-

work) were trained to detect following distance to cars/objects ahead, lane markings,

and driving angle (angular heading relative to lane centerline): all variables necessary

for basic autonomous driving. Encouraging results were obtained when tested on over

50,000 labeled virtual images from substantially different GTA-V driving environments.

This initial assessment begins to define both the range and scope of the labeled images

needed for training as well as the range and scope of labeled images needed for testing

the definition of boundaries and limitations of trained networks. It is the efficacy and

flexibility of a ”GTA-V”-like virtual environment that is expected to provide an efficient

well-defined foundation for the training and testing of Convolutional Neural Networks

and Recurrent Neural Networks for safe driving.
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Chapter 1

INTRODUCTION

Self driving cars have the potential to change the paradigm of transportation. Accord-

ing to the U.S. Department of Transportation National Motor Vehicle Crash Causation

Survey, 93% of all vehicle accidents are influenced by human error while driving; elim-

inating most of the accidents caused by human error would be a giant boon for public

safety. Self driving cars also promote ride-sharing which would reduce environmental

impact immensely. Additionally, parked cars take up tremendous space in highly pop-

ulous cities that could be otherwise used for increased living spaces. There have been

many advancements in the self driving car space with many companies investing heavily

to be the first player in the market. Google’s Waymo has accrued over 3 million miles

autonomously. Tesla already has a functional autopilot system that allows a car to stay

within lanes while it is driving with minimal human intervention. But as much progress

has been made there is much work to reach self driving capabilities. There have been

several highly public cases where self driving car technology has failed such as the case

in Arizona and the publicized in Florida when a Tesla vehicle collided into a truck on

the highway. Even more recently the self driving car division at Uber has had to cease

public testing after a fatal crash in Arizona.

Part of the reasons that the systems set in place to drive did not function correctly

is because of a lack of data to account for corner cases. The real world offers only

one reality (scenario) at a time that is in many cases extremely challenging and costly
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to create, replicate and iterate. Virtual reality, while only approximating reality, does

provide the opportunity, if properly designed, to readily create scenarios, that readily

capture the ”labeled” data (”affordances”) of those scenarios and effectively investigate

neighboring variances of those scenarios. The availability of such environments to test

and understand the robustness and effective range of automated driving approaches is

thought to be an effective element in the design of those approaches. While safe behavior

in the real world is the final test, the availability of a robust VR environment is thought

to be an very effective tool.
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Chapter 2

Related Work

Research on self driving cars has existed starting from the 1930s [17] and was more

seriously considered in the 1980s with the ALVINN project. In that project, a neural

network with one hidden layer was used to map input images directly to steering angles.

[11, 12] Later on, Aly created a lane marking detector as well as a small testing dataset

on roads in urban settings in 2008. [2]

CNNs have been used in driving like scenarios since 2005 when Muller [10] pro-

posed a CNN based off road driving robot, DAVE, that mapped images to steering angles.

In a more recent publication in 2015, Huval [8] described a CNN system that detects

vehicles and lane markings for highway driving showing that CNNs have promise in

autonomous driving.

Virtual data has had a successful history in computer vision. Taylor et al. (2007)

used a computer game Half-Life to create a system for evaluating tracking in surveillance

systems [13]. In a paper released in 2016 [16] video game data was used to augment

real datasets to provide coverage for scenarios that were difficult to find data for in the

real world.

In 2016-2017, there were several publications that used GTA-V and other video

games for autonomous driving testing and training [6, 4]. In Filipowicz and Liu’s paper

[6] a system using GTA was used to detect the distance to stop signs from an in game

image.
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Since early on in the development of self-driving technology physical test tracks

have been used to evaluate self-driving algorithms [15]. The final benchmark for sys-

tem’s performance will be real world testing, but with rigorous and complex examples

of labeled datasets it is possible to evaluate many corner cases. In 2012 Geiger et al.

released the KITTI dataset which has become the preeminent dataset in testing self-

driving technologies. [7] The value in the labeled data stems from the complexity and

the number of examples it contains. Just as the KITTI dataset provided immensely use-

ful labeled data to train and test on, it is possible to use a virtual environment to create

varied and difficult test cases for self-driving technologies.

The first neural networks that utilized temporal information were developed in the

1980s, but the first temporal approach at deep learning happened in 1993 with 1000 lay-

ers in a recurrent neural network (RNN). [14] The next big strides with temporal deep

learning happened around 2007 with the paper by Fernandez et al. that revolutionized

how speech detection worked [5]. Although there has been a significant amount of de-

velopment in deep learning that utilizes temporal information most Deep Learning in

the field of vision is divorced from the time component. It is perhaps because many

tasks used for identification do not need to factor in changes in an image rather than

identification or labeling. However, one area where temporal neural networks have had

some impact is in the field of labeling an image based on it’s contents. As evidenced by

this paper published in 2016 by Byeon et al. we can see that LSTMs, Long Short Term

Memory blocks, (a form of a recurrent neural network) were used to label an image of

it’s contents. [3] Largely RNNs have been limited to the scope of image labeling, and

have not ventured far into deriving information that may be time sensitive as in video

data.
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2.0.1 Interpreting Image Data

Traditionally, approaches to model a system’s reaction to visual input include behav-

ior reflex and mediated perception. The behavior reflex approach uses learning models

which internalize the world model. Pomerleau utilized this method to map images di-

rectly to the system’s actions such as steering angles and speeds [12]. This scheme

extensively exploits the capability of deep learning. Nevertheless, it obscures the deci-

sion process being made by the network, leaving only a black-box system that handles

exceptionally high-risk tasks. This is certainly an undesirable property to manufacturers

and users.

On the other end of the spectrum, mediated perception detects important features

using learned models and then builds a world model based on these features. For ex-

ample, a mediated perception system uses a combination of many subsystems such as

vehicle detectors, and pedestrian detectors to locate as many objects as it can in the

driving scene. The approach often creates unnecessary complexity by extracting infor-

mation irrelevant to the driving task. With consideration for the shortcoming of these

approaches, Chen et al. [4] proposed a direct perception approach.

Direct perception creates a model of the world using a few specific indicators ex-

tracted directly from the input data. These indicators, called affordances, are often dis-

tances that can be used directly by a simple controller to decide on actions for the system

to take in real time. The direct perception approach lies in the middle of the spectrum

between the other two approaches and takes advantage of both systems by utilizing the

network’s capability of accurately retrieving affordances and at the same time keeping

the controller explicit and thus, accountable.

Using the open source driving virtual environment, TORCS, Chen et al. trained a

computer to learn a transformation from images into several meaningful affordance in-

dicators needed for highway driving. Their work demonstrated that this approach works
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well enough to drive a car in a virtual environment, and generalizes to images in the

KITTI dataset, and to driving on US 1 near Princeton. It is believed that an autonomous

driving system can be designed with the camera playing the role of the human eye in a

direct perception approach.
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Chapter 3

Calculating affordance variables from
images

Using the direct perception model as an inspiration, the following 8 affordance variables

for the car were derived from a deep learning model: steering angle (angle), distance to

the car in the left lane (car L), distance to the car directly in front (car M), distance to

the car in the right lane (car R), distance to the lane marking to the far left (lane LL),

distance to the lane marking immediately to the left (lane L), distance to the lane mark-

ing immediately to the right (lane R), and distance to the lane marking to the far right

(lane RR). In Chen et al., 14 similar variables are chosen; however, some of them appear

to be redundant and only complicate the model. (a) and (b) are schematics demonstrating

the measurement of all 8 affordances.

Some of the affordances (car L, car M, car R, lane LL and lane RR) might not be

applicable in some cases. For example, when there is no car in front, car M should not

contain any value. Or when the car drives in a two-lane road, either lane LL or lane RR

must be invalid. In this situation, these affordances are set as ”inactive.” To indicate the

inactive state, the value of these affordances is set to a specific number slightly out of

their normal range. This design decision comes into play later on in the training process

of the neural network.
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3.0.1 Data Collection Using Grand Theft Auto

CNNs have shown to be extremely powerful in image classification. The downside that

makes CNNs, as well as other supervised machine learning models, often impractical is

the lack of appropriate training data. It is not only the dearth of the data, but the quality

of the data as well. In order to be effective, machine learning models must be trained

on a large number of annotated data that provides enough information for the models to

learn from. The greatest obstacle to obtain a usable dataset is often its cost.

There are several major hurdles if one were to use real data for this task. The largest

hurdle is the number of data points that would be necessary. In general, 100,000 images

would be barely sufficient to train a complicated model. For our purpose, a car would

need to drive around recording driving scenes. It is not only expensive to do this manu-

ally, but also extremely time consuming. People would have to manually drive a car and

collect video data which is limited to geo-location of the car as well working conditions

of drivers.

The other hurdle that one would encounter in using real data, is obtaining the ground

truth labels for each image. In our case, the model needs to pick up eight different

affordance variables from each image. Even if a car is equipped with the latest in tracking

technology it is not possible for a car to pick up the exact distances of cars in front of

it as well as the distance to the lanes in all occasions. For instance, lidar is extremely

effective but fails when rain is introduced into the scene. The instruments would not be

perfectly able to pick up the distances because of normal mechanical error and even if

the instruments do pick up a distance to a lane marking or a car there is no assurance

that that value will indeed be correct. A human would need to go through the data to

annotate the information and look for incorrect labeling which is again extremely time

consuming.

The benefit of GTA-V is that data can be collected without regard to limitations
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of the real world in terms of time or cost. There is no cost associated with each test

run and the game can run indefinitely until the adequate amount of data is collected.

Additionally, GTA provides a multitude of different environments that allow the model

to train and test on a variety of scenarios that mimic the real world. Of equal importance

is that the game will have perfectly annotated data with the ground truth labels. Costly

and possibly imprecise sensors are not needed to find the exact measurements of the

affordance variables. The labels needed for each image can be found exactly as the

game interprets them.

GTA-V is not normally an academic tool and therefore fan game modification scripts

were used to obtain the values for the distances, to set up the simulations, and to run the

simulations used for this research. The GTA mod Rage Plugin Hook [1] was used with

collaboration from Lennart Meincke, the creator of the mod, to extract the information

from GTA-V to find the affordances.

In the data collecting process, a simple car model called ”Futo” was chosen and a

loop which has the character strictly drive on highways to a random position was set up.

The car frequently respawns at a random position. Since the data collection takes at least

several days of in-game time the data covered all different time of a day. The camera for

taking a screenshot is positioned behind a windshield at a similar location to that of a

front-facing camera in an autonomous vehicle.

A screenshot is taken from the window of the game screen, rescaled to 210×280 pix-

els and stored as a Bitmap file. One screenshot is taken every 5 iterations of the script’s

loop which is approximately 250 ms. Because of how the script works, taking a screen-

shot every iteration of the loop introduces a higher variation of the interval between

each screenshot. For future work a neural network model that incorporates temporal

information will be used necessitating the screenshots to be as equally spaced in time as

possible.
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3.0.2 Learning Model: CNN Model for Images

The direct perception CNN is based off of the standard single-stream AlexNet architec-

ture. [9] The model is built in Keras using TensorFlow as the backend. Since estimating

real values is a regression task instead of an Alexnet’s classification based approach,

some modifications to the network were made:

• The shape of the input layer is changed from 224×224×3 pixels to 210×280×3

pixels to match the resolution of the screenshots from GTA-V.

• An extra fully-connected layer is added at the end of the network to serve as the

output layer consisting of 8 neurons. Alternatively, instead of adding a layer, one

could modify the last layer of AlexNet to have 8 neurons.

• The activation function of the output layer must also be changed from softmax to

hyperbolic tangent to output a vector of real values in a limited range [−1, 1].

The network is trained with Adam optimizer with an initial learning rate of 0.001, and

mean-squared error is chosen as a loss function. The model is trained for 21 epochs

under the training set of approximately 350,000 images with a batch size of 32 images.

The model quickly converges after the first few epochs.

All input images are mean-subtracted before being fed into the network. Before

training and evaluating, all active affordances are rescaled to lie in a range [−0.9, 0.9]

to match the output layer of the network, [−1, 1] , and still leave some margin which is

necessary to distinguish between active and inactive affordances.

Inactive affordances are rescaled with the same factor. Consequently, they result in

a value larger than 1 which is outside of the achievable output range of the network. As

a result, the loss will never reach zero regardless of training epochs. Still, this method

is desirable for determining whether the affordances are active (i.e. if the output of the

network is close to 1, then, with high probability, it is inactive). The inactivity threshold
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was set to be 0.99, and thus, any output above this threshold is considered inactive.

3.0.3 Learning Model: Using CNN Output as input for a Recurrent

Model

Figure 3.1: An image is run through a fully trained CNN and it’s output is collected. If
the subsequent two images also exist then the three outputs will be stitched together to
form one input for the RNN model where the label is the affordance vector of the next
image in the sequence.

In addition to using a Convolutional Model to interpret the image data to output

affordance variables a Recurrent Neural Network Model (RNN) was used to to see if

the output for the model could be improved by incorporating the time dimension. This

model was built in Pytorch and took as input the outputs of the CNN from the previous

section. Because it is not possible to have a purely recurrent model analyze an image

the image first needed to be run through a fully trained CNN.

Once an image was run through the trained CNN mentioned in the previous section

it’s output was saved and then stitched together with the outputs of two subsequent im-

ages snapshots. These output are all combined to create one data input for the RNN

where the label would be to predict the affordance variable for the next, unseen frame.
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Figure 1 illustrates this process.

The RNN model has two RNN cells that get fed sequentially the affordance vectors

for the images as person would see it. This sequential input into the cells is important

so that the network gets a sense of what the change in the images over time. As such

the images are not shuffled as they would normally be in training and testing to maintain

this integrity.

The number of images used to create training data is 116764 and the number of

training data created for training the RNN model is 116764.

3.0.4 Description of the Affordance Variable Collection

The affordance variables were calculated by using in-game constructs that were available

through the mod.

The steering angle was easily calculated by comparing the direction of the road with

the direction of the car. The lanes of the highway were calculated by using GTA-V’s

node system that demarcates where roads are. The nodes in the game denote roads,

but do not show exactly where lanes are. GTA however indicates whether the road is

a one way and if it has two, three, four, or five lanes. Depending on the direction and

the number of lanes of the road the node is placed on the road differently. Using this

information the distances to each lane marking were calculated using trigonometry.

The distance to the cars in the left, middle, and right lanes were calculated by looking

for cars that were in the direction of the next node in front of the camera. This assured

that the cars were in front of the camera. To determine whether the cars were in either

the left, middle, or right lanes the same calculations were used for determining the lanes

markings and made sure that the cars were enclosed within those same lane markings.
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(a) (c)

(d)

(e)

(f)

lane_LL

lane_L lane_R

lane_RR

(b)

car_L

car_M

angle

car_R

Figure 3.2: (a) A schematic showing 4 affordance variables (lane LL, lane L, lane R,
lane RR). (b) A schematic showing the other 4 affordance variables (angle, car L, car M,
car R). (c) An in-game screenshot showing lane LL, lane L, lane R and lane RR. (d) An
in-game screenshot showing the detection of the number of lanes in a road. (e) An in-
game screenshot showing angle. (f) An in-game screenshot showing car L, car M and
car R.
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3.0.5 Diversity of Scenarios

GTA-V offers a variety of different scenes that can be used for testing. The city of

Los Santos, the in game environment, is mostly an urban environment but also includes

suburban and rural environments.

Figure 3.3: Shows different times of the day and different geographic sceneries at which
the screenshots are taken

Additionally GTA-V has a slowly changing time of day that runs 30 times faster than

normal time. While collecting data the time of day was not specified and as such col-

lected an evenly distributed amount of data from each in game time. Another powerful

asset that GTA-V provides is many realistic weather scenarios. At this time different

weather patterns were not included in the data and only used what the game describes

as ”Extra Sunlight”.
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Chapter 4

GTA Results

After the driving simulation in GTA-V had been running for 40 hours, over 500,000

screenshots were taken. After the data cleaning process to remove erroneous screen-

shots, approximately 483,000 images were left. 350,000 images were separated for

training the CNN. The rest were kept for testing and validating purposes.

The CNN was then trained on a desktop computer running Ubuntu 14.04 equipped

with an Nvidia Tesla K40. The training process ran for 21 epochs or approximately 36

hours before manually stopped after showing some sign of overfitting. The training went

slightly more slowly than expected because of the bottleneck in reading images stored on

a hard disk. The speedup could be achieved by storing the training images in a different

database format that requires a shorter access time.

The final training loss per sample per variable is 0.151 whereas the final validation

loss per sample per variable is 0.314. The loss is defined as mean squared error of 8 af-

fordance variables combined. As mentioned earlier, the loss is expectedly high because

the values of inactive afforances were set to be above the output range of the CNN. To

display the loss in more detail, TABLE 4.1 shows the mean squared error or the loss of

the validation set at various training epochs on each affordance variable separately. The

losses shown in TABLE 4.1 also more accurately represent the true error of the system

since they exclude errors that incur from the inactive affordance variables. From TA-

BLE 4.1, it is important to note that the losses of all variables decrease as the training
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progresses. However, the losses of some variables, namely lane L, lane M and lane R,

increase after a certain epoch of training, potentially due to overfitting. Regardless, the

CNN trained at epoch 21 is chosen as the final model for its overall accuracy.

Table 4.1: Mean squared error of the validation set on each affordance variable at dif-
ferent epochs of training

Epoch angle car L car M car R lane LL lane L lane R lane RR
6 0.008 0.441 0.618 0.138 0.114 0.030 0.012 0.064
11 0.010 0.323 0.518 0.115 0.043 0.023 0.009 0.020
16 0.009 0.322 0.491 0.109 0.038 0.024 0.014 0.018
21 0.007 0.309 0.489 0.108 0.036 0.025 0.016 0.015

Figure 4.1 also shows some images from the test set, their corresponding ground truth

and the predicted label the final model outputs. Generally, as TABLE 4.1 suggests, the

lane distance estimation is more precise than that of the car distance. Nevertheless, when

the surrounding cars are closer, the error is arguably small and should not negatively

affect the decisions made by the controller. Based on our observation, the large error of

car M often arises from cars on the left and the right lane at a further distance which are

difficult to distinguish.

The RNN model was trained on the ORFE Clusters and were run on a Linux 2.23.2

system and a Tesla P100-PCIE-16GB. The RNN model did not converge unfortunately.

The model
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angle: 
car_L:    
car_M:
car_R:       
lane_LL:
lane_L:
lane_R:
lane_RR:

Predicted label

- 5.884   
na

7.437
na
na

2.935
2.295

na

(a)

(b)

(c)

Ground truth

- 0.679   
na

8.758
na
na

3.291
2.108

na

angle: 
car_L:    
car_M:
car_R:       
lane_LL:
lane_L:
lane_R:
lane_RR:

Predicted label

- 0.010   
na
na
na

8.966
3.566
1.833

na

Ground truth

- 0.051   
na
na
na

9.064
3.114
2.082

na

angle: 
car_L:    
car_M:
car_R:       
lane_LL:
lane_L:
lane_R:
lane_RR:

Predicted label

0.694
na

6.085
na
na

3.196
2.203

na

Ground truth

-0.078   
na

3.983
na
na

2.766
2.460

na

Figure 4.1: Sample images from the test set along with their respective ground truth and
predicted labels (na = car/lane does not exist). Please note that angle is in degree and
the rest of the variables are in meters.
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Chapter 5

Discussion

The results show that the lowest mean squared errors came from the angle of the car to

the road and the detection of the lane markings. I theorize that the car distance variables

were less successful because the range of possible values and the objects that count as

a vehicle is far more varied than lane markings. Lane markings are all in a very similar

position in an image and have very little image variation whereas a vehicle could be

anything from a motorbike with a pedestrian on it to a freight truck.

As the network trained, the error for car distance continued to decrease with more

training while the lane marking estimation started to overfit. A possible solution would

be to have two separate neural networks running, one to estimate the car distances and

one to estimate the lane marking distance along with the road angle. The disadvantage

of this solution is that it requires extra computational power. Another solution might be

to use a weighted loss. More precisely, a larger weight can be put on losses incurred

from the car distances and a smaller weight on those from the lane marking distances.

Doing so could help the car and the lane marking distance estimations converge at a

more similar rate.

The error of the car distance estimation is observed to be larger with the cars fur-

ther away and the cars driving on the left and the right lane. In addition, the error of

night drives, in general, tends to be larger than that of drives happen in the day. Cer-

tainly, through a longer training, a more extensive training set and a deeper architecture,

18



the network’s performance can be significantly improved and thus, the error would be

minimized. Nevertheless, it is believed that such properties of the CNN pertains to an

inevitable downfall of a system that solely relies on visual inputs. For humans and ma-

chines alike, a poor weather and lighting condition as well as a far distance could impair

a distance estimation.

Regardless, distances of cars further away and in a different lane affect the con-

troller’s decisions in a lower degree compared to those of cars that are closer and in

the same lane. Generally, a driving controller maintains the distance to the car directly

in front by adjusting the speed accordingly. [4] When a lane change is required, only

cars that are close in distance affect the decisions made by the controller. Consequently,

the errors in distances of vehicles further, though indeed undesirable, are much more

forgivable.
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Chapter 6

Conclusion

I examined GTA-V as a model to test, train and enhance deep learning in self driving

car research. I found that GTA-V allows researchers to create, train, and test on photo-

realistic data to accurately estimate from the driver’s perspective the distance to lane

markings, distance to cars, and angle of driving. The best results of the CNN came from

estimating the driving angle and the lane markings. The car distance estimation could

be improved with more training time, but was terminated before it plateaued because the

lane marking detection had started to overfit.
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