
Implementing a high-performance

key-value store using a trie of

B+-Trees with cursors

Oluwatosin Victor Adewale

A Master’s Thesis

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Master of Science in Engineering

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor Andrew Appel

June 2018

c© Copyright by Oluwatosin Victor Adewale, 2018.

All rights reserved.

Abstract

In this paper, we discuss the implementation of a serial main-memory key-value store

based on Masstree[6]. Similar to Masstree, the key-value store is implemented as a

trie-like tree of B+-Trees, where each B+-Tree is responsible for a fixed-length slice

of a variable-length key. However, one of the major differences between our key-value

store and Masstree is that our B+-tree implementation (a component of the key-

value store) takes linear time to insert a set of sorted records. This is compared to

a traditional B+-tree implementation that would take linearithmic time. Moreover,

partially sorting a sequence of operation leads to substantial performance gains. This

is made possible using a data structure for navigating B+-trees called a B+-tree

cursor. As our next operation is amortized constant time, our B+-tree does not need

to maintain cross links between leaf nodes. We also briefly show that this same data

structure can be extended to the trie of B+-Trees to ensure amortized linear time for

bulk insertion of key-value pairs in the key-value store. We were inspired with this

idea of B+-Tree cursors from the SQLite [5] B-tree source code.

iii

Acknowledgements

I would like to thank Thomas Schaffner, Chris Galea, and Donna Gabai for help-

ing and/ or supporting me in my Thesis Presentation. I would like to thank Aurèle

Barrière for co-implementing the B+-Tree library. He was very instrumental in the

B+-Tree library’s final implementation, which leverages the B+-Tree with cursor con-

cept. I would also like to thank Professor Andrew Appel for advising me throughout

this thesis project and Professor Margaret Martonosi for being my thesis reader. I

would like to also thank my parents, Segun and Victoria Adewale, for their support

through out my life and education. I doubt I would have made it this far without

them. Finally, I am ultimately grateful to God for bringing me this far and for the

opportunities that lie ahead. Soli Deo Gloria!

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Background 2

2.1 Main Memory Databases . 2

2.2 Database Indexing and B+-Trees . 3

2.3 Handling Variable-length Keys . 4

2.3.1 Variable-length Keys and Keys with Long Common Prefixes . 4

2.3.2 The solution: Masstree . 7

3 System 10

3.1 Operations . 10

3.2 Architecture Overview . 10

3.3 B+-Tree Implementation . 10

3.3.1 B+-Tree Cursor and Operations 12

3.3.2 Why Sequential Operations are Amortized Constant Time . . 17

3.4 Key-value Store Implementation . 22

3.4.1 Key-value Store Module and BorderNode Module 23

4 Evaluation 26

4.1 B+-Tree Experiments . 26

4.2 KVStore Experiments . 30

5 Future Work 33

6 Conclusion 35

v

References 36

vi

1 Introduction

In a world where software runs on computers with faster CPUs and large memory,

there is a clear need for faster databases. Main-memory databases (where records

reside primarily in memory) are a feasible solution. These databases are much faster

than their disk-based counterparts, as they are not slowed down by a need for frequent

I/O operations. Moreover, given advancements in semiconductor technology, main-

memory databases have become a feasible storage solution; memory is much cheaper

and much larger. In this paper we discuss an implementation of a serial main Memory

key-value store based on Masstree [6]. Our implementation uses SQLite’s [5] concept

of a B+-Tree cursor which enables put and get operations to run in amortized

constant time when the cursor is near the desired location. We show that a set of

sequential put or get operations to this modified B+-Tree run in linear time and that

partially sorting a sequence of operations by key increases performance. We also show

that this performance improvement under partially sorted workloads extends to out

key-value store (trie of B+-Trees). We also briefly present the concept of a key-value

store cursor to further improve the performance of out key-value store under sorted

and partially sorted workloads.

1

2 Background

In this section, we discuss concepts related to this project. We first give an overview of

main-memory databases to illustrate why a main-memory key-value store is not only

feasible but valuable. We discuss B-Trees and B+-Trees, and why they are valuable

for databases. Finally we give an overview of the Masstree data structure that our

key-value store is based on.

2.1 Main Memory Databases

Main-memory databases are a class of storage systems where records are located en-

tirely in memory as opposed to traditional database systems where records are located

on external storage devices and loaded into memory as needed. As one might expect,

these traditional systems are generally slower than their Main-memory counterparts,

due to file I/O. In the past, these traditional database systems were necessary as

commodity hardware did not have memory large enough to hold all the data in a

database. However, much cheaper memory prices mean main-memory databases are

a feasible storage solution. This is evidenced by the emergence of various main-

memory database solutions and implementations, such as: SQL Server Hekaton, H-

Store/VoltDB, Hyper, Silo (Masstree), SAP HANA and MemSQL. As file I/O is no

longer a bottle neck, main-memory databases have more opportunities for improved

performance. Furthermore, they have to make different design choices with regard

to indexing, concurrency, caching, and partitioning from traditional databases as file

I/O is no longer the main bottle neck. Moreover, because these databases are not

file-based, they also have to address the issues of durability and logging. Faerber

et al. [3] give a more in-depth survey of main-memory databases and how different

implementations address the challenges and opportunities in this field of database

design.

2

2.2 Database Indexing and B+-Trees

A key feature of databases is an indexing layer or component. The indexing layer

enables fast retrieval/access of any record in a database. It reduces the running

time of accessing any record in a file-based database with N pages from O(N) to

O(logdN) (where d is a constant) in the case of B+-Trees, a tree-based index. Hash-

based indices are also possible. Tree-based indices maintain an order between their

records. As a result they can support range queries like: “Which students have a

GPA between 2.5 and 3.5?”. Databases have at least one primary index and can have

multiple secondary indices for each set of records. This enables fast operations on

different fields of the records. One can view our key-value store as a primary index

of a set of records.

Figure 1: Example B-Tree with 19 keys. d = 2.

B+-Trees are a variant of B-Trees: a balanced search tree data structure. B-Trees

were first introduced by Bayer and McCreight [1] as a method for indexing records

stored in files on secondary storage. Figure 1 shows an example B-Tree. Each node in

a B-Tree has an order d that determines its capacity, i.e. how many keys it can hold.

Each node, except the root, must have between d and 2d keys. The root can have

between 0 and 2d keys. The pointer between two keys a and b contain keys whose

values are greater than a and smaller than b.

B+-Trees vary from their B-Tree counterparts in that their nodes are divided into

a sequence and index set. Figure 2 shows a simple B+-Tree with one internal node

(the root) and five leaf nodes holding the keys stored in the tree. The sequence set

consists of the leaves of the B-Tree. The index set consists of the internal (non-leaf)

3

Figure 2: Example B+-Tree with 15 keys. d = 2.

nodes. So record keys are found in the leaves, while the internal node contain copies of

keys that guide searches to the leaf node containing the desired record. These copies

are the result of node splitting. A node split occurs when we try to insert a new key

into a full node in order to make room for the new key. After a node split, a copy

of the first key in the newly created second node and a pointer to the second node is

pushed into the parent node of the first node. This process continues if the parent

node is full. Furthermore, traditional B+-Trees have cross-links between leaves. This

means the sequence set forms a (doubly) linked list. Restricting keys / records to the

leaves leads to simpler deletion and enables fast sequential access of keys. Getting

the next key in the sequence of current keys always takes constant time. A survey of

B-Trees and their variants, including B+-Trees, was presented by Comer in [2].

2.3 Handling Variable-length Keys

2.3.1 Variable-length Keys and Keys with Long Common Prefixes

B+-Trees are an excellent data structure for record insertions, updates and retrieval.

Any record in a B+-Tree containing a large number of records can be accessed with

a few node accesses. Indeed the number of node accesses involved in an operation is

a good cost model when analyzing the performance of file-based databases and even

main-memory databases. However, it pays to consider the cost of string compares

in B+-Trees in the presence of variable length keys that could possibly share long

common prefixes. This is because aside from node accesses a fair amount of time is

4

spent looking for the appropriate key in an internal node (to guide search) or in a leaf

node (to retrieve the desired record), when searching for a record. The time spent

comparing strings is more significant in main-memory databases where the cost of

node accesses is relatively low compared to file-based databases.

Figure 3: Example B+-Tree with d = 2.

Most B+-Tree implementations handle variable-length keys by adding an extra

level of indirection. A page/node containing variable length keys in a file-based B+-

Tree will look something like Figure 3 (from page 220 of [7]). VoltDB (a main memory

database) also adds a level of indirection when storing long record fields. Figure 4

(from page 48 of [3]) shows how records are stored in VoltDB’s storage layer. Here,

record tuples are stored in fixed-sized blocks. If a tuple’s field is greater than 8 bytes,

it is stored in a variable-size block; the memory address of the item is then stored

in the field’s location in the tuple instead. In both of the presented cases, there is a

level of indirection involved in finding desired keys within a node. Aside from this

being less cache friendly, there is the added complication of maintaining the free area

within a node page. Moreover, it is possible that some space could be wasted due to

fragmentation within a data page.

B+-Trees can also run into issues with keys with long prefixes. Consider a web

server that periodically processes it server logs and stores in a databases resources

requested and the count of how many unique clients requested that resource. An

5

Figure 4: VoltDB storage layout.

Resource URL Unique Clients

/apis/v1/photos/albums 753
/apis/v1/photos/profile 486
/apis/v1/info/tutorial 1000
/apis/v1/info/preferences 1000

Table 1: Example of HTTP resource URLs and unique client counts.

example database table is shown in Table 2.3.1. The corresponding primary B+-Tree

index on resource URLs would look like the B+-Tree shown in Figure 5 (only keys

are shown). This simple example is illustrative of how B+-Trees handle long keys

that possibly have long common prefixes. Space is wasted saving copies of long keys

and performance falls. This is because when searching for any key in the tree, more

character comparisons have to be made to determine the lexicographical relationship

between two strings that share a long common prefix.

Figure 5: B+-Tree index of Table 2.3.1 (only keys are shown).

For the simple example in Table 2.3.1, these issues are not a cause for concern.

However, one could imagine a much larger table where there are millions of rows where

6

most keys share long common prefixes. These issues would be intolerable. Even if

we take the prefix B+-Tree approach (see [2, 7]) - where instead of storing copies of

keys in internal nodes, the smallest possible delimiter is used - space could still be

wasted if there the common prefixes are long. In Figure 6 we see that the root of the

prefix B+-Tree index of Table 2.3.1 contains the delimiter key “/apis/v1/p”. If the

largest key to the left of the root and the smallest key to the right of the root shared

a longer common prefix, then delimiter key must be longer.

Figure 6: Prefix B+-Tree index of Table 2.3.1 (only keys are shown).

2.3.2 The solution: Masstree

Given the aforementioned challenges, our key-value store is based on the Masstree

system / data structure. This is to ensure our key-value store can properly handle

variable length keys and keys sharing long common prefixes,.

Masstree [6] is an in-memory network key-value storage server that supports range

queries. It is also the name of the data structure that the server uses to store key-

value pairs. The Masstree data structure is designed to efficiently support arbitrary-

length keys, including keys with long common prefixes. The Masstree system supports

getc(k), putc(k, v), remove(k) and getrangec(k, n) operations. As one might expect,

get returns the value associated with a key k. put adds a key-value pair (k,v) into

the key-value store or updates the value (v) associated with a key k. getrange returns

up to the first n key-value pairs greater than or equal to k in the database. Finally

the parameter c is a list of column numbers that allow a client to get or set portions

of a key’s value.

7

The authors of [6] describe the Masstree data structure as a “trie-like concate-

nation of B+-Trees”. The structure of a Masstree tree is shown in Figure 8. The

tree has multiple layers containing one or more B+-Tree. The root layer contains at

most one B+-Tree, the second layer contains at most 264 trees - one for every possible

key the first layer can have - and so on. Each B+-Tree and layer is responsible for

some 8-byte slice of a key. Masstree’s B+-Trees consist of interior nodes and border

nodes(see Figure 7).

Figure 7: Masstree Node Data Structures [6]

Border nodes are similar to traditional B+-Tree leaf nodes. They have cross-links

(to aid the getrange operation), keys and key values. However, Masstree’s border

nodes are unique in that their keys are identified by an 8-byte key slice and a key

length. This means that a single Masstree B+-Tree can represent multiple (at most

10) keys with each key slice. At most 9 different keys for every possible prefix of the

keyslice (keys with length 0 to length 8) and a 10th key in the event that there is a

key suffix or a link to the next layer. Not all key slices can have 10 different keys. A

key slice with no null bytes can have only two different keys. A key with a null byte

at the end can have three different keys. Moreover, for each key in a border node,

there is a value or a link to a B+-Tree in the next layer. Whether a key points to a

value or another B+-Tree depends on the value of its key length field. If a key’s key

length is greater than 8, then the key has a suffix and a value or has a link to another

layer instead of a value.

8

Figure 8: Masstree Tree Structure [6]

MassTree border nodes also contain keysuffix data structures in the event that a

key’s suffixes aren’t shared by any other keys with the same prefix. That is, if we

have the keys "AB" and "ABCDEFGH!" in our key-value store, there is no need to create

a second layer to index the last byte of the second key. On the contrary, we store

"AB" (2 bytes) and "ABCDEFGH!" (9 bytes) with their appropriate key slices and key

lengths in a B+-Tree with a single node (layer 0). Then we set the keysuffix for the

latter of the key slices to be "!". However, if we have another key "ABCDEFGH*",

key slice "ABCDEFGH" must now point to a new layer. In addition, the string whose

suffix is ”!” is inserted in the new layer with its original value and the new string

whose suffix is "*" is inserted in the new layer with its value. Generally, if a key is

8h bytes long, its value will be stored at layer x where x < h. So, if a key is 8 bytes

or less, its value will be referenced by a keyslice in the root layer’s B+-Tree. If a

key is 40 bytes long, its value will be stored in one of layers 0 to 4. This is because

key suffixes can be stored in a bordernode, if no other prefixes of the full key share

in the keyslices up to a layer and part of the suffix. The keysuffix data structure

means that unnecessary layers are not created when there are many relatively long

keys that do not share common prefixes. On the other hand, if there are long keys

that share common prefixes, then multiple layers (relatively small layers) would be

responsible for a portion of the common prefix. Which keeps retrievals fast as shown

in the Evaluation Section 4.

9

3 System

3.1 Operations

Our overall system is implemented as a C programming language library and currently

exposes the following operations:

• KVStore T KV NewKVStore(void);

• Bool KV Put(KVStore T kvStore, KVKey T key, const void* value);

• const void* KV Get(KVStore T kvStore, KVKey T key);

KV NewKVStore returns a newly created key-value store instance. get retrieves

the value associated with the given key in the store. put adds a key-value pair to the

key-value store or updates the value associated with an existing key. Our key type

KVKey T is created from an array of chars with its specified length. The return type

of put will be updated to void because put should always succeed, unless perhaps

memory allocation fails (which is extremely unlikely).

3.2 Architecture Overview

Our system is a client of two internal libraries: a B+-tree library and a Bordernode

library. The B+-Tree library enables the creation of B+-Trees and operations

on those B+-Trees. The Bordernode library implements a variant of Masstree’s [6]

bordernodes (nodes at the border of two btree layers). See section 3.3 for more details.

We also implement a utility library for some common definitions and operations

used across the different libraries.

3.3 B+-Tree Implementation

Our system’s B+-Tree data structure is similar to the traditional B+-Tree. However,

we do not use cross links between leaf nodes in our implementation, but rather add

10

a new independent auxiliary data structure called a B+-Tree cursor. The B+-Tree

cursor can be thought of as an array of node pointers and corresponding pointers to

entries within each node (Figure 2). Each entry in an internal node consists of a key

and the pointer to its right. The first entry has no key associated with it. It is simply

a pointer. In leaf nodes entries consist of keys and pointers to the record/value they

are associated with. The first element of the cursor points to an entry in the root

node. The second element in the cursor points to an entry in the child of the entry

pointed to in the root, and so on until an element of the cursor points to an entry in

a leaf node. The cursor therefore points to all the entries (and nodes) in the unique

path from an entry in the root to an entry in a leaf node.

Figure 9: B+-Tree Cursor Pointing at Key 25.

It is important to know that we were inspired to use this B+Tree with cursor

concept from SQLite [5]. SQLite’s B-Tree implementation supports both B+-Trees

(called B*-Trees in their documentation) and B-Trees. B+-Trees are used as what

SQLite calls ”Table B-Trees”, while B-Trees are used as ”Index B-Trees”. See [4] for

SQLite’s database file format documentation. The beauty of this data structure is

that it enables both fast sequential gets and puts. More specifically, a sequential get

or put operation takes amortized constant time. If these assertions are true, insertion

of a set of sorted key-value pairs takes linear time and partially sorting a set of keys

involved in a series of get and/or put operations can lead to large performance gains.

It would also mean that databases using this B+-Tree scheme can reduce the time it

takes for operations that build trees / tables from sorted data e.g. failure recovery,

11

data replication. Moreover, if queries come in batches, they can be partially sorted

to reduce processing time.

3.3.1 B+-Tree Cursor and Operations

The B+-Tree Module interface has various methods for operating on B+-Trees, in-

cluding: MoveToFirst, MoveToNext and MoveToPrevious, However, in this section

we will focus on the MoveToKey, MoveToNext and PutRecord operations on B+-Trees

with a FANOUT (maximum number of keys per node) of two. The FANOUT can

be varied and in our implementation it is set to a default value of 15, similar to the

node FANOUT of Masstree [6].

Figure 10: B+-Tree Cursor Pointing at Key 5.

MoveToKey and MoveToKey operations are simple if the desired key is in the same

node. We just search for the correct key within the current node. For example, if the

cursor is at key 5 in Figure 10, a MoveToNext or MoveToKey(10) operation should

simply move the cursor to the next entry in the node, entry 10. However, if the desired

key resides in a leaf node one or more nodes away from the current leaf node, there is

more work involved. In the traditional implementation of B+-Trees, a move-to-next

operation simply uses the cross-links between leaf nodes to get to the next node, and

consequently the next key. Nevertheless, a random search always starts from the root.

12

In our B+-Tree implementation a random search (or next operation to an entry in a

sibling node) starts from the current leaf node and ascends and descends through the

tree as needed to get to the desired key.

Figure 11: B+-Tree Cursor Pointing at Key 10.

Figure 12: B+-Tree Cursor Pointing at Key 20.

More specifically, in the case of a MoveToNext operation, the cursor first moves

up to the closest ancestor node that it is not pointing to the last entry within. i.e. an

ancestor node for which the cursor can move to the next entry within. Afterwards,

the cursor then sets the pointer at that level to the next entry in the node and

then descends to the entry’s smallest leaf child. For example, consider a MoveToNext

13

operation from key 10 (Figure 11), this moving the cursor’s last pointer from entry

10 on node A to entry 20 on node C (Figure 12). To do this, the cursor first ascends

to node B. Then it moves its entry pointer for that level to the next entry in node B.

Finally it descends to the current entry in node B’s smallest leaf child. If the cursor

was originally at the last entry in node B, it would have to keep ascending till it either

reaches the root or a node where its pointer for that node/level was not previously

pointing to the last entry in the node. For example, if the cursor was at key 35 (node

D), a move to the next entry (key 40) entails moving up to node E, moving the entry

pointer in that node to the next entry and then descending to the left most leaf child.

For a random search, the cursor has to move up to the closest node that is definitely

an ancestor of the desired search key. This is a node where the search key is greater

than or equal to its first entry and strictly smaller than its last entry. The only

exception to this rule is the root. The root is an ancestor of every node in the tree.

After a definite ancestor of a key has been found the cursor can then descend down the

tree from this node to the desired leaf entry. For example, let the cursor be at key 20

(Figure 12). What happens when MoveToKey(50) is called? To move to key 50, the

cursor first ascends to node E. It does not go beyond node E as 50 is in between node

E’s smallest and greatest key. We then descend to node H then node I which contains

key 50 (Figure 12). What if a call is then made to MoveToKey(73)? In this scenario,

the cursor ascends all the way to the root R, and then descends to node E then node

F and then node G. The cursor then points at key 73 (Figure 14). The cursor has to

ascend all the way to node R (the root) because it is impossible from simply looking

at node E’s entries to know for sure that node E is definitely an ancestor of key 73. All

node E’s entries can inform us is that children of its greatest entry are greater than

or equal to 60. It is possible that another child of E’s parent could be the ancestor of

key 73. This would be the case if the first key in node R is less than 73. This is an

example of the worst case of random search with the B+-Tree scheme. In the worst

14

case, a MoveToKey call takes time proportional to 2logN . logN time to ascend to the

root and logN time to descend from the root to the apropriate leaf node. This is

in contrast to random search in the traditional B+-Tree scheme which always takes

time proportional to logN . However it is important to note that the cost to ascend

will not be significant as most (if not all) of the nodes in the ascend path are likely

to be in cache (more specifically higher levels of cache memory) because they have

been recently visited. On the other hand, whenever we carry out a random search for

a nearby node, we benefit from not needing to ascend to the root and from most of

the nodes we visit being in higher levels of cache memory.

Figure 13: B+-Tree Cursor Pointing at Key 50.

Sequential (next) operations are fast as well. Most of the time they entail simply

moving to the next element in a node, a few times they entail a jump from a node to

its right sibling node which often involves fewer node accesses and occasionally, in the

worst case, involves 2h node accesses, where h is the height of the tree. Inserts can

benefit from using this scheme (i.e using a cursor that remembers its current location

and the path to it). With sequential inserts, most of the time, the current node has

enough space for the next key. Sometimes, we need to split the node (node splits are

described briefly in 2.2). Most of the time, a single split is enough. Sometimes the

split propagates upward to one or more nodes. Occasionally, a node split propagates

15

Figure 14: B+-Tree Cursor Pointing at Key 73.

up multiple levels. As a result, we expect that a sequential put or random put near

the cursor’s current location will be quick and simply involves the cost of moving to

a nearby location and inserting a key; both of these steps (move and put) are often

fast if the key to be put into the tree is near the key the cursor is pointing to.

In conclusion, aside from reducing the number of node accesses needed in move

and put operations, the B+-Tree with cursor scheme benefits highly from cache-

locality when the cursor does not move too far. It is less likely to access unnecessary

nodes in the path from parent to the desired key, rather it is more likely to revisit

previously visited nodes. For example, when traversing the tree from keys 5 to 35

(imagine a range query or sequential updates), our B+-Tree with cursor scheme visits

only nodes A, B, C and D. Note we visit node B FANOUT (two) times. This implies

that if a sequence of operations is partially sorted by key we can experience massive

performance gains, subject to how much we sort the sequence of operations. It is

important to note that SQLite [5] (which uses this B+-Tree with cursor scheme) does

not always benefit if the cursor is at a key close to a search key. Indeed, SQLite’s

sqlite3BtreeNext function behaves similarly to our MoveToNext function: most of

the time the next key would be in the current node and SQLite’s cursors only ascends

the tree as needed. Nevertheless, SQLite’s MoveTo function always starts searching for

16

the desired key from the root, unless the cursor is already at the correct position. This

is in contrast to our implementation of MoveToKey which never begins search from

the root. Therefore, a partially random sequence of operations would be expected to

execute as quickly as a random sequence of operations and experience no performance

gains in SQLite.

3.3.2 Why Sequential Operations are Amortized Constant Time

Figure 15: Example B+-Tree with 18 keys and height 3 (cursor not shown). When
sequentially visiting all keys in the B+-Tree, there are 17 total next operations: 9
blue next operations, 6 yellow next operations and 2 red next operations.

In this section, we will investigate the claim made in 2.2 that a sequential get or

put operation takes amortized constant time. Figure 15 gives an intuition for why

this might be the case. Traversing through the tree in Figure 15 from key 5 to key 83

takes 17 next operations. Most (about half) of these operations are the low cost blue

next operations.These blue next operations cost little as they simply involve moving

the cursor to the next element in the node and involve zero extra node accesses. The

other (roughly) half of next operations require a jump from one node to another. Most

of these next operations require the cursor moving up only one level and then down

to reach the sibling node containing the next entry. These are the yellow operations

which require only two node accesses. Few of these next operations require the cursor

moving up to the root and then down to the next entry in the sibling node. These

are the red next operations, the most costly next operations.

17

Figure 16: Example B+-Tree with 54 keys and height 4 (cursor not shown). When
sequentially visiting all keys in the B+-Tree, there are 53 total next operations: 27
blue next operations, 18 yellow next operations, 6 purple operations and 2 red next
operations.

18

For our tree with 18 keys, in order of costliness there are:

• 2 red operations

• 6 yellow operations

• 9 blue operations

If our tree was a level deeper, as in Figure 16, in order of costliness there are:

• 2 red operations

• 6 purple operations

• 18 yellow operations

• 27 blue operations

We see that the most costly jumps occur 2 ∗ 30 times, the next most costly op-

erations occur 2 ∗ 31, the next most costly operations occur 2 ∗ 32 times and so on.

The least costly operations, however, occur 3h times where h = the height (number

of levels) of the tree. This implies that the most costly operations which are propor-

tional to logN where N is the number of entries in the tree occur very infrequently.

If each next operation was logarithmic on average, we will expect that most of the

next operations are proportional to logN . Not only is this not the case, but we see

that the more costly an operation, the (exponentially) less likely it is to occur. Put

another way, a fraction of the time a next operation requires that we jump to the

next node. When jumping from a node to the next, a majority of the time moving

up one level and then back down is sufficient. A fraction of the time when we jump

between two nodes, we need to move up two levels and then back down. An even

smaller fraction of the time we need to move up three levels and then back down, and

so on and so forth.

19

With this intuition we can find an upper bound of the average cost of a next

operation for a tree of any height:

Tave < c +
2

F
+

4

F 2
+

6

F 3
+ ... = c +

2× 1

F
+

4× 2

F 2
+

6× 3

F 3
+ ... (1)

Tave < c +
∞∑
i=0

2i

F i
(2)

where F is the FANOUT - maximum number of keys - in each node in the B+-

Tree.

In Equation 1, we see that a next operation always takes some constant plus 2 node

accesses 1
F

of the time, plus 4 node accesses 1
F 2 of the time and so on. The frequency of

costly operations decreases exponentially. This is an upper bound because in reality

the probability of any jump is 1
F

, low cost and high cost jumps included. So this

means that in reality, the most frequent lowest cost jumps occur less than 1
F

of the

time, the next lowest cost jumps occur less than 1
F 2 of the time and so on.

The series in equation 2 is the product of an arithmetic and a geometric series.

It is an arithmetico-geometric series. We know that the sum from an arithmetico-

geometric series is given by [8]:

S =
∞∑
n=0

(a + nd)rn =
a

1− r
+

rd

(1− r)2
(3)

where r < 1.

Equation 2 can be simplified with 3 to yield:

Tave < c +
2F

(F − 1)2
(4)

From Equation 4, we see that the average cost of a next operation for a tree of any

height with fanout F is upper-bounded by some small cost plus 2F
(F−1)2 node accesses.

20

This shows two things. Firstly, a next operation does not take logarithmic time (is

not proportional to the height of the tree), but rather takes amortized constant time.

Secondly, the cost of a next operation is inversely proportional to the FANOUT F of

the nodes in the tree.

Given the previous analysis, we can also find an upper bound for the cost of

a sequential put operation. i.e. a put operation where the key=value pair to be

updated or inserted is to be placed beside the current key. We know that the cost of

a sequential put operation is the cost to move to the appropriate node (same node

or sibling node) plus the cost of inserting the entry. We already know that the cost

to move to the next key (next appropriate node) is less than the upper bound in

Equation 4. We know that inserting a key-value pair in a node takes some constant

and might involve node splits. How often are node splits? Imagine a sequence of

sequential inserts, where each key is not present in the tree. Most of the time a node

will have space for an insert and not require any node splits (see 2.2). A fraction of

the time (proportional to 1
F

) there is a node split. A fraction of the time when there

is a node split it propagates up to the next level, a fraction of the time when a split

propagates by one extra level it propagates another level, and so on.

We can find the average cost to insert a new key into a node by simplifying the

following inequality:

Tins < c + csplit(
1

F
+

2

F 2
+

3

F 3
+ ...) (5)

That is the cost of inserting a new key-value pair is less than some constant plus

the cost of a split that occurs at most some time proportional to 1
F

plus the cost of two

splits that occurs at most some time proportional to 1
F 2 and so on. The constantcsplit

is to account for the fact that splits occur in proportion to the fractions involved in

the geometric series.

21

Tins < c + csplit
∞∑
i=0

i

F i
= c +

csplitF

(F − 1)2
(6)

Using Equation 3 we solve the arithmetico-geometric series in Equation 5 to find

an upper bound on the cost of insertions.

Putting equation 4 and equation 6 together an upper bound on the cost of a

sequential insert and, consequently, a sequential put is:

Tseqput < Tins + Tave = c1 +
2F

(F − 1)2
+ c2 +

csplitF

(F − 1)2
(7)

As we can see from equation 7, the time it takes for a sequential put is lest than

some constant inversely proportional to the fanout F . Therefore sequential puts also

take amortized constant time.

3.4 Key-value Store Implementation

In this section we discuss our key-value store implementation. Our key-value store

is implemented in the C programming language as a library (called KVStore). It

currently supports the operations outlined in section 3.1. It is a client of the B+-Tree

module 3.3 and the BorderNode module. Our B+-Tree module as is can only handle

fixed length 8 byte keys. Therefore it must be extended to handle variable length

keys. As mentioned in section 2.3, databases and storage systems that use B+-Trees

tend to handle variable length keys by adding a level of indirection between a node’s

slot array and the record / record key in the node’s data area; we also saw how B+-

Trees are not optimized for handling keys with long common prefixes. We discussed

how Masstree effectively handles variable-length keys and keys with long common

prefixes. As a result, our KVStore Module is based on Masstree. It is also a trie-like

concatenation of B+-Trees.

22

3.4.1 Key-value Store Module and BorderNode Module

Our key-value store module is based on Masstree. It can be viewed as a serial re-

implementation of Masstree. However, there are a few differences. As mentioned

previously, it is a client of the B+-Tree module 3.3. We also made the decision to

implement border nodes separately from the B+-Tree; our B+-Tree’s leaf nodes are

not border nodes. Our B+-Tree module’s leaf nodes (listing 1) have fixed length key

slices and associated value, but do not have key length fields or key suffixes as in

Masstree (see Figure 7). Furthermore, our border nodes contain a key slice, an array

of values and a key suffix (listing 2). Each border node is associated with a key slice

and does not have an array of key lengths; key length is implicit in the position of

the value in the value array. If there is a key suffix in a bordernode, that means that

the 10th key does not have a link to the next layer, and vice versa.

typedef unsigned long Key ;

struct Entry {

Key key ;

Chi ld or Record ptr ;

} ;

struct BtNode {

Bool i s L e a f ;

Bool F i r s t L e a f ;

Bool LastLeaf ;

int numKeys ;

BtNode∗ ptr0 ;

Entry e n t r i e s [FANOUT] ;

23

} ;

Listing 1: B+-Tree node type definition

This design of separating the concept of a bordernode from that of a B+-Tree

into two separate modules for use by a key-value store allows for greater modularity.

The B+-Tree and BorderNode modules can each easily be replaced with different

implementations. It is important to also note that this implementation of Bordernodes

use less memory when there are keys with multiple common prefixes. For example,

if there are 10 keys with the keyslice ”00000000”, where each character is a NULL

character. In Masstree there would be 10 key slices, 10 values (references) and 10

keylengths. In our scheme, there would be one key slice in the B+-Tree, one reference

to a Bordernode pointed to by the entry in the leaf node, 10 values and 4 overhead

fields in the Bordernode. In this scenario we use about half the space Masstree

uses. However, when every key slice is unique, MassTree has a key slice, a value

and a key length associated with each key, while we have a key slice, a border node

reference and space for 10 values associated with each key. Note that we can optimize

our Bordernode implementation’s space usage by removing the keyslice field in the

Bordernode and by using a more efficient bordernode implementation when there are

only a few keys associated with the bordernode’s keyslice. This field is redundant as

it will be already present in a B+-Tree entry pointing to the bordernode.

struct BorderNode {

unsigned long k e y S l i c e ;

void∗ va l [MAX BN SIZE] ;

s i z e t keySuf f ixLength ;

char∗ keySu f f i x ;

} ;

Listing 2: Border node type definition

24

Another difference between our key-value store implementation and Masstree is

that in order to leverage the benefits of our B+-Tree with cursor implementations

we permanently associate each B+-Tree with a cursor. This is to ensure higher

performance when the key involved in the next operation is lexicographically close to

the key involved in the previous operation.

25

4 Evaluation

In this section we evaluate our key-value store and the B+-Tree library. The following

experiments were ran on a 13-inch early 2015 Macbook Pro1.

mention machine specs.

4.1 B+-Tree Experiments

In this section we evaluate the following claims that our B+-Tree library:

• provides amortized constant time sequential (put or get) operation.

• benefits from performance improvements when a sequence of (put or get) oper-

ations is partially sorted by key.

To evaluate the performance of B+-Tree get operations, we timed how long it

took to move to / get all the keys in a B+-Tree for different workloads. That is, we

visited or retrieved all the keys in the B+-Tree sequentially, in partially-sorted order

and randomly for different B+-Tree sizes. There are three types of partially sorted

workloads: those sorted in batches of 15 key-value pairs (PS Batches 15), workloads

with 1000 sorted batches each with size N / 1000 (PS Batches N / 1000) and, finally,

workloads with 100 sorted batches each with size N / 100 (PS Batches N / 100).

For each B+-Tree with size N , the B+-Tree was constructed by inserting all the keys

from 0 to N − 1. The results of this experiment are shown in Figure 17.

Similarly to evaluate the performance of B+-Tree put operations, we timed how

long it took to insert a sequence of keys into the B+-Tree with the aforementioned

workloads (sequential, partially-sorted and random). Results are shown in Figure

18 Finally, we use the doubling hypothesis [9] to empirically measure the order of

growth of sequential and random operations . The doubling hypothesis states that if

1Processor: 2.7 GHz Intel Core i5. RAM: 8GB

26

Figure 17: Time to visit or get all the keys in a B+-Tree for different B+-Tree sizes
and different workloads.

T (N) ∼ aN blgN then T (2N)
T (N)

∼ 2b. So by calculating the log ratios of the times taken,

we can estimate the order of growth of our B+-Tree under different workloads.

As we can see from Figures 17 and 18 sequential operations are very fast inx our

B+-Tree, while random operations are the slowest. We also see that our B+-Trees

have performance gains if a series of put or get operations are partially sorted into

sorted batches. The larger the sorted batches are in proportion to the number of

keys to be inserted or retrieved, the larger the performance gain. On a different

note, we expected that alternately retrieving the first and last keys in the B+-Tree

its size number of times would model the worst case performance, as each retrieval

costs 2 × height node accesses. Even though this should, in theory, model the B+-

Tree’s worst case behavior it does not in practice, because of caching. If the same

two keys are constantly retrieved, the same same ancestor nodes are traversed each

time to get from one key to the other. These nodes will be in higher levels of cache

memory thereby keeping the cost of node accesses to retrieve each key very low. This

27

Figure 18: Time to insert all keys from 0 to size - 1 into an empty B+-Tree for
different sizes and different workloads.

experiment highlights the value of cache-friendly data structures when implementing

main-memory databases and also highlights how costly main-memory look-ups can

be in comparison to cache look-ups.

Figures 19 and 20 allow us to better appreciate the speed of sequential operations.

Our B+-Tree implementation can sequentially retrieve all keys from a B+-Tree of size

5 million in about 49 milliseconds; this is about 9.8 nanoseconds per next operation.

We can sequentially insert 5 million keys into a B+-Tree in about 265 milliseconds;

this is about 53 nanoseconds per next operation.

Number of keys (millions)
Move to Next Random Get

Time (ms) log ratio Time (ms) log ratio
0.5 5.03 182.48
1 9.89 0.975 420.07 1.203
2 20.16 1.027 970.84 1.209
4 42.45 1.074 2421.73 1.319

Table 2: Log ratio of running times of sequential and random get operations for
different key sizes.

28

Figure 19: Time to sequentially visit all the keys in a B+-Tree for different B+-Tree
sizes

Figure 20: Time to sequentially insert all the keys from 0 to size - 1 into an empty
B+-Tree

29

Number of keys (millions)
Sequential Put Random Put

Time (ms) log ratio Time (ms) log ratio
0.5 25.01 148.83
1 59.89 1.260 350.62 1.236
2 107.29 0.841 805.68 1.200
4 225.94 1.074 1973.40 1.292

Table 3: Log ratio of running times of sequential and random put operations for
different key sizes.

Using the doubling hypothesis we see that the time complexity of N sequential put

or get operations is effectively linear (see see 4.1 and 4.1). The log ratio converges to

approximately one. However for random operations, even though the log ratio rounds

down to 1, the fractional portion hints at an extra logarithmic term. This is in line

with our expectation that N random put or get operations is linearithmic.

4.2 KVStore Experiments

In this section we evaluate the following claims that our key-value store library:

• performs well when its keys have long common prefixes

• benefits from performance improvements when a sequence of operations is par-

tially sorted by key.

Similarly to the B+-Tree experiments we evaluated how long it takes to retrieve all

the keys in a KVStore object for different sizes and workloads, where each KVStore

object is built with random keys. The results are in 21. We see that, as expected

sequential gets are very fast. We also see that partially sorting query keys gives

performance gains over random query keys. However, the performance gains form

partially sorting are not as large as one might expect. There could be different reasons

for this. A possibility is that even if the next key being inserted or retrieved is different

from the previous key on only the last few bytes, our current KVStore implementation

still traverses the trie of B+-Trees from the first layer to the appropriate layer where

30

Figure 21: Time to get all the keys in a KVStore for different sizes and different
workloads. Keys are 30 bytes long and are not forced to have common prefixes. Keys
are randomly generated.

the keys diverge. Even though we can skip all the layers where the key slices of the

next key are the same as the previous key’s key slices.

From our discussion in section 2.3, the expectation is that a typical B+-Tree

implementation and, by extension, a key-value store built from this B+-Tree would

suffer performance degradation when most of its keys have long common prefixes.

However, our KVStore implementation properly handles this scenario as shown in

Figure 22.In fact our KVStore does slightly better for keys with long common prefixes.

This is probably because the first few layers of the KVStore consists of only two nodes

each (a B+-Tree leaf node with one entry and a bordernode). Consequently, to get

to any key all the nodes containing the common prefix must be visited and so these

nodes will be in higher levels of cache memory.

31

Figure 22: Time to get all the keys in a KVStore for different sizes for different
common prefix lengths. Keys are 100 bytes long. We compare the behavior of get
operations when the first 80 bytes are the same and the remaining 20 bytes are random
versus when all 100 bytes are random. Keys are randomly generated.

32

5 Future Work

Our key-value store implementation is far from finished. There are a myriad of ways

in which this key-value store can and should be improved upon. We will at least

need to implement deletion for both the KVStore module and the B+-Tree module,

among some other operations. It would also be good to add durability and support

for concurrency. We would also like to extend the B+-Tree cursor concept to create

and implement a KVStore Cursor (see Figure 23).

Figure 23: KVStore Cursor at node 4.

The KVStore cursor is analogous to the B+-Tree cursor; ancestor nodes in the

B+-Tree correspond to ancestor B+-Trees / layers in the KVStore. However, with a

KVStore cursor, we would need to also store the key slice that each cursor is located

at. This could drastically improve the cost of sequential inserts. This means that

when the key of the next operation and the KVStore cursor’s current key share a

long common prefix, many layers in the KVStore data structure (the trie) will be

skipped at the cost of only comparing the search key with the characters associated

with each level of the KVStore cursor. We expect this cost to be significantly lower

than traversing multiple layers of the overall tree data structure (which also involves

33

Figure 24: KVStore Cursor at node 6.

navigating through each layer) to get to the desired key. However, it is important to

note that if the search keys are totally random, there might be little or not benefit

to this scheme. In fact, there would be the added overhead of maintaining KVStore

cursor information.

34

6 Conclusion

In this Thesis Paper, we have described at a high-level the implementation of our

main-memory serial key-value store. We gave a quick overview of main-memory

databases, B+-Trees and Masstree in section 2. We discuss out key-value store im-

plementation, B+-Tree with cursor implementation and why B+-Tree sequential op-

erations take amortized constant time in section 3. We also learn more about SQLite’s

[5] B+-Tree with cursor scheme and how it is used in our system. We evaluated the

behaviour of our B+-Tree library and KVStore library in section 4. Here we saw

that the B+-Tree with cursor idea does indeed yield amortized constant time sequen-

tialget and put operations (traditional B+-Tree’s can only guarantee constant time

get operations). Moreover, we have shown that partially sorting a sequence of inputs

leads to performance gains for our B+-Tree and KVStore. We have also shown that

Masstree’s trie of B+-Tree scheme can properly handle long common prefixes. Fi-

nally, we briefly presented a way to extend the B+-Tree cursor to a KVStore Cursor

to further speed up sequential and partially sorted queries in our system.

35

References

[1] Rudolf Bayer and Edward McCreight. Organization and maintenance of large
ordered indices. In Proceedings of the 1970 ACM SIGFIDET (now SIGMOD)
Workshop on Data Description, Access and Control, pages 107–141. ACM, 1970.

[2] Douglas Comer. Ubiquitous b-tree. ACM Computing Surveys (CSUR), 11(2):121–
137, 1979.

[3] Franz Faerber, Alfons Kemper, Per ke Larson, Justin Levandoski, Thomas Neu-
mann, and Andrew Pavlo. Main memory database systems. Foundations and
Trends in Databases, 8(1-2):1–130, 2017.

[4] D. Richard Hipp. Sqlite database file format documentation webpage. https:

//www.sqlite.org/fileformat.html.

[5] D. Richard Hipp. Sqlite documentation webpage. http://www.sqlite.org/

docs.html.

[6] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness for fast
multicore key-value storage. In Proceedings of the 7th ACM european conference
on Computer Systems, pages 183–196. ACM, 2012.

[7] Raghu Ramakrishnan and Johannes Gehrke. Database management systems. Mc-
Graw Hill, 2000.

[8] Kenneth Franklin Riley and Michael Paul Hobson. Foundation mathematics for
the physical sciences. Cambridge University Press, 2011.

[9] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley Professional,
2011.

36

https://www.sqlite.org/fileformat.html
https://www.sqlite.org/fileformat.html
http://www.sqlite.org/docs.html
http://www.sqlite.org/docs.html

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Background
	2.1 Main Memory Databases
	2.2 Database Indexing and B+-Trees
	2.3 Handling Variable-length Keys
	2.3.1 Variable-length Keys and Keys with Long Common Prefixes
	2.3.2 The solution: Masstree

	3 System
	3.1 Operations
	3.2 Architecture Overview
	3.3 B+-Tree Implementation
	3.3.1 B+-Tree Cursor and Operations
	3.3.2 Why Sequential Operations are Amortized Constant Time

	3.4 Key-value Store Implementation
	3.4.1 Key-value Store Module and BorderNode Module

	4 Evaluation
	4.1 B+-Tree Experiments
	4.2 KVStore Experiments

	5 Future Work
	6 Conclusion
	References

