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Abstract 
 
In a popular technique called “transfer learning,” a technique used widely in the 

computer vision field, researchers adapt publicly released models pre-trained on 

millions of images, for example, to determine whether a person talking in a video 

is telling the truth. But could the resulting classifier be biased? Has the pre-trained 

neural network model learned high-level features that correspond to protected 

attributes such as race, gender, religion, or disability status? Understanding the 

high-level features encoded in deep neural network representations is pivotal to 

understanding the kinds of biases that may be introduced in a broad range of 

applications during transfer learning. In this paper, we quantify the extent to which 

three popular pre-trained convolutional neural networks are implicitly learning and 

encoding age, gender, and race information during the transfer learning process. 

Results indicate that these readily used pre-trained models encode information that 

can be used to infer protected attributes such as race, gender, or age, even with 

very limited labeled data available at a very high accuracy. 
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1 Introduction

Artificial intelligence (AI) systems are increasingly influencing our interactions with the world and daily

decision making. Today’s AI systems rely on large amounts of data to detect patterns and learn generalized

models on which to make predictions. Regrettably, these input data reflect the pervasive biases and historical

prejudices of society. Thus, when AI systems are used in domains ranging from job candidate selection to

image search, biased outputs are the norm rather than the exception. Left unchecked, these systems will

perpetuate and amplify the impact of these biases on an unparalleled scale. Evidence suggests that this is a

widespread and growing problem in modern day applications of AI technology [1, 18].

In the field of computer vision, these issues are further exacerbated by the inappropriate use of pre-trained

models, image datasets that are not satisfactorily representative of minority groups, datasets that are a narrow

representation of the world, and algorithmic learning models that act effectively like black-boxes. State-of-

the-art CV systems are characterized by sophisticated deep learning algorithms, often involving multi-layer

neural network architectures. The resulting models are opaque and not easily interpretable, in contrast to more

interpretable models such as linear regression or decision trees. Moreover, companies that deploy such systems

in their products are not keen to disclose their proprietary code and training sets. Thus, there are numerous

instances of AI biases reported in the wild that have never been rigorously studied by the scientific community

(e.g., Google Photos generation of offensive captions on images of black people [18].

One can conjecture that biases that arise as a result of training on images sourced directly from the web can be

mitigated by generating responsibly curated datasets. However, this is (1) not practical at scale and (2) does

not solve the problem. Curated computer vision image sets have been shown to be biased, both in the general

sense of being inauthentic, closed representations of the visual world [60] and in the concrete sense of being

biased with respect to gender roles and human actions [71]. More troubling, developers are using publicly

available pre-trained, out-of-the-box neural network models in ways never anticipated by the researchers,

resulting in complex pathways of bias propagation (e.g., using these models to detect a person’s sexuality or

whether they are a criminal simply by looking at his/her facial images [65, 63]). These factors make biases

in computer vision especially important and challenging. Current literature has been motivated by domains

such as credit scoring, job applicant candidacy, and criminal risk scoring, where issues of fairness and bias

have traditionally been studied [9, 10]. Similar literature is lacking in the domain of computer vision for the

aforementioned reasons. This has become even more apparent as government agencies across the globe move

1



towards using face recognition technology to track passengers who fly in and out of the country [49] and

even track people as they go about their day [12]. In both cases, issues of fairness are inescapable. Thorough

research and testing is required to understand how inaccuracies and biases in these facial recognition systems

may be adversely affecting certain members of our society.

Our work seeks to (1) understand why and in what ways do dataset biases creep into trained deep learning

models for computer vision and (2) find a way to combat this bias while preserving or improving performance

on the original task. To that end, our first step is to gain an understanding of the high-level features encoded in

deep neural network representations used in the computer vision field. To ensure fair outcomes, protected

attributes (e.g., race, gender, religion, age, and sexual orientation) are typically withheld from human and

algorithmic decision-makers. The emerging view is that this is not foolproof—algorithms and humans alike are

still implicitly learning these protected attributes, producing biased and potentially unfair outcomes. Indeed,

the success of deep learning models in computer vision can be largely attributed to their ability to learn features

that capture high-level concepts from pixel data. In a popular technique called “transfer learning,” users adapt

publicly released models pre-trained on ImageNet [35], for example, to determine whether a person talking in

a video is telling the truth. But could the resulting classifier be biased? Has the pre-trained neural network

model learned high-level features that correspond to protected attributes such as race, gender, religion, or

disability status? Understanding the high-level features encoded in deep neural network representations is

pivotal to understanding the kinds of biases that may be introduced in a broad range of applications during

transfer learning. Past research indicates that pre-trained CNNs do indeed implicitely learn high-level concepts

such as object detectors and protected attributes such as race and gender [72, 34], but never before, to the best

of our knowledge, have researchers formalized or quantified the extent to which these models are learning

these things or measured their affect on tangential tasks during the transfer learning process.

The work in this paper encompasses the first phase in a larger research project goal. In this paper, we quantify

the extent to which popular pre-trained computer vision deep learning models trained on ImageNet, namely

VGG-16, ResNet-50, and Inception v3 [53, 24, 58], are implicitly learning and encoding features of interest

during the transfer learning process. The features of interest are age, gender, and race, characteristics protected

under the United States federal anti-discrimination law [61]. We run a series of experiments to determine the

number of labeled image samples required to achieve a sufficiently acceptable level of predictive accuracy

for each of the three attributes. A pre-trained convolutional neural network model that perfectly encodes the
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protected attribute will only need a handful of labeled training samples. One that does not encode the desired

feature will require thousands, if not millions, of samples to reach acceptable predictive accuracy.

We used the MORPH dataset for this project. The non-commercial release of the MORPH dataset contains

over 55,000 unique images of more than 13,000 individuals ages 16 to 77 [47]. Each image is labeled with

the individual’s age on the day the picture was captured, and his/her race and gender. We divide the dataset

into train, validation, and test sets. For each model type (i.e., VGG-16, ResNet-50, and Inception v3), we use

transfer learning to train our models on the full training set and on five significantly smaller subsets of the train

set. We use three transfer learning techniques: feature extraction, partial finetuning, and end-to-end finetuning.

We are particularly interested in the test accuracy achieved by using what are considered to be in the computer

vision community very small training sets. Results indicate that pretrained models encode information that can

be used to infer protected attributes such as race, gender, or age, even with very limited labeled data available.

To have a basis for comparison, we run the same set of experiments using models pre-trained on VGGFace

[42] and VGGFace2 [8], two facial image datasets that were created for the task of facial recognition. Since

the MORPH dataset is itself a dataset of facial images, we expect the representations learned by models

pre-trained on VGGFace and VGGFace2 to be specific to the visual structure of faces and thus, better suited for

the attribute classification tasks, as opposed to the representations learned by models pre-trained on ImageNet,

which learn the visual structure of the world.

We provide an overview of convolutional neural networks and transfer learning in Section 2. In Section 3,

we provide a survey of the current fairness in machine learning and fairness in computer vision landscae and

describe related work. To orient the user as to how this work fits into our larger research vision, we give an

overview of our long-term research goals in Section 4. In Section 5 we detail our experimental setup and

methods. We present and discuss our results in Section 6. Future work and extensions are considered in

Section 7. We conclude in Section 8.

2 Technical Background

2.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is an artificial neural network that is specialized and optimized for

taking in image pixel data as input [35]. Like a regular neural network, CNNs are composed of the following
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important elements:

Score function A score function that maps input data to class scores. The simplest neural network,

a 2-layer neural network with one hidden layer, might have the score function s = W2 max(0,W1x) where x

is the input data, W1 and W2 are a matrices of weights, and max(0,−) is a ReLU non-linearity that thresholds

the input to 0. Other non-linearities (aka activation functions) include sigmoid and Tanh.

Objective function During the training process, the goal is to find an optimal set of weights W

that produce class scores most congruent with the ground truth labels of the input training set. The function by

which we measure how congruent the class scores are with the ground truth labels is called the loss function or

objective function (or also the cost function). Thus, during training, the objective is to find W such that the

loss function is minimized. A high loss means the computed class scores are incongruous. A low loss value

means the computed class scores are in harmony with the ground truth labels of the input training data. There

are various loss functions including cross-entropy loss for softmax classifiers and max-margin loss (aka the

hinge loss) for SVM classifiers.

Optimization algorithm Finding a set of weights W that minimize the objective function is an op-

timization problem. One of the most popular optimization schemes starts off with randomly initialized weights

and then uses gradient descent to iteratively update the weights in the negative direction of the gradient. The

gradient tells us, along each dimension, the slope of the loss function or in other words, the direction in which

the loss function has the steepest rate of increase (for our purposes of minimizing the loss we must go in

the negative direction). The gradient of the objective function is computed via backpropagation, which is a

recursive application of the calculus chain rule [50]. Once we have calculated the gradient of the loss function,

we can perform one update of the weights along each feature dimension. We then once again calculate the

class scores (the forward pass), calculate the loss, compute the gradients (the backward pass), update the

parameters in the negative direction of the gradient, and repeat until we have reached the desired number of

gradient descent iterations.

Regularization Often included in the objective function is a regularization penalty. The regulariza-

tion loss controls how large we allow the weights in matrix W to grow and encodes into the total loss function
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a preference for a certain set of weights over another. As long as the math checks out, it is possible to find

multiple sets of weights that correctly classify every sample in a training set. However, we may prefer a set

of weights that allows each input feature to have a small contribution to the final class score versus a set of

weights that encourages a small subset of the input features to be highly influential to the final classifier. This

preference scheme can be encoded into the loss function by using the L2 regularization penalty, for example.

Standard neural networks are composed entirely of fully-connected layers. Every neuron in a fully-connected

layer is connected to every single other neuron in the previous layer. In effect, each neuron is performing a

dot product with the input layer and its weights. This poses a problem when the input is images with large

dimensions. Regular neural networks are not optimized for handling the explosive number of parameters

created as a result. CNNs have a few additional differentiating elements that arise as a result of making the

helpful assumption that x, the input data, are image pixels. These include:

Input data shape Whereas standard neural networks take in input data that is arranged in flat vec-

tors or matrices and whose neurons in each layer are also in this arrangement, CNNs take in 3-dimensional

input volumes.

Neuron connectivity Neurons in the convolutional layers of a CNN are connected to only a small

region of the previous input layer, as opposed to all of the neurons. This greatly reduces the number of

parameters compared to a fully connected network.

Parameter sharing A 2-dimensional cross-section of the 3-dimensional input volume is referred to

as a depth slice [38]. Each depth slice, and as a result, each neuron in the depth slice, shares one set of

learnable weights. This shared set of parameters is referred to as a filter or kernel.

Convolutional layer Convolutional layers consist of any number of filters. These small filters are

then convolved across the input volume, i.e., we slide the filter across the entire width and height of the

input volume computing the dot product between the weights in the filter and the current local input region.

One pass of this filter across the input volume generates one 2-dimensional map of output values, called an

activation map. There are as many activation maps as there are filters. Stacked together, these activation maps
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create the output volume.

Other common layers Other common layers found in CNN architectures include the pooling layer,

a layer which reduces the width and height of the input volume in order to reduce the number of parameters

and the ReLU layer, which applies the max(0,−) activation function element-wise on the passed in volume.

CNNs are usually terminated by fully-connected layers, the layer which ultimately computes the final class

scores.

2.2 Transfer Learning

Because training a CNN from scratch can take weeks to train and millions of labeled images, it is common

for researchers in academia and industry alike to release their model architectures and the corresponding

learned model weights. Many of the most popular and easily accessible models were originally trained on the

ImageNet dataset [11], a dataset used for visual object recognition tasks. Using a technique called transfer

learning, it is possible to leverage these pre-trained models for other visual classification tasks. The intuition

behind why this is possible is that the lower layers of a CNN learn low level image features such as edges or

color blobs. Regardless of your tasks, whether it is detecting cancerous tumors in CT scans or classifying

whether a person in an image is sad, happy, or mad, your model will need to learn how to detect these generic

features at some point. In fact, it is generally until you reach the higher layers of the neural network where the

model starts learning the more training dataset specific features. Thus, in practice, it common to leverage these

pre-trained models and tweak them as needed for the new visual task. Depending on how large the new dataset

is and how similar the new visual recognition task is to the task the pre-trained model was originally trained to

tackle, there are various degrees to which one can tweak the pre-trained model:

Feature Extraction This method manipulates the pre-trained model the least. Each image from the

new dataset is passed through the model, and instead of using the final layer output, which contains the class

scores for the original classification task, we use the penultimate layer output and treat the output as the new,

transformed features of the image. These features, or CNN codes as they are sometimes called, are then used

to train a simple linear SVM or softmax classifier.

Partial Fine-tuning This method involves freezing the first n layers of the pre-trained model and
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then fine-tuning the upper portion of the neural network that contains details specific to the original task. In

re-training the model with the new dataset by freezing some portion of the lower layers, you are tweaking the

weights of the upper layers to be more useful for the new task while retaining the useful, more generic feature

detectors at the bottom.

End-to-End Fine-tuning This method manipulates the pre-trained model the most by using the

new image set to fine-tune all weights along the entire depth of the CNN.

3 Related Work

3.1 Fairness in Machine Learning

Machine learning is the science of creating algorithms that can automatically learn patterns from data. Given a

set of input data, or “training data,” these algorithms output a “model,” or set of learned relationships, that

can be used to make predictions on unseen data. These models can appear to be enigmatic black boxes to its

down-stream users. Engineers of artificial intelligence systems have full discretion to choose the data and

manipulate them and the model as they see fit. Moreover, companies that deploy such systems in their products

are not keen to disclose their proprietary code and training datasets. In 2013, Latanya Sweeney discovered

that Google AdSense was more likely to deliver advertisements for arrest records in response to queries of

black-sounding names than to those of white-sounding names [57]. In this case, Sweeney confirmed that

the differential ad-delivery seemed to be an artifact of Google’s AdSense algorithm, which determines and

ranks the advertisements shown to the user. In their investigation of COMPAS recidivism scores, Angwin

et al. discovered that Northpointe’s software was almost twice as likely to wrongly label black defendants

as high risk as white defendants, and was more likely to mistake white defendants as low risk than black

defendants [1]. The authors’ investigation into whether Northpointe’s software was more likely to predict

a black person as having a higher likelihood of committing future crimes than a white person was made

more difficult by a lack of insight into the algorithms that Northpointe was using to produce risk scores. As

mentioned by Corbett et al., in some cases, neither the procedure nor the data used to generate these scores

is disclosed, prompting worry that the scores are themselves discriminatory [10]. Since these two reports,

interest in fairness in algorithmic learning has grown substantially. Researchers have responded by formalizing
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various fairness definitions and criteria as well as developing the theoretical framework to prove that multiple

fairness criteria cannot be achieved simulataneously [13, 9, 10, 29, 31, 44].

Researchers are actively exploring how to build classifiers that make decisions free from discrimination using

adversarial approaches [15] and developing methods for reducing bias in learned classifiers by attempting

to equalize false positive rates across individuals from different populations [3]. The mitigation of bias in

machine learning is a research area that will continue to grow as policymakers, engineers, social scientist,

educators, and users begin to feel the increased effect of algorithmic decision-makers in their lives.

3.2 Fairness in Computer Vision

Researchers have shown that various computer vision (CV) applications raise a multitude of privacy concerns,

demonstrating that it is even possible to deduce a person’s education level and median household income

simply by looking at Google Street View images of cars [20]. Research stemming from a concern about CV

applications with potential societal impacts seeks to improve the security and privacy of these applications

[45, 55]. Only recently, however, have researchers started to focus on the societal impacts of biased CV models.

This is in large part due to press articles signaling the emergence of police states and surveillance programs

that seek to use face recognition in public spaces to identify and keep track of criminals and criminal activity

as well as assit cross-country border screening through the use of biometric checkpoints [49, 12]. One study

found that indeed, half of all American adults are currently in police face recognition databases [19]. Along

with the privacy concerns this raises, issues of fairness, amplification of racial bias, and alarming false positive

rates are also of much concern [19, 6].

Potential sources of unfairness in CV can be attributed to five things. 1) Lack of neural network interpretability.

It has long been acknowledged by the machine learning and vision community that neural networks are

blackboxes, which oftentimes lead to results that while satisfactory in terms of accuracy, are not easily

understood or explained. Previous research efforts have sought to make neural networks more interpretable [69,

52, 68, 64, 40, 32, 2]. The hope is that with better model interpretability comes a better understanding

of these models and ultimately, a better understanding of the various pathways of bias in neural network

models. 2) Transfer learning in the CV is the norm not the exception. Transfer learning allows users to

leverage pre-trained models and fine-tune them to their specific task. It continues to be used with great success

[41, 66, 46]. But with great power comes great responsibility. Did the pre-trained models implicitly learn
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high-level representations that are influencing the results of the newly learned model in an undesirable way

unbeknownst to the user? This is the question we seek to answer in this paper and is the research goal of our

longer term research projects. 3) Reliance on benchmark datasets and challenges. It is common in the CV

community to evaluate the performance of their models against benchmark datasets such as the Imagenet

large scale visual recognition challenge [51] and the MSR Image Recognition Challenge [22]. But when a

research group achieves an error of 5% on one of these challenges, what does that mean? Learned on the

general population, classifiers can exhibit marked differences in classification and prediction accuracy between

members of majority groups and those of minority groups. Since the data has proportionally less information

about minorities, the learned model learns statistical patterns that are only valid for the majority groups [23].

Given a model that does achieve 95% accuracy on a facial recognition task, how do we interpret the 5% error?

Is it simply noise or is there a 5% error because we’re 50% inaccurate on recognizing racial minority faces

and 100% accurate on classifying the racial majority faces [23]? 4) Massive scale of recent datasets giving

a semblance of fairness. Given the massive scale of these benchmark datasets, it may lead developers of

algorithmic models to believe that their learned models are fair if trained and evaluated on these massive

datasets. However, this has been shown not to be the case [30, 27, 5], and researchers continue to create

datasets that are more diverse [48]. 5) Long-tail distributions in image datasets. Class imbalance in datasets

not only leads to poor prediction accuracy on subjects from the minority group but also has been shown to

be detrimental to the performance of convolutional neural networks in general [4]. The problem of long-tail

distributions has lead researchers to explore techniques that use zero or few-shot learning [16, 17, 36].

3.2.1 Recognizing and Mitigating Bias in Neural Networks and Image Datasets

In the computer vision field, create image datasets might include scraping the web for image URLs and using

Amazon Mechanical Turk (AMT) to identify objects in the images, as was done in the construction of the

ImageNet dataset [35]. Or it could mean conducting a photo shoot of 50 different toys and changing the

lighting placement for added variability [37]. While AMT has made it possible for researchers in computer

vision to accomplish manual tasks like object detection at scale, researchers must contend with the unique

challenges associated with crowdsourcing tasks to hundreds of “Turkers” all over the world. For example,

researchers must identify and correct for workers trying to game or cheat the system. Computer vision

researchers oftentimes find themselves developing methods to incentivize good Turkers and dissuade spam

workers in addition to designing and developing the AMT project’s user interface [33]. Training sets derived
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from a process such as this one are oftentimes biased due to human manual labeling efforts. Asked to classify

images of noise as sports balls or not, Indian Turkers were found to imagine red balls—the standard color for

cricket balls and the most popular sport in India—and American workers seemed to imagine brown or orange

balls–the standard color for basketballs and footballs [62]. Curated computer vision image sets have also been

shown to be biased in a general sense in that they are inauthentic, closed representations of the visual world.

Researches demonstrated that models trained on popular object recognition datasets had poor generalization

ability when tested on other datasets with the same objects represented [60].

To mitigate biases that can occur due to disproportionate representation of minority groups in certain datasets,

companies that build artifical intelligence systems can learn different models for different groups of people.

However, this is not an easy task. While it is possible to learn two separate linear classifiers with equally

acceptable predictive accuracies, an algorithm has yet to be discovered that can efficiently learn an arbitrary

combination of the two linear classifiers [23]. The use of more fine-grained feature sets could be a potential

solution to mitigating unintentionally discriminatory systems. This, however, is potentially expensive. The

data collection process would be more expensive, it would be computationally more expensive, and adds

undesired complexity to the system. Furthermore, it would force companies to look for more complex decision

rules as well as place additional demands on engineers during the measurement and learning phase [23]. Other

more feasible approaches involve directly manipulating the learned model. Classifical work on mitigating

biases in neural networks include [28, 7, 70, 71] and [14].

4 Overall Research Vision

We propose that there are four major questions the computer vision community needs to address with regards

to the responsible use of pre-trained models for tangentially related visual tasks. Together, these four questions

comprise a larger corpus of research work that can subsequently be broken down into four individual research

goals or steps in the overarching research vision.

1. Quantifying the extent to which neural networks are implicitly learning high-level concepts, specifi-

cally protected attributes.

2. Understanding how these implicitly learned high-level representations of protected attributes may

be influencing the decisions made in new visual tasks during the transfer learning process and

understanding the extent to which they are influencing the final decision.

10



3. If we find that they are indeed influencing the decisions to some non-trivial degree...understanding in

what contexts this behavior is harmful and in what contexts it is harmless and even necessary.

4. If we determine the influence on the final decision in certain contexts is cause for concern...finding

methods to effectively mitigate or lower the influence of these high-level representations of protected

attributes on the final decision while maintaining high accuracy and high utility on the desired task.

The work in this paper tackles the first step–measuring the extent to which various popular pre-trained models

are implicitly learning high-level representations of protected attributes. It is important that our readers

appreciate the importance of this step and why it is as substantive as the other three steps that fall out from it.

As shown in section 3, past research indicates that under some circumstances, pre-trained CNNs are indeed

learning high-level concepts even though the models were not explicitly trained to learn these things during

the original training task. However, we still do not understand the full landscape of this observed phenomenon.

Are we overstating what the pre-trained neural network has learned? Has the model truly learned high-level

representations of these concepts or it is simply using low-level representations as proxies for these high-level

concepts? Measuring and comparing different models’ perceived ability to implicitly learn high-level concepts

such as protected attributes during the training process will give us a better understanding of the behavior we

are seeing, and lead towards insights that are not tightly coupled to a particular dataset or task. Jumping to

steps 2-4 without due diligence on step 1 is tantamount to studying the effect before understanding the cause.

The formalization in step 1 is necessary to prevent potential dead-ends, missteps, and incorrect assumptions in

the later steps.

5 Methodology

The goal of this paper is to formally examine what high-level attributes popular pre-trained models are learning

implicitly, i.e., attributes other than the ones they are trained for, especially protected attributes. Our aim

is to formally quantify the extent to which popular, pre-trained CNNs used for visual recognition tasks are

learning proxies/protected attributes that they were not explicitly trained on. In this section we discuss the

experimental setup used to determine to what extent VGG-16, ResNet-50, and Inception v3, models pre-trained

on ImageNet, picked up on three high-level attributes of interest: age, gender, and race. We also used this same

experimental setup to conduct a comparative analysis between models pre-trained on ImageNet and those

pre-trained on VGGFace and VGGFace2 (VGGFace/2). Models pre-trained on VGGFace use the VGG-16
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CNN architecture and models pre-trained on VGGFace2 use the ResNet-50 architecture, as described in the

original papers [42, 8]. By comparing the results achieved by models pre-trained on ImageNet against those

trained on VGGFace/2 we seek to answer the following question:

• Does learning the visual structure of the world (ImageNet) as opposed to learning the visual structure

of faces (VGGFace/2) encode more or less information about age, gender, and race? And if so, to

what extent?

5.1 MORPH Dataset

We used the academic, non-commercial version of the MORPH dataset for this project. The MORPH dataset

contains a total of 55,134 unique images of 13,618 different people ages 16 to 77 [47]. The image set,

composed of mugshots taken from 2003 to 2007, contains images of 11,459 men and 2,159 women. There are

42,589 facial images of African-Americans, 10,559 of European-Americans, 154 Asian, 1,769 Hispanic, and

63 images categorized racially/ethnically as "Other." Each image is labeled with a subject identifier, age of the

person on the day the image was taken, the subject’s race/ethnicity, and the subject’s gender. We used this

dataset because of the large age range represented, the uniformity of the images and uncluttered backgrounds,

and because of the high representation of African-Americans, a minority group that generally enjoys a lack

representation in other more popular datasets.

5.2 Data Preprocessing

We preprocessed the data by resizing the images to 224 × 244 × 3 for VGG-16 and ResNet-50 and to

299× 299× 3 for Inception v3. Using the eye-coordinates metadata that comes bundled with the MORPH

image set, we used the The PhD Face Recognition Toolbox [56] to horizontally align the eyes, crop out hair,

and create geometrically normalized face areas (see Figure 1). We then created three text files containing three

disjoint sets of subject ids: a train set, validation set, and test set of sizes 8,170, 2,723, and 2,724 respectively.

We made the sets disjoint so that the test and validation sets would not contain images of subjects who already

appeared in the training set. The task of predicting a person’s age is a regression task. To convert the problem

into a classification task, we discretized the age output labels to five bins—bin 0 (ages <20), bin 1 (ages

20-35), bin 2 (ages 35-50), bin 3 (ages 50-65), and bin 4 (ages 65+). We relabeled the age ground truth labels

with the appropriate bin indices.
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Figure 1: Our pictures before and after normalization and cropping.

5.3 Models

For this experiment we used the VGG-16, ResNet-50, and Inception v3 CNN architectures pre-trained on

ImageNet, and used the VGG-16 architecture pre-trained on VGGFace and the ResNet-50 architecture pre-

trained on VGGFace2. We picked these models because they are some of the most popular models used for

transfer learning and are supported by various neural network and machine learning libraries. VGG-16 has 16

layers and performs 3× 3 convolutions and 2× 2 pooling throughout the entire model [53][38]. ResNet-50 is

composed of special skip connections and makes heavy use of batch normalization [24, 26]. Inception v3 was

able to reduce the number of parameters in the network by developing an Inception Module [58, 38].

Models pre-trained on ImageNet were trained for the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [51] classification task. There are 1000 object classes and approximately 1.2 million training

images. VGG-16 models pre-trained on the VGGFace dataset were trained for facial recognition. The dataset

contains 2.6 million images of 2,622 celebrities ??. ResNet-50 architectures pre-trained on the VGGFace2

dataset were also trained for facial recognition tasks. The VGGFace2 dataset contains 3.31 million images of

9,131 celebrities, and is supposed to exhibit larger variations in pose, age, illumination, and ethnicity [8].

5.4 Experimental Set-Up

For each model type, we trained three attribute classifiers—age, gender, and race. We trained the attribute

classifiers on six subsets of the training set. Recall that we created a training set of 8,170 subject ids, which

contains a total of 33,896 corresponding subject facial images. We created five additional smaller subsets of

13



the training set, containing 200, 500, 1,000, 2,000, and 4,000 subject ids. These smaller training sets contain

759, 1,937, 3,965, 8,262, and 16,604 images, respectively. Each set of smaller subject ids is a random subset

of each larger ids; for example, the subset of 200 ids is a random subset of the 500 ids, which is a random

subset of the 1000 ids, and so on. We ensured that we used the exact same train, validation, and test sets for

each model type to ensure a fair comparative assessment of classification accuracies across models.

The main motivation behind training on small training sets is that we were particularly interested in how these

classifiers perform in very low data settings. For those models trained on ImageNet, if the classifiers generated

using transfer learning achieve high accuracy in this very low data setting, then it might be an indication that

the original pre-trained model implicitly learned the particular high-level attribute during training for ILSVRC

[51]—a classification task that had nothing to do with classifying a person’s age, race, or gender. We can then

compare these results with those achieved by models pre-trained on VGGFace/2, models that were trained

specifically on millions of facial images for the purpose of facial recognition. Intuitively, we expect models

pre-trained on VGGFace/2 to perform better on the attribute classification tasks, but how close do models

pre-trained on ImageNet get to matching their performance?

We used all three transfer learning methods to train the models: feature extraction, fine-tuning with frozen

lower layers, and end-to-end fine-tuning. We are particularly interested in 1) how good the classification

accuracy is when using a scheme that manipulates the original pre-trained model as little as possible, i.e., the

feature extraction technique and 2) understanding to what extent manipulating the model more and more leads

in higher classification accuracies. We also trained the attribute classifiers from scratch as a baseline.

Realizing that the MORPH dataset is heavily imbalanced for gender and race, and fearing that our learned

classifiers may simply be predicting male each time, for example, we ran the entire experiment a second time

using a resampling strategy during training.

5.5 Training Procedure

We used the same training configurations for all models. Specifically, we trained for 8 epochs using minibatch

SGD with a momentum of 0.9, with minibatch size of 128 and an initial learning rate of 0.001. The learning

rate decayed on a fixed schedule, specifically after 5 and 7 epochs. Each minibatch was sampled uniformly

from the training set and was rescaled appropriately to fit the input of the CNN (i.e. 224× 224 for VGG-16).

For data augmentation, we apply random horizontally flipping to each image in the minibatch with a probability
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of 0.5. We subtracted the mean of the ImageNet data and VGGFace/2 datasets from our training set depending

on which models we were training. Each model was trained using one NVIDA P-100 GPU. The overall

training process took approximately 1-2 hours for the entire training set, depending on the model used.

6 Results & Discussion

The results of our experiments are shown in Tables 1-3 (models trained on ImageNet) and Tables 7-9 (models

trained on VGGFace/2). Overall, certain trends exist for all three of the VGG-16, ResNet-50, and the Inception

v3 models. First, we find that training a CNN from scratch usually produces the worst results. This property

aligns with previous work [67], which finds that finetuning a pretrained model on a large-scale dataset often

results in improved performance. However, we notice that training more parameters of these networks often

results in reduced performance when the number of training samples is low, compared to an SVM trained

on extracted features. We attribute this property to two reasons: (1) CNNs with more learnable parameters

often have a tendency to overfit on small numbers of training samples and (2) the features of pretrained CNNs

encode information about protected attributes. The strength of this information is alarmingly high, as strong

predictors can be trained from a small number of training examples and also not much lower than one achieved

by a finetuned model. Results of from the second iteration of our experiments using data resampling during

training are shown in Tables 4-6 for ImageNet models and 10-12 for VGGFace/2.

To visualize how protected attributes are encoded in the pretrained models, we run t-SNE [39] on the extracted

features of each pretrained model. As Figures 2 and 3 show, the protected attributes of race, gender, and age

are highly segregated, providing further evidence that pretrained models naturally encode this information.

In particular we notice that the attributes using features extracted from models pre-trained on VGGFace/2

are better segregated. Curiously, we notice two distinct subgroups emerge for gender and age using models

pre-trained on VGGFace (VGG-16 architecture) and VGGFace2 (ResNet-50 architecture), respectively.

We visualize the performance of ResNet-50 architectures pre-trained on ImageNet against the performance

achieved by ResNet-50 architectures pre-trained on VGGFace2 in Table 4. The same comparison but using

data resampling during training is shown in Table 5. A comparison between VGG-16 architectures pre-trained

on ImageNet and those pre-trained on VGGFAce is shown in Table 6 and the resampled data iteration is

shown in Table 7. We observe that starting at 500 training IDs, the performance of models pre-trained on

ImageNet typically catches up with the performance of those pre-trained on VGGFace/2, at which point the
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difference in accuracies between the two models is relatively small. Looking at the age classifier comparision

graphs, it appears that learning the visual structure of the world helps classify age better than VGGFace2. This

is interesting because one of the goals of VGGFace2 was to increase the age diversity of their dataset [8].

Looking at the race SVM classifiers trained on features extracted from models pre-trained on VGGFace/2, we

observe that the classification accuracy barely increases as we increase the number of training samples. This

suggests that features extracted from models pre-trained on VGGFace/2 seem to have encoded some notion of

race. Whether the CNN has actually learned a high-level representation of race or is merely using low-level

representations as proxies for race is left for immediate follow-up work. We also observe that while SVM

classifiers for race using features extracted from models pre-trained on VGGFace/2 outperformed those using

features extracted from models pre-trained on ImageNet, the opposite is true when using fine-tuning transfer

learning techniques. This raises the question of whether ImageNet features are most robust to fine-tuning for

race classification.

Recall that one of the primary goals of this paper was to develop a dataset agnostic metric for quantifying how

well a pre-trained model might have implicitly learned representations corresponding to high-level concepts,

in this case, the protected attributes age, gender, and race. The metric we use is the number of training samples

required to achieve the same accuracy across models on a particular task. For example, based on our results, a

ResNet-50 CNN pre-trained on ImageNet required 5 times the number of subject IDs as a ResNet-50 CNN

pre-trained on VGGFace2 during training to achieve an accuracy of ∼95% using end-to-end finetuning. The

full table of results can be found in Tables 13-15.

While we framed prediction of the age attribute as a classification problem for training the neural networks,

predicting age is more naturally formulated as a regression task rather than a classification task. Thus, using

the features extracted from the models pretrained on ImageNet and VGGFace/2, we used the features to train

regression models for real valued age prediction. We used the SciKit Learn Python library [43] to learn both

Elastic Net [73] and Lasso [59] models. We chose the Lasso model because it uses `1 prior as regularizer,

which offers automatic dimensionality reduction, and chose the Elastic Net model because it uses a combined

approach, using `1 and `2 priors as regularizer. That said, Elastic Net performed better on the age prediction

task, so we present those results here. In Table 8 we show prediction error plots for VGG-16 architectures

pre-trained on the ImageNet and VGGFace datasets. In Table 9 we show prediction error plots for ResNet-50

CNNs pre-trained on ImageNet and VGGFace2. These graphs plot the predicted values against the observed
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Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 91.8 81.7 84.0 76.3
500 92.9 92.5 94.2 84.3

1000 93.3 94.1 95.5 89.8
2000 93.6 95.1 96.2 93.2
4000 94.0 95.9 96.8 95.2
8170 94.6 96.5 97.3 96.5

ResNet-50

200 93.7 87.6 88.8 83.0
500 95.1 93.5 94.6 85.5

1000 95.4 95.0 95.5 90.6
2000 96.1 96.0 96.3 93.8
4000 96.5 96.3 96.8 94.3
8170 96.9 96.9 97.4 95.4

Inception v3

200 93.3 83.6 84.9 83.9
500 94.3 92.9 93.9 87.6

1000 95.0 94.8 95.2 91.0
2000 95.1 95.8 96.0 94.2
4000 95.3 96.5 96.7 94.9
8170 96.2 97.2 97.5 95.6

Table 1: A table which shows the accuracy for different race classifiers using models pre-trained on ImageNet.
SVM refers to the accuracy achieved when an SVM was trained on features extracted from an SVM model.
Finetune (Freeze) refers to the accuracy achieved after finetuning a ImageNet pretrained CNN, and freezing
the weights of layers up to the penultimate convolutional block. Finetune (E2E) refers to the accuracy
achieved after finetuning a pretrained CNN end to end. Finally, Scratch (E2E) refers to the accuracy achieved
after training the CNN from scratch end-to-end. Each number after the model type refers to the number of
individuals (or subjects) used in the training set, with each individual having on average 4 different images.

values. It is clear from the prediction error plots that features extracted from models pre-trained on VGGFace/2

are better at predicting age than those extracted from models pre-trained on ImageNet. This is based on the

stronger linear correlation observed between the model’s predictions and its actual results, as compared to that

of models pre-trained on ImageNet. Mean squared error (MSE) scores and R2 scores for each of the models

shown can be found in the table captions. Models trained using features extracted from CNN’s pre-trained on

VGGFace/2 consistently achieved lower MSE scores and higher R2 scores over models trained using features

extracted from CNN’s pre-trained on ImageNet. This is interesting given that using the same features to train

an SVM for age classification resulted in models pre-trained on ImageNet doing better than those pre-trained

on VGGFace. Future work is underway to understand why this is the case.

7 Future Work

To confirm our results, we plan to experiment with other datasets besides MORPH, such as Labeled Faces

in the Wild (LFW) and MS-Celeb-1M [25, 22]. Although we have demonstrated the inherent nature of pre-

trained models to encode information about protected attributes without specific training, we should develop

methods to guard against discriminatory practices. For example, adversarial losses [21] can be leveraged to
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Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 89.2 83.9 83.9 83.9
500 90.4 86.1 83.9 83.9

1000 91.3 92.3 95.9 84.8
2000 91.7 94.5 97.2 89.3
4000 92.6 96.0 98.3 93.9
8170 93.9 97.0 98.7 96.7

ResNet-50

200 93.0 83.9 83.9 83.9
500 95.1 89.2 91.9 83.9

1000 95.7 92.7 95.1 83.9
2000 96.6 95.2 97.0 84.0
4000 97.1 96.4 98.0 87.0
8170 97.1 97.3 98.4 92.7

Inception v3

200 92.3 83.9 83.9 83.9
500 93.8 87.0 88.9 84.0

1000 94.3 93.6 94.6 84.3
2000 94.9 95.9 96.4 85.7
4000 95.7 97.4 97.9 89.9
8170 96.3 98.2 98.6 94.6

Table 2: A table which shows the accuracy for different gender classifiers using models pre-trained on
ImageNet. The columns are the same as in Table 1.

Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 53.2 53.2 46.5 42.3
500 51.5 55.6 57.5 42.3

1000 52.1 58.8 63.0 44.0
2000 54.8 60.0 67.0 54.2
4000 57.7 61.9 69.6 60.6
8170 60.3 63.6 71.6 69.0

ResNet-50

200 54.0 56.2 56.4 38.9
500 58.7 58.9 59.8 42.3

1000 60.5 61.9 64.7 47.5
2000 62.7 66.5 68.2 48.5
4000 64.6 68.3 70.7 54.1
8170 66.5 70.5 72.3 57.5

Inception v3

200 53.6 54.4 55.1 43.1
500 54.5 58.3 59.3 43.0

1000 57.0 62.3 63.0 45.4
2000 60.8 67.3 68.8 49.8
4000 63.1 69.9 70.7 54.8
8170 66.0 70.7 72.3 63.3

Table 3: A table which shows the accuracy for different age classifiers using models pre-trained on ImageNet.
The columns are the same as in Table 1.
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Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 91.8 82.7 84.6 75.6
500 92.9 87.1 87.0 74.2

1000 93.3 88.8 93.1 84.4
2000 93.7 92.5 95.2 91.5
4000 94.0 94.5 96.4 94.0
8170 94.9 95.7 97.1 95.8

ResNet-50

200 93.7 88.9 92.2 42.4
500 95.1 90.7 94.2 75.6

1000 95.3 93.5 95.3 81.0
2000 96.0 95.1 96.3 86.4
4000 96.3 96.0 96.8 91.5
8170 96.8 96.5 97.2 94.2

Inception v3

200 93.3 88.0 88.7 81.2
500 94.3 91.4 91.4 76.5

1000 95.0 93.6 93.8 81.0
2000 95.2 95.5 96.0 86.4
4000 95.2 96.4 96.7 91.5
8170 95.8 96.7 97.1 94.2

Table 4: A table which shows the accuracy for different race classifiers using models pre-trained on ImageNet.
The data were resampled during training to account for the heavily imbalanced dataset. The columns are the
same as in Table 1.

Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 89.2 86.2 84.5 16.0
500 90.5 88.9 93.2 67.0

1000 91.2 91.5 96.3 84.4
2000 91.9 93.6 97.9 91.5
4000 92.1 95.4 98.3 95.4
8170 92.5 96.8 98.6 97.2

ResNet-50

200 93.0 84.2 88.0 24.3
500 95.3 90.7 93.3 43.1

1000 95.8 92.6 95.7 66.0
2000 96.6 95.0 96.9 78.6
4000 96.7 96.5 98.0 88.0
8170 97.1 97.3 98.5 93.8

Inception v3

200 92.3 85.3 86.6 66.0
500 93.8 89.4 91.0 67.6

1000 94.6 94.2 95.4 72.6
2000 95.1 95.9 96.9 82.0
4000 95.8 97.4 98.1 90.1
8170 95.6 98.1 98.6 94.1

Table 5: A table which shows the accuracy for different gender classifiers using models pre-trained on
ImageNet. The data were resampled during training to account for the heavily imbalanced dataset. The
columns are the same as in Table 1.
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Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 53.2 40.4 27.3 0.2
500 51.7 36.4 31.5 34.6

1000 51.8 40.9 50.6 31.3
2000 52.9 47.7 54.3 45.5
4000 56.5 51.0 62.0 55.2
8170 55.3 52.7 65.5 62.0

ResNet-50

200 54.0 43.6 50.8 10.6
500 58.1 53.6 54.5 29.6

1000 59.8 58.2 63.8 24.3
2000 60.1 63.6 68.1 34.5
4000 62.2 66.3 69.9 50.0
8170 63.7 68.9 71.4 57.0

Inception v3

200 53.6 37.9 46.7 30.6
500 54.5 49.7 47.5 31.7

1000 56.3 58.0 60.7 32.6
2000 58.3 65.0 66.7 40.7
4000 60.7 69.0 70.0 46.4
8170 62.3 71.2 71.7 55.9

Table 6: A table which shows the accuracy for different age classifiers using models pre-trained on ImageNet.
The data were resampled during training to account for the heavily imbalanced dataset. The columns are the
same as in Table 1.

Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 95.8 76.3
500 96.1 84.3

1000 96.3 89.8
2000 96.2 93.2
4000 96.4 95.2
8170 96.4 96.5

ResNet-50

200 96.7 93.6 95.4 83.0
500 97.2 95.2 96.4 85.5

1000 97.1 95.2 97.0 90.6
2000 97.4 95.5 97.5 93.8
4000 97.3 95.2 97.3 94.3
8170 97.9 95.1 97.8 95.4

Table 7: A table which shows the accuracy for different race classifiers using models pre-trained on VGGFace
(VGG-16 architecture) and VGGFace2 (ResNet-50 architecture). The columns are the same as in Table 1.
Training using freezing and E2E finetuning did not converge, so we do not report those accuracies.

Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 94.2 83.9
500 94.8 83.9

1000 95.4 84.8
2000 96.2 89.3
4000 96.4 93.9
8170 96.6 96.7

ResNet-50

200 95.5 94.1 92.9 83.9
500 97.1 97.2 96.6 83.9

1000 97.7 97.0 97.5 83.9
2000 98.2 97.2 98.1 84.0
4000 98.3 96.7 98.8 87.0
8170 98.2 96.2 99.1 92.7

Table 8: A table which shows the accuracy for different gender classifiers using models pre-trained on
VGGFace (VGG-16 architecture) and VGGFace2 (ResNet-50 architecture). The columns are the same as in
Table 1. Training using freezing and E2E finetuning did not converge, so we do not report those accuracies.
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Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 52.4 42.3
500 55.6 42.3

1000 54.6 44.0
2000 53.2 54.2
4000 56.6 60.6
8170 59.7 69.0

ResNet-50

200 54.8 55.6 56.2 38.9
500 57.0 57.4 42.3 42.3

1000 58.5 63.4 42.3 47.5
2000 58.5 64.3 59.9 48.5
4000 60.4 66.6 69.8 54.1
8170 60.4 66.3 73.3 57.5

Table 9: A table which shows the accuracy for different age classifiers using models pre-trained on VGGFace
(VGG-16 architecture) and VGGFace2 (ResNet-50 architecture). The columns are the same as in Table 1.
Training using freezing and E2E finetuning did not converge, so we do not report those accuracies.

Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 95.8 75.6
500 96.1 74.2

1000 96.3 84.4
2000 96.2 91.5
4000 96.4 94.0
8170 96.4 95.8

ResNet-50

200 96.7 93.3 89.9 42.4
500 97.2 79.4 93.6 75.6

1000 97.1 90.4 93.8 81.0
2000 97.4 85.9 94.3 86.4
4000 97.3 88.5 95.7 91.5
8170 97.4 94.8 95.5 94.2

Table 10: A table which shows the accuracy for different race classifiers using models pre-trained on VGGFace
(VGG-16 architecture) and VGGFace2 (ResNet-50 architecture). The data were resampled during training to
account for the heavily imbalanced dataset. The columns are the same as in Table 1. Training using freezing
and E2E finetuning did not converge, so we do not report those accuracies.

Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 94.2 16.0
500 94.8 67.0

1000 95.4 84.4
2000 96.2 91.5
4000 96.4 95.4
8170 96.6 97.2

ResNet-50

200 95.5 93.7 91.5 24.3
500 97.1 93.0 93.0 43.1

1000 97.7 96.1 97.3 66.0
2000 98.2 97.3 97.8 78.6
4000 98.3 96.9 98.3 88.0
8170 98.3 91.0 98.3 93.8

Table 11: A table which shows the accuracy for different gender classifiers using models pre-trained on
VGGFace (VGG-16 architecture) and VGGFace2 (ResNet-50 architecture). The data were resampled during
training to account for the heavily imbalanced dataset. The columns are the same as in Table 1. Training using
freezing and E2E finetuning did not converge, so we do not report those accuracies.
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Model Type Training Size SVM Finetune (Freeze) Finetune (E2E) Scratch (E2E)

VGG-16

200 52.4 0.2
500 55.6 34.6

1000 54.6 31.3
2000 53.2 45.5
4000 55.5 55.2
8170 57.2 62.0

ResNet-50

200 54.8 47.0 49.7 10.6
500 56.9 45.2 40.7 29.6

1000 58.3 55.5 50.8 24.3
2000 57.5 57.3 59.4 34.5
4000 61.3 57.7 63.8 50.0
8170 64.7 42.9 63.4 57.0

Table 12: A table which shows the accuracy for different age classifiers using models pre-trained on VGGFace
(VGG-16 architecture) and VGGFace2 (ResNet-50 architecture). The data were resampled during training to
account for the heavily imbalanced dataset. The columns are the same as in Table 1. Training using freezing
and E2E finetuning did not converge, so we do not report those accuracies.
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Figure 2: The results of t-SNE on extracted features from each of the ImageNet pretrained VGG-16, ResNet-50,
and Inception v3 models. Each t-SNE plot is then colored according to the protected attribute labels of race,
gender, and age, showing a clear segregation of the attributes in feature space.
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Figure 3: The results of t-SNE on extracted features from each of the VGGFace/2 pre-trained VGG-16 and
ResNet-50 models. VGG-16 models were pre-trained on the VGGFace dataset and the ResNet-50 models were
pre-trained on the VGGFace2 dataset. Each t-SNE plot is then colored according to the protected attribute
labels of race, gender, and age, showing a clear segregation of the attributes in feature space.
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Figure 4: A comparison in attribute classifier performance between ResNet-50 architectures pre-trained on
ImageNet (shown in red) and ResNet-50 architectures pre-trained on VGGFace2 (shown in blue) for the
various ID sets and transfer learning strategies.
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Figure 5: A comparison in attribute classifier performance between ResNet-50 architectures pre-trained on
ImageNet (shown in red) and ResNet-50 architectures pre-trained on VGGFace2 (shown in blue) for the
various ID sets and transfer learning strategies. The data were resampled during training to account for the
heavily imbalanced dataset.
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Figure 6: A comparison in attribute classifier performance between VGG-16 architectures pre-trained on
ImageNet (shown in red) and VGG-16 architectures pre-trained on VGGFace (shown in blue) for the various
ID sets and the feature extraction transfer learning strategy.

24



SV
M

Race Gender Age

Figure 7: A comparison in attribute classifier performance between VGG-16 architectures pre-trained on
ImageNet (shown in red) and VGG-16 architectures pre-trained on VGGFace (shown in blue) for the various
ID sets and the feature extraction transfer learning strategy. The data were resampled during training to account
for the heavily imbalanced dataset.

Model Type Balanced Learning
Technique Accuracy # IDs

(ImageNet)
# IDs
(VGGFace/2) Factor

VGG-16 No SVM 94.6 vs. 95.8 8170 200 >41
Yes SVM 94.9 vs. 95.8 8170 200 >41

ResNet-50

No SVM ∼96.6 4000 200 20
No Freeze ∼93.6 500 200 2.5
No E2E ∼95.0 1000 200 5
Yes SVM ∼96.7 8160 200 41
Yes Freeze ∼90.0 500 1000 2
Yes E2E ∼94.3 500 2000 4

Table 13: A table which shows the number of samples required to achieve parity of accuracies between different
race classifiers using models pre-trained on ImageNet and models pre-trained on VGGFace/2. The ‘Learning
Technique’ refers to the transfer learning method used to train that particular model, and ‘Balanced’ refers
to whether the data were resampled during the training of the model or not. Neither of the VGG-16 models
shown in this table, pre-trained on ImageNet were able to achieve accuracy parity with the VGG-16 models
pre-trained on VGGFace. While the model pre-trained on VGGFace, which did not use data resampling,
achieved an accuracy of 95.8% using a training set of only 200 subject IDs, the model pre-trained on ImageNet
was only able to reach an accuracy of 94.6% despite using the full training set of 8170 IDs. Thus, we conjecture
that to achieve an accuracy of 95.8%, the model pre-trained on ImageNet would require a factor of more than
41 times the number of training subject IDs needed by the model pre-trained on VGGFace.

Model Type Balanced Learning
Technique Accuracy # IDs

(ImageNet)
# IDs
(VGGFace/2) Factor

VGG-16 No SVM ∼94.0 8170 200 41
Yes SVM 92.5 vs. 94.2 8170 200 >41

ResNet-50

No SVM ∼97.0 4000 500 8
No Freeze ∼97.0 8170 500 16
No E2E ∼98.0 4000 2000 2
Yes SVM ∼95.4 500 200 2.5
Yes Freeze ∼93.0 1000 500 2
Yes E2E ∼93.0 500 500 1

Table 14: A table which shows the number of samples required to achieve parity of accuracies between
different gender classifiers using models pre-trained on ImageNet and models pre-trained on VGGFace/2.
The columns are the same as in Table 13. Looking at the VGG-16 models, which used data resampling
during training, we see that the model pre-trained on ImageNet did not reach accuracy parity with the model
pre-trained on VGGFace. While the model pre-trained on VGGFace achieved an accuracy of 94.2% using a
training set of only 200 subject IDs, the model pre-trained on ImageNet was only able to reach an accuracy
of 92.5% despite using the full training set of 8170 IDs. Thus, we conjecture that to achieve an accuracy of
94.2%, the model pre-trained on ImageNet would require a factor of more than 41 times the number of training
subject IDs needed by the model pre-trained on VGGFace.
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Model Type Balanced Learning
Technique Accuracy # IDs

(ImageNet)
# IDs
(VGGFace/2) Factor

VGG-16 No SVM ∼ equal
Yes SVM ∼53.0 2000 2000 1

ResNet-50

No SVM ∼58.5 500 1000 2
No Freeze ∼66.4 2000 4000 2
No E2E ∼60.0 500 2000 4
Yes SVM ∼58.0 500 1000 2
Yes Freeze ∼58.0 1000 4000 4
Yes E2E ∼64.0 1000 4000 4

Table 15: A table which shows the number of samples required to achieve parity of accuracies between
different gender classifiers using models pre-trained on ImageNet and models pre-trained on VGGFace/2.
The columns are the same as in Table 13. The VGG-16 models, which did not use data resampling during
training, had about the same accuracy across training ID sets regardless of whether the model was pre-trained
on ImageNet or VGGFace.
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Figure 8: A comparision between prediction error plots for VGG-16 models pre-trained on ImageNet and
VGGFace using the smallest set of training IDs and the complete set of training IDs. Features extracted from
these models were used to train Elastic Net regression models for real valued age prediction. For the training
set of 200 IDs, the model pre-trained on ImageNet got an MSE score of 70.05 and an R2 score of 0.42. The
same model architecture pre-trained on VGGFace achieved an MSE of 49.1 and an R2 score of 0.59. Using the
full set of 8170 IDs, the model pre-trained on ImageNet got an MSE score of 65.32 and an R2 score of 0.46.
The same model architecture pre-trained on VGGFace achieved an MSE of 39.68 and an R2 score of 0.67.
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Figure 9: A comparision between prediction error plots for ResNet-50 models pre-trained on ImageNet and
VGGFace2 using the smallest set of training IDs and the complete set of training IDs. Features extracted from
these models were used to train Elastic Net regression models for real valued age prediction. For the training
set of 200 IDs, the model pre-trained on ImageNet got an MSE score of 75.75 and an R2 score of 0.38. The
same model architecture pre-trained on VGGFace2 achieved an MSE of 39.13 and an R2 score of 0.67. Using
the full set of 8170 IDs, the model pre-trained on ImageNet got an MSE score of 73.34 and an R2 score of
0.39. The same model architecture pre-trained on VGGFace2 achieved an MSE of 30.52 and an R2 score of
0.75.

learn representations that are not predictive of protected attributes [15]. Moreover, a natural next step is to

identify the particular neurons encoding the attributes of interest and analyze how the removal of these neurons

affects the pre-trained models’ ability to produce accurate results on a task such as facial image recognition.

Another variant would be to analyze saliency maps to identify regions of images that strongly contribute

a class score [54]. Other future work includes repeating the experiment for the age classification task but

using different age bin schemes. We already experimented using different age ranges and saw significant

improvement using the age cutoffs presented in this paper over a previous iteration of age range cutoffs where

we observed a 15 percent relative error. We saw this large improvement in accuracies across all models and

transfer learning schemes. Perhaps the pre-trained models we studied did indeed implicitly learn age well

but at a higher granularity. For example, instead of five ages bins we could use three bins to see if we get

improved accuracy. It would also be interesting to see if the pre-trained CNNs could classify albinos into their

appropriate race categories by learning more granular features besides skin color.
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The following list summarizes tasks for future consideration and includes tasks that we are currently working

on. Preliminary results are encouraging.

• Develop heuristics to differentiate between learning of high-level representations associated with

protected attributes and learning of low-level representations that are simply being used as proxies

for these protected attributes.

• When comparing the accuracies achieved by models trained on ImageNet and those trained on

VGGFace/2, it is not obvious by looking at the data what these differences are attributed to. Also, it

is not immediately clear why models pre-trained on VGGFace/2 are amenable to feature extraction

but not always to E2E fine-tuning. Additional experiments are required to understand these results.

• Run the entire suite of experiments multiple times to get error bars on the accuracies.

• Use cross-validation to ensure we have found the most optimal hyperparameters (e.g. number of

training epochs, learning rate, dropout probability, decay rate) during training and the transfer learning

process.

• In Section 6, we looked at the difference in the number of training images needed to achieve the same

accuracy across CNN’s pre-trained on ImageNet and those trained on VGGFace/2 for each of the

learned attribute classifiers. Run the experiments using other datasets such as LFW and MS-Celeb-1M

to see if these computed ratios are dataset agnostic and stable across various datasets.

• Use existing methods in CNN interpretability to shed some light on the high-level concepts being

learned in the final layer of the neural network models. This includes current work to identify specific

neurons that may be encoding the protected attributes of interest, i.e. age, gender, and race.

• Extend the experiments to learn other protected attributes beyond age, gender and race such as

disability status, religious affiliation, pregnancy, and national origin.

• Visualize and provide a semantic explaination for the distinct subgroups that arose in several of the

TSNE graphs.

• Run diagnostic and debugging tools for general sanity checking. Some of the accuracies observed

may point to instability during the training step.

Finally, the ethical implications of exploiting people caught in the criminal justice system and using their

mugshots to build viable computer vision imagesets must also be considered. And overall, the results from our
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experiments, which compare models pre-trained on images of celebrities with models pre-trained on images of

people on their worst day (mugshots), raises the question of how the high-level conditions under which facial

images are taken affects classification of age and gender.

8 Conclusions

In this paper we showed how ResNet-50, VGG-16, and Inception v3, three of the most popular computer vision

models pre-trained on ImageNet, exhibit a surprisingly high level of accuracy in determining three different

protected attributes, tasks which are seemingly orthogonal to the object classification task they were originally

trained for. While the same two CNN architectures, VGG-16 and ResNet-50, pre-trained on VGGFace/2

performed better on the majority of the attribute classification tasks as compared to the same two architectures

pre-trained on ImageNet, after 500 subject ids, the performance achieved by models pre-trained on ImageNet

was comparable to the performance achieved by the same models pre-trained on VGGFace/2. The evidence

we presented in this paper shows that there is a strong possibility that these models implicitly learned how to

encode race, gender, and age information during the original pre-training process. While further work needs to

be conducted to ascertain whether this is indeed the case as well as understand how this happened, it points to a

larger problem on the horizon. Are researchers, hobbyists, and government agencies using and adapting these

and similar models for their visual classification tasks without fully understanding how features unbeknownst

to them (and especially features that encode protected attributes), are indirectly influencing the outcome of

their results (and in potentially biased and harmful ways)?

We do not need to accept non-transparency and bias as the status quo in machine learning and computer vision.

In fact, we must not accept it. We have the power and obligation to study these issues scientifically, expose

flaws and misuse, and insist on fairness in machine learning and insist on the ethical deployment of computer

vision applications for the greater good of society and humanity.
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