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Abstract

Pixel-level prediction generalizes a wide range of computer vision tasks including

semantic image segmentation and dense depth prediction. They are fundamental

for image recognition, receiving continual attention from the community. However,

although they share common traits that may admit a general solution, they are usually

studied in isolation because of di↵erent domain characteristics. This thesis aims to

study the essential problems behind those tasks and shed light on a general framework.

This thesis starts with an algorithm that can predict plausible depth from almost

identical images based on geometric optimization. The motion between those images

is called “Accidental Motion”. The analysis of accidental motion shows that motion

optimization has special convexity properties. It leads to a reconstruction pipeline

that can produce a plausible dense depth map for the reference image, which is shown

to enable depth based camera e↵ects.

The second part then studies learning pixel representation to predict semantic

properties based on the single reference image. Previous works usually use learned

upsampling to recover the pixel-level information. This work proposes to use Di-

lated Convolution to transform the classification networks such that high-resolution

prediction is achieved without upsampling. Dilated Convolution can also render an

exponential increase in receptive field, which is ideal for learning global context. A

context module is proposed based on this property that can improve the network

performance significantly and consistently. Dilation is still a standard component in

the state-of-the-art method for semantic image segmentation.

The further study of dilated residual networks shows that same high-resolution

prediction can also improve image classification results. This indicates no essential

network architecture di↵erence exists between image classification and segmentation.

Further inspection of class activation maps and layer responses uncover peculiar grid-

ding patterns and their cause. This finding leads to new designs of convolutional
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networks that can remove the gridding artifacts and produce activations with better

spatial consistency. The new networks can improve the performance of both image

classification and semantic segmentation.

The presented method and results may inspire new research in building a unified

framework for image recognition of geometry and semantics.
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Chapter 1

Introduction

1.1 Motivations and Problems

Pixel-level prediction defines a common set of computer vision tasks. They require

a function from a multi-channel input with spatial dimension to a structured output

map corresponding to the input spatial locations. The input may be a single RGB

image or include additional channels such as depth maps and other frames in the same

temporal sequence. The output is either category classification or regressed value at

each pixel location. It can be the semantic meaning of each pixel such as object

category, or a perception property determined by the object identity and 3D relation,

such as boundary prediction. The task can also be an inference of pure 3D geometry

such as depth estimation. Applications of dense prediction include semantic segmen-

tation, depth prediction, etc. Some examples are shown in Figure 1.1. Although

these problems are usually studied in isolation due to domain-specific characteristics,

it is important to have a unified framework for these tasks to understand the essential

problems behind those tasks and facilitate the deployment of the solutions to real-

world applications. This thesis aims to shed light on a general solution to pixel-level

prediction problems.
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Figure 1.1: Examples of pixel-level prediction problems. The first row shows semantic
image segmentation and the second dense depth prediction.

We consider the pixel-level prediction problems together because they share some

common challenges. First, a single pixel doesn’t contain the desired information, so

the prediction will have to rely on the local context. Second, the global context may

be necessary for inference, but it is hard to capture due to its vast and complicated

space. Third, the pixel values are unstructured and reside in a high-dimensional

space, in which not all the points are meaningful. A projection is needed to map the

pixel values to a feature space with lower dimensions, in which proximity is correlated

to semantic or structural relations so that we can map divisions of the space to target

categories or values. Forth, most of the predictions are supposed to have spatial

consistency. This constraint can further improve the prediction results when applied

properly.

In the thesis, we investigate three directions to address the challenges. For the

ill-defined depth estimation problem, we can obtain more information from the data

acquisition process. For the general semantic inference problems, we can use Dilated

2



Convolution to learn high-resolution 2D representations for the input images and

aggregate semantic information from the whole image.

First, we investigate single-image dense depth prediction with 3D geometric meth-

ods [88]. Our observation stems from the image capturing process. When an image

is taken by a cellphone, which is the most popular camera on Flickr [1], the user

will inevitably shake their hands slightly during the seconds of e↵orts to hold the

phone steady towards the target scene. This process creates a series of images with

small baselines besides the final picture. We call the motion between those images

“Accidental Motion”. Although it is mathematically possible to recover camera mo-

tion from those almost identical images, the existing SfM methods usually fail at

such small baselines due to high condition numbers of linear equations for the initial

algebraic solutions. A typical Structure from Motion (SfM) pipeline relies on the alge-

braic solutions to provide a good initialization for non-linear bundle adjustment. Our

analysis shows that bundle adjustment on small baselines has some special convexity

properties. For example, when the camera poses are fixed, the 3D point triangulation

is convex. It indicates a random initialization may lead to good bundle adjustment

results in our experiments. SfM only gives sparse 3D points, while a dense reconstruc-

tion can be more useful. However, because the small baselines cause noisy pixel-wise

depth estimation, to resolve this problem, we borrow the idea of the densely connected

conditional random field and use it on the multi-view stereo. The experiments show

that dense connections between pixels can provide more robust regularization. The

whole pipeline can recover plausible depth maps that enable cameras e↵ects based on

3D geometry.

Second, we study learning high-level feature representations for each pixel [89].

We find that human eyes can easily spot the erroneous pixel depth based on high-

level semantics and context. This motivates me to investigate the semantic pixel-level

representation, which can potentially improve the depth estimation. Learning image
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representation has enjoyed great success in recent years, but it has to rely on large-

scale image classification dataset for bootstrapping and fine-tuning to adapt to a

domain with fewer images. Before our work, the common approach for semantic im-

age segmentation is to upsample the representation learned from image classification.

The drawback is of losing the detailed structure and causing blurred 2D predictions.

Instead, we propose to use dilated convolutions to retain the high-resolution feature

maps within the network. The new network does not require learning upsampling

for semantic segmentation. The visual results look more pleasing, and our experi-

ments show that the new network can improve the quantitative evaluation results

significantly. We also find that dilated convolutions can also achieve exponential in-

crease of receptive fields with a linear number of layers. This is an ideal property for

aggregating contextual information from the whole image. Based on this property,

we build a new context module to learn spatial consistency and context aggregation

with our front-end network. This module can produce visually spatially consistent

segmentation and improve the quantitative evaluation results.

Finally, we try to understand the connection between image classification and

semantic segmentation [90]. Up to now, we have been using di↵erent network struc-

tures for image classification and semantic segmentation, because segmentation re-

quires high-resolution feature representations and classification only needs image-level

representation. To understand the gap, we study the e↵ects of high spatial resolu-

tion for image classification. This controlled study can be naturally conducted with

the help of dilated convolutions. Surprisingly, we find that the dilated networks can

outperform their counterparts significantly, although they have the same number of

parameters and layers. Further inspection of the class activations shows mysterious

gridding patterns that only exist on the high-resolution activation maps. Those pat-

terns also appear in semantic segmentation models, even though they are trained

with spatial consistent supervision. Our visualization shows the gridding artifacts
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are unavoidable due to the combination of learned di↵erentiation filters and dilated

convolutions. Hence, we add degridding layers on top of dilated residual networks.

The new class activation maps are smooth and di↵erent objects on the same image

can be delineated. The new networks also improve the quantitative results of image

classification and segmentation.

1.2 Contributions

This dissertation makes the following contributions.

First, we analyze the optimization di�culty of Structure from Motion when the

image baselines are order-of-magnitude smaller than scene structure. Because the

small baselines cause high uncertainty in depth estimation, we also propose to use

dense conditional random field to improve the spatial consistency of the pixel-level

depth estimation. Our study leads to a practical pipeline to predict pixel-level depth

from a collection of images captured when a user tries to hold the camera still. This

pipeline can further produce camera e↵ects that are not possible without predicting

scene geometry.

Second, we also present a comprehensive investigation into dilated convolutions

for understanding the pixel-level information at the semantic level. Based on our

investigation, we find that dilated convolution is suitable for building deep convolu-

tional networks for semantic segmentation for both preserving spatial resolution and

aggregating context.

Third, we further show that high-resolution feature maps for semantic image seg-

mentation can also improve the network performance in image classification. Based

on the feature map visualization, we propose several changes to the dilated residual

networks, which improve the network performance both qualitatively and quantita-

tively.
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Chapter 2

3D Reconstruction from Accidental

Motion

2.1 Introduction

When a person captures a still photo by hand, it usually takes several seconds between

pointing the camera to the scene and pressing the shutter button. During this time,

while one intends to hold the camera still, there is inevitable motion due to hand

shaking or heart beating, especially when a lightweight camera like a smartphone, is

used. We call this type of motion accidental motion. If a camera were to capture a

short video before and/or after the capture of a still, would it be possible to use the

baseline (translation) from accidental motion for 3D reconstruction? We demonstrate

in this paper that indeed 3D reconstruction can be achieved, and that the resulting

reconstruction can be used for a variety of applications.

In this chapter, we investigate the properties of accidental motion and find a

method to reconstruct 3D information of the image sequences. There are two main

challenges to this problem. First, the commonly used Structure from Motion (SfM)

approaches assume that a good two-view reconstruction can be obtained with al-
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gebraic methods, which in turn depend on adequate baseline between overlapping

views. In accidental motion, the maximum viewing angle for a 3D point is usually

less than 0.2 degrees, where algebraic methods are very unstable. Second, the depth

uncertainty is very large due to small baseline and, therefore, the previous multiview

stereo methods can produce serious artifacts.

To address these issues, we find that we can use multiple images together to do

SfM directly. Due to accidental motion, we use inverse depth relative to a reference

view to parameterize the 3D points, which helps regularize bundle adjustment. We

find that random depth and identical camera poses are good initialization for bundle

adjustment with all the images. We also find that many images can help reduce

uncertainty.

Given camera poses, the depth estimation of most of the pixels is noisy and has

high uncertainty. Because the depth signal is weak and noisy, we find that the popular

first-order CRF is not very e↵ective in regularizing depth, and can often result in an

oversmoothed depth map, as shown in Figure 2.1. We propose to use long range

connections, and we show that direct connections between a pixel and its bigger

neighborhood can improve the dense reconstruction in our case.

We have conducted a user study that yields empirical evidence that there is

several-millimeter translation throughout the capture of a still photo. Under reason-

able conditions (3-meter depth, focal length of 2000 pixels, and localization standard

deviation of 1 pixel), a baseline of 3 mm over 100 frames (a few seconds at 30 fps) is

enough to estimate depth with a standard deviation of 150 mm, which is low enough

uncertainty for many applications.

We test our algorithm on a variety of scenes captured by a variety of users. The

proposed method can indeed produce high quality depth maps, and these depth maps

are good enough for RGB-D photography applications, such as synthetic aperture

(focus change) and parallax e↵ects.
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2.2 Previous Work

We follow the common pipeline to build dense 3D models from a collection of images.

We first do SfM to estimate the viewing parameters of each image and then use them

to do multiview stereo to get dense reconstruction. A wealth of previous work has

studied this two problems, and we mention some of them here to show the di↵erence

of our system.

Structure from motion has been actively studied for a long time and we have

got a good understanding of the geometric properties of estimating sparse structure

and camera poses [27]. Bundle adjustment is commonly used to obtain the optimal

estimates [85]. Nonlinear least squares is used to measure the projection errors be-

cause of its nice error modeling properties. But it is usually di�cult to optimize the

nonlinear cost function and a good initialization is critical. [75] presents a successful

way to do incremental bundle adjustment, which relies on two-view reconstruction.

However, when the motion is very small as in our case, the two-view reconstruction

is ill conditioned and therefore it can’t provide reliable initialization. Discrete opti-

mization [15] is also proposed to initialize structure and camera parameters. But the

optimization itself is a hard problem and there is a tradeo↵ between accuracy and

complexity. To work around the nonlinearity of the cost functions, some other error

measures are also proposed. [36, 73, 37] propose to use L1 norm instead of L2 to

measure the reprojection error because the resulting cost function is convex. But L1

is not robust to outliers, which are unavoidable in most of the applications. We will

show that even in our case, where the feature matching is supposed to be easier than

the general case due to little view point and illumination change, we still need to deal

with outliers in feature matching. Robustifing the cost function can help improve the

reconstruction result.
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Instead of doing bundle adjustment with multiple images, some works [81, 11,

77, 83, 57] propose factorization methods to do multiview SfM directly. Potentially,

those methods should be used as initialization for bundle adjustment. However, in

our experiments, we find that in presence of feature localization noise and outliers,

these methods are unstable and our proposed initialization is the most e↵ective.

Several works [56, 58, 10] study the ambiguity properties of structure from small

motion and propose some algorithms. But the analysis of the bundle adjustment is

mainly for two-view case. In this chapter, we will present analysis for the multiview

case and show that with the assumption of small motion, tasks such as estimating

point depth can be easier to solve. Although several researchers [57, 10] have proposed

methods to reconstruct sparse structure, to our knowledge, our method is the first to

deal successfully with outliers and to work in practice. A recent work [54] proposes

to use a similar initialization approach to ours to initialize a tracking system. But

their goal is not to find a 3D structure and we find that random depth initialization

works better than their proposed constant depth initialization.

Multiview stereo When the camera motion is very small, the view change is very

small. We aim to estimate depth for each pixel in the reference view instead of a

complete 3D model. Therefore stereo methods are more relevant here. Even if SfM

can provide perfect camera parameters, the photo-consistency measurement at each

pixel can still be noisy due to various reasons such as image noise and the aperture

problem. Various methods have been proposed to solve this problem by smoothing or

regularizing the depth estimation. The Conditional Random Field (CRF) framework

is one of the most successful methods [6, 31]. A probabilistic model is used to asso-

ciate adjacent pixels to encourage them to have similar depth values. Second order

Markov Random Field (MRF) is also proposed [38, 87, 40] to avoid the fronto-parallel

bias. However, those methods can only connect adjacent pixels, although they are
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global methods. In our experiments, we find that the low order connection can’t reg-

ularize our depth e↵ectively. Therefore, we propose to connect pixels over even longer

ranges. The inference is made possible by the recent development of high dimensional

Gaussian Filtering [2] and the mean field method [41]. We will show that this method

can e↵ectively regularize noisy depth maps estimated from weak data terms. Some

local methods [63] based on cost-volume filtering have also been proposed to solve

the stereo problem. Our method bears a similarity to the filtering methods, but our

method is based on a global formulation, which usually performs better than local

methods, as evaluated on Middlebury benchmark [69].

2.3 Structure from Motion

Given feature correspondences between images, we use bundle adjustment to get

the 3D structure and camera poses of these images. It is well known that the cost

function of bundle adjustment is nonlinear and it is easy to get stuck in a local

minimum that is far away from the global minimum. It is hard to even solve part of

the problem [28]. Incremental bundle adjustment based on two view reconstruction

is often used to get a good initialization. Surprisingly, we find experimentally that

in the small motion case, identical camera poses and random point depth are good

initialization for the cost function. What’s more, because the view change is small,

we can parameterize the 3D point position as depth in the reference view, which also

contributes to the success of bundle adjustment. The small motion assumption also

makes the analysis of the cost function in bundle adjustment easier. In this section,

we first analyze the cost function of bundle adjustment with the assumption of small

motion (both rotation and translation). Although the bundle adjustment is still a

complicated optimization problem under this assumption, we can show that it has

some nice properties. When the camera poses are fixed, it is convex to get the depth
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of a feature relative to a reference view. Also, it is convex to optimize the rotation

for the points at infinity when an approximation is used. We will present our method

after proofs of the properties. In Section 2.5, we demonstrate that our method is

e↵ective in reasonably restricted environments.

2.3.1 Definitions

Assume we have an image sequence with N

c

images and N

p

points in 3D, where every

point is visible to all the images. Let the camera of the first image be the reference

view, and the i-th camera is related to it by a relative rotation matrix R

i

followed by

relative translation T
i

= [T x

i

, T

y

i

, T

z

i

]T . Assume P
j

is the position of the j-th point in

the coordinate system of the reference camera. Its position in the coordinate system

of the i-th camera is R
i

P
j

+T
i

.

Let⇥ = [✓x
i

, ✓

y

i

, ✓

y

i

] be the rotation angles of the i-th camera. With the assumption

of small angles, R
i

can be approximated by

R
i

=

2

66664

1 �✓

z

i

✓

y

i

✓

z

i

1 �✓

x

i

�✓

y

i

✓

x

i

1

3

77775
. (2.1)

To make the resulting optimization easier, we parameterize each 3D point by its

inverse depth. so we have P
j

= 1
w

j

[x
j

, y

j

, 1]T , where (x
j

, y

j

) is the projection of P
j

in

the reference image. The projection of P
j

on the i-th image is p
ij

= [px
ij

, p

y

ij

]T . Let

⇡ : R3 ! R2 be the projection function, that is, ⇡([x, y, z]T ) = [x/z, y/z]T .

2.3.2 Analysis

We use the L2 norm to measure the reprojection error because it has nice statistical

interpretation and can be robustified [85].
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Based on the above definitions, we can define the cost function of bundle adjust-

ment in the retina plane as

F =
N

cX

i=1

N

pX

j=1

||p
ij

� ⇡(R
i

P

j

+ T

i

)||2,

=
N

cX

i=1

N

pX

j=1

(
e

x

ij

+ f

x

ij

w

j

c

ij

+ d

ij

w

j

)2 + (
e

y

ij

+ f

y

ij

w

j

c

ij

+ d

ij

w

j

)2,

(2.2)

where

a

x

ij

= x

j

� ✓

z

i

y

j

+ ✓

y

i

,

b

x

ij

= T

x

i

,

a

y

ij

= y

j

� ✓

x

i

+ ✓

z

i

x

j

,

b

y

ij

= T

y

i

,

c

ij

= �✓

y

i

x

j

+ ✓

x

i

y

j

+ 1,

d

ij

= T

z

i

,

e

x

ij

= p

x

ij

c

ij

� a

x

ij

,

f

x

ij

= p

x

ij

d

ij

� b

x

ij

,

e

y

ij

= p

y

ij

c

ij

� a

y

ij

,

f

y

ij

= p

y

ij

d

ij

� b

y

ij

.

(2.3)

Depth Estimation Assume that the correct camera poses are given and fixed. The

depth estimation is to find the depth of a point minimizing

F

i

(w
j

) =
N

cX

i=1

f

x

j

(w
j

) + f

y

j

(w
j

), (2.4)

where f

x

j

(w
j

) = (
e

x

ij

+f

x

ij

w

j

c

ij

+d

ij

w

j

)2 and f

y

j

(w
j

) = (
e

y

ij

+f

y

ij

w

j

c

ij

+d

ij

w

j

)2. We will prove estimating the

depth is easier in the context of small motion.
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First, consider the general form of fx

j

and f

y

j

, f(x) = (x�a

x�b

)2, where a and b are

the zero and pole of the function, respectively. When a > b, the function is convex

in (b, 3a2 � b

2). When a < b, the function is convex in (3a2 � b

2 , b).

Assume that f

x

j

(w̄x

j

) = 0, that is, w̄x

j

= � e

ij

f

ij

. Because c

ij

⇡ 1 and |d
ij

| ⌧ 1
w

j

,

w

j

⌧ | cij
d

ij

|. So f

x

j

(w
j

) is convex in (0, | c

ij

2d
ij

|), so is f

y

j

(w
j

). Hence, F (w
j

) is convex

in (0,min
i

| c

ij

2d
ij

|). Since | c

ij

2d
ij

| is supposed to be far greater than reasonable values of

w

j

, we can easily optimize w

j

for the reprojection error in Equation 2.4. Also, note

that if there is noise in the detection p
ij

, it doesn’t change c
ij

and d

ij

, and hence the

convex interval (0,min
i

| c

ij

2d
ij

|) of F
i

(w
j

). What’s more, the convexity analysis of the

cost function doesn’t depend on the approximation of the rotation matrix. It is an

exact property of depth estimation with small motion.

Points at Infinity If the points are approximately at infinity, the cost function in

Equation 2.2 can be approximated by

F ⇡
N

cX

i=1

N

pX

j=1

(ex
ij

)2 + (ey
ij

)2. (2.5)

It is a convex function of the camera rotation angles on the domain around 0.

Depth Uncertainty Consider a rectified stereo pair separated by a baseline b, ob-

serving a point at inverse depth w. The relationship between disparity and depth is

given by w = d

fb

, where d is the disparity and f is the focal length. Ignoring quan-

tization errors and mismatches, we can obtain the inverse depth estimation at any

single pixel, namely

Var[ŵ] = IE[(
d+ ✏

fb

� d

fb

)2] =
Var[✏]

f

2
b

2
,

(2.6)
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where ✏ is the feature localization error. Unlike analyzing the variance of depth, we

don’t have to take first-order approximation here. Similarly, assuming that we have

n observations of the point and they have the same variance, we can get the variance

of the combined estimation ŵ = 1
n

P
n

i=1 ŵi

:

Var[ŵ] =
1

n

2
f

2
b

2
IE[(

nX

i=1

✏

i

)2]

=
1

f

2
b

2
(
1

n

+ ⇢(1� 1

n

))Var[✏],

(2.7)

where Cov[✏
i

, ✏

j

] = ⇢Var[✏] for all i, j between 1 and n and i 6= j, and Var[✏
i

] = Var[✏].

This indicates that if the feature detection errors are independent, the standard de-

viation of the inverse depth estimation decrease linearly with
p
n. However, if the

feature detection errors are fully correlated, multiple observations don’t help reduce

uncertainty. Similar conclusion can be drawn for depth [21].

2.3.3 Initialization

A good initialization is crucial to finding good minima of reprojection errors. Because

of the results in Section, 2.3.2 we conjecture that a random initialization for structure

may give good results. Given a sequence of images, we select a reference view and

initialize all the camera poses with zero rotation and translation. As mentioned

above, the points are parameterized by inverse depth. The projections of the 3D

points are proposed by feature tracking across the images. First, corner features [71]

are detected in the reference image. Then, instead of tracking the corners in the

image sequence order, we track all the corners from the reference image to each of

the other images with Kanade-Lucas-Tomasi (KLT) [53, 80] feature tracker. This can

e↵ectively reduce the accumulative localization error of feature tracking. To remove

the tracking outliers, we require that all the features can be tracked to all the non-

reference images and the maximum color gradient di↵erence per pixel between the
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two patches should be under a threshold. KLT method can provide subpixel accuracy,

and this is critical when the camera motion and therefore the feature movement are

small.

2.3.4 Optimization

We optimize the cost function of bundle adjustment in Equation 2.2 with Ceres

Solver [3]. Robustifiers are optionally used in the cost function. The camera of

the reference view is fixed at the coordinate origin. Usually, the outliers can be ne-

glected after the feature tracking and selection in initialization. However, we find

cases where robustifiers can improve the reconstruction results. On the other hand,

after each optimization, we remove the points with negative depth and optimize again

with the remaining points.

2.4 Dense Reconstruction

After getting structure from motion, we want to densely reconstruct the 3D scene by

estimating the depth of the images. Because all the input images capture the scene

from a similar viewpoint, we can only get a 3D structure seen from the common

viewpoint. Therefore, we aim to get a depth map of a reference view as the 3D

reconstruction output. Because the depth signal at each pixel tends to be noisy in

our case, we adopt plane sweeping together with the CRF framework [31] to solve a

smooth depth map.

One distinct attribute of multiview stereo from small baseline images is that the

confidence of depth minima is low in general instead of just in textureless areas.

Therefore, the details can be easily smoothed out, as shown in Figure 2.1. To preserve

the details while smoothing the depth map, we propose to use long range connection
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(a) Reference View (b) WTA

(c) Long Range Connection (d) Less first-order Smoothness

(e) First-order Smoothness (f) More first-order Smoothness

Figure 2.1: Comparison of first-order and long range connection. (b) shows the data term.
(c) is the result optimized based on the long range connected model. (d) to (f) shows the
graph cut solution of the first-order smoothness with increasing regularization. Because the
data term is very noisy, first-order regularization always oversmooth the estimated depth
to reduce noise.

between pixels in the CRF energy function, which can pass information to a pixel

e↵ectively.

2.4.1 Formulation

The input is a set of images. Let I be the index set of the pixels in a reference view

I, and I(i), i 2 I, is the color of the i-th pixel. The goal is to determine a dense
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depth map, D, of the reference view. Let L map each pixel index i 2 I to a 2D

location in the image. Let P be the photo-consistency function such that P(i, d) is

the photo-consistency score of the i-th pixel at distance d.

The energy we intend to minimize is

E(D) = E

p

(D) + ↵E

s

(D). (2.8)

E

p

is the standard photo-consistency term of the form

E

p

(D) =
X

i2I

P(i,D(i)), (2.9)

which can be obtained by plane sweeping algorithm [13].

E

s

is the smoothness term to regularize the depth estimation. It often represents

first-order or second-order CRF model to connect and pass information between ad-

jacent pixels. However, we find that those adjacent connected model can’t e↵ectively

regularize the noisy data term. Hence, we propose to connect pixels with longer range

so that the photo-consistency measurement can be e↵ectively aggregated from an area

to a pixel in it.

To build a connection between pixels that are not adjacent, we introduce the

function C(i, j, I,L,D), which gives a score for the depth assignment of the i-th and

the j-th pixels based on the color intensities and their locations in the reference

images. So E

s

is the long range connection term of the form

E

s

(D) =
X

i2I,j2I,i 6=j

C(i, j, I,L,D), (2.10)

and

C(i, j, I,L,D) = ⇢

c

(D(i),D(j)) ⇥ exp(� ||I(i)� I(j)||2

✓

c

� ||L(i)� L(j)||2

✓

p

), (2.11)
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where ⇢

c

is robust measurement of depth di↵erence, and ✓

c

and ✓

p

are parameters to

control the connection strength and range. We choose ⇢

c

to be the truncated linear

function, i.e., ⇢
c

= min(t, |D(i)�D(j)|), where t is a threshold. The purpose of E
c

is

to connect pixels within an area with similar colors such that they can have consistent

depth, since they are more likely to belong to the same object.

2.4.2 Optimization

We use the mean field method with an e�cient implementation proposed in [41] to

optimize Equation 2.8. It can solve the dense CRF model and give a smooth depth

map e�ciently.

2.5 Experiments

We evaluate our methods on both synthetic and real data. The real data is collected

by a smartphone camera, and it is captured in the video mode at 24 frames per

second. To make our system practical to real world applications, we limit the number

of images to 100, which is about a 4-second video. The camera intrinsic parameters

are calculated from the factory specification of the phone and the image distortion is

not accounted for. Better results are expected when a better camera is used.

2.5.1 User Behavior

We have conducted a user study to determine the magnitude of accidental transla-

tional motion during still photography. To measure camera motion, we asked users to

capture videos of a calibration pattern at a distance of roughly 0.5 meters. Users were

instructed to hold the camera steady, as if they were capturing a photograph, for a

duration of 5 seconds. We evaluated 9 participants and two cameras: a Google Nexus

4 smartphone, and a Canon PowerShot S95 point-and-shoot. The results are shown
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(a) Corner Features (b) SfM Bird’s Eye View

(c) SfM Side View (d) WTA depth estimation

(e) Smoothed depth estimation (f) Synthetic aperture

Figure 2.2: Pipeline of our system. (a) We select the first image in a sequence as the
reference view. Corner features (Red dots) are extracted in the reference view and tracked to
the other images. (b) and (c) show the SfM result with initialization of random structure and
identical camera poses. (d) WTA of the photo-consistency at each pixel (e) The smoothed
depth estimation based on our proposed energy function with long range connections. (f)
Given the depth map, we can refocus on part of the image.

in Figure 2.3. From this study, we observe that after 3 seconds, the camera centers

exhibit a standard deviation of 3.9 mm, which yields su�cient baseline to obtain a

good reconstruction under reasonable conditions. For example, for a scene depth of 3

meters, 100 frames of video, feature localization (or disparity) standard deviation of 1

pixel, and a focal length of 2000 pixels, we would expect a depth standard deviation of

0.115 meters, assuming measurements are uncorrelated. We have asked several users
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Google Nexus 4 (smartphone)
Translation

All Translation stdev. (mm) after
users speed (mm/s) 1s 2s 3s
Mean 18.07 2.18 3.35 3.81
Stdev. 6.67 1.11 1.99 2.31

Canon PowerShot S95 (point-and-shoot)
Translation

All Translation stdev. (mm) after
users speed (mm/s) 1s 2s 3s
Mean 9.23 1.71 3.02 3.99
Stdev. 2.10 0.65 1.23 1.88

Figure 2.3: Camera translation statistics obtained from a user study of 9 participants.
Users were asked to record video of a calibration pattern and hold the camera steady, as if
they were capturing a photograph. Although the smartphone moves faster than the point-
and-shoot (perhaps due to the weight and form), both cameras exhibit similar standard
deviation of translation (camera centers).

to capture a 4-second video of a natural scene using a Galaxy Nexus smartphone, and

our algorithm generates similar results shown in this chapter.

2.5.2 Structure from Motion

We follow the method described in Section 2.3 in our experiments. An image sequence

of a video is taken as the input. The first image of a sequence is selected as the refer-

ence view. When we remove the feature tracking outliers by average pixel di↵erence

in a patch, we usually use 6 as the threshold for a 8-bit encoded gray image. All the

3D positions of the feature points are parametrized by their inverse depth relative to

the reference view. Before the bundle adjustment, all the cameras have zero rotation

and translation, and all the points have uniformly random depth between 2 and 4

meters.

SfM Results The bundle adjustment results are shown in Figure 2.2b and 2.2c. It

demonstrates that our simple initialization method is e↵ective in the small motion
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(a) Reference Image (b) 10 Images

(c) 50 Images (d) 100 Images
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Figure 2.4: Change of smoothed depth maps with di↵erent number of images. Darker
color indicates closer depth. More images decrease the uncertainty of the reconstruction
and also reduce the influence of outliers. (b) to (d) show the change the structure with
their smoothed depth map. (e) shows the change of depth estimation uncertainty with
number of cameras in this example. The Y axis shows the standard deviation of the inverse
depth. The maximum and minimum of the uncertainty continue decreasing with addition
of images. The depth uncertainty is measured with camera poses fixed. Please note darker
means closer.

scenario. Since we don’t have to do two-view reconstruction for each pair of images

or solve hard optimization problem [15], SfM is very fast. With about 1000 points

and 100 cameras, it usually takes several seconds on a modern desktop.

Feature tracking outliers are inevitable, but in most of the cases, they don’t a↵ect

the result. However, when there are too many outliers, a robustifier can be used as
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in the general structure from motion problem. We observe that when the robustifier

is not necessary, the SfM results look better without it.

Multiple Images To understand how the multiple images help the reconstruction,

we can first look at the depth estimation uncertainty. As shown in Figure 2.4e, the

depth uncertainty of the 3D points decreases with more input images. It shows that

in the case of KLT tracked features, more images can help reduce the tracking noise.

To understand how di↵erent numbers of images change final structure, we did

bundle adjustment with di↵erent number of images while fixing the detected features

and their matching. Since the camera intrinsic paramters are known and the 3D points

are reconstructed up to scale, we first normalize the inverse depth values to have the

same mean and variance. One of the results is shown in Figure 2.5. The blue curve

shows the structure error measured by sum of squared di↵erence between the models

reconstructed by certain number of images and all the images. The green curve shows

the baseline between a camera and the reference camera in the model reconstructed

by all the images. only the points with middle 90% depth ranking are considered

in normalization to reduce the e↵ects of outliers. As we can observe in Figure 2.5a,

there is a big error jump between 60 and 70 cameras. Since the baseline doesn’t

significantly increase, the error change may be because of the matching outliers. If

robustifier is added to the cost function, there is no sudden error change, as shown

in Figure 2.5b.

Figure 2.4 shows the evolution of the structure in 2D with depth maps. When

more images are used, the structure gradually becomes better. In some cases, we

observe that the structure is already good enough when 50 images are used, although

more images can decrease the point position uncertainty.

Therefore, more images can help reduce the reconstructed depth uncertainty and

the e↵ects of possible outliers.
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Figure 2.5: How multiple images help the reconstructed result. (a) shows that there is
a sudden change in the reconstruction error. (b) shows that this sudden change is due to
matching outliers and in general, multiple images can help reduce the e↵ect of outliers.

Points at Infinity In Section 2.3, we mentioned that optimizing with points at

infinity is equivalent to convex optimization of rotation. In practice, as the distant

points are approximately at infinity, they play an important role in resolving the

ambiguities between camera rotation and translation. If we remove the distant points,

the bundle adjustment can easily get stuck in a local minimum. Even if we initialize

the bundle adjustment with a good structure, the bundle adjustment can still distort

the structure due to feature noise.

2.5.3 Dense Reconstruction

After getting camera poses from SfM, we can do a dense reconstruction using the

method in Section 2.4. We will show the role of each term in the energy function in

Equation 2.8 and argue that the terms are necessary to get plausible depth map.

Data Term If we only optimize E

a

of the energy function in Equation 2.8, we will

get the noisy depth map that optimize the photo consistency at each pixel, which is
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winner-take-all (WTA), as shown in Figure 2.2d. We observe that the planes, such

as the ground and the wall, present consistent depth values in general, though the

values are noisy.

First-Order Smoothness Figure 2.1d-f show regularized depth maps with first-

order smoothness. We observe that although some areas of the depth map are still

noisy, part of it is already oversmoothed. When the regularization is weak, the

estimated depth is still noisy. When the noise is reduced to a good level, the estimated

depth is oversmoothed and an object is reconstructed to several layers. This motivates

us to seek long connection between pixels to pass the information more e↵ectively.

Long Range Connection Instead of only connecting adjacent pixels for smoothness,

we connect pixels with longer range. This can e↵ectively accumulate the information

from a selected neighborhood. Inspired by the recent works of joint segmentation and

stereo estimation, we first smooth the reference image with mean shift before using

its color to compute the pixel connection weight in Equation 2.11. For an image of

size 480 by 270, we normally choose ✓

c

from 20 to 30 and ✓

p

from 5 to 9. Greater ✓
p

should be used for higher resolution image. Because of the e�cient implementation

of mean field inference, the running time doesn’t change with the values of ✓
c

and ✓

p

.

The connection threshold t used in Equation 2.11 is chosen to be a fixed percentage

of the total label number, which is 15% in our system. Because the truncated linear

function can be implemented as two convolutions of 1D box filtering, the running

time is linear to the number of depth labels. The results are shown in Figure 2.2e.

2.5.4 Points at Infinity

The points at infinity play an important role in resolving the ambiguity of the camera

poses. Figure 2.6 shows that what may happen when the points in the background are
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removed. As mentioned in Section 2.3.2, we observe the structure in the foreground

is slanted.

(a) (b) (c)

Figure 2.6: SfM results of only foreground points. The first half of the feature points
are removed ranked by depth in descending order. The bundle adjustment is initial-
ized by the structure reconstructed with all the feature points. (a) shows the original
image. (b) shows the model reconstructed with only the foreground points. (c) shows
the model with all the points. (b) and (c) view the model from a similar view point.
The planes in (b) are slanted.

2.5.5 Feature Matching Outliers

Although the camera motion is small and it is easier to track the features compared

to general camera motion, feature tracking outliers are unavoidable. Figure 2.7 shows

one example with so many of outliers that robustifier [85] is necessary in the bundle

adjustment, as mentioned in Section 2.3 in the paper. Figure 2.8c shows that we can

still get good reconstruction results with robustifier.

2.5.6 More Results

More reconstruction results are shown in Figure 2.8 and 2.9. To show the sparse

3D structure more clearly, we also show them in the accompanied video. The view

angle distribution of 3D points are shown in Figure 2.8d. For each point, we calculate

its view angles between the reference view and the other views. The cumulative

distribution of 25%, median and 75% percentiles of the view angles are shown. It
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shows that the baselines are small for all the scenes. As measured in the user study,

the hand motion is generally several millimeters. In our experiments, we find that as

long as the conditions mentioned in Section 2.1 are met, a good structure can always

be obtained.

2.5.7 Application

The reconstructed depth map can facilitate a lot of applications that are nearly im-

possible with a single color image. For example, we can use the 3D information to

simulate di↵erent aperture e↵ects or synthesize new views. To test our depth map

is good enough for such applications, we can do refocus of the reference image. As

(a) Features in the 20th frame (b) Selected Area

(c) Features in the 60th frame (d) Depth Map

Figure 2.7: When feature tracking outliers are present, we can use robustifier [85] in
bundle adjustment. In (a) and (c), two frames in the sequence are shown with features
plotted in red. The yellow rectangles highlight the tracking outliers highlighted in
yellow in (b). (d) Without robustifier, the resulted depthmap doesn’t show the real
structure. With the help of robustifier, we can still get a good depth map as in
Figure 2.8c.
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shown in Figure 2.2f, the generated depth map can clearly show the depth change of

the objects in the scene.

2.6 Conclusion

We propose the first practical system to reconstruct 3D structure from small motion

image sequences. We discover that in the case of small motion, random point depth

relative to a reference view and identical camera poses are good initialization for the

bundle adjustment cost function, even in presence of outliers. Although the recon-

structed 3D points at the background have very high uncertainty, the foreground

points clearly show the 3D structure. We provide some analysis of the cost function

and find some of its nice properties with the assumption of small motion. Further,

based on the noisy nature of the photo consistency measurement, we propose to use

long range connection between pixels to regularize the depth map, and the resulted

depth map looks much better than only using connections between adjacent pix-

els. We also demonstrate that the resulting depth map has enough quality to make

perceptually plausible refocused images.

The presented algorithm still makes many discernible mistakes. For example, in

Fig 2.8c, we can feel the depth map is wrong at some places because of discontinuity

on the ground. We can realize it because our brain first infer semantics of those

regions, i.e., planar ground. Then we understand pixels on the ground should have

continuous depth. This semantic information can also be applied to the algorithms

as a smoothness prior. However, the framework discussed in this chapter only utilizes

3D geometric method together with features extracted from small patches. It does

not make inference about the semantic meaning of each pixel. To better address this

problem, in the next chapter, we discuss convolutional networks that can e↵ectively

group the pixels based on their semantics.
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Chapter 3

Multi-Scale Context Aggregation

By Dilated Convolutions

3.1 Introduction

Many natural problems in computer vision are instances of dense prediction. The goal

is to compute a discrete or continuous label for each pixel in the image. A prominent

example is semantic segmentation, which calls for classifying each pixel into one of a

given set of categories [30, 72, 39, 41]. Semantic segmentation is challenging because it

requires combining pixel-level accuracy with multi-scale contextual reasoning [30, 19].

Significant accuracy gains in semantic segmentation have recently been obtained

through the use of convolutional networks [47] trained by backpropagation [67].

Specifically, [52] showed that convolutional network architectures that had originally

been developed for image classification can be successfully repurposed for dense pre-

diction. These reporposed networks substantially outperform the prior state of the

art on challenging semantic segmentation benchmarks. This prompts new questions

motivated by the structural di↵erences between image classification and dense predic-

tion. Which aspects of the repurposed networks are truly necessary and which reduce
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accuracy when operated densely? Can dedicated modules designed specifically for

dense prediction improve accuracy further?

Modern image classification networks integrate multi-scale contextual information

via successive pooling and subsampling layers that reduce resolution until a global

prediction is obtained [42, 74]. In contrast, dense prediction calls for multi-scale con-

textual reasoning in combination with full-resolution output. Recent work has studied

two approaches to dealing with the conflicting demands of multi-scale reasoning and

full-resolution dense prediction. One approach involves repeated up-convolutions that

aim to recover lost resolution while carrying over the global perspective from down-

sampled layers [55, 18]. This leaves open the question of whether severe intermediate

downsampling was truly necessary. Another approach involves providing multiple

rescaled versions of the image as input to the network and combining the predictions

obtained for these multiple inputs [17, 48, 9]. Again, it is not clear whether separate

analysis of rescaled input images is truly necessary.

In this work, we develop a convolutional network module that aggregates multi-

scale contextual information without losing resolution or analyzing rescaled images.

The module can be plugged into existing architectures at any resolution. Unlike

pyramid-shaped architectures carried over from image classification, the presented

context module is designed specifically for dense prediction. It is a rectangular prism

of convolutional layers, with no pooling or subsampling. The module is based on di-

lated convolutions, which support exponential expansion of the receptive field without

loss of resolution or coverage.

As part of this work, we also re-examine the performance of repurposed image clas-

sification networks on semantic segmentation. The performance of the core prediction

modules can be unintentionally obscured by increasingly elaborate systems that in-

volve structured prediction, multi-column architectures, multiple training datasets,

and other augmentations. We therefore examine the leading adaptations of deep im-
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age classification networks in a controlled setting and remove vestigial components

that hinder dense prediction performance. The result is an initial prediction module

that is both simpler and more accurate than prior adaptations.

Using the simplified prediction module, we evaluate the presented context net-

work through controlled experiments on the Pascal VOC 2012 dataset [16]. The

experiments demonstrate that plugging the context module into existing semantic

segmentation architectures reliably increases their accuracy.

3.2 Dilated Convolutions

Let F : Z2 ! R be a discrete function. Let ⌦
r

= [�r, r]2 \ Z2 and let k : ⌦
r

! R be

a discrete filter of size (2r + 1)2. The discrete convolution operator ⇤ can be defined

as

(F ⇤ k)(p) =
X

s+t=p

F (s) k(t). (3.1)

We now generalize this operator. Let l be a dilation factor and let ⇤
l

be defined as

(F ⇤
l

k)(p) =
X

s+lt=p

F (s) k(t). (3.2)

We will refer to ⇤
l

as a dilated convolution or an l-dilated convolution. The familiar

discrete convolution ⇤ is simply the 1-dilated convolution.

The dilated convolution operator has been referred to in the past as “convolution

with a dilated filter”. It plays a key role in the algorithme à trous, an algorithm for

wavelet decomposition [32, 70].1 We use the term “dilated convolution” instead of

“convolution with a dilated filter” to clarify that no “dilated filter” is constructed or

represented. The convolution operator itself is modified to use the filter parameters

1Some recent work mistakenly referred to the dilated convolution operator itself as the algorithme

à trous. This is incorrect. The algorithme à trous applies a filter at multiple scales to produce a
signal decomposition. The algorithm uses dilated convolutions, but is not equivalent to the dilated
convolution operator itself.
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in a di↵erent way. The dilated convolution operator can apply the same filter at

di↵erent ranges using di↵erent dilation factors. Our definition reflects the proper im-

plementation of the dilated convolution operator, which does not involve construction

of dilated filters.

In recent work on convolutional networks for semantic segmentation, [52] analyzed

filter dilation but chose not to use it. [7] used dilation to simplify the architecture of

[52]. In contrast, we develop a new convolutional network architecture that system-

atically uses dilated convolutions for multi-scale context aggregation.

Our architecture is motivated by the fact that dilated convolutions support ex-

ponentially expanding receptive fields without losing resolution or coverage. Let

F0, F1, . . . , Fn�1 : Z2 ! R be discrete functions and let k0, k1, . . . , kn�2 : ⌦1 ! R

be discrete 3⇥3 filters. Consider applying the filters with exponentially increasing

dilation:

F

i+1 = F

i

⇤2i ki for i = 0, 1, . . . , n� 2. (3.3)

Define the receptive field of an element p in F

i+1 as the set of elements in F0

that modify the value of F
i+1(p). Let the size of the receptive field of p in F

i+1 be

the number of these elements. It is easy to see that the size of the receptive field

of each element in F

i+1 is (2i+2 � 1)⇥(2i+2 � 1). The receptive field is a square of

exponentially increasing size. This is illustrated in Figure 3.1.

3.3 Multi-Scale Context Aggregation

The context module is designed to increase the performance of dense prediction ar-

chitectures by aggregating multi-scale contextual information. The module takes C

feature maps as input and produces C feature maps as output. The input and output
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(a) (b) (c)

Figure 3.1: Systematic dilation supports exponential expansion of the receptive field
without loss of resolution or coverage. (a) F1 is produced from F0 by a 1-dilated
convolution; each element in F1 has a receptive field of 3⇥3. (b) F2 is produced from
F1 by a 2-dilated convolution; each element in F2 has a receptive field of 7⇥7. (c) F3

is produced from F2 by a 4-dilated convolution; each element in F3 has a receptive
field of 15⇥15. The number of parameters associated with each layer is identical. The
receptive field grows exponentially while the number of parameters grows linearly.

have the same form, thus the module can be plugged into existing dense prediction

architectures.

We begin by describing a basic form of the context module. In this basic form,

each layer has C channels. The representation in each layer is the same and could be

used to directly obtain a dense per-class prediction, although the feature maps are

not normalized and no loss is defined inside the module. Intuitively, the module can

increase the accuracy of the feature maps by passing them through multiple layers

that expose contextual information.

The basic context module has 7 layers that apply 3⇥3 convolutions with di↵erent

dilation factors. The dilations are 1, 1, 2, 4, 8, 16, and 1. Each convolution operates

on all layers: strictly speaking, these are 3⇥3⇥C convolutions with dilation in the

first two dimensions. Each of these convolutions is followed by a pointwise truncation

max(·, 0). A final layer performs 1⇥1⇥C convolutions and produces the output of

the module. The architecture is summarized in Table 3.1. Note that the front-end

module that provides the input to the context network in our experiments produces
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Layer 1 2 3 4 5 6 7 8

Convolution 3⇥3 3⇥3 3⇥3 3⇥3 3⇥3 3⇥3 3⇥3 1⇥1
Dilation 1 1 2 4 8 16 1 1
Truncation Yes Yes Yes Yes Yes Yes Yes No
Receptive field 3⇥3 5⇥5 9⇥9 17⇥17 33⇥33 65⇥65 67⇥67 67⇥67

Output channels
Basic C C C C C C C C
Large 2C 2C 4C 8C 16C 32C 32C C

Table 3.1: Context network architecture. The network processes C feature maps by
aggregating contextual information at progressively increasing scales without losing
resolution.

feature maps at 64⇥64 resolution. We therefore stop the exponential expansion of

the receptive field after layer 6.

Our initial attempts to train the context module failed to yield an improvement in

prediction accuracy. Experiments revealed that standard initialization procedures do

not readily support the training of the module. Convolutional networks are commonly

initialized using samples from random distributions [23, 42, 74]. However, we found

that random initialization schemes were not e↵ective for the context module. We

found an alternative initialization with clear semantics to be much more e↵ective:

k

b(t, a) = 1[t=0]1[a=b], (3.4)

where a is the index of the input feature map and b is the index of the output

map. This is a form of identity initialization, which has recently been advocated for

recurrent networks [46]. This initialization sets all filters such that each layer simply

passes the input directly to the next. A natural concern is that this initialization

could put the network in a mode where backpropagation cannot significantly improve

the default behavior of simply passing information through. However, experiments

indicate that this is not the case. Backpropagation reliably harvests the contextual

information provided by the network to increase the accuracy of the processed maps.
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This completes the presentation of the basic context network. Our experiments

show that even this basic module can increase dense prediction accuracy both quan-

titatively and qualitatively. This is particularly notable given the small number of

parameters in the network: ⇡64C2 parameters in total.

We have also trained a larger context network that uses a larger number of feature

maps in the deeper layers. The number of maps in the large network is summarized

in Table 3.1. We generalize the initialization scheme to account for the di↵erence

in the number of feature maps in di↵erent layers. Let c
i

and c

i+1 be the number of

feature maps in two consecutive layers. Assume that C divides both c

i

and c

i+1. The

initialization is

k

b(t, a) =

8
>><

>>:

C

c

i+1
t = 0 and

�
aC

c

i

⌫
=

�
bC

c

i+1

⌫

" otherwise

(3.5)

Here " ⇠ N (0, �2) and � ⌧ C/c

i+1. The use of random noise breaks ties among

feature maps with a common predecessor.

3.4 Front End

We implemented and trained a front-end prediction module that takes a color image

as input and produces C = 21 feature maps as output. The front-end module follows

the work of [52] and [7], but was implemented separately. We adapted the VGG-16

network [74] for dense prediction and removed the last two pooling and striding layers.

Specifically, each of these pooling and striding layers was removed and convolutions

in all subsequent layers were dilated by a factor of 2 for each pooling layer that was

ablated. Thus convolutions in the final layers, which follow both ablated pooling

layers, are dilated by a factor of 4. This enables initialization with the parameters of

the original classification network, but produces higher-resolution output. The front-
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(a) Image (b) FCN-8s (c) DeepLab (d) Our front end (e) Ground truth

Figure 3.2: Semantic segmentations produced by di↵erent adaptations of the VGG-16
classification network. From left to right: (a) input image, (b) prediction by FCN-8s
[52], (c) prediction by DeepLab [7], (d) prediction by our simplified front-end module,
(e) ground truth.

end module takes padded images as input and produces feature maps at resolution

64⇥64. We use reflection padding: the bu↵er zone is filled by reflecting the image

about each edge.

Our front-end module is obtained by removing vestiges of the classification network

that are counter-productive for dense prediction. Most significantly, we remove the

last two pooling and striding layers entirely, whereas Long et al. kept them and
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Chen et al. replaced striding by dilation but kept the pooling layers. We found that

simplifying the network by removing the pooling layers made it more accurate. We

also remove the padding of the intermediate feature maps. Intermediate padding was

used in the original classification network, but is neither necessary nor justified in

dense prediction.

This simplified prediction module was trained on the Pascal VOC 2012 training

set, augmented by the annotations created by [25]. We did not use images from

the VOC-2012 validation set for training and therefore only used a subset of the

annotations of [25]. Training was performed by stochastic gradient descent (SGD)

with mini-batch size 14, learning rate 10�3, and momentum 0.9. The network was

trained for 60K iterations.

We now compare the accuracy of our front-end module to the FCN-8s design

of [52] and the DeepLab network of [7]. For FCN-8s and DeepLab, we evaluate the

public models trained by the original authors on VOC-2012. Segmentations produced

by the di↵erent models on images from the VOC-2012 dataset are shown in Figure

3.2. The accuracy of the models on the VOC-2012 test set is reported in Table 3.2.

Our front-end prediction module is both simpler and more accurate than the prior

models. Specifically, our simplified model outperforms both FCN-8s and the DeepLab

network by more than 5 percentage points on the test set. Interestingly, our simplified

front-end module outperforms the leaderboard accuracy of DeepLab+CRF on the test

set by more than a percentage point (67.6% vs. 66.4%) without using a CRF.

3.5 Experiments

Our implementation is based on the Ca↵e library [35]. Our implementation of dilated

convolutions is now part of the stanfard Ca↵e distribution.
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For fair comparison with recent high-performing systems, we trained a front-end

module that has the same structure as described in Section 3.4, but is trained on

additional images from the Microsoft COCO dataset [50]. We used all images in

Microsoft COCO with at least one object from the VOC-2012 categories. Annotated

objects from other categories were treated as background.

Training was performed in two stages. In the first stage, we trained on VOC-

2012 images and Microsoft COCO images together. Training was performed by SGD

with mini-batch size 14 and momentum 0.9. 100K iterations were performed with a

learning rate of 10�3 and 40K subsequent iterations were performed with a learning

rate of 10�4. In the second stage, we fine-tuned the network on VOC-2012 images

only. Fine-tuning was performed for 50K iterations with a learning rate of 10�5.

Images from the VOC-2012 validation set were not used for training.

The front-end module trained by this procedure achieves 69.8% mean IoU on the

VOC-2012 validation set and 71.3% mean IoU on the test set. Note that this level of

accuracy is achieved by the front-end alone, without the context module or structured

prediction. We again attribute this high accuracy in part to the removal of vestigial

components originally developed for image classification rather than dense prediction.

Controlled evaluation of context aggregation. We now perform controlled ex-

periments to evaluate the utility of the context network presented in Section 3.3. We

begin by plugging each of the two context modules (Basic and Large) into the front

end. Since the receptive field of the context network is 67⇥67, we pad the input

feature maps by a bu↵er of width 33. Zero padding and reflection padding yielded

similar results in our experiments. The context module accepts feature maps from

the front end as input and is given this input during training. Joint training of the

context module and the front-end module did not yield a significant improvement
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in our experiments. The learning rate was set to 10�3. Training was initialized as

described in Section 3.3.

Table 3.3 shows the e↵ect of adding the context module to three di↵erent ar-

chitectures for semantic segmentation. The first architecture (top) is the front end

described in Section 3.4. It performs semantic segmentation without structured pre-

diction, akin to the original work of [52]. The second architecture (Table 3.3, middle)

uses the dense CRF to perform structured prediction, akin to the system of [7]. We

use the implementation of [41] and train the CRF parameters by grid search on the

validation set. The third architecture (Table 3.3, bottom) uses the CRF-RNN for

structured prediction [93]. We use the implementation of [93] and train the CRF-

RNN in each condition.

The experimental results demonstrate that the context module improves accuracy

in each of the three configurations. The basic context module increases accuracy in

each configuration. The large context module increases accuracy by a larger margin.

The experiments indicate that the context module and structured prediction are syn-

ergisic: the context module increases accuracy with or without subsequent structured

prediction. Qualitative results are shown in Figure 3.3.

Evaluation on the test set. We now perform an evaluation on the test set by

submitting our results to the Pascal VOC 2012 evaluation server. The results are

reported in Table 3.4. We use the large context module for these experiments. As

the results demonstrate, the context module yields a significant boost in accuracy

over the front end. The context module alone, without subsequent structured pre-

diction, outperforms DeepLab-CRF-COCO-LargeFOV [7]. The context module with

the dense CRF, using the original implementation of [41], performs on par with the

very recent CRF-RNN [93]. The context module in combination with the CRF-RNN

further increases accuracy over the performance of the CRF-RNN.
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(a) Image (b) Front end (c) +Context (d) +CRF-RNN (e) Ground truth

Figure 3.3: Semantic segmentations produced by di↵erent models. From left to right:
(a) input image, (b) prediction by the front-end module, (c) prediction by the large
context network plugged into the front end, (d) prediction by the front end + context
module + CRF-RNN, (e) ground truth.

3.6 Urban Scene Understanding

In this section, we report experiments on three datasets for urban scene under-

standing: the CamVid dataset [5], the KITTI dataset [20], and the new Cityscapes

dataset [14]. As the accuracy measure we use the mean IoU [16]. We only train our

model on the training set, even when a validation set is available. The results reported

in this section do not use conditional random fields or other forms of structured pre-

diction. They were obtained with convolutional networks that combine a front-end

module and a context module, akin to the “Front + Basic” network evaluated in Table

3.3. The trained models can be found at https://github.com/fyu/dilation.
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Figure 3.4: Failure cases from the VOC-2012 validation set. The most accurate
architecture we trained (Context + CRF-RNN) performs poorly on these images.
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We now summarize the training procedure used for training the front-end module.

This procedure applies to all datasets. Training is performed with stochastic gradient

descent. Each mini-batch contains 8 crops from randomly sampled images. Each crop

is of size 628⇥628 and is randomly sampled from a padded image. Images are padded

using reflection padding. No padding is used in the intermediate layers. The learning

rate is 10�4 and momentum is set to 0.99. The number of iterations depends on the

number of images in the dataset and is reported for each dataset below.

The context modules used for these datasets are all derived from the “Basic”

network, using the terminology of Table 3.1. The number of channels in each layer

is the number of predicted classes C. (For example, C = 19 for the Cityscapes

dataset.) Each layer in the context module is padded such that the input and response

maps have the same size. The number of layers in the context module depends on

the resolution of the images in the dataset. Joint training of the complete model,

composed of the front-end and the context module, is summarized below for each

dataset.

3.6.1 CamVid

We use the split of [76], which partitions the dataset into 367 training images, 100

validation images, and 233 test images. 11 semantic classes are used. The images are

downsampled to 640⇥480.

The context module has 8 layers, akin to the model used for the Pascal VOC

dataset. The overall training procedure is as follows. First, the front-end module is

trained for 20K iterations. Then the complete model (front-end + context) is jointly

trained by sampling crops of size 852⇥852 with batch size 1. The learning rate for

joint training is set to 10�5 and the momentum is set to 0.9.

Results on the CamVid test set are reported in Table 3.5. We refer to our complete

convolutional network (front-end + context) as Dilation8, since the context module
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has 8 layers. Our model outperforms the prior work. This model was used as the

unary classifier in the recent work of [43].
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ALE 73.4 70.2 91.1 64.2 24.4 91.1 29.1 31.0 13.6 72.4 28.6 53.6
SuperParsing 70.4 54.8 83.5 43.3 25.4 83.4 11.6 18.3 5.2 57.4 8.9 42.0
Liu and He 66.8 66.6 90.1 62.9 21.4 85.8 28.0 17.8 8.3 63.5 8.5 47.2
SegNet 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4
DeepLab-LFOV 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 61.6
Dilation8 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3

Table 3.5: Semantic segmentation results on the CamVid dataset. Our model (Dila-
tion8) is compared to ALE [44], SuperParsing [79], Liu and He [51], SegNet [4], and
the DeepLab-LargeFOV model [7]. Our model outperforms the prior work.

3.6.2 KITTI

We use the training and validation split of [64]: 100 training images and 46 test im-

ages. The images were all collected from the KITTI visual odometry/SLAM dataset.

The image resolution is 1226⇥370. Since the vertical resolution is small compared

to the other datasets, we remove Layer 6 in Table 3.1. The resulting context module

has 7 layers. The complete network (front-end + context) is referred to as Dilation7.

The front-end is trained for 10K iterations. Next, the front-end and the context

module are trained jointly. For joint training, the crop size is 900⇥900 and momentum

is set to 0.99, while the other parameters are the same as the ones used for the CamVid

dataset. Joint training is performed for 20K iterations.

The results are shown in Table 3.6. As the table demonstrates, our model outper-

forms the prior work.
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Ros et al. 71.8 69.5 84.4 51.2 4.2 72.4 1.7 32.4 2.6 45.3 3.2 39.9
DeepLab-LFOV 82.8 78.6 82.4 78.0 28.8 91.3 0.0 39.4 29.9 72.4 12.9 54.2
Dilation7 84.6 81.1 83 81.4 41.8 92.9 4.6 47.1 35.2 73.1 26.4 59.2

Table 3.6: Semantic segmentation results on the KITTI dataset. We compare our
results to [64] and to the DeepLab-LargeFOV model [7]. Our network (Dilation7)
yields higher accuracy than the prior work.

3.6.3 Cityscapes

The Cityscapes dataset contains 2975 training images, 500 validation images, and

1525 test images [14]. Due to the high image resolution (2048⇥1024), we add two

layers to the context network after Layer 6 in Table 3.1. These two layers have dilation

32 and 64, respectively. The total number of layers in the context module is 10 and

we refer to the complete model (front-end + context) as Dilation10.

The Dilation10 network was trained in three stages. First, the front-end prediction

module was trained for 40K iterations. Second, the context module was trained for

24K iterations on whole (uncropped) images, with learning rate 10�4, momentum

0.99, and batch size 100. Third, the complete model (front-end + context) was

jointly trained for 60K iterations on halves of images (input size 1396⇥1396, including

padding), with learning rate 10�5, momentum 0.99, and batch size 1.

Figure 3.5 visualizes the e↵ect of the training stages on the performance of the

model. Quantitative results are given in Tables 3.7 and 3.8.

The performance of Dilation10 was compared to prior work on the Cityscapes

dataset by [14]. In their evaluation, Dilation10 outperformed all prior models [14].

Dilation10 was also used as the unary classifier in the recent work of [43], which used

structured prediction to increase accuracy further.
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(a) Image (b) Ground truth

(c) Front end (d) +Context (e) +Joint (f) Ground truth

Figure 3.5: Results produced by the Dilation10 model after di↵erent training stages.
(a) Input image. (b) Ground truth segmentation. (c) Segmentation produced by the
model after the first stage of training (front-end only). (d) Segmentation produced
after the second stage, which trains the context module. (e) Segmentation produced
after the third stage, in which both modules are trained jointly.
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IoU

Validation set

97.2 79.5 90.4 44.9 52.4 55.1 56.7 69 91 58.7 92.6 75.7 50 92.2 56.2 72.6 54.3 46.2 70.1 68.7

Test set

97.6 79.2 89.9 37.3 47.6 53.2 58.6 65.2 91.8 69.4 93.7 78.9 55 93.3 45.5 53.4 47.7 52.2 66 67.1

Table 3.7: Per-class and mean class-level IoU achieved by our model (Dilation10) on
the Cityscapes dataset.

3.7 Conclusion

We have examined convolutional network architectures for dense prediction. Since

the model must produce high-resolution output, we believe that high-resolution op-

eration throughout the network is both feasible and desirable. Our work shows that

the dilated convolution operator is particularly suited to dense prediction due to its
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Flat Nature Object Sky Construction Human Vehicle mean IoU

Validation set

98.2 91.4 62.3 92.6 90.7 77.6 91 86.3

Test set

98.3 91.4 60.5 93.7 90.2 79.8 91.8 86.5

Table 3.8: Per-category and mean category-level IoU on the Cityscapes dataset.

ability to expand the receptive field without losing resolution or coverage. We have

utilized dilated convolutions to design a new network structure that reliably increases

accuracy when plugged into existing semantic segmentation systems. As part of this

work, we have also shown that the accuracy of existing convolutional networks for

semantic segmentation can be increased by removing vestigial components that had

been developed for image classification. State-of-the-art systems for semantic segmen-

tation leave significant room for future advances. Failure cases of our most accurate

configuration are shown in Figure 3.4.

We believe that the presented work is a step towards dedicated architectures for

dense prediction that are not constrained by image classification precursors. Since the

paper [89] was initially published, the idea of dilated convolutions have been widely

accepted and adopted in state-of-the-art semantic image segmentation networks [65,

92].

In this chapter, we study dilated convolutions based on VGG network. New

generations of deep convolutional network architecture may keep improving the per-

formance of dilated networks. However, the newly proposed network elements may

not work well directly with dilation. In the next chapter, we will study the relation

between dilation and residual connections and investigate the connection between

image classification and segmentation.
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Chapter 4

Dilated Residual Networks

4.1 Introduction

Convolutional networks were originally developed for classifying hand-written dig-

its [47]. More recently, convolutional network architectures have evolved to classify

much more complex images [42, 74, 78, 29]. Yet a central aspect of network architec-

ture has remained largely in place. Convolutional networks for image classification

progressively reduce resolution until the image is represented by tiny feature maps

that retain little spatial information (7⇥7 is typical).

While convolutional networks have done well, the almost complete elimination of

spatial acuity may be preventing these models from achieving even higher accuracy,

for example by preserving the contribution of small and thin objects that may be

important for correctly understanding the image. Such preservation may not have

been important in the context of hand-written digit classification, in which a single

object dominated the image, but may help in the analysis of complex natural scenes

where multiple objects and their relative configurations must be taken into account.

Furthermore, image classification is rarely a convolutional network’s raison d’être.

Image classification is most often a proxy task that is used to pretrain a model before it
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is transferred to other applications that involve more detailed scene understanding [22,

52]. In such tasks, severe loss of spatial acuity is a significant handicap. Existing

techniques compensate for the lost resolution by introducing up-convolutions [52, 55],

skip connections [26], and other post-hoc measures.

Must convolutional networks crush the image in order to classify it? In this chap-

ter, we show that this is not necessary, or even desirable. Starting with the residual

network architecture, the current state of the art for image classification [29], we

increase the resolution of the network’s output by replacing a subset of interior sub-

sampling layers by dilation [89]. We show that dilated residual networks (DRNs) yield

improved image classification performance. Specifically, DRNs yield higher accuracy

in ImageNet classification than their non-dilated counterparts, with no increase in

depth or model complexity.

The output resolution of a DRN on typical ImageNet input is 28⇥28, comparable

to small thumbnails that convey the structure of the image when examined by a

human [82]. While it may not be clear a priori that average pooling can properly

handle such high-resolution output, we show that it can, yielding a notable accuracy

gain. We then study gridding artifacts introduced by dilation, propose a scheme

for removing these artifacts, and show that such ‘degridding’ further improves the

accuracy of DRNs.

We also show that DRNs yield improved accuracy on downstream applications

such as weakly-supervised object localization and semantic segmentation. With a

remarkably simple approach, involving no fine-tuning at all, we obtain state-of-the-

art top-1 accuracy in weakly-supervised localization on ImageNet. We also study

the performance of DRNs on semantic segmentation and show, for example, that a

42-layer DRN outperforms a ResNet-101 baseline on the Cityscapes dataset by more

than 4 percentage points, despite lower depth by a factor of 2.4.
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4.2 Related Work

Image classification has received a lot of attention because techniques developed for

image classification can often be used to also improve performance on more detailed

scene understanding tasks. In the past, researchers have manually designed feature

descriptors for image classification [61, 34]. Such descriptors could be spatially orga-

nized to represent the structure of the image [24, 45].

The re-emergence of convolutional networks as the primary feature extractor in

computer vision has streamlined and unified this area [47, 42, 78, 74, 29]. While the

design of convolutional networks has evolved significantly, a core structural principle

has remained largely in place: the image is progressively downsampled until almost

no spatial resolution is left. Typically, the images are downsampled by a factor of

32 between the input layer and the output of the final convolutional layer. In this

chapter, we revisit this design choice and propose to retain higher spatial resolution all

the way through to the output of the final convolutional layer, such that considerably

higher-resolution activation maps are pooled for the final prediction.

To aggregate the signal from a high-resolution convolutional layer, we use global

average pooling [49, 95, 29]. We show that backpropagation can e↵ectively han-

dle global average pooling over much bigger feature maps than previously thought,

yielding high accuracy in the final predictor as well as informative high-resolution

activations.

Weakly-supervised localization concerns localization of objects in images given

only image-level labels during training. Since image-level labels are much easier to

obtain than finer-grained annotations [68, 96], weakly-supervised localization lever-

ages image-level supervision for object-level image understanding. This problem has

received significant attention [59, 60, 62, 94, 95, 12]. Many approaches [59, 62, 12, 60]

aggregate information from trained feature maps to identify potential object locations.

Zhou et al. [94] analyze the responses of feature maps and localize image regions that
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activate these responses. A later work by Zhou et al. [95] proposes to remove layers

from trained image classification models in order to get to higher-resolution feature

maps, then fine-tuning such ablated models. This approach requires additional train-

ing and, as the authors show, weakens classification performance. In contrast, we

develop an image classification model that produces informative high-resolution ac-

tivation maps directly, with no sacrifice in classification accuracy and no need for

post-hoc fine-tuning.

4.3 Dilated Residual Networks

Our key idea is to preserve spatial resolution in convolutional networks for image clas-

sification. Although progressive downsampling has been very successful in classifying

digits or iconic views of objects, the loss of spatial information may be harmful for

classifying natural images and can significantly hamper transfer to other tasks that

involve spatially detailed image understanding. Natural images often feature many

objects whose identities and relative configurations are important for understanding

the scene. The classification task becomes di�cult when a key object is not spatially

dominant – for example, when the labeled object is thin (e.g., a tripod) or when

there is a big background object such as a mountain. In these cases, the background

response may suppress the signal from the object of interest. What’s worse, if the

object’s signal is lost due to downsampling, there is little hope to recover it during

training. However, if we retain high spatial resolution throughout the model and

provide output signals that densely cover the input field, backpropagation can learn

to preserve important information about smaller and less salient objects.

The starting point of our construction is the set of network architectures presented

by He et al. [29]. Each of these architectures consists of five groups of convolutional

layers. The first layer in each group performs downsampling by striding: that is, the
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convolutional filter is only evaluated at even rows and columns. Let each group of

layers be denoted by G`, for ` = 1, . . . , 5. Denote the i

th layer in group ` by G`

i

. For

simplicity of exposition, consider an idealized model in which each layer consists of a

single feature map: the extension to multiple feature maps is straightforward. Let f `

i

be the filter associated with layer G`

i

. In the original model, the output of G`

i

is

(G`

i

⇤ f `

i

)(p) =
X

a+b=p

G`

i

(a) f `

i

(b), (4.1)

where the domain of p is the feature map in G`

i

. This is followed by a nonlinearity,

which does not a↵ect the presented construction.

A naive approach to increasing resolution in higher layers of the network would

be to simply remove subsampling (striding) from some of the interior layers. This

does increase downstream resolution, but has a detrimental side e↵ect that negates

the benefits: removing subsampling correspondingly reduces the receptive field in

subsequent layers. Thus removing striding such that the resolution of the output

layer is increased by a factor of 4 also reduces the receptive field of each output

unit by a factor of 4. This severely reduces the amount of context that can inform

the prediction produced by each unit. Since contextual information is important in

disambiguating local cues [19], such reduction in receptive field is an unacceptable

price to pay for higher resolution. For this reason, we use dilated convolutions [89]

to increase the receptive field of the higher layers, compensating for the reduction

in receptive field induced by removing subsampling. The e↵ect is that units in the

dilated layers have the same receptive field as corresponding units in the original

model.

We focus on the two final groups of convolutional layers: G4 and G5. In the

original ResNet, the first layer in each group (G4
1 and G5

1) is strided: the convolution

is evaluated at even rows and columns, which reduces the output resolution of these
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layers by a factor of 2 in each dimension. The first step in the conversion to DRN is to

remove the striding in both G4
1 and G5

1 . Note that the receptive field of each unit in G4
1

remains una↵ected: we just doubled the output resolution of G4
1 without a↵ecting the

receptive field of its units. However, subsequent layers are all a↵ected: their receptive

fields have been reduced by a factor of 2 in each dimension. We therefore replace the

convolution operators in those layers by 2-dilated convolutions [89]:

(G4
i

⇤2 f 4
i

)(p) =
X

a+2b=p

G4
i

(a) f 4
i

(b) (4.2)

for all i � 2. The same transformation is applied to G5
1 :

(G5
1 ⇤2 f 5

1 )(p) =
X

a+2b=p

G5
1(a) f

5
1 (b). (4.3)

Subsequent layers in G5 follow two striding layers that have been eliminated. The

elimination of striding has reduced their receptive fields by a factor of 4 in each

dimension. Their convolutions need to be dilated by a factor of 4 to compensate for

the loss:

(G5
i

⇤4 f 5
i

)(p) =
X

a+4b=p

G5
i

(a) f 5
i

(b) (4.4)

for all i � 2. Finally, as in the original architecture, G5 is followed by global average

pooling, which reduces the output feature maps to a vector, and a 1⇥1 convolution

that maps this vector to a vector that comprises the prediction scores for all classes.

The transformation of a ResNet into a DRN is illustrated in Figure 4.1.

The converted DRN has the same number of layers and parameters as the original

ResNet. The key di↵erence is that the original ResNet downsamples the input image

by a factor of 32 in each dimension (a thousand-fold reduction in area), while the DRN

downsamples the input by a factor of 8. For example, when the input resolution is

224⇥224, the output resolution of G5 in the original ResNet is 7⇥7, which is not
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Figure 4.1: Converting a ResNet into a DRN. The original ResNet is shown in (a),
the resulting DRN is shown in (b). Striding in G4

1 and G5
1 is removed, bringing the

resolution of all layers in G4 and G5 to the resolution of G3. To compensate for the
consequent shrinkage of the receptive field, G4

i

and G5
1 are dilated by a factor of 2

and G5
i

are dilated by a factor of 4, for all i � 2. c, 2c, and 4c denote the number of
feature maps in a layer, w and h denote feature map resolution, and d is the dilation
factor.

su�cient for the spatial structure of the input to be discernable. The output of G5

in a DRN is 28⇥28. Global average pooling therefore takes in 24 times more values,

which can help the classifier recognize objects that cover a smaller number of pixels

in the input image and take such objects into account in its prediction.

The presented construction could also be applied to earlier groups of layers (G1,

G2, or G3), in the limit retaining the full resolution of the input. We chose not to do

this because a downsampling factor of 8 is known to preserve most of the information

necessary to correctly parse the original image at pixel level [52]. Furthermore, a 28⇥28
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thumbnail, while small, is su�ciently resolved for humans to discern the structure of

the scene [82]. Additional increase in resolution has costs and should not be pursued

without commensurate gains: when feature map resolution is increased by a factor

of 2 in each dimension, the memory consumption of that feature map increases by a

factor of 4. Operating at full resolution throughout, with no downsampling at all, is

beyond the capabilities of current hardware.

4.4 Localization

Given a DRN trained for image classification, we can directly produce dense pixel-

level class activation maps without any additional training or parameter tuning. This

allows a DRN trained for image classification to be immediately used for object lo-

calization and segmentation.

To obtain high-resolution class activation maps, we remove the global average

pooling operator. We then connect the final 1⇥1 convolution directly to G5. A

softmax is applied to each column in the resulting volume to convert the pixelwise

prediction scores to proper probability distributions. This procedure is illustrated

in Figure 4.2. The output of the resulting network is a set of activation maps that

have the same spatial resolution as G5 (28⇥28). Each classification category y has

a corresponding activation map. For each pixel in this map, the map contains the

probability that the object observed at this pixel is of category y.

The activation maps produced by our construction serve the same purpose as the

results of the procedure of Zhou et al. [95]. However, the procedures are fundamentally

di↵erent. Zhou et al. worked with convolutional networks that produce drastically

downsampled output that is not su�ciently resolved for object localization. For this

reason, Zhou et al. had to remove layers from the classification network, introduce

parameters that compensate for the ablated layers, and then fine-tune the modified
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Figure 4.2: Using a classification network for localization. The output stages of a
DRN trained for image classification are shown in (a). Here K is a 1⇥1 convolution
that maps c channels to n. To reconfigure the network for localization, we remove
the pooling operator. The result is shown in (b). The reconfigured network produces
n activation maps of resolution w ⇥ h. No training or parameter tuning is involved.

models to train the new parameters. Even then, the output resolution obtained by

Zhou et al. was quite small (14⇥14) and the classification performance of the modified

networks was impaired.

In contrast, the DRN was designed to produce high-resolution output maps and

is trained in this configuration from the start. Thus the model trained for image

classification already produces high-resolution activation maps. As our experiments

will show, DRNs are more accurate than the original ResNets in image classification.

Since DRNs produce high-resolution output maps from the start, there is no need to

remove layers, add parameters, and retrain the model for localization. The original

accurate classification model can be used for localization directly.
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(a) Input (b) ResNet-18 (c) DRN-A-18 (d) DRN-B-26 (e) DRN-C-26

Figure 4.3: Activation maps of ResNet-18 and corresponding DRNs. A DRN con-
structed from ResNet-18 as described in Section 4.3 is referred to as DRN-A-18. The
corresponding DRN produced by the degridding scheme described in Section 4.5 is
referred to as DRN-C-26. The DRN-B-26 is an intermediate construction.
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4.5 Degridding

The use of dilated convolutions can cause gridding artifacts. Such artifacts are shown

in Figure 4.3(c) and have also been observed in concurrent work on semantic seg-

mentation [86]. Gridding artifacts occur when a feature map has higher-frequency

content than the sampling rate of the dilated convolution. Figure 4.4 shows a di-

dactic example. In Figure 4.4(a), the input feature map has a single active pixel.

A 2-dilated convolution (Figure 4.4(b)) induces a corresponding grid pattern in the

output (Figure 4.4(c)).

(a) Input (b) Dilation 2 (c) Output

Figure 4.4: A gridding artifact.

In this section, we develop a scheme for removing gridding artifacts from output

activation maps produced by DRNs. The scheme is illustrated in Figure 4.6. A DRN

constructed as described in Section 4.3 is referred to as DRN-A and is illustrated in

Figure 4.6(a). An intermediate stage of the construction described in the present sec-

tion is referred to as DRN-B and is illustrated in Figure 4.6(b). The final construction

is referred to as DRN-C, illustrated in Figure 4.6(c).

Removing max pooling. As shown in Figure 4.6(a), DRN-A inherits from the

ResNet architecture a max pooling operation after the initial 7⇥7 convolution. They

are labeled as Level 1 and 2 in the row for DRN-18-A in Figure 4.6. We find that

this max pooling operation leads to high-amplitude high-frequency activations, as

shown in Figure 4.5(b). Such high-frequency activations can be propagated to later
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layers and ultimately exacerbate gridding artifacts. We thus replace max pooling

by convolutional filters, as shown in Figure 4.6(b). The e↵ect of this transformation

is shown in Figure 4.5(c). As shown in Figure 4.5(c), the modified network learns

to preserve important contour cues after downsampling. Visually, this looks helpful

because we can still recognize the objects based on the contours, which can provide

more information for the later layers. Even though the max pooling is removed, the

network is still invariant to 2D translation thanks to the global average pooling.

(a) Input (b) DRN-A-18 (c) DRN-B-26

Figure 4.5: First stage of degridding, which modifies the early layers of the network.
(b) and (c) show input feature maps for the first convolutional layer in level 3 of
DRN-A-18 and DRN-B-26. The feature map with the highest average activation is
shown.

Adding layers. To remove gridding artifacts, we add convolutional layers at the end

of the network, with progressively lower dilation. Specifically, after the last 4-dilated

layer in DRN-A (Figure 4.6(a)), we add a 2-dilated residual block followed by a 1-

dilated block. These become levels 7 and 8 in DRN-B, shown in Figure 4.6(b). This

is akin to removing aliasing artifacts using filters with appropriate frequency [84].

Removing residual connections. Adding layers with decreasing dilation, as de-

scribed in the preceding paragraph, does not remove gridding artifacts entirely be-

cause of residual connections. The residual connections in levels 7 and 8 of DRN-B

can propagate gridding artifacts from level 6. To remove gridding artifacts more e↵ec-

tively, we remove the residual connections in levels 7 and 8. This yields the DRN-C,
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our proposed construction, illustrated in Figure 4.6(c). Note that the DRN-C has

higher depth and capacity than the corresponding DRN-A or the ResNet that had

been used as the starting point. However, we will show that the presented degridding

scheme has a dramatic e↵ect on accuracy, such that the accuracy gain compensates

for the added depth and capacity. For example, experiments will demonstrate that

DRN-C-26 has similar image classification accuracy to DRN-A-34 and higher object

localization and semantic segmentation accuracy than DRN-A-50.

The activations inside a DRN-C are illustrated in Figure 4.7. This figure shows a

feature map from the output of each level in the network. The feature map with the

largest average activation magnitude is shown. Although the representation of each

image only shows us one perspective of the layer, we can have a comprehensive view

of what the level is doing by looking at visualization of multiple images. For exam-

ple, in Figure 4.7, we can observe that Level 1 is separating low and high frequency

components of the input images. The images in the first two rows for Level 1 show

smoothed images compared to the inputs while the last row only shows the high fre-

quency component. Level 2 tries to preserve the object contour after downsampling.

Replacing max pooling with convolutions in Level 1 and 2 seems to be preserving

more information for the higher layers to learn from.

4.6 Experiments

4.6.1 Image Classification

Training is performed on the ImageNet 2012 training set [68]. The training procedure

is similar to He et al. [29]. We use scale and aspect ratio augmentation as in Szegedy et

al. [78] and color perturbation as in Krizhevsky et al. [42] and Howard [33]. Training

is performed by SGD with momentum 0.9 and weight decay 10�4. The learning rate
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is initially set to 10�1 and is reduced by a factor of 10 every 30 epochs. Training

proceeds for 120 epochs total.

Top-1 Top-5
# layers ResNet DRN-A ResNet DRN-A

18 30.43 27.97 10.76 9.54
34 26.73 24.81 8.74 7.54
50 24.01 22.94 7.02 6.57

Table 4.1: Image classification accuracy on the ImageNet 2012 validation set. Lower
is better. Each DRN outperforms the corresponding ResNet model.

The performance of trained models is evaluated on the ImageNet 2012 validation

set. The images are resized so that the shorter side has 256 pixels. We use two

evaluation protocols: 1-crop and 10-crop. In the 1-crop protocol, prediction accuracy

is measured on the central 224⇥224 crop. In the 10-crop protocol, prediction accuracy

is measured on 10 crops from each image. Specifically, for each image we take the

center crop, four corner crops, and flipped versions of these crops. The reported

10-crop accuracy is averaged over these 10 crops.

ResNet vs. DRN-A. Table 4.1 reports the accuracy of di↵erent models according

to both evaluation protocols. Each DRN-A outperforms the corresponding ResNet

model, despite having the same depth and capacity. For example, DRN-A-18 and

DRN-A-34 outperform ResNet-18 and ResNet-34 in 1-crop top-1 accuracy by 2.43

and 2.92 percentage points, respectively. (A 10.5% error reduction in the case of

ResNet-34 ! DRN-A-34.)

DRN-A-50 outperforms ResNet-50 in 1-crop top-1 accuracy by more than a

percentage point. For comparison, the corresponding error reduction achieved by

ResNet-152 over ResNet-101 is 0.3 percentage points. (From 22.44 to 22.16 on the

center crop.) These results indicate that even the direct transformation of a ResNet

into a DRN-A, which does not change the depth or capacity of the model at all,

significantly improves classification accuracy.
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Input ResNet-50 DRN-50 Input ResNet-50 DRN-50

Figure 4.8: Acivation maps produced by ResNet-50 and DRN-50 on images from the
ImageNet validation set. For each image, the figure shows activation maps for the
predicted class, produced by the procedure described in Section 4.4. Activation maps
produced by DRN are much better spatially resolved.
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Model
1 crop 10 crops

P

top-1 top-5 top-1 top-5

ResNet-18 30.43 10.76 28.22 9.42 11.7M
DRN-A-18 28.00 9.50 25.75 8.25 11.7M
DRN-B-26 25.19 7.91 23.33 6.69 21.1M
DRN-C-26 24.86 7.55 22.93 6.39 21.1M

ResNet-34 27.73 8.74 24.76 7.35 21.8M
DRN-A-34 24.81 7.54 22.64 6.34 21.8M
DRN-C-42 22.94 6.57 21.20 5.60 31.2M

ResNet-50 24.01 7.02 22.24 6.08 25.6M
DRN-A-50 22.94 6.57 21.34 5.74 25.6M

ResNet-101 22.44 6.21 21.08 5.35 44.5M

Table 4.2: Image classification accuracy (error rates) on the ImageNet 2012 validation
set. Lower is better. P is the number of parameters in each model.

DRN-A vs. DRN-C. Table 4.2 also shows that the degridding construction de-

scribed in Section 4.5 is beneficial. Specifically, each DRN-C significantly outperforms

the corresponding DRN-A. Although the degridding procedure increases depth and

capacity, the resultant increase in accuracy is so substantial that the transformed

DRN matches the accuracy of deeper models. Specifically, DRN-C-26, which is de-

rived from DRN-A-18, matches the accuracy of the deeper DRN-A-34. In turn,

DRN-C-42, which is derived from DRN-A-34, matches the accuracy of the deeper

DRN-A-50. Comparing the degridded DRN to the original ResNet models, we see

that DRN-C-42 approaches the accuracy of ResNet-101, although the latter is deeper

by a factor of 2.4.

Some examples are shown in Figure 4.10 to illustrate the di↵erence between DRN

and ResNet. ResNet-50 can make the wrong prediction when other objects are more

prominent than the labeled ones, while DRN-50 can classify those images correctly.

It indicates that it is helpful to keep spatial resolution to preserve object location

information, even for image classification.
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DRN-D After understanding the correct structure of the degridding layers, we fur-

ther explore how to simplify DRN-C. The proposed structure is shown in Figure 4.6

(d). The main change is to shrink the couples of 3 ⇥ 3 convolutions to a single

layers. It can improve the e�ciency of DRN-C, while still have degridding e↵ects.

The accuracies of DRN-D on ImageNet classification is shown in Table 4.3. The full

comparison of di↵erent DRN models and ResNets is shown in Figure 4.9. It shows

that DRN-D can achieve better performance compared to other models with similar

number of layers or more parameters.

Model
1 crop

P

top-1 top-5

ResNet-18 30.4 10.8 11.7M
DRN-D-22 25.8 8.2 16.4M

ResNet-34 27.7 8.7 21.8M
DRN-D-38 23.8 6.9 26.5M

ResNet-50 24.0 7.0 25.6M
DRN-D-54 21.2 5.9 35.8M

ResNet-101 22.4 6.2 44.5M
DRN-D-105 20.6 5.5 54.8M

ResNet-152 22.2 6.2 60.2M

Table 4.3: Image classification accuracy (error rates) on the ImageNet 2012 validation
set. Lower is better. P is the number of parameters in each model.

4.6.2 Object Localization

We now evaluate the use of DRNs for weakly-supervised object localization, as de-

scribed in Section 4.4. As shown in Figure 4.8, class activation maps provided by

DRNs are much better spatially resolved than activation maps extracted from the

corresponding ResNet.
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Figure 4.9: Visual comparison of di↵erent models regarding model accuracy and
paramter e�ciency.

We evaluate the utility of the high-resolution activation maps provided by DRNs

for weakly-supervised object localization using the ImageNet 2012 validation set. We

first predict the image categories based on 10-crop testing. Since the ground truth is

in the form of bounding boxes, we need to fit bounding boxes to the activation maps.

We predict the object bounding boxes by analyzing the class responses on all the

response maps. The general idea is to find tight bounding boxes that cover pixels for

which the dominant response indicates the correct object class. Specifically, given C

response maps of resolution W⇥H, let f(c, w, h) be the response at location (w, h) on

the cth response map. In the ImageNet dataset, C is 1000. We identify the dominant

class at each location:

g(w, h) =
�
c | 81  c

0  C. f(c, w, h) � f(c0, w, h)
 
.
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Pitcher (0.18) Mortar (0.23)

Espresso maker (0.98) Screwdriver (0.99)

Bison (0.66) Timber wolf (0.71)

Megalith (0.83) Chain (0.82)

Input ResNet-50 DRN-50

Figure 4.10: Images with small objects classified correctly by DRN-50 but missed by
ResNet-50. The small captions above each activation map above are the predicted
categories and their probability based on 10-crop testing. Smaller objects in the
images can be better recognized by DRN-50.
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For each class c
i

, define the set of valid bounding boxes as

B
i

=
�
((w1, h1), (w2, h2))|8g(w, h) = c

i

and f(w, h, c
i

) > t.

w1  w  w2 and h1  h  h2

 
,

where t is an activation threshold. The minimal bounding box for class c
i

is defined

as

b
i

= argmin
((w1,h1),(w2,h2))2B

i

(w2 � w1)(h2 � h1). (4.5)

To evaluate the accuracy of DRNs on weakly-supervised object localization, we

simply compute the minimal bounding box b
i

for the predicted class i on each image.

In the localization challenge, a predicted bounding box is considered accurate when its

IoU with the ground-truth box is greater than 0.5. Table 4.4 reports the results. Note

that the classification networks are used for localization directly, with no fine-tuning.

As shown in Table 4.4, DRNs outperform the corresponding ResNet models.

(Compare ResNet-18 to DRN-A-18, ResNet-34 to DRN-A-34, and ResNet-50 to

DRN-A-50.) This again illustrates the benefits of the basic DRN construction pre-

sented in Section 4.3. Furthermore, DRN-C-26 significantly outperforms DRN-A-50,

despite having much lower depth. This indicates that that the degridding scheme de-

scribed in Section 4.5 has particularly significant benefits for applications that require

more detailed spatial image analysis. DRN-C-26 also outperforms ResNet-101.

To evaluate the accuracy of DRNs on weakly-supervised object localization, we

simply compute the minimal bounding box b
i

for the predicted class i on each image.

In the localization challenge, a predicted bounding box is considered accurate when

its IoU with the ground-truth box is greater than 0.5. Table 4.4 reports the results.

DRNs achieve lower error than corresponding ResNets, and DRN-34 and DRN-50

outperform the state-of-the-art method of Zhou et al. [95] in top-1 accuracy. Note that
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Model top-1 top-5

ResNet-18 61.5 59.3

DRN-A-18 54.6 48.2

DRN-B-26 53.8 49.3

DRN-C-26 52.3 47.7

ResNet-34 58.7 56.4

DRN-A-34 55.5 50.7

DRN-C-42 50.7 46.8

ResNet-50 55.7 52.8

DRN-A-50 54.0 48.4

ResNet-101 54.6 51.9

Table 4.4: Weakly-supervised object localization error rates on the ImageNet valida-
tion set. Lower is better. The degridded DRN-C-26 outperforms DRN-A-50, despite
lower depth and classification accuracy. DRN-C-26 also outperforms ResNet-101.

unlike the method of Zhou et al. [95], our results were produced with no additional

training. Examples of weakly-supervised localization are shown in Figure 4.11.

The class response maps produced by DRNs can also be used for weakly-supervised

segmentation. This is illustrated in Figure 4.12. For this purpose, we simply apply

GrabCut [66] to the bounding box b
i

computed as described above for the predicted

class i. The class activation map is treated as the unary energy. The results suggest

that a DRN trained for image classification, with no localization or segmentation

supervision, can produce clean object segmentations with no fine-tuning.

4.6.3 Semantic Segmentation

We now transfer DRNs to semantic segmentation. High-resolution internal repre-

sentations are known to be important for this task [52, 89, 14]. Due to the severe

downsampling in prior image classification architectures, their transfer to semantic

segmentation necessitated post-hoc adaptations such as up-convolutions, skip con-

nections, and post-hoc dilation [52, 8, 55, 89]. In contrast, the high resolution of the

73



Figure 4.11: Weakly-supervised object localization by DRN-50 on images from the
ImageNet validation set. The ground-truth bounding box is shown in red, the bound-
ing box predicted by our approach is shown in blue.
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Input Activation Segmentation

Figure 4.12: Weakly-supervised object segmentation using DRN-50.

75



Road

Sidewalk

Building

Wall

Fence

Pole

Light

Sign

Vegetation

Terrain

Sky

Person

Rider

Car

Truck

Bus

Train

Motorcycle

Bicycle

mean IoU

D
R
N
-A

-5
0

96
.9

77
.4

90
.3

35
.8

42
.8

59
.0

6
6
.8

74
.5

91
.6

57
.0

93
.4

78
.7

55
.3

92
.1

43
.2

59
.5

36
.2

5
2
.0

7
5
.2

67
.3

D
R
N
-C

-2
6

97
.4

80
.7

90
.4

36
.1

47
.0

56
.9

63
.8

73
.0

91
.2

5
7
.9

93
.4

77
.3

53
.8

92
.7

45
.0

70
.5

48
.4

44
.2

72
.8

68
.0

D
R
N
-C

-4
2

9
7
.7

8
2
.2

9
1
.2

4
0
.5

5
2
.6

5
9
.2

66
.7

7
4
.6

9
1
.7

57
.7

9
4
.1

7
9
.1

5
6
.0

9
3
.6

5
6
.0

7
4
.3

5
4
.7

50
.9

74
.1

7
0
.9

T
ab

le
4.
5:

P
er
fo
rm

an
ce

of
d
il
at
ed

re
si
d
u
al

n
et
w
or
ks

on
th
e
C
it
ys
ca
p
es

va
li
d
at
io
n
se
t.

H
ig
h
er

is
b
et
te
r.

D
R
N
-C

-2
6
ou

tp
er
fo
rm

s
D
R
N
-A

-5
0,

d
es
p
it
e
lo
w
er

d
ep
th
.

D
R
N
-C

-4
2
ac
h
ie
ve
s
ev
en

h
ig
h
er

ac
cu
ra
cy
.

F
or

re
fe
re
n
ce
,
a
co
m
p
ar
ab

le
b
as
el
in
e
se
tu
p
of

R
es
N
et
-1
01

w
as

re
p
or
te
d
to

ac
h
ie
ve

a
m
ea
n
Io
U

of
66
.6
.

76



(a
)
In
p
u
t

(b
)
D
R
N
-A

-5
0

(c
)
D
R
N
-C

-2
6

(d
)
G
ro
u
n
d
tr
u
th

F
ig
u
re

4.
13
:
S
em

an
ti
c
se
gm

en
ta
ti
on

on
th
e
C
it
ys
ca
p
es

d
at
as
et
.
T
h
e
d
eg
ri
d
d
ed

D
R
N
-C

-2
6
p
ro
d
u
ce
s
cl
ea
n
er

re
su
lt
s
th
an

th
e

d
ee
p
er

D
R
N
-A

-5
0.

77



output layer in a DRN means that we can transfer a classification-trained DRN to se-

mantic segmentation by simply removing the global pooling layer and operating the

network fully-convolutionally [52], without any additional structural changes. The

predictions synthesized by the output layer are upsampled to full resolution using

bilinear interpolation, which does not involve any parameters.

We evaluate this capability using the Cityscapes dataset [14]. We use the standard

Cityscapes training and validation sets. To understand the properties of the models

themselves, we only use image cropping and mirroring for training. We do not use

any other data augmentation and do not append additional modules to the network.

The results are reported in Table 4.5.

All presented models outperform a comparable baseline setup of ResNet-101,

which was reported to achieve a mean IoU of 66.6 [8]. For example, DRN-C-26

outperforms the ResNet-101 baseline by more than a percentage point, despite hav-

ing 4 times lower depth. The DRN-C-42 model outperforms the ResNet-101 baseline

by more than 4 percentage points, despite 2.4 times lower depth. We also test the

state-of-the-art training method on Cityscapes following PSPNet [91]. DRN-D-105

get 76.2% mIoU on Cityscapes testing set, which is the state-of-the-art results without

using additional context modules on this challenging dataset.

Comparing di↵erent DRN models, we see that both DRN-C-26 and DRN-C-42

outperform DRN-A-50, suggesting that the degridding construction presented in Sec-

tion 4.5 is particularly beneficial for dense prediction tasks. A qualitative comparison

between DRN-A-50 and DRN-C-26 is shown in Figure 4.13. As the images show, the

predictions of DRN-A-50 are marred by gridding artifacts even though the model was

trained with dense pixel-level supervision. In contrast, the predictions of DRN-C-26

are not only more accurate, but also visibly cleaner.
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4.7 Conclusion

We have presented an approach to designing image classification networks. Rather

than progressively reducing the resolution of the internal representations until the

spatial structure of the scene is no longer discernable, we keep high spatial resolution

all the way through the final output layers. We have shown that this design increases

image classification accuracy, outperforming state-of-the-art models on the ImageNet

dataset. We have further shown that the presented image classification networks pro-

duce informative output activations, which can be used directly for weakly-supervised

object localization, without any fine-tuning. Experiments also demonstrated that the

presented design supports direct transfer to dense fully-convolutional operation, pro-

viding state-of-the-art performance without post-hoc reconfiguration. The results

suggest that the presented approach can usefully inform the design of convolutional

networks for complex natural images.
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Chapter 5

Conclusion

5.1 Key Problems and Contributions

Pixel-wise prediction is a generalization of computer vision tasks. They range from

estimating low-level geometry to understanding high-level semantics in images. Even

though most of the problems are studied in isolation, they share some common in-

sights. They all require a rich image representation that can connect the pixels to

the semantics. The representation also has to be invariant to scale and incorporate

context information. We also show that videos can also help obtain plausible esti-

mations without a training process, even though the motion between video frames

are very small. This thesis observes the connections among the pixel-level prediction

tasks and tries to build a basic framework for them.

We first investigate depth prediction based on images captured by mobile applica-

tion. We observe that there are numerous other frames around the target image that

can provide auxiliary geometry information. However, the small baselines between

the additional frames prohibit the traditional methods to work reliably. We look into

the structure from motion formulation and analyze the convex properties of di↵er-

ent motion and structure variables. We find that some properties such as camera

80



rotation and view angles of points on the infinite plane are easier to optimize. How-

ever, the estimated 3D structures usually have high uncertainty. We propose to use

densely connected conditional random field to regularize the dense depth estimation

and it is shown to work better than locally connected constraints. The analysis leads

to a pipeline that can produce plausible depth estimation for di↵erent computation

photography e↵ects.

To build high-level semantic image representation, we study the usage of dilated

convolutions in the convolutional networks. Dilated convolutions have two prominent

properties, which make them suitable for constructing dense prediction networks.

First, we can increase the output resolution of an image classification networks by

replacing the strides with dilations without changing the number of parameters and

connections between original activations. Second, by exponentially increasing the

dilations through layers, we are able to increase the receptive fields of di↵erent layers

exponentially. This can help aggregate context information from a large extent on the

images. Our experiments show that the dilated networks can outperform alternative

designs using skip connections for up-sampling. We also find that our context module

composed of convolutional layers with exponentially increased dilations can further

improve the results significantly.

Although dilated convolutions can transform an existing image classification net-

works to have higher resolution output without adding additional parameters, it is

questionable that the transformation is necessary. Therefore, we investigate the dif-

ference between image classification and segmentation by studying the role of high-

resolution layers enabled by dilation convolutions in image classification. To conduct

the study based on state-of-the-art networks, we compare dilated residual networks to

the original ResNets with the same number of parameters and layers. Interestingly,

we find that the dilated residual networks always perform better than their counter-

parts with the same number of parameters and layers. This suggests that the spatial
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resolution of layers also plays an important role in network capacity. To understand

the layer activations arising from the high spatial resolution, we visualize the class ac-

tivations without retraining the networks. We find that there are gridding artifacts in

the feature maps. Its impact on semantic image segmentation motivates our further

study into removing the artifacts. Our layer visualization shows that the gridding

artifacts is due to compound e↵ects of the discontinuity in the layer responses and

dilated convolutions. Hence, we proposed changes to the directly dilated networks.

The new networks can produce smooth class activation maps and improve the per-

formance of the classification networks. What’s more, the new networks also produce

better results in semantic image classification.

This thesis studies geometry, semantic and context cues for pixel-level prediction

problems. The ideas have inspired new developments in these fields. This work

alludes to several future directions.

5.2 Future Works

5.2.1 Connections between Geometry and Semantics

Staring at an image of a natural scene, we can write a long essay to describe the

3D relations between the objects, because we can recognize grouping of pixels and

their occlusion orders. The same cues can also help the computers to infer better

3D information from either a single image or a collection of images with accidental

motion. The model will have to recognize the high-level information to infer geometry

relations and hopefully aid semantic image understanding with geometry knowledge.

We hope to combine the 3D geometry knowledge with semantic information in a

single learning system.
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5.2.2 Unified Framework for Image Recognition

In this thesis, we understand that there is no essential di↵erence between image classi-

fication, which only requires one single prediction for the whole image, and pixel-wise

prediction problems. This motivates us to explore in two directions. First, image

recognition also includes other problems such as object detection and boundary pre-

diction. Current works are designing di↵erent models for di↵erent problems, although

they share some common requirements such as semantics and contexts. This practice

also hinders the application of convolutional networks in real-world scenarios. We

hope to design a more general framework that can achieve state-of-the-art perfor-

mance on all these problems so that it can provide a base representation for di↵erent

perception tasks. Second, such unified framework also has to be e�cient regarding

parameters and computation so that it can be applied to di↵erent domains without

incurring overhead. We hope this thesis work can inspire future discovery of such

unified network.
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