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Abstract

We present a (almost complete) machine-checked proof of functional correctness of a
C implementation of the AES encryption algorithm. The proof is written in Coq,
using the Verified Software Toolchain (VST), which connects to the CompCert verified
C compiler. Since both of these come with a machine-checked correctness proof, we
obtain an end-to-end proof linking the high-level specification of AES to the assembly
code produced by CompCert.

Moreover, we report on the challenges encountered with VST’s proof automation
library, and identify and implement the improvements needed to write the AES proof,
such as a generalization of the proof automation for memory loads and stores allowing
accesses to nested fields inside arrays and/or structs whose access path is not explicitly
written in the load or store statement, a more careful invocation of Coq’s term sim-
plification preventing unfeasibly slow proof script running times, and various usability
improvements.
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1 Introduction

The Verified Software Toolchain (VST) [5] is a Coq framework allowing one to prove
that a C program conforms to a specification written in Coq. C programs are parsed
into a Coq-defined abstract syntax tree data structure. Then, the VST user can define
preconditions and postconditions for each function of the C program, and using the
Hoare-style separation logic rules provided by VST, one can step through the parsed
C code and prove that each execution satisfies the postcondition, if the precondition
holds.

The first contribution of this work is a (almost complete) machine-checked VST
proof of functional correctness of the AES encryption algorithm as implemented in the
open-source library called mbedTLS.

We present a functional program written in Coq which closely follows the specifi-
cation for the Advanced Encryption Standard [20], and we prove that the mbedTLS
C implementation, which is heavily optimized and does not resemble the specification,
produces the same output as the specification.

And since VST comes with a proof that it accepts no C programs with undefined
behavior, a corollary of our proof is that the AES C program does not have any unde-
fined behavior. This is an interesting result because often, undefined behavior can be
exploited by attackers.

The other contributions are improvements to the proof automation infrastructure of
the Verified Software Toolchain needed to write the AES proof. For instance, Figure 1b
shows a snippet from the AES code containing a memory store where the “path” to the
modified value is not completely contained in the store instruction, but distributed into
two instructions: The first part of the path, ->rk, is outside the loop, and the second
part, [i], is inside the loop.

Such memory accesses were originally not supported by the proof automation tactics
of VST, and one had either to use the most low-level separation logic rule for memory
stores, which would require several dozen lines of proof script code for just this single
store instruction, or one had to rewrite the C code such that the whole path, ->rk[i],
is contained in the store instruction, as in Figure 1c.

Overall, our contributions are the following:

• In Section 3, we present a low-level Coq specification of AES encryption closely
following the mbedTLS implementation, and two machine-checked proofs: First,
a proof using VST that the mbedTLS C implementation of AES conforms to the
low-level Coq specification, and second, a proof that the low-level Coq specification
is equivalent to a previously developed high-level specification in Coq [18] which
closely follows the AES standard document [20].

• We present a generalization to VST’s proof automation tactics for memory loads
and stores in Section 4 and argue that, except for VST’s known restrictions,
there will be no further C code examples requiring a generalization of the proof
automation for loads and stores.

• We discuss the challenges regarding term reduction that occur in large proofs
about program behavior in Section 5, and show techniques to make sure terms
are reduced enough so that they reach the form in which the desired lemmas can
be applied, while ensuring at the same time that reduction is not too eager and
creates terms of exponentially growing size.
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typedef struct aes_context_struct {

int nr; // number of rounds

uint32_t rk[60]; // round keys

} aes_context;

aes_context *ctx;

(a) The aes_context type used in the subsequent examples

uint32_t *RK = ctx->rk;

for (int i = 0; i < 8; i++) {

RK[i] = ...

}

(b) Code snippet which was not supported
originally, but now is

for (int i = 0; i < 8; i++) {

ctx->rk[i] = ...

}

(c) Equivalent code to which it had to be
rewritten

Figure 1: Simplified code snippet from AES illustrating a shortcoming of the original
load/store tactics

• We present various usability improvements to VST in Section 6.

Besides this, Section 2 gives some background on VST, Section 7 proposes directions
for future work, Section 8 discusses related work, and Section 9 concludes.
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2 VST preliminaries

This section presents the minimum VST preliminaries necessary to follow the subsequent
sections about its proof automation. For a more detailed presentation, we refer to the
VST book [4] and to the Verifiable C manual [3].

2.1 VST proof scripts

To prove that a C function conforms to a specification consisting of precondition Pre
and postcondition Post , one has to prove the Hoare triple ∆ ` {Pre} body {Post} using
the separation logic rules of Verifiable C [4]. body is the parsed C code of the function’s
body, and ∆ is a type context containing the types of function parameters, local and
global variables, and specifications of global functions.

To do so, one performs forward symbolic execution, that is, step through the com-
mands of body and for each command, apply the separation logic rule for that command,
and continue with the postcondition of that rule as the new precondition.

Most such steps can be automated by Floyd’s tactic called forward, which determines
what rule should be applied, and solves all (or most) side conditions of that rule. If a
side condition cannot be solved automatically, it is left as an additional open goal, and
has to be proved manually.

There are three kinds of C commands which can only be stepped through automat-
ically if the user provides some knowledge which is considered too hard to be inferred
automatically: Loops, because they require a loop invariant, if-then-else statements,
because they require a postcondition unifying the two branches, and function calls, be-
cause they require each parameter of the function specification to be instantiated. For
those three cases, there are separate tactics called forward for/forward while, forward if,
and forward call.

So, a proof in VST typically consists of many invocations of those tactics, and some
manual proofs of nontrivial side-conditions.

2.2 Canonical form of VST Hoare triples

In order to make pre- and postconditions more readable for users, and more suit-
able for automation at the same time, they are represented in the canonical form
PROP(~P )LOCAL( ~Q)SEP(~R), where ~P is a list of propositions of Coq’s type Prop, ~Q
is a list of local-variable definitions, and ~R is a list of separation-logic assertions about
memory blocks. In this representation, the clauses in each of the three lists are sepa-
rated by semicolons, but for the clauses in ~P and ~Q, the semicolon actually stands for
∧ (logical and), whereas in ~R, it stands for ∗ (separating conjunction).

So, the canonical form of the proof goals that users (and tactics) generally see is

∆ ` {PROP(~P )LOCAL( ~Q)SEP(~R)} c {PROP( ~P ′)LOCAL( ~Q′)SEP( ~R′)}

where c is one or several C commands.1 We will refer to the separation logic clauses in
~R as “SEP clauses”.

1C’s command-separating semicolon is an AST constructor in the Coq C representation, so a list of
C commands can be represented as one single C command.
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2.3 SEP clause predicates for structs and arrays

VST’s basic separation logic rules are defined in terms of the mapsto operator. On
paper, it’s usually written as v1 7→ v2, and means that value v1 is a pointer pointing
to a memory location which stores value v2. In VST, mapsto takes two additional
arguments, a share sh indicating read/write permissions, and t, the type of v2, so a
mapsto predicate in VST has the form mapsto sh t v1 v2.

However, v2 can only be a primitive value (i.e. a 32 or 64 bit integer or float, or
a pointer, or uninitialized), so if we want to talk about structs and arrays, we have
to give one clause for each primitive value of the struct or array. In pen-and-paper
developments, this is usually written like v1.first 7→ va ∗ v1.second 7→ vb, or abbreviated
into the notation v1 7→ (va, vb). To make this more formal, one usually also adds the
type of the value, so the notation becomes v1 7→τ (va, vb), where τ is a type.

This notation is called data at in Coq, and the previous example would be written as
data at sh τ (va, vb) v1. To define data at in Coq, we need to split the compound value
into its primitive values, so we also need to define formally the notation v1.first 7→ va,
where we have a “path” on the left-hand side of the maps-to operator. To do so, we
make the following definitions:

A general field (written gfield in Coq) is an array index [i] or the name f of a struct
field, and a path (written list gfield in Coq) is a list of general fields.

The field at assertion is defined in Coq in terms of mapsto, and field at sh t p v a
means that the value a is a pointer pointing to an array or struct of type t with permis-
sions sh, and that the path p exists in this array or struct, and “leads” to value v.

For instance, if ctx is a variable as defined in Figure 1a, then

field at sh aes context (DOT rk SUB i) v ctx

means that the memory location denoted by the C expression (*ctx).rk[i] contains
the value v.2

The Coq type of value v is a dependent type and depends on the type of the struct or
array and on the path. This allows field at to talk not only about primitive values, but
also about the value of a whole struct or array at once. Struct values are represented
using Coq pairs, and array values are represented using Coq lists.

So, to continue the example, the assertion field at sh aes context (DOT rk) myList ctx
can now talk about the whole contents of the round key array at once, saying that they
equal the Coq-defined list myList.

Of course, we can also pass the empty path to field at, in which case the provided
value has to describe the whole structure stored at the given pointer. This special case
of field at is in fact data at, i.e. we define data at sh t v a := field at sh t nil v a.

2DOT and SUB are Coq notations used to make lists of gfield more readable. DOT is used to select
a field, and SUB is used to give an array index.
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3 The AES encryption case study

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm and is
specified in the Federal Information Processing Standards (FIPS) Publication 197 [20].
It is written mostly in English, using some mathematical notations and some pseudo-
code.

Lyubomirsky translated the FIPS publication into Coq [18], following it as closely
as possible. We will refer to his specification as the high-level specification.

high-level Coq
specification

FIPS 197:
AES

corresponds

low-level Coq
specification

equivalence
proof

Clight
AST in Coq

proof using
VST

mbedTLS C
implementation

clightgen
parser

assembly code

CompCert
compiler

Figure 2: Overview of specifications and proofs. Items in bold font were developed in
this project, items in italics are previous work by other authors.

The mbedTLS library implements AES encryption, but does not directly follow
the FIPS specification, because this would not be efficient enough. While the FIPS
specification defines AES in terms of four kinds of operations on 4×4 matrices over the
Galois Field GF(28), the mbedTLS implementation precalculates many values before
doing encryption, merges the four kinds of operations into one, and only performs table
lookups and bitwise XOR operations on 32-bit integers during encryption.

Therefore, it makes sense to split the proof that the mbedTLS implementation con-
forms to the high-level specification into two parts: First, we prove, using VST, that it
conforms to a low-level specification written in Coq, which follows the mbedTLS imple-
mentation as closely as possible, and second, we prove that the low-level specification
is equivalent to the high-level specification.

Now, since VST is compatible with the CompCert verified C compiler [17], we get
a proof of the following end-to-end statement:3

3There are still several trusted parts: The Calculus of Inductive Constructions, on which Coq is based,
the axioms of dependent functional extensionality and propositional extensionality, the Coq kernel, the
OCaml compiler, because it is used to compile the Coq kernel, as well as the OCaml runtime, the
high-level specification, the specification of CompCert (but not its specification of C), the assembler
producing machine code from assembly code, as well as the hardware. Section 12 of Appel’s SHA-256
article [2] discusses the trusted base in more detail.
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If we run the verified AES program, compiled with CompCert, on hardware conform-
ing to CompCert’s specification of assembly language, its output in memory is the same
as specified by the high-level specification in Coq.

Figure 2 summarizes the components described above.

3.1 The C Code

The mbedTLS implementation contains three functions relevant for AES encryption,
shown in Figure 3.4

static void aes_gen_tables( void );

int mbedtls_aes_setkey_enc( mbedtls_aes_context *ctx,

const unsigned char *key,

unsigned int keybits );

void mbedtls_aes_encrypt( mbedtls_aes_context *ctx,

const unsigned char input[16],

unsigned char output[16] );

Figure 3: Signatures of the AES encryption functions

The type mbedtls_aes_context is (basically) the same as shown in Figure 1a and
is used to store the key and the number of rounds.

The table generation function The mbedTLS implementation uses so-called for-
warding tables storing key-independent precalculated values to speed up encryption.
The function aes_gen_tables calculates these tables, and is invoked when the key
expansion function is called the first time.

The key expansion function Before one can encrypt with AES, one has to set
the key using mbedtls_aes_setkey_enc. The argument keybits has to be one of the
supported key bit lengths of AES, i.e. 128, 192 or 256. In this project, we only treat
AES-256, so the argument key has to contain a 32-byte (= 256-bit) key. Since each of
the 14 encryption rounds needs its own 16 byte key, mbedtls_aes_setkey_enc has to
perform key expansion to derive more round keys from the original key, and it stores
them into the ctx struct.

The encryption function The mbedtls_aes_encrypt function takes a context with
an expanded key and a 16 byte input, and encrypts it to produce a 16 byte output. It
only performs table lookups and bitwise XOR operations, all the other operations were
precalculated by aes_gen_tables.

3.2 The high-level specification

The high-level specification was developed by Lyubomirsky and is described in detail in
his report [18].

4The full C code can be found at https://github.com/ARMmbed/mbedtls/blob/mbedtls-2.3.0/library/
aes.c, and the changes needed to make it conform to the subset of C supported by VST can be found
at https://github.com/PrincetonUniversity/VST/commits/master/aes/mbedtls/library/aes.c.
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When extracting the Coq code to OCaml and running it with some sample inputs,
we discovered and corrected a small bug in Lyubomirksy’s specification of key expan-
sion: Instead of doing an S-box substitution followed by a bitwise XOR with the round
constant, these two operations were swapped.5

i = Nk
while (i < Nb ∗ (Nr+1)]

temp = w[i-1]
if (i mod Nk = 0)

temp = SubWord(RotWord(temp))
xor Rcon[i/Nk]

else if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)

end if
w[i] = w[i-Nk] xor temp
i = i + 1

end while

(a) Pseudocode from FIPS 197

Definition GrowKeyByOne(w: list int): list int :=
let i := Zlength w in
let temp := (Znth (i-1) w Int.zero) in
let temp’ := if (i mod Nk =? 0) then

Int.xor (SubWord (RotWord temp))
(Znth (i/Nk) RCon Int.zero)

else if (i mod Nk =? 4) then
SubWord temp

else temp in
w ++ [Int.xor (Znth (i-Nk) w Int.zero) temp’]

.

(b) Coq code for one loop iteration

Fixpoint pow fun{T: Type}(f: T →T)(n: nat)(a: T): T := match n with
| O ⇒ a
| S m ⇒ f (pow fun f m a)
end.
Definition KeyExpansion: list int → list int := pow fun GrowKeyByOne (Z.to nat (Nb∗(Nr+1)-Nk)).

(c) Coq code needed to define the iteration

Figure 4: Key expansion code in the FIPS standard and in Coq

The second change to his specification is related to the problem that Coq’s Gallina
language is functional, whereas the specification of key expansion in FIPS 197 is done
in an imperative way, as one can see in Figure 4a. Lyubomirsky’s translation into Coq
did not look similar to the code in Figure 4a any more, and was 42 lines long.6

We improve on this by defining a function GrowKeyByOne (see Figure 4b), which
takes a partially expanded key and appends to it the new key entry calculated by one
iteration of the loop in Figure 4a. To turn this step function into the key expansion
function, we need to define the power function (repeated application of a function), and
apply it to GrowKeyByOne, as shown in Figure 4c.

While there is a significant difference between the FIPS specification and the Coq
specification regarding how the iteration is specified, we claim that at least between
Figure 4a and 4b, there is a clearly recognizable correspondence between the imperative
loop body and the functional GrowKeyByOne implementation.7

The complete high-level specification of AES is 229 lines long (without decryption),8

so we will not print it here, but its core, the definition of one round of encryption, is

5The fix is trivial can be found at https://github.com/PrincetonUniversity/VST/commit/0ac40d29.
6https://github.com/PrincetonUniversity/VST/blob/eaf41469/aes/AES256.v#L238-L279.
7The AES encryption algorithm is parameterized by the number of cipher rounds Nr, the number of

32 bit words in the key Nk, and the number of 32 bit words in a block (state) Nb, which take different
values depending on the key length. In this project, we only focus on the 256 bit key size, which implies
that Nr = 14, Nk = 8 and Nb = 4. Therefore, Nk > 6 always holds and we removed it from the Coq
specification.

8https://github.com/PrincetonUniversity/VST/blob/0ac40d29/aes/spec AES256 HL.v#L7-L235
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Definition round (s : state) (kb: block) : state :=
AddRoundKey (MixColumns (ShiftRows (SubBytes s))) kb.

Figure 5: High-level specification of one round of AES encryption

Definition mbed tls fround col (col0 col1 col2 col3 : int) (rk : Z) : int :=
(Int.xor (Int.xor (Int.xor (Int.xor (Int.repr rk)

(Znth (byte0 col0) FT0 Int.zero))
(Znth (byte1 col1) FT1 Int.zero))
(Znth (byte2 col2) FT2 Int.zero))
(Znth (byte3 col3) FT3 Int.zero)).

Definition mbed tls fround (cols : four ints) (rks : list Z) (i : Z) : four ints :=
match cols with (col0, (col1, (col2, col3))) ⇒

((mbed tls fround col col0 col1 col2 col3 (Znth i rks 0)),
((mbed tls fround col col1 col2 col3 col0 (Znth (i+1) rks 0)),
((mbed tls fround col col2 col3 col0 col1 (Znth (i+2) rks 0)),
(mbed tls fround col col3 col0 col1 col2 (Znth (i+3) rks 0)))))

end.

Figure 6: Low-level specification of one round of AES encryption

very concise, as one can see in Figure 5.

3.3 The low-level specification

The low-level specification consists of two parts: The first part is a functional program
written in Coq following the C code as closely as possible. This part does not depend
on any VST definitions, except that it uses the same 32 bit integer library as VST,
namely CompCert’s, and a list library which is part of VST. The second part is an API
specification using VST’s definitions to state the pre- and postconditions for each C
function.9

The functional low-level specification follows the optimized C code as closely
as possible, and therefore looks quite different from the high-level specification. For
comparison, we show one round of encryption in the low-level specification in Figure 6.
As one can see, it only performs bitwise XOR operations and lookups in the forward
tables FT0, FT1, FT2, FT3, which were pre-calculated by the table generation function.

The functional low-level specification was developed by stepping through the C code
with VST and copy-pasting the expressions that VST calculated from the C code. How-
ever, there was still a considerable manual effort needed to write the low-level specifica-
tion, because to avoid unreasonably big expressions with code repetition, appropriate
definitions had to be made and used, and loop invariants, which were sometimes even
more complex than the low-level specification, had to be found manually.

9Lyubomirsky had developed partially finished definitions for both parts, but since he did not write
any VST proofs, they did not really match the C code and had to be rewritten essentially from scratch.
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Definition encryption spec low level :=
DECLARE mbedtls aes encrypt
WITH ctx : val, input : val, output : val, (∗ arguments ∗)

ctx sh : share, in sh : share, out sh : share, (∗ shares ∗)
plaintext : list Z, (∗ 16 chars ∗)
exp key : list Z, (∗ expanded key, 4∗(Nr+1)=60 32-bit integers ∗)
tables : val (∗ global var ∗)

PRE [ ctx OF (tptr t struct aesctx), input OF (tptr tuchar), output OF (tptr tuchar) ]
PROP(Zlength plaintext = 16; Zlength exp key = 60;

readable share ctx sh; readable share in sh; writable share out sh)
LOCAL(temp ctx ctx; temp input input; temp output output; gvar tables tables)
SEP(data at ctx sh (t struct aesctx) (

(Vint (Int.repr Nr)),
((field address t struct aesctx [StructField buf] ctx),
(map Vint (map Int.repr (exp key ++ (list repeat (8%nat) 0)))))

) ctx;
data at in sh (tarray tuchar 16) (map Vint (map Int.repr plaintext)) input;
data at out sh (tarray tuchar 16) output;
tables initialized tables)

POST [ tvoid ]
PROP() LOCAL()
SEP(data at ctx sh (t struct aesctx) (

(Vint (Int.repr Nr)),
((field address t struct aesctx [StructField buf] ctx),
(map Vint (map Int.repr (exp key ++ (list repeat (8%nat) 0)))))

) ctx;
data at in sh (tarray tuchar 16) (map Vint (map Int.repr plaintext)) input;
data at out sh (tarray tuchar 16)

(map Vint (mbed tls aes enc plaintext (exp key ++ (list repeat (8%nat) 0)))) output;
tables initialized tables).

Figure 7: The low-level API specification of the AES encryption function
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The API specification for the encryption function is given in Figure 7, while we
refer to the GitHub repo for the API specifications of the other two functions.10

The definition in Figure 7 specifies a pre- and postcondition for the C function
named mbedtls_aes_encrypt, whose C signature was given in Figure 3. It uses VST’s
notation

DECLARE f WITH ~w PRE [ ~a ] φpre POST [ r ] φpost

where f is the name of the C function, ~w is a list of universally quantified variables
on which both the pre- and postcondition may depend (which allows to say how values
before execution of the function relate to values after execution of the function), ~a
gives the types of the function arguments, r is the return type of the function, φpre
is the precondition and φpost is the postcondition. Both φpre and φpost are in the

PROP(~P )LOCAL( ~Q)SEP(~R) canonical form explained in section 2.2.
In the precondition, the PROP clause specifies the length of the plaintext and the

expanded key, and requires that the shares for the inputs grant read permission, and
that the share for the output grants write permission. The LOCAL clause links function
arguments and global variables to Coq values listed in the WITH clause, and the SEP

clause uses data at (see section 2.3) to give separation logic formulae describing the
requirements on the heap. The first data at clause describes the context data structure,
and besides some details, the important statement is that it stores the expanded key
exp key. The second data at clause says that the input contains the plaintext, and the
third data at clause specifies the memory area where write access for the output is
required. The trailing underscore in data at means that the values of this memory area
may be undefined before the function is invoked.

In the postcondition, the PROP clause is empty, because it could only talk about
Coq values given in the WITH clause, but these are immutable, so everything which was
true about them before the invocation of the function is still true after the invocation,
even if we do not say it. The LOCAL clause is also empty, because function arguments
are not visible after the invocation, and all global variables are immutable pointers,
so nothing could change there. The first two data at clauses inside the SEP clause are
the same as in the precondition, because we expect the encryption function to leave
these unmodified. The third data at clause, however, changed, and contains the most
important part of this whole specification: It says that the memory area pointed to by
output now stores the result of applying the low-level Coq specification function named
mbed tls aes enc to the arguments plaintext and exp key.

3.4 The VST proof

For each of the three considered functions, i.e. table generation, key expansion, and
encryption, we prove that it conforms to its API specification.11

The proof statement for the encryption function looks as follows (the other two
statemtents are similar):

Theorem body aes encrypt:
semax body Vprog Gprog f mbedtls aes encrypt encryption spec low level.

10https://github.com/PrincetonUniversity/VST/blob/master/aes/verif setkey enc LL.v
and https://github.com/PrincetonUniversity/VST/blob/master/aes/verif gen tables LL.v

11The Coq proofs can be found at https://github.com/PrincetonUniversity/VST/tree/master/aes, in
the files verif gen tables LL.v, verif setkey enc LL.v, and verif encryption LL.v, respectively.
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Here, Vprog is the list of global variables of the program, Gprog is the list of all
functions together with their specification, f mbedtls aes encrypt is the parsed abstract
syntax tree of the C function, and encryption spec low level is the API specification given
in Figure 7. And the meaning of semax body is that if we derive an environment ∆ from
Vprog and Gprog, and call the precondition in Figure 7 φpre and the postcondition φpost,
and body is the body of f mbedtls aes encrypt, then the following Hoare triple holds:

∆ ` {φpre} body {φpost}

To summarize the proofs, they consist of the following kinds of proof code:

• Calls to the VST tactics forward, forward for, and forward if. forward requires no
argument, whereas forward for requires a loop invariant, and forward if requires a
postcondition, and specifying these can result in lengthy code.

• Often, the above tactics cannot solve all separation logic entailments automati-
cally. For these cases, some manual proving is needed.
For instance, to keep the proof search space reasonably sized, the automatic en-
tailment solver does not unfold data at assertions which talk about the contents
of a whole struct into one assertion per field, but this is necessary to prove an
entailment if the data at assertion was unfolded on one side of the turnstile, but
not on the other side.

• Sometimes, it is useful to make the current proof goal “nicer” or more suitable for
automation before invoking the next tactic.
For instance, while an array is being initialized, it is best represented in Coq as a
list val, because val can be either uninitialized or hold a value. But once the array
is initialized, it’s better to represent it in Coq as a list int, which makes it clear
that the list cannot contain any undefined values. The decision to perform such a
representation change has to be taken by the user.

• Code needed to replace the expressions inferred by VST from the C code with
definitions of the low-level functional specification.
For instance, in the proof of the encryption function, the value of a variable
calculated by VST sometimes looks like the right-hand side of the definition
of mbed tls fround col (Figure 6), and has to be replaced by an invocation of
mbed tls fround col to keep the proof state at a reasonable size.

During the development of these proofs, many usability issues of the Floyd tactics
library were found. For each of them, either a work-around in the proof script was found,
and it was marked with a “TODO floyd” note, so that future contributors can search
for this string and find examples where the Floyd tactics library could be improved, or
the issue was addressed and solved as a part of this project. These improvements are
described in sections 4, 5, and 6.

3.5 The low-level/high-level equivalence proof

To establish equivalence between the low-level and high-level specifications, we prove12

the lemma stated in Figure 8.
Notice that the high-level encryption function, called Cipher, has a different input

and output format than the low-level encryption function mbed tls aes enc: To represent

12https://github.com/PrincetonUniversity/VST/blob/master/aes/equiv encryption.v
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Lemma HL equiv LL encryption: ∀ exp key plaintext,
Zlength exp key = 15 →
(mbed tls aes enc

(map Int.unsigned (state to list plaintext))
((blocks to Zwords exp key) ++ (list repeat (8%nat) 0))

) = output four ints as bytes (state to four ints (Cipher exp key plaintext)).

Figure 8: The low-level/high-level equivalence proof statement

128-bit encryption states, the former uses 4× 4 matrices of 8-bit integers, whereas the
latter uses quadruples of 32-bit integers. Therefore, if the lemma quantifies over input
data in high-level format, it can be directly fed to the high-level encryption function
Cipher, but needs conversion before being passed to the low-level mbed tls aes enc. And
to compare the outputs in the low-level format, we can directly use the output of
mbed tls aes enc, but we have to convert the output of Cipher from the high-level format
into the low-level format.

The proof consists mostly of unfolding the definitions on both sides of the equality,
rewriting expressions using associativity, commutativity and distributivity rules, until
the two sides of the equality match.

However, two difficulties were encountered while working on the proof:

HL plaintext LL plaintext

compare LL ciphertext

convert

convert

encrypt encrypt

(a) First approach: Starting with a plain-
text in high-level format, and doing the
comparison in the high-level format

HL plaintext LL plaintext

HL ciphertext compare

convert

convert

encrypt encrypt

(b) Simpler approach: Still starting with
a plaintext in high-level format, but doing
the comparison in the low-level format

Figure 9: Two ways of stating the equivalence proof between the high-level (HL) and
low-level (LL) specification

The first difficulty was that originally, we used a different proof statement: Instead
of comparing the output in the low-level format, we compared it in the high-level format.
The difference between these two approaches is illustrated by Figure 9. This approach
turned out to be much more complicated, because we not only need conversion functions
from the high-level format to the low-level format, but also the inverse, as well as
lemmas stating that these two functions are inverses of each other, and we have to
apply these lemmas in appropriate places. Therefore, approach (a) was given up, and
the proof was finished in approach (b). Note, though, that the proof statement in (b)
is slightly weaker than in (a) in the sense that we have to trust that the two conversion
functions are correct (i.e., they are part of the proof statement). To illustrate this
with an extreme example, if the two conversion functions in approach (b) were just
constant functions, and the low-level encryption was just the identity function, the proof
would still work. In approach (a), however, it would not work, because the high-level
encryption function is invertible, so each of the three functions on the path claimed to
be equivalent, i.e. plaintext conversion, low-level encryption, and ciphertext conversion,
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have to be invertible as well.
The second difficulty was that at some point in the proof, the two sides of the

equality did not match, in a way which suggested that the statement we were trying
to prove was false. To debug this problem, the QuickChick [23] tool proved to be very
useful: Given a computable property, it evaluates the property with a large number of
randomly generated inputs, and tells the user if the property holds for all tested inputs,
or reports a counterexample otherwise. Using QuickChick, the problem could be tracked
down to an admitted lemma which looked trivially true and seemed to be just tedious
bit fiddling, but turned out to be false because of confusion about endian-ness.

3.6 Status of the proofs

During proof development, the Coq proof assistant allows users to pose axioms, or to
assume an unfinished proof holds by ending it with the keyword Admitted. This allows
one to focus on the interesting parts of the proofs first, and prove the less interesting
lemmas later.

At the time of writing, some required lemmas were admitted, i.e. are not yet proved,
and this section reports on what exactly is left to do.

First, we emphasize that all the VST-related parts are finished. That is, the admitted
lemmas do not depend on any VST definitions, except for the floyd.sublist library (a
generic list library shipped with VST), CompCert’s integer type int, and CompCert’s
type for values val.

Library-like general lemmas Most unproved lemmas are general facts about bounded
integers, the Galois Field GF(28), and lists. They were factored out into the following
files:13

• bitfiddling.v: Contains 21 admitted lemmas about bit operations, such as packing
4 bytes into a 32-bit integer, etc.

• equiv GF ops.v: The equivalence between the low-level implementation of opera-
tions on the Galois Field GF(28) and the high-level specification has not yet been
proved.

• GF ops LL.v: Contains 8 admitted lemmas about properties of the low-level im-
plementation of operations on the Galois Field GF(28).

• list lemmas.v: Contains one admitted lemma on lists.

• partially filled.v: Contains two admitted lemmas on updating partially initialized
lists.

The 3 verified functions (table generation, key expansion, encryption) The
verification of the tables generation function (verif gen tables LL.v) is complete, and can
be checked with Coq.

The verification of the key expansion function (verif setkey enc LL.v) is almost com-
plete, because it contains 3 admitted lemmas about partially expanded keys, and one
axiom (which actually does not hold) needed to resolve a specification mismatch regard-
ing whether an array is uninitialized or initialized to zero.

The verification of the encryption function (verif encryption LL.v) contains no admits.

13All files can be found at https://github.com/PrincetonUniversity/VST/tree/b38098e0ef/aes
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However, when checking the proof scripts for the key expansion function and the
encryption function, Coq can check the proof just until before the Qed, that is, up to
the point where no subgoals are left. However, to finish the proof, Coq’s Qed command
retypechecks the whole generated proof term, and since the proof term is quite large,
this process does not finish within an hour. This problem was encountered previously
in other proofs in VST, and can be solved by splitting the proof into several parts. For
the AES proofs, this splitting should work as well, but has not yet been done due to
time constraints.

Equivalence proofs The equivalence proof between the low-level and high-level en-
cryption function (equiv encryption.v) depends on the fact that the value stored in an
unsigned byte is at most 256, and these hypotheses are not yet pushed carefully enough
through all parts of the proof, so we have to admit this inequality in a few places.

For the key expansion, no low-level specification has been written yet, so there’s no
equivalence proof either, and while we do successfully step through the whole C code
with VST, we assume that the terms inferred by VST match the high-level specification.

Note that for table generation, no equivalence proof is needed, because the high-level
specification does not need any tables.
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4 Generalizing memory load/store tactics

Because of examples like the one shown in Figure 1, some improvements to the proof
automation for memory loads and stores were needed to make the AES proof work. This
section first precisely defines what kind of memory loads and stores are supported by
VST (4.1), then explains why VST needs proof automation at all (4.2), describes VST’s
original rules and tactics for memory loads and stores (4.3 and 4.4), and then explains
the shortcomings detected during the AES case study and how they were addressed in
the remainder of the section.

4.1 VST’s restrictions on memory loads/stores

To define which loads and stores are supported, we need the following definitions:
We use primitive type to denote all integer types, floating point types and pointer

types. A nonaddressable local variable is a local variable of primitive type whose address
is never queried in the program. A primary l-value expression refers to an address in
memory where computation of the address does not involve any memory dereferences
or function calls. A primary r-value expression is an expression not containing any
memory dereferences or function calls.

Now, a load command in VST has to be an assignment where the left hand side is
a nonaddressable local variable and the right hand side is a primary l-value expression,
and a store command has to be an assignment where the left hand side is a primary
l-value expression and right hand side is a primary r-value expression.

Note that these restrictions do not limit the expressive power of C, because every
C program can be rewritten to one supported by VST through some local rewriting
factoring out subexpressions and assigning them to nonaddressable local variables.

4.2 The need for proof automation

In pen-and-paper presentations of separation logic, the Hoare rules are relatively simple.
For instance, the rule for memory loads looks as follows in the original presentation by
O’Hearn et al. [21]:

{x = v1 ∧ E 7→ v2} x := [E] {x = v2 ∧ E[v1/x] 7→ v2}

It says that if the local variable x stores the value v1, and the (pure) expression E points
to a memory location containing value v2, running the command which dereferences E
and assigns it to x causes x to store v2, and requires us to update the proposition
E 7→ v2 if x occurs in E.

While this rule looks simple on paper, its corresponding rule in the C separation
logic module of VST needs four additional side conditions.14 Moreover, in order to
be able to reason about C structs and arrays (and any nesting thereof), VST defines
and proves several rules derived from the basic load rule. This results in a final, most
high-level rule for memory loads with about a dozen side conditions.

Most of these side conditions are trivial to prove and should not be exposed to the
VST user. Therefore, VST provides a tactics library called Floyd, written in Ltac, which
can solve most of these side conditions automatically.

14These side conditions are needed because of some typechecking conditions, to deal with read/write
permissions, and because in Coq, we have to be more explicit about converting C expressions into
expressions which can occur in propositions.
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4.3 Hoare rules for memory loads and stores

VST’s basic separation logic rule to reason about memory loads can be stated as fol-
lows:15

Load-0
e evaluates to a sh grants read permission P ` mapsto sh t a v2

∆ ` {P ∧ local var x = v1}x = e {[v1/x]P ∧ local var x = v2}

The rule for stores looks as follows:16

Store-0
e1 evaluates to a e2 evaluates to vnew sh grants write permission

∆ ` {P ∗mapsto sh t a vold} e1 = e2 {P ∗mapsto sh t a vnew}

Both rules are defined in terms of the mapsto operator (see section 2.3), which only
talks about primitive values.

In order to reason about structs and arrays, VST defines and proves the following
rule, which uses field at (see section 2.3) instead of mapsto:17

Load-1

e evaluates to a cpath evaluates to path p p can be split into p0.p1
~Ri = field at sh t p0 v

′ a sh grants read permission v′.p1 = v
~Q′ = ( ~Q with the value for x updated to v)

∆ ` {PROP(~P )LOCAL( ~Q)SEP(~R)}x = e.cpath {PROP(~P )LOCAL( ~Q′)SEP(~R)}

Since field at is defined as a separating conjunction of several mapsto assertions, Load-
1 can be proven by unfolding field at and applying Load-0. Note that contrary to
Load-0, there’s no need for a substitution in the propositions of the postcondition,
because ~Q is updated to ~Q′ above the line, and because the canonical form prevents ~P
and ~R from referring to local variables.

And in a similar way, Store-0 is turned into Store-1 to reason about arrays and
structs:18

Store-1

e1 evaluates to a e2 evaluates to v
cpath evaluates to path p p can be split into p0.p1

~Ri = field at sh t p0 vold a sh grants write permission
vnew = vold with the substructure denoted by p1 updated to v

~R′ = (~R with Ri replaced with field at sh t p0 vnew a)

∆ ` {PROP(~P )LOCAL( ~Q)SEP(~R)} e1.cpath = e2 {PROP(~P )LOCAL( ~Q)SEP( ~R′)}

4.4 The tactics

To do forward symbolic execution of a memory load or store statement, the VST user
simply calls the forward tactic, which calls the tactic for memory loads or stores, named
load tac and store tac, respectively, and in most cases, these tactics can apply the above
rule and prove all side conditions fully automatically.

We will use the example given in Figure 1c to explain how store tac works, and we
will not describe load tac because it works very similarly.

To give the ellipsis (of Figure 1c) a name, suppose the command is ctx->rk[i] = expr,
where expr is a primary r-value. Moreover, suppose that ~R contains the SEP clause

15This is a slightly simplified presentation omitting some details for better readability. The full precise
rule in Coq is called semax load and can be found in the file https://github.com/PrincetonUniversity/VST/
blob/fa30d27a/veric/SeparationLogic.v, or in the PLCC book [4] on page 161.

16Called semax store in Coq, in the same file.
17Called semax SC field load in Coq, in the file https://github.com/PrincetonUniversity/VST/blob/

fa30d27a/floyd/sc set load store.v
18Called semax SC field store in Coq, same file.
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field at sh aes context (DOT rk) keyWords ctx

where sh is a share granting write permission and keyWords is a Coq list representing
the values currently stored in the round key array of the AES context struct.

Then, store tac does the following steps to determine the values of the parameters of
the rule Store-1: First, it splits the left-hand side of the assignment into a root expres-
sion e1 (the C variable ctx in our example) and a cpath (“.rk[i]”). Next, it evaluates
e1, e2 and cpath by looking up symbolic values in the variable list ~Q. In our example, e1
simply evaluates to the pointer ctx, and cpath evaluates to p = (DOT rk SUB i). Next,
it loops through all SEP clauses to find one about ctx whose path is a prefix of p. Note
that this must be unique, because the SEP clauses talk about disjoint memory areas,
and no two distinct memory areas can be accessed by the same path. Once the SEP

clause is found, it’s clear how to split p into p0.p1; in our case we have p0 = (DOT rk)
and p1 = (SUB i). The SEP clause also gives the value for vold, which is keyWords in our
case, and store tac now has to select the substructure of vold according to the remainder
of the path, p1, to obtain the part of vold to be updated. Now, all parameters needed
to apply Store-1 are known, and the generated subgoals are (usually) easy to solve
automatically, or if some are not, those subgoals are left open and have to be proven by
the user.

4.5 A shortcoming detected in the AES case study

During the case study on verifying AES encryption (section 3), we found examples
where load tac and store tac as described before did not work. One of them is shown in
Figure 1b.

Now, assuming that we have the same field at assertion as in 4.4, store tac will fail
on the statement RK[i] = ..., because the root expression e1 that it picks is RK, which
evaluates to ctx+ofs, where ofs is the offset of the field rk within the struct aes context.
So, store tac will look for a SEP clause of the form field at ? ? ? ? (ctx+ofs), which it
will not find, because we only have a SEP clause of the form field at ? ? ? ? ctx.19

As we can see, the problem is that the Load-1 and Store-1 rules assume that the
whole access path appears in the source code of the load or store instruction, which is
not always the case.

4.6 More general Hoare rules and tactics

Therefore, we have to come up with a more general Hoare rule which does not require
that the path be visible in the syntax:20

Load-2

e evaluates to a.p p can be split into p0.p1
~Ri = field at sh t p0 v

′ a sh grants read permission v′.p1 = v
~Q′ = ( ~Q with the value for x updated to v)

∆ ` {PROP(~P )LOCAL( ~Q)SEP(~R)}x = e {PROP(~P )LOCAL( ~Q′)SEP(~R)}
19We use the question mark to denote a wildcard.
20Called semax SC field load’ in Coq, in the file https://github.com/PrincetonUniversity/VST/blob/

fa30d27a/floyd/sc set load store.v
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And similarly for stores:21

Store-2

e1 evaluates to a.p e2 evaluates to v sh grants write permission

p can be split into p0.p1 ~Ri = field at sh t p0 vold a
vnew = vold with the substructure denoted by p1 updated to v

~R′ = (~R with Ri replaced with field at sh t p0 vnew a)

∆ ` {PROP(~P )LOCAL( ~Q)SEP(~R)} e1 = e2 {PROP(~P )LOCAL( ~Q)SEP( ~R′)}

We can rewrite load tac and store tac to use these rule instead of the previous ones,
but that makes them more brittle in one point. This is best illustrated with the AES
example: When evaluating e1, that is RK[i], we might obtain a pointer of the form
ctx + ofs + i, where ofs is the offset of the field rk within the aes context struct. But
the above rule expects that e evaluates to something of the form a.p (where p is a path),
so we have to prove that ctx + ofs + i equals ctx.p, where p = (DOT rk, SUB i). This
might seem trivial, but so far, we have not yet been able to automate all proofs of this
kind, because field addresses need to satisfy many well-formedness conditions such as
field names conforming to struct types, array indices being within array bounds and not
overflowing, etc.

Therefore, we designed a “hint” interaction system: If load tac fails to make e eval-
uate to something of the form a.p, it displays an error message asking the user to prove
an equality of the form e′ = a.p, where e′ is the result of evaluating e, and a and p are
to be given by the user. After proving such a hint, the user can invoke forward again,
which invokes load tac or store tac, and the tactic will use the hint and thus succeed.

However, this solution is not satisfying, because many cases which worked fully
automatically before now require a user hint. The problem is that we do not make use
of path evaluation (i.e. the clause “cpath evaluates to path p” in Load-1 and Store-1)
any more to turn paths given in the load or store instruction into Coq paths.

But we can prove yet another version22 of the load and store rules which combine the
automation friendliness of Load-1/Store-1 with the generality of Load-2/Store-2:

Load-3

e evaluates to a.pa cpath evaluates to path pb pa.pb = p0.p1
~Ri = field at sh t p0 v

′ a sh grants read permission v′.p1 = v
~Q′ = ( ~Q with the value for x updated to v)

∆ ` {PROP(~P )LOCAL( ~Q)SEP(~R)}x = e.cpath {PROP(~P )LOCAL( ~Q′)SEP(~R)}

Store-3

e1 evaluates to a.pa e2 evaluates to v cpath evaluates to path pb
pa.pb = p0.p1 ~Ri = field at sh t p0 vold a sh grants write permission

vnew = vold with the substructure denoted by p1 updated to v
~R′ = (~R with Ri replaced with field at sh t p0 vnew a)

∆ ` {PROP(~P )LOCAL( ~Q)SEP(~R)} e1.cpath = e2 {PROP(~P )LOCAL( ~Q)SEP( ~R′)}

The key insight is that there might be two different ways of splitting the whole
path p: The first, p = p0.p1, is the one that the SEP clause prefers, and the second,
p = pa.pb, is the one chosen by the C instruction.

If we rewrite the tactics to use these rules, we derive as much of the path as possible
from the C instruction, so they work in all cases where they worked originally, but also
in cases like the example in Figure 1b.

21Called semax SC field store without nested efield in Coq, same file.
22Called semax SC field load’’ and semax SC field store with nested field partial in Coq, same file.
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4.7 Yet another shortcoming

The version above was used successfully until another case study on verifying a garbage
collector revealed a problem: In the system of this case study, each object on the heap
was preceded by a 32-bit header, so if p is a pointer to the first field of an object, p[-1]
is a valid expression and returns the header of the object. Now, if the tactic matches
p[-1] with e1.cpath, and evaluates cpath, it obtains (SUB (-1)), which is never a valid
path, because all arrays in C start with index 0. So, the side condition that the path is
valid23 does not hold, and the tactics fail.

Later, another example of the same kind was found in the AES case study, and a
simplified version of it is shown in Figure 10.

uint32_t *RK = ctx->rk;

for(int i = 0; i < 7; i++, RK += 8) {

RK[11] = ...

}

Figure 10: AES code snippet where the first load/store tactics improvement still failed

Both examples have in common that the path seen in the load or store instruction
is not the actual path through which the value would normally be accessed.

4.8 The final version of the memory load/store tactics

Fixing the above problem is simple: We can just apply Load-2 (or Store-2) instead.
So overall, our final tactic for a memory store of the form e1.cpath =e2 now works as
follows (the tactic for memory loads is similar):

• Evaluate the whole expression e1.cpath and check if the context contains a user-
defined hint on how to bring it into the form a.p.

– If yes, find a SEP clause about a whose path is a prefix of p, and apply
Store-2 and solve its side conditions.

– Otherwise, evaluate the root expression e1 and check if the result already has
the form a.pa or if the context contains a user-defined hint on how to bring
it into the form a.pa.

∗ If yes, evaluate cpath to obtain a path pb, find a SEP clause about a
whose path is a prefix of pa.pb, and apply Store-3 and solve its side
conditions.

∗ Otherwise, evaluate cpath to obtain a path p, and check if there is a SEP

clause about a whose path is a prefix of p.

· If yes, apply Store-1 and solve its side conditions.

· Otherwise, fail with an error message containing the form of hints
which were not found before.

Note that it uses all three Store rules, even though Store-2 would be general
enough to be applicable in all cases. The only reason to use the other store rules is
to overcome the automation brittleness described in section 4.6. In fact, instead of
attempting to use tactics to perform the tricky task of bringing the result of evaluating

23This side condition was omitted in the rules presented before, but is present in the actual rules in
Coq.
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an expression into the form a.p, we prefer to do this work with lemmas, by having
three specialized lemmas, Store-1, Store-2 and Store-3, and depending on the
case, picking the one which is easiest to apply automatically.

Now, one might wonder if this is the end, or whether at some time in the future,
we might come across yet another C code example where these tactics fail. We believe
that, except for the deliberately chosen restrictions described in section 4.1, there will
be no further such C code examples, because Load-2 and Store-2 do not impose any
restriction on the form of the expression which denotes the memory location, and if
evaluating this expression cannot turn it into something of the form a.p automatically,
the tactics can fall back to the user hint mechanism, allowing to request that the user
proves the tricky part in such a way that all the rest can still be solved automatically.
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5 Controlling term reduction

Term reduction in Coq is the process of applying conversions [27] such as β-reduction,
simplification of match expressions on constructors, and unfolding definitions, to change
terms into other terms considered equal by Coq’s type system.

There are several situations where term reduction has to be performed, and it has
been (and still is) a challenge to control how much reduction is done: If too little
reduction is done, the term does not reach the shape needed to prove the goal, but if
too much reduction is done, it might reduce user-defined expressions that the user would
not like to be simplified, or worse, reduction might take more time than acceptable, and
in some cases, it can also consume all the RAM available on the user’s computer.

5.1 When term reduction is invoked

We can distinguish three situations when term reduction has to be performed:
First, several tactics have to perform term reduction in order to prove simple side

conditions. Coq provides a number of tactics for this, such as simpl, cbn, cbv, lazy, and
hnf, and several options to control their behavior [29]. However, even with all those
options at hand, it is not always easy to control how much reduction is done.

Second, Coq’s typechecker also peforms reduction, because whenever it has to unify
two types, it runs its conversion algorithm [27]. If the conversion algorithm reduces the
“wrong” terms, typechecking can take a very long time. This is particularly noticeable
when invoking the set tactic, which requires the current proof state to be re-typechecked,
and when closing a proof with Qed, which requires the whole proof to be typechecked.
For both of these situations, excess time and memory consumption was experienced in
our case studies.

And third, there are built-in Coq tactics where one might not immediately expect
that they perform reduction. An example for such a tactic is Coq’s inversion tactic. In
the AES case study, unfeasibly slow running times for it were observed.

5.2 Restricting reduction inside VST

In order to discuss what VST could and should do to restrict term reduction, we will
consider each of the three situations described in section 5.1 separately:

Tactics performing reduction Examples for this are the situations involving VST’s
typechecking function for values, tc val. It takes a C type and a Coq value, and returns
a proposition which is true iff the Coq value can be represented as the C type. In most
cases, reducing the terms of the form (tc val t v) yields True, so it seems reasonable that
VST’s tactics automatically reduce such terms, because it allows them to solve trivial
side-conditions automatically.

However, when typechecking a value v as an unsigned char, the term (tc val tuchar v)
reduces to a proposition testing whether v is less than 256. Now, if this proposition is
further reduced, the user-defined expression v is reduced, and this never finished in
the AES case study, because reduction basically tried to symbolically execute AES
encryption for arbitrary inputs.

So, we see that it is important that only the functions needed to define the type-
checking should be simplified, but not the user-defined expressions inside the values
being typechecked.
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This could be achieved by providing Coq’s reduction tactic simpl or cbv a “whitelist”
of functions it is allowed to unfold. Some parts of the Floyd library use this approach,
but these whitelists tend to become very long and tedious to maintain, so it was not
chosen in this case.

Another approach to prevent user-defined subexpressions from being simplified is to
call Coq’s remember tactic for each user-defined subexpression, so that each of them is
replaced by a fresh variable, and to substitute all these variables by the remembered
value after the reduction. This approach is also used in some places in the Floyd library,
but it tends to be very slow, and increases the proof size as well as the time it takes to
typecheck proofs at the Qed.

And yet another approach is to experiment with the Coq’s different reduction strate-
gies and their options. A lot of effort was spent during this project on fine-tuning the
reduction behavior, and four attempts were successful,24 while many other attempts
were unsuccessful.

So, VST is now in a state where undesired reduction of user-defined terms happens
less often than before, but still does happen. In particular, it happens in the tc val
example described above.

Reduction in Coq’s typechecker Since the slowness of Coq’s typechecking mostly
comes from the complexity of user-defined expressions, there’s not much the VST library
can do against this.

Built-in Coq tactics So far, the only case where a built-in Coq tactic did too much
reduction was the inversion tactic, and this could be solved by avoiding its use, because
it turned out that it was not necessary at all.25

5.3 Term reduction controlling options for VST users

Now, given that in the first and second situation described before, VST cannot always
solve the problem of controlling the amount of reduction correctly, we have to discuss
what users can do to solve it:

Using remember to prevent subterms from being simplified, as described before, can
also be done by VST users. The same limitations apply, but less seriously, because
the user can choose to only remember those subterms which are really too expensive to
simplify, instead of all user-defined subterms of a given term. Note that in some cases,
for instance before invoking entailer! (see section 6.3), calling remember is not enough,
because entailer! will call subst, which undoes the remember, so the equation generated
by remember has to be hidden inside some wrapper.

Another strategy for VST users to control term reduction is to prevent some defini-
tions from being unfolded during reduction, and there are several ways to do so: Using
the command Arguments ... : simpl never., one can prevent simpl and cbn from unfolding
the definition. Using Opaque, one can also prevent the other reduction tactics from
unfolding the definition. And if one wants to prevent the typechecker from unfolding it

24The corresponding commits can be found, respectively, at
https://github.com/PrincetonUniversity/VST/commit/d04a191b,
https://github.com/PrincetonUniversity/VST/commit/f2ea465d,
https://github.com/PrincetonUniversity/VST/commit/58f506bf,
https://github.com/PrincetonUniversity/VST/commit/be011e12.

25https://github.com/PrincetonUniversity/VST/commit/a81ecb77
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simpl, cbn cbv, lazy, hnf
inversion,

type checker

Arguments ... : simpl never. no yes yes

Opaque ... no no yes26

abstract module no no no

Table 1: Different levels of preventing definitions from being unfolded

as well, one can hide the definition behind the signature of an abstract module. Table 1
summarizes which method prevents which components from unfolding definitions.

Using the Arguments command, we got the tc val example to work by marking
some operations occurring in user-defined expressions as simpl never. Other situations
required Opaque, and while the abstract module solution is not strictly necessary to
make proofs work, it allowed us to worry less about controlling reduction during a first
iteration of writing the AES encryption function proof.

26The unfolding is done as late as possible [28].
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6 Various usability improvements

During the AES case study, many usability issues with the Floyd tactics library were
found, and some of them were fixed during this project, and are described in the fol-
lowing sections.

6.1 Avoid swallowing error messages

Background The forward tactic is used in VST to do forward symbolic execution,
and it works for all statements which do not need any additional user inputs (such as
e.g. loop invariants). It first brings the proof goal into the form ∆ ` {P} c {?Q}, where
c is one single command, and ?Q is a Coq evar, i.e. a hole which can be instantiated
later. Then, depending on what c is, it calls the appropriate C statement specific tactic
to solve the goal, e.g. store tac that we saw in Section 4.

Originally, it used Coq’s tactic first to do this dispatch. first[ t1 | . . . | tn ] calls tactic
t1, if that succeeds, it stops, otherwise, it calls t2, and so on, until a tactic succeeds. If
none succeeds, it fails with the error message “No applicable tactic.”

The problem This means that if anything goes wrong in a C statement specific tactic,
the error will always be “No applicable tactic.”

This was worked around by defining some inductive datatypes whose names were an
error message, e.g. Cannot find function spec in Delta, and if a tactic wanted to present
an error to the user, it changed the goal to be of such a type. But this only works
for explicitly handled errors, and unhandled errors still only displayed “No applicable
tactic.”

The solution The improvement made in this project is to refactor the forward tactic
so that it does not use the first tactic any more, but instead does a pattern match on
the proof goal to determine which C statement specific tactic should be applied.27

Thanks to this change, errors occurring in the C statement specific tactics now can
bubble up and are displayed to the user. In particular, the error stack traces generated
by Coq are shown, as one can see in Figure 11.

Ltac call to "forward" failed.

Error: No applicable tactic.

(a) Error message before the refactoring

In nested Ltac calls to "forward",

"forward1", "store_tac", "store_tac",

"store_tac", "store_tac_with_full_path_hint",

"store_tac_with_root_path_hint",

"sc_new_instantiate", "sc_new_instantiate" and

"sc_new_instantiate", last call failed.

Error: No matching clauses for match.

(b) Stack trace printed after the refactoring

Figure 11: Avoiding the first tactic results in better error messages

Of course, ideally all possible errors would be handled explicitly by the tactics and
turned into a nice error message. If this was the case, the above change would be less
relevant, but the work on the AES case study has shown that there are still many
unhandled errors that can occur, and in these cases, it is very useful to get at least a
stack trace of the error.

27https://github.com/PrincetonUniversity/VST/commit/01aa7fa1
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for( i = ( tmp >> 1 ) - 1; i > 0; i-- ) {

AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );

AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );

}

Figure 12: Main loop of AES encryption with two macro invocations

The refactoring pattern proposed here was later adopted by Appel to enable error
propagation in the tactics for forward call.28

6.2 Enabling folding of macro-generated code in goal display

Background VST displays the C commands in its proof goals as ASTs (abstract
syntax trees). Experience has shown that most users quickly get used to reading the
ASTs, but the still, the AST of a whole function body can be very long, and should
not be completely shown in the proof goal. To this end, VST has a mechanism to
display only the first command of the current sequence of commands, and hiding the
remaining commands behind a variable called MORE COMMANDS. That is, instead of
displaying (Ssequence c1 c2), where Ssequence is the name of the AST for C’s semicolon,
and c1 and c2 are C commands, it displays (Ssequence c1 MORE COMMANDS). Often,
c2 consists of many nested Ssequence constructors and is very long, so this makes the
proof goal much shorter and easier to read, without hiding any relevant information,
because in forward symbolic execution, we only focus on the first command of a sequence
of commands.

The problem The main loop of the AES encryption function consists of two macro
invocations, as shown in Figure 12. The AES_FROUND macro expands to a sequence of 24
C commands, so the body of this loops is represented as (Ssequence c1 c2), where both
c1 and c2 consist of 23 nested Ssequence constructors. However, as described above,
only c2 will be hidden behind MORE COMMANDS, so the user still sees a huge proof
goal, which is very inconvenient to handle.

The solution VST already contains the following rule called semax unfold Ssequence

∆ ` {P} c1 {Q}
unfold c1 = unfold c2

∆ ` {P} c2 {Q}

where the unfold function takes an AST and flattens all Ssequence constructors into a
list of statements.

It was used in this project to implement a tactic called reassoc seq,29 which replaces
an arbitrary nesting structure of Ssequence by the canonical form

(Ssequence c1 (Ssequence c2 (. . . (Ssequence cn−1 cn) . . .)))

where all ci are other AST nodes than Ssequence. This structure makes sure that the
folding into MORE COMMANDS works as expected, only exposing the first command,
and hiding all others.

28https://github.com/PrincetonUniversity/VST/commit/ba8881dd
29https://github.com/PrincetonUniversity/VST/commit/29f250a6
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Special attention had to be paid to make sure that for-loops and while-loops, which
are defined as a special case of a more general loop AST, are preserved by this operation.

6.3 Making the tactics library user-configurable

Background Many separation logic rules have entailments of the form P ` Q as side
conditions, where P and Q are two separation logic formulae. Most of them can be
solved automatically by a tactic called entailer!, and many other tactics in VST (e.g.
load tac and store tac) call entailer! to solve side conditions.

The problem However, in some situations, entailer! is very slow, and the VST user
has domain-specific knowledge which could be used to solve the entailments much faster.
This caused some VST users to copy-paste the whole definition of load tac into their own
files, renaming it to load tac’, and replacing the call to entailer! by their domain-specific
entailment solving strategy.30 From a software engineering point of view, this is clearly
not a desirable solution. Since this problem also appeared in the AES case study, the
following solution was proposed (and adopted).

The solution The solution depends on a little-known Coq feature allowing one to
globally redefine a tactic with the “::=” operator (using double instead of single colon).

The implementation of load tac is changed to call entailer for load tac instead of
entailer! directly, and entailer for load tac is just an alias for default entailer for load tac,
and default entailer for load tac calls entailer! in the same way as load tac originally did.
That is, nothing has changed so far except that a few seemingly unnecessary levels of
indirection were added.

But this now allows VST users to do the following: When they have a call to forward
which takes too long, and they suspect that it could be because of an entailer! call by
load tac, they can redefine entailer for load tac e.g. with idtac, which does nothing and
just leaves the goal open, or with a custom strategy using domain-specific knowledge.
The implementation of load tac will then call the fast user-defined strategy, so the
slowness is gone. Once the user wishes to revert the behavior of load tac back to the
default, they can re-redefine entailer for load tac to be default entailer for load tac.

Besides load tac, this pattern was also implemented for store tac31 and another tactic
called canon load result32, and adopted by William Mansky for calls to the cancel tactic
invoked after function calls.33

6.4 Enabling automated typechecking of array elements

Background CompCert defines an inductive datatype called val, shown in Figure 13,
to represent the values stored in C memory, and VST uses this datatype as well.34 Note
that there is the value Vundef, which stands for an uninitialized value.

The contents of arrays are represented using Coq lists, so if myInts is a list of integers,
the expression (map Vint myInts) represents the contents of an array whose elements are
all initialized and correspond to the values in myInts. To index elements of a list, VST
uses the function Znth. Besides an implicit type arguments, it takes an index, a list, and

30https://github.com/PrincetonUniversity/VST/blob/244a1a5d/progs/verif mailbox.v#L2123
31https://github.com/PrincetonUniversity/VST/commit/0a66f6f5
32https://github.com/PrincetonUniversity/VST/commit/6d39c4b4
33https://github.com/PrincetonUniversity/VST/commit/783b1541
34https://github.com/PrincetonUniversity/VST/blob/e3c5ae84/compcert/common/Values.v#L27-L42
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Inductive val: Type :=
| Vundef: val
| Vint: int → val
| Vlong: int64 → val
| Vfloat: float → val
| Vsingle: float32 → val
| Vptr: block → int → val.

Figure 13: CompCert’s datatype for values

as a third argument, a default value to return in case the index is out of bounds. So,
the value that VST’s forward symbolic execution computes for a load from an integer
array typically looks like (Znth i (map Vint myInts) Vundef).

The problem This form of expressions starting with Znth is not automation-friendly,
because many tactics need to prove typechecking side conditions that many Hoare rules
of VST impose: For instance, the condition (tc val tint v) requires that v is of the form
(Vint x), and if v is (Znth i (map Vint myInts) Vundef), this only holds if i is within
bounds, and needs an additional reasoning step. Using the lemma Znth map (and a
proof that i is within the bounds), (Znth i (map Vint myInts) Vundef) can be turned
into (Vint (Znth i myInts Int.one)), which is much more automation-friendly. But this
step had to be done manually by the user, and the user had to know that doing this
step before invoking further tactics allows them solve more goals automatically, and
moreover, in the case of load tac, the Znth map lemma should have been applied even
before the user could interact the next time.

The improvement made in this project is to apply the Znth map lemma inside
load tac in the earliest possible place, guaranteeing the maximum number of subsequent
tactic invocations to benefit from the more automation-friendly form.35

This simple change allowed for a considerable simplification36 of the proof body
for the AES encryption function: Before, it was 15201 non-whitespace characters long,
and after the change, only 12760 characters of user proof script were required, which
corresponds to an improvement by 16%.

35https://github.com/PrincetonUniversity/VST/blob/6d39c4b4/floyd/forward.v#L1743-L1754
36https://github.com/PrincetonUniversity/VST/commit/dd5d55af
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7 Possibilities for future work

7.1 VST cryptography

The most immediate addition to the work done in this project would be to verify AES
decryption as well. This would involve verifying the inverse key scheduling function and
the decryption function. The table generation code is the same for both encryption and
decryption. However, we expect that not much insight regarding VST would be gained
from this, because decryption is very similar to encryption. Next, one could also verify
the various block cipher modes which turn the 256-bit cipher into a cipher for data of
arbitrary length.

Given encryption and decryption functions, one could write (VST-independent)
proofs that they are the inverse of each other.

This work is part of a bigger effort to use VST to verify C implementations of some
of the most commonly used cryptographic primitives. So far, the OpenSSL SHA-256
hash function was verified [2], as well as the hash-based message authentication code
(HMAC) implementation based on it [9] and a deterministic random bits generator
(DRBG) using the HMAC function [25].

Instead of basing the DRBG on the HMAC function, the NIST standard [6] also
allows DRBG to be based on AES because it is faster, so the present work could be
connected to the existing DRBG stack in the future. Ye [32] proves pseudo-randomness
for the HMAC-based DRBG, and explains how the proof could be linked to the VST
proof of HMAC-based DRBG, which applies in a similar way to AES-based DRBG.

7.2 Specialized AES hardware instructions

There are several processors with built-in instructions for AES, such as an instruction
to perform one round of AES encryption. The mbedTLS library supports two such
instruction sets by inlining some assembly code into their C library: The VIA C3 x86
processor for embedded devices provides an instruction set called PadLock,37 and many
Intel and AMD processors x86 processors have AES instructions grouped under the
name AES-NI.38

It would be interesting to verify implementations using these specialized hardware
instructions, because most of today’s processors have such instructions. A first approach
would be to use CompCert’s possibility to call one assembly instruction as if it was an
external function, and to pose the correctness of the AES round function as an axiom,
while verifying the correctness of the surrounding code.

It would also be interesting to connect this work to efforts on inferring specifications
for AES hardware instructions in the instruction-level abstraction (ILA) language [26].

7.3 Cache timing attacks

Another important threat to secure encryption are side channels such as timing attacks.
For instance, Bernstein [10] presents a simple attack to extract the secret AES key of
a server if the attacker can measure precise encryption timings for a large number of
known plaintexts. It is based on the observation that the time it takes to access an
array element can depend on the array index because of caches, and since the AES
implementation he considered (as well as the mbedTLS implementation) contains array

37https://github.com/ARMmbed/mbedtls/blob/mbedtls-2.3.0/library/padlock.c
38https://github.com/ARMmbed/mbedtls/blob/mbedtls-2.3.0/library/aesni.c
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accesses where the index is calculated from the secret key, it is possible to infer the
secret key.

Osvik et al [22] exploit the same effect under a different threat model: They consider
a server running an AES encryption process, as well as a malicious process, which one
would expect to be unable to interfere with the AES process, because the virtual memory
system prevents it from reading other processes’ memory. However, by mere observation
of the effects that the encryption has on the state of the cache, without any knowledge
of plaintexts or ciphertexts, it is possible to extract the secret key, as they show.

VST does not provide any mechanism to reason about timings, and this problem
is even harder because it is difficult to know whether a given instruction will run in
constant time on the hardware, because detailed hardware specifications are typically
not public.

7.4 Future work on VST’s proof automation

During the AES case study, many situations where VST’s proof automation could be
improved were encountered. While some of them were fixed as part of this project,
there remain 37 issues to be resolved, which can be found by searching the Coq files in
the AES subdirectory39 for the phrase “TODO floyd”.

39https://github.com/PrincetonUniversity/VST/tree/master/aes
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8 Related work

The domain of verifying cryptographic software is vast. Figure 14 is an attempt to
classify the various approaches. In the following, we will use lower-case letters to refer
to the nodes and edges of Figure 14.

We can distinguish between cryptographic primitives, such as encryption and hash-
ing (in the left half of Figure 14) and protocols using them (in the right half). Moreover,
we can distinguish various levels of abstraction (from top to bottom): One can give an
abstract specification of cryptographic properties (c) by stating the properties we expect
them to have, such as confidentiality of encrypted data, pseudo-randomness, invertibil-
ity of encryption, etc. One can also specify how the input of a cryptographic primitive
is related to its output in a concrete way (f), or in a more low-level, but still formal
way (o), which is as close to a runnable implementation as possible. The runnable
implementation (t) should be in a programming language supporting input and output
and network communication.

On the protocol side, at the very top, we have the final goal of all cryptography
verification efforts: The desired properties of the cryptographic protocol (a). Examples
for desired properties include confidentiality, integrity, authenticity, and examples for
protocols are TLS (transport layer security), on which HTTPS is based, the Signal
protocol, which is used in several chat applications, the SET protocol for credit card
transactions, etc. To reason about the protocols, one creates a model of them (d), and
of course, it also needs to be implemented (u). Depending on the approach, there might
be intermediate models between (d) and (u), but since they vary between different
approaches, we omit them for simplicity.

At the end, both the cryptographic primitives and the protocol implementations
have to be compiled into machine code (w) and run on hardware (z).

VST-related proofs The proofs done in the present project are a VST-based equiv-
alence proof (r) between a C implementation of AES (t) and a low-level specification
(o), as well as an equivalence proof (m) between the low-level (o) and the high-level
specification (f). In fact, (f), (o), (t), (w) correspond to Figure 2 presented earlier.

The other VST proofs mentioned in section 7.1, as well as the VST verification of
the TweetNaCl cryptographic library [11] all are in this same area, except Ye’s proof (e)
of pseudo-randomness (c) for the HMAC-based DRBG [32].

Nothing in VST is cryptography-specific, so VST can also be used to verify other
C code. For instance, Mansky specifies and verifies a concurrent exclusive-write buffer
system [19].

Extraction and synthesis based verified cryptography While VST can be used
to verify existing C implementations being widely used in practice, there are several
other verification tools which generate a verified implementation of cryptographic prim-
itives, possibly by synthesizing (n) it from a specification, or by extracting (q) a proven
correct implementation from a proof language to a runnable language. These approaches
differ from VST in two ways: First, cryptography users only benefit from their correct-
ness proof if they choose to use this code, whereas the VST proofs are about commonly
used C libraries such as OpenSSL and mbedTLS, so many cryptography users benefit
from VST’s correctness proofs without noticing it.40 And second, the code generated by

40However, VST does not (yet) support all of C (see section 4.1), so the code actually running in
production slightly differs from the code verified in VST.
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these approaches, e.g. OCaml, Haskell or C code, is compiled by an unverified compiler
(x), whereas VST’s proofs connect to the correctness proof [17] of the CompCert veri-
fied C compiler (v). In fact, of all other approaches discussed here, the VST approach
is the only foundational one, where the tools themselves are verified as well, and an
end-to-end proof statement relating the high-level formal specification and the actual
assembly code are related by a machine-checked proof.

Erbsen et al [15] start from a high-level Coq specification of elliptic curve crypto-
graphy with arbitrary field moduli (f) and automatically generate (n) efficient low-level
code (o) from it. Their low-level Coq code consists of sequences of let bindings of
primitive operations on native integers, which can be extracted (q) from Coq to C by
a simple syntactic transformation, so there’s only a minimal amount of unverified ex-
traction. However, their approach could not easily be adapted to AES, because AES
involves loops and some management code surrounding the cryptographic code, so one
would have to extract the Coq code to Haskell or OCaml, which is a more complex
extraction phase, and produces less efficient code.

Toma and Borrione [30] implement a hardware circuit for the SHA-1 hash function
using VHDL (t), extract (s) an ACL2 model (o) from it and prove functional correctness
(f) in the ACL2 theorem prover.

Verification of protocols Much work has been done on verifying protocols (the right
half of Figure 14). Some, but not all researchers, also connect their protocol verification
to the verification of the cryptographic primitives (the left half).

Project Everest intends to build a verified secure HTTPS stack, and they recently
presented [12] a verified implementation of the underlying TLS 1.3 protocol, including
the verification of the cryptographic primitives they need. They use the F* language,
a higher-order effectful ML-like functional programming language designed for program
verification. F* allows to write specifications as well as implementations, and verifying
the implementation reduces to typechecking. This allows them to have the implemen-
tation of the protocol in the same language as the model (j), but the compilation of F*
code still is unverified (x) and uses C or OCaml as an intermediate language.

An earlier TLS 1.0 verification project [16] by an overlapping set of authors uses F#
instead of F*, and achieves less integration of the primitives and the protocol: They
extract (h) cryptographic models from the F# code, and define a symbolic (c) and
a concrete (t) implementation of primitives such as hashing and encryption with the
same API, and the protocol implementation can be linked against either of them: To
run the protocol, it is linked against the concrete implementation, and for verification,
it is linked against the symbolic implementation. To establish cryptographic properties,
they use the ProVerif and CryptoVerif tools for protocol and cryptography verification,
respectively.

Another project using these two tools is the verification of the Signal chat protocol,
as implemented in a chat called CryptoCat [16]: They automatically extract (h) a
ProVerif model from JavaScript code, and verify it with ProVerif and CryptoVerif.

The connection between the implementation and the model of the protocol can also
be made in the other direction: For instance, Cadé and Blanchet [13] start from a
ProVerif model, and extract (g) it to OCaml code.

And finally, there are also projects which do not deal with implementations at all, but
focus on proving (b) the high-level properties of the protocol: For instance, Paulson [24]
verifies a simplified abstract version of TLS in Isabelle, where hashing and encryption are
assumed to be secure. Authentication and secrecy are proven, but MACs and integrity
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checks are not even modeled. His group also verified other protocols [7] such as the SET
protocol for credit card transactions [8].

Verifying cryptographic C code There are also other tools for verifying C code,
but contrary to VST, none of them is foundational. Like VST, these tools can be used
to verify any C code, but we will focus on their case studies on verifying cryptography:

Frama-C uses Hoare logic, but no separation logic, to reason about C programs
which were annotated in the ANSI-C Specification Language (ACSL) using a special
form of source code comments. It extracts verification conditions and feeds them to
different automated theorem provers, but can also interface with Coq for proofs which
need user interaction. Almeida et al [1] use Frama-C to verify functional correctness of
the RC4 stream cipher, as implemented in OpenSSL. It is interesting to note that their
specification is also written in C, and their proof consists of showing equivalence between
the high-level C implementation (which serves as specification) and the optimized, low-
level OpenSSL C implementation.

VCC is another annotation-based C verifier with macro-based annotations, and Du-
pressoir et al [14] use it to prove both memory safety and security properties for a simple
authenticated remote procedure calls protocol. They prove security properties in Coq,
and translate them manually (i) into annotations that they add as axioms to VCC.

Yet another C verifier is VeriFast, which is also based on annotations in comments,
and uses separation logic. Vanspauwen and Jacobs [31] annotate the cryptographic
primitives of mbedTLS with axioms (p) and use this to prove security properties (a) of
some protocols implemented on top of these primitives.
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9 Conclusion

We have presented a machine-checked proof in VST that the mbedTLS implementation
of AES encryption conforms to a high-level specification closely following the standard.
We showed how to obtain a modular proof by splitting it into a VST-related part and
a VST-unrelated part proving equivalence between the high-level specification and a
low-level specification following the C implementation.

Moreover, we reported on the shortcomings of VST’s proof automation detected
during this case study, and fixed a number of them:

We generalized the tactics for memory loads and stores, so that memory accesses
whose path is not completely written out in the load or store command are supported
as well, and we added support even for cases where parts of the path written in the
program are not the ordinary path through which the value nested in structs/arrays
would normally be accessed. The tactics for loads and stores are now as general as
possible (within the known restriction of VST that only one top-level load or store or
function call can be done per statement), but still support the simpler cases equally well
as before.

We reported on the difficulties in controlling how much term reduction is performed,
and we presented several improvements to VST’s proof automation regarding this, but
also discuss the situations where we cannot (yet) solve this problem inside the VST
library. For these cases, we presented strategies that VST users can employ to control
term reduction, so that the proofs do work, albeit requiring more user interaction and
experience than ideal.

We improved the error propagation in the proof automation, enabled better folding
of C code in the proof goal display, introduced a technique for VST users to customize
the tactics library if it is too slow, and enabled a more automatic typechecking of values
loaded from arrays.

Finally, we pointed out that many computers perform the AES encryption on spe-
cialized hardware and that therefore, verification of this hardware should be done in
future work, and that functional correctness is not the only guarantee that we need for
reliable cryptography, because we also need the absence of side channels such as timings,
as well as protocols correctly using the cryptographic primitives.

This project shows that it is possible today to produce machine-checked foundational
proofs about the behavior of real-world C programs. We think that this is an exciting
result, but the effort required to produce such proofs is considerable, because when
stepping through a C program, the calculations of VST not only generate strongest
postconditions, but also a proof term for each claim. This makes programming VST’s
proof automation, as well as using it, considerably more laborious than in a tool which
only generates strongest postconditions without accompanying proof terms. Such sys-
tems exists (e.g. frama-c), but their assertion language has less expressive power. If we
consider the cost to benefit ratio, VST gives the strongest results, but at such a high
cost that for practical use, we would probably prefer an unverified tool, which gives a
slightly weaker result, but for a much lower cost. However, as a research project, trying
to push the boundary of what we can prove formally, this was a very interesting and
exciting experience.
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