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ABSTRACT

A common theme in machine learning is succinct modeling of distributions over large domains. Probabilistic graphical

models are one of the most expressive frameworks for doing this. The two major tasks involving graphical models are

learning and inference. Learning is the task of calculating the best fit graphical model from raw data, while inference is

the task of answering probabilistic queries for a known graphical model (for example what is the marginal distribution

of one of the variables or what is the distribution of a subset of variables, after conditioning on the values of some

other subset of variables). Learning can be thought of as finding a graphical model that explains the raw data, while

the inference queries extract the knowledge the graphical model contains.

This thesis introduces new provable techniques for performing both of these tasks, in the context of both latent-variable

models – in which a portion of the variables in the graphical model are not observed, as well as fully-observable

undirected graphical models (Markov Random Fields). Chapters 2 and 3 will focus on learning latent-variable models,

while Chapter 4 will focus on inference in Markov Random Fields.

In Chapter 2, I will contribute the first provable results for analyzing variational Bayes: a family of alternating-

minimization style algorithms which is very popular in practice for learning latent-variable models. Despite it’s pop-

ularity with practitioners, the only theoretical guarantees prior to this work concerned convergence to local minima.

We will prove that under reasonable assumptions, in the context of topic models, these algorithms will converge to the

global minimum.

Subsequently, in Chapter 3, we will use the method-of-moments along with new techniques in tensor decomposition

and constrained matrix factorization to derive algorithms for learning noisy-OR networks – the textbook example of

a probabilistic model for causal relationships. Importantly, these techniques were only applicable to linear latent-

variable models – which noisy-OR is not.

In Chapter 4, I will contribute a new understanding of a class of variational methods for calculating partition functions

in Markov Random Fields. The key technical ingredient is a connection to convex programming hierarchies – a recent

area of interest in combinatorial optimization, along with approximations of the entropy of a distribution based on

low-order moment information.
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Chapter 1

Introduction to Bayesian modeling

One of the most pervasive modeling paradigms in machine learning is succinctly describing distributions over very

large configuration spaces. To list a few examples, consider for instance image segmentation, in which we wish to

assign a probability to any configuration of foreground/background values for the pixels in the image – this is a distri-

bution over a configuration space exponential in the number of pixels. Another example is modeling causal relations

in data, e.g. diseases and symptoms in a patient – the configuration space here is all possible configurations of pres-

ence/absence of symptoms and diseases – again, exponentially sized. In more modern applications, the probabilistic

relation between a good “representation” of the data and the data itself is often modeled as a structured, concise

probabilistic model like a Restricted Boltzmann Machine (RBM), Deep Boltzmann Machine (DBM), etc.

The desire for succinct models is manifold: often parsimony in the model ensures the parameters capture some

meaningful structure in the data; frequently the parameters of these models are learned from data, and parsimony helps

with the amount of data required; finally, following Occam’s razor considerations – maximizing entropy, subject to

simple constraints on the distributions (i.e. making minimal assumptions, beyond the constraints we have), often leads

to succinct models.

Approaches in machine learning which assign probabilities to data points are typically referred to as Bayesian or

generative, and the focus of this thesis will be on developing new algorithms with provable guarantees for performing

the two most common tasks involving Bayesian models: learning and inference. In this chapter, we will briefly review

the basic definitions and tasks involving Bayesian models. Concretely, in Section 1.1 we review the definitions of

latent variable, as well as fully observable graphical models. In Section 1.2 we review formally learning and inference

of graphical models, as well as common approaches for performing these tasks, both in practice and in theory.
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1.1 Latent-variable and fully observed Bayesian models

We will consider two types of Bayesian models in this thesis: latent-variable, directed graphical models and fully

observed, undirected graphical models. We proceed to formally define each one of the two.

1.1.1 Latent-variable models

Latent-variable graphical models capture the paradigm of the observable data being “simple”, conditioned on some

latent (unobserved) variables. Mathematically, these models have latent variables h ∈ H (for some domain H), and

observable variables x ∈ X (for some domain X). The joint distribution of h, x is a function of some model parameters

θ, and is described as

pθ(x, h) = pθ(h)pθ(x|h) (1.1.1)

where both terms pθ(h) and pθ(x|h) are simple functions. Some classical examples that fit in this framework are mixture

models (e.g. Gaussian mixture models), topic models, Bayesian networks (a classical example of which is noisy-OR

networks and Deep Belief Networks). We will describe in detail topic models and noisy-OR networks, as we will be

exhibiting multiple results involving them throughout this thesis.

Topic models are used for modeling topic structure in text corpora (Blei and Lafferty, 2009). The model postulates

that the expected frequency of words in a document can be written as a mixture of topic frequencies – which are

themselves distributions over words.

More precisely, the samples x are documents, which are the list of words in the document. (If the vocabulary size

is n, and the length of the document is N, we can identify the domain naturally as [n]N .) The latent variables in the

document are of two types: the topic proportions γi, i ∈ [k] of the topics in the document (where k is the number of

topics in the corpus), and the topic z j at each position j ∈ [N] of the document.

The parameters of the model are the distributions of words for each topic i ∈ [k], βi, j, j ∈ [n], as well a prior α for

the topic distributions in the document. With this, the procedure for generating a sample x is simple:

• Sample a proportion of topics γ1, γ2, . . . , γk according to α.

• For each position l in the document, pick a topic zl according to a multinomial distribution with parameters

γ1, . . . , γk.

• Conditioned on topic i being picked at that position, pick a word j from a multinomial with parameters (βi,1, βi,2, . . . , βi,k)

The graphical model corresponding to the above procedure is illustrated in Figure 1.1.1, and the sequential nature

of picking the topic proportions, topics and words makes it clear why these models are called directed.

2



Figure 1.1: Bayesian network corresponding to topic models

Noisy-OR networks are used for modeling causal structure, and are most classically applied to the scenario of

diseases and symptoms and this is the nomenclature we will use in this thesis. The model postulates that the symptoms

a patient exhibits is a noisy union of the symptoms caused by the diseases a patient has.

More precisely, the samples x are patients, which are 0-1 vectors of dimensions equal to the number of symptoms,

indicating whether the patient exhibits that symptom. The latent variable is a 0-1 vector of dimension equal to the

number of diseases, indicating whether the patient has that disease.

The parameters of the model are weights Wi, j, for all symptom/disease pairs i, j, and the prior probabilities ρi that

a disease i is present. With this, the procedure for generating a sample x is again, simple:

• Sample a disease vector d, s.t. di = 1 with probability ρi, for all diseases i.

• Sample a symptom vector x, s.t. xi = 1 with probability 1 − exp(〈W i, d〉), where W i is the vector Wi, j, for all

diseases j.

The name “noisy-or ”derives from the fact that a symptom is present if at least one disease which causes it is present,

but with some noise “injected” by the above process.

1.1.2 Fully-observed, undirected graphical models

Fully-observable, undirected graphical models (also called Markov Random Fields) are used for modeling distributions

when the conditional dependency structure is naturally described as a graph. Formally, an undirected graphical model

is a distribution of the type

p(x) ∝ exp

 ∑
c∈cl(G)

φc(xc)

 (1.1.2)

where G = (V, E) is a graph, cl(G) is the set of cliques in G, φc(·) is a potential corresponding to the clique c, and xc

is the set of coordinates in x corresponding to the vertices in c. While this most general form might seem somewhat

strange, for distributions p which assign positive probability to any configuration, it is equivalent to the so-called

local Markov property, namely that for any vertex i, xi is conditionally independent of all other variables, given the

3



neighborhood of vertex i.

Though the methods we will discuss are fully general, for simplicity we will focus on the classical case of Ising

models, which are a pairwise interaction undirected graphical model, where the domain of the distribution is the

discrete hypercube {−1, 1}n, and the potentials are non-zero along the edges of the graph only, and they are simply the

scaled products of the values of the vertices. Formally, an Ising model has the form

p(x) ∝ exp

 ∑
(i, j)∈E(G)

Ji, jxix j

 (1.1.3)

for some potentials Ji, j.

1.2 The two main tasks with graphical models

There are two major tasks involving graphical models: learning and inference. Learning is the task of calculating the

best fit model from raw data, while inference is the task of answering probabilistic queries for a known model (for

example what is the marginal distribution of one of the variables or what is the distribution of a subset of variables,

after conditioning on the values of some other subset of variables). Learning can be thought of as finding parameters

that best “explain” the raw data, while the inference queries extract the “knowledge” the model contains.

We will survey the main difficulties and approaches of these two tasks, both in terms of provable works, and in

terms of heuristics used in practice.

1.2.1 Learning Bayesian models

In context of learning, we will focus on latent-variable models. The problem is as follows:

LEARNING BAYESIAN MODELS, informally: we are given N samples generated according to a latent-variable

model (1.1.1), whose parametric form is known (e.g. a topic model or noisy-OR network), but the parameters of which

are unknown: we wish to (approximately) recover the values of the parameters. We note this is what is usually called

properly learning the model; often times it suffices to learn a distribution for the samples which is close to pθ(x), but

does not necessarily even have the same parametric form: this is called improper learning – we will not discuss this in

this thesis.

An important choice in the above discussion is whether we are interested in statistical efficiency only (minimizing

the number of samples necessary as a function of the target closeness)or computational efficiency as well? Historically,

statisticians studied simpler models, where computational efficiency was not an issue – so statistical efficiency received

substantially more attention. Let us denote by p̂ is the uniform distribution over the samples. In a classical paper by
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(Wilks, 1938), it is shown that the maximum likelihood estimator

θ̂ = argmaxθEx∼p̂ log p(x) (1.2.1)

satisfies two important properties:

• Consistency (un-biasedness): In the limit N → ∞, θ̂ → θ.

• Statistical efficiency: Among all consistent estimators θ̂, it has asymptotically the smallest mean-squared error

Eθ(θ̂ − θ)2.

Maximum likelihood has lingered on in machine learning since, though with the models being substantially more

complex, the maximum-likelihood estimator has an important flaw: the optimization problem (1.2.1) is typically NP-

hard, if the samples and model parameters are allowed to be chosen in a worst-case fashion. (Note, the preferable

hardness result would be one in which the samples “come from the model”. These kinds of average-case results are

however beyond the current tools of computational complexity.)

The intuitive reason for the hardness is simple: to solve the optimization problem (1.2.1), we have to optimize over

the values of the latent variables as well (or more precisely, the posterior distributions over the latent variables). This

typically renders (1.2.1) non-convex. In practice, such optimization problems are nevertheless frequently solved in a

rather natural way: alternatingly optimizing the values of either the model parameters and the posterior distributions

over the latent variables, while keeping the other fixed. This is the basis of a wide class of algorithms usually referred

to as Variational Bayes1, the simplest one of which is Expectation-Maximization (EM).

We will review the basics of EM and variational Bayes in Section 2.1, and subsequently in Section 2.2 give provable

results for these algorithms in the case of topic models.

The computational hardness of maximum-likelihood has motivated considering alternate estimators, especially

in approaches with theoretical guarantees. In particular, there has been a Renaissance in provable results using the

method of moments. The method moments is in fact even older than maximum likelihood (Pearson, 1894), but was

abandoned early on because it contrast to max-likelihood, it is neither consistent nor statistically efficient. Due to

advances in tensor decomposition algorithm, however, there has been a surge of provably polynomial-time algorithms

for this framework, assuming reasonable structural assumptions on the parameters of the model.

The principle behind the method of moments is to write expressions for the higher-order moments of the random

variable x as a function of the model parameters, and solve the system of equations for the model parameters, when

plugging in the empirical values for the moments. More formally, the method of moments performs the following

steps:

1Sometimes they are also called variational inference, variational EM
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(1) Express the moments of x as functions of the model parameters:

E
[
x⊗k

]
= fθ(x) (1.2.2)

for some function fθ depending on the model parameters. (Note: E
[
x⊗k

]
is an order k tensor.)

(2) Calculate the empirical moments Ex∼p̂

[
x⊗k

]
, and solve the system of equations (3.1.1) for θ.

The difficulty in this approach is obviously step (2): for complicated models, the function fθ will be highly non-

linear, so solving the system of equations is a non-trivial matter. We will review instances where this can be done

using very recent machinery on tensor decomposition in Section 3.1 in the setting of mixture models (e.g. mixtures of

Gaussians, topic modeling, etc.), and we will show how how this can adapted to a more complicated model: noisy-OR

networks.

1.2.2 Inference in Bayesian models

In the context of inference, we will focus on undirected graphical models. The problem of inference can be loosely

defined as follows:

INFERENCE IN BAYESIAN MODELS, marginals: we are given as input the parameters of an undirected graphical

model, and wish to calculate marginals in the model, e.g. for subsets S ,T ⊆ V(G), and configurations bS ∈ X |S |, bT ∈

X |T |, we wish to calculate p(xS = bS |xT = bT ). The simplest version of the problem would just be calculating marginals

of the type p(xi = b), i ∈ V(G), b ∈ X.

Broadly, there are two approaches to inference. The first is to set up a Markov Chain which has p as it’s stationary

distribution that mixes rapidly. This allows us to sample from a distribution close to p, and having such samples,

estimating the marginals is straightforward. This is an approach that is well-studied in theoretical computer science,

especially for graphical models that have connections to statistical physics like Ising models and Potts models (see e.g.

(Levin et al., 2009) for a thorough survey of such methods)

The second approach is based on variational methods, which proceed as follows. First, it is well-known that cal-

culating marginals of the type we are interested in can be reduced to calculating partition functions. This is a classical

result, and we state formally as Lemma 1. Second, we reduce calculating the partition function to an optimization

problem over the polytope of probability distributions over the domain of the variables of the graphical model. This

is a very old principle, dating as far back as Gibbs. (Ellis, 2012). Since optimization over this polytope is typically

intractable however, modern machine learning focuses on strategies to relax this optimization: i.e. by optimizing over

some subset of distributions that have a simple form (e.g. product distributions), or relaxing the polytope of distribu-

tions and introducing entropy approximations like the Bethe approximation. We review these strategies in great detail
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in Section 4.1.

Lemma 1 (Reducing marginals to partition functions, (Jerrum et al., 1986)). There is a polynomial time algorithm,

that given an oracle O that takes as input a graph G = (V, E) and potentials φc, c ∈ cl(G) and outputs the value of the

partition function of the corresponding Ising model Z =
∑

x∈{−1,1}n exp(
∑

c∈cl(G) φc(xc)), can calculate the values of any

marginals p(xS = bS ), S ⊆ V(G), bS ∈ X |S |,
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Chapter 2

Provable guarantees for iterative techniques

for learning latent-variable models

In this chapter, we will present new results on provable guarantees for iterative techniques for latent-variable models.

First, in Section 2.1 we will review the basic theory behind deriving iterative algorithms like Expectation-Maximization

(EM) and variational Bayes. Subsequently, in Section 2.2 we will present new techniques for analyzing such algo-

rithms in the context of topic models: a well-known and widely used latent-variable model for modeling topical

structure of text corpora. More concretely, we will first prove that the standard variational Bayes updates can be

proven to work under natural structural assumptions (in Sections 2.3 and 2.4). These sections are based on work in

(Awasthi and Risteski, 2015).

Subsequently, we will prove that minor changes to the standard updates can lead to similarly cheap algorithms

that also use iterative updates, but that work provably under even weaker structural assumptions in Section 2.8. This

section is based on work in (Li et al., 2016).

2.1 Background on variational Bayes

In this section, we review the methodological underpinnings of deriving iterative algorithms for learning latent-variable

models like variational Bayes. The simplest form of this family of algorithm is Expectation-Maximization (EM).

It dates all the way back to (Dempster et al., 1977) and (Sundberg, 1974) in the 70s. As previously mentioned,

the algorithm alternatingly keeps either the model parameter or the latent variable posterior estimates fixed, while

optimizing for the other. Formally, at iteration t the algorithm maintains estimates θt, qt
x(h) of the model parameters

and the latent variable posteriors for the samples, which are updated as follow:
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• E-step: For each sample x, update the current estimate of the posterior distribution over the latent variables:

qt
x(h) = p(h|x, θt−1) (2.1.1)

• M-step: Update the current estimate of the model parameters:

θt = argmaxθEx∼p̂Eqt
x
[log p(x, h|θ)] (2.1.2)

The crucial claim about these updates is that after performing an update, the value of the log-likelihood can only

increase:

Lemma 2 ((Dempster et al., 1977; Sundberg, 1974)). In the above setup, it holds that

Ex∼ p̂ logθt
(x) ≥ Ex∼ p̂ logθt−1

(x)

Two remarks are in order. First, this algorithm assumes that both steps can be efficiently performed. While this is

true in some simple models like Gaussian mixture models, even slightly more complicated models like topic models

can render these steps intractable. In fact, in topic models, (Sontag and Roy, 2011) showed that calculating the

posterior distribution in the E-step, even up to multiplicative polynomial factors, can be #-P hard if the sample x and

the model parameters are chosen in a worst-case manner.

Second, in this simple form, there is no “optimization” in the E-step to speak of (it is merely set to some particular

value as a function of the current estimate of the model parameters), so it is unclear in which sense the EM algorithm

performs “alternating optimization”. Towards elucidating this point, we will state a slightly more general result, which

will readily lead us to variational Bayes. For any set of distributions qx : H → R indexed by the samples x, we

consider the function

F(qx, θ) = −Ex∼p̂KL(qx||p(h|x)) + Ex∼ p̂ log p(x) (2.1.3)

Then, the following claim holds:

Lemma 3 (Alternating minimization view of EM, (Csiszśar and Tusnády, 1984)). The EM algorithm is equivalent to

the following alternating optimization algorithm:

• E-step: For each sample x, update the current estimate of the posterior distribution over the latent variables:

qt
x = argmaxqx

F(qx, θ
t−1) (2.1.4)
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• M-step: Update the estimates of the model parameters:

θt = argmaxθF(qt
x, θ) (2.1.5)

The above objective is in machine learning often referred to as the ELBO bound (Blei et al., 2017), but dates back

to Gibbs in statistical physics (Ellis, 2012), where it is usually referred to as variational free energy. It was written

in the above alternating minimization form to elucidate various alternating minimization-like procedures stemming

with information-geometric root, which included EM, the Arimoto-Blahut algorithm (Yeung, 2008) (which has made

a re-appearence in recent years as a basis of the information bottleneck principle (Tishby et al., 2000)), maximizing

returns on investment portfolios etc.

The statistical physics roots naturally lead to variation Bayes methods: even if the optimization problem (2.1.4) is

computationally intractable, it may be the case that we can solve an easier minimization problem

argmaxqx∈Q
F(qx, θ

t−1) (2.1.6)

for a constrained class of distributionsQ. From a theory perspective, even for extremely simple familiesQ, e.g. product

distributions, this problem itself is non-convex, but from a practical perspective, often at least the objective is simple

enough as a function of the natural parameters of the distributions, so that the gradient descent updates have a closed

form.

Despite this meta-approach being immensely popular in practice, theoretical understanding is very limited. Prior

to this thesis, most existing analyses focused on convergence results: namely, on showing that the updates eventually

reach a fixed point. Exceptions to this are classical results analyzing Lloyd’s algorithm for K-means, which is very

closely related to the EM algorithm for mixtures of Gaussians (Kumar and Kannan, 2010), (Dasgupta and Schulman,

2000), (Dasgupta and Schulman, 2007). Another line of recent work has focused on a related alternating optimization

heuristic in the context of dictionary learning: (Agarwal et al., 2013), (Arora et al., 2015a) prove that with appropriate

initialization, alternating minimization can provably recover the ground truth. (Netrapalli et al., 2013) have proven

similar results in the context of phase retrieval.

In the following section, we will elucidate more the global convergence properties of variational Bayes: namely, we

will exhibit the first characterization of global convergence of variational inference based algorithms in arguably the

simplest setting beyond mixture models: topic models (Blei et al., 2003), where the variational class of distributions

Q consists of product distributions (i.e. mean-field). We show that under natural assumptions on the topic-word

matrix and the topic priors, along with natural initialization, variational inference converges to the parameters of

the underlying ground truth model. Going beyond that, in Section 2.8 after, we show that if we step away from the
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variational inference updates, but keep the “alternating minimization” paradigm, we can even design algorithms with

better convergence properties (in the sense that they work under substantially milder conditions).

2.2 Overview: provable results for variational Bayes in the case of topic

models

In this section, we will give an overview of the mean-field variational Bayes updates (Subsection 2.2.2) in the case of

topic models – the setting in which we will provide provable results, as well as review other works on topic models with

provable guarantees (Subsection 2.2.1). Though these works do not analyze iterative updates like variational Bayes,

we provide this comparison to illustrate the point that the structural assumptions under which we analyze variational

Bayes are qualitatively very similar to the assumptions these works make.

2.2.1 Prior work on topic models

The body of work on topic models is vast (Blei and Lafferty, 2009), and we will survey here only the works that have

provable guarantees. This includes the sequence of works by (Arora et al., 2012a),(Arora et al., 2013a), as well as

(Anandkumar et al., 2013), (Ding et al., 2013), (Ding et al., 2014) and (Bansal et al., 2014). (Arora et al., 2012a) and

(Arora et al., 2013a) introduced an influential assumption of anchor words on the topic-word matrix, which assumes

that each topic has a word which appears in that topic, and no other. Subsequent work modified this assumption in

various ways: (Anandkumar et al., 2013) assume a certain expansion on the word-topic graph, which says that for

any subset S of topics, the number of words in the support of these topics should be at least |S | + smax, where smax is

the maximum support size of any topic. Importantly, neither paper needs any assumption on the topic priors, and can

handle (almost) arbitrarily short documents 1.

All the above works are based on the method of moments: an empirical co-occurrence matrix of the words is

formed, from which the topic-word matrix is recovered2. Our assumptions on the word-topic matrix will be related

to the ones in the above works, but importantly, our documents will need to be long, so that the empirical counts of

the words are close to their expected counts. Furthermore, we will have to make structural assumptions on the topic

priors.

We note that the case where the documents are short seems significantly more difficult. Namely, there are two main

elements to analyzing variational inference updates. One is proving the variational approximation to the posterior dis-

tribution over topics is not too bad. The second is proving that the updates do actually reach the global optimum. In the

1The document length needs to be at least 3.
2We expand on this approach in Section 3.1
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case of long documents, the posterior distribution is concentrated, so the mean-field variational class can approximate

it well – which is decidedly not true when documents are short.

Informally, our assumptions on the topic-word matrix and the topic prior will be as follows:

• The topics will satisfy a weighted expansion property: for any set S of topics of constant size, for any topic i in

this set, the probability mass on words which belong to i, and no other topic in S will be large. (Similar to the

expansion in (Anandkumar et al., 2013), but only over constant sized subsets.)

• The number of topics per document will be small. Further, the probability of including a given topic in a

document is almost independent of any other topics that might be included in the document already. Similar

properties are satisfied by the Dirichlet prior, one of the most popular priors in topic modeling. (Originally

introduced by (Blei et al., 2003).) The documents will also have a “dominating topic”, similarly as in (Bansal

et al., 2014).

• For each word j, and a topic i it appears in, there will be a decent proportion of documents that contain topic i

and no other topic containing j. These can be viewed as “local anchor documents” for that word-pair topic.

We state informally the main result of this section – see Sections 2.3 and 2.4 for more details.

Theorem (Informal). Under the above mentioned assumptions, popular variants of variational inference for topic

models, with suitable initializations, provably recover the ground truth model in polynomial time.

2.2.2 Topic models: variational inference updates and simplifications

2.2.2.1 Review of mean-field variational Bayes for topic models

In this section we briefly review the derivation of the mean-field variational Bayes updates for topic modeling, fol-

lowing closely the description in (Blei et al., 2003). Subsequently, we will simplify these updates in the limit of long

documents – a slight variant of which we will give provable guarantees for.

As a notational convenience, in the subsequent sections, a superscript of t will denote the value of a variable at the

t-th iteration, and a superscript of ∗ denotes the “ground truth” value of the relevant variable.

We will derive the form of both the E-step and the M-step. Proceeding with the E-step first, recall from (2.1.4) that

qt(Z, γ) = argminq∈QKL(q(Z, γ)||p(Z, γ|x, αt, βt)

for a chosen familyQ of variational distributions. Denoting by N the length of the document, the mean-field variational
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family Q we will consider satisfies the constraint that

q(γ,Z) = qγ̃(γ)ΠN
j=1qφ j (Z j)

where qγ̃ is a Dirichlet distribution with parameters γ̃ and qφ j,i , j ∈ [N], i ∈ [n] is a multinomial distribution with

parameters φ j,i. In words, this means that distribution q factorizes over the latent variables corresponding to the latent

topics Z j for all positions j, as well as the topic proportions γ. For this variational family, (Blei et al., 2003) show that

the coordinate ascent equations take a simple form. More precisely,

Lemma 4 ((Blei et al., 2003)). (1) Keeping αt, βt, φt
j′ , j′ , j fixed, and denoting by w j the word at position j,

∇φ j,i F(αt, βt, γt, {φt
j′ , j′ , j}) = 0

implies

φ j,i ∝ β
t
i,w j

eEq[log(γd)|γ̃t
d], j ∈ [N], i ∈ [n] (2.2.1)

γ̃d,i = αt
d,i +

N∑
j=1

φt
j,i (2.2.2)

(2) For a training set of D documents, indexing as γt
d,i and φt

d, j,i the variational parameters corresponding to

document d, and by Nd the length of document d, we get

∇βi, j F(αt, βt, γt, {φt
d, j,i, γ

t
d,i, i ∈ [k], j ∈ [n]}) = 0 (2.2.3)

implies

βi, j ∝

D∑
d=1

Nd∑
j′=1

φt
d, j,ixd, j, j′ , i ∈ [k], j ∈ [n]

The consequence of the above lemma is an obvious coordinate ascent algorithm, where to perform an E-step, the

updates (2.2.1) are iterated until convergence, cycling through the variational parameters φ j,i. The M step is obvious

from (2.2.3) for the β parameters. As far as the α Dirichlet parameters are concerned, the gradients with respect to

them do not have a closed form expression and (Blei et al., 2003) suggest updating them via a Newton-Rhapson type

of procedure.

2.2.2.2 Simplifying the updates in the long document limit

The difficulty with analyzing the above updates is that it isn’t clear how to assign an intuitive meaning to the γ̃ and φ

parameters (it’s not even clear what one would like them to be ideally at the global optimum.) We will be however
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working in the large document limit - which will simplify the updates, and give us a better handle them.

In particular, in the E-step, in the limit N → ∞, the first term in the update equation for γ̃ has a vanishing

contribution. In this case, we can simplify the E-update as:

φd, j,i ∝ β
t
i, jγd,i

γd,i ∝

Nd∑
j=1

φd, j,i

Notice, importantly, in the second update we now use variables γd,i instead of γ̃d,i, which are normalized such

that
K∑

i=1

γd,i = 1. This is an intentional abuse of notation – the γ variables correspond to the max-likelihood topic

proportions, given our current estimates βt
i, j for the model parameters. The M-step will remain as is - but we will focus

on the β only, and ignore the α updates - as the α estimates disappeared from the E updates:

βt+1
i, j ∝

D∑
d=1

f̃d, jγt
d,i

where γt
d,i is the converged value of γd,i and we denote as f̃d, j the fractional count of word j in document d (i.e.

f̃d, j = Count( j)/Nd, where Count( j) is the number of times word j appears in the document, and Nd is the number

of words in the document). In this case, the intuitive meaning of the βt and γt variables is clear: they are estimates

of the the model parameters, and the max-likelihood topic proportions, given an estimate of the model parameters,

respectively.

An alternative way to view these updates is as follows: first we approximate the posterior distribution P(Z, γ|X, αt, βt)

by P(Z|X, γ∗, αt, βt), where γ∗ is the max-likelihood value for γ, given our current estimates of α, β, and subsequently

setting P(Z|X, γ∗, αt, βt) to be a product distribution. It is intuitively clear that in the large document limit, this approxi-

mation should not be much worse than the one in (Blei et al., 2003), as the posterior concentrates around the maximum

likelihood value. In fact, our guarantee will apply to finite, but long documents. Finally, we will rewrite the above

equations in a slightly more convenient form. Denoting fd, j =

K∑
i=1

γd,iβ
t
i, j, the E-step can be written as: iterate until

convergence

γd,i → γd,i

N∑
j=1

f̃d, j
fd, j

βt
i, j (2.2.4)

The M-step becomes:

βt
i, j = βt−1

i, j

∑D
d=1

f̃d, j
f t
d, j
γt

d,i∑D
d=1 γ

t
d,i

(2.2.5)

where f t
d, j =

K∑
i=1

γt
d,iβ

t−1
i, j and γt

d,i is the converged value of γd,i.
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2.2.2.3 Alternating KL minimization and thresholded updates

Beyond the long-document simplifications above, we will modify the updates slightly. In fact, similar updates appeared

in a paper by (Lee and Seung, 2000) in the context of non-negative matrix factorization. There the authors proved that

under these updates
∑D

d=1 KL( f t
d, j|| f̃d, j) is non-decreasing. More concretely:

Lemma 5 ((Lee and Seung, 2000)). Consider the objective F̃(γt, βt) =
∑D

d=1 KL( f t
d, j|| f̃d, j). Then,

(1) Let γt+1 be the result of performing the update (2.2.4) an arbitrary number of times. Then,

F̃(γt+1, βt) ≤ F̃(γt, βt)

Furthermore, if γt+1 = argminγ∈∆k
F̃(γ, βt), where ∆K is the K-dimensional simplex

F̃(γt+1, βt) ≤ F̃(γt, βt)

(2) Let βt+1 be the result of performing the update (2.2.5). Then,

F̃(γt+1, βt+1) ≤ F̃(γt+1, βt)

In fact, we remark with respect to the two kinds of updates in (1), iterating the γ updates in the first update is a

way to solve this convex minimization problem via a version of gradient descent which makes multiplicative updates,

rather than additive updates.

In this section, we will make a modification of the M-step in (2) which is very natural. Intuitively, the update for

βt
i, j goes over all appearances of the word j and adds the “fractional assignment” of the word j to topic i under our

current estimates of the variables β, γ. In the modified version we will only average over those documents d, where

γt
d,i > γ

t
d,i′ ,∀i′ , i.

The intuitive reason behind this modification is the following. The variational Bayes updates we are studying work

with the KL divergence, which puts more weight on the larger entries. Thus, for the documents in Di, the estimates

for γt
d,i should be better than they might be in the remaining documents. (Of course, since the terms f t

d, j involve all

the variables γt
d,i, it is not a priori clear that this modification will gain us much, but we will prove that it in fact does.)

Formally, we discuss the following three modifications of the updates (we call them suggestively tEM, or thresholded

EM) as Algorithms 1 and 2 and 3:
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Algorithm 1 KL-tEM
• (E-step) Solve the following convex program for each document d:

min
γt

d,i

∑
j

f̃d, j log(
f̃d, j
f t
d, j

)

s.t.
(1): γt

d,i ≥ 0,
∑

i γ
t
d,i = 1 and γt

d,i = 0 if i does not belong to document d
(M-step) Let Di to be the set of documents d, s.t. γt

d,i > γ
t
d,i′ ,∀i′ , i.

Set βt+1
i, j = βt

i, j

∑
d∈Di

f̃d, j
f t
d, j
γt

d,i∑
d∈Di γ

t
d,i

Algorithm 2 Iterative tEM
• (E-step) Initialize γd,i uniformly among the topics in the support of document d.

Repeat

γd,i = γd,i

N∑
j=1

f̃d, j
fd, j

βt
i, j (2.2.6)

until convergence.
(M-step) Same as above.

2.2.3 Initializations

We will consider two different strategies for initialization.

First, we will consider the case where we initialize with the topic-word matrix, and the document priors having

the correct support. The analysis of tEM in this case will be the cleanest. While the main focus of this Chapter is

variational Bayes, we’ll show that this initialization can actually be done for our case efficiently.

Second, we will consider an initialization that is inspired by what the current LDA-c implementation uses. Con-

cretely, we’ll assume that the user has some way of finding, for each topic i, a seed document in which the proportion

of topic i is at least Cl. Then, when initializing, one treats this document as if it were pure: namely one sets β0
i, j to be

the fractional count of word j in this document. We do not attempt to design an algorithm to find these documents.

Importantly, in Section 2.8, we can use this same initialization, but with quantitatively much weaker requirements.

2.3 Case study 1: Sparse topic priors, support initialization

We start with a simple case. As mentioned, all of our results only hold in the long documents regime: we will

assume for each document d, the number of sampled words is large enough, so that one can approximate the expected

Algorithm 3 Incomplete tEM
• (E-step) Initialize γd,i with the values gotten in the previous iteration, just perform one step of 2.2.6.

(M-step) Same as before.
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frequencies of the words, i.e., one can find values γ∗d,i, such that f̃d, j = (1 ± ε)
∑K

i=1 γ
∗
d,iβ
∗
i, j. We’ll split the rest of the

assumptions into those that apply to the topic-word matrix, and the topic priors. Let’s first consider the assumptions on

the topic-word matrix. We will impose conditions that ensure the topics don’t overlap too much. Namely, we assume:

• Words are discriminative: Each word appears in o(k) topics.

• Almost disjoint supports: ∀i, i′, if the intersection of the supports of i and i′ is S,
∑

j∈S β
∗
i, j ≤ o(1) ·

∑
j β
∗
i, j.

We also need assumptions on the topic priors. The documents will be sparse, and all topics will be roughly equally

likely to appear. There will be virtually no dependence between the topics: conditioning on the size or presence

of a certain topic will not influence much the probability of another topic being included. These are analogues of

distributions that have been analyzed for dictionary learning (Arora et al., 2015a). Formally:

• Sparse and gapped documents: Each of the documents in our samples has at most s = O(1) topics. Furthermore,

for each document d, the largest topic i0 = argmaxiγ
∗
d,i is such that for any other topic i′, γ∗d,i′ − γ

∗
d,i0

> ρ for

some (arbitrarily small) constant ρ.

• Dominant topic equidistribution: The probability that topic i is such that γ∗d,i > γ
∗
d,i′ ,∀i′ , i is Θ(1/k).

• Weak topic correlations and independent topic inclusion: For all sets T with o(k) topics, it must be the case that:

E[γ∗d,i|γ
∗
d,i is dominating] = (1 ± o(1))E[γ∗d,i|γ

∗
d,i is dominating, γ∗d,i′ = 0, i′ ∈ T ]. Furthermore, for any set T of

topics, s.t. |T | ≤ s − 1, Pr[γ∗d,i > 0|γ∗d,i′∀i′ ∈ T ] = Θ( 1
k )

These assumptions are a less smooth version of properties of the Dirichlet prior. Namely, it’s a folklore result

that Dirichlet draws are sparse with high probability, for a certain reasonable range of parameters. This was formally

proven by (Telgarsky, 2013) - though sparsity there means a small number of large coordinates. It’s also well known

that Dirichlet essentially cannot enforce any correlation between different topics. In fact, we show analogues of the

weak topic correlations property and equidistribution in Section 2.6.

The above assumptions can be viewed as a local notion of separability of the model, in the following sense. First,

consider a particular document d. For each topic i that participates in that document, consider the words j, which

only appear in the support of topic i in the document. In some sense, these words are local anchor words for that

document: these words appear only in one topic of that document. Because of the ”almost disjoint supports” property,

there will be a decent mass on these words in each document. Similarly, consider a particular non-zero element β∗i, j

of the topic-word matrix. Let’s call Dl the set of documents where β∗i′, j = 0 for all other topics i′ , i appearing in

that document. These documents are like local anchor documents for that word-topic pair: in those documents, the

word appears as part of only topic i. It turns out the above properties imply there is a decent number of these for any

word-topic pair.
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Finally, a technical condition: we will also assume that all nonzero γ∗d,i, β
∗
i, j are at least 1

poly(n) . Intuitively, this

means if a topic is present, it needs to be reasonably large, and similarly for words in topics. Such assumptions also

appear in the context of dictionary learning (Arora et al., 2015a).

We will prove the following:

Theorem 6 ((Awasthi and Risteski, 2015)). Given an instance of topic modelling satisfying the properties specified

above, where the number of documents is Ω( k log2 n
ε2 ), if we initialize the supports of the βt

i, j and γt
d,i variables correctly,

after O
(
log(1/ε′) + log n

)
KL-tEM, iterative-tEM updates or incomplete-tEM updates, we recover the topic-word ma-

trix and topic proportions to multiplicative accuracy 1 + ε′, for any ε′ s.t. 1 + ε′ ≤ 1
(1−ε)7 .

Theorem 7 ((Awasthi and Risteski, 2015)). If the number of documents is Ω(k4 log2 k), there is a polynomial-time

procedure which with probability 1 −Ω( 1
k ) correctly identifies the supports of the β∗i, j and γ∗d,i variables.

Provable convergence of tEM: The correctness of the tEM updates is proven in 3 steps:

• Identifying dominating topic: First, we prove that if γt
d,i is the largest one among all topics in the document,

topic i is actually the largest topic.

• Phase I: Getting constant multiplicative factor estimates: After initialization, after O(log n) rounds, we will get

to variables βt
i, j, γ

t
d,i which are within a constant multiplicative factor from β∗i, j, γ

∗
d,i.

• Phase II (Alternating minimization - lower and upper bound evolution): Once the β and γ estimates are within

a constant factor of their true values, we show that the lone words and documents have a boosting effect: they

cause the multiplicative upper and lower bounds to improve at each round.

The updates we are studying are multiplicative, not additive in nature, and the objective they are optimizing is

non-convex, so the standard techniques do not work. The intuition behind our proof in Phase II can be described as

follows. Consider one update for one of the variables, say βt
i, j. We show that βt+1

i, j ≈ αβ∗i, j + (1 − α)Ctβ∗i, j for some

constant Ct at time step t. α is something fairly large (one should think of it as 1− o(1)), and comes from the existence

of the local anchor documents. A similar equation holds for the γ variables, in which case the “good” term comes

from the local anchor words. Furthermore, we show that the error in the ≈ decreases over time, as does the value of

Ct, so that eventually we can reach β∗i, j. The analysis bears a resemblance to the state evolution and density evolution

methods in error decoding algorithm analysis - in the sense that we maintain a quantity about the evolving system, and

analyze how it evolves under the specified iterations. The quantities we maintain are quite simple - upper and lower

multiplicative bounds on our estimates at any round t.

Initialization: Recall the goal of this phase is to recover the supports - i.e. to find out which topics are present in

a document, and identify the support of each topic. We will find the topic supports first. This uses an idea inspired
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by (Arora et al., 2014) in the setting of dictionary learning. Roughly, we devise a test, which will take as input two

documents d, d′, and will try to determine if the two documents have a topic in common or not. The test will have no

false positives, i.e., will never say YES, if the documents don’t have a topic in common, but might say NO even if they

do. We then ensure that with high probability, for each topic we find a pair of documents intersecting in that topic,

such that the test says YES.

We proceed to making these intuitions formal in the coming sections.

2.3.1 Provable convergence of tEM: Proof of Theorem 6

As a reminder, the outline of the proof will be the following.

• Identifying dominating topic: For the modified tEM updates, we need to make sure that the topic with maximal

γt
d,i is the dominant.

• Phase I: Getting constant multiplicative factor estimates: First, we’ll show that after initialization, after O(log n)

number of rounds, we will get to variables βt
i, j, γ

t
d,i which are within a constant multiplicative factor from β∗i, j,

γ∗d,i.

– Lower bounds on the β and γ variables: We’ll show that determining the supports of the documents and

the topic-word matrix, as well as being able to identify the documents in which topic i is large is enough

to ensure that all the βt
i, j and γt

i, j variables are lower bounded by 1
C0
β

β∗i, j and 1
C0
γ
γ∗d,i respectively for some

constants C0
β ≥ 1,C0

γ ≥ 1.

– Improving upper bounds on the βt
i, j values: We show that, if the above two properties are satisfied, we can

get a multiplicative upper bound of the βt
i, j values, which strictly improves at each step until it reaches a

constant. This improvement is very fast: we only need a logarithmic number of steps. After this happens,

we show that the γ variables corresponding to these β estimates must be within a constant of the ground

truth as well.

• Phase II (Alternating minimization - lower and upper bound evolution): Once the β and γ estimates are within

a constant factor of their true values, we show that the lone words and documents have a boosting effect: they

cause the multiplicative upper and lower bounds to improve at each round.

A word about incorporating the ”correct supports” assumption in our algorithms. For the β variables this is obvious:

we just set βt
i, j = 0 if β∗i, j = 0. For the γ variables it’s also fairly straightforward. In KL-tEM we mean simply that in

the convex program above, we constrain γt
d,i = 0 if γ∗d,i = 0.

In the iterative version, this just means that before starting the γ iterations, we set the initial value to 0 if γ∗d,i = 0,

and uniform among the rest of the variables. Same for the incomplete version.
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In the interest of brevity, whenever we say ”the supports are correct”, the above is what we will mean.

Recall, we use t to count the iterations for β variables. Put another way, γt
d,i is the value we get for γd,i after the β

variables were updated to βt
i, j. (Which of course, implies, βt+1

i, j will be the values we get for the β variables after the γ

variables are updated to γt
d,i.)

The proofs are for each of the variants of tEM are similar. For starters, we show everything for KL-tEM, and then

just mention how to modify the arguments to get the results for the other variants in section 2.3.1.6.

2.3.1.1 Determining largest topic

First, we show that the ”thresholding” operation works. Namely, we show that if γt
d,i > γt

d,i′ ,∀i , i′, then γ∗d,i is the

largest topic in the document (there is a unique one by the ”slightly gapped documents” property). Furthermore, we

can say that 1
2γ
∗
d,i ≤ γ

t
d,i ≤ 2γ∗d,i.

Lemma 8. Fix a document d. Let the supports of the γ and β variables be correct. Then, after a γ iteration, if

γt
d,i > γ

t
d,i′ , i , i′, γ∗d,i is the largest topic in the document. Furthermore, 1

2γ
∗
d,i ≤ γ

t
d,i ≤ 2γ∗d,i.

Proof. Since there are a constant number of topics in the document, the largest topic has proportion Ω(1).

Consider the KL-tEM convex optimization problem. The KKT conditions are easily seen to imply3:

n∑
j=1

f̃d, j
f t
d, j
βt

i, j = 1 (2.3.1)

For each topic i, since we are considering a constrained optimization problem, it has to be the case that it either

satisfies 2.3.1, γt
d,i = 0 or γt

d,i = 1.

Let’s assume first that i satisfies 2.3.1. Then,

γt
d,i =

n∑
j=1

f̃d, j
f t
d, j
βt

i, jγ
t
d,i ≤

∑
j:β∗i, j,0

f̃d, j

Let’s call the words j, which only appear in the support of topic i in the document lone for that topic, and let’s

denote that set as Li.

If Li are the lone words for topic i,
∑

j<Li,β
∗
i, j,0 f̃d, j = so(1) = o(1), so

γt
d,i ≤

∑
j∈Li

(1 + ε)β∗i, jγ
∗
d,i + o(1) ≤ (1 + ε)γ∗d,i + o(1) ≤ γ∗d,i + o(1)

On the other hand, γt
d,i ≥

∑
j∈Li

β∗i, jγ
∗
d,i ≥ (1 − ε)(1 − o(1))γ∗d,i ≥ (1 − o(1))γ∗d,i, so γt

d,i ≥ γ
∗
d,i − o(1).

3One gets these trivially, turning the constraint that
∑K

i=1 γ
t
d,i = 1 into a Lagrange multiplier
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Since there is a constant gap of ρ between the largest topic and the next largest one, the maximum γt
d,i is indeed

the largest topic in the document. Furthermore, since (1 − o(1))γ∗d,i ≤ γ
t
d,i ≤ (1 + o(1))γ∗d,i, clearly 1

2γ
∗
d,i ≤ γ

t
d,i ≤ 2γ∗d,i

follows as well.

On the other hand, we claim no topic which is in the support of a document d can actually have γt
d,i = 0.

If this happens, it’s easy to see that
∑n

j=1 f̃d, j log( f̃d, j
f t
d, j

) = ∞: one only needs to look at a summand corresponding to

a lone word j for topic i. Just by virtue of the way lone words are defined, γt
d,i = 0 would imply f t

d, j = 0. It’s clear that

one can get a finite value for
∑

j f̃d, j log( f̃d, j
f t
d, j

) on the other hand, by just setting γt
d,i = γ∗d,i, so γt

d,i = 0 cannot happen at

an optimum.

�

2.3.1.2 Lower bounds on the γt
d,i and βt

i, j variables

Next, we show that subject to the thresholding being correct, at any point in time t, all the estimates γt
d,i and βt

i, j are

appropriately lower bounded.

The proof is similar for both the β and γ variables, and both for the KL-tEM and iterative tEM updates, but as

mentioned before, we focus on the KL-tEM first.

Lemma 9. Fix a particular document d. Suppose that the supports of the γ and β variables are correct. Then,

γt
d,i ≥ (1 − o(1))γ∗d,i.

Proof. Multiplying both sides of 2.3.1 by γt
d,i, we get

γt
d,i =

n∑
j=1

f̃d, j
f t
d, j
βt

i, jγ
t
d,i

As above, let’s split the above sum in two parts: lone words, and non-lone. Then clearly,

γt
d,i ≥

∑
j∈Li

(1 − ε)β∗i, jγ
∗
d,i

For notational convenience, let’s denote α̃ =
∑

j∈Li
β∗i, j. Let’s estimate α̃. By the assumption on the size of the

intersection of topics, ∑
j<Li

β∗i, j ≤ so(1) = o(1)

.

Hence, α̃ ≥ (1 − ε)(1 − o(1)) = 1 − o(1). So, the claim of the lemma holds.

�
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The lower bound on the βt
i, j values proceeds similarly, but here we will crucially make use of the fact that for the

large topics, we have both upper and lower bounds on the γt
d,i values.

Lemma 10. Suppose that the supports of the γ and β variables are correct. Additionally, if i is a large topic in d, let

1
2γ
∗
d,i ≤ γ

t
d,i ≤ 2γ∗d,i. Then, βt+1

i, j ≥
1
2 (1 − o(1))β∗i, j.

Proof. Let’s call lone the documents where β∗i′, j = 0 for all other topics i′ , i appearing in that document for the

topic-word pair (i, j). Let Dl be the set of lone documents. Then, certainly it’s true that

βt+1
i, j ≥ β

t
i, j

∑
d∈Dl

f̃d, j
f t
d, j
γt

d,i∑D
d=1 γ

t
d,i

However, for a lone document, f t
d, j = γt

d,i · β
t
i, j (it’s easy to check all the other terms in the summation for f t

d, j vanish,

because either γt
d,i′ = 0 or βt

i′, j = 0). Hence,

βt+1
i, j ≥

∑
d∈Dl

(1 − ε)
γ∗d,iβ

∗
i, j

γt
d,i·β

t
i, j
βt

i, jγ
t
d,i∑D

d=1 γ
t
d,i

= (1 − ε)β∗i, j

∑
d∈Dl

γ∗d,i∑D
d=1 γ

t
d,i

However, since the update is happening only over documents where topic i is large, γt
d,i ≤ 2γ∗d,i. So, we can

conclude

βt+1
i, j ≥ (1 − ε)β∗i, j

1
2

∑
d∈Dl

γ∗d,i∑D
d=1 γ

∗
d,i

Let’s call α =

∑
d∈Dl

γ∗d,i∑D
d=1 γ

∗
d,i

, and let’s analyze it’s value.

By Lemma 55 and Lemma 54,

∑
d∈Dl

γ∗d,i ≥ (1 − ε)|Dl|E[γ∗d,i|γ
∗
d,i is dominating, γ∗d,i′ = 0,∀i′ , i s.t. j appears in topic i′]

D∑
d=1

γ∗d,i ≤ (1 + ε)|D|E[γ∗d,i|γ
∗
d,i is dominating]

By the weak topic correlations assumption, then,

∑
d∈Dl

γ∗d,i∑D
d=1 γ

∗
d,i

≥ (1 − o(1))
|Dl|

|D|
.

Furthermore, by the independent topic inclusion property, each of the o(K) topics other than i that word j belongs

to appears in a document with probability Θ(1/K), so the probability that a document which contains topic i contains

one of them is o(1), i.e. |Dl |

|D| . By Lemma 56, furthermore, |Dl |

|D| ≥ 1 − o(1) when ε = o(1). Hence, α ≥ 1 − o(1).

Altogether, we get that βt+1
i, j ≥

1
2 (1 − o(1))β∗i, j as claimed.

�
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2.3.1.3 Upper bound on the βt
i, j values

Having established a lower bound on the βt
i, j variables throughout all iterations, together with the lower bounds on the

γt
d,i variables and the good estimates for the large topics, we will be able to prove the upper bound of the multiplicative

error of βt
i, j keeps improving, until βt

i, j ≤ Cββ
∗
i, j, for some constant Cβ.

Lemma 11. Let the β variables have the correct support, and βt
i, j ≥

1
Cm
β∗i, j, γ

t
d,i ≥

1
Cm
γ∗d,i whenever β∗i, j , 0, γ∗d,i , 0.

Let βt
i, j = Ct

ββ
∗
i, j, where Ct

β ≥ 4Cm, and Cm is a constant. Then, in the next iteration, βt+1
i, j ≤ Ct+1

β β∗i, j, where Ct+1
β ≤

Ct
β

2 .

Proof. Without loss of generality, let’s assume Cm ≥ 2. (Since certainly, if the statement of the lemma holds with a

smaller constant, it holds with Cm = 2.)

We proceed similarly as in the prior analyses. We will split the sum into the portion corresponding to the lone and

non-lone documents.

Let’s analyze the terms f̃d, j
f t
d, j
γt

d,i corresponding to the non-lone documents.

Now, f t
d, j ≥

1
C2

m
f ∗d, j, so f̃d, j

f t
d, j
≤ (1 + ε)C2

m. Also, γt
d,i ≤ 2γ∗d,i, since topic i is the dominant in document d. Since

Cm ≥ 2, f̃d, j
f t
d, j
γt

d,i ≤ (1 + ε)C3
mγ
∗
d,i.

Also, note that
∑D

d=1 γ
t
d,i ≥

1
Cm

∑D
d=1 γ

∗
d,i, again, since i is the dominant topic.

As usual, let’s denote the set of lone documents Dl:

βt+1
i, j ≤ (1 + ε)Cm

∑
d∈Dl

β∗i, jγ
∗
d,i +

∑
d∈D\Dl

C3
mγ
∗
d,iβ

t
i, j∑D

d=1 γ
∗
d,i

As in the prior proofs, let’s denote by α :=
∑

d∈Dl
γ∗d,i∑D

d=1 γ
∗
d,i

.

As in Lemma 10, α ≥ 1 − o(1), so βt+1
i, j ≤ (1 + ε)Cm(αβ∗i, j + (1 − α)C3

mβ
t
i, j), which in turn implies that

βt+1
i, j

β∗i, j
≤

(1 + ε)Cm(α + (1 − α)C3
mCt

β). In order to ensure that
βt+1

i, j

β∗i, j
<

Ct
β

2 , it would be sufficient to prove that

(1 + ε)Cm(α + (1 − α)(C3
mCt

β) <
Ct
β

2

which is equivalent to α >
C3

mCt
β −

Ct
β

2(1+ε)Cm

C3
mCt

β − 1
.

Let’s look at the right hand side. As, by assumption, Ct
β ≥ 4Cm, it follows that

C3
mCt

β −
Ct
β

2(1+ε)Cm

C3
mCt

β − 1
≤

C3
mCt

β −
Ct
β

2(1+ε)Cm

C3
mCt

β −
Ct
β

4Cm
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Hence, the right hand side is upper bounded by

C3
m −

1
2(1+ε)Cm

C3
m −

1
4Cm

= 1 −

2
1+ε −1
4Cm

C3
m −

1
4Cm

But, since Cm is bounded by a constant, and α = 1 − o(1), the claim follows.

�

2.3.1.4 Upper bounds on the γ values

Finally, we show that if we ever reach a point where the β values are both upper and lower bounded by a constant, the

γ values one gets after the γ step are appropriately upper bounded by a constant. More precisely:

Lemma 12. Fix a particular document d. Let’s assume the supports for the β and γ variables are correct. Further-

more, let 1
Cm
≤

βt
i, j

β∗i, j
≤ Cm for some constant Cm. Then, γt

d,i ≤ (1 + o(1))γ∗d,i.

Proof. As in the proof of Lemma 9, let’s look at the KKT conditions for γt
d,i into a part corresponding to lone words

Li and non-lone words. Multiplying 2.3.1 by γt
d,i as before,

γt
d,i =

∑
j∈Li

f̃d, j + γt
d,i

∑
j<Li

f̃d, j
f t
d, j
βt

i, j

Again, let α̃ =
∑

j∈Li
β∗i, j.

By Lemma 9, certainly γt
d,i ≥

1
Cm
γ∗d,i. Hence,

f̃d, j
f t
d, j
≤ (1 + ε)C2

m. So we have, γt
d,i ≤ (1 + ε)(α̃γ∗d,i + C3

m(1 − α̃)γt
d,i).

In other words, this implies γt
d,i ≤

(1+ε)α̃
1−(1+ε)C3

m(1−α̃)γ
∗
d,i. Since α̃ = 1 − o(1), it’s easy to check that α̃

1−C3
m(1−α̃) ≤ 1 + o(1),

which is enough for what we need.

�

So, as a corollary, we finally get:

Corollary 13. For some t0 = O(log( 1
β∗min

))) = O(log n) , it will be the case that for all t ≥ t0,
1

C0
β

≤
β∗i, j

βt
i, j
≤ C0

β for some

constant C0
β and

1
C0
γ

≤
γ∗d,i

γt
d,i
≤ C0

γ for some constant C0
γ.

This concludes Phase I of the analysis.

2.3.1.5 Phase II: Alternating minimization - upper and lower bound evolution

Taking Corollary 13 into consideration, we finally show that, if the β and γ values are correct up to a constant mul-

tiplicative factor, and we have the correct support, we can improve the multiplicative error in each iteration, thus

achieving convergence to the correct values.
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This portion bears resemblance to techniques like state evolution and density evolution in the literature for iterative

methods for decoding error correcting codes. In those techniques, one keeps track of a certain quantity of the system

that’s evolving in each iteration. In density evolution, this is the probability density function of the messages that are

being passed, in state evolution, it is a certain average and variance of the variables we are estimating.

In our case, we keep track of the ”multiplicative accuracy” of our estimates γt
d,i, β

t
i, j. In particular, we will keep

track of quantities Ct
γ and Ct

β, such that at iteration t, 1
Ct
β
≤

βi, j∗

βt
i, j
≤ Ct

β and 1
Ct
γ
≤

γd,i∗

γt
d,i
≤ Ct

γ after the corresponding γ

iteration.

We will show that improvement in the quantities Ct
β causes a large enough improvement in the Ct

γ updates, so that

after an alternating step of β and γ updates, Ct+1
β ≤ (Ct

β)
1/2.

First, we show that when the β variables are estimated up to a constant multiplicative factor, the constant for the γ

values after they’ve been iterated to convergence is slightly better than the constant for the β values. More precisely:

Lemma 14. Let’s assume that our current iterates βt
i, j satisfy 1

Ct
β
≤

βi, j∗

βt
i, j
≤ Ct

β for Ct
β ≥

1
(1−ε)7 . Then, after iterating the

γ updates to convergence, we will get values γt
d,i that satisfy (Ct

β)
1/3 ≤

γd,i∗

γt
d,i
≤ (Ct

β)
1/3.

Proof. As usual, we will split the KKT conditions for γt+1,t′
d,i into two parts: one for the lone, and one for the non-lone

words. Let’s call the set of lone words Li, as previously. Then. we have

γt
d,i =

∑
j∈Li

f̃d, j + γt
d,i

∑
j<Li

f̃d, j
f t
d, j
βt

i, j

Again, let α̃ =
∑

j∈Li
β∗i, j = o(1), as we proved before.

Let’s denote as Ct
γ = maxi(max(

γ∗d,i
γt

d,i
,
γt

d,i

γ∗d,i
)).

We claim that it has to hold that Ct
γ ≤ (Ct

β)
1/3. Assume the contrary, and let i0 = argmaxi(max(

γ∗d,i
γt

d,i
,
γt

d,i

γ∗d,i
)).

Let’s first assume that
γt

d,i0
γ∗d,i0

= Ct
γ.

By the definition of Ct
γ,

γt
d,i0 =

∑
j∈Li0

f̃d, j + γt
d,i0

∑
j<Li0

f̃d, j
f t
d, j
βt

i0, j ≤ (1 + ε)(α̃γ∗d,i0 + (1 − α̃)(Ct
β)

2(Ct
γ)2γ∗d,i0 )

We claim that

(1 + ε)(α̃ + (1 − α̃)(Ct
β)

2(Ct
γ)2) ≤ (Ct

γ)1/3 (2.3.2)

which will be a contradiction to the definition of Ct
γ.

After a little rewriting, 2.3.2 translates to α̃ ≥ 1 −
(Ct
γ )1/3

1+ε −1
(Ct

βC
t
γ)2−1 . By our assumption on Ct

γ, Ct
β ≤ C3

γ, so the right hand

side above is upper bounded by 1 −
(Ct
γ )1/3

1+ε −1
(Ct

γ)8−1 .
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But, Lemma 12 implies that certainly Ct
γ ≤ C0

γ, where C0
γ is some absolute constant. The function

f (c) =

c1/3

1+ε
− 1

c8 − 1

can be easily seen to be monotonically decreasing on the interval of interest, and hence is lower bounded by
(C0
γ )1/3

1+ε −1
(C0

γ)8−1 ,

which is in terms some absolute constant smaller than one. Since α̃ = 1 − o(1). the claim we want is clearly true.

The case where
γ∗d,i0
γt

d,i0

= Ct
γ is similar. In this case,

γt
d,i0 =

∑
j∈Li0

f̃d, j + γt
d,i0

∑
j<Li0

f̃ d, j
f t
d, j

βt
i0, j ≥ (1 − ε)(α̃γ∗d,i0 + (1 − α̃)

1
(Ct

β)
2(Ct

γ)2 γ
∗
d,i0 )

We then claim that

(1 − ε)(α̃ + (1 − α̃)
1

(Ct
β)

2(Ct
γ)2 ) ≥

1
(Ct

γ)1/3 (2.3.3)

Again, 2.3.3 rewrites to:

α̃ ≥

1
(1−ε)(Ct

γ)1/3 −
1

(Ct
β)2(Ct

γ)2

1 − 1
(Ct

β)2(Ct
γ)2

= 1 −
1 − 1

(1−ε)(Ct
γ)1/3

1 − 1
(Ct

βC
t
γ)2

Again, the right hand side above is upper bounded by 1 −
1− 1

(1−ε)(Ct
γ )1/3

1− 1
(Ct
γ )8

. But Cγ ∈ [1,C0
γ], and the function

1− 1
(1−ε)c1/3

1− 1
c8

is monotonically increasing, so lower bounded by

1 − 1
(1−ε)( 1

(1−ε)7
)1/3

1 − 1
( 1

(1−ε)7
)8

=
1 − (1 − ε)4/3

1 − (1 − ε)56 ≥
1
42

Hence, 1 −
1− 1

(1−ε)(Ct
γ )1/3

1− 1
(Ct
γ )32

is upper bounded by 41
42 . Again, our bound on α̃ gives us what we want.

�

Lemma 15. Let’s assume that our current iterates βt
i, j satisfy 1

Ct
β
≤

βi, j∗

βt
i, j
≤ Ct

β, Ct
β ≥

1
(1−ε)7 , and after the corresponding

γ update, we get 1
Ct
γ
≤

γd,i∗

γt
d,i
≤ Ct

γ, where Ct
β ≥ (Ct

γ)3. Then, after one β step, we will get new values βt+1
i, j that satisfy

1
Ct+1
β

≤
βi, j∗

βt+1
i, j
≤ Ct+1

β where Ct+1
β = (Ct

β)
1/2.

Proof. The proof proceeds in complete analogy with Lemmas 10 and 11.

Again, let’s tackle the lower and upper bound separately. The upper bound condition is:

α >
(Ct

βC
t
γ)2 −

(Ct
β)1/2

(1+ε)Ct
γ

(Ct
γCt

β)
2 − 1
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Using Ct
β ≥ (Ct

γ)3, we can upper bound the expression on the right by 1 −
(Ct

β)1/6

1+ε
− 1

(Ct
β)

8/3 − 1
. The function f (c) =

x1/6
1+ε −1
x8/3−1

is monotonically decreasing on the interval [1,C0
β] of interest, so because α = 1 − o(1), we get what we want.

Similarly, for the lower bound, we want that

α >

Ct
γ

(Ct
β)1/2(1−ε) −

1
(Ct

γCt
β)2

1 − 1
(Ct

βC
t
γ)2

Yet again, using Ct
β ≥ (Ct

γ)3, we get that the right hand side is upper bounded by

1 −
1 − 1

(1−ε)C1/6
β

1 − 1
C3
β

However, the function f (c) =
1− 1

(1−ε)c1/6

1− 1
c8/3

is monotonically increasing on the interval [1,C0
β], so lower bounded by

1− 1
(1−ε)( 1

(1−ε)7
)1/6

1− 1
( 1

(1−ε)7
)8/3

=
1−(1−ε)1/6

1−(1−ε)21 ≥
1

126 . Hence, 1 −
1− 1

(1−ε)C1/6
β

1− 1
C3
β

is upper bounded by 125
126 , so using the fact that α = 1 − o(1), we

get what we want.

�

Putting lemmas 14 and 15 together, we get:

Lemma 16. Suppose it holds that 1
Ct ≤

βi, j∗

βt
i, j
≤ Ct, Ct ≥ 1

(1−ε)7 . Then, after one KL minimization step with respect to

the γ variables and one β iteration, we get new values βt+1
i, j that satisfy 1

Ct+1 ≤
βi, j∗

βt+1
i, j
≤ Ct+1, where Ct+1 =

√
Ct

Proof. By Lemma 14, after the γ iterations, we get γt
d,i values that satisfy the condition 1

(C′)t ≤
γd,i∗

γt
d,i
≤ (C′)t, where

(C′)t = (Ct)1/3.

Then, by Lemma 15, after the γ iteration, we will get 1
Ct+1 ≤

βi, j∗

βt+1
i, j
≤ Ct+1, such that Ct+1 = (Ct)1/2, which is what

we need.

�

Hence, as a corollary, we get immediately:

Corollary 17. Lemma 16 above implies that Phase III requires O(log( 1
log(1+ε′) )) = O(log( 1

ε′
)) iterations to estimate

each of the topic-word matrix and document proportion entries to within a multiplicative factor of 1 + ε′.

This finished the proof of Theorem 6 for the KL-tEM version of the updates. In the next section, we will remark

on why the proofs are almost identical in the iterative and incomplete tEM version of the updates.
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2.3.1.6 Iterative tEM updates, incomplete tEM updates

We show how to modify the proofs to show that the iterative tEM and incomplete tEM updates work as well. We’ll

just sketch the arguments as they are almost identical as above.

In those updates, when we are performing a γ update, we initialize with γt
d,i = 0 whenever topic i does not belong

to document d, and γt
d,i uniform among all the other topics.

Then, the way to modify Lemmas 9, 12, 14 is simple. Instead of arguing by contradiction about what happens

at the KKT conditions, one will assume that at iteration t′ (t′ to indicate these are the separate iterations for the γ

variables that converge to the values γt
d,i) it holds that 1

Ct′
γ
γ∗d,i ≤ γ

t′
d,i ≤ Ct′

γγ
∗
d,i. Then, as long as Ct′

γ is too big, compared

to Ct
β, one can show that Ct′

γ is decreasing (to Ct′+1
γ = (Ct

γ)1/2, say), using exactly the same argument we had before.

Furthermore, the number of such iterations needed will clearly be logarithmic.

But the same argument as above proves the incomplete tEM updates work as well. Namely, even if we perform

only one update of the γ variables, they are guaranteed to improve.

2.3.2 Provable guarantees for initialization

For completeness, we also give here a fairly easy, efficient initialization algorithm. Recall, the goal of this phase is to

recover the supports - i.e. to find out which topics are present in a document, and identify the support of each topic.

To reiterate the theorem statement:

Theorem 7. If the number of documents is Ω(k4 log2 k), there is a polynomial-time procedure which with probability

1 −Ω( 1
k ) correctly identifies the supports of the β∗i, j and γ∗d,i variables.

We will find the topic supports first. Roughly speaking, we will devise a test, which will take as input two

documents d, d′, and will try to determine if the two documents have a topic in common or not. The test will have no

false positives, i.e. will never say NO, if the documents do have a topic in common, but might say NO even if they do.

We will then, ensure that with high probability, for each topic we find a pair of documents intersecting in that topic,

such that the test says YES.

We will also be able to identify which pairs intersect in exactly one topic, and from this we will be able to find all

the topic supports. Having done all of this, finding the topics in each document will be easy as well. Roughly speaking,

if a document doesn’t contain a given topic, it will not contain all of the discriminative words in that document.

We give the algorithm formally as pseudocode Algorithm 4.

Now, let’s proceed to analyze the above algorithm, proceeding in a few parts.
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Algorithm 4 Initialization
repeat

Sample a pair of documents (d, d′).
.Test if (d, d′) intersect with no false positives:
if

∑
j min{ f ∗d, j, f ∗d′, j} ≥

1
2T then

S d,d′ := { j, s.t. f ∗d, j, f ∗d′, j > 0}
.”Weed-out” words that are not in the support of the intersection of (d,d’)
for all documents d′′ , {d, d′} do

if
∑

j min{ f ∗d, j, f ∗d′′, j} ≥
1
2s and

∑
j min{ f ∗d′, j, f ∗d′′, j} ≥

1
2s then

S d,d′ = S d,d′ ∩ j, s.t f ∗d′′, j > 0
end if

end for
end if

until K4 log2 K times
.Determine which S a,b correspond to documents intersecting in one topic only)
if Set S a,b appears less than D/K2.5 times, where D is the total number of documents then

Remove S a,b.
end if
if Set S a,b can be written as the union of two other sets S c,d, S e, f , where neither is contained inside the other then

Remove S a,b.
end if
if Set S a,b is strictly contained inside S d,d′ for some S d,d′ then

Remove S d,d′ .
end if
Remove duplicates.
The remaining lists S a,b are declared to be topic supports.

2.3.2.1 Constructing a no-false-positives test

First, we describe how one determines the supports of the topics. Let’s define Test(d, d′) = YES, if
∑

j min{ f ∗d, j, f ∗d′, j} ≥

1
2T , and NO otherwise. Then, we claim the following.

Lemma 18. If d, d′ both contain a topic i0, s.t. γ∗d,i0 ≥ 1/s, γ∗d′,i0 ≥ 1/s then Test(d, d′) = YES. If d, d′ do not contain

a topic i0 in common, then Test(d, d′) = NO.

Proof. Let’s prove the first claim.

∑
j

min{ f̃d, j, f̃d′, j} ≥
∑

j

(1 − ε) min{β∗i0, jγ
∗
d,i0 , β

∗
i0, jγ

∗
d′,i0 } ≥

∑
j

(1 − ε)1/sβ∗i0, j ≥ 1/2s

Now, let’s prove the second claim. Let’s suppose d, d′ contain no topic in common.

Let’s fix a topic i0 that belongs to document d. By the ”small discriminative words intersection”, we have the

following property: ∑
j∈i0, j∈i′

β∗i, j = o(1)
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for any other topic i′ , i0.

Denoting by Toutside the words belonging to topic i0, and no topic in document d′, and Tinside the words belonging

to at least one other topic in d′, we have ∑
j∈Tinside

β∗i, j ≤ s · o(1) = o(1)

For the words j ∈ Toutside, min{ f ∗d, j, f ∗d′, j} = 0

By the above, ∑
j

min{ f̃d, j, f̃d′, j} ≤ (1 + ε)s2o(1) = o(1)

Thus, the test will say NO, as we wanted.

�

2.3.2.2 Finding the topic supports from identifying pairs

Let’s call d, d′ an identifying pair of documents for topic i, if d, d′ intersect in topic i only, and furthermore the test

says YES on that pair.

From this identifying pair, we show how to find the support of the topic i in the intersection. What we’d like to do is

just declare the words j, s.t. f ∗d, j, f ∗d′, j are both non-zero as the support of topic i. Unfortunately, this doesn’t quite work.

The reason is that one might find words j, s.t. they belong to one topic i′ in d, and another topic i′′ in d′′. Fortunately,

this is easy to remedy. As per the pseudo-code above, let’s call the following operation WEEDOUT (d, d′):

• Set S = { j, s.t. f ∗d, j > 0, f ∗d′, j > 0}.

• For all d′′, s.t. Test(d, d′′) = YES , Test(d′, d′′) = YES :

• Set S = S ∪ { j, s.t. f ∗d′′, j > 0}

• Return S .

Lemma 19. With probability 1 − Ω( 1
k ), for any pair of documents d, d′ intersecting in one topic, WEEDOUT (d, d′)

is the support of S .

Proof. For this, we prove two things. First, it’s clear that S is initialized in the first line in a way that ensures that it

contains all words in the support of topic i. Furthermore, it’s clear that at no point in time we will remove a word j

from S that is in the support of topic i. Indeed - if Test(d, d′′) = YES and Test(d′, d′′) = YES , then by Lemma 18

document d′′ must contain topic i. In this case, f ∗d′′, j > 0, and we won’t exclude j from S .

So, we only need to show that the words that are not in the support of topic i will get removed.
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Let d, d′ intersect in a topic i. Let a word j be outside the support of a given topic i. Because of the independent

topic inclusion property, the probability that a document d′′ contains topic i, and no other topic containing j is Ω(1/K).

Since the number of documents is Ω(k4 log2 k), by Chernoff, the probability that there is a document d′′, s.t.

Test(d, d′′) = YES , Test(d′, d′′) = YES , but f ∗d′′, j = 0, is 1 − Ω( 1
eK2 log2 k

). Union bounding over all words j, as well as

pairs of documents d, d′, we get that for any documents d, d′ intersection in a topic i, we get the claim we want.

�

2.3.2.3 Finding the identifying pairs

Finally, we show how to actually find the identifying pairs. The main issue we need to handle are documents that do

intersect, and the TEST returns yes, but they intersect in more than one topic. There’s two ingredients to ensuring this

is true in the above algorithm.

• First, we delete all sets in the list of sets S a,b that show up less than D2/k2.5 number of times.

• Second, we remove sets that can be written as the union of two other sets S c,d, S e, f , where neither of the two is

contained inside the other.

• After this, we delete the non-maximal sets in the list.

The following lemma holds:

Lemma 20. Each topic has Ω(D2/k2) identifying pairs with probability 1 −Ω( 1
k ).

Proof. Let Ii be the event that there are at least Ω(D2/k2) identifying pairs for topic i. Let Ri be a random variable

denoting the number of documents which have topic i as a dominating topic. Furthermore, let Mi be the event that

there are at least R2
i

2 − k
√

R2
i identifying pairs among the Ri ones that have i as a dominating topic. By the dominant

topic equidistribution property, probability that a document d has a topic i as a dominating topic is at least C/k for

some constant C. Then, clearly,

Pr[∩k
i=1Ii] ≥ Pr

[
∩k

i=1

(
Ri ≥

1
2

C
D
k

)]
Pr

[
∩k

i=1Mi| ∩
k
i=1

(
Ri ≥

1
2

C
D
k

)]

Let’s estimate Pr
[
∩k

i=1

(
Ri ≥

1
2C D

k

)]
first. The probabilities that different documents have i0 as the dominating topic

are clearly independent, so by Chernoff, if Ri is the number of documents where i is the dominating topic,

Pr[Ri ≥ (1 − ε)C
D
k

] ≥ 1 − e−
ε2
3 C D

k

Since D = Ω(k2), plugging in ε = 1
2 , Pr[Ri <

1
2C D

k ] ≥ 1 − e−Ω(k). Union bounding over all topics, we get that with

probability Pr
[
∩k

i=1

(
Ri ≥

1
2C D

k

)]
≥ 1 − 1

k .
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Now, let’s consider Pr
[
∩k

i=1Mi| ∩
k
i=1

(
Ri ≥

1
2C D

k

)]
. The event ∩k

i=1

(
Ri ≥

1
2C D

k

)
can be written as the disjoint union

of events

{D = ∪k
i=1Di,∀i , j,Di ∩ D j = ∅}

where D is the set of all documents, Di is the set of documents that have i as the dominating topic, and |Di| ≥
1
2C D

k ,∀i.

(i.e. all the partitions of D into k sets of sufficiently large size). Evidently, if we prove a lower bound on Pr
[
∩k

i=1Mi|E
]

for any such event E, it will imply a lower bound on Pr
[
∩k

i=1Mi| ∩
k
i=1

(
Ri ≥

1
2C D

k

)]
. For any such event, consider two

documents d, d′ ∈ {Di}, i.e. having i as the dominating topic. Let Id,d′ be an indicator variable denoting the event that

d, d′ do not intersect in an additional topic. Pr[Id,d′ = 1] = 1 − o(1), by the independent topic inclusion property and

the events Id,d′ are easily seen to be pairwise independent. Furthermore, Var[Id,d′ ] = o(1). By Chebyshev’s inequality,

Pr

 ∑
d,d′∈Di

Id,d′ ≥
1
2

D2
i − c

√
D2

i

 ≥ 1 −
1
c2

If Ri = Ω(k log k), plugging in c = K, we get that Pr

 ∑
d,d′∈Di

Id,d′ = Ω(D2
i )

 ≥ 1−Ω(
1
k2 ). Hence, Pr

[
∩k

i=1Mi|E
]
≥ 1− 1

k ,

by a union bound, which implies Pr
[
∩k

i=1Mi| ∩
k
i=1

(
Ni ≥

1
2C D

k

)]
≥ 1 − 1

k .

Putting all of the above together, if D = Ω(k2 log k), with probability 1−Ω( 1
k ), all topics have Ω(D2/k2) identifying

pairs, which is what we want.

�

The lemma implies that with probability 1 − Ω( 1
k ), we will not eliminate the sets S a,b corresponding to topic

supports.

We introduce the following concept of a ”configuration”. A set of words C will be called a ”configuration” if it

can be constructed as the intersection of the discriminative words in some set of topics, i.e.

Definition. A set of words C is called a configuration if there exists a set I = {I1, . . . , I|I|} of topics, s.t.

C = ∩
|I|
i=1WIi

Let’s call the minimal size of a set I that can produce C the generator size of C.

Now, we claim the following fact:

Lemma 21. If a configuration C has generator size ≥ 3, then with probability 1 − Ω( 1
k ), it cannot appear as one of

the sets S a,b after step 2 in the WEEDOUT procedure.

Proof. Since C has generator size at least 3, if two sets d, d′ intersect in less than two topics, then step 1 in WEEDOUT
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cannot produce S a,b which is equal to C. Hence, prior to step 2, C can only appear as S d,d′ for d, d′ that intersect in at

least 3 topics.

Let Id,d′ be an indicator variable denoting the fact that the pair of documents d, d′ intersects in at least 3 topics.

We have Pr[Id,d′ = 1] ≤ 1/k3 + 1/k4 + . . . 1/kT = O(1/k3) by the independent topic inclusion property.

If I3 is a variable denoting the total number of documents that intersect in at least 3 topics, again by Chebyshev as

in Lemma 20 we get:

Pr[I3 ≥ Θ(D/k3) − cΘ(
√

D/k3/2)] ≥ 1 −
1
c2

Again, by putting c =
√

k, since the number of documents is k4 log2 k, with probability 1 − 1
k , all configurations

with generator size ≥ 3 cannot appear as one of the sets S a,b, as we wanted.

�

This means that after the WEEDOUT step, with probability 1 − Ω( 1
k ), we will just have sets S a,b corresponding

to configurations generated by two topics or less. The options for these are severely limited: they have to be either a

topic support, the union of two topic supports, or the intersection of two topic supports. We can handle this case fairly

easily, as proven in the following lemma:

Lemma 22. After the end of step 3, with probability 1 − Ω( 1
k ), the only remaining S a,b are those corresponding to

topic supports.

Proof. First, when we check if some S d,d′ is the union of two other sets and delete it if yes, I claim we will delete the

sets equal to configurations that correspond to unions of two topic supports (and nothing else). This is not that difficult

to see: certainly the sets that do correspond to configurations of this type will get deleted.

On the other hand, if it’s the case that S a,b corresponds to a single topic support, we won’t be able to write it

as the union of two sets S d,d′ , S d′′,d′′′ , unless one is contained inside the other - this is ensured by the existence of

discriminative words.

Hence, after the first two passes, we will only be left with sets that are either topic supports, or intersections of two

topic supports. Then, removing the non-maximal is easily seen to remove the sets that are intersections, again due to

the existence of discriminative words.

�

2.3.2.4 Finding the document supports

Now, given the supports of each topic, for each document, we want to determine the topics which are non-zero in it.

The algorithm is given in 5:
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Algorithm 5 Finding document supports
Initialize R = ∅.
for each i do

Compute Score(i) =
∑

j∈S upport(i)\R f̃d, j
end for
Find i∗ such that Score(i∗) is maximum.
while Score(i∗) > 0 do

Output i∗ to be in the support of d.
R = R ∪ support(i∗)
Recompute Score for every other topic.
Find i∗ with maximum score.

end while

Lemma 23. If a topic i0 is such that γ∗d,i0 > 0, it will be declared as ”IN”. If a topic i0 is such that γ∗d,i0 = 0, it will be

declared as out.

Proof. Consider a topic i. At any iteration of the while cycle, consider
∑

j∈S upport(i)\R f̃d, j. Clearly, f̃d, j ≥ (1− ε)γ∗d,iβ
∗
i, j.

Also
∑

j∈R β
∗
i, j = so(1). Hence,

∑
j∈S upport(i)\R

f̃d, j ≥ (1 − ε)γ∗d,i(1 − so(1)) ≥
1
2
γ∗d,i

So, topic i will be added eventually.

On the other hand, let’s assume the document doesn’t contain a given topic i0. Let’s call B the set of words j which

are in the support of i0, and belong to at least one of the topics in document d. Then,
∑

j∈i0 f̃d, j =
∑

j∈B f̃d, j. Let i∗ be

the topic which is present in the document but not added yet and has maximum value of γ∗d,i. Then

∑
j∈B

f̃d, j ≤ (1 + ε)
∑
i∈d

∑
j∈B

γ∗d,iβ
∗
i, j ≤

(1 + ε)γ∗d,i∗
∑
i∈d

∑
j∈B

β∗i, j ≤

(1 + ε)sγ∗d,i∗o(1) ≤ γ∗d,i∗ ] · o(1)

Hence, topic i∗ will always get preference over i0. Once all the topics which are present in the document have been

added, it is clear that no more topic will be added since score will be 0.

�

This finally finishes the proof of Theorem 7.
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2.4 Case study 2: Dominating topics, seeded initialization

Next, we’ll consider an initialization which is essentially what the current implementation of LDA-c uses. Namely,

we will call the following initialization a seeded initialization:

• For each topic i, the user supplies a document d, in which γ∗d,i ≥ Cl.

• We treat the document as if it only contains topic i and initialize with β0
i, j = f ∗d, j.

We show how to modify the previous analysis to show that with a few more assumptions, this strategy works as

well. Firstly, we will have to assume anchor words, that make up a decent fraction of the mass of each topic. Second,

we also assume that the words have a bounded dynamic range, i.e. the values of a word in two different topics are

within a constant B from each other. The documents are still gapped, but the gap now must be larger. Finally, in

roughly 1/B fraction of the documents where topic i is dominant, that topic has proportion 1 − δ, for some small (but

still constant) δ. A similar assumption (a small fraction of almost pure documents) appeared in a recent paper by

(Bansal et al., 2014). Formally, we have:

• Small dynamic range and large fraction of anchors: For each discriminative words, if β∗i, j , 0 and β∗i′, j , 0,

β∗i, j ≤ Bβ∗i′, j. Furthermore, each topic i has anchor words, such that their total weight is at least p.

• Gapped documents: In each document, the largest topic has proportion at least Cl, and all the other topics are at

most Cs, s.t.

Cl −Cs ≥
1
p


√

2
(
p log(

1
Cl

) + (1 − p) log(BCl)
)

+
√

log(1 + ε)

 + ε

• Small fraction of 1 − δ dominant documents: Among all the documents where topic i is dominating, in a 8/B

fraction of them, γ∗d,i ≥ 1 − δ, where

δ := min

 C2
l

2B3 −
1
p


√

2
(
p log(

1
Cl

) + (1 − p) log(BCl)
)

+
√

log(1 + ε)

 − ε, 1 − √
Cl


The dependency between the parameters B, p,Cl is a little difficult to parse, but if one thinks of Cl as 1 − η for η

small, and p ≥ 1 − η
log B , since log( 1

Cl
) ≈ 1 + η, roughly we want that Cl −Cs �

2
p
√
η. (In other words, the weight we

require to have on the anchors depends only logarithmically on the range B.) In the documents where the dominant

topic has proportion 1− δ, a similar reasoning as above gives that we want is approximately γ∗d,i ≥ 1−
1 − 2η

2B3 +
2
p
√
η.

The precise statement is as follows:

Theorem 24 ((Awasthi and Risteski, 2015)). Given an instance of topic modelling satisfying the properties specified

above, where the number of documents is Ω( k log2 n
ε2 ), if we initialize with seeded initialization, after O

(
log(1/ε′) + log n

)
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of KL-tEM updates, we recover the topic-word matrix and topic proportions to multiplicative accuracy 1 + ε′, if

1 + ε′ ≥ 1
(1−ε)7 .

The proof is carried out in a few phases:

• Phase I: Anchor identification: We show that as long as we can identify the dominating topic in each of the

documents, anchor words will make progress: after O(log n) number of rounds, the values for the topic-word

estimates will be almost zero for the topics for which word w is not an anchor. For topic for which a word is an

anchor we’ll have a good estimate.

• Phase II: Discriminative word identification: After the anchor words are properly identified in the previous

phase, if β∗i, j = 0, βt
i, j will keep dropping and quickly reach almost zero. The values corresponding to β∗i, j , 0

will be decently estimated.

• Phase III: Alternating minimization: After Phase I and II above, we are back to the scenario of the previous

section: namely, there is improvement in each next round.

During Phase I and II the intuition is the following: due to our initialization, even in the beginning, each topic is

”correlated” with the correct values. In a γ update, we are minimizing KL( f̃d || fd) with respect to the γd variables, so

we need a way to argue that whenever the β estimates are not too bad, minimizing this quantity provides an estimate

about how far the optimal γd variables are from γ∗d. We show the following useful claim:

Lemma 25. If, for all topics i, KL(β∗i ||β
t
i) ≤ Rβ, and minγd∈∆K KL( f̃d, j|| fd, j) ≤ R f , after running a KL divergence

minimization step with respect to the γd variables, we get that ||γ∗d − γd ||1 ≤
1
p (

√
1
2 Rβ + 1

2

√
R f ) + ε.

This lemma critically uses the existence of anchor words - namely we show ||β∗v||1 ≥ p||v||1. Intuitively, if one

thinks of v as γ∗ − γt, ||β∗v||1 will be large if ||v||1 is large. Hence, if ||β∗ − βt ||1 is not too large, whenever || f ∗ − f t ||1 is

small, so is ||γ∗ − γt ||1. We will be able to maintain Rβ and R f small enough throughout the iterations, so that we can

identify the largest topic in each of the documents.

We proceed to making these ideas more formal in the coming sections. The proof will be in a few phases again:

• Phase I: Anchor identification: First, we will show that as long as we can identify the dominating topic in each

of the documents, the anchor words will make progress, in the sense that after O(log N) number of rounds, the

values for the topic-word estimates will be almost zero for the topics for which the word is not an anchor, and

lower bounded for the one for which it is.

• Phase II: Discriminative word identification: Next, we show that as long as we can identify the dominating

topics in each of the documents, and the anchor words were properly identified in the previous phase, the values
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of the topic-word matrix for words which do not belong to a certain topic will keep dropping until they reach

almost zero, while being lower bounded for the words that do.

• For Phase I and II above, we will need to show that the dominating topic can be identified at any step. Here

we’ll leverage the fact that the dominating topic is sufficiently large, as well as the fact that the anchor words

have quite a large weight.

• Phase III: Alternating minimization: Finally, we show that after Phase I and II above, we are back to the scenario

of the previous section: namely, there is a ”boosting” type of improvement in each next round.

2.4.1 Estimates on the dominating topic

Before diving into the specifics of the phases above, we will show what the conditions we need are to be able to

identify the dominating topic in each of the documents. For notational convenience, let ∆m be the m-dimensional

simplex: x ∈ ∆m iff ∀i ∈ [m], 0 ≤ xi ≤ 1 and
∑

i xi = 1.

First, during a γ update, we are minimizing KL( f̃d || fd) with respect to the γd variables, so we need some way or

arguing that whenever the β estimates are not too bad, minimizing this quantity also quantifies how far the γd variables

are from γ∗d.

Formally, we’ll show the following:

Lemma 26. If, for all i, KL(β∗i ||β
t
i) ≤ Rβ, and minγd∈∆K KL( f̃d || fd) ≤ R f , after running a KL divergence minimization

step with respect to the γd variables, we get that ||γ∗d − γd ||1 ≤
1
p (

√
1
2 Rβ +

√
1
2 R f ) + ε.

We will start with the following simple helper claim:

Lemma 27. If the word-topic matrix β is such that in each topic the anchor words have total probability at least p,

then ||β∗v||1 ≥ p||v||1.

Proof.

||β∗v||1 =
∑

j

|
∑

i

β∗i, jvi| ≥
∑

i

∑
j∈Wi

|β∗i, jvi| ≥
∑

i

p|vi| ≥ p||v||1

�

Lemma 28. If, for all i, KL(β∗i ||β
t
i) ≤ Rβ, and minγd∈∆K KL( f̃d || fd) ≤ R f , after running a KL divergence minimization

step with respect to the γd variables, we get that ||γ∗d − γd ||1 ≤
1
p (

√
1
2 Rβ +

√
1
2 R f ) + ε.

Proof. First, observe that minγd∈∆K KL( f̃d || fd) ≤ R f , at the the optimal γd, we have that || f̃d− fd ||21 ≤
1
2 R f , i.e. || f̃d− fd || ≤√

1
2 R f , by Pinsker’s inequality.
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We will show that if ||γ∗d − γd ||1 is large, so must be || f̃d − fd ||1, and hence KL( f̃d || fd) - which will contradict the

above upper bound.

Let’s consider β∗ as N by K matrix, and γ∗ and f ∗ as K-dimensional vectors. Let β∗γ∗ just denote matrix-vector

multiplication - so f ∗ = β∗γ∗. For any other vector γ̂, let’s denote f̂ = βtγ̃. Then:

|| f̃ − f̂ ||1 = || f̃ − βtγ̃||1 = || f̃ − (β∗ + (βt − β∗))γ̃||1 ≥

|| f̃ − β∗γ̃||1 − ||(βt − β∗)γ̃||1 (2.4.1)

Hence, || f̃ − β∗γ̃||1 ≤ ||(βt − β∗)γ̃||1 + || f̃ − f̂ ||1. However,

However,

||(βt − β∗)γ||1 ≤ max
i

∑
j

|βt
i, j − β

∗
i, j| ≤ max

i

√
1
2

KL(β∗i ||β
t
i) ≤

√
1
2

Rβ (2.4.2)

The first inequality is a property of induced matrix norms, the second is via Pinsker’s inequality.

So, by 2.4.1 and 2.4.2, || f̃ − β∗γ̃||1 ≤
√

1
2 Rβ +

√
1
2 R f . But now, finally, Lemma 27 implies that ||γ∗d − γd ||1 ≤

1
p (

√
1
2 R f +

√
1
2 Rβ) + ε.

�

Lemma 29. Suppose that for the dominating topic i in a document d, γ∗d,i ≥ Cl, and for all other topics i′, γ∗d,i′ ≤ Cs,

s.t. Cl −Cs >
1
p (

√
1
2 R f +

√
1
2 Rβ) + ε. Then, the above test identifies the largest topic. Furthermore, 1

2γ
∗
d,i ≤ γ

t
d,i ≤

3
2γ
∗
d,i

Proof. By Lemma 28, and the relationship between l1 and total variation distance between distributions, we have that

|γt
d,i − γ

∗
d,i| ≤

1
2

(
1
p

(√
1
2 R f +

√
1
2 Rβ

)
+ ε

)
.

For the dominating topic i, γt
d,i ≥ Cl −

1
2

(
1
p

(√
1
2 R f +

√
1
2 Rβ

)
+ ε

)
. On the other hand, for any other topic i′,

γt
d,i′ ≤ Cs + 1

2

(
1
p

(√
1
2 R f +

√
1
2 Rβ

)
+ ε

)
. Since Cl −Cs ≥

1
p

(√
1
2 R f +

√
1
2 Rβ

)
+ ε, γt

d,i > γ
t
d,i′ , so the test works.

On the other hand, since γt
d,i ≥ γ∗d,i −

(
1
p

(√
1
2 R f +

√
1
2 Rβ

)
+ ε

)
≥ γ∗d,i −

1
2γ
∗
d,i = 1

2γ
∗
d,i. Similarly, γt

d,i ≤ γ∗d,i +

1
p

(√
1
2 R f +

√
1
2 Rβ

)
+ ε ≤ γ∗d,i + 1

2γ
∗
d,i = 3

2γ
∗
d,i.

�

2.4.2 Phase I: Determining the anchor words

We proceed as outlined. In this section we show that in the first phase of the algorithm, the anchor words will be

identified - by this we mean that we will be able to show that if a word j is an anchor for topic i, βt
i, j will be within a

factor of roughly 2 from β∗i, j, and βt
i′, j will be almost 0 for any other topic i′.
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We will assume throughout this and the next section that we can identify what the dominating topic is, and that we

have an estimate of the proportion of the dominating topic to within a factor of 2. (We won’t restate this assumption

in all the lemmas in favor of readability.)

We will return to this issue after we’ve proven the claims of Phases I and II modulo this claim.

The outline is the following. We show that at any point in time, by virtue of the initialization, βt
i, j is pretty well

lower bounded (more precisely it’s at least constant times β∗i, j). This enables us to show that βt
i′, j will halve at each

iteration - so in some polynomial number of iterations will be basically 0.

2.4.2.1 Lower bounds on the βt
i, j values

We proceed as outlined above. We show here that the βt
i, j variables are lower bounded at any point in time. More

precisely, we show the following lemma:

Lemma 30. Let j be an anchor word for topic i, and let i′ , i. Suppose that βt
i′, j ≤ β

t
i, j. Then, βt+1

i, j ≥ (1 − ε)Clβ
∗
i, j

holds.

Proof. We’ll prove a lower bound on each of the terms f̃d, j
f t
d, j
βt

i, j. Since the update on the β variables is a convex

combination of terms of this type, this will imply a lower bound on βt+1
i, j .

For this, we upper bound f t
d, j. We have:

f t
d, j = βt

i, jγ
t
d,i +

∑
i′,i

βt
i′, jγ

t
d,i′

This means that f t
d, j is a convex combination of terms, each of which is at most βt

i, j. Hence, f t
d, j ≤ β

t
i, j holds. But

then f̃d, j
f t
d, j
βt

i, j ≥ f̃d, j ≥ (1 − ε)β∗i, jγ
∗
d,i ≥ (1 − ε)Clβ

∗
i, j. This implies βt+1

i, j ≥ (1 − ε)Clβ
∗
i, j, as we wanted.

�

2.4.2.2 Decreasing βt
i′, j values

We’ll bootstrap to the above result. Namely, we’ll prove that whenever βt
i, j ≥ 1/Cββ

∗
i, j for some constant Cβ, the βt

i′, j

values decrease multiplicatively at each round. Prior to doing that, the following lemma is useful. It will state that

whenever the values of the variables βt
i′, j are somewhat small, we can get some reasonable lower bound on the values

γt
d,i we get after a step of KL minimization with respect to the γ variables.

Lemma 31. Let j be an anchor for topic i, and let i′ , i. Let βt
i′, j ≤ bβt

i, j. Then, for any document d, when

performing KL divergence minimization with respect to the variables γd, for the optimum value γt
d,i, it holds that

γt
d,i ≥ (1 − ε) p

1−bγ
∗
d,i −

b
1−b .
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Proof. The KKT conditions 2.3.1 imply that if we denote Ai the set of anchors in topic i,
∑

j∈Ai

f̃d, j
f t
d, j
βt

i, j ≤ 1. By the

assumption of the lemma,

f t
d, j ≤ bt

i, jγ
t
d,i + bbt

i, j(1 − γ
t
d,i)

Since f̃d, j ≥ (1 − ε)β∗i, jγ
∗
d,i, this implies f̃d, j

f t
d, j
βt

i, j ≥ (1 − ε)β∗i, j
γ∗d,i

γt
d,i(1−b)+b , i.e.

∑
j∈Ai

(1 − ε)β∗i, j
γ∗d,i

γt
d,i(1−b)+b ≤ 1. Rearranging the

terms, we get

γt
d,i ≥ (1 − ε)

∑
j∈Ai

β∗i, j
γ∗d,i

1 − b
−

b
1 − b

≥ (1 − ε)pγ∗d,i −
b

1 − b

as we needed.

�

With this in place, we show that the value βt
i′, j when j is an anchor for topic i , i′, decreases by a factor of 2 after

the update for the β variables.

This requires one more new idea. Intuitively, if we view the update as setting βt+1
i′, j to βt

i, j multiplied by a convex

combination of terms
f ∗d, j
f t
d, j

, a large number of them will be zero, just because f ∗d, j = 0 unless topic i belongs to document

d.

By the topic equidistribution property then, the probability that this happens is only O(1/k), so if the weight in the

convex combination on these terms is reasonable, we will multiply βt
i, j by something less than 1, which is what we

need.

Lemma 31 says that if γ∗d,i is reasonably large, we will estimate it somewhat decently. If γ∗d,i is small, then f ∗d, j

would be small anyway.

So we proceed according to this idea.

Lemma 32. Let j be an anchor for topic i. Let βt
i′, j ≤ bβt

i, j for i′ , i, and let βt
i, j ≥ 1/Cββ

∗
i, j for some constant Cβ.

Then, βt+1
i′, j ≤ b/2β∗i, j

Proof. We will split the β update as

βt+1
i′, j = βt

i′, j(

∑
d∈D1

f̃d, j
f t
d, j
γt

d,i′∑
d γ

t
d,i′

+

∑
d∈D2

f̃d, j
f t
d, j
γt

d,i′∑
d γ

t
d,i′

+

∑
d∈D3

f̃d, j
f t
d, j
γt

d,i′∑
d γ

t
d,i′

)

for some appropriately chosen partition of the documents into three groups D1,D2,D3.

Let D1 be documents which do not contain topic i at all, D2 documents which do contain topic i, and γ∗d,i ≥
2b
p , and

D3 documents which do contain topic i and γ∗d,i <
2b
p .

The first part will just vanish because word j is an anchord word for topic i, and topic i does not appear in it, so

f ∗d, j = 0 for all documents d ∈ D1.
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The second summand we will upper bound as follows. First, we upper bound f̃d, j
f t
d, j

. We have that f t
d, j ≥ β

t
i, jγ

t
d,i ≥

1/Cββ
∗
i, jγ

t
d,i. However, we can use Lemma 31 to lower bound γt

d,i. We have that γt
d,i ≥ (1 − ε)( p

1−bγ
∗
d,i −

b
1−b ) ≥

(1 − ε) p
2(1−b)γ

∗
d,i. This alltogether implies f̃d, j

f t
d, j
≤ 1

1−ε
2(1−b)Cβ

p . Hence,

βt
i′, j

∑
d∈D2

f̃d, j
f t
d, j
γt

d,i′∑
d γ

t
d,i′

≤
1

1 − ε
2Cβ

p
(1 − b)βt

i′, j

∑
d∈D2

γt
d,i′∑

d γ
t
d,i′

Furthermore,
∑

d γ
t
d,i′ ≥

1
2 |D|Cl. On the other hand, we claim

∑
d∈D2

γt
d,i′ = O(k/|D|). Recall that D is the set of

documents where topic i′ is the dominating topic - so by definition they contain topic i. On the other hand, if a

document is in D2 then it contains topic i as well. However, by the independent topic inclusion property, the probability

that a document with dominating topic i′ contains topic i as well is O(1/k). Hence,

βt
i′, j

∑
d∈D2

f̃d, j
f t
d, j
γt

d,i′∑
d γ

t
d,i′

= O(
1
k

)bβt
i, j

For the third summand we provide a trivial bound for the terms f̃d, j
f t
d, j
βt

i′, jγ
t
d,i′ :

f̃d, j
f t
d, j
βt

i′, jγ
t
d,i′ ≤ (1 + ε)β∗i, jγ

∗
d,i ≤ (1 + ε)β∗i, j

2b
p

Since again,
∑

d γ
t
d,i′ ≥

1
2 |D|Cl, and again, the number of document in D3 is at most O(1/k) for the same reasons as

before, we have that

βt
i′, j

∑
d∈D3

f ∗d, j
f t
d, j
γt

d,i′∑
d γ

t
d,i′

≤ O(1/k)bβ∗i, j = O(1/k)bβt
i, j

since βt
i, j ≥

1
Cβ
β∗i, j.

From the above three bounds, we get that βt+1
i′, j ≤ O(1/k)bβt

i, j ≤
b
2
βt

i, j.

�

Now, we just have to put together the previous two claims: namely we need to show that the conditions for the

decay of the non-anchor topic values, and the lower bound on the anchor-topic values are actually preserved during

the iterations. We will hence show the following:

Lemma 33. Suppose we initialize with seeded initialization. Then, after t rounds, if j is an anchor word for topic i,

βt
i, j ≥ (1 − ε)Clβ

∗
i, j, and βt

i′, j ≤ 2−tCsβ
∗
i, j.

Proof. We prove this by induction.

Let’s cover the base case first. In the seed document corresponding to topic i, γ∗d,i ≥ Cl, so at initialization β0
i, j ≥

42



Clβ
∗
i, j. On the other hand, if topic i appears in the seed document for topic i′, then after initialization β0

i′, j ≤ Csβ
∗
i, j < β

0
i, j.

Hence, at initialization, the claim is true.

On to the induction step. If the claim were true at time step t, since βt
i′, j ≤ 2−tCsβ

∗
i, j, by Lemma 30, βt+1

i, j ≥ Clβ
∗
i, j

- so the lower bound still holds at time t + 1. On the other hand, since βt
i, j ≥ Clβ

∗
i, j, by Lemma 32, at time t + 1,

βt
i′, j ≤ 2−(t+1)Csβ

∗
i, j.

Hence, the claim we want follows.

�

Finally, we show the easy lemma that after the values βt
i′, j have decreased to (almost) 0, βt

i, j ≥
1
2β
∗
i, j.

Lemma 34. Let word j be an anchor word for topic i. Suppose βt
i′, j ≤ 2−tCsβ

∗
i, j and

t > 10 max(log(n), log(
1
γ∗min

), log(
1
β∗min

))

Then 4β∗i, j ≥ β
t+1
i, j ≥

1
4β
∗
i, j.

Proof. Let us do the lower bound first. It’s easy to see
∑

i′ β
t
i′, jγd,i′ ≤ 2βt

i, jγ
t
d,i. Hence,

f̃d, j
f t
d, j
βt

i, jγ
t
d,i =

f̃d, j∑
i′ β

t
i′, jγ

t
d,i′
βt

i, jγ
t
d,i ≥

1
2

f̃d, j
βt

i, jγ
t
d,i
βt

i, jγ
t
d,i ≥ (1 − ε)

1
2
β∗i, jγ

∗
d,i

Hence, after the update,

βt+1
i, j ≥ (1 − ε)

1
2
β∗i, j

∑
d γ
∗
d,i∑

d γ
t
d,i
≥

1
4
β∗i, j

since γt
d,i ≤ 2γ∗d,i.

The upper bound is similar. Since
∑

i′ β
t
i′, jγd,i′ ≥ β

t
i, jγ

t
d,i,

f̃d, j
f t
d, j
βt

i, jγ
t
d,i ≤ f̃d, j ≤ (1 + ε)β∗i, jγ

∗
d,i

Hence,

βt+1
i, j ≤ (1 + ε)β∗i, j

∑
d γ
∗
d,i∑

d γ
t
d,i
≤ 2β∗i, j

since γt
d,i ≥

1
2γ
∗
d,i. This certainly implies the claim we want.

�

Furthermore, the following simple application of Lemma 31 is immediate and useful:
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Lemma 35. Let t > 10 max(log n, log 1
γ∗min

, log 1
β∗min

). Then, γt
d,i ≥

p
2γ
∗
d,i.

2.4.3 Discriminative words

We established in the previous section that after logarithmic number of steps, the anchor words will be correctly

identified, and estimated within a factor of 2. We show that this is enough to cause the support of the discriminative

words to be correctly identified too, as well as estimate them to within a constant factor where they are non-zero.

Same as before, we will assume in this section that we can identify the dominating topic.

We will crucially rely on the fact that the discriminative words will not have a very large dynamic range compara-

tively to their total probability mass in a topic. The high level outline will be similar to the case for the anchor words.

We will prove that if a discriminative word j is in the support of topic i, then βt
i, j will always be reasonably lower

bounded, and this will cause the values βt
i′, j to keep decaying for the topics i′ that the word j does not belong to.

The reason we will need the bound on the dynamic range, and the proportion of the dominating topic, and the size

of the dominating topic, is to ensure that the β’s are always properly lower bounded.

2.4.3.1 Bounds on the βt
i, j values

First, we show that because the discriminative words have a small range, the values βt
i, j whenever β∗i, j is non-zero are

always maintained to be within some multiplicative constant (which depends on the range of the β∗i, j).

As a preliminary, notice that having identified the anchor words correctly the γ values are appropriately lower

bounded after running the γ update. Namely, by Lemma 35, γt
d,i ≥ p/2γ∗d,i

With this in hand, we show that the βt
i, j values are well upper bounded whenever β∗i, j is non-zero.

Lemma 36. At any point in time t, βt
i, j ≤ (1 + ε) 2B

Cl
β∗i, j.

Proof. Since f̃d, j
f t
d, j
βt

i, jγ
t
d,i ≤ f̃d, j we have:

βt+1
i, j ≤

∑
d f̃d, j∑
d γ

t
d,i
≤ 2 ·

∑
d f̃d, j∑
d γ
∗
d,i

On the other hand, we claim that f̃d, j ≤ (1 + ε)Bβ∗i, j. Indeed, f̃d, j ≤ (1 + ε)
∑

i γ
∗
d,iβ
∗
i, j, and for any other topic i′,

β∗i′, j ≤ Bβ∗i, j. Hence,

2 ·
∑

d f̃d, j∑
d γ
∗
d,i
≤

2(1 + ε)DBβ∗i, j∑
d γ
∗
d,i

However, since γ∗d,i ≥ Cl, the previous expression is at most

2(1 + ε)DBβ∗i, j
DCl

=
2(1 + ε)B

Cl
β∗i, j

So, we get the claim we wanted.
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The lower bound on the βt
i, j values is a bit more involved. To show a lower bound on the βt

i, j values is maintained,

we will make use of both the fact that the discriminative words have a small range, and that we have some small, but

reasonable proportion of documents where γ∗d,i ≥ 1 − δ. More precisely, we show:

Lemma 37. Let βt
i, j ≤

2(1+ε)B
Cl

β∗i, j for all topics i that word j belongs to, and let βt
i, j ≥

Cl
B β
∗
i, j. Then, βt+1

i, j ≥
Cl
B β
∗
i, j as well.

Proof. Let’s call Dδ the documents where γ∗d,i ≥ 1 − δ. We can certainly lower bound

βt+1
i, j ≥

∑
d∈Dδ

f̃d, j
f t
d, j
γt

d,iβ
t
i, j∑

d∈D γ
t
d,i

First, let’s focus on f̃d, j
f t
d, j
βt

i, j. Then,

f̃d, j ≥ (1 − ε)(1 − δ)β∗i, j (2.4.3)

Furthermore, since
∑

d∈Dδ
γt

d,i ≥
1
2
∑

d∈Dδ
γ∗d,i and

∑
d γ

t
d,i ≤ 2

∑
d γ
∗
d,i, we have that

∑
d∈Dδ

γt
d,i∑

d γ
t
d,i
≥

1
4

8
B

(1 − δ) =
2
B

(1 − δ) (2.4.4)

Finally, we claim that
βt

i, j

f t
d, j
≥ 1

2 . Massaging this inequality a bit, we get it’s equivalent to:

βt
i, j

f t
d, j
≥

1
2
⇔

f t
i, j ≤ 2βt

i, j ⇔

γt
d,iβ

t
i, j +

∑
i′
γt

d,i′β
t
i′, j ≤ 2βt

i, j

The left hand side can be upper bounded by

γt
d,iβ

t
i, j +

∑
i′
γt

d,i′
2(1 + ε)B3

C2
l

βt
i, j ≤

γt
d,iβ

t
i, j + (1 − γt

d,i)
2(1 + ε)B3

C2
l

βt
i, j

by the assumptions of the lemma.

So, it is sufficient to show that γt
d,iβ

t
i, j + (1−γt

d,i)
2(1+ε)B3

C2
l

βt
i, j ≤ 2βt

i, j, however this is equivalent after some rearrange-

ment to γt
d,i ≥ 1 − 1

2(1+ε)B3

C2
l
−1

.
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It’s certainly sufficient for this that γt
d,i ≥ 1 − 1

B3

C2
l

= 1 − C2
l

B3 , but since since γ∗d,i ≥ 1 − δ, by the definition of δ and

Lemmas 28, 39, 40, this certainly holds.

Together with 2.4.4 and 2.4.3, we get that

βt+1
i, j ≥ (1 − ε)

2
B

(1 − δ)2 1
2
β∗i, j ≥ (1 − ε)

(1 − δ)2

B
β∗i, j

But, by our assumptions, (1 − ε)(1 − δ)2 ≥ Cl, so the claim follows.

�

2.4.3.2 Decreasing βt
i′, j values

Finally, we show that if the discriminative word j does not belong in topic i′, the value for βt
i′, j will keep dropping.

More precisely, the following is true:

Lemma 38. Let word j and topic i be such that β∗i′, j = 0 and let βt
i′, j ≤ b. Furthermore, let for all the topics i that j

belongs to hold: βt
i, j ≥ 1/Cββ

∗
i, j for some constant Cβ. Finally, let γt

d,i ≥
1

Cγ
γ∗d,i for some constant Cγ. Then, βt+1

i′, j ≤ b/2.

Proof. We proceed similarly as the analogous claim for anchor words. We split the update as

βt+1
i′, j = βt

i′, j(

∑
d∈D1

f̃d, j
f t
d, j
γt

d,i′∑
d γ

t
d,i′

+

∑
d∈D2

f̃d, j
f t
d, j
γt

d,i′∑
d γ

t
d,i′

)

for some appropriate partitioning of the documents D1,D2.

Namely, let D1 be documents which do not contain any topic to which word j belongs, the D2 documents which

contain at least one topic word j belongs to.

For all the documents in D1, f ∗d, j = 0, and we will provide a good bound for the terms f̃d, j
f t
d, j

in D2, this way, we’ll

ensure βt
i, j gets multiplied by a quantity which is o(1) to get βt+1

i, j , which is of course enough for what we want.

Bounding the terms in D2 is even simpler than before. We have:

f t
d, j =

∑
i

βt
i, jγ

t
d,i ≥

1
CβCγ

∑
i

β∗i, jγ
∗
d,i =

1
CβCγ

f ∗d, j

Hence,
f ∗d, j
f t
d, j
≤ CβCγ.

Then we have: ∑
d

f̃d, j
f t
d, j
γt

d,i∑
d γ

t
d,i
≤ (1 + ε)

∑
d

f ∗d, j
f t
d, j
γt

d,i∑
d γ

t
d,i
≤
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4(1 + ε)

∑
d

f ∗d, j
f t
d, j
γ∗d,i∑

d γ
∗
d,i
≤ 4(1 + ε)

∑
d∈D2

CβCγγ
∗
d,i∑

d γ
∗
d,i

But now, by the ”weak topic correlation” property,
∑

d∈D2
γ∗d,i∑

d γ
∗
d,i

= o(1). Indeed, D consists of the documents where i′

is the dominating topic. In order for the document to belong to D2, at least one of the topics word j belongs to must

belong in the document as well. Since the word j only belongs to o(K) of the topics, and each document contains only

a constant number of topics, by the small topic correlation property, the claim we want follows.

But then, clearly, 4
∑

d∈D2
CβCγγ

∗
d,i∑

d γ
∗
d,i

= o(1) as well.

Hence, βt+1
i′, j = o(1)βt

i′, j ≤
1
2β

t
i′, j, which is what we need. �

2.4.4 Determining dominant topic and parameter range

To complete the proofs of the claims for Phase I and II, we need to show that at any point in time we correctly identify

the dominant topic. Furthermore, in order to maintain the lower bounds on the estimates for the discriminative words,

we will need to make sure that γt
d,i is large as well in the documents where γ∗d,i ≥ 1 − δ.

Let’s proceed to the problem of detecting the largest topic first. By Lemma 29 all we need to do is bound R f and

Rβ at any point in time during this phase. To do this, let’s show the following lemma:

Lemma 39. Suppose for the anchor words βt
i, j ≥ C1β

∗
i, j, for the discriminative words βt

i, j ≥ C2β
∗
i, j. Let pi be the

proportion of anchor words in topic i. Then, KL(β∗i ||β
t
i) ≤ pi log( 1

C1
) + (1 − pi) log( 1

C2
).

Proof. This is quite simple. Since log is an increasing function,

KL(β∗i ||β
t
i) =

∑
j

β∗i, j log(
β∗i, j

βt
i, j

) ≤ pi log(
1

C1
) + (1 − pi) log(

1
C2

)

�

Lemma 40. Suppose for the anchor words βt
i, j ≥ C1β

∗
i, j, for the discriminative words βt

i, j ≥ C2β
∗
i, j. Let pi be the

proportion of anchor words in topic i. Then, minγ∈∆K KL( f̃d || fd) ≤ log(1 + ε) +
(
p log( 1

C1
) + (1 − p) log( 1

C2
)
)
.

Proof. Also simple. The value of KL( f̃d || fd) one gets by plugging in γd = γ∗ is exactly what is stated in the lemma.

�

We’ll just use the above two lemmas combined from our estimates from before. We know, for all the anchor

words, that βt
i, j ≥ Clβ

∗
i, j, and that for the discriminative words, βt

i, j ≥
Cl
B β
∗
i, j. Hence, by Lemma 39, at any point in time

KL(β∗i ||β
t
i) ≤ p log( 1

Cl
) + (1 − p) log( B

Cl
). So, by Lemma 29, it’s enough that

Cl −Cs ≥
1
p


√

2
(
p log(

1
Cl

) + (1 − p) log(BCl)
)

+
√

log(1 + ε)

 + ε

47



.

Since 1
p

√
2
(
p log( 1

Cl
) + (1 − p) log(BCl)

)
≤ 1

p

√
2
(
log( 1

Cl
) + (1 − p) log B

)
, to get a sense of the parameters one

can achieve, for detecting the dominant topic, (ignoring ε contributions), it’s sufficient that Cl−Cs ≥
2
p

√
max(log( 1

Cl
), (1 − p) log B)

If one thinks of Cl as 1 − η and p ≥ 1 − η
log B , since log( 1

Cl
) ≈ η roughly we want that Cl − Cs �

2
p
√
η. (One

takeaway message here is that the weight we require to have on the anchors depends only logarithmically on the range

B.)

Let’s finally figure out what the topic proportions must be in the ”heavy” documents. In these, we want γ∗d,i ≥

1− C2
l

2B3 + 1
p

(√
2
(
p log( 1

Cl
) + (1 − p) log(BCl)

)
−

√
log(1 + ε)

)
+ ε. A similar approximation to the above gives that we

roughly want γ∗d,i ≥ 1 − 1−2η
2B3 + 2

p
√
η.

2.4.5 Getting the supports correct

At the end of the previous section, we argued that after O(log n) rounds, we will identify the anchor words correctly,

and the supports of the discriminative words as well. Furthremore, we will also have estimated the values of the non-

zero discriminative word probabilities, as well the anchor word probabilities up to a multiplicative constant. Then, I

claim that from this point onward at each of the γ steps, the γt values we get will have the correct support. Namely,

the following is true:

Lemma 41. Suppose for the anchor words and discriminative words j, if β∗i, j = 0, it’s true that βt
i, j = o( 1

n ). Further-

more, suppose that if β∗i, j , 0, 1
Cβ
β∗i, j ≤ β

t
i, j ≤ Cββ

∗
i, j for some constant Cβ.

Then, when performing KL minimization with respect to the γ variables, whenever γ∗d,i = 0 we have γt
d,i = 0.

Proof. Let γ∗d,i = 0. If γt
d,i , 0, then the KKT conditions imply:

n∑
j=1

f̃d, j
f t
d, j
βt

i, j = 1 (2.4.5)

The only terms that are non-zero in the above summation are due to words j that belong to at least one topic i′ in

the document. Let I be the set of words that belong to topic i as well.

By Lemma 35, we know that γt
d,i ≥ p/2γ∗d,i Since also βt

i, j ≥
1

Cβ
β∗i, j, f t

d,i ≥
p

2Cβ
f ∗d, j. Since βt

i, j = o( 1
n ) for words j not

in the support of topic I,
∑
j<I

f̃d, j
f t
d, j
βt

i, j = o(1).

On the other hand, for words in I, f̃d, j
f t
d, j
βt

i, j ≤ (1 + ε)
2C2

β

p β∗i, j, so
∑

j∈I
f̃d, j
f t
d, j
βt

i, j = o(1), by the small support intersection

property.

However, this contradicts 2.4.5, so we get what we want.

�

This means that after this phase, we will always correctly identify the supports of the γ variables as well.
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2.4.6 Alternating minimization

Now, finishing the proof of Theorem 24 is trivial. Namely, because of Lemmas 41, 33, and the analogue of 33, we are

basically back to the case where we have the correct supports for both the β and γ variables. The only thing left to deal

with is the fact that the β variables are not quite zero.

Let j be an anchor word for topic i. Let ε′′ = 1 − (1 − ε′)1/7. Similarly as in Lemma 35, for

t > 10 max(log n, log(
1

ε′′γ∗min
), log(

1
ε′′β∗min

))

it holds that
f ∗d, j
f t
d, j
≥ (1 − ε′)1/7 β

∗
i, jγ
∗
d,i

βt
d,iγ

t
d,i

. The same inequality is true if j is a lone word for topic i in document d.

After the above event, the same proof from Case Study 1 implies that after O(log( 1
ε′

)) iterations we’ll get

1
1 + ε′

β∗i, j ≤ β
t
i, j ≤ (1 + ε′)β∗i, j

and
1

1 + ε′
γ∗i, j ≤ γ

t
i, j ≤ (1 + ε′)γ∗i, j

This finishes the proof of Theorem 24.

2.5 On common words

We finally turn to a few extensions involving common words: words such that β∗i, j ≤ κβ
∗
i′, j,∀i, i′, κ ≤ B.

In this section, we show how one would modify the proofs from the previous section to handle common words as

well. We stress that common words are easy to handle if one were allowed to filter them out (and this in fact, is often

done in practice), but we want to analyze under which conditions the variational inference updates could handle them

on their own. The difference in contrast to the previous sections is it’s not clear how to argue progress for the common

words: common words do not have lone documents. However, if we can’t argue progress for the common words, then

we can’t argue progress for the γ variables, so the entire argument seems to fail.

Concretely, we consider the following scenario:

• On top of the assumptions we have either in Case Study 1 or Case Study 2, we assume that there are words

which show up in all topics, but their probabilities are within a constant κ from each other, B ≥ κ ≥ 2. We

will call these common words. (The κ ≥ 2 is without loss of generality. If the claim holds for a smaller κ, then

it certainly holds for κ = 2. The only difference is that the estimates to follow could be strengthened, but we

assume κ ≥ 2 to get cleaner bounds.)
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• For each topic i, if C is the set of common words,
∑

j∈C β
∗
i, j ≤

1
κ100 , i.e. there isn’t too much mass on these words.

• Conditioned on topic i being dominant, there is a probability of 1 − 1
κ100 that the proportion of topic i is at least

1 − 1
κ100 .

Then, the theorem we can prove is:

Theorem 42. If we additionally have common words satisfying the properties specified above, after O(log(1/ε′) +

log N) of KL-tEM updates in Case Study 2, or any of the tEM variants in Case Study 1, and we use the same ini-

tializations as before, we recover the topic-word matrix and topic proportions to multiplicative accuracy 1 + ε′, if

1 + ε′ ≥ 1
(1−ε)7 .

Our bounds and analysis here is fairly loose, since the result is anyway somewhat weak. (e.g. 1 − 1
κ100 is not really

the best value for the proportion of the dominating topic, or the proportion of such documents required.) At any rate,

it will be clear from the proofs that the dependency of the dominating topic on κ has to be of the form 1 − 1
κc , so it’s

not clear one would gain too much from the tightest possible analysis. The reason we are including this section is to

show cases where these proof methods start breaking down.

We will do the proof for Case Study 1 first, after which Case Study 2 will easily follow.

2.5.1 Phase I with common words

The outline is the same as before. We prove the lower bounds on the γ and β variables first. Namely, we prove:

Lemma 43. Suppose that the supports of β and γ are correct. Then, γt
d,i ≥

1
2γ
∗
d,i.

Proof. Similarly as before, multiplying both sides of 2.3.1 by γt
d,i, we get that

γt
d,i ≥

∑
Li

f ∗d, j
f t
d, j
βt

i, jγ
t
d,i ≥ (1 − o(1))(1 −

1
κ100 )γ∗d,i ≥

1
2
γ∗d,i

where the second inequality follows since 1 − 1
κ100 fraction of the words in topic i is discriminative. �

Lemma 44. Suppose that the supports of the γ and β variables are correct. Additionally, if i is a large topic in d, let

1
2γ
∗
d,i ≤ γ

t
d,i ≤ 3γ∗d,i. Then, for a discriminative word j for topic i, βt+1

i, j ≥
1
3β
∗
i, j.

Proof. Again, similarly as in Lemma 10,

βt+1
i, j ≥

∑
d∈Dl

(1 − ε)
γ∗d,iβ

∗
i, j

γt
d,i·β

t
i, j
βt

i, jγ
t
d,i∑D

d=1 γ
t
d,i

=
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(1 − ε)β∗i, j

∑D
d∈Dl

γ∗d,i∑D
d=1 γ

t
d,i

In the documents where topic i is the largest, γt
d,i ≤ 3γ∗d,i. So, we can conclude

βt+1
i, j ≥ (1 − ε)β∗i, j

1
3

∑D
d∈Dl

γ∗d,i∑D
d=1 γ

∗
d,i

Since
∑D

d∈Dl
γ∗d,i∑D

d=1 γ
∗
d,i
≥ (1 − o(1)), as before, we get what we want.

�

Lemma 45. Let the β variables have the correct support. Let j be a discriminative word for topic i, and let βt
i, j ≥

1
Cm
β∗i, j,

γt
d,i ≥

1
Cm
γ∗d,i whenever β∗i, j , 0, γ∗d,i , 0. Let βt

i, j = Ct
ββ
∗
i, j, where Ct

β ≥ 4Cm, and Cm is a constant. Then, in the next

iteration, βt+1
i, j ≤ Ct+1

β β∗i, j, where Ct+1
β ≤

Ct
β

2 .

Proof. The proof is exactly the same as Lemma 11.

�

Now, we finally get to the upper bound of the γ values.

Lemma 46. Fix a particular document d. Let’s assume the supports for the β and γ variables are correct. Further-

more, let 1
Cm
≤

βt
i, j

β∗i, j
≤ Cm for some constant Cm. Then, γt

d,i ≤ 2γ∗d,i.

Proof. Again, multiplying 2.3.1 by γt
d,i, we get

γt
d,i =

∑
j∈Li

f̃d, j + γt
d,i

∑
j<Li

f̃d, j
f t
d, j
βt

i, j + γt
d,i

∑
j∈C

f̃d, j
f t
d, j
βt

i, j

If α̃ =
∑

j∈Li
β∗i, j, since γt

d,i ≥
1

Cm
γ∗d,i,

f̃d, j
f t
d, j
≤ (1 + ε)C2

m

If we denote Γ =
∑

j∈C β
∗
i, j, then

γt
d,i ≤ (1 + ε)(α̃γ∗d,i + C3

m(1 − Γ − α̃)γt
d,i + Γκ4γt

d,i)

Equivalently, γt
d,i ≤

(1+ε)α̃
1−(1+ε)C3

m(1−Γ−α̃)−(1+ε)Γκ4 γ
∗
d,i

Then, we claim that (1+ε)α̃
1−(1+ε)C3

m(1−Γ−α̃)−(1+ε)Γκ4 ≤ 1 + 1
κ50 . Indeed, Γκ4 ≤ κ−96, and C3

m(1 − Γ − α̃) ≤ C3
m(1 − α̃) = o(1).

Hence,
(1 + ε)α̃

1 − (1 + ε)C3
m(1 − Γ − α̃) − (1 + ε)Γκ4

≤
(1 + ε)α̃

1 − o(1) − κ−96 ≤
(1 + ε)α̃
1 − κ−95
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Finally, we claim that (1+ε)α̃
1−κ−95 ≤ 1 + κ−50. Indeed, this is equivalent to

α̃ ≤ (1 + ε)(1 + κ−50)(1 − κ−95) ≤ (1 + ε)(1 + κ−50)

But, since we assume κ ≥ 2, the claim we need follows easily. �

2.5.2 Phase II of analysis

Finally, we deal with the alternating minimization portion of the argument. How will we deal with the lack of anchor

documents? The almost obvious way: if a document has topic i with proportion 1− 1
κ100 , it will behave for all purposes

like an anchor document, because the dynamic range of word β∗i, j is limited, and the contribution from the other topics

is not that significant.

Intuitively, we’ll show that
f ∗d, j
f t
d, j
≈

β∗i, j
βt

i, j
, so that these documents provide a ”push” for the value of βt

i, j in the correct

direction.

Lemma 47. Let’s assume that our current iterates βt
i, j satisfy 1

Ct
β
≤

βi, j∗

βt
i, j
≤ Ct

β for Ct
β ≥

1
(1−ε)20 . Then, after iterating the

γ updates to convergence, we will get values γt
d,i that satisfy (Ct

β)
1/10 ≤

γd,i∗

γt
d,i
≤ (Ct

β)
1/10.

Proof. As before, we have that

γt
d,i =

∑
j∈Li

f̃d, j + γt
d,i

∑
j<Li

f̃d, j
f t
d, j
βt

i, j

Let’s denote as Ct
γ = maxi(max(

γ∗d,i
γt

d,i
,
γt

d,i

γ∗d,i
)), and let, as before, assume that

γt
d,i0
γ∗d,i0

= Ct
γ.

By the definition of Ct
γ,

γt
d,i0 =

∑
j∈Li0

f̃d, j + γt
d,i0

∑
j<Li0

f̃d, j
f t
d, j
βt

i0, j ≤

(1 + ε)(α̃γ∗d,i0 + (1 − α̃)(Ct
β)

2(Ct
γ)2γ∗d,i0 )

We claim that

(1 + ε)(α̃ + (1 − α̃)(Ct
β)

2(Ct
γ)2) ≤ (Ct

γ)1/10 (2.5.1)

which will be a contradiction to the definition of Ct
γ.

After a little rewriting, 2.5.1 translates to α̃ ≥ 1 −
(Ct
γ )1/10

1+ε −1
(Ct

βC
t
γ)2−1 . By our assumption on Ct

γ, Ct
β ≤ C10

γ , so the right hand

side above is upper bounded by 1 −
(Ct
γ )1/10

1+ε −1
(Ct

γ)8−1 .
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But, Lemma 46 implies that certainly Ct
γ ≤ C0

γ. The function

f (c) =

c1/10

1+ε
− 1

c8 − 1

can be easily seen to be monotonically decreasing on the interval of interest, and hence is lower bounded by
(C0
γ )1/10

1+ε −1
(C0

γ)8−1 .

Since α̃ = (1 − o(1))(1 − 1
κ100 ) and C0

γ ≤ 3, the claim we want is clearly true.

The case where
γ∗d,i0
γt

d,i0

= Ct
γ is not much more difficult. An analogous calculation as in Lemma 14 gives that to get a

contradiction to the definition of Ct
γ, the condition required is that 1 −

1− 1
(1−ε)(Ct

γ )1/10

1− 1
(Ct
γ )8

. As before, if f (c) =
1− 1

(1−ε)c1/10

1−c8 , it s

easy to check that f (c) is monotonically increasing in the interval of interest, so lower bounded by

1 − 1
(1−ε)( 1

(1−ε)20 )1/10

1 − 1
(( 1

1−ε )20)8

=

1 − (1 − ε)
1 − (1 − ε)160 ≥

1
160

But, α̃ ≥ (1 − 1
κ100 )(1 − o(1)) ≥ 1 − 1

160 , so we get what we want.

�

Next, we show the following lemma.

Lemma 48. Suppose at time step t, 1
Ct
γ
γ∗d,i ≤ γt

d,i ≤ Ct
γγ
∗
d,i and 1

Ct
β
β∗i, j ≤ βt

i, j ≤ Ct
ββ
∗
i, j, such that Ct

γ ≤ (Ct
β)

1/10 for

Ct
β ≥

1
(1−ε)20 . Then, at time step t + 1, 1/Ct+1

β β∗i, j ≤ β
t
i, j ≤ Ct+1

β β∗i, j, where Ct+1
β = (Ct

β)
3/4

Proof. Let’s assume a document d has a dominating topic of proportion at least 1 − 1/κ100.

Then, we claim that
f ∗d, j
f t
d, j
≥ 1

(Ct
β)1/4

β∗i, j
βt

i, j
. We will do a sequence of rearrangements to get this condition to a simpler

form:

f ∗d, j
f t
d, j
≥

1
(Ct

β)
1/4

β∗i, j

βt
i, j
⇔

f ∗d, j
β∗i, j
≥

1
(Ct

β)
1/4

f t
d, j

βt
i, j
⇔

γ∗d,i +
∑

i′
γ∗d,i′

β∗i′, j

β∗i, j
>

1
(Ct

β)
1/4 (γt

d,i +
∑

i′
γt

d,i′
βt

i′, j

βt
i, j

)

Let’s upper bound the right hand side by some simpler quantities. We have:

1
(Ct

β)
1/4 (γt

d,i +
∑

i′
γt

d,i′
βt

i′, j

βt
i, j

) ≤
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1
(Ct

β)
1/4 Ct

γ(γ∗d,i +
∑

i′
γ∗d,i′

βt
i′, j

βt
i, j

) ≤

1
(Ct

β)
1/4 Ct

γ(γ∗d,i + (Ct
β)

2
∑

i′
γ∗d,i′

β∗i′, j

β∗i, j
)

Hence, it is sufficient to prove

γ∗d,i +
∑

i′
γ∗d,i′

β∗i′, j

β∗i, j
≥

1
(Ct

β)
1/4 Ct

γ(γ∗d,i + (Ct
β)

2
∑

i′
γ∗d,i′

β∗i′, j

β∗i, j
)⇔

γ∗d,i(1 −
Ct
γ

(Ct
β)

1/4 ) ≥
∑

i′
γ∗d,i′ (

Ct
γ

(Ct
β)

1/4 (Ct
β)

2 − 1)
β∗i′, j

β∗i, j

Again, we can upper bound the right hand side by

∑
i′
γ∗d,i′ (

Ct
γ

(Ct
β)

1/4 (Ct
β)

2 − 1)κ =

(1 − γ∗d,i)(
Ct
γ

(Ct
β)

1/4 (Ct
β)

2 − 1)κ

So, it is sufficient to prove:

(1 − γ∗d,i)(
Ct
γ

(Ct
β)

1/4 (Ct
β)

2 − 1)κ ≤ γ∗d,i(1 −
Ct
γ

(Ct
β)

1/4 )⇔

γ∗d,i(1 −
Ct
γ

(Ct
β)

1/4 + (
Ct
γ

(Ct
β)

1/4 (Ct
β)

2 − 1)κ) ≥ (
Ct
γ

(Ct
β)

1/4 (Ct
β)

2 − 1)κ ⇔

γ∗d,i ≥ 1 −
1 −

Ct
γ

(Ct
β)1/4

1 − Ct
γ

(Ct
β)1/4 + ( Ct

γ

(Ct
β)1/4 (Ct

β)
2 − 1)κ

It’s easy to check that the expression on the right hand side as a function of Ct
γ is decreasing. Hence, the RHS is

upper bounded by

1 −
1 − 1

(Ct
β)3/20

1 − 1
(Ct

β)3/20 + κ((Ct
β)

37/20 − 1)

Now, let’s analyze this expression. If we let f (x) = 1−
1− 1

x3/20

1− 1
x3/20 +κ(x37/20−1)

, I claim f (x) is an increasing function of x.

Indeed, we can calculate it’s derivative fairly easily:

f ′(x) = −

3
20 x−

23
20 (1 − 1

x3/20 + κ(x37/20 − 1)) − (1 − 1
x3/20 )(− 3

20 x−
23
20 + 37

20κx
17
20 )

(1 − 1
x3/20 + κ(x37/20 − 1))2

=
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−

3
20 x−

23
20 κ(x

37
20 − 1) − 37

20κx
17
20 (1 − x−

3
20 )

(1 − 1
x3/20 + κ(x37/20 − 1))2

=

κ
20 (40x14/20 − (3x−23/40 + 37x17/20))

(1 − x3/20 + 1
κ
( 1

x37/20 − 1))2

By the AM-GM inequality, 3x−23/40 + 37x17/20 ≥ 40((x17/20)37(x−23/20)3)1/40 = 40x14/20, so f ′(x) is positive, so the

RHS, as a function of Ct
β, is (x) is increasing.

So, it is sufficient to satisfy the inequality when Ct
β = C0

β. One can check however that by Lemma 44 and 45 this

is true.

Proceeding to the lower bound, a similar calculation as before gives that the necessary condition for progress is:

γ∗d,i ≥ 1 −
1 −

(Ct
β)1/4

Ct
γ

1 − (Cβ)1/4

Ct
γ

+ 1
κ
(

(Ct
β)1/4

Ct
γ

1
(Ct

β)2 − 1)

Again, the right hand side expression is decreasing in Cγ, so it is certainly upper bounded by

1 −
1 − (Ct

β)
3/20

1 − (Ct
β)

3/20 + 1
κ
( 1

(Ct
β)37/20 − 1)

Now, the claim is that this expression is increasing in Ct
β. Again, denoting f (x) = 1 − 1−x3/20

1−x3/20+ 1
κ ( 1

x37/20 −1)

f ′(x) = −
− 3

20 x−17/20(1 − x3/20 + 1
κ
( 1

x37/20 − 1)) − (1 − x3/20)(− 3
20 x−17/20 − 1

κ
37
20 x−57/20)

(1 − x3/20 + 1
κ
( 1

x37/20 − 1))2
=

−
− 3

20 x−17/20 1
κ
( 1

x37/20 − 1) + (1 − x3/20) 1
κ

37
20 x−57/20

(1 − x3/20 + 1
κ
( 1

x37/20 − 1))2
=

1
20κ (−40x−54/20 + (3x−17/40 + 37x−57/20))

(1 − x3/20 + 1
κ
( 1

x37/20 − 1))2

By the AM-GM inequality, 3x−17/40 + 37x−57/20 ≥ 40((x−17/20)37(x−57/20)37)1/40 = 40x−54/20, so f ′(x) is negative, so

the RHS, as a function of Ct
β, is decreasing. So it suffices to check the inequality when Ct

β = (1− ε)20. In this case, we

want to check that

1 −
1
κ100 ≥ 1 −

1 − 1
(1−ε)3

1 − 1
(1−ε)3 + 1

κ
((1 − ε)37 − 1)

Since 1 −
1− 1

(1−ε)3

1− 1
(1−ε)3

+ 1
κ ((1−ε)37−1)

≤ 1 − 3κ
37+3κ , and κ ≥ 2, this is easily seen to be true.

Now, we’ll split the β update into two parts: documents where topic i is at least 1 − 1/κ100, and the rest of them.

In the first group, as we showed above,
f ∗d, j
f t
d, j
≥ 1

(Ct
β)1/2 . In the second group, we can certainly claim that

f ∗d, j
f t
d, j
≥ 1

Ct
γCt

β
from

the inductive hypothesis. If we denote the set of documents where topic i is at least 1 − 1/κ100 as D1, we get that

βt+1
i, j = βt

i, j

∑
d

f ∗d, j
f t
d, j
γt

d,i∑D
i=1 γ

t
d,i

≥

∑
d∈D1

1
(Ct

β)1/2Ct
γ
β∗i, jγ

∗
d,i +

∑
d∈D\D1

1
(Ct

β)2(Ct
γ)2 β

∗
i, jγ
∗
d,i

(Ct
γ)

∑
d∈D γ

∗
d,i
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If we denote µ =

∑
d∈D1

γ∗d,i∑
d∈D γ

∗
d,i

, then

βt+1
i, j ≥ µ

β∗i, j

(Ct
β)

1/4(Ct
γ)2 + (1 − µ)

β∗i, j

(Ct
β)

2(Ct
γ)3

So, to prove βt+1
i, j ≥

1
C3/4
β

β∗i, j, it’s sufficient to show

µ
β∗i, j

(Ct
β)

1/4(Ct
γ)2 + (1 − µ)

β∗i, j

(Ct
β)

2(Ct
γ)3 ≥

1

C3/4
β

⇔

µ >

1
(Ct

β)1/2 −
1

(Ct
β)2(Ct

γ)3

1
(Ct

β)1/4(Ct
γ)2 −

1
(Ct

β)2(Ct
γ)3

Given that Ct
γ ≤ (Ct

β)
1/10, it’s sufficient to show

µ >

1
(Ct

β)1/2 −
1

(Ct
β)23/10

1
(Ct

β)9/20 −
1

(Ct
β)23/10

= 1 −

1
(Ct

β)9/20 −
1

(Ct
β)1/2

1
(Ct

β)9/20 −
1

(Ct
β)23/10

Completely analogously as before, 1 −
1

(Ct
β

)9/20 −
1

(Ct
β

)1/2

1
(Ct
β

)9/20 −
1

(Ct
β

)23/10
is a decreasing function of Ct

β, so it’s sufficient to check that

µ > 1 −
1

(Ct
β

)9/20 −
1

(Ct
β

)1/2

1
(Ct
β

)9/20 −
1

(Ct
β

)23/10
when Ct

β = ( 1
1−ε )20, which is easily checked to be true.

In the same way, one can prove that βt+1
i, j ≤ (Ct

β)
3/4β∗i, j �

Putting lemmas 47 and 48 together, we get that the analogue of Lemma 16:

Lemma 49. Suppose it holds that 1
Ct ≤

βi, j∗

βt
i, j
≤ Ct, Ct ≥ 1

(1−ε)20 . Then, after one KL minimization step with respect to

the γ variables and one β iteration, we get new values βt+1
i, j that satisfy 1

Ct+1 ≤
βi, j∗

βt+1
i, j
≤ Ct+1, where Ct+1 = (Ct)3/4

As a corollary,

Corollary 50. Phase III requires O(log( 1
log(1+ε) )) = O(log( 1

ε
)) iterations to estimate each of the topic-word matrix and

document proportion entries to within a multiplicative factor of 1
(1−ε)7

This finished the proof of Theorem 42 for Case Study 1.

2.5.3 Generalizing Case Study 2

Finally, the proof for Case Study 2 is quite simple. Because the dynamic range κ ≤ B for the common words,

Lemmas 39 and 40 still hold, and hence we again determine the dominant topic correctly. Because of this, it’s also

easy to see that the lower bounds and upper bounds on the βt
i, j values for the common words are maintained to be a

56



constant, since the proof of Lemmas 36 and 37 holds for the common words verbatim. This means that the anchor

words and discriminative words will be correctly determined just as before. But after that point, the analysis of Case

Study 2 is exactly the same as the one for Case Study 2 — which we already covered in the above section. This finishes

the proof of Theorem 42.

2.6 Justification of prior assumptions via analogy to Dirichlet priors

In this section we provide a brief motivation for our choice of properties on the topic model instances we are looking

at. Nothing in the other sections crucially depends on this section, so it can be freely skipped upon first reading.

Most of our properties on the topic priors are inspired from what happens with the Dirichlet prior - specifically,

variants of all of the ”weak correlations” between topics hold for Dirichlet. Essentially the only difference between

our assumptions and Dirichlet is the lack of smoothness. (Dirichlet is sparse, but only in the sense that it leads to a

few ”large” topics, but the other topics may be non-negligible as well.)

To the best of our knowledge, the lemmas proven here were not derived elsewhere, so we include them for com-

pleteness.

For all of the claims below, we will be concerned with the following scenario:

~γ = (γ1, γ2, . . . , γk) will be a vector of variables, and ~α = (α1, α2, . . . , αk) a vector of parameters. We will let ~γ be

distributed as ~γ := Dir(α1, α2, . . . , αk), where αi = Ci/kc, for some constants Ci and c > 1.

2.6.1 Sparsity

To characterize the sparsity of the topic proportions in a document, we will need the following lemma from (Telgarsky,

2013):

Lemma 51. (Telgarsky, 2013) For a Dirichlet distribution with parameters (C1/kc,C2/kc, . . . ,Ck/kc), the probability

that there are more than c0 ln k coordinates in the Dirichlet draw that are ≥ 1/kc0 is at most 1/kc0 .

It’s clear how this is related to our assumption: if one considers the coordinates ≥ 1
kc0 as ”large”, we assume, in a

similar way, that there are only a few ”large” coordinates. The difference is that we want the rest of the coordinates to

be exactly zero.

2.6.2 Weak topic correlations

We will prove that the Dirichlet distribution satisfies something akin to the weak topic correlations property. We prove

that when conditioning on some small (o(k)) set of topics being small, the marginal distributions for the rest of the

topic proportions are very close to the original ones. This implies our ”weak topic correlations” property.
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The following is true:

Lemma 52. Let ~γ = (γ1, γ2, . . . , γk) be distributed as specified above.

Let S be a set of topics of size o(k), and let’s denote by γS the vector of variables corresponding to the topics in

the set S , and γS̄ the rest of the coordinates. Furthermore, let’s denote by γ̃S̄ the distribution of γS̄ conditioned on all

the coordinates of γS being at most 1/kc1 for c1 > 1.

Then, for any i ∈ S̄ and γ = 1 − δ, any δ = Ω(1),

PγS̄
(γi = γ) = (1 ± o(1))Pγ̃S̄

(γi = γ).

Proof. It’s a folklore fact that if ~Y = Dir(~α), then

(Y1,Y2, . . . ,Yi−1,Yi+1, . . . ,Yk |Yi = yi) = (1 − yi)Dir(α1, α2, . . . , αi−1, αi+1, . . . , αk)

Applying this inductively, we get that γ̃S̄ = (1−
∑

j∈S γi)Dir(~αS̄ ). Let’s denote s :=
∑

j∈S γi, and s̃ =
∑

i∈S αi. Then,

since γi ≤ 1/kc1 for i ∈ S , s = o(1). Similarly, s̃ = o(1).

For notational convenience, let’s call α̃0 =
∑

i<S αi, and α0 =
∑

i αi = α̃0 + s̃.

The marginal distribution of variable Yi where ~Y = Dir(~α) is Beta(αi, α0 − αi).

Hence,

PγS̄
(γi = γ) =

1
B(αi, α̃0 + s̃ − αi)

γαi−1(1 − γ)α̃0+s̃−αi−1

and

Pγ̃S̄
(γi = γ) =

1
B(αi, α̃0 − αi)

(
γ

1 − s
)
αi−1

(1 −
γ

1 − s
)α̃0−αi−1

The following holds:

γαi−1(1 − γ)α̃0+s̃−αi−1

( γ
1−s )αi−1(1 − γ

1−s )α̃0−αi−1
=

(1 − s)αi−1
(

(1 − s)(1 − γ)
1 − s − γ

)−αi−1

(1 − γ)s̃ =

(
1 +

s
1 − s − γ

)−αi−1

(1 − γ)s̃

Now, I claim the above expression is 1 ± o(1).

We’ll just prove this for each of the terms individually. Since 1 + s
1−s−γ ≥ 1 and −1 − αi ≤ −1, it follows that

(1 + s
1−s−γ )−αi−1 ≤ 1. On the other hand, by Bernoulli’s inequality, (1 + s

1−s−γ )−αi−1 ≥ 1 − (αi + 1) s
1−s−γ ≥ 1 − o(1),
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since γ = 1 − δ, for some constant δ, by our assumptions.

For the second term, since 1 − γ ≤ 1 and s̃ ≥ 0, (1 − γ)s̃ ≤ 1. On the other hand, again by Bernoulli’s inequality,

(1 − γ)s̃ ≥ 1 − γ s̃ = 1 − o(1), as we needed.

Comparing B(αi, α̃0 + s̃ − αi) and B(αi, α̃0 − αi) is not so much more difficult. By definition, B(αi, α0 − αi) =∫ 1
0 xαi−1(1 − x)α0−αi−1 dx, so

B(αi, α0 + s̃ − αi)
B(αi, α0 − αi)

=

∫ 1
0 xαi−1(1 − x)α̃0+s̃−αi−1 dx∫ 1

0 xαi−1(1 − x)α̃0−αi−1 dx

We’ll just bound each of the ratios
xαi−1(1 − x)α̃0+s̃−αi−1

xαi−1(1 − x)α̃0−αi−1

Namely, this is just (1 − x)s̃. Same as above, 1 − o(1) ≤ (1 − γ)s̃ ≤ 1. Hence, these are within a constant from each

other.

�

2.6.3 Dominant topic equidistribution

Now, we pass to proving a smooth version of the dominant topic equidistribution property. Namely, for a threshold

x0 = o(1), we can consider a topic ”large” whenever it’s bigger than x0. We will show that for any topics Yi, Y j, the

probabilities that Yi > x0 and Y j > x0 are within a constant from each other.

Mathematically formalizing the above statement, we will prove the following lemma:

Lemma 53. Let ~γ = (γ1, γ2, . . . , γk) be distributed as specified above. Then, P(Yi>x0)
P(Y j>x0) = O(1), for any i, j if x0 = o(1).

Proof. As before, the marginal distribution of Yi is Beta(αi, α0 − αi). The Beta distribution pdf is just P(x) =

xαi−1(1−x)α0−αi−1

B(αi,α0−αi)
, where B(αi, α0 − αi) =

∫ 1
0 xαi−1(1 − x)α0−αi−1 dx.

Hence, the ratio we care about can be written as

(
∫ 1

x0
xαi−1(1 − x)α0−αi−1 dx)/B(αi, α0 − αi)

(
∫ 1

x0
xα j−1(1 − x)α0−α j−1 dx)/B(α j, α0 − α j)

To get a bound on this ratio, it’s sufficient to bound the normalization constants B(αi, α0 − αi) and B(α j, α0 − α j),

as well as the ratio
∫ 1

x0
xαi−1(1−x)α0−αi−1 dx∫ 1

x0
xα j−1(1−x)α0−α j−1 dx

. Let’s prove first that B(αi, α0 − αi) ' B(α j, α0 − α j)

By definition, B(αi, α0 − αi) =
∫ 1

0 xαi−1(1 − x)α0−αi−1 dx. The way we’ll analyze this quantity is that we’ll divide

the integral in two parts, one from 0 to 1
2 and one from 1

2 to 1.

Since α0 = O(1), it follows that α0 − αi − 1 & −1 and α0 − αi − 1 . 1. Hence, (1− x)α0−αi−1 = Θ(1). It follows that
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∫ 1
2

0
xαi−1(1 − x)α0−αi−1 dx '

∫ 1
2

0
xαi−1 dx =

'
(1/2)αi

αi
'

1
αi

where the last equality follows since 1
2 ≤ (1/2)αi ≤ 1.

The second portion is not much more difficult. Since 1
2 ≤

1
2
αi−1
≤ 1, it follows

∫ 1

1
2

xαi−1(1 − x)α0−αi−1 dx '
∫ 1

1
2

(1 − x)α0−αi−1 dx =

'
(1/2)α0−αi

α0 − αi
'

1
α0

where the last two equalities come about since −1 . α0 − αi . 1.

But the above two estimates proved that for any i, B(αi, α0 − αi) ' 1
αi

, as we needed.

So, we proceed onto bounding ∫ 1
x0

xαi−1(1 − x)α0−αi−1 dx∫ 1
x0

xα j−1(1 − x)α0−α j−1 dx

We’ll proceed in a similar fashion as before. We’ll pick some point xT , and if x < xT , we will show that xα j−1(1 −

x)α0−α j−1 is within a constant factor from xαi−1(1 − x)α0−αi−1. On the other hand, we will show that part of the integral

where x > xT is dominated by the part where x < xT , which will imply the claim we need.

Let’s rewrite the ratio above a little:
xα j−1(1 − x)α0−α j−1

xαi−1(1 − x)α0−αi−1 =

(
x

1 − x
)α j−αi = e(α j−αi) ln( x

1−x )

Proceeding as outlined, I claim that for sufficiently large constants C1,C2, s.t. if x ≤ 1 − 1

1+C1e
1
αi

1
C2

, then

xα j−1(1−x)α0−α j−1

xαi−1(1−x)α0−αi−1 = O(1). Let’s call xT = 1 − 1

1+C1e
1
αi

1
C2

.

The claim is then, that if xT ≥ x ≥ x0, that (α j − αi) ln( x
1−x ) = O(1).

First let’s assume, α j − αi ≥ 0.

Then, if ln( x
1−x ) < 0 ⇔ x < 1

2 , the condition is of course satisfied. So let’s assume x ≥ 1
2 . When 1

2 ≤ x ≤ xT , we

get that x
1−x ≤ C1ee

1
α j

1
C2 . Hence, ln( x

1−x ) ≤ ln C1 + 1
α j

1
C2

. It follows that if C1,C2 are sufficiently large,

(
x

1 − x
)α j−αi ≤ eln( x

1−x )α j = O(1)

On the other hand, if α j − αi ≤ 0, when x ≥ 1
2 , (α j − αi) ln( x

1−x ) ≤ 0, so we are fine. However, since |α j − αi| ≤ αi,
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it’s easy to check when x ≥ e−c1/αi

1+e−c1/αi
> x0, that (α j − αi) ln( x

1−x ) = O(1).

Finally, we want to claim that the portion of the integral from xT to 1 is dominated by the portion from x0 to xT .

We can show that the latter portion is O(e−k), and the first is Ω(1).

Let’s lower bound the first portion. We lower bound
∫ xT

x0
xαi−1(1 − x)α0−αi−1 dx by xαi−1

T

∫ xT

x0
(1 − x)α0−αi−1 dx. For

the first factor in the above expression, we use Bernoulli’s inequality to prove it’s Ω(1). For the second, the integral

will evaluate to
(1 − x0)α0−αi − (1 − xT )α0−αi

α0 − αi

Let’s lower bound the first term in the numerator. If α0 − αi ≥ 1, another application of Bernoulli’s inequality gives:

(1 − x0)α0−αi ≥ 1 − (α0 − αi)x0 ≥ 1 − o(1). If, on the other hand, 0 ≤ α0 − αi ≤ 1, (1 − x0)α0−αi ≥ 1 − x0 ≥ 1 − o(1).

Then, I claim that (1 − xT )α0−αi = e−Ω(k). Indeed, for some constant C3,

 1

1 + C1e
1
α j

1
C2

α0−αi

≤

 1

C3e
1
α j

1
C2

α0−αi

=

= e− ln(C3e
1
α j

1
C2 )(α0−αi)

However, since α0 = Ω(Kα j) and α0 −αi = Ω(α0), the above expression is upper bounded by e−Ω(k), which is what we

were claiming. Hence, xαi−1
T

∫ xT

x0
(1 − x)α0−αi−1 dx = Ω(1).

Let’s upper bound the latter portion. This expression is upper bounded by

xαi−1
T

∫ 1

xT

(1 − x)α0−αi−1 dx = xαi−1
T

(
1

1+C1e
1
α j

1
C2

)α0−αi

α0 − αi

Now, we will separately bound each of xαi−1
T and

 1

1+C1e
1
α j

1
C2


α0−αi

α0−αi
.

The first term can be written as 1
x1−αi

T

. Now, since 1−αi ≥ 0, we can use Bernoulli’s inequality to lower bound x1−αi
T

by 1 − 1

1+C1e
1
α j

1
C2

(1 − αi). Since 1

1+C1e
1
α j

1
C2

= O(1/e
1
α j ), and 1 − αi ≤ 1/2, let’s say, 1 − 1

1+C1e
1
α j

1
C2

(1 − αi) = Ω(1), i.e.

xαi−1
T = O(1).

For the second term, we already proved above that (1−xT )α0−αi = e−Ω(k), This implies that
∫ 1

xT
xαi−1(1−x)α0−αi−1 dx =

O(e−k), which finishes the proof.

�

2.6.4 Independent topic inclusion

Finally, there’s a very simple proxy for ”independent topic inclusion”. Again, as above, γ̃S̄ = (1 −
∑

j∈S γi)Dir(~αS̄ ).
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But, if we consider ”inclusion” the probability that a given topic is ”noticeable” (i.e. ≥ 1
nc0 , say), we can use the

above Lemma 53 to show that the probability that any topic is ”large” (but still o(1)) is within a constant for all the

topics in S̄ .

2.7 Technical details: estimates on number of documents

Finally, we state a few helper lemmas to estimate how many documents will be needed. The properties we need are

that the empirical marginals of a dominating topic in the documents where it’s dominating are close to the actual ones,

and similarly that the empirical marginals of the dominating topic, conditioned on the set of topics that a discriminative

word belongs to not being present are close to the actual ones.

The former statement is the following:

Lemma 54. Let Ei = E[γ∗d,i|γ
∗
d,i is dominating]. If the total number of documents is D = Ω( K log2 K

ε2 ), and Di is the

number of documents where i is the dominant topic, then with high probability, for all topics i,

(1 − ε)Ei ≤
1
Di

∑
d∈Di

γ∗d,i ≤ (1 + ε)Ei

Proof. Since documents are generated independently, Pr[ 1
Di

∑
d∈Di

γ∗d,i > (1 + ε)Ei] ≤ e−
ε2Di Ei

3 by Chernoff.

Since there are at most s topics per document, Ei ≥
1
s , so Pr[ 1

Di

∑
d∈Di

γ∗d,i > (1 + ε)Ei] ≤ e−
ε2Di

3T

An analogous statement holds for Pr[ 1
Di

∑
d∈Di

γ∗d,i < (1 − ε)Ei]

Then, if Di =
log2 k
ε2 , by union bounding, we get that with high probability, for all topics, (1− ε)Ei ≤

1
Di

∑
d∈Di

γ∗d,i ≤

(1 + ε)Ei

However, the probability of a topic being dominating is Ci/k for some constant Ci. So, by another Chernoff bound,

Pr[Di < (1 − ε)CiD/k] ≤ e−
ε2CiD

3k (2.7.1)

So, if we take D = k
ε2 log2 k, with high probability, for all topics, Di = Θ(D/k).

Putting everything together, we get that if D =
k log2 k
ε2 , with high probability,

(1 − ε)Ei ≤
1
Di

∑
d∈Di

γ∗d,i ≤ (1 + ε)Ei

�

Next, we calculate how many documents are needed to match the marginals of the dominating topics, conditioned

62



on a small subset (of size o(k)) of the topics not being included in a document. More formally,

Lemma 55. For the discriminative word j, let jS be the set of topics it belongs to. For a topic i ∈ jS , let Let

Ei, jS = E[γ∗d,i|γ
∗
d,i is dominating, γ∗d,i′ = 0,∀i′ ∈ jS ]. Let Di, jS be the number of documents where i is dominating, and

γ∗d,i′ = 0,∀i′ ∈ jS .

If the number of documents D ≥ k log2 n
ε2 , then with high probability, for all topics i and discriminative words j,

(1 − ε)Ei, jS ≤
1

Di, jS

∑
d∈Di, jS

γ∗d,i ≤ (1 + ε)Ei, jS

Proof. Since Ei, jS = (1 ± o(1))Ei, by the weak topic correlation property, an analogous proof as above shows that if

we get that if Di, jS =
log2 k
ε2 , with high probability, (1 − ε)EiS ≤

1
DiS

∑
d∈DiS

γ∗d,i ≤ (1 + ε)EiS .

But by the independent topic inclusion property, the probability of generating a document D with i being the

dominating topic, s.t. no topics in jS appear in it is Θ(1/k). So, again by Chernoff,

Pr[Di, jS < (1 − ε)CiD/k] ≤ e−
ε2CiD

3k (2.7.2)

If we take D = k
ε2 log2 n, Pr[Di, jS < (1 − ε)CiD/k] ≤ e− log2 n. However, since the total number of i, jS pairs is at

most n2, union bounding, we get that with high probability, for all pairs i, jS ,

(1 − ε)Ei, jS ≤
1

Di, jS

∑
d∈Di, jS

γ∗d,i ≤ (1 + ε)Ei, jS

�

Finally, the following short lemma to estimate the number of documents in which a word j belongs only to the

dominating topic is implicit in the proof above:

Lemma 56. Let Di, jS be the number of documents where i is dominating, and γ∗d,i′ = 0,∀i′ ∈ jS . If the number of

documents D ≥ k log2 n
ε2 , then with high probability, for all topics i and discriminative words j, Di, jS ≥ Di(1−ε)(1−o(1))

2.8 Changing the updates

In the prior sections, our goal was to analyze iterative updates which are as close as possible to the updates in variational

Bayes updates used by practitioners. The reason for such a goal is to gain a better understanding of the structure of

data sets where they can be expected to work. Of course, there is an obvious related goal to this: can we design an

iterative algorithm of comparable runtime to variational Bayes, but with provable guarantees? In fact, we can even

hope that such algorithms, inspired by theoretical considerations, can even do better in practice.
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In this section, we do exactly that: we will take leave of the usual mean-field variational Bayes updates, and design

a different algorithm, which also alternatively updates the topic-word matrix and the topic proportions estimates in the

documents, and is of comparable computational efficiency. The benefit will be that we will be able to significantly

relax the assumptions on the topic-word matrix and the requirements of the initialization, compared to the ones in the

previous section. Additionally, the guarantee will be substantially more robust to noise in the data.

The slight cost of our change will be that the prior on the topic proportions we have to assume in the documents

will have to be completely independent – so we will not be able to enforce the marginalization constraint on the topic

proportions, i.e.
∑k

i=1 γi = 1. In that sense, the latent variable model we consider can be considered as a non-negative

version of ICA. Nevertheless, we keep the notation of the previous section to delineate the close analogy to topic

models. More concretely, we will consider the following latent-variable model:

f̃ = β∗γ∗ + ν (2.8.1)

where β∗ is the topic-word matrix, γ∗ are non-negative weights from a prior distribution, and ν is noise in the model.

Similarly as before, our focus is to recover β∗, assuming some properties of β∗, x∗, and ν. The γ∗ can be thought of as

the topic proportions, thought we will not constrain them to sum to 1. More precisely, the assumptions are as follows.

Let [M]i denote the i-th row of a matrix M, [M] j its i-th column, Mi, j its (i, j)-th entry. Denote its column norm,

row norm, and symmetrized norm as ‖M‖1 = max j
∑

i

∣∣∣Mi, j

∣∣∣, ‖M‖∞ = maxi
∑

j

∣∣∣Mi, j

∣∣∣, and ‖M‖s = max {‖M‖1, ‖M‖∞} ,

respectively. We assume the following hold for parameters C1, c2,C2, `,Cν to be determined in our theorems.

(A1) The columns of β∗ are linearly independent.

(A2) For all i ∈ [k], γ∗i ∈ [0, 1], E[γ∗i ] ≤ C1
k and c2

k ≤ E[(γ∗i )2] ≤ C2
k , and γ∗i ’s are independent.

(A3) The initialization β0 = β∗(Σ0 + E0) + N(0), where Σ0 is diagonal, E0 is off-diagonal, and

Σ0 � (1 − `)Id,
∥∥∥E0

∥∥∥
s ≤ `.

Furthermore, we consider two noise models.

(N1) Adversarial noise: only assume that maxi |νi| ≤ Cν almost surely.

(N2) Unbiased noise: maxi |νi| ≤ Cν almost surely, and E[ν|x∗] = 0.

Several remarks about the assumptions are in order. (A1) significantly relaxes the assumptions of the previous

section – and is needed to ensure identifiability. Otherwise, for instance, if (β∗)3 = λ1(β∗)1 + λ2(β∗)2, it is impossible
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to distinguish between the case when γ∗3 = 1 and the case when γ∗2 = λ1 and γ∗1 = λ2. Note that, in principle, we do

not restrict the feature matrix to be non-negative even! This is helpful if instead of topic modeling, we think of this

generative model as one in which the samples f̃ are non-negative combinations of “features” specified by the columns

of β∗.

(A2) is essentially where our model differs from topic modeling: the coordinates of γ need to be independent.

In this sense, this model is like a non-negative variant of ICA. Apart from that, (A2) constraints the coordinates to

be non-negative and bounded by 1; this is simply a matter of scaling. The second moment assumptions ensure that,

roughly speaking, each topic appears with reasonable probability. This is expected: if the occurrences of the topics are

extremely unbalanced, then it will be difficult to recover the rare ones.

The warm start required is also substantially relaxed from the previous section. (A3) specifies that each feature β0
i

has a large fraction of the ground-truth feature β∗i and a small fraction of the other features, plus some noise outside

the span of the ground-truth features. Importantly, unlike the previous section, this fraction does not depend on the

range of the entries in β∗, nor does it require anchor words. Moreover, we can tolerate N(0): a component of β0 outside

the column space of β∗.

The adversarial noise model (N1) is very general, only imposing an upper bound on the entry-wise noise level.

Thus, ν can be correlated with γ∗ in some complicated unknown way. (N2) additionally requires it to be zero mean,

which is commonly assumed and will be exploited by our algorithm to tolerate larger noise.

2.8.1 The new updates: main algorithm

In this section we outline the main algorithm, and explain the basic intuition behind the proof of correctness of these

modified updates.

Algorithm 6 Purification
Input: initialization β0, threshold α, step size η, scaling factor r, sample size D, iterations T

1: for t = 0, 1, 2, ...,T − 1 do
2: Draw examples y1, . . . , yD.
3: (Decode) Compute β†, the pseudo-inverse of βt with minimum ‖(β)†‖∞.

Set x = φα(β†y) for each example y. // φα is ReLU activation; see (2.8.2) for the definition
4: (Update) Update the feature matrix

βt+1 = (1 − η) βt + rηÊ
[
( f̃ − f̃ ′)(γ − γ′)>

]
where Ê is over independent uniform f̃ , f̃ ′ from

{
f̃1, . . . , f̃D

}
, and γ, γ′ are their decodings.

5: end for
Output: β = β(T )

The main algorithm is delineated as Algorithm 6. It keeps a working topic-word matrix and operates in iterations.

In each iteration, it first compute the weights for a batch of D examples (decoding), and then uses the computed

weights to update the feature matrix (updating).

The decoding is simply multiplying the example by the pseudo-inverse of the current feature matrix and then
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passing it through the rectified linear unit (ReLU) φα with offset α. The pseudo-inverse with minimum infinity norm

is used so as to maximize the robustness to noise (see the theorems). The ReLU function φα operates element-wise on

the input vector v, and for an element vi, it is defined as

φα(vi) = max {vi − α, 0} . (2.8.2)

To get an intuition why the decoding makes sense, suppose the current feature matrix is the ground-truth. Then

β† f̃ = β†β∗γ∗ + β†ν = γ∗ + β†ν. So we would like to use a small β† and use threshold to remove the noise term.

In the encoding step, the algorithm move the feature matrix along the direction E
[
( f̃ − f̃ ′)(γ − γ′)>

]
. To see intu-

itively why this is a good direction, note that when the decoding is perfect and there is no noise, E
[
( f̃ − f̃ ′)(γ − γ′)>

]
=

β∗, and thus it is moving towards the ground-truth. Without those ideal conditions, we need to choose a proper step

size, which is tuned by the parameters η and r.

2.8.2 Results for a simplified case

In order to demonstrate the intuition and results clearly, we first consider a simplified setting first, with assumptions

(A1), (A2’), (A3), and (N1), where

(A2’) γ∗i ’s are independent, and γ∗i = 1 with probability s/n and 0 otherwise for a constant s > 0.

Furthermore, we will assume N0 = 0.

Note this is a special case of our general assumptions, with C1 = c2 = C2 = s where s is the parameter in (A2’).

Moreover, this is quite close to the setting we considered in Section 2.2. We will subsequently present the general

result in Section 2.8.5, which will be hopefully easier to digest after we have presented this simpler setting.

For notational convenience, let (β∗)† denote the matrix satisfying (β∗)†β∗ = Id. If there are multiple such matrices

we let it denote the one with minimum ‖(β∗)†‖∞.

Theorem 57 (Simplified case, adversarial noise, (Li et al., 2016)). There exists an absolute constant G such that if

Assumptions (A1),(A2’),(A3) and (N1) are satisfied with l = 1/10, Cν ≤
Gc

max{n,k‖(β∗)†‖∞}
for some 0 ≤ c ≤ 1 and N0 = 0,

then there is a choice of parameters α, η, r such that for every 0 < ε, δ < 1 and D = poly(k, n, 1/ε, 1/δ) the following

holds with probability at least 1 − δ:

After T = O
(
ln 1

ε

)
iterations, Algorithm 6 outputs a solution β = β∗(Σ + E) + N where Σ � (1 − `)Id is diagonal,

‖E‖1 ≤ ε + c is off-diagonal, and ‖N‖1 ≤ c.

Remarks. Consequently, when ‖β∗‖1 = 1, we can do normalization β̂i = βi/‖βi‖1, and the normalized output β̂

satisfies

‖β̂ − β∗‖1 ≤ ε + 2c.
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In particular, under mild conditions and with proper parameters, our algorithm recovers the ground-truth in a geometric

rate. It can achieve arbitrary small recovery error in the noiseless setting, and achieve error up to the noise limit even

with adversarial noise whose level is comparable to the signal.

The result implies that with large adversarial noise, the algorithm can still recover the features up to the noise limit.

When n ≥ k‖ (β∗)† ‖∞, each data point has adversarial noise with `1 norm as large as ‖ν‖1 = Cνn = Ω(c), which is in

the same order as the signal ‖β∗γ∗‖1 = O(1). Our algorithm still works in this regime. Furthermore, the final error

‖β − β∗‖1 is O(c), in the same order as the adversarial noise in one data point.

Note the appearance of ‖ (β∗)† ‖∞ is not surprising. The case when the columns are the canonical unit vectors for

instance, which corresponds to ‖ (β∗)† ‖∞ = 1, is expected to be easier than the case when the columns are nearly the

same, which corresponds to large ‖ (β∗)† ‖∞.

A similar theorem holds for the unbiased noise model.

Theorem 58 (Simplified case, unbiased noise, (Li et al., 2016)). If Assumptions (A1),(A2’),(A3) and (N2) are satisfied

with Cν =
Gc
√

k
max{n,k‖(β∗)†‖∞}

, then the same guarantee as Theorem 57 holds.

Remarks. With unbiased noise which is commonly assumed in many applications, the algorithm can tolerate

noise level
√

k larger than the adversarial case. When n ≥ k‖ (β∗)† ‖∞, each data point has noise with `1 norm as

large as ‖ν‖1 = Cνn = Ω(c
√

k), which can be Ω(
√

k) times larger than the signal ‖β∗γ∗‖1 = O(1). The algorithm can

recover the ground-truth in this heavy noise regime. Furthermore, the final error ‖β − β∗‖1 is O
(
‖ν‖1/

√
k
)
, which is

only O(1/
√

k) fraction of the noise in one data point. This is a strong denoising effect and a bit counter-intuitive. It is

possible since we exploit averaging of the noise for cancellation, as well as thresholding to remove noise spread out in

the coordinates.

2.8.3 Analysis: intuition

A natural approach typically employed to analyze algorithms for non-convex problems is to define a function on the

intermediate solution β and the ground-truth β∗ measuring their distance and then show that the function decreases at

each step. However, a single potential function will not be enough in our case, as we argue below, so we introduce a

novel framework of maintaining two potential functions which capture different aspects of the intermediate solutions.

Let us denote the intermediate solution and the update as (omitting the superscript (t))

β = β∗(Σ + E) + N, Ê[( f̃ − f̃ ′)(γ − γ′)>] = β∗(Σ̃ + Ẽ) + Ñ, (2.8.3)

where Σ and Σ̃ are diagonal, E and Ẽ are off-diagonal, and N and Ñ are the terms outside the span of β∗ which is

caused by the noise. To cleanly illustrate the intuition behind ReLU and the coupled potential functions, we focus on
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the noiseless case and assume that we have infinite samples.

Since βi = Σi,iβ
∗
i +

∑
j,i E j,iβ

∗
j , if the ratio between ‖Ei‖1 =

∑
j,i

∣∣∣E j,i

∣∣∣ and Σi,i gets smaller, then the algorithm is

making progress; if the ratio is large at the end, a normalization of βi gives a good approximation of β∗i . So it suffices

to show that Σi,i is always about a constant while ‖Ei‖1 decreases at each iteration. We will focus on E and consider

the update rule in more detail to argue this. After some calculation, we have

E ← (1 − η)E + rηẼ, Ẽ = E[
(
γ∗ − (γ′)∗

) (
γ − γ′

)>], (2.8.4)

where γ, γ′ are the decoding for γ∗, (γ′)∗ respectively:

γ = φα
(
(Σ + E)−1γ∗

)
, γ′ = φα

(
(Σ + E)−1(γ′)∗

)
. (2.8.5)

To see why the ReLU function matters, consider the case when we do not use it.

Ẽ = E(γ∗ − (γ′)∗)
[
β†β∗(γ∗ − (γ′)∗)

]>
= E

[
(γ∗ − (γ′)∗)(γ∗ − (γ′)∗)>

] [
(Σ + E)−1

]>
∝

[
(Σ + E)−1

]>
≈ Σ−1 − Σ−1EΣ−1.

where we used Taylor expansion and the fact that E
[
(γ∗ − (γ′)∗)(γ∗ − (γ′)∗)>

]
is a scaling of identity. Hence, if we

think of Σ as approximately Id and take an appropriate r, the update to the matrix E is approximately E ← E − ηE>.

Since we do not have control over the signs of E throughout the iterations, the problematic case is when the entries of

E> and E roughly match in signs, which would lead to the entries of E increasing.

Now we consider the decoding to see why the ReLU is helpful. Ignoring the higher order terms and regarding

Σ = Id, we have

γ = φα
(
(Σ + E)−1γ∗

)
≈ φα

(
Σ−1γ∗ − Σ−1EΣ−1γ∗

)
≈ φα (γ∗ − Eγ∗) . (2.8.6)

The problematic term is Eγ∗. These errors when summed up will be comparable or even larger than the signal, and

the algorithm will fail. However, since the signal coordinates are non-negative and most coordinates with errors only

have small values, the hope is that thresholding with ReLU can remove those errors while keeping a large fraction

of the signal coordinates. This leads to large Σ̃i,i and small Ẽ j,i’s, and then we can choose an r such that E j,i’s keep

decreasing while Σi,i’s stay in a certain range.

To quantify the intuition above, we need to divide E into its positive part E+ and its negative part E−:

[E+]i, j = max
{
Ei, j, 0

}
, [E−]i, j = max

{
−Ei, j, 0

}
. (2.8.7)
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The reason to do so is the following: when Ei, j is negative, by the Taylor expansion approximation,
[
(Σ + E)−1γ∗

]
i
will

tend to be more positive and will not be thresholded to 0 by the ReLU most of the time. Therefore, E j,i will become

more positive at next iteration. On the other hand, when Ei, j is positive,
[
(Σ + E)−1γ∗

]
i

will tend to be more negative

and zeroed out by the ReLU function. Therefore, E j,i will not be more negative at next iteration. Informally, we will

show for positive and negative parts of E:

postivet+1 ← (1 − η)positivet + (η)negativet, negativet+1 ← (1 − η)negativet + (εη)positivet

for a small ε � 1. Due to the appearance of ε in the above updates, we can “couple” the two parts, namely show

that a weighted average of them will decrease, which implies that ‖E‖s is small at the end. This leads to our coupled

potential function.4

2.8.4 Analysis: proof sketch

We now provide a proof sketch for the simplified case presented above. The complete proof of the results for the

general case (which is stated in the next section) is presented in the appendix. The lemmas here are direct corollaries

of those in the appendix.

One iteration. We focus on one update and omit the superscript t. Recall the definitions of E, Σ, N and Ẽ, Σ̃ and

Ñ from (2.8.3). Our goal is to derive lower and upper bounds for Ẽ, Σ̃ and Ñ, assuming that Σi,i falls into some range

around 1, while E and N are small. This will allow us to do induction on t.

First, begin with the decoding. A simple calculation shows that the decoding for f̃ = β∗γ∗ + ν is

γ = φα (Zγ∗ + ξ) , where Z = (Σ + E)−1 , ξ = −β†NZγ∗ + β†ν. (2.8.8)

Now, we can present our key lemmas bounding Ẽ, Σ̃, and Ñ. Before doing this, we add that the particular value for

r we will choose is r = n
s (recalling s is the sparsity of γ∗ according to Assumption (A2’)). We also set the threshold

of the ReLU as ρ < α � s
n . Then, we get:

Lemma 59 (Simplified bound on Ẽ, informal). (1) if Zi, j < 0, then
∣∣∣Ẽ j,i

∣∣∣ ≤ o
(

s
n

(
|Zi, j| + ρ

))
,

(2) if Zi, j ≥ 0, then −O
((

s
n

)2
Zi, j + ρZi, j

)
≤ Ẽ j,i ≤ O

(
( s

n + ρ)|Zi, j|
)
.

Note that Z ≈ Σ−1 − Σ−1EΣ−1, so Zi, j < 0 corresponds roughly to Ei, j > 0. In this case, keeping in mind that r = n
s ,

the upper bound on |Ẽ j,i| is small enough to ensure |E j,i| decreases, as described in the intuition.

On the other hand, when Zi, j ≥ 0 (roughly Ei, j < 0), the upper bound on Ẽ j,i is large enough that rẼ j,i can be

4Note that since intuitively, Ei, j gets affected by E j,i after an update, if we have a row which contains negative entries, it is possible that ‖βi−β
∗
i ‖1

increases. So we cannot simply use maxi ‖βi − β
∗
i ‖1 as a potential function.
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on the same order as Ei, j, corresponding to the intuition that negative Ei, j can contribute a large positive value to

E j,i. Fortunately, the lower bound on Ẽ j,i is of much smaller absolute value, which allows us to show that a potential

function that couples Case (1) and Case (2) in Lemma 59 actually decreases; see the induction below.

Lemma 60 (Simplified bound on Σ̃, informal). Σ̃i,i ≥ Ω((Σ−1
i,i − α)/n).

Lemma 61 (Simplified bound on Ñ, adversarial noise, informal).
∣∣∣Ñi, j

∣∣∣ ≤ O(Cν/n).

Induction by iterations. We now show how to use the three lemmas to prove the theorem for the adversarial

noise. The proof for the unbiased noise statement is similar.

Let at :=
∥∥∥Et

+

∥∥∥
s and bt :=

∥∥∥Et
−

∥∥∥
s, and choose η = `/6. We begin with proving the following three claims by

induction on t: at the beginning of iteration t,

(1) (1 − `)Id � Σt

(2)
∥∥∥Et

∥∥∥
s ≤ 1/8, and if t > 0, then at +βbt ≤

(
1 − 1

25η
)

(at−1 + βbt−1) + ηh, for some β ∈ (1, 8), and some small value

h,

(3)
∥∥∥N t

∥∥∥
s ≤ c/10.

The most interesting part is the second claim. At a high level, by Lemma 59, we can show that

at+1 ≤

(
1 −

3
25
η

)
at + 7ηbt + ηh, bt+1 ≤

(
1 −

24
25
η

)
bt +

1
100

ηat + ηh.

Notice that the contribution of bt to at+1 is quite large (due to the larger upper bound in Case (2) in Lemma 59), but the

other contributions are all small. This allows to choose a β ∈ (1, 8) so that at+1 +βbt+1 leads to the desired recurrence in

the second claim. In other words, at+1 + βbt+1 is our potential function which decreases at each iteration up to the level

h. The other claims can also be proved by the corresponding lemmas. Then the theorem follows from the induction

claims.

2.8.5 More general results

More general weight distributions. Our argument holds under more general assumptions on x∗.

Theorem 62 (Adversarial noise, (Li et al., 2016)). There exists an absolute constant G such that if Assumption (A0)-

(A3) and (N1) are satisfied with l = 1/10, C2 ≤ 2c2, C3
1 ≤ Gc2

2n, Cν ≤

{
c2

2Gc
C2

1m ,
c4

2Gc
C5

1k‖(β∗)†‖∞

}
for 0 ≤ c ≤ 1, and

∥∥∥N0
∥∥∥
∞
≤

c2
2Gc

C3
1‖(β

∗)†‖∞
, then there is a choice of parameters α, η, r such that for every 0 < ε, δ < 1 and N = poly(k, n, 1/ε, 1/δ),

with probability at least 1 − δ the following holds:

After T = O
(
ln 1

ε

)
iterations, Algorithm 6 outputs a solution β = β∗(Σ + E) + N where Σ � (1 − `)Id is diagonal,

‖E‖1 ≤ ε + c/2 is off-diagonal, and ‖N‖1 ≤ c/2.
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Theorem 63 (Unbiased noise, (Li et al., 2016)). If Assumption (A0)-(A3) and (N2) are satisfied with Cν =
c2G
√

ck
C1 max{n,k‖(β∗)†‖∞}

and the other parameters set as in Theorem 62, then the same guarantee holds.

The conditions on C1, c2,C2 intuitively mean that each feature needs to appear with reasonable probability. C2 ≤

2c2 means that their proportions are reasonably balanced. This may be a mild restriction for some applications –

however, we additionally propose a pre-processing step that can relax this in the following subsection.

The conditions allow a rather general family of distributions, so we point out an important special case to provide

a more concrete sense of the parameters. For example, for the uniform independent distribution considered in the

simplified case, we can actually allow s to be much larger than a constant; our algorithm just requires s ≤ Gk for a

fixed constant G. So it works for uniform sparse distributions even when the sparsity is linear, which is an order of

magnitude larger than what can be achieved in the dictionary learning regime. Furthermore, the distributions of γ∗i can

be very different, since we only require C3
1 = O(c2

2k). Moreover, all these can be handled without specific structural

assumptions on β∗.

More general proportions. A mild restriction in Theorem 62 and 63 is that C2 ≤ 2c2, that is, maxi∈[k] E[(γ∗i )2] ≤

2 mini∈[k] E[(γ∗i )2]. To relax this, we propose a pre-processing algorithm for balancing E[(γ∗i )2].

The idea is quite natural: instead of solving f̃ ≈ β∗γ∗, we could also solve f̃ ≈ [β∗D][(D)−1γ∗] for a positive

diagonal matrix D, where E[(γ∗i )2]/D2
i,i is with in a factor of 2 from each other. We show in the appendix that this

can be done under assumptions as the above theorems, and additionally Σ � (1 + `)Id and E0 ≥ 0 entry-wise. After

balancing, one can use Algorithm 6 on the new ground-truth matrix [β∗D] to get the final result.

2.8.6 Technical details: proof of correctness of main algorithm

In this section, we formally prove the statement of Theorem 62 and 63. The way we proceed is to first analyze one

update step, bounding the changes of Σ, E,N and some auxiliary variables, and then in the next subsection we put

things together to prove the theorem.

2.8.6.1 Analysis of one update step

In the interest of readability, throughout this subsection we will focus on a particular iteration t and omit the superscript

(t), while in the next subsection we will put back the superscript. For analysis, denote β(t) as

β = β∗(Σ + E) + N

where Σ is a diagonal matrix, E is an off-diagonal matrix, and N is the component of β that lies outside the span of β∗

(e.g., the noise caused by the noise in the sample).
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Recall the following notation:

Z = (Σ + E)−1 ,

V = Z − Σ−1 = Σ−1
∞∑

k=1

(−EΣ−1)k,

ξ = −β†NZx∗ + β†ν.

Consider the update term Ê
[
( f̃ − f̃ ′)(γ − γ′)>

]
and denote it as

∆ = Ê
[
( f̃ − f̃ ′)(γ − γ′)>

]
= β∗(Σ̃ + Ẽ) + Ñ

where Σ̃ is a diagonal matrix, Ẽ is an off-diagonal matrix, and N is the component of ∆ that lies outside the span of β∗.

Since we now use empirical average, we will have sampling noise. Denote it as

Ns = Ê[( f̃ − f̃ ′)(γ − γ′)>] − E[( f̃ − f̃ ′)(γ − γ′)>].

Then by definition, for f̃ = β∗γ∗ + ν and f̃ ′ = β∗(γ′)∗ + ν′, we have

Ê[( f̃ − f̃ ′)(γ − γ′)>] = E[( f̃ − f̃ ′)(γ − γ′)>] + Ns

= β∗ E
[
(γ∗ − (γ′)∗)(γ − γ′)>

]︸                         ︷︷                         ︸
Σ̃+Ẽ

+E
[
(ν − ν′)(γ − γ′)>

]
+ Ns︸                           ︷︷                           ︸

Ñ

.

Our goal is then bounding Σ̃, Ẽ, Ñ in terms of Σ, E,N. Before doing so, we present a lemma for the decoding.

Lemma 64 (Main: Decoding). Let n ≥ k be two positive integers. Let β ∈ Rn×k be a matrix such that β = β∗(Σ+E)+N

where β∗ is full rank, Σ is a diagonal matrix such that Σ � 1
2 Id and ‖E‖1 < 1

2 . Then for f̃ = β∗γ∗ + ν, the decoding is

γ = φα (Zγ∗ + ξ)

= φα
((

Σ−1 + V
)
γ∗ + ξ

)
.

Proof of Lemma 64. Since β = β∗(Σ + E) + N, we have

β∗ = (β − N)(Σ + E)−1

f̃ = (β − N)(Σ + E)−1γ∗ + ν.
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Plugging into the decoding we get the first statement.

Observing that Σ + E = (Id + EΣ−1)Σ and ‖EΣ−1‖1 ≤ ‖Σ
−1‖1‖E‖1 ≤ 2‖E‖1 < 1, we have (Σ + E)−1 =

(
Σ−1 + V

)
,

resulting in the second statement. �

Lemma 65 (Main: Bound on Σ̃). Suppose |ξi| ≤ ρ < α for any example and every i ∈ [k], and suppose Σ � 1
2 Id. Then

for any i ∈ [k],

Σ̃i,i ≥ E
[(
γ∗i

)2
] (

2Σ−1
i,i − 2

∣∣∣Vi,i

∣∣∣) − 2C1

k

(
α + 2ρ +

C1

k
Σ−1

i,i +
2C1

k

∥∥∥[V]i
∥∥∥

1

)
,

Σ̃i,i ≤ E
[(
γ∗i

)2
] (

2Σ−1
i,i + 2

∣∣∣Vi,i

∣∣∣) +
2C1

k

(
ρ +

C1

k

∥∥∥[V]i
∥∥∥

1

)
.

Proof of Lemma 65. According to the definition, we have

Σ̃i,i =
[
(β∗)†E[( f̃ − f̃ ′)(γ − γ′)>]

]
i,i

= E
[
(γ∗i − (γ′i )

∗)(γi − γ
′
i )
]

= E
[
(γ∗i − (γ′i )

∗)γi
]
+ E

[
((γ′i )

∗ − γ∗i )γ′i
]
.

Since (γ∗i − (γ′i )
∗)γi and ((γ′i )

∗ − γ∗i )γ′i has the same distribution, and (γ′)∗, γ∗ are i.i.d. , we have

Σ̃i,i = 2E
[
(γ∗i − (γ′i )

∗)γi
]

= 2E[γ∗i γi] − 2E[γ∗i ]E[γi].

So it suffices to bound E[γ∗i γi] and E[γi]. To do so, we first take a look at γi. By the decoding rule,

γi =
[
φα

((
Σ−1 + V

)
γ∗ + ξ

)]
i
.

Since φα is 1-Lipschitz, denoting ∆ =
∣∣∣[Vγ∗]i + ξi

∣∣∣ we have

[
φα

(
Σ−1γ∗

)]
i
− ∆ ≤ γi ≤

[
φα

(
Σ−1γ∗

)]
i
+ ∆. (2.8.9)

For
[
φα

(
Σ−1γ∗

)]
i
, by the Property ?? of φα(z),

Σ−1
i,i γ

∗
i − α ≤

[
φα

(
Σ−1γ∗

)]
i
= φα

(
Σ−1

i,i γ
∗
i

)
≤ Σ−1

i,i γ
∗
i . (2.8.10)
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For ∆ =
∣∣∣[Vγ∗]i + ξi

∣∣∣,
E[∆] ≤ E


∣∣∣∣∣∣∣∣
∑

j

Vi, jγ
∗
j

∣∣∣∣∣∣∣∣
 + E

[
|ξi|

]
≤ E

∑
j

∣∣∣Vi, j

∣∣∣ γ∗j
 + ρ

=
∑

j

∣∣∣Vi, j

∣∣∣E [
γ∗j

]
+ ρ

≤
C1

k

∥∥∥[V]i
∥∥∥

1 + ρ (2.8.11)

where the second step follows from the assumption |ξi| ≤ ρ, and the last step follows from Assumption (A2).

Bounding E[γi]. By (2.8.9),(2.8.10), and (2.8.11), we have

E[γi] ≤ E[Σ−1
i,i γ

∗] + E[∆] ≤
C1

k
Σ−1

i,i +
C1

k

∥∥∥[V]i
∥∥∥

1 + ρ.

Bounding E[γ∗i γi]. First, note that

E[γ∗i ∆] ≤ E

γ∗i
∣∣∣∣∣∣∣∣
∑

j

Vi, jγ
∗
j

∣∣∣∣∣∣∣∣
 + E

[
γ∗i |ξi|

]
≤ E

γ∗i ∑
j

γ∗j
∣∣∣Vi, j

∣∣∣ +
ρC1

k

=
∑

j

E
[
γ∗i γ

∗
j

] ∣∣∣Vi, j

∣∣∣ +
ρC1

k

= E
[(
γ∗i

)2
] ∣∣∣Vi,i

∣∣∣ +
∑
j: j,i

E
[
γ∗i γ

∗
j

] ∣∣∣Vi, j

∣∣∣ +
ρC1

k

≤ E
[(
γ∗i

)2
] ∣∣∣Vi,i

∣∣∣ +
C2

1

k2

∑
j: j,i

∣∣∣Vi, j

∣∣∣ +
ρC1

k

≤ E
[(
γ∗i

)2
] ∣∣∣Vi,i

∣∣∣ +
C2

1

k2

∥∥∥[V]i
∥∥∥

1 +
ρC1

k
,

where the second and the fifth steps follow from Assumption (A2). Therefore,

E[γ∗i γi] ≥ E
[
γ∗i

(
Σ−1

i,i γ
∗
i − α − ∆

)]
(2.8.12)

≥ Σ−1
i,i E

[(
γ∗i

)2
]
−

(α + ρ)C1

k
− E

[(
γ∗i

)2
] ∣∣∣Vi,i

∣∣∣ − C2
1

k2

∥∥∥[V]i
∥∥∥

1. (2.8.13)
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Putting together. For the first statement,

Σ̃i,i = 2E[γ∗i γi] − 2E[γ∗i ]E[γi]

≥ 2Σ−1
i,i E

[(
γ∗i

)2
]
− 2

(α + ρ)C1

k
− 2E

[(
γ∗i

)2
] ∣∣∣Vi,i

∣∣∣ − 2
C2

1

k2

∥∥∥[V]i
∥∥∥

1

− 2
C2

1

k2 Σ−1
i,i − 2

C2
1

k2

∥∥∥[V]i
∥∥∥

1 − 2
ρC1

k

≥ E
[(

x∗i
)2
] (

2Σ−1
i,i − 2

∣∣∣Vi,i

∣∣∣) − 2C1

k

(
α + 2ρ +

C1

k
Σ−1

i,i +
2C1

k

∥∥∥[V]i
∥∥∥

1

)
.

The second statement follows from

Σ̃i,i ≤ 2E[γ∗i γi] ≤ 2E[γ∗i (Σ−1
i,i γ

∗
i + ∆)]

and the bound on E[γ∗i ∆]. �

Lemma 66 (Main: Bound on Ẽ). Suppose |ξi| ≤ ρ < α for any example and every i ∈ [k]. Then for all i, j ∈ [k] such

that i , j, the following holds.

(1) If Zi, j < 0, then ∣∣∣Ẽ j,i

∣∣∣ ≤ 4C2
1‖Z

i‖1

k2(α − ρ)

(∣∣∣Zi, j

∣∣∣ + ρ
)
.

(2) If Zi, j ≥ 0, then

−
8C1ρ

k(α − ρ)

(
C1‖Zi‖1

n
+ Zi, j

)
−

2C2
1

k2 Zi, j ≤ Ẽ j,i ≤
8C1ρ

k(α − ρ)

(
C1‖Zi‖1

n
+ Zi, j

)
+ 2E[(γ∗j)

2]Zi, j.

Proof of Lemma 66. Since i , j, we know that

Ẽ j,i = E
[
(γ∗j − (γ′j)

∗)(γi − γ
′
i )
]

= E
[
γ∗j(γi − γ

′
i )
]

+ E
[
(γ′j)

∗(γ′i − γi)
]

= 2E
[
γ∗j(γi − γ

′
i )
]

where the last equality follows from that γ∗j(γi − γ
′
i ) and (γ′j)

∗(γ′i − γi) has the same distribution. This quantity can be

bounded by a coupling between γi and γ′i . Define a new variable γ̃∗ as

[γ̃∗]i =


γ∗i , if i , j,

(γ′j)
∗, if i = j.
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By Assumption (A2), conditional on γ∗j , γ̃
∗ has the same distribution as (γ′)∗. Therefore, consider the variable γ̃

given by γ̃ = φα(β†(β∗γ̃∗ + ν′)), we then have

E
[
γ∗j(γi − γ

′
i )
]

= E
[
γ∗j(γi − γ̃i)

]
.

In summary, we have

Ẽ j,i = 2E[γ∗j(γi − γ̃i)]

where

γi =
[
φα (Zγ∗ + ξ)

]
i , ξ = −β†NZγ∗ + β†ν,

x̃i =
[
φα

(
Zγ∗ + ξ̃

)]
i
, ξ̃ = −β†NZγ̃∗ + β†ν′.

Introduce the notation

w = Zi,iγ
∗
i +

∑
l,i, j

Zi,lγ
∗
l .

We have

γi = φα
(
w + Zi, jγ

∗
j + ξi

)
,

γ̃i = φα
(
w + Zi, j(γ′j)

∗ + ξ̃i

)
.

(1) Since Zi, j < 0, |ξi| ≤ ρ, and |ξ̃i| ≤ ρ, we know that when w < α − ρ, γi = γ̃i = 0. Then

E
[
γ∗j(γi − γ̃i)

]
= Pr[w ≥ α − ρ] E

[
γ∗j(γi − γ̃i)|w ≥ α − ρ

]
. (2.8.14)

By Property ??, φα (·) is 1-Lipschitz, so

|γi − γ̃i| ≤
∣∣∣Zi, j

∣∣∣ ∣∣∣γ∗j − (γ′j)
∗
∣∣∣ +

∣∣∣ξi − ξ̃i

∣∣∣ ,
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which implies that

∣∣∣∣E [
γ∗j(γi − γ̃i)|w ≥ α − ρ

]∣∣∣∣ ≤ E [
γ∗j

∣∣∣Zi, j

∣∣∣ ∣∣∣γ∗j − (γ′j)
∗
∣∣∣ + γ∗j

∣∣∣ξi − ξ̃i

∣∣∣ ∣∣∣∣∣w ≥ α − ρ]
≤

∣∣∣Zi, j

∣∣∣ max
{∣∣∣γ∗j − (γ′j)

∗
∣∣∣}E [

γ∗j |w ≥ α − ρ
]

+ 2ρE
[
γ∗j |w ≥ α − ρ

]
≤

∣∣∣Zi, j

∣∣∣ max
{∣∣∣γ∗j − (γ′j)

∗
∣∣∣}E [

γ∗j
]

+ 2ρE
[
γ∗j

]
≤ 2E

[
γ∗j

] (∣∣∣Zi, j

∣∣∣ + ρ
)

≤
2C1

k

(∣∣∣Zi, j

∣∣∣ + ρ
)
. (2.8.15)

Now consider Pr[w ≥ α − ρ]. Since

E |w| ≤
∣∣∣Zi,i

∣∣∣E[γ∗i ] +
∑
l,i, j

∣∣∣Zi,l

∣∣∣E[γ∗j] ≤
C1

k
‖Zi‖1,

we have that

Pr[w ≥ α − ρ] ≤
E |w|
α − ρ

≤
C1‖Zi‖1

k(α − ρ)
(2.8.16)

Combining (2.8.14)(2.8.15) and (2.8.16) together completes the proof for the case when Zi, j < 0.

(2) Now consider the case when Zi, j ≥ 0. Again, we have

γi = φα
(
w + Zi, jγ

∗
j + ξi

)
,

γ̃i = φα
(
w + Zi, j(γ′j)

∗ + ξ̃i

)
.

For the analysis, introduce a variable

ũi = φα
(
w + Zi, jγ

∗
j + ξ̃i

)
.

If (γ′j)
∗ > γ∗j , by Property ?? φα(·) is 1-Lipschitz, so

γ̃i ≤ ũi + Zi, j

(
(γ′j)

∗ − γ∗j
)
.

If (γ′j)
∗ ≤ γ∗j , by Property ?? φα(·) is non-decreasing, then

γ̃i ≤ ũi.
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In any case,

γ̃i ≤ ũi + Zi, j(γ′j)
∗.

Therefore,

E
[
γ∗j(γi − γ̃i)

]
≥ E

[
γ∗j(γi − ũi)

]
− E

[
γ∗jZi, j(γ′j)

∗
]

≥ E
[
γ∗j(γi − ũi)

]
−

C2
1

k2 Zi, j.

So we only need to consider E
[
γ∗j(γi − ũi)

]
. Let G denote the event that γi , 0 or ũi , 0. Then by conditioning on

γ∗j , we have

E
[
γ∗j(γi − ũi)

]
= E

[
γ∗jE

[
γi − ũi

∣∣∣∣∣γ∗j]]

and

E
[
γi − ũi

∣∣∣∣∣γ∗j] = Pr
[
G
∣∣∣∣∣γ∗j]E [

γi − ũi

∣∣∣∣∣γ∗j ,G]
.

By Property ?? φα(·) is 1-Lipschitz, so

∣∣∣∣∣E [
γi − ũi

∣∣∣∣∣γ∗j ,G]∣∣∣∣∣ ≤ E [
|ξi| +

∣∣∣ξ̃i

∣∣∣ ∣∣∣∣∣γ∗j ,G]
≤ 2ρ.

Now consider Pr
[
G
∣∣∣∣∣γ∗j]. We have

E
[∣∣∣w + Zi, jγ

∗
j

∣∣∣ ∣∣∣∣∣γ∗j] ≤ E [
|w|

∣∣∣∣∣γ∗j] + Zi, j

≤
C1

k

∥∥∥Zi
∥∥∥

1 + Zi, j,

where the first step follows from γ∗j ≤ 1 and the second step follows from the conditional independence in Assumption

(A2). Then by Markov’s inequality,

Pr
[
γi , 0

∣∣∣∣∣γ∗j] ≤ Pr
[∣∣∣w + Zi, jγ

∗
j

∣∣∣ ≥ α − ρ∣∣∣∣∣γ∗j]
≤

1
α − ρ

(C1

k

∥∥∥Zi
∥∥∥

1 + Zi, j

)
.
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A similar argument leads to that

Pr
[
ũi , 0

∣∣∣∣∣γ∗j] ≤ 1
α − ρ

(C1

k

∥∥∥Zi
∥∥∥

1 + Zi, j

)

and thus

Pr
[
G
∣∣∣∣∣γ∗j] ≤ 2

α − ρ

(C1

k

∥∥∥Zi
∥∥∥

1 + Zi, j

)
.

Putting things together,

∣∣∣∣E [
γ∗j(γi − ũi)

]∣∣∣∣ ≤ 4ρ
α − ρ

(
C1‖Zi‖1

k
+ Zi, j

)
E

[
x∗j

]
≤

4C1ρ

k(α − ρ)

(
C1‖Zi‖1

k
+ Zi, j

)
.

This completes the proof for the lower bound.

Similarly, for the upper bound, introduce

ui = φα
(
w + Zi, j(γ′j)

∗ + ξi

)
.

Then in any case,

γi ≤ ui + Zi, jγ
∗
j

and thus

E
[
γ∗j(γi − γ̃i)

]
≤ E

[
γ∗j(ui − γ̃i)

]
+ E

[
(γ∗j)

2
]

Zi, j.

The same argument as above shows that

∣∣∣∣E [
γ∗j(ui − γ̃i)

]∣∣∣∣ ≤ 4C1ρ

k(α − ρ)

(
C1‖Zi‖1

k
+ Zi, j

)
.

This completes the whole proof. �

Lemma 67 (Main: Bound on Ñ). Suppose ‖E‖s ≤ `, Σ � (1 − `)Id, and |ξ j| ≤ ρ < α.
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(1) If the noise is correlated (Assumption (N1)), then

∣∣∣Ñi, j

∣∣∣ ≤ 4CνC1

(1 − 2`)2k(α − ρ)
+

∣∣∣[Ns]i, j

∣∣∣

(2) If the noise is unbiased (Assumption (N2)) and ‖β†ν‖∞ ≤ ρ′ < α, then

∣∣∣Ñi, j

∣∣∣ ≤ 2C1Cνρ
′(1 + ‖β†N‖∞)

(1 − 2`)k(α − ρ′)
+

∣∣∣[Ns]i, j

∣∣∣ .

Proof of Lemma 67. (1) By the update rule,

Ñ = 2E[ν(γ − γ′)>] + Ns.

Under Assumption (N1), we have that for every i ∈ [k], j ∈ [k],

|Ñi, j| = |2E[νi(γ j − γ
′
j)] + [Ns]i, j|

≤ 4CνE[γ j] + |[Ns]i, j|

= 4CνE
[
φα

(
[Zγ∗] j + ξ j

)]
+ |[Ns]i, j|.

since |νi| is bounded by Cν.

Now focus on the term E
[
φα

(
[Zγ∗] j + ξ j

)]
. We have

∣∣∣[Zγ∗] j

∣∣∣ ≤ ‖Z‖∞‖γ∗‖∞ ≤ ‖Z‖∞ ≤ 1
1 − 2`

by the fact that ‖γ∗‖∞ ≤ 1 in Assumption (A2), and the assumptions of the lemma on Σ and E. Then when [Zγ∗] j +ξ j ≥

α,

φα
(
[Zγ∗] j + ξ j

)
≤ [Zγ∗] j + ξ j − α ≤

1
1 − 2`

+ ρ − α ≤
1

1 − 2`
,
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and thus

E
[
φα

(
[Zγ∗] j + ξ j

)]
≤

1
1 − 2`

Pr
{
[Zγ∗] j + ξ j ≥ α

}
≤

1
1 − 2`

Pr
{∣∣∣[Zγ∗] j

∣∣∣ ≥ α − ρ}
≤

1
1 − 2`

E|[Zγ∗] j|

α − ρ

≤
1

1 − 2`
‖Z‖∞
α − ρ

E
[
γ∗j

]
≤

C1

(1 − 2`)2k(α − ρ)

where the last step uses the bound on E
[
γ∗j

]
in Assumption (A2). Therefore,

|Ñi, j| ≤
4CνC1

(1 − 2`)2k(α − ρ)
+ |[Ns]i, j|.

(2) When the noise is unbiased, we have E[ν|γ∗] = 0. Then E[νiγ
′
j] = 0, and

∣∣∣Ñi, j

∣∣∣ =
∣∣∣2E[νi(γ j − γ

′
j)] + [Ns]i, j

∣∣∣ ≤ 2
∣∣∣E[νiγ j]

∣∣∣ +
∣∣∣[Ns]i, j

∣∣∣ . (2.8.17)

Consider the first term for a fixed γ∗, i.e., consider the conditional expectation E[νiγ j | γ
∗]. For notational simplicity,

let Z̃ = (Z − β†NZ) and ξ̃ = β†ν. Then

E[νix j | γ
∗] = E

[
νiφα

(
[Zγ∗] j + ξ j

)
| γ∗

]
= E

[
νiφα

(
[Z̃γ∗] j + ξ̃ j

)
| γ∗

]
.

We consider the following two cases about [Z̃γ∗] j.

(a) If [Z̃γ∗] j ≤ α − ρ
′, then φα

(
[Z̃γ∗] j + ξ̃ j

)
= 0 always holds, which implies that

∣∣∣E[νiγ j | γ
∗]
∣∣∣ = E

[
νiφα

(
[Z̃γ∗] j + ξ̃ j

)
| γ∗

]
= 0.

(b) If [Z̃γ∗] j > α − ρ
′, then

φα
(
[Z̃γ∗] j + ξ̃ j

)
≤ φα

(
[Z̃γ∗] j + ρ′

)
≤ [Z̃γ∗] j + ρ′ − α.

On the other side, by Property ??,

φα
(
[Z̃γ∗] j + ξ̃ j

)
≥ [Z̃γ∗] j + ξ̃ j − α ≥ [Z̃γ∗] j − ρ

′ − α.
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Putting together, we conclude that

νi([Z̃γ∗] j − α) − |νiρ
′| ≤ νiφα

(
[Z̃γ∗] j + ξ̃ j

)
≤ νi([Z̃γ∗] j − α) + |νiρ

′|.

Note that E[νi([Z̃γ∗] j − α)|γ∗] = 0, so

∣∣∣E[νiγ j | γ
∗]
∣∣∣ =

∣∣∣∣E [
νiφα

(
[Z̃γ∗] j + ξ̃ j

)
| γ∗

]∣∣∣∣ ≤ E[|νiρ
′||γ∗] ≤ Cνρ

′.

Putting case (a) and case (b) together, we have

∣∣∣E[νiγ j | γ
∗]
∣∣∣ ≤ Cνρ

′ Pr
{
[Z̃γ∗] j > α − ρ

′
}
≤ Cνρ

′ Pr
{∣∣∣[Z̃γ∗] j

∣∣∣ > α − ρ′} .
By definition of Z̃ and the assumptions of the lemma on Σ and E,

∣∣∣[Z̃γ∗] j

∣∣∣ ≤ (1 + ‖β†N‖∞)
∣∣∣[Zγ∗] j

∣∣∣ ≤ (1 + ‖β†N‖∞) |Z|∞ γ
∗
j ≤

1 + ‖β†N‖∞
1 − 2`

γ∗j . (2.8.18)

Then

Pr
{∣∣∣[Z̃γ∗] j

∣∣∣ > α − ρ′} ≤ E ∣∣∣[Z̃γ∗] j

∣∣∣
α − ρ′

≤
C1(1 + ‖β†N‖∞)
(1 − 2`)k(α − ρ′)

.

The lemma then follows from (2.8.17) and (2.8.18). �

There are three terms Z, V and ξ in the above lemmas that need to be bounded. Since Z = V + Σ−1, we only need

to bound V and ξ in the following two lemmas, respectively.

Lemma 68 (Bound on V). Suppose ‖E‖s < `e and Σ � (1 − `)Id. Then

(1) ‖V+‖s ≤
1 − `e

(1 − `)(1 − `e − `)
‖E−‖s +

`

(1 − `)2(1 − `e − `)
‖E+‖s ,

(2) ‖V−‖s ≤
1 − `e

(1 − `)(1 − `e − `)
‖E+‖s +

`

(1 − `)2(1 − `e − `)
‖E−‖s ,

(3) ‖V‖s ≤
`e(1 − `e)

(1 − `)2(1 − `e − `)
,

(4)
∣∣∣Vi,i

∣∣∣ ≤ ``e

(1 − `)2(1 − `e − `)
, ∀i ∈ [k].

Proof of Lemma 68. Denote T = Σ−1 ∑∞
m=2(−EΣ−1)m, so that

V = −Σ−1EΣ−1 + T.
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The following bound on ‖T‖1 will be useful.

‖T‖1 ≤
∥∥∥Σ−1

∥∥∥
1

∞∑
i=2

∥∥∥(EΣ−1)i
∥∥∥

1

≤
∥∥∥Σ−1

∥∥∥
1

∞∑
i=2

∥∥∥EΣ−1
∥∥∥i

1

≤
∥∥∥Σ−1

∥∥∥
1

∥∥∥EΣ−1
∥∥∥2

1

1 −
∥∥∥EΣ−1

∥∥∥
1

≤
1

(1 − `)3 × ` ×
‖E‖1

1 − `e
1−`

≤
`

(1 − `)2(1 − `e − `)
‖E‖1. (2.8.19)

(1) We need to show the bound for both ‖V+‖1 and ‖V+‖∞. By definition of V , for any i,

‖V+‖1 =
∥∥∥∥[−Σ−1EΣ−1 + T

]
+

∥∥∥∥
1
.

Since for any β and B,

‖[β + B]+‖1 ≤ ‖[β]+‖1 + ‖[B]+‖1, and ‖[β]+‖1 ≤ ‖β‖1,

we have

‖[V+]i‖1 ≤

∥∥∥∥[−Σ−1EΣ−1
]
+

∥∥∥∥
1

+ ‖T+‖1

≤
1

(1 − `)2 ‖E−‖1 + ‖T‖1. (2.8.20)

By (2.8.19),

‖T‖1 ≤
`

(1 − `)2(1 − `e − `)
‖E‖1 ≤

`

(1 − `)2(1 − `e − `)
(‖E−‖1 + ‖E+‖1).

Combined with (2.8.20), it implies

‖[V+]i‖1 ≤
1 − `e

(1 − `)2(1 − `e − `)
‖E−‖1 +

`

(1 − `)2(1 − `e − `)
‖E+‖1.

Similarly, we have

∥∥∥[V+]i
∥∥∥

1 ≤
1 − `e

(1 − `)2(1 − `e − `)
‖E−‖∞ +

`

(1 − `)2(1 − `e − `)
‖E+‖∞.
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Putting things together we have

‖V+‖s ≤
1 − `e

(1 − `)(1 − `e − `)
‖E−‖s +

`

(1 − `)2(1 − `e − `)
‖E+‖s .

(2) The argument for ‖V−‖s is similar to that for ‖V+‖s.

(3) We need to show the bound for both ‖V‖1 and ‖V‖∞.

‖V‖1 ≤
∥∥∥−Σ−1EΣ−1

∥∥∥
1 + ‖T‖1

≤
`e

(1 − `)2 +
`

(1 − `)2(1 − `e − `)
‖E‖1

≤
`e

(1 − `)2 +
``e

(1 − `)2(1 − `e − `)

=
`e(1 − `e)

(1 − `)2(1 − `e − `)

where the second step is by (2.8.19).

Similarly, ‖V‖∞ ≤
`e(1−`e)

(1−`)2(1−`e−`)
, so ‖V‖s ≤

`e(1−`e)
(1−`)2(1−`e−`)

.

(4) Now consider Vi,i. By definition of T .

Vi,i =
[
−Σ−1EΣ−1

]
i,i

+ Ti,i.

Note that since Ei,i = 0,
[
−Σ−1EΣ−1

]
i,i

= 0. Then

∣∣∣Vi,i

∣∣∣ =
∣∣∣Ti,i

∣∣∣
≤ ‖T‖1

≤
`

(1 − `)2(1 − `e − `)
‖E‖1

≤
``e

(1 − `)2(1 − `e − `)

where the third step is by (2.8.19). This completes the proof. �

Lemma 69 (Bound on ξ). Suppose ‖E‖s < ` ≤ 1/8 and Σ � (1 − `)Id. Then for any i ∈ [k],

|ξi| ≤ γ :=
1

1 − 2`

∥∥∥β†∥∥∥
∞
‖N‖∞ + Cν

∥∥∥β†∥∥∥
∞
.
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If furthermore, ‖N‖∞
∥∥∥(β∗)†

∥∥∥
∞
< 1/8, then

∥∥∥β†∥∥∥
∞
≤ 2

∥∥∥(β∗)†
∥∥∥
∞
,

γ ≤ 3
∥∥∥(β∗)†

∥∥∥
∞

(‖N‖∞ + Cν) .

Proof of Lemma 69. First, we have

‖ξ‖∞ ≤
∥∥∥β†NZγ∗

∥∥∥
∞

+
∥∥∥β†ν∥∥∥

∞
≤

∥∥∥β†∥∥∥
∞
‖N‖∞‖Z‖∞‖γ

∗‖∞ +
∥∥∥β†∥∥∥

∞
‖ν‖∞.

Note that ‖γ∗‖∞ ≤ 1 and ‖ν‖∞ ≤ Cν. Furthermore,

‖Z‖∞ ≤
1

1 − 2`
.

The first statement follows from combining these terms.

Now consider the second statement. We apply Lemma 70. Since

ζ = ‖EΣ−1 + (β∗)†NΣ−1‖∞

≤ ‖EΣ−1‖∞ + ‖(β∗)†NΣ−1‖∞

≤
1
7

+ ‖(β∗)†‖∞ × ‖N‖∞ × ‖Σ−1‖∞

≤
2
7
,

Lemma 70 implies that

‖β†‖∞ ≤
‖Σ−1‖∞

1 − ζ
‖(β∗)†‖∞ ≤ 2‖(β∗)†‖∞.

Then γ is bounded by

γ =
1

1 − 2`

∥∥∥β†∥∥∥
∞
‖N‖∞ + Cν

∥∥∥β†∥∥∥
∞

≤
1

1 − 2`
×

(
2‖(β∗)†‖∞

)
× ‖N‖∞ + Cν ×

(
2‖(β∗)†‖∞

)
≤ 3

∥∥∥(β∗)†
∥∥∥
∞

(‖N‖∞ + Cν) . �

The following is the lemma about the norm of the pseudo-inverse, which is used in Lemma 69.

Lemma 70 (Pseudo-inverse). Let β∗,N ∈ Rn×k be two matrices with n ≥ k. Let (β∗)† be one pseudo-inverse of β∗ such
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that (β∗)†β∗ = Id. Let β = β∗(Σ + E) + N be another matrix, with Σ being diagonal and

ζ := ‖EΣ−1 + (β∗)†NΣ−1‖∞.

satisfies ζ < 1. Then there exists a pseudo-inverse β† of β such that β†β = Id and

‖β†‖∞ ≤
‖Σ−1‖∞

1 − ζ
‖(β∗)†‖∞.

Proof of Lemma 70. Consider the matrix

β† = (Σ + E + (β∗)†N)−1(β∗)†.

Then by definition,

β†β = (Σ + E + (β∗)†N)−1(β∗)† (β∗(Σ + E) + N)

= (Σ + E + (β∗)†N)−1(Σ + E + (β∗)†N)

= Id.

What remains is to bound ‖β†‖∞. We have

‖β†‖∞ ≤ ‖(Σ + E + (β∗)†N)−1‖∞‖(β∗)†‖∞.

By Taylor expansion rule, the first term on the right-hand side is

(Σ + E + (β∗)†N)−1 =
((

Id + EΣ−1 + (β∗)†NΣ−1
)
Σ
)−1

= Σ−1
(
Id + EΣ−1 + (β∗)†NΣ−1

)−1

=

∞∑
i=0

Σ−1
(
−EΣ−1 − (β∗)†NΣ−1

)i

where we use the assumption that ‖EΣ−1 + (β∗)†NΣ−1‖∞ = ζ < 1. Therefore,

‖(Σ + E + (β∗)†N)−1‖∞ ≤ ‖Σ
−1‖∞

∞∑
i=0

ζ i =
‖Σ−1‖∞

1 − ζ
. �
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2.8.6.2 Putting things together

We are now ready to prove our main theorems.

Theorem 62 (Adversarial noise, (Li et al., 2016)). There exists an absolute constant G such that if Assumption (A0)-

(A3) and (N1) are satisfied with l = 1/10, C2 ≤ 2c2, C3
1 ≤ Gc2

2n, Cν ≤

{
c2

2Gc
C2

1m ,
c4

2Gc
C5

1k‖(β∗)†‖∞

}
for 0 ≤ c ≤ 1, and

∥∥∥N0
∥∥∥
∞
≤

c2
2Gc

C3
1‖(β

∗)†‖∞
, then there is a choice of parameters α, η, r such that for every 0 < ε, δ < 1 and N = poly(k, n, 1/ε, 1/δ),

with probability at least 1 − δ the following holds:

After T = O
(
ln 1

ε

)
iterations, Algorithm 6 outputs a solution β = β∗(Σ + E) + N where Σ � (1 − `)Id is diagonal,

‖E‖1 ≤ ε + c/2 is off-diagonal, and ‖N‖1 ≤ c/2.

Proof of Theorem 62. We consider the following set of parameters

A =
c2

80C1
, r =

k
c2
, η =

`

6
.

Furthermore, set ρ = B1
c2

2c
C3

1
for a sufficiently small absolute constant B1. Since C1 ≥ kE[γ∗i ] ≥ kE[(γ∗i )2] ≥ c2, this is

small enough so that

ρ ≤ min
A

2
,

c2A
2048C1

,
c2A

8000 × 100C2
1

,
cc2A

48000C2
1


which will be used in the proof. The proof also needs C2

1 ≤ B1c2k,C3
1 ≤ B2c2

2k for sufficiently small absolute constants

B1 and B2. Since C1 > c2, we only need C3
1 ≤ Gc2

2k. Similarly, we need

Cν ≤ B1 min

c(A − ρ)c2

nC1
,

(A − ρ)c2

kC1
∥∥∥(β∗)†

∥∥∥
∞

,
(A − ρ)c2ρ

kC1
∥∥∥(β∗)†

∥∥∥
∞

,
ρ

‖(β∗)†‖∞


for a sufficiently small absolute constant B1. This can be satisfied by settingG small enough in the theorem assumption.

After setting the parameters needed, we now prove the theorem. We prove it by proving the following three claims

by induction on t: at the beginning of iteration t,

(1) (1 − `)Id � Σt,

(2)
∥∥∥Et

∥∥∥
s ≤

1
8 , and if t > 0

∥∥∥Et
+

∥∥∥
s + β

∥∥∥Et
−

∥∥∥
s ≤

(
1 −

1
25
η

) (∥∥∥[E]t−1
+

∥∥∥
s + β

∥∥∥[E]t−1
−

∥∥∥
s

)
+

c
10
,

for β =
√

842+2800−84
2 ∈ (1, 8),

(3)
∥∥∥N t

∥∥∥
∞
≤ 1

8‖(β∗)†‖∞
, and ‖ξ(t)‖∞ ≤ ρ.
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Claim (1) and (2) are clearly true at t = 0 by the assumption on initialization. The first part of Claim (3) is true

because of the assumption that
∥∥∥N0

∥∥∥
∞
≤

Gc
8µ3‖(β∗)†‖∞

and that µ = C1/c2 ≥ 1. Then the second part follows from

Lemma 69.

Now we assume they are true up to t, and show them for t + 1.

(1) First consider the diagonal terms. Combining Lemma 65 and Lemma 68, we have

Σ̃
(t)
i,i ≥ E

[(
γ∗i

)2
] (

2(Σt
i,i)
−1 − 2

∣∣∣V t
i,i

∣∣∣) − 2C1

k

(
α + 2ρ +

C1

k
(Σ(t)

i,i )
−1 +

2C1

k

∥∥∥∥[V (t)
]i∥∥∥∥

1

)
.

≥
2C2

k

(
0 −

`2

(1 − 2`)(1 − `)2

)
−

2C1

k

(
α + α +

C1

k
1

1 − `
+

2C1

k
`

(1 − `)(1 − 2`)

)
.

=
2C2

k

(
0 −

`2

(1 − 2`)(1 − `)2

)
−

2C1

k

(
2α +

C1

k(1 − `)(1 − 2`)

)
> −

c2

5k
.

The first inequality uses ρ < α/2 and the last inequality is due to α ≤ c2
80C1

and C2
1 ≤

c2k
80 . Therefore,

Σt+1
i,i = (1 − η)Σt

i,i + ηrΣ̃t
i,i ≥ (1 − η)Σt

i,i −
η

5
.

Assume for contradiction Σt+1
i,i < 1 − `. Then by the above inequality,

1 − ` > Σt+1
i,i ≥ (1 − η)Σt

i,i −
η

5
.

which implies Σt
i,i ≤ 1 − ` + 2η. In this case, by Lemma 65 and Lemma 68,

Σ̃t
i,i ≥ E

[(
γ∗i

)2
] (

2(Σt
i,i)
−1 − 2

∣∣∣V t
i,i

∣∣∣) − 2C1

k

(
α + 2ρ +

C1

k
(Σt

i,i)
−1 +

2C1

k

∥∥∥∥[V t
]i∥∥∥∥

1

)
.

≥
2c2

k

(
1

1 − ` + 2η
−

`2

(1 − 2`)(1 − `)2

)
−

2C1

k

(
2α +

C1

k(1 − `)(1 − 2`)

)
>

c2

k
.

Then

Σt+1
i,i = (1 − η)Σt

i,i + ηrΣ̃t
i,i = (1 − η)Σt

i,i + η > Σt
i,i,

which is a contradiction. Therefore, (1 − `)Id � Σt.

(2) Now consider the off-diagonal terms. We shall split them into the positive part and the negative part. By the
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update rule, for any i ∈ [k],

∥∥∥∥[Et+1
+

]
i

∥∥∥∥
1
≤ (1 − η)

∥∥∥∥[Et
+

]
i

∥∥∥∥
1

+ ηr
∥∥∥∥[Ẽt

+

]
i

∥∥∥∥
1
.

Recall the notations

Zt = (Σt + Et)−1 = (Σt)−1 + V t,

V t = (Σt)−1
∞∑

i=1

(−Et(Σt)−1)i

By Lemma 66, we have

∥∥∥∥[Ẽt
+

]
i

∥∥∥∥
1
≤

∑
j,i

4C2
1

k2(α − ρ)

∥∥∥∥[Zt
]i∥∥∥∥

1

(∣∣∣∣[Zt
−

]
i, j

∣∣∣∣ + ρ
)

︸                                        ︷︷                                        ︸
T1

+
∑
j,i

8C1ρ

k(α − ρ)

(C1

k

∥∥∥∥[Zt
]i∥∥∥∥

1
+

∣∣∣∣[Zt
+

]
i, j

∣∣∣∣)︸                                         ︷︷                                         ︸
T2

+
∑
j,i

2E[(γ∗j)
2]

∣∣∣∣[Zt
+

]
i, j

∣∣∣∣︸                    ︷︷                    ︸
T3

.

First, by Lemma 68, ∥∥∥∥[Zt
]i∥∥∥∥

1
≤

[(
Σt

)−1
]

i,i
+

∥∥∥∥[V t
]i∥∥∥∥

1
≤

1
1 − 2`

Now consider Zt
+ and Zt

−. We have

∑
j: j,i

∣∣∣∣[Zt
−

]
i, j

∣∣∣∣ ≤ ∥∥∥∥[V t
−

]
i

∥∥∥∥
1
,

∑
j: j,i

∣∣∣∣[Zt
+

]
i, j

∣∣∣∣ ≤ ∥∥∥∥[V t
+

]
i

∥∥∥∥
1
.

Therefore,

T1 ≤
8C2

1

k2(α − ρ)

∥∥∥∥[V t
−

]
i

∥∥∥∥
1

+
8C2

1ρ

k(α − ρ)
,

T2 ≤
16C2

1ρ

k(α − ρ)
+

8C1ρ

k(α − ρ)

∥∥∥∥[V t
+

]
i

∥∥∥∥
1
,

T3 ≤
2C2

n

∥∥∥∥[V t
+

]
i

∥∥∥∥
1
.
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and thus we have

∥∥∥∥[Ẽt
+

]
i

∥∥∥∥
1
≤

8C2
1

k2(α − ρ)

∥∥∥∥[V t
−

]
i

∥∥∥∥
1

+

(
2C2

n
+

8C1ρ

k(α − ρ)

) ∥∥∥∥[V t
+

]
i

∥∥∥∥
1

+
24C2

1ρ

k(α − ρ)
.

Similarly, for any i ∈ [k],

∥∥∥∥[Ẽt
+

]i∥∥∥∥
1
≤

8C2
1

k2(α − ρ)

∥∥∥∥[V t
−

]i∥∥∥∥
1

+

(
2C2

n
+

8C1ρ

k(α − ρ)

) ∥∥∥∥[V t
+

]i∥∥∥∥
1

+
24C2

1ρ

k(α − ρ)
.

Putting the two together, we have

∥∥∥Ẽt
+

∥∥∥
s ≤

8C2
1

k2(α − ρ)

∥∥∥V t
−

∥∥∥
s +

(
2C2

n
+

8C1ρ

k(α − ρ)

) ∥∥∥V t
+

∥∥∥
s +

24C2
1ρ

k(α − ρ)
. (2.8.21)

By Lemma 68 and ` ≤ 1
8 , we have:

∥∥∥V t
+

∥∥∥
s ≤

32
21

∥∥∥Et
−

∥∥∥
s +

32
147

∥∥∥Et
+

∥∥∥
s ,∥∥∥V t

−

∥∥∥
s ≤

32
21

∥∥∥Et
+

∥∥∥
s +

32
147

∥∥∥Et
−

∥∥∥
s

So (2.8.21) becomes

∥∥∥Ẽt
+

∥∥∥
s ≤

64C2

147k
+

256C1ρ

147k(α − ρ)
+

256C2
1

21k2(α − ρ)

 ∥∥∥Et
+

∥∥∥
s (2.8.22)

+

64C2

21k
+

256C1ρ

21k(α − ρ)
+

256C2
1

147n2(α − ρ)

 ∥∥∥Et
−

∥∥∥
s +

24C2
1ρ

k(α − ρ)
. (2.8.23)

Now consider the negative part. The same argument as above leads to

∥∥∥Ẽt
−

∥∥∥
s ≤

 64C2
1

147k2 +
256C1ρ

147k(α − ρ)
+

256C2
1

21n2(α − ρ)

 ∥∥∥Et
+

∥∥∥
s

+

64C2
1

21k2 +
256C1ρ

21k(α − ρ)
+

256C2
1

147k2(α − ρ)

 ∥∥∥Et
−

∥∥∥
s +

24C2
1ρ

k(α − ρ)
. (2.8.24)

Note the difference between (2.8.23) and (2.8.24): C2
k in the former is replaced by C2

1
k2 in the latter, which is much

smaller. This is crucial for our proof, which will be clear below.

For simplicity, we introduce the following notations:

at :=
∥∥∥Et

+

∥∥∥
s , bt :=

∥∥∥Et
−

∥∥∥
s .
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Then by the update rule, we have

at+1 ≤ (1 − η)at + ηr
∥∥∥Ẽt

+

∥∥∥
s ,

bt+1 ≤ (1 − η)bt + ηr
∥∥∥Ẽt
−

∥∥∥
s .

Plugging in (2.8.23)and since r = k
c2
≤ 2k

C2
, we have

at+1 ≤ (1 − η)at + η
2k
C2

64C2

147k
+

256C1ρ

147k(α − ρ)
+

256C2
1

21k2(α − ρ)

 at

+ η
2k
C2

64C2

21k
+

256C1ρ

21k(α − ρ)
+

256C2
1

147k2(α − ρ)

 bt + η
2n
C2

24C2
1ρ

k(α − ρ)

bt+1 ≤ (1 − η)bt + η
2n
C2

 64C2
1

147k2 +
256C1ρ

147k(α − ρ)
+

256C2
1

21k2(α − ρ)

 at

+ η
2k
C2

64C2
1

21k2 +
256C1ρ

21k(α − ρ)
+

256C2
1

147k2(α − ρ)

 bt + η
2k
C2

24C2
1ρ

k(α − ρ)
.

When 512C1ρ
C2(α−ρ) ≤

1
2 and 512C2

1
C2k(α−ρ) ≤

1
14 ,

at+1 ≤ (1 − η)at +
129
147

ηat +
129
21

ηbt + η
48C2

1ρ

C2(α − ρ)

≤

(
1 −

18
147

η

)
at +

129
21

ηbt + η
48C2

1ρ

C2(α − ρ)

Similarly, when 512C1ρ
C2(α−ρ) ≤

1
2 and 512C2

1
C2k(α−ρ) ≤

1
14 , and furthermore, 128C2

1
C2k ≤

1
4 ,

bt+1 ≤ (1 − η)bt +
1

100
ηat +

1
25
ηbt + η

48C2
1ρ

C2(α − ρ)

≤

(
1 −

24
25
η

)
bt +

1
100

ηat + η
48C2

1ρ

C2(α − ρ)

Let h =
48C2

1ρ

C2(α−ρ) , we then have:

at+1 ≤

(
1 −

3
25
η

)
at + 7ηbt + ηh,

bt+1 ≤

(
1 −

24
25
η

)
bt +

1
100

ηat + ηh.
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Now set β =
√

842+2800−84
2 , so that

at+1 + βbt+1 ≤

(
1 −

3
25
η

)
at + 7ηbt + ηh +

(
β −

24
25
ηβ

)
bt +

β

100
ηat + ηβh

=

(
1 −

3
25
η +

β

100
η

)
(at + βbt) + η(1 + β)h

≤

(
1 −

1
25
η

)
(at + βbt) + 9ηh,

where the last inequality follows from that β < 8.

Note that the recurrence is true up to t + 1. Using Lemma 81 to solve this recurrence, we obtain

at + bt ≤ a0 + b0 + 250h ≤
1

10
+ 250h ≤

1
8

when 4000C2
1ρ

C2(α−ρ) ≤
1

100 . Moreover, we know that

∥∥∥Et+1
∥∥∥

s ≤ at+1 + βbt+1 ≤

(
1 −

1
25
η

)t

+ 250h.

(3) Finally, consider the noise term. Set the sample size D to be large enough, so that by Lemma 67, we have

∣∣∣Ñ t
i, j

∣∣∣ ≤ 4CνC1

(1 − 2 × `)2k(α − ρ)
+

∣∣∣[N t
s]i, j

∣∣∣
≤

8CνC1

k(α − ρ)
.

Then by the update rule, we have
∣∣∣∣N t+1

i, j

∣∣∣∣ ≤ 8CνC1
(α−ρ)c2

. Then

∥∥∥N t+1
∥∥∥
∞
≤ k max

i, j

∣∣∣N t+1
i, j

∣∣∣ ≤ 8kCνC1

(α − ρ)c2
≤

1
8
∥∥∥(β∗)†

∥∥∥
∞

where the last inequality is due to

Cν ≤
(α − ρ)c2

64nC1
∥∥∥(β∗)†

∥∥∥
∞

.

On the other hand, by Lemma 69, we have

‖ξt+1‖∞ ≤ 3‖(β∗)†‖∞(‖N t+1‖∞ + Cν)

≤ 3‖(β∗)†‖∞

(
8kCνC1

(α − ρ)c2
+ Cν

)
≤ ρ
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where the last inequality is due to

Cν ≤
(α − ρ)c2ρ

48kC1‖(β∗)†‖∞
, and Cν ≤

ρ

6‖(β∗)†‖∞
.

We also have (which will be useful in proving the final bound)

∥∥∥N t+1
∥∥∥

1 ≤ n max
i, j

∣∣∣N t+1
i, j

∣∣∣ ≤ 8nCνC1

(α − ρ)c2
≤

c
10

where the last inequality is due to

Cν ≤
c(α − ρ)c2

80nC1
.

Now, we shall prove the theorem statements. Recall that solving the recurrence about at and bt leads to

∥∥∥Et+1
∥∥∥

s ≤ at+1 + βbt+1 ≤

(
1 −

1
25
η

)t

+ 250h.

Since the setting of ρ makes sure h = O(c), when t = O
(
ln 1

ε

)
, we have the second statement

∥∥∥∥Ê
∥∥∥∥

s
≤ ε + c

2 . Note that

β∗Σ̂ = β − β∗Ê − N̂

and ∥∥∥∥[β∗Σ̂]
i

∥∥∥∥ = Σ̂i,i, ‖β‖1 = 1,
∥∥∥∥β∗Ê∥∥∥∥

1
=

∥∥∥∥Ê
∥∥∥∥

1
,

so we have

Σ̂i,i ≥ ‖β‖1 −
∥∥∥∥Ê

∥∥∥∥
1
−

∥∥∥∥N̂
∥∥∥∥

1

≥ 1 − ε − c.

Similarly,

Σ̂i,i ≤ ‖β‖1 +
∥∥∥∥Ê

∥∥∥∥
1

+
∥∥∥∥N̂

∥∥∥∥
1

≤ 1 + ε + c.

Then the final statement of the theorem follows by replacing c with c/4. This completes the proof. �

Theorem 63 (Unbiased noise, (Li et al., 2016)). If Assumption (A0)-(A3) and (N2) are satisfied with Cν =
c2G
√

ck
C1 max{n,k‖(β∗)†‖∞}

and the other parameters set as in Theorem 62, then the same guarantee holds.
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Proof. The proof is similar to that of Theorem 62, except using the second bound for unbiased noise in Lemma 67.

We highlight the different part, that is, the induction on the noise term.

In the induction, by Lemma 67 we have when N is large enough,

∣∣∣Ñ t
i, j

∣∣∣ ≤ 2C1Cνρ
′(1 + ‖β†N t‖∞)

(1 − 2`)k(α − ρ′)
+

∣∣∣∣[N t
s

]
i, j

∣∣∣∣ ≤ 3C1Cνρ
′(1 + ‖β†N t‖∞)

k(α − ρ′)
.

By Lemma 69 and the induction, we have ‖β†N t‖∞ ≤ 1/4. Furthermore, ρ′ ≤ Cν‖β
†‖∞ ≤ 2Cν‖(β∗)†‖∞ and the

parameter setting makes sure ρ′ ≤ α/2. Then

∣∣∣Ñ t
i, j

∣∣∣ ≤ 16C2
νC1

∥∥∥(β∗)†
∥∥∥
∞

kα
.

Then by the update rule, we have ∣∣∣N t+1
i, j

∣∣∣ ≤ 32C2
νC1

∥∥∥(β∗)†
∥∥∥
∞

c2α

and

∥∥∥N t+1
∥∥∥
∞
≤

32nC2
νC1

∥∥∥(β∗)†
∥∥∥
∞

c2α
≤

1
8
∥∥∥(β∗)†

∥∥∥
∞

(2.8.25)

by the definition of α, and Cν ≤
1

256
c2
C1

√
k

k‖(β∗)†‖∞
. This completes the induction for the noise.

Also, in proving the final bounds, we have

∥∥∥N t+1
∥∥∥

1 ≤
32nC2

νC1
∥∥∥(β∗)†

∥∥∥
∞

c2α
≤

c
10

(2.8.26)

by the definition of α, and

Cν ≤
c

320
c2

C1

√
k

max
{
n, k

∥∥∥(β∗)†
∥∥∥
∞

} ≤ √c
320

c2

C1

1√
n
∥∥∥(β∗)†

∥∥∥
∞

where the last inequality can be shown by consider the two cases when
∥∥∥(β∗)†

∥∥∥
∞
≤ n/k and

∥∥∥(β∗)†
∥∥∥
∞
≥ n/k. The rest

of the proof is the same as in Theorem 62. �
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2.8.7 Results for general proportions: Equilibration

Algorithm 7 ColumnUpdate
Input: A matrix β, a threshold value α, a step size η, ratios {r j : j ∈ [k]}, iteration number T , a subset S ⊆ [k], sample

size D
1: Set β(0) = β
2: for t = 0→ T − 1 do
3:

∀i ∈ S , [βt+1]i =
[
(1 − η) βt + riηẼ

[
( f̃ − f̃ ′)(γ − γ′)>

]]
i

(2.8.27)

4: end for
Output: β̂ = β(T )

Algorithm 8 Rescale
Input: A matrix β, a threshold value α, a step size η, ratios {r j : j ∈ [k]}, iteration number T , and a set S ⊆ [k],

ε ∈ (0, 1).
1: Let β̃ = ColumnUpdate(β, α, η, {r j} j,T, S ,D)
2: for i ∈ S do
3: Set [β̂]i = 1

1−ε [β̃]i

4: end for
Output: β̂

Algorithm 9 Equilibration
Input: β, α, η, T , and ε ∈ (0, 1), λ,D

1: S ← ∅, D← Id
2: while |S | ≤ k do
3: M j ← Ê[γ2

j ] for j < S using D examples
4: while max j<S M j < λ do
5: β← Rescale(β, α, η, {3/(5M j) : j ∈ [k]},T, S , ε,D)
6: λ← (1 − ε) λ, D j, j ← D j, j/(1 − ε)
7: M j ← (1 − ε)2M j for j ∈ S , and M j ← Ê[γ2

j ] for j < S using D examples
8: end while
9: S ← S ∪ { j : M j ≥ λ}

10: end while
Output: β

When the topics have various proportions (i.e., E[(γ∗i )2] varies for different i), we propose Algorithm 9 for balanc-

ing them. Recall the idea: instead of solving f̃ ≈ β∗γ∗, we could also solve f̃ ≈ [β∗D][(D)−1γ∗] for a positive diagonal

matrix D. Our goal is to find β = β∗D(Σ + E) + N so that Σ is large, E,N are small, while E[(γ∗i )2]/D2
i,i is with in a

factor of 2 from each other.

The algorithm works at stages and keeps a working set S of column index i such that E[(γ∗i )2]/D2
i,i is above a

threshold λ. At each stage, it only updates the columns in S ; at the end of the stage, it increases these columns by a

small factor so that E[(γ∗i )2]/D2
i,i decreases. Then it decreases the threshold λ, and add more columns to the working
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set and repeat. In this way, E[(γ∗i )2]/D2
i,i(i ∈ S ) are always balanced; in particular, they are balanced at the end when

S = [n]. Formally,

Theorem 71 (Main: Equilibration). If there exists an absolute constant G such that Assumption (A1)-(A3) and (N1)

are satisfied with l = 1/50, C3
1 ≤ Gc2

2k, max
{
Cν, ‖N(0)‖∞

}
≤

Gc4
2

C5
1k‖(β∗)†‖∞

, and additionally Σ(0) � (1 − `)Id, and E ≥ 0

entry-wise, then there exist α, η,T, λ such that for sufficiently small ε > 0 and sufficiently large D = poly(k, n, 1/ε, 1/δ)

the following hold with probability at least 1−δ: Algorithm 9 outputs a solution β = β∗D(Σ+E)+N where Σ � (1−`)Id

is diagonal, ‖E‖s ≤ γ` is off-diagonal, ‖N‖∞ ≤ 2‖N(0)‖∞, and D is diagonal and satisfies

maxi∈[k]
1

D2
i,i
E[(γ∗i )2]

min j∈[k]
1

D2
j, j
E[(γ∗j)

2]
≤ 2.

If Assumption (A1)-(A3) and (N2) are satisfied with the same parameters except max
{
Cν, ‖N(0)‖∞

}
≤ min

{√
Gc4

2

C5
1k

1
‖(β∗)†‖∞

,
Gc2

2

C3
1‖(β

∗)†‖∞

}
,

then the same guarantees hold.

Now, we can view β∗D as the ground-truth feature matrix and D−1γ∗ as the weights. Then applying Algorithm 6

with β can recover β∗D, and after normalization we get β∗.

The initialization condition of the theorem can be achieved by the popular practical heuristic that sets the columns

of β(0) to reasonable almost pure data points. It is generally believed that it gives E(0)
i, j ≥ 0 and N(0) = 0. We note that

the parameters are not optimized; the algorithm can potentially tolerate much better initialization.

Intuition. Before delving into the specifics of the algorithm, it will be useful to provide a high-level outline of

the proof. As described above, the algorithm makes use of the fact that samples from a ground truth matrix β∗ and

distribution γ∗ can equivalently be viewed as coming from the ground truth matrix β∗D and distribution D−1x∗, for

some diagonal matrix D. Therefore, the goal is to find a D such that the features are balanced:

maxi∈[k]
E[(γ∗i )2]

D2
i,i

mini∈[n]
E[(γ∗i )2]

D2
i,i

≤ κ.

The algorithm will implicitly calculate such a D gradually. Namely, at any point in time, the algorithm will have an

active set S ⊆ [k] of features, which are balanced, i.e.

maxi∈[k]
E[(γ∗i )2]

D2
i,i

mini∈S
E[(γ∗i )2]

D2
i,i

≤ κ. (2.8.28)
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It is clear that when S = [k] the algorithm achieves the goal. Our algorithm begins with S = ∅ and gradually increase

S until S = [k].

The mechanism for increasing S will be as follows. Given S , β is of the form

β = β∗D(Σ + E) + N

with

E =

E1,1 E1,2

E2,1 E2,2


where the columns of β are sorted such that the first |S | columns correspond to the features of S , and E1,1 ∈ R

|S |×|S |,

E2,1 ∈ R
(k−|S |)×|S |, E1,2 ∈ R

|S |×(k−|S |), E2,2 ∈ R
(k−|S |)×(k−|S |). Then scaling up the columns of β indexed by S by a factor of

1
1−ε is equivalent to

(1) scaling up the columns of D indexed by S by a factor of 1
1−ε and

(2) scaling up the columns of E2,1 by a factor of 1
1−ε and

(3) scaling down the columns of E1,2 by a factor of 1 − ε.

Therefore, to increase the set S , the algorithm will scale up the columns of β indexed by S , until some j < S satisfies

max
i∈[k]

E[(γ∗i )2]

D2
i,i

≤ κ
E[(γ∗j)

2]

D2
j, j

.

Then it can add j into S while keeping the corresponding features balanced as in (2.8.28). Note that we do not need to

explicitly maintain D, though it can be calculated along with the scaling. Further note that the values of E[(γ∗i )2] are

not known but they can be estimated using the current β.

However, there is still one caveat: E should be kept small, so that at the end of the algorithm, we still have a good

initialization β. For this reason, the algorithm additionally maintains that for a small constant 1 < γ < 2,

∥∥∥E1,1
∥∥∥

s ≤ γ`,
∥∥∥E1,2

∥∥∥
s ≤ `,∥∥∥E2,1

∥∥∥
s ≤ γ`,

∥∥∥E2,2
∥∥∥

s ≤ `. (2.8.29)

Since scaling up β will scale up E2,1, we will need to first decrease
∥∥∥E2,1

∥∥∥
s before the scaling step. The key observation

is that by applying our training algorithm only on the columns indexed by S ,
∥∥∥E1,1

∥∥∥
s and

∥∥∥E2,1
∥∥∥

s will be decreased,

while
∥∥∥E1,2

∥∥∥
s and

∥∥∥E2,2
∥∥∥

s unchanged. On a high level, using the fact that the matrix E1,2 has no negative entries (which
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we get by virtue of our initialization), and the fact that the contribution in the updates to the entry (E1,1)i, j mostly

comes from (E1,1) j,i (i.e. the matrix E1,1 in the first order contribution “updates itself”), and the fact that the features

in S are balanced, we can show that after sufficiently many updates, the symmetric norm of E1,1 and E2,1 drops by a

reasonable amount:
∥∥∥E1,1

∥∥∥
s ≤ (γ − 1)` and

∥∥∥E2,1
∥∥∥

s ≤ (1 − ε)(γ − 1)`. Now, we can do the scaling step without hurting

the invariant 2.8.29.

Organization. The result of the section is as follows. We first prove in Section 2.8.7.1 that applying our training

algorithm only on the columns indexed by S will decrease
∥∥∥E1,1

∥∥∥
s and

∥∥∥E2,1
∥∥∥

s. Then in Section 2.8.7.2 we analyze the

scaling step, and show that the invariant (2.8.29) is maintained. In Section 2.8.7.3, we show how to increase S while

maintaining the invariant (2.8.28), where the main technical details are about how to estimate E[(γ∗i )2].

2.8.7.1 Equilibration: ColumnUpdate

In this subsection, we focus on the update step, bounding the changes of Σ, E, and N.

First recall some notations. Let β = β∗(Σ + E) + N where Σ is diagonal, E is off diagonal, and N is the component

outside the span of β∗.5 Given the set S ⊆ [k] and a matrix M ∈ Rk×k, let M1,1 denote the submatrix indexed by S × S ,

and M2,1 denote the submatrix indexed by ([k]− S )× S , M1,2 denote the submatrix indexed by S × ([k]− S ), and M2,2

denote the submatrix indexed by ([k] − S ) × ([k] − S ). 6 In the special case when S = [s] where s = |S |,

M =

M1,1 M1,2

M2,1 M2,2

 .
Also, let MS denote the submatrix formed by the columns indexed by S , and M−S the submatrix formed by the other

columns. 7

The input β0 of Algorithm 7 can be written as β0 = β∗(Σ0 + E0) + N0 where Σ0 is diagonal, and E0 is off diagonal.

Define E0
1,1, E

0
1,2, E

0
2,1 and Ê2,2 as described above. Similarly, define Ê1,1, Ê1,2, Ê2,1 and Ê2,2 for the output β̂ = β∗(Σ̂ +

Ê) + N̂ of Algorithm 7. Finally, define N0
S , N0

−S , N̂S , and N̂−S as described above.

The main result of the subsection is Lemma 72.

5Note that β∗ here can be any ground-truth matrix; in particular, later Lemma 72 will be applied where β∗ in the lemma corresponds to β∗D in
the intuition described above.

6These notations will be used for M = E, M = Ẽ, and related matrices.
7These notations will be used for M = N or M = Ñ, and related matrices.
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Lemma 72 (Main: ColumnUpdate). Define

R j = E[(γ∗j)
2], R = max

j∈[k]
R j, r = max

j∈S
r j, (2.8.30)

h1 = r
8C1(C1 + 1)ρ

(1 − ` − β`)k(α − ρ)
+

4C2
1

(1 − ` − β`)k2(α − ρ)
r
(

1
(1 − ` − β`)

+ 1
)
, (2.8.31)

h2 = r
Rβ2`2

(1 − `)2(1 − ` − β`)
+

12C1(C1 + 1)
k2(α − ρ)(1 − ` − β`)

(
1

1 − ` − β`
+ kρ

)
r, (2.8.32)

h = h1 + h2, (2.8.33)

Ua =
8rCνC1

α − ρ
, (2.8.34)

Un =
10rC1C2

ν

∥∥∥(β∗)†
∥∥∥
∞

(1 − 2`)(α − 2Cν

∥∥∥(β∗)†
∥∥∥
∞

)
. (2.8.35)

Suppose ` ≤ 1/8, B is a constant with B` ≤ 1/2, γ ∈ (1, 2), ε ∈ (0, 1). The initialization satisfies (1 − `)Id � Σ0,∥∥∥E0
1,1

∥∥∥
s
≤ γ`,

∥∥∥E0
2,1

∥∥∥
s
≤ γ`,

∥∥∥(E0
1,2; E0

2,2)
∥∥∥

s
≤ `, E0

1,2 ≥ 0 and E0
2,2 ≥ 0 entry-wise, and ‖N0

−S ‖∞ ≤ U and ‖N0
S ‖∞ ≤ 2U ≤

1/(16‖(β∗)†‖∞). Furthermore, the parameters satisfy that for any i ∈ S ,

η

(
1 + 2riRi

1
(1 − `)2

B`2

1 − B` − `
+ ri

2C1

k

(
α + 2ρ +

C1

k
+

2C1

k
β`(1 − β`)

(1 − `)2(1 − β` − `)

))
≤ ` (2.8.36)

riRi

(
2 − 2

1
(1 − `)2

β`2

1 − β` − `

)
− ri

(
2C1

k

(
α + 2ρ +

C1

k
1

1 − `
+

2C1

k
β`(1 − β`)

(1 − `)2(1 − β` − `)

))
≥ 1 − ` (2.8.37)

h1 ≤ `,

(
rR

(1 − `)2 + 1
)

(ε + h1) + (ε + h2) ≤ (γ − 1)` (2.8.38)

ε + h2 ≤ (1 − ε)(γ − 1)` (2.8.39)

h1 + ` ≤ (β − 1)`, h2 +

(
rR

(1 − `)2 + 1
)
` ≤ (β − 1)` (2.8.40)

3‖(β∗)†‖∞ (3U + Cν) ≤ ρ < α. (2.8.41)
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If we have adversarial noise (Assumption (N1)), assume

ε′ + Ua ≤ (1 − ε)U, and 3‖(β∗)†‖∞ (2U + Ua + Cν) ≤ ρ < α < 1. (2.8.42)

If we have unbiased noise (Assumption (N2)), assume

ε′ + Un ≤ (1 − ε)U. (2.8.43)

Finally, let D = poly (n,m, 1/δ, 1/ε) sufficiently large.

Then with probability at least 1−δ, after 2 ln(ε/(γ`))
ln(1−η) +

ln(ε′/U)
ln(1−η) iterations, the output of Algorithm 7 is β̂ = β∗(Σ̂+ Ê)+ N̂

satisfying

(1 − `)Id � Σ̂ � uId, ‖Ê1,1‖s ≤ (γ − 1)`, ‖Ê2,1‖s ≤ (1 − ε)(γ − 1)`, ‖(Ê1,2; Ê2,2)‖s ≤ `,

and Ê1,2 ≥ 0 and Ê2,2 ≥ 0 entry-wise. Furthermore, ‖N̂−S ‖∞ ≤ U and ‖N̂S ‖∞ ≤ (1 − ε)U.

Proof of Lemma 72. It follows from Lemma 75 and the conditions (2.8.38) and (2.8.39). �

To prove Lemma 75, we will first consider how E changes after one update step, and then derive the recurrence for

all steps in Lemma 75.

2.8.7.1.1 One update step of E

Similarly as before, we focus on one update step first, bounding the change of E. So through out this subsection we

will focus on a particular iteration t and omit the superscript (t), while in the next subsection we will put back the

superscript.

For analysis, denote β(t) as

β = β∗(Σ + E) + N

where Σ is a diagonal matrix, E is an off-diagonal matrix, and N is the component of β that lies outside the span of β∗

(e.g., the noise caused by the noise in the sample).
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Recall the following notations:

Z = (Σ + E)−1 ,

V = Z − Σ−1 = Σ−1
∞∑

i=1

(−EΣ−1)i,

ξ = −β†NZγ∗ + β†ν.

Consider the update term Ê
[
( f̃ − f̃ ′)(γ − γ′)>

]
and denote it as

∆ = Ê
[
( f̃ − f̃ ′)(γ − γ′)>

]
= β∗(Σ̃ + Ẽ) + Ñ

where Σ̃ is a diagonal matrix, Ẽ is an off-diagonal matrix, and N is the component of ∆ that lies outside the span of β∗.

Since we now use empirical average, we will have sampling noise. Denote it as

Ns = Ê[( f̃ − f̃ ′)(γ − γ′)>] − E[( f̃ − f̃ ′)(γ − γ′)>].

Then by definition, for f̃ = β∗γ∗ + ν and f̃ ′ = β∗(γ′)∗ + ν′, we have

Ê[( f̃ − f̃ ′)(γ − γ′)>] = E[( f̃ − f̃ ′)(γ − γ′)>] + Ns

= β∗ E
[
(γ∗ − (γ′)∗)(γ − γ′)>

]︸                         ︷︷                         ︸
Σ̃+Ẽ

+E
[
(ν − ν′)(γ − γ′)>

]
+ Ns︸                           ︷︷                           ︸

Ñ

.

Recall the definition of E1,1, i.e., it is the submatrix of E indexed by S × S . Define Ẽ1,1 similarly, i.e., it is the

submatrix of Ẽ indexed by S × S . Define Ẽ1,2, Ẽ2,1 and Ẽ2,2 accordingly. So in the special case when S = [s] where

s = |S |,

Ẽ =

Ẽ1,1 Ẽ1,2

Ẽ2,1 Ẽ2,2

 .
We also use the notation M+ or M− to denote the positive or negative part of a matrix M.

Lemma 73 (Update Ẽ1,1). Let Ẽ1,1 be defined as above. If ‖ξ‖∞ ≤ ρ < α < 1 and Σ � (1 − `)Id, then

(1). Negative entries:

‖Ẽ−1,1‖s ≤
4C2

1‖Z‖s(‖Z‖s + 1)
k2(α − ρ)

+
8C1(C1 + 1)ρ‖Z‖s

k(α − ρ)
.

101



(2) Positive entries:

‖Ẽ+
1,1‖s ≤

12C1(C1 + 1)‖Z‖s
k2(α − ρ)

(
‖Z‖s + kρ

)
+ 2 max

j∈[k]
{E[(x∗j)

2]}
(

1
(1 − `)2 ‖E

−
1,1‖s +

‖E‖2s
(1 − `)2(1 − ` − ‖E‖s)

)
.

Proof of Lemma 73. (1) By Lemma 66, we have

‖Ẽ−1,1‖s ≤ max
 4C2

1‖Z‖s
k2(α − ρ)

‖Z‖s +
4C2

1‖Z‖s
k2(α − ρ)

kρ,
8C1ρ

k(α − ρ)
(C1 + 1)‖Z‖s +

2C2
1

k2 ‖Z‖s

 .
Observe that for α < 1,

4C2
1‖Z‖s(‖Z‖s + 1)

k2(α − ρ)
≥ max

 4C2
1‖Z‖

2
s

k2(α − ρ)
,

2C2
1

k2 ‖Z‖s

 .
Moreover,

8C1ρ

k(α − ρ)
(C1 + 1)‖Z‖s ≥

4C2
1‖Z‖s

k2(α − ρ)
kρ.

Therefore,

‖Ẽ−1,1‖s ≤
4C2

1‖Z‖s
k2(α − ρ)

+
8C1(C1 + 1)ρ‖Z‖s

k(α − ρ)
.

(2) By Lemma 66, when Zi, j < 0,

Ẽ j,i ≤
4C2

1‖Z
i‖1

k2(α − ρ)

(∣∣∣Zi, j

∣∣∣ + ρ
)
.

When Zi, j ≥ 0,

Ẽ j,i ≤
8C1ρ

k(α − ρ)

(
C1‖Zi‖1

k
+ Zi, j

)
+ 2E[(γ∗j)

2]Zi, j
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Consider a fixed i. Let G = { j ∈ S ,Zi, j ≥ 0} and let Gc = S −G. We know that

‖[Ẽ+
1,1]i‖1 =

∑
j∈[k]

[Ẽ+
1,1] j,i

≤
∑
j∈Gc

4C2
1‖Z

i‖1

k2(α − ρ)

(∣∣∣Zi, j

∣∣∣ + ρ
)

+
∑
j∈G

(
8C1ρ

k(α − ρ)

(
C1‖Zi‖1

k
+ Zi, j

)
+ 2E[(γ∗j)

2]Zi, j

)

≤
4C2

1‖Z‖s
k2(α − ρ)

(
‖Z‖s + kρ

)
+

8C1(C1 + 1)ρ
k(α − ρ)

‖Z‖s +
∑
j∈G

2E[(γ∗j)
2]Zi, j

≤
4C2

1‖Z‖
2
s

k2(α − ρ)
+

4C2
1‖Z‖s

k2(α − ρ)
kρ +

8C1(C1 + 1)ρ
k(α − ρ)

‖Z‖s +
∑
j∈S

2E[(γ∗j)
2]Zi, j

≤
12C1(C1 + 1)‖Z‖s

k2(α − ρ)
(‖Z‖s + kρ) +

∑
j∈G

2E[(γ∗j)
2]Zi, j.

A similar bound holds for ‖[Ẽ+
1,1]i‖1.

By the definition of Z, we know that

Z = (Σ + E)−1

= Σ−1
∞∑

m=0

(−EΣ−1)m

= Σ−1 − Σ−1EΣ−1 + Σ−1
∞∑

m=2

(−EΣ−1)m

Therefore, we know that for i , j,

Zi, j ≤ −[Σ−1EΣ−1]i, j + |

∞∑
m=2

Σ−1[(−EΣ−1)m]i, j|.

This implies that

∑
j∈G

Zi, j ≤
∑
j∈G

−[Σ−1EΣ−1]i, j +

∞∑
m=2

∣∣∣Σ−1[(−EΣ−1)m]i, j

∣∣∣
≤

1
(1 − `)2 ‖E

−
1,1‖s +

1
1 − `

‖E‖2s
(1−`)2

1 − ‖E‖s1−`

≤
1

(1 − `)2 ‖E
−
1,1‖s +

‖E‖2s
(1 − `)2(1 − ` − ‖E‖s)

.

Putting together, we complete the proof. �

Lemma 74 (Update Ẽ2,1). Let Ẽ2,1 be defined as above, and suppose ‖ξ‖∞ ≤ ρ < α < 1, Σ � (1 − `)Id and E1,2 ≥ 0,
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then we have

‖Ẽ2,1‖s ≤
12C1(C1 + 1)‖Z‖s

k2(α − ρ)
(
‖Z‖s + kρ

)
+ 2 max

j∈[k]
{E[(x∗j)

2]}
(

‖E‖2s
(1 − `)2(1 − ` − ‖E‖s)

)
.

Proof of Lemma 74. The proof is almost the same as that of Lemma 73, combined with the fact that E1,2 ≥ 0 entry-

wise. �

2.8.7.1.2 Recurrence

Recall that

β = β∗(Σ + E) + N

and recall that E1,1 is the submatrix indexed by S ×S , and E1,2, E2,1, E2,2 are defined according. Recall that MS denote

the submatrix of M formed by columns indexed by S , and let M−S denote the submatrix formed by the other columns.

Lemma 75 (Recurrence). Suppose the conditions in Lemma 72 hold. Then with probability at least 1 − δ, after

2 ln(ε/(γ`))
ln(1−η) iterations,

(1 − `)Id � Σt,

‖(Et
1,1)−‖s ≤ ε + h1,

‖(Et
1,1)+‖s ≤

rR
(1 − `)2 (ε + h1) + h2 + ε,

‖(Et
2,1)‖s ≤ ε + h2.

Also, after ln(ε′/U)
ln(1−η) iterations, for both adversarial and unbiased noise,

∥∥∥N t
−S

∥∥∥
∞
≤ U,

∥∥∥N t
S

∥∥∥
∞
≤ (1 − ε)U.

Proof of Lemma 75. We first prove the following claims by induction.

(1) (1 − `)Id � Σ(t),
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(2)

‖(E−1,1)t‖s ≤ γ`

‖(E+
1,1)t‖s ≤

rR
(1 − `)2 γ` + h2

‖Et
2,1‖s ≤ γ`

‖Et
1,2‖s ≤ `

‖Et
2,2‖s ≤ `,

(3) ‖Et‖s ≤ β`,

(4) for adversarial noise,
∥∥∥N t

S

∥∥∥
∞
≤ U + Ua, and ‖ξt‖∞ ≤ ρ; or for unbiased noise,

∥∥∥N t
S

∥∥∥
∞
≤ U + Uu.

The basis case for t = 0 is trivial by assumptions. Now assume they are true for iteration t and show that they are

true for iteration t + 1.

(1) By the update of Σ, we have

Σt+1 = (1 − η)Σt + ηrΣ̃t.

To lower bound Σt+1
i,i , we will consider two cases, Σt

i,i ≥ 1 and Σt
i,i ≤ 1.

For Σt
i,i ≥ 1, by Lemma 65,

Σ̃i,i ≥ E
[(

x∗i
)2
] (

2Σ−1
i,i − 2

∣∣∣Vi,i

∣∣∣) − 2C1

k

(
α + 2ρ +

C1

k
Σ−1

i,i +
2C1

k

∥∥∥[V]i
∥∥∥

1

)
≥ −2Ri

∣∣∣Vi,i

∣∣∣ − (
2C1

k

(
α + 2ρ +

C1

k
Σ−1

i,i +
2C1

k

∥∥∥[V]i
∥∥∥

1

))
.

Hence,

Σt+1
i,i ≥ (1 − η)Σt

i,i − η

(
2riRi

∣∣∣V t
i,i

∣∣∣ + ri

(
2C1

k

(
α + 2ρ +

C1

k
(Σt

i,i)
−1 +

2C1

k

∥∥∥∥[V t
]i∥∥∥∥

1

)))
≥ 1 − η

(
1 + 2riRi

∣∣∣V t
i,i

∣∣∣ + ri
2C1

k

(
α + 2ρ +

C1

k
+

2C1

k

∥∥∥∥[V t
]i∥∥∥∥

1

))
≥ 1 − η

(
1 + 2riRi

1
(1 − `)2

β`2

1 − β` − `
+ ri

2C1

k

(
α + 2ρ +

C1

k
+

2C1

k
β`(1 − β`)

(1 − `)2(1 − β` − `)

))
.

where we use the bound on V t. By condition (2.8.36), the claim follows.

For Σt
i,i ≤ 1, again by Lemma 65,

Σ̃t
i,i ≥ E

[(
x∗i

)2
] (

2 − 2
∣∣∣V t

i,i

∣∣∣) − (
2C1

k

(
α + 2ρ +

C1

k
(Σt

i,i)
−1 +

2C1

k

∥∥∥∥[V t
]i∥∥∥∥

1

))
.
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Hence,

Σt+1
i,i = (1 − η)Σt

i,i + ηrΣ̃t
i,i

≥ (1 − η)(1 − `)

+ η

(
riRi

(
2 − 2

∣∣∣V t
i,i

∣∣∣) − ri

(
2C1

k

(
α + 2ρ +

C1

k
(Σt

i,i)
−1 +

2C1

k

∥∥∥∥[V t
]i∥∥∥∥

1

)))
≥ (1 − η)(1 − `) + ηriRi

(
2 − 2

1
(1 − `)2

β`2

1 − β` − `

)
− ηri

(
2C1

k

(
α + 2ρ +

C1

k
1

1 − `
+

2C1

k
β`(1 − β`)

(1 − `)2(1 − β` − `)

))
.

By condition (2.8.37), the claim follows.

(2) By Lemma 73,

‖(Ẽt+1
1,1 )−‖s ≤

8C1(C1 + 1)ρ‖Zt‖s

k(α − ρ)
+

4C2
1‖Z

t‖s(‖Zt‖s + 1)
k2(α − ρ)

,

‖(Ẽt+1
1,1 )+‖s ≤

R
(1 − `)2 ‖(E

−
1,1)t‖s +

R‖Et‖2s

(1 − `)2(1 − ` − ‖Et‖s)

+
12C1(C1 + 1)‖Zt‖s

k2(α − ρ)

(∥∥∥Zt
∥∥∥

s + kρ
)
.

By the update rule, we have

‖(Et+1
1,1 )−‖s ≤ (1 − η)‖(Et

1,1)−‖s

+ rη
8C1(C1 + 1)ρ

(1 − ` − β`)k(α − ρ)
+

4C2
1

(1 − ` − β`)k2(α − ρ)

(
1

(1 − ` − β`)
+ 1

)
rη,

≤ (1 − η)‖(Et
1,1)−‖s + ηh1 (2.8.44)

‖(Et+1
1,1 )+‖s ≤ (1 − η)‖(Et

1,1)+‖s + rη
R

(1 − `)2 ‖(E
t
1,1)−‖s

+ rη
Rβ2`2

(1 − `)2(1 − ` − β`)

+
12C1(C1 + 1)

k2(α − ρ)(1 − ` − β`)

(
1

1 − ` − β`
+ kρ

)
rη

≤ (1 − η)‖(Et
1,1)+‖s + rη

R
(1 − `)2 ‖(E

t
1,1)−‖s + ηh2 (2.8.45)

where we use
∥∥∥Et

∥∥∥
s ≤ β` and ‖Zt‖s ≤

1
1−`−β` .

The claim on ‖(Et+1
1,1 )−‖s follows from (2.8.44) and the condition (2.8.38).
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For ‖(Et+1
1,1 )+‖s, by induction (2.8.45) becomes

‖(Et+1
1,1 )+‖s ≤ (1 − η)‖(Et

1,1)+‖s + rη
R

(1 − `)2 γ` + ηh2 ≤
rR

(1 − `)2 γ` + h2.

Now we consider ‖(Et+1
2,1 )‖s. By Lemma 74,

‖(Et+1
2,1 )‖s ≤ (1 − η)‖(E(t)

2,1)‖s

+ rη
Rβ2`2

(1 − `)2(1 − ` − β`)

+
12C1(C1 + 1)

k2(α − ρ)(1 − ` − β`)

(
1

1 − ` − β`
+ kρ

)
rη

= (1 − η)‖(Et
2,1)‖s + ηh2 (2.8.46)

≤ γ`

where the last line follows by condition (2.8.39) and induction.

Finally, clearly we have
∥∥∥Et+1

1,2

∥∥∥
s
≤ ` and

∥∥∥Et+1
2,2

∥∥∥
s
≤ `, since they are not updated.

(3) Note that (2.8.44) (2.8.45) hold for all iterations up to t + 1. Then by Lemma 80, we have

‖(Et+1
1,1 )−‖s + ‖(Et+1

1,1 )+‖s

≤ max
{
‖(E0

1,1)−‖s + ‖(E0
1,1)+‖s, ‖(E0

1,1)+‖s + h1, h2 +

(
rR

(1 − `)2 + 1
)
‖(E0

1,1)−‖s, h2 +

(
rR

(1 − `)2 + 1
)

h1

}
.

Since h1 ≤ ` and h2 ≤ ` by (2.8.38)(2.8.39), and ‖(E0
1,1)−‖s + ‖(E0

1,1)+‖s ≤ ` by assumption, we have

‖(Et+1
1,1 )−‖s + ‖(Et+1

1,1 )+‖s ≤ max
{
` + h1, h2 +

(
rR

(1 − `)2 + 1
)
`

}
. (2.8.47)

Then we have by condition (2.8.40),

‖(Et+1
1,1 )−‖s + ‖(Et+1

1,1 )+‖s ≤ (β − 1)`, ‖Et+1‖s ≤ β`.

(4) Finally, we consider the noise. We first consider the adversarial noise. Set the sample size D to be large enough,

so that by Lemma 67, we have

∣∣∣Ñ t
i, j

∣∣∣ ≤ 4CνC1

(1 − 2`)2k(α − ρ)
+

∣∣∣[Ñ t
s]i, j

∣∣∣ ≤ 8CνC1

k(α − ρ)
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and thus

∥∥∥N t+1
∥∥∥
∞
≤ (1 − η)

∥∥∥N t
∥∥∥
∞

+ η
8rCνC1

α − ρ
. (2.8.48)

Then for any t ≥ 0,

∥∥∥N t
∥∥∥
∞
≤

∥∥∥N0
∥∥∥
∞

+
8rCνC1

α − ρ
≤ U +

8rCνC1

α − ρ
≤ 2U + Ua

where the last inequality is by the definition of Ua. On the other hand, by Lemma 69, we have

‖ξ(t)‖∞ ≤ 3‖(β∗)†‖∞(‖N t‖∞ + Cν)

≤ 3‖(β∗)†‖∞

(
2U +

8rCνC1

α − ρ
+ Cν

)
≤ ρ

where the last inequality is due to condition (2.8.42).

We now consider the unbiased noise, where the proof is similar. Set the sample size N to be large enough, so that

by Lemma 67, we have

∣∣∣Ñ t
i, j

∣∣∣ ≤ 2C1Cνρ
′(1 + ‖β†N(t)‖∞)

(1 − 2`)k(α − ρ′)
+

∣∣∣[Ns]i, j

∣∣∣
≤

8C1C2
ν

∥∥∥(β∗)†
∥∥∥
∞

(1 − 2`)k(α − 2Cν

∥∥∥(β∗)†
∥∥∥
∞

)
+

∣∣∣[Ns]i, j

∣∣∣
≤

10C1C2
ν

∥∥∥(β∗)†
∥∥∥
∞

(1 − 2`)k(α − 2Cν

∥∥∥(β∗)†
∥∥∥
∞

)
,

and thus

∥∥∥N t+1
S

∥∥∥
∞
≤ (1 − η)

∥∥∥N t
S

∥∥∥
∞

+ η
10rC1C2

ν

∥∥∥(β∗)†
∥∥∥
∞

(1 − 2`)(α − 2Cν

∥∥∥(β∗)†
∥∥∥
∞

)
. (2.8.49)

Then for any t ≥ 0,

∥∥∥N t
S

∥∥∥
∞
≤

∥∥∥NS
0
∥∥∥
∞

+
10rC1C2

ν

∥∥∥(β∗)†
∥∥∥
∞

(1 − 2`)(α − 2Cν

∥∥∥(β∗)†
∥∥∥
∞

)
≤ 2U +

10rC1C2
ν

∥∥∥(β∗)†
∥∥∥
∞

(1 − 2`)(α − 2Cν

∥∥∥(β∗)†
∥∥∥
∞

)
≤ 2U + Un

where the last inequality is by the definition of Un. This completes the proof for the claims.

Now, after proving the claims, we are ready to prove the last statement of the lemma. First, by (2.8.44) and
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Lemma 81, we have that after ln(ε/(γ`))
ln(1−η) iterations,

‖(Et
1,1)−‖s ≤ ε + h1.

Now (2.8.45) becomes

‖(Et+1
1,1 )+‖s ≤ (1 − η)‖(Et

1,1)+‖s + rη
R

(1 − `)2 (ε + h1) + ηh2 (2.8.50)

After an additional ln(ε/(γ`))
ln(1−η) iterations, by Lemma 81,

‖(Et
1,1)+‖s ≤

rR
(1 − `)2 (ε + h1) + h2 + ε

Similarly, Lemma 81 and (2.8.46), after ln(ε/(γ`))
ln(1−η) iterations,

‖(Et
2,1)‖s ≤ ε + h2.

∥∥∥N t
−S

∥∥∥
∞

does not change since it is not updated. Now consider
∥∥∥N t

S

∥∥∥
∞

.

For the adversarial noise, by (2.8.48) and Lemma 81, after ln(ε′/U)
ln(1−η) iterations,

∥∥∥N t
S

∥∥∥
∞
≤ ε′ +

8rCνC1

α − ρ
≤ (1 − ε)U

where the last inequality is due to condition (2.8.42).

For the unbiased noise, by (2.8.49) and Lemma 81, after ln(ε′/U)
ln(1−η) iterations,

∥∥∥N t
S

∥∥∥
∞
≤ ε′ +

10rC1C2
ν

∥∥∥(β∗)†
∥∥∥
∞

(1 − 2`)(α − 2Cν

∥∥∥(β∗)†
∥∥∥
∞

)
≤ (1 − ε)U

where the last inequality is due to condition (2.8.43).

This completes the proof. �

2.8.7.2 Equilibration: Rescale

The input of of Algorithm 8 can be written as β0 = β∗(Σ0+E0)+N0. The output β̂ can be written as β̂ = (β∗D)(Σ̂+Ê)+N̂

where Σ̂ is diagonal, and Ê is off diagonal, and D is a diagonal matrix with Di,i = 1
1−ε for i ∈ S and the rest being

1. Recall that for a matrix M, let M1,1 denote the submatrix of M indexed by S × S , and define M1,2,M2,1 and M2,2

accordingly. Also recall that MS denote the submatrix of M formed by columns indexed by S , and let M−S denote the
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submatrix formed by the other columns.

Lemma 76 (Main: Rescale). Let β0 = β∗(Σ0 + E0) + N0 satisfies the condition in Lemma 72 and ε be defined as in

Lemma 72. Then the output of Algorithm 8 is β̂ = (β∗D)(Σ̂ + Ê) + N̂ satisfying

(1 − `)Id � Σ̂, ‖Ê1,1‖s ≤ (γ − 1)`, ‖Ê2,1‖s ≤ (γ − 1)`, ‖(Ê1,2, Ê2,2)‖s ≤ `, ‖N̂S ‖∞ ≤ U, ‖N̂−S ‖∞ ≤ U.

Moreover, Ê1,2 ≥ 0 and Ê2,2 ≥ 0 entry-wise.

Proof of Lemma 76. Note that β̃ = β∗(Σ̃ + Ẽ) + Ñ for a diagonal matrix Σ̃, off-diagonal matrix Ẽ and error matrix Ñ.

By lemma 72, we have Σ̃ � (1 − `)Id, error matrix ‖ÑS ‖∞ ≤ (1 − ε)U and

‖Ẽ1,1‖s ≤ (γ − 1)`, ‖Ẽ2,1‖s ≤ (1 − ε)(γ − 1)`, ‖(Ẽ1,2; Ẽ2,2)‖s ≤ `

and Ẽ1,2 ≥ 0 and Ẽ2,2 ≥ 0 entry-wise.

Therefore, by the rescaling rule:

β̂ = β̃D = β∗(Σ̃ + Ẽ)D + ÑD

= β∗D(Σ̃ + D−1ẼD) + ÑD.

Therefore, Σ̂ = Σ̃ � (1 − `)Id, ‖N̂S ‖∞ ≤
1

1−ε ‖ÑS ‖∞ ≤ U. ‖N̂−S ‖∞ = ‖Ñ−S ‖∞ ≤ U since it is not updated.

For the Ê term, denote D1 = Diag
(

1
1−ε , . . . ,

1
1−ε

)
∈ Rs×s. We know that

Ê1,1 = D−1
1 Ẽ1,1D1 = Ẽ1,1

Ê2,1 = Ẽ2,1D1 =
1

1 − ε
Ẽ2,1

Ê1,2 = D−1
1 Ẽ1,2 = (1 − ε)Ẽ1,2

Ê2,2 = Ẽ2,2.

This leads to

‖Ê1,1‖s ≤ (γ − 1)`, ‖Ê2,1‖s ≤ (γ − 1)`, ‖(Ê1,2, Ê2,2)‖s ≤ `,

with Ê1,2, Ê2,2 ≥ 0. This completes the proof. �
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2.8.7.3 Equilibration: Main algorithm

Lemma 77 (Main: Equilibration). Suppose the conditions in Lemma 76 each time Algorithm 8. Additionally, there

exists constant 0 < b < 1, κ > 1 and u > 1 such that bκ > 1 such that the initial λ ≥ maxi∈[k] E[(x∗i )2]/b, and the initial

Σ � uId. Furthermore, for any λ ≥ mini∈[k] E[(x∗i )2]/κ,

(
1

1 − `
+ h6

)2

bλ + h2
5bκλ + h3 ≤

(
1 −

1
100

)
λ, (2.8.51)(

1
u
− h6

)2

(1 − ε)bκλ − h2
5bκλ − h4 ≥

(
1 +

1
100

)
λ,

1
u
> h6 (2.8.52)

h3 ≤
1

200
min
i∈[k]
E[(x∗i )2], (2.8.53)

h4 ≤
1

200
min
i∈[k]
E[(x∗i )2], (2.8.54)

where

h3 =
C2

1

k2 h5

(
h5 +

2
1 − `

)
,

h4 =
C2

1

k2 h5

(
h5 +

2
1 − `

)
+

2(α + ρ)C1

k(1 − `)
,

h5 =
(γ + 1)`(1 − (γ + 1)`)
(1 − `)2(1 − (γ + 2)`)

,

h6 =
(γ + 1)`2

(1 − `)2(1 − (γ + 2)`)
.

Finally, set N = poly(1/mini∈[k] E[(γ∗i )2], k, 1/δ) large enough.

Then with probability at least 1 − δ, the following hold. During the execution of the algorithm, for any j ∈ S ,

(1
u
− h6

)2

− κh2
5 −

1
100

 E[(γ∗j)
2]

(D j, j)2 ≤ M j ≤

( 1
1 − `

+ h6

)2

+ κh2
5 +

1
100

 E[(γ∗j)
2]

(D j, j)2 .

Furthermore, the output of Algorithm 9 is β = β∗D(Σ + E) + N where Σ is diagonal and (1− `)Id � Σ, E is off diagonal

and ‖E‖s ≤ γ`, N satisfies ‖N‖∞ ≤ 2U, and

maxi∈[k]
1

D2
i,i
E[(γ∗i )2]

min j∈[k]
1

D2
j, j
E[(γ∗j)

2]
≤ κ.

Proof of Lemma 77. We prove the lemma by induction. For notational convenience, let us introduce a counter (p)

denoting the number of times the inner while cycle has been executed, and denote β as β(p). Recall that for a matrix

M ∈ Rk×k and index set S ⊆ [k], let M1,1 denote the submatrix indexed by S × S , and M1,2,M2,1 and M2,2 are defined

accordingly. Also, let MS denote the submatrix formed by the columns indexed by S , and M−S the submatrix formed
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by the other columns.

Our inductive claims are as follows. At the beginning of each inner while cycle,

βp = β∗Dp (Σp + Ep) + N p

where Dp and Σp are diagonal, Ep are off diagonal satisfying

(1) (1 − `)Id � Σp,

(2) Ep
1,2 ≥ 0 and Ep

2,2 ≥ 0 entry-wise and

∥∥∥Ep
1,1

∥∥∥
s
≤ γ`,∥∥∥Ep

2,1

∥∥∥
s
≤ γ`,∥∥∥(Ep

1,2; Ep
2,2)

∥∥∥
s
≤ `,

(3) N p
−S ≤ U and N p

S ≤ 2U,

(4) We have

(a) When E[(γ∗j)
2] < bλp, j < S , then M j ≤ λ

p,

(b) When E[(γ∗j)
2] ≥ (1 − ε)bκλp, j < S , then M j > λ

p,

and consequently,

(c) ∀i ∈ S , bλp ≤
E[(γ∗i )2](

Dp
i,i

)2 ,

(d) ∀i ∈ [k], E[(γ∗i )2](
Dp

i,i

)2 ≤ bκλp.

The claims are trivially true at initialization, so we proceed to the induction. Assume the claim is true at time p,

we proceed to show it is true at time p + 1.

First, consider (1), (2) and (3). By Lemma 76, after applying the rescaling algorithm, (1 − `)Id � Σp and

‖Ep
1,1‖s ≤ (γ − 1)`, ‖Ep

2,1‖s ≤ (γ − 1)`, ‖(Ep
1,2, E

p
2,2)‖s ≤ `, ‖N p

S ‖∞ ≤ U, ‖N p
−S ‖∞ ≤ U.

Moreover, Ep
1,2 ≥ 0 and Ep

2,2 ≥ 0 entry-wise. Observe that when moving from time p to p+1, potentially the algorithm

includes new elements in S . Then

‖Ep+1
1,1 ‖s ≤ ‖E

p
1,1‖s + max{‖Ep

2,1‖s, ‖E
p
1,2‖s} ≤ (γ − 1)` + ` = γ`
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Where the last inequality used the fact that γ < 2. Similarly,

‖Ep+1
2,1 ‖s ≤ ‖E

p
2,1‖s + ‖Ep

2,2‖s ≤ (γ − 1)` + ` = γ`.

Also, ‖(Ep+1
1,2 , E

p+1
2,2 )‖s ≤ ‖(E

p
1,2, E

p
2,2)‖s ≤ `, and (Ep+1

1,2 , E
p+1
2,2 ) ≥ 0 entry-wise. Furthermore, ‖N p+1

−S ‖∞ ≤ ‖N
p
−S ‖∞ ≤ U

and

‖N p+1
S ‖∞ ≤ ‖N

p
S ‖∞ + ‖N p

−S ‖∞ ≤ 2U.

Hence, (1), (2) and (3) are also true at time (p + 1).

Finally, we proceed to (4). Since (a)(b) are true at time p, (c)(d) are true at time p + 1. 8 Furthermore, when

λ ≤ mini∈[k] E[(γ∗i )2]/κ, it is guaranteed that all [k] ⊆ S , so we only need to prove that when λ ≥ mini∈[k] E[(γ∗i )2]/κ,

(a)(b) are also true at time p + 1.

To prove (a)(b) are true at time p + 1, we will use Lemma 78. Note that since β has been scaled, so β∗D should be

regarded as the ground truth matrix β∗ in Lemma 78. We first make sure its assumption is satisfied. First, ‖N‖∞ ≤ 3U

and
∥∥∥(β∗D)†

∥∥∥
∞
≤

∥∥∥(β∗)†
∥∥∥
∞

. By Lemma 69 and condition (2.8.41), the assumption in Lemma 78 is satisfied.

We are now ready to prove (a). By Lemma 78,

E[x2
j ] ≤

(
Σ−1

j, j + |V j, j|
)2 E[(γ∗j)

2]

Dp+1
j, j

+ ‖[V] j‖22 max
m∈[k]

E[(γ∗m)2]

Dp+1
m,m

+ ‖[V] j‖1

(
‖[V] j‖1 + 2Σ−1

j, j

) C2
1

k2 .

By Lemma 68, |V j, j| ≤ h6, ‖[V] j‖22 ≤ ‖[V] j‖21 ≤ h2
5, so

E[γ2
j ] ≤

(
1

1 − `
+ h6

)2 E[(γ∗j)
2]

(Dp+1
j, j )2

+ h2
5 max

m∈[k]

E[(γ∗k)2]

(Dp+1
k,k )2

+ h3.

By (d), maxm∈[k]
E[(γ∗m)2]
(Dp+1

m,m)2
≤ bκλ, so for any j < S with E[(γ∗j)

2] =
E[(γ∗j )

2]

(D(p+1)
j, j )2

< bλ, we have

E[γ2
j ] ≤

(
1

1 − `
+ h6

)2

bλ + h2
5bκλ + h3.

By using large enough sample, with high probability, the empirical estimation

Ê[γ2
j ] ≤ E[γ2

j ] +
1

100
λ ≤ λ

where the last step is by condition (2.8.51).

8Note that in (b), the factor (1 − ε) is needed to ensure (d) is true at time p + 1.
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As for (b), by Lemma 78 we have

E[γ2
j ] ≥

(
Σ−1

j, j − |V j, j|
)2 E[(x∗j)

2]

(Dp+1
j, j )2

− ‖[V] j‖22 max
k∈[n]

E[(x∗k)2]

(Dp+1
k,k )2

−

C2
1

k2 ‖[V] j‖1(‖[V] j‖1 + 2Σ−1
j, j ) +

2(α + ρ)C1

k
Σ−1

j, j


≥

(
1
u
− h6

)2 E[(x∗j)
2]

(Dp+1
j, j )2

− h2
5 max

m∈[k]

E[(γ∗m)2]

(Dp+1
m,m)2

− h4.

The last step uses that Σ−1
j, j ≤ u, which is by the initial condition assumed and that it is not updated for j < S . Putting

in the bound that E[(γ∗m)2]
(Dp+1

m,m)2
≤ bκλ, then for any j < S with E[(γ∗j)

2] =
E[(γ∗j )

2]

(Dp+1
j, j )2
≥ (1 − ε)bκλ, we have

E[γ2
j ] ≥

(
1
u
− h6

)2

(1 − ε)bκλ − h2
5bκλ − h4.

Again, use large enough sample to ensure that with high probability

Ẽ[γ2
j ] ≥ E[γ2

j ] −
1

100
λ ≥ λ

where the last step follows from condition (2.8.52). This completes the proof of the induction.

We now prove the statements of the lemma. The statement about the output follows from the above claims. What

is left is to prove that M j( j ∈ S ) approximates E[(x∗j)
2] well. Since M j for j ∈ S is updated along with D j, j, we only

need to check the right after adding j to S , the statement holds. Suppose the time point is p, we have

E[γ2
j ] ≤

(
1

1 − `
+ h6

)2 E[(γ∗j)
2]

(Dp
j, j)

2
+ h2

5 max
m∈[k]

E[(γ∗m)2]
(Dp

m,m)2
+ h3.

Since j is in S , by the claims (c)(d) we have

max
m∈[k]

E[(k∗m)2]
(Dp

m,m)2
≤ bκλp ≤ κ

E[(γ∗j)
2]

(Dp
j, j)

2
.

Since D is large enough so that

E[γ2
j ] ≤ E[(γ∗j)

2]
(
1 +

1
200

)
.

Combined these with the condition (2.8.53), we have

M j ≤

( 1
1 − `

+ h6

)2

+ κh2
5 +

1
100

 E[(γ∗j)
2]

(D j, j)2 .

The upper bound on M j can be bounded similarly. This completes the proof of the lemma. �
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The following is the lemma used in the proof of Lemma 77.

Lemma 78 (Estimate of feature weight). Suppose |ξi| ≤ ρ < α for any example and every i ∈ [k], and suppose Σ � 1
2 Id.

Then

E[γ2
i ] ≥

(
Σ−1

i,i − |Vi,i|
)2
E[(γ∗i )2] − ‖[V]i‖22 max

j∈[k]
E[(x∗j)

2]

−

C2
1

k2 ‖[V]i‖1(‖[V]i‖1 + 2Σ−1
i,i ) +

2(α + ρ)C1

k
Σ−1

i,i


E[γ2

i ] ≤
(
Σ−1

i,i + |Vi,i|
)2
E[(γ∗i )2] + ‖[V]i‖22 max

j∈[k]
E[(γ∗j)

2] + ‖[V]i‖1

(
‖[V]i‖1 + 2Σ−1

i,i

) C2
1

k2 .

Proof of Lemma 78. By the decoding rule,

γi =
[
φα(β†[β∗γ∗ + ν])

]
i

=
[
φα

((
Σ−1 + V

)
γ∗ + ξ

)]
i
.

Let [V]i = v and Σ−1
i,i = σ, then we can rewrite above as

γi = φα(σγ∗i + 〈v, γ∗〉 + ξi)

which implies that

σγ∗i + 〈v, γ∗〉 − ρ − α ≤ xi ≤
∣∣∣σγ∗i + 〈v, γ∗〉

∣∣∣ . (2.8.55)

First, consider the lower bound.

E[γ2
i ] ≥ E

[(
σγ∗i + 〈v, γ∗〉 − ρ − α

)
φα(σγ∗i + 〈v, γ∗〉 + ξi)

]

The following simple lemma is useful.

Claim 1. Let χ be a variable such that |χ| ≤ α, then for every w ∈ Rk, i ∈ [k],

E[γ∗i φα(〈w, x∗〉 + χ)] ≤ |wi|E[(γ∗i )2] +
C2

1

k2

∑
j,i

|w j| (2.8.56)

≤ |wi|E[(γ∗i )2] +
C2

1

k2 ‖w‖1. (2.8.57)
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Proof. The proof is a direct observation that when |χ| < α,

φα(〈w, x〉 + χ) ≤ |〈w, x〉| ≤ 〈|w|, x〉

where |w| is the entry wise absolute value. �

Therefore, we can obtain the following bounds.

(1). By (2.8.13) in Lemma 65, we have

E[γ∗i φα(σγ∗i + 〈v, γ∗〉 + ξi)] ≥ Σ−1
i,i E

[(
γ∗i

)2
]
−

(α + ρ)C1

k
− E

[(
γ∗i

)2
] ∣∣∣Vi,i

∣∣∣ − C2
1

k2

∥∥∥[V]i
∥∥∥

1,

(2). By (2.8.57) in the above claim,

E[γ∗jφα(σγ∗i + 〈v, γ∗〉 + ξi)] ≤ |v j|E[(γ∗j)
2] +

C2
1

k2 (‖v‖1 + σ),

(3). By (2.8.55), for j , i,

E[φα(σγ∗i + 〈v, γ∗〉 + ξi)] ≤ E[|σγ∗i + 〈v, γ∗〉|] ≤
(σ + ‖v‖1)C1

k
.

Putting together, we can obtain

E[γ2
i ] ≥

(
Σ−1

i,i − |Vi,i|
)2
E[(γ∗i )2] − ‖[V]i‖22 max

j∈[k]
E[(γ∗j)

2]

−

C2
1

k2 ‖[V]i‖1(‖[V]i‖1 + 2Σ−1
i,i ) +

2(α + ρ)C1

k
Σ−1

i,i

 .
Second, we proceed to the upper bound. Similarly as the lower bound, by (2.8.55), we have

E[γ2
i ] ≤ E


(|vi| + σ)γ∗i +

∑
j,i

|v j|γ
∗
j

 φα(σγ∗i + 〈v, γ∗〉 + ξi)


= (|vi| + σ)E[γ∗i φα(σγ∗i + 〈v, γ∗〉 + ξi)] +

∑
j,i

|v j|E[γ∗jφα(σγ∗i + 〈v, γ∗〉 + ξi)].

For the first summand, same as in (2), by (2.8.57) in the above claim we get

E[γ∗i φα(σγ∗i + 〈v, γ∗〉 + ξi)] ≤ (σ + |vi|)E[(γ∗i )2] +
C2

1

k2 ‖v‖1,

E[γ∗jφα(σγ∗i + 〈v, γ∗〉 + ξi)] ≤ |v j|E[(γ∗j)
2] +

C2
1

k2 (‖v‖1 + σ).
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Therefore, we get

E[γ2
i ] ≤

(
Σ−1

i,i + |Vi,i|
)2
E[(γ∗i )2] + ‖[V]i‖1(‖[V]i‖1 + 2Σ−1

i,i )
C2

1

k2 + ‖[V]i‖22 max
j∈[k]
E[(γ∗j)

2].

which completes the proof. �

2.8.7.4 Main theorem

Theorem 71 (Main: Equilibration). If there exists an absolute constant G such that Assumption (A1)-(A3) and (N1)

are satisfied with l = 1/50, C3
1 ≤ Gc2

2k, max
{
Cν, ‖N(0)‖∞

}
≤

Gc4
2

C5
1k‖(β∗)†‖∞

, and additionally Σ(0) � (1 − `)Id, and E ≥ 0

entry-wise, then there exist α, η,T, λ such that for sufficiently small ε > 0 and sufficiently large D = poly(k, n, 1/ε, 1/δ)

the following hold with probability at least 1−δ: Algorithm 9 outputs a solution β = β∗D(Σ+E)+N where Σ � (1−`)Id

is diagonal, ‖E‖s ≤ γ` is off-diagonal, ‖N‖∞ ≤ 2‖N(0)‖∞, and D is diagonal and satisfies

maxi∈[k]
1

D2
i,i
E[(γ∗i )2]

min j∈[k]
1

D2
j, j
E[(γ∗j)

2]
≤ 2.

If Assumption (A1)-(A3) and (N2) are satisfied with the same parameters except max
{
Cν, ‖N(0)‖∞

}
≤ min

{√
Gc4

2

C5
1k

1
‖(β∗)†‖∞

,
Gc2

2

C3
1‖(β

∗)†‖∞

}
,

then the same guarantees hold.

Proof of Theorem 71. The theorem follows from Lemma 77 (taking union bound over all the iterations and setting

a proper δ), if the conditions are satisfied. So in the following, we first specify the parameters and then verify the

conditions in Lemma 72 and Lemma 77.

Recall that ` = 1/50. Define u = 1 + `, C = 3/2, B = 4, κ = 2, b = 3/4, and let ε < 1/1000.

Conditions in Lemma 72. For (2.8.36), we need to compute riRi and the the third term. Note that by the induction

in Lemma 77, the M j is an good approximation of E[(γ∗j)
2]/(D j, j)2. Furthermore, when Lemma 72 is applied in

Lemma 77, it is applied on the ground-truth matrix (β∗)′ = β∗D and (γ∗j)
′ = γ∗j/D j, j, so M j is a good approximation of

E[((γ∗j)
′)2]. Then

riRi =
3E[((γ∗i )′)2]

5Mi
≤

3

5
((

1
u − h6

)2
− κh2

5 −
1

100

) .
For the third term, first note that C3

1 ≤ Gc2
2k, and thus C2

1 ≤ Gc2k by C1 > c2. Furthermore, ri = O(1/Mi) = O(k/c2)

for i ∈ S . Plugging in the parameters, we know that the third term is less than 1/1000 when G is sufficiently small.

Then (2.8.36) can be verified by plugging the parameters.

Similarly, for (2.8.37), we can compute riRi and let G small enough so that the second term is less than 1/1000,

and then verify the condition.
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For (2.8.38) (2.8.39) and (2.8.40), we need to bound h1 and h2, which in turn relies on r and rR. Since for i ∈ S ,

ri = O(k/c2), r = O(k/c2). Then similar to the argument as above, h1 < 2/10000 when G is sufficiently small. when

Lemma 72 is applied in Lemma 77, it is applied on the ground-truth matrix (β∗)′ = β∗D and (γ∗j)
′ = γ∗j/D j, j. By the

induction claims there, max j∈[k] E[((γ∗j)
′)2] differ from min j∈S E[((γ∗j)

′)2] by a factor of at most κ, so rR ≤ 3κ
5 . So the

first term can be computed. The second term is less than 1/10000 when G is small enough. Then h2 can be computed.

And the conditions can be verified.

Condition (2.8.41) is true since max {Cν, ‖N‖∞} = O( c2
2

C3
1‖(β

∗)†‖∞
). Condition (2.8.42) is true by setting ε′ < U/8 and

by Ua < U/8 and U = ‖N‖∞ ≤ O( c2
2

C3
1‖(β

∗)†‖∞
). Similarly, condition (2.8.42) is true by setting ε′ < U/8 and by Un < U/8

and ‖N‖∞ is sufficiently small.

Conditions in Lemma 77. First, consider (2.8.53) and (2.8.54). As mentioned above, since C3
1 = O(c2

2k) and

C2
1 = O(c2k), then h3 and h4 can be made sufficiently small to satisfy the conditions. (2.8.51) and (2.8.52) can be

verified by plugging (2.8.53) and (2.8.54) and the assumption that λ ≥ mini∈[k] E[(γ∗i )2]/κ.

This completes the proof. �

2.8.8 Technical details: auxiliary lemmas for solving recurrences

The following lemmas are used when solving some of the recurrences in our analysis of the updates:

Lemma 79 (Coupling update rule). Let {at}
∞
t=0, {bt}

∞
t=0 be sequences of non-negative numbers such that for fixed values

h ≥ 0, η ∈ [0, 1], R > 4r > 0:

at+1 ≤ (1 − η)at + ηrbt + ηh

bt+1 ≤ (1 − η)bt +
η

R
at + ηh

Then the following two properties holds:

1.

∀t ≥ 0, at + bt ≤ a0 + b0 +
Rr + 2R + 1

R − r
h

2. For all ε > 0, when t ≥ ln a0+b0
8ηε , we have:

at ≤
R(r + 1)

R − r
h + ε, bt ≤

R + 1
R − r

h + ε
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Proof of Lemma 79. Observe that the update rule is equivalent to

(
at+1 −

R(r + 1)
R − r

h
)
≤ (1 − η)

(
at −

R(r + 1)
R − r

h
)

+ ηr
(
bt −

R + 1
R − r

h
)

(
bt+1 −

R + 1
R − r

h
)
≤ (1 − η)

(
bt −

R + 1
R − r

h
)

+
η

R

(
at −

R(r + 1)
R − r

h
)

Therefore, define ct = at −
R(r+1)

R−r h and dt = bt −
R+1
R−r h, we can rewrite above as:

ct+1 ≤ (1 − η)ct + ηrdt

dt+1 ≤ (1 − η)dt +
η

R
ct

Since we just need to upper bound ct, dt. without lose of generality, we can assume that

ct+1 = (1 − η)ct + ηrdt

dt+1 = (1 − η)dt +
η

R
ct

Which implies that

ct+1 +

√
R
r

dt+1

 =

(
1 − η + η

√
r
R

) ct +

√
R
r

dt

ct+1 −

√
R
r

dt+1

 =

(
1 − η − η

√
r
R

) ct −

√
R
r

dt


Which can be simplified to

ct +

√
R
r

dt

 =

(
1 − η + η

√
r
R

)t c0 +

√
R
r

d0

ct −

√
R
r

dt

 =

(
1 − η − η

√
r
R

)t c0 −

√
R
r

d0


Therefore, we can solve

ct =
1
2

(1 − η + η

√
r
R

)t

+

(
1 − η − η

√
r
R

)t c0 +
1
2

√
R
r

(1 − η + η

√
r
R

)t

−

(
1 − η − η

√
r
R

)t d0

dt =
1
2

√
r
R

(1 − η + η

√
r
R

)t

−

(
1 − η − η

√
r
R

)t c0 +
1
2

(1 − η + η

√
r
R

)t

+

(
1 − η − η

√
r
R

)t d0

Observe that for every t ≥ 0, a ≥ b ≥ 0, at − bt ≤ (a − b)tat−1
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Which implies: (
1 − η + η

√
r
R

)t

−

(
1 − η − η

√
r
R

)t

≤ 2tη
√

r
R

(
1 − η + η

√
r
R

)t−1

Therefore, when c0, d0 ≥ 0,

ct ≤

(
1 − η + η

√
r
R

)t

c0 + tη
(
1 − η + η

√
r
R

)t−1

d0

Moreover,

dt ≤
r
R
η

(
1 − η + η

√
r
R

)t

c0 +

(
1 − η + η

√
r
R

)t

d0

Taking the optimal t, we obtain ct + dt ≤ c0 + d0, which implies that

at + bt ≤ a0 + b0 +
Rr + 2R + 1

R − r
h

On the other hand, when t ≥ ln c0+d0
8ηε , ct, dt ≤ ε, which implies that

at ≤
R(r + 1)

R − r
h + ε, bt ≤

R + 1
R − r

h + ε.

�

Lemma 80 (Simple coupling). Let {at}
∞
t=0, {bt}

∞
t=0 be sequences of non-negative numbers such that for fixed values

h1, h2 ≥ 0, η ∈ [0, 1], r > 0:

at+1 ≤ (1 − η)at + ηh1

bt+1 ≤ (1 − η)bt + ηsat + ηh2

Then

at ≤ ua := max {a0, h1} ,

bt ≤ max {b0, h2 + sua} .

Proof. We have

(at+1 − h1) ≤ (1 − η)(at − h1)

(bt+1 − h2) ≤ (1 − η)(bt − h2) + ηsat
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Solving the first one gives

at ≤ ua := max {a0, h1} .

Then

(bt+1 − h2) ≤ (1 − η)(bt − h2) + ηsua

leads to

bt ≤ max {b0, h2 + sua} .

�

Lemma 81 (Simple recursion). Let {at}
∞
t=0 be a sequences of non-negative numbers such that for fixed values h ≥ 0,

η ∈ [0, 1],

at+1 ≤ (1 − η)at + ηh.

Then,

at ≤ (1 − η)ta0 + h,

and thus for t ≥ ln(ε/a0)
ln(1−η) , we have

at ≤ ε + h.

Proof. We will prove by induction that at ≤ (1 − η)ta0 + h, which implies the statement of the lemma. The base case

is trivial, so we proceed to the induction:

at+1 ≤ (1 − η)
(
(1 − η)ta0 + h

)
+ ηh ≤ (1 − η)t+1a0 + h

as we need. �
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Chapter 3

Provable guarantees for learning non-linear

latent-variable models using the method of

moments

In this chapter, we will present new results on provable guarantees for method-of-moments based techniques for

learning latent-variable models.

First, in Section 3.1 we will review two general algorithmic paradigms for implementing the method of moments:

tensor-decompositions (Subsection 3.1.1) and algorithms for non-negative matrix factorization for instances with sep-

arable structure (Subsection 3.1.2). We will review why these paradigms, while being quite generic, naturally require

a certain linear structure in the latent-variable model we are considering.

Subsequently, we will provide new extensions of these paradigms to allow for non-linearities in the model. More

concretely, we will focus on noisy-OR networks: a textbook example of a non-linear latent-variable model, often

used to model the causal structure of diseases and symptoms. In Section 3.3, we provide tensor decomposition-based

algorithms with provable guarantees for learning noisy-OR networks; this section is based on results in (Arora et al.,

2017b). Next, in Section 3.4, we provide algorithms for non-linear analogues of non-negative matrix factorization,

and show how to apply them to derive algorithms for learning noisy-OR networks.

3.1 Overview of the method of moments

In this section, we will briefly review tensor-decompositions and non-negative matrix factorization based algorithms

for implementing the method of moments. Recalling from Chapter 1, the framework for the method of moments
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consists of:

(1) Expressing the moments of x as functions of the model parameters:

E[x⊗k] = fθ(x) (3.1.1)

for some function fθ depending on the model parameters.

(2) Calculating the empirical moments Ex∼p̂[x⊗k], and solving the system of equations (3.1.1) for θ.

The recent surge in interest in the method of moments has come from progress on provable techniques for struc-

tured matrix and tensor decomposition for performing task (2) of the above framework. These have been applied to

simple latent variable models such as topic models (Arora et al., 2012c; 2013b), sparse coding models (Arora et al.,

2015b; Ma et al., 2016), mixtures of Gaussians (Hsu and Kakade, 2013; Ge et al., 2015), hidden Markov models (Mos-

sel and Roch, 2005), etc.

To keep the discussion simple, we will not introduce more of the latent-variable models above, and instead focus

on surveying two approaches to implementing the method of moments in the case of topid models. The first approach

will be based on low-rank tensor decomposition (Section 3.1.1), and the second on leveraging a structural assumption

of separability of the topic-word matrix (Section 3.1.2). Similar techniques apply to many of the other models we

mentioned.

Subsequently, we will describe what is different about noisy-OR networks, and how we deal with this difficulty.

3.1.1 Tensor decomposition techniques for learning topic models with Dirichlet priors

Let us proceed to reviewing how tensor decomposition algorithms are used for implementing the method of moments.

The crucial lemma that brings learning topic models into the realm of tensor decomposition is the following structural

result about the moments of the observables for LDA.

Lemma 82 ((Anandkumar et al., 2014)). Keep the notation of topic models from Section 1.1, and assume a Dirichlet

prior with parameters αi, i ∈ [k], denoting α0 =
∑k

i=1 αi. Furthermore, let us denote

M1 = E[ex1 ], ,M2 = E[ex1 ⊗ ex2 ] −
α0

α0 + 1
M1 × M1,

M3 = E[ex1 ⊗ ex2 ⊗ ex3 ] −
α0

α0 + 2
(
E[ex1 ⊗ ex2 ⊗ M2] + E[ex1 ⊗ M ⊗ ex2 ] + E[M1 ⊗ ex1 ⊗ ex2 ]

)
+

2α2
0

(α0 + 2)(α0 + 1)
M1 ⊗ M1 ⊗ M1
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Then,

M2 =

k∑
i=1

αi

α0(α0 + 1)
β⊗2

i , M3 =

k∑
i=1

2αi

α0(α0 + 1)(α0 + 2)
β⊗3

i

In other words, decomposing the tensor M3 reveals the topic vectors βi. A few remarks are in order:

• From the span of the matrix M2 alone we can only hope to recover the span of the topic vectors βi. Indeed, even

if we assume that the number of components k is smaller than the dimension, the span of the top k components in

the singular value decomposition of M2 will coincide with the span of the means βi, but that is all the information

we can extract from M2 – since low rank matrix decompositions are only unique up to unitary transformations.

• Finding a rank-1 decomposition, i.e. a decomposition of a tensor into the minimum number of rank-1 terms, can

be NP-hard for arbitrary tensors (Hillar and Lim, 2013). For many interesting cases, it will be unique (in contrast

to the case of matrices). 1 Moreover, the proof of the uniqueness will be “algorithmic”: i.e. the algorithm for

finding the decomposition will be the certificate that is unique.

Subsequently, the question is how to perform the tensor decomposition of the M3 tensor. As mentioned, we

cannot hope to do this without any assumptions on the tensor. The crucial insight was provided in (Anandkumar et al.,

2014), who proved that the tensor power method, the tensor analogue of the well-known power method for calculating

eigenvectors of matrices can be used, provided the components of the tensor are orthogonal vectors. More precisely,

they show:

Lemma 83 (Tensor power method, (Anandkumar et al., 2014)). Suppose M =
∑m

i=1 wia⊗3
i , s.t. 〈ai, a j〉 = 0,∀i , j.

Let v0 ∈ R
n be an arbitrary vector, s.t. the set of numbers |wi〈ai, v0〉| has a unique largest element. Without loss of

generality, let this number be |w1〈a1, v0〉|, and let the second largest be |w2〈a2, v2〉|. Furthermore, let vt =
M(I,vt−1,vt−1)
‖M(I,vt−1,vt−1)‖ .

Then,

‖at − vt‖
2 ≤

2w2
1

∑
i≥2

1
w2

i

 ∣∣∣∣∣w2〈a2, v0〉

w1〈a1, v0〉

∣∣∣∣∣2t+1

The way this lemma can be used is apparent: if we sample v0 at random, there is an inverse polynomial probability

that w2〈a2, v0〉 � w1〈a1, v0〉. More formally:

Lemma 84 (Initialization for tensor power method, (Anandkumar et al., 2014)). Keep the setting of Lemma 83. For

any constant γ, there is a constant δ(γ), s.t. with probability at least 1 − η over the choice of k1+δ uniformly random

unit vectors, at least one satisfies w2〈a2, v0〉 ≤ γw1〈a1, v0〉.

1Of course, on the flipside, tensor decompositions can be non-unique – in a manner that is not as easy to characterize as matrices.
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Putting Lemmas 84 and 83 with appropriate choice of parameters, we get a polynomial-time algorithm for decom-

posing tensor with orthogonal components. But, in our scenario, while the tensor M3 is low-rank, the components µi

are not necessarily orthogonal. This brings us to the final ingredient: whitening the tensor.

Namely, suppose that a matrix W satisfies W>M2W = I. In our case of interest, M2 � 0, so one concrete way

to choose W is for instance, W = UD−1/2, where M2UDV> is the singular value decomposition of M2. Defining

M̃3 =
∑m

i=1 wi(W>µi)⊗3, it’s easy to see that:

(1) The rank-1 components µ̃i = W>µi of M̃3are orthogonal.

(2) M̂3 = M3(W,W,W), where the notation M3(W,W,W) denotes the standard multilinear form evaluation of M3:

M3(W,W,W)i1, j1,k1 =
∑

i2, j2,k2∈[n]

(M3)i2, j2,k2 Wi2,i1 W j2, j1 Wk2,k1

Finally, a crucial point we overlooked in the above discussion was robustness. Namely, even in the usual instances

(e.g. mixture of Gaussians, topic models), due to finite sample errors, the empirical version of the tensor M3 is only

approximately low rank. The standard approach described above can only tolerate small amounts of noise – on the

order of 1/d in injective norm. These kinds of guarantees will be too weak to get non-trivial guarantees for the setting

of noisy-OR networks we will be interested in. However, recent work due to (Ma et al., 2016) substantially improved

these error bounds. In particular, they prove:

Theorem 2 (Robust tensor decomposition, (Ma et al., 2016)). Suppose the tensor M̃3 satisfies

‖M̃3 −

m∑
i=1

a⊗3
i ‖{1},{2,3} ≤ ε (3.1.2)

where ai, i ∈ [m] are orthonormal vectors in Rn, and for a tensor T ∈ Rn1×n2×n3 , we define the ‖·‖{1}{2,3} norm as

‖T‖{1}{2,3} := sup
x∈Rn1 ,y∈Rn2n3

‖x‖=1,‖y‖=1

∑
i∈[n1]

( j,k)∈[n2]×[n3]

xiy jkTi jk

Then, there exists a polynomial-time algorithm that returns ãi, i ∈ [m] in polynomial time that is O(ε)-close to ai, i ∈

[m] in `2 norm up to permutation. 2

The algorithm is based on finding good vectors to initialize the tensor power method by, which are gotten by look-

ing at the top eigenvectors of random “unfoldings” of the tensor M̃3. More details of this will follow in Section 3.3.4 –

including a generalization of the original proof in (Ma et al., 2016) to handle substantially larger, but structured error.

2Precisely, here we meant that there exists a permutation π such that for every i, maxi‖ãπ(i) − ai‖,≤ O(ε)
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3.1.2 Non-negative matrix factorization techniques for learning separable instances of topic

models

The main benefit of the tensor decomposition-based techniques for implementing the method of moments surveyed

in the previous section is that they are very generic; they suffer, however, from an obvious problem for practical im-

plementation: just building the third-moment tensor requires n3 time; implementing the tensor power method requires

ω(k) restarts per component, raising the runtime to ω(n3k). The vocabulary size of a training set consisting of New

York Times articles, for instance, is on the scale of 15k – which renders this approach less than appealing. Sensitivity

to noise (both statistical and systemic, due to model mismatch) are often issues in practice as well, despite theoretical

improvements to robusteness such as those in (Ma et al., 2016) we mentioned.

A parallel idea for implementing the method of moments was proposed by (Arora et al., 2012a; 2013a), using algo-

rithms for solving structured instances of non-negative matrix factorization. The main idea is based on the following

simple proposition:

Proposition 85 ((Arora et al., 2012a; 2013a)). Using the notation of Section 2.2, the matrix E[ f ⊗ f ] satisfies

E[ f ⊗ f ] = βE[γγ>]β>

Furthermore, the matrices β and E[γγ>]β> have non-negative entries.

As a consequence, we can hope to recover the matrix β by using non-negative matrix factorization techniques,

which is the task of decomposing a given matrix Y as a product of two matrices A, X with non-negative entries, s.t. the

number of rows of A (respectively columns of X) is minimized. This is called the non-negative rank of the matrix Y .

As is usual in problems involving matrix factorization with constraints on the factors, the problem is NP-hard in the

worst case – and in fact, assuming the exponential time hypothesis (ETH) requires exponential time in the non-negative

rank (Arora et al., 2012b). Perhaps even more seriously – the matrices A, X are in general not uniquely defined.

Fortunately, in (Arora et al., 2012a; 2013a), a natural assumption on the matrix β is identified, which allows the

resulting non-negative matrix factorization problem to be provably solvable – with a very efficient algorithm even. The

assumption they introduce is one of anchor words. A word is an anchor word for a topic, if it appears in that topic and

no other. Under these assumptions, (Arora et al., 2013a) prove:

Theorem 86 ((Arora et al., 2013a)). There is an algorithm that given Õ( k3

ε3 p6 ) documents, where p is the minimum

probability of any anchor word, and runs in time Õ((n2 + nk) 1
ε2 ) , which recovers the topic-word matrix to entry-wise

error ε.

The algorithm proceeds by first identifying the anchor words for each of the topics – this is done by finding the
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vertices of the polytope formed by the convex hull of the rows of the covariance matrix E[ f ⊗ f ]. In the earlier paper

(Arora et al., 2012a), this was done by solving many linear programs, which was practically too expensive; in the later

paper (Arora et al., 2013a), this is done by an efficient combinatorial algorithm. Subsequently to finding the anchor

words, to recover the topics (Arora et al., 2012a) proceed by performing matrix inversion – which ends up being too

unstable and non-robust to noise; (Arora et al., 2013a) notice this step has a probabilistic interpretation, which allows

them to make it substantially more robust.

3.2 Beyond linearity: overview of the noisy-OR problem

Though we were focusing on topic models, other latent variable models for which tensor methods have been applied

share one important characteristic: they are linear, in the sense that the moments (or the marginals, depending on

the particular model) of the observed variables, conditioned on the latent variables depend linearly on the hidden

variables. But many settings seem to call for nonlinearity in the model. For instance, Bayesian networks in many

domains involve highly nonlinear operations on the latent variables, and could even have multiple layers. The study

of neural networks also runs into nonlinear models such as restricted Boltzmann machines (RBM) (Smolensky, 1986;

Hinton and Salakhutdinov, 2006).

We will consider here possibly the text-book example of a non-linear model: a noisy-OR network (Jordan et al.,

1999). The canonical use of this model is to model the relationship between diseases and symptoms, as in the classical

human-constructed tool for medical diagnosis called Quick Medical Reference (QMR-DT) by ((Miller et al., 1982),

(Shwe and Cooper, 1991)) which captures relationships between 570 diseases and 4075 symptoms, with 45, 470

directed edges, and the Wi j’s are small integers. 3

It is of course desirable to automatically learn the network from unlabeled data, without the use of human experts.

With respect to prior work, previously there were no approaches that even heuristically work at the required problem

size (n = 4000). (In contrast to the inference problem which has seen more work, including reasonable heuristic

methods (Jordan et al., 1999)). (Halpern and Sontag, 2013; Jernite et al., 2013) have designed some algorithms for this

problem, however their first paper (Halpern and Sontag, 2013) assumes the graph structure is given; the second paper

(Jernite et al., 2013) requires the Bayes network to be quartet-learnable, which is a strong structural assumption on the

network. Finally, we note that the problem of finding a “best-fit” Bayesian network according to popular metrics4 has

been shown to be NP-complete by (Chickering, 1996) even when all of the hidden variables are also observed.

We will consider two different sets of assumptions for this problem, and we will propose different (provable)

algorithms for each one. In the first one, we will assume a kind of “genericity” on the weights – namely, the weights

3We thank Randolph Miller and Vanderbilt University for providing the current version of this network for our research.
4Researchers resort to these metrics as when the graph structure is unknown, multiple structures may have the same likelihood, so maximum

likelihood is not appropriate.
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will be random (from a natural distribution); more generally, we will be able to get guarantees under the assumption of

a kind of conditioning on the pointwise mutual matrix: a quantity akin to the second moment matrix, which we define.

The algorithm we use will be based on tensor decompositions, as described in Section 3.1.1. In the second one, we

will assume a weakening of the anchor words assumption, as described in Section 3.1.2. In either case, the difficulty

compared to prior work is to deal with the non-linear nature of the problem.

3.3 Beyond linearity I: provable algorithms for noisy-OR using tensor de-

composition

We move to the first approach to the noisy-OR problem using tensor decompositions. On a high level, our algorithm

will use a certain correlation measure called pointwise mutual information in place of the moments of the observable

variables. Recalling the notation of Section 1.1, we note that the conditional probabilities of the symptoms in the

noisy-OR model have the following succinct form:

Pr [si = 0 | d] =

m∏
j=1

exp(−Wi jd j) = exp(−〈W i, d〉) . (3.3.1)

Thus, these conditional probabilities are log-linear: the logarithm of their value is linear in the model parameters. On

a high level, our approach will use a particular measure of correlation involving the logarithms of the moments of the

symptoms called pointwise mutual information. We will Taylor expand this quantity, which will turn the problematic

exponential in (3.3.1) into an infinite sum, in which we will ignore all but the first two terms. This brings the problem

into the realm of tensor decomposition described in Section 3.1.1, but with an important novel twist: the error from

ignoring the higher-order terms is systemic (i.e. it doesn’t go to zero as the number of samples increases) and too

large to be handled by any conventional robust tensor decomposition analysis, including (Ma et al., 2016) described in

that section. On the other hand, however, this error is highly structured, and we will be able to show that the methods

described in Section 3.1.1 can nevertheless handle them.

3.3.1 Overview of the assumptions, algorithm and results

Assumptions : we make several assumptions about the weights W, some of which we verified the QMR-DT network,

but the other assumptions are asymptotic in nature. Thus the cleanest description of our algorithm is in an average-case

setting. First, we assume all priors for the diseases are equal, namely ρi = ρ,∀i ∈ [m], which should be thought of as

small (In the QMR-DT application, ρ is like O(1/m).) Next we assume that the ground truth W ∈ Rn×m has entries
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picked in iid fashion using the following random process:

Wi j =


0, with probability 1 − p

W̃i j, with probability p

where W̃i j’s are upper bounded by νu for some constant νu and are identically distributed according to a distributionD

which satisfies that for some constant νl > 0,

E
W̃i j∼D

[
exp(−W̃2

i j)
]
≤ 1 − νl . (3.3.2)

The condition (3.3.2) intuitively requires that W̃i j is bounded away from 0. We will assume that p ≤ 1/3 and νu =

O(1), νl = Ω(1). (Again, these are realistic for QMR-DT setting).

Under such conditions, informally, we will show the following claim:

Theorem 3 (Informally stated). There exists a polynomial time algorithm (Algorithm 17) that, given polynomially

many samples from the noisy OR network described in the previous paragraph, recovers the weight matrix W with

Õ(ρ
√

pm) relative error in `2-norm in each column.

Since we think of the prior of the diseases ρ as being on the order O(1/m). This means that even if p is on the

order of 1, our relative error bound equals to O(1/
√

m) � 1.

3.3.1.1 The algorithm in a nutshell

We will first provide an overview of the full algorithm, pointing out the main difficulties. We define a crucial quantity

pointwise mutual information of two binary-valued random variables x and y is PMI2(x, y) , log E[xy]
E[x]E[y] . Note that

it is positive iff E[x, y] > E[x]E[y] and thus is used as a measure of correlation in many fields. This concept can be

extended in more than one way to a triple of boolean variables x, y, z and we use

PMI3(x, y, z) , log
E[xy]E[yz]E[zx]
E[xyz]E[x]E[y]E[z]

. (3.3.3)

(We will sometimes shorten PMI3 and PMI2 to PMI when this causes no confusion.)

Our algorithm is given polynomially many samples from the model (recall, a sample contains only the observables:

the symptoms that are or are not present in a particular patient). It starts by computing the following matrix n× n PMI

and n × n × n tensor PMIT, which tabulate the correlations among all pairs and triples of symptoms (specifically, the
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indicator random variable for the symptom being absent):

PMIi j , PMI2(1 − si, 1 − s j). (3.3.4)

PMITi, j,k , PMI3(1 − si, 1 − s j, 1 − s j) (3.3.5)

The next proposition makes the key observation that the above matrix and tensor are close to rank m, which we

recall is much smaller than n. For convenience, we define F,G ∈ Rn×m as

F , 1 − exp(−W) (3.3.6)

G , 1 − exp(−2W) . (3.3.7)

Proposition 87 (Informally stated). In the described setting,

PMI ≈ ρ
(
FF> + ρGG>

)
= ρ

m∑
k=1

FkF>k + ρ2
m∑

k=1

GkG>k (3.3.8)

(3.3.9)

PMIT ≈ ρ
( m∑

k=1

Fk ⊗ Fk ⊗ Fk︸               ︷︷               ︸
:=S

+ ρ

m∑
k=1

Gk ⊗Gk ⊗Gk︸                  ︷︷                  ︸
:=E

)
. (3.3.10)

The proposition is proved later (with precise statement) in Section 3.3.5 by computing the moments by marginal-

ization and using Taylor expansion to approximate the log of the moments, and ignoring terms ρ3 and smaller. (Recall

that ρ is the probability that a patient has a particular disease, which should be small, of the order of O(1/n). The

dependence of the final error upon ρ appears in Section 3.3.2.) Since the tensor PMIT can be estimated to arbitrary

accuracy given enough samples, we have in some brought the problem somewhat closer to the linear tensor decompo-

sition described in Section 3.1.1. Though this is the high level idea, the following difficulties have to be overcome.

Difficulty 1: Suppose in equation (3.3.10) we view the first summand S , which is rank m with components Fk’s as the

signal term. In all previous polynomial-time algorithms for tensor decomposition, the tensor is required to have the

form
∑m

k=1 Fk⊗Fk⊗Fk +noise. To make our problem fit this template we could consider the second summand E as the

“noise”, especially since it is multiplied by ρ � 1 which tends to make E have smaller norm than S . But this is naive

and incorrect, since E is a very structured matrix: it is more appropriate viewed as systematic error. (In particular

this error doesn’t go down in norm as the number of samples goes to infinity.) In order to do tensor decomposition in

presence of such systematic error, we will need both a delicate error analysis and a very robust tensor decomposition

algorithm. These will be outlined in Section 3.3.1.3.

Difficulty 2: To get our problem into a form suitable for tensor decomposition requires a whitening step, which uses
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the robust estimate of the whitening matrix from the second moment matrix. In this case, the whitening matrix has to

be extracted out of the PMI matrix, which itself suffers from a systematic error. This also is not handled in previous

works, and requires a delicate control of the error. See Section 3.3.1.4 for more discussion.

Difficulty 3: There is another source of inexactness in equation (3.3.10), namely the approximation is only true for

those entries with distinct indices — for example, the diagonal entry PMIii has completely different formula from that

for PMIi j when i , j. This will complicate the algorithm, as described in Subsections 3.3.1.3 and 3.3.1.4.

The next few Subsections sketch how to overcome these difficulties, and the details appear in the rest of the paper.

3.3.1.2 Recovering span of low-rank matrices in presence of systematic error

To illustrate the main ideas for dealing with the systematic error as described in Difficulty 1, we focus on a simpler

task: approximately recovering the span of a low-rank matrix in the presence of systematic noise. The next section

sketches an extension of this method to tensor decomposition with analogous systematic error.

In the classical setting of recovering a low-rank matrix in the presence of noise, there is an unknown n × n matrix

S of rank m and we are given S + E where E is an error matrix. The method to recover S is to compute the best

rank-m approximation to S + E. The quality of this approximation was studied by Davis and Kahan (Davis and Kahan,

1970) and Wedin (Wedin, 1972), and many subsequent authors. The quality of the recovery depends upon the ratio

||E||/σm(S ), where σm(·) denotes m-th largest singular value and || · || denotes the spectral norm. To make this familiar

lemma fit our setting more exactly, we will phrase the problem as trying to recover a matrix S given noisy estimate

S S > + E. Now one can only recover S up to rotation, and the following lemma describes the error in the Davis-Kahan

recovery. It also plays a key role in the error analysis of the usual algorithm for tensor decomposition.

Lemma 88. In the above setting, let K, K̂ the subspace of the top m eigenvectors of S S > and S S > + E. Let ε be such

that ‖E‖ ≤ ε · σm(S S >). Then
∥∥∥IdK − IdK̂

∥∥∥ . ε where Id is the identity transformation on the subspace in question.

The Lemma thus treats ||E||/σm(S S >) as the definition of noise/signal ratio. Before we generalize the definition

and the algorithm to handle systematic error it is good to get some intuition, from looking at (3.3.8): PMI ≈ ρ(FFT +

ρGGT ). Thinking of the first term as signal and the second as error, let’s check how bad the noise/signal ratio defined

in Davis-Kahan is. The “signal”is σm(FF>), which is smaller than n since the trace of FF> is of the order of mn in

our probabilistic model for the weight matrix. The “noise” is the norm of ρGG>, which is large since the Gk’s are

nonnegative vectors with entries of the order of 1, and therefore the quadratic form 〈 1
√

n 1, ρGG> 1
√

n 1〉 can be as large

as ρ
∑

k〈Gk,
1
√

n 1〉2 ≈ ρmn. Thus the Davis-Kahan noise/signal ratio is ρm, and so when ρm � 1, it allows recovering

the subspace of F with error O(ρm). Note that this is a vacuous bound since ρ needs to be at least 1/m so that the

hidden variable d contains 1 non-zero entry in average. We’ll argue that this error is too pessimistic and we can in fact

drive the estimation error down to close to ρ.
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Definition (spectral boundedness). Let n ≥ m. Let E ∈ Rn×n be a symmetric matrix and S ∈ Rn×m. Then, we say E is

τ-spectrally bounded by S if

E � τ(S S > + σm(S S >) · Idn) (3.3.11)

The smallest such τ is the “error/signal ratio” for this recovery problem.

This definition differs from Davis-Kahan’s because of the τS S > term on the right hand side of (3.3.11). This

allows, for any unit vector x, the quadratic form value xT Ex to be as large as τ(xT S S >x + σm(S S >)). Thus for

example the 1 vector no longer causes a large noise/signal ratio since both quadtratic forms FF> and GG> have large

values on it.

This new error/signal ratio is no larger than the Davis-Kahan ratio, but can potentially be much smaller. Now we

show how to do a better analysis of the Davis-Kahan recovery in terms of it. The proof of this theorem appears in

Section 3.3.3.

Theorem 4 (matrix perturbation theorem for systematic error). Let n ≥ m. Let S ∈ Rn×m be of full rank. Suppose

positive semidefinite matrix E ∈ Rn×n is ε-spectrally bounded by S ∈ Rn×m for ε ∈ (0, 1). Let K, K̂ the subspace of the

top m eigenvectors of S S > and S S > + E. Then,

∥∥∥IdK − IdK̂

∥∥∥ . ε .
Finally, we should consider what this new definition of noise/signal ratio achieves. The next proposition (whose

proof appears in Section 3.3.6) shows that that under the generative model for W sketched earlier, τ = O(log n).

Therefore,
√
ρG is Õ(ρ)-bounded by F, and the recovery error of the subspace of F from FF> + ρGG> is Õ(ρ)

(instead of O(ρm) using Davis-Kahan).

Proposition 89. Under the generative model for W, w.h.p, the matrix G = 1 − exp(−2W) is τ-spectrally bounded by

F = 1 − exp(−W), with τ = Õ(1).

Empirically, we can compute the τ value for the weight matrix W in the QMR-DT dataset (Shwe and Cooper,

1991), which is a textbook application of noisy OR network. For the QMR-DT dataset, τ is under 6. This implies that

the recovery error of the subspace of F guaranteed by Theorem 4 is bounded by O(τρ) ≈ ρ, whereas the error bound

by Davis-Kahan is O(ρm).
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3.3.1.3 Tensor decomposition with systematic error

Now we extend the insight from the matrix case to tensor recovery under systematic error. In turns out condi-

tion (3.3.11) is also a good measure of error/signal for the tensor recovery problem of (3.3.10). Specifically, if G

is τ-bounded by F, then we can recover the components Fk’s from the PMIT with column-wise error O(ρτ3/2 √m).

This requires a non-trivial algorithm (instead of SVD), and the additional gain is that we can recover Fk’s individually,

instead of only obtaining the subspace with the PMI matrix.

First we recall the prior state of the art for the error analysis of tensor decomposition with Davis-Kahan type

bounds. The best error bounds involve measuring the magnitude of the noise matrix Z in a new way. For any n1×n2×n3

tensor T , we define the ‖·‖{1}{2,3} norm as

‖T‖{1}{2,3} := sup
x∈Rn1 ,y∈Rn2n3

‖x‖=1,‖y‖=1

∑
i∈[n1]

( j,k)∈[n2]×[n3]

xiy jkTi jk . (3.3.12)

Note that this norm is in fact the spectral norm of the flattening of the tensor (into a n1 × n2n3 dimensional matrix).

This norm is larger than the injective norm5, but recently (Ma et al., 2016) shows that ε-error in this norm implies

O(ε)-error in the recovery guarantees of the components, whereas if one uses injective norm, the guarantees often pick

up an dimension-dependent factor (Anandkumar et al., 2014). We define ‖·‖{2}{1,3} norm similarly. As is customary

in tensor decomposition, the theorem is stated for tensors of a special form, where the components {ui}, {vi}, {wi} are

orthonormal families of vectors. This can be ensured without loss of generality using a procedure called whitening

that uses the 2nd moment matrix.

Theorem 5 (Extension of (?)Theorem 10.2]MSS16). There is a polynomial-time algorithm (Algorithm 11 later) which

has the following guarantee. Suppose tensor T is of the form

T =

r∑
i=1

ui ⊗ vi ⊗ wi + Z

where {ui}, {vi}, {wi} are three collections of orthonormal vectors in Rd, and ‖Z‖{1}{2,3} ≤ ε, ‖Z‖{2}{1,3} ≤ ε. Then, it

returns {(ũi, ṽi, w̃i)} in polynomial time that is O(ε)-close to {(ui, vi,wi)} in `2 norm up to permutation. 6

But in our setting the noise tensor has systematic error. An analog of Theorem 4 in this setting is complicated

because even the whitening step is nontrivial. Recall also the inexactness in Proposition 87 due to the diagonal terms,

which we earlier called Difficulty 3. We address this difficulty in the algorithm by setting up the problem using a

5The injective norm of the tensor T is defined as ‖T‖{1}{2,3} := supx∈Rn1 ,y∈Rn2 z∈Rn3
‖x‖=1,‖y‖=1,‖z‖=1

∑
i∈[n1], j∈[n2],k∈[n3] xiy jzkTi jk .

6Precisely, here we meant that there exists a permutation π such that for every i, max{‖ũπ(i) − ui‖, ‖ṽπ(i) − vi‖, ‖w̃π(i) − wi‖} ≤ O(ε)
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sub-tensor of the PMI tensor. Let S a, S b, S c be a uniformly random equipartition of the set of indices [n]. Let

ak = Fk,S a , bk = Fk,S b , ck = Fk,S c , (3.3.13)

where Fk,S denotes the restriction of vector Fk to subset S . Moreover, let

γk = Gk,S a , δk = Gk,S b , θk = Fk,S c . (3.3.14)

Then, since the sub-tensor PMITS a,S b,S c only contains entries with distinct indices, we can use Taylor expansion (see

Lemma 95) to obtain that

PMITS a,S b,S c = ρ
∑
k∈[m]

ak ⊗ bk ⊗ ck + ρ2
∑
k∈[m]

γk ⊗ δk ⊗ θk + higher order terms .

Here the second summand on the RHS corresponds to the second order term in the Taylor expansion. It turns out that

the higher order terms are multiplied by ρ3 and thus have negligible Frobenius norm, and therefore discussion below

will focus on the first two summands.

For simplicity, let T = PMITS a,S b,S c . Our goal is to recover the components ak, bk, ck from the approximate low-

rank tensor T .

The first step is to whiten the components ak’s, bk’s and ck’s. Recall that ak = Fk,S a is a non-negative vector. This

implies the matrix A = [a1, . . . , am] must have a significant contribution in the direction of the vector 1, and thus is far

away from being well-conditioned. For the purpose of this section, we assume for simplicity that we can access the

covariance matrix defined by the vector ak’s,

Q̄a := AA> =
∑
k∈[m]

aka>k . (3.3.15)

Similarly we assume the access of Q̄b and Q̄c which are defined analogously. In Section 3.3.1.4 we discuss how to

obtain approximately these three matrices.

Then, we can compute the whitened tensor by applying transformation (Q̄+
a )1/2, (Q̄+

b )1/2, (Q̄+
c )1/2 along the three

modes of the tensor T ,

(Q̄+
a )1/2 ⊗ (Q̄+

b )1/2 ⊗ (Q̄+
c )1/2 · T = ρ

∑
k∈[m]

(Q̄+
a )1/2ak ⊗ (Q̄+

b )1/2bk ⊗ (Q̄+
c )1/2ck

+ ρ2
∑
k∈[m]

(Q̄+
a )1/2γk ⊗ (Q̄+

b )1/2δk ⊗ (Q̄+
c )1/2θk︸                                                ︷︷                                                ︸

:=Z

+negligible terms
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Now the first summand is a low rank orthogonal tensor, since (Q̄+
a )1/2ak’s are orthonormal vectors. However, the

term Z is a systematic error and we use the following Lemma to control its ‖·‖{1}{2,3} norm.

Lemma 90. Let n ≥ m and A, B,C ∈ Rn×m be full rank matrices and let Γ,∆,Θ ∈ Rd×` . Let γi, δi, θi be the i-th column

of Γ,∆,Θ, respectively. Let Q̄a = AA>, Q̄b = BB>, Q̄c = CC>. Suppose ΓΓ> (and ∆∆>, ΘΘ>) is τ-spectrally bounded

by A (and B, C respectively), then,

∥∥∥∥∥∥∥∑i∈[`](Q̄+
a )1/2γi ⊗ (Q̄+

b )1/2δi ⊗ (Q̄+
c )1/2θi

∥∥∥∥∥∥∥
{1}{2,3}

≤ (2τ)3/2 .

Lemma 90 shows that to give an upper bound on the ‖·‖{1}{2,3} norm of the error tensor Z, it suffices to show that

the square of the components of the error, namely, ΓΓ>,∆∆>,ΘΘ> are τ-spectrally bounded by the components of the

signal A, B,C respectively. This will imply that ‖Z‖{1}{2,3} ≤ (2τ)3/2ρ2.

Recall that A and Γ are two sub-matrices of F and G. We have shown that GG> is τ-spectrally bounded by F in

Proposition 89. It follows straightforwardly that the random sub-matrices also have the same property.

Proposition 91. In the setting of this section, under the generative model for W, w.h.p, we have that ΓΓ> is τ-spectrally

bounded by A with τ = O(log n). The same is true for the other two modes.

Using Proposition 91 and Lemma 90, we have that

‖Z‖{1}{2,3} . ρ
2 log3/2(n) .

Then using Theorem 5 on the tensor (Q̄+
a )1/2 ⊗ (Q̄+

b )1/2 ⊗ (Q̄+
c )1/2 · T , we can recover the components (Q̄+

a )1/2ak’s,

(Q̄+
b )1/2bk’s, and (Q̄+

c )1/2ck’s. This will lead us to recover ak,bk and ck, and finally to recover the weight matrix W.

3.3.1.4 Robust whitening

In the previous subsection, we assumed the access to Q̄a, Q̄b, Q̄c (defined in (3.3.15)) which turns out to be highly

non-trivial. A priori, using equation (3.3.8), noting that A = [F1,S a , . . . , Fm,S a ], we have

PMIS a,S a/ρ ≈ Q̄a + error .

However, this approximation can be arbitrarily bad for the diagonal entries of PMI since equation (3.3.8) only works

for entries with distinct indices. (Recall that this is why we divided the indices set into S a, S b, S c and studied the

asymmetric tensor in the previous subsection). Moreover, the diagonal of the matrix Q̄a contributes to its spectrum

significantly and therefore we cannot get meaningful bounds (in spectral norm) by ignoring the diagonal entries.
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This issue turns out to arise in most of the previous tensor papers and the solution was to compute AA> by using

the asymmetric moments AB>, BC>,CA>,

AA> = (AB>)(CB>)+(CA>) .

Typically AB>, BC>,CA> can be estimated with arbitrarily small error (as number of samples go to infinity) and

therefore the equation above leads to accurate estimate to AA>. However, in our case the errors in the estimate

PMIS a,S b ≈ AB>, PMIS b,S c ≈ BC>, PMIS c,S a ≈ CA> are systematic. Therefore, we need to use a more delicate analysis

to control how the error accumulates in the estimate,

Q̄a ≈ PMIS a,S b · PMI−1
S b,S c

· PMIS c,S a .

Here again, to get an accurate bound, we need to understand how the error in PMIS a,S b − AB> behaves relatively

compared with AB> in a direction-by-direction basis. We generalized Definition to capture the asymmetric spectral

boundedness of the error by the signal.

Definition (Asymmetric spectral boundedness). Let n ≥ m and B,C ∈ Rn×m. We say a matrix E ∈ Rn×n is ε-spectrally

bounded by (B,C) if E can be written as:

E = B∆1C> + B∆>2 + ∆3C> + ∆4 . (3.3.16)

Here ∆1 ∈ R
m×m, ∆2,∆3 ∈ R

n×m and ∆4 ∈ R
n×n are matrices whose spectral norms are bounded by: ‖∆1‖ ≤ ε,

‖∆2‖ ≤ εσmin(C), ‖∆3‖ ≤ εσmin(B) and ‖∆4‖ ≤ εσmin(B)σmin(C).

Let K be the column subspace of B and H be the column subspace of C. Then we have ∆1 = B+E(C>)+, ∆2 =

B+EIdH⊥ , ∆3 = IdK⊥E(C>)+, ∆4 = IdK⊥EIdH⊥ . Intuitively, they measure the relative relationship between E and B,C

in different subspaces. For example, ∆1 is the relative perturbation in the column subspace of K and row subspace

of H. When B = C, this is equivalent to the definition in the symmetric setting (this will be clearer in the proof of

Theorem 4).

Theorem 6 (Robust whitening theorem). Let n ≥ m and A, B,C ∈ Rn×m. Suppose Σab,Σbc,Σca ∈ R
n×n are of the form,

Σab = AB> + Eab, Σbc = BC> + Ebc, and Σca = CA> + Eca.
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where Eab, Ebc, Eca are ε-spectrally bounded by (A, B), (B,C), (C, A) respectively. Then, the matrix matrix

Qa = Σab[Σ>bc]+
mΣca

is a good approximation of AA> in the sense that Qa = Σab[Σ>bc]+
mΣca − AA> is O(ε)-spectrally bounded by A. Here

[Σ]m denotes the best rank-m approximation of Σ.

The theorem is non-trivial even if the we have an absolute error assumption, that is, even if ‖Ebc‖ ≤ τσmin(B)σmin(C),

which is stronger condition than Ebc is τ-spectrally bounded by (B,C). Suppose we establish bounds on ‖Σab − AB>‖,

‖Σ+>
bc − (BC>)+‖ and ‖Σab − AB>‖ individually, and then putting them together in the obvious way to control the error

Σab[Σ>bc]+
mΣca − AB>(BC>)+CA>. Then the error will be too large for us. This is because standard matrix perturbation

theory gives that ‖Σ−>bc − (BC>)−1‖ can be bounded by O
(
‖Ebc‖‖(BC>)−1‖2

)
. ε/[σmin(B)σmin(C)], which is tight. Then

we multiply the error with the norm of the rest of the two terms, the error will be roughly ε · σmax(B)σmax(C)
σmin(B)σmin(C) . That is, we

will loss a condition number of B,C, which can be dimension dependent for our case.

The fix to this problem is to avoid bounding each term in Σab[Σ>bc]+
mΣca individually. To do this, we will take the

cancellation of these terms into account. Technically, we re-decompose the product Σab[Σ>bc]+
mΣca into a new product of

three matrices (ΣabB+)(B[Σ>bc]+
mC)(C+Σca), and then bound the error in each of these terms instead. See Section 3.3.9

for details.

As a corollary, we conclude that the whitened vectors (Q+
a )1/2ai’s are indeed approximately orthonormal.

Corollary 92. In the setting of Theorem 6, we have that (Q+
a )1/2A contains approximately orthonormal vectors as

columns, in the sense that

‖(Q+
a )1/2AA>(Q+

a )1/2 − Id‖ . ε .

Therefore we have found an approximate whitening matrix for A even though we do not have access to the diagonal

entries.

3.3.2 Main Algorithms and Results

As sketched in Section 4.4, our main algorithm (Algorithm 17) uses tensor decomposition on the PMI tensor. In this

section, we describe the different steps and how the fit together. Subsequently, all steps will be analyzed in separate

sections.

Theorem 7 (Main theorem, random weight matrix, (Arora et al., 2017b)). Suppose the true W is generated from the

random model in Section 3.3.1 with ρpm ≤ c for some sufficiently small constant c. Then given N = poly(n, 1/p/, 1/ρ)
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Algorithm 10 Learning Noisy-Or Networks via Decomposing PMI Tensor
Inputs: N samples generated from a noisy-or network, disease prior ρ
Outputs: Estimate of weight matrix Ŵ.

1. Compute the empirical PMI matrix and tensor P̂MI, P̂MIT using equation (3.3.45).

2. Choose a random equipartition S a, S b, S c of [n].

3. Obtain approximate whitening matrices for P̂MIT via Algorithm 13 for the partitioning S a, S b, S c

4. Run robust tensor-decomposition Algorithm 12 to obtain vectors âi, b̂i, ĉi, i ∈ [m]

5. Let Yi be the concatenation of the three vectors 1 − ( 1−ρ
ρ

)1/3âi, 1 − ( 1−ρ
ρ

)1/3b̂i, 1 − ( 1−ρ
ρ

)1/3ĉi. (Recall that âi, b̂i, ĉi

are of dimension n/3 each.)

6. Return Ŵ, where

Ŵi, j =

− log((Yi) j), if (Yi) j > exp(−νu) :
exp(−νu), otherwise

number of examples, Algorithm 17 returns a weight matrix Ŵ in polynomial time that satisfies

∀i ∈ [m], ‖Ŵi −Wi‖2 ≤ Õ(η
√

pn) ,

where η = Õ
(√

mpρ
)
.

Note that the column `2 norm of Wi is on the order of
√

pn, and thus η can be thought of as the relative error in `2

norm. Note also that Pr[si = 0] = 1 − Pr[si = 1] ≈ 1 − pmρ, so ρpm = o(1) is necessary purely for sample complexity

reasons. Finally, we can also state a result with a slightly weaker guarantee, but with only deterministic assumptions on

the weight matrix W. Recall that F = 1 − exp(−W) and G = 1 − exp(−2W). We will also define third and fourth-order

terms H = 1 − exp(−3W), L = 1 − exp(−4W).

We also define the incoherence of a matrix F. Roughly speaking, it says that the left singular vectors of F don’t

correlate with any of the natural basis vector much more than the average.

Definition (Incoherence:). Let F ∈ Rn×m have singular value decomposition F = UΣV>. We say F is µ-incoherent if

maxi ‖Ui‖ ≤
√
µm/n. where Ui is the i-th row of U.

We assume the weight matrix W satisfies the following deterministic assumptions,

1. GG>,HH>, LL> is τ-spectrally bounded by F for τ ≥ 1.

2. F is µ-incoherent with µ ≤ Õ(
√

n/m).

3. If maxi ‖Fi‖0 ≤ pn, with high probability over the choice of a subset S a, |S a| = n/3, σmin(FS a ) &
√

np and ρpm ≤ c

for some sufficiently small constant c.

Theorem 8 (Main theorem, deterministic weight matrix, (Arora et al., 2017b)). Suppose the matrix W satisfies the
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conditions 1-3 above. Given polynomial number of samples, Algorithm 17 returns Ŵ in polynomial time, s.t.

∀i ∈ [m], ‖Ŵi −Wi‖2 ≤ Õ(η
√

np) .

for η =
√

mpρτ3/2

Since the `2 norm of Wi is on the order of
√

np, the relative error in `2-norm is as most
√

mρτ3/2, which mirrors

the randomized case above.

The proofs of Theorems uses the overall strategy of Section 4.4, and is deferred to Section 3.3.11. We give a high

level outline that demonstrates how the proofs depends on the machinery built in the subsequent sections.

Both Theorem 7 and Theorem 8 are similarly proved – the only technical difference being how the third and higher

order terms are bounded. (Because of generative model assumption, for Theorem 7 we can get a more precise control

on them.) Hence, we will not distinguish between them in the coming overview.

Overall, we will follow the approach outlined in Section 4.4. Let us step through Algorithm 17 line by line:

1. The overall goal will be to recover the leading terms of the PMI tensor. Of course, we get samples only, so can

merely get an empirical version of it. In Section 3.3.12, we show that the simple plug-in estimator does the job

– and does so with polynomially many samples.

2. Recall Difficulty 3 from Section 4.4 : the PMI tensor and matrix expression is only accurate on the off-diagonal

entries. In order to address this, in Section 3.3.1.3 we passed to a sub-tensor of the original tensor by partitioning

the symptoms into three disjoint sets, and considering the induced tensor by this partition.

3. In order to apply the robust tensor decomposition algorithm from Section 3.3.4, we need to first calculate whiten-

ing matrices. This is necessarily complicated by the fact that the diagonals of the PMI matrix are not accurate,

as discussed in Section 3.3.1.4. Section 3.3.9 gives guarantees on the procedure for calculating the whitening

matrices.

4. This is main component of the algorithm: the robust tensor decomposition machinery. In Section 3.3.4, the

conditions and guarantees for the success of the algorithm are formalized. There, we deal with the difficulties

layed out in Section 3.3.1.2 : namely that we have a substantial systematic error that we need to handle. (Both

due to higher-order terms, and due to the missing diagonal entries)

5. This step, along with Step 6, is a post-processing step – which allows us to recover the weight matrix W after

we have recovered the leading terms of the PMI tensor.

We also give a short quantitative sense of the guarantee of the algorithm. (The reader can find the full proof in

Section 3.3.11.)
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To get quantitative bounds, we will first need a handle on spectral properties of the random model: these are

located in Section 3.3.6. As we mentioned above, the main driver of the algorithm is step 4, which uses our robust

tensor decomposition machinery in Section 3.3.4. To apply the machinery, we first need to show that the second (and

higher) order terms of the PMI tensor are spectrally bounded. This is done by applying Proposition 101, which roughly

shows the higher-order terms are O(ρ log n)-spectrally bounded by ρFF>. The whitening matrices are calculated using

machinery in Section 3.3.9. We can apply these tools since the random model gives rise to a O(1)-incoherent F matrix

as shown in Lemma 3.3.7.

To get a final sense of what the guarantee is, the l2 error which step 4 gives, via Theorem 10 roughly behaves like
√
σmaxτ

3/2, where σmax is the spectral norm of the whitening matrices and τ is the spectral boundedness parameter.

But, by Lemma 109 σmax is approximately the spectral norm of ρFF> – which on the other hand by Lemma 98 is on

the order of mnp2ρ. Plugging in these values, we get the theorem statement.

3.3.3 Finding the Subspace under Heavy Perturbations

In this section, we show even if we perturb a matrix S S > with an error whose spectral norm might be much larger than

σmin(S S >), as long as E is spectrally bounded the top singular subspace of S is still preserved. We defer the proof

of the asymmetric case (Theorem 6) to Section 3.3.9. We note that such type of perturbation bounds, often called

relatively perturbation bounds, have been studied in (Ipsen, 1998; Li, 1998a;b; 1997). The results in these papers

either require the that signal matrix is full rank, or the perturbation matrix has strong structure. We believe our results

are new and the way that we phrase the bound makes the application to our problem convenient. We recall Theorem 4,

which was originally stated in Section 4.4.

@title (matrix perturbation theorem for systematic error). Let n ≥ m. Let S ∈ Rn×m be of full rank. Suppose positive

semidefinite matrix E ∈ Rn×n is ε-spectrally bounded by S ∈ Rn×m for ε ∈ (0, 1). Let K, K̂ the subspace of the top m

eigenvectors of S S > and S S > + E. Then,

∥∥∥IdK − IdK̂

∥∥∥ . ε .
Proof. We can assume ε ≤ 1/10 since otherwise the statement is true (with a hidden constant 10). Since E is a

positive semidefinite matrix, we write E = RR> where R = E1/2. Since A has full column rank, we can write

R = AS + B where S ∈ Rm×n and the columns of B are in the subspace K⊥. (Specifically, we can choose S = A+R and
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B = R − AA+R = IdK⊥B.) By the definition of spectral boundedness, we have

BB> = IdK⊥RR>IdK⊥ � IdK⊥ε
(
AA> + σm(AA>)Idn

)
IdK⊥ .

= εσm(AA>)IdK⊥ .

Therefore, we have that ‖B‖2 ≤ εσmin(AA>). Moreover, we also have

IdKRR>IdK � εAA> + εσminIdK ,

It follows that

AS S >A> ≤ 2εAA> .

which implies

‖S S >‖ ≤ ε.

Let P =
(
Idm + S S >

)1/2. Then we write AA> + E as,

AA> + E = AA> + RR> = AA> + (AS + B)(AS + B)>

= A(Id + S S >)A> + AS B> + BS >A> + BB>

= (AP + BS >P−1)(AP + BS >P−1)> + BB> − BS >P−2S B> (3.3.17)

Let Â = (AP + BS >P−1). Let K′ be the column span of Â. We first prove that K̂ is close to K′. Note that

∥∥∥BB> − BS >P−2S B>
∥∥∥ . ‖B‖2 + ‖B‖2

∥∥∥S >P−2S
∥∥∥ . ‖B‖2 (since P = Id + S S > � S S >)

. εσmin(AA>) .

Moreover, we haveσmin(ÂÂ>) = σmin(Â)2 =
(
σmin(AP) − ‖BS >P−1‖

)2
≥ (1−O(ε))σmin(A)2. Therefore, using Wedin’s

Theorem (Lemma 114) on equation (3.3.17), we have that

‖IdK̂ − IdK′‖ . ε . (3.3.18)
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Next we show K′ and K are also close. We have

‖Â − AP‖ ≤ ‖BS >P−1‖ ≤ ε
√
σmin(A)2 (since ‖S ‖ .

√
ε, ‖B‖ .

√
ε)

Therefore, by Wedin’s Theorem, K′, as the span of top m left singular vectors of Â, is close to the span of the top left

singular vector of AP, namely, K

‖IdK − IdK′‖ . ε . (3.3.19)

Therefore using equation (3.3.18) and (3.3.19) and triangle inequality, we complete the proof. �

3.3.4 Robust Tensor Decomposition with Systematic Error

In this section we discuss how to robustly find the tensor decomposition even in presence of systematic error. We

first illustrate the main techniques in an easier setting of orthogonal tensor decomposition (Section 3.3.4.1), then we

describe how it can be generalized to the general setting that we require for our algorithm (Section 3.3.4.2).

3.3.4.1 Warm-up: Approximate Orthogonal Tensor Decomposition

We start with decomposing an orthogonal tensor with systematic error. The algorithm we use here is a slightly more

general version of an algorithm in (Ma et al., 2016).

Algorithm 11 Robust orthogonal tensor decomposition
Inputs: Tensor T ∈ Rd×d×d, number δ, ε ∈ (0, 1).
Outputs: Set S = {(ãi, b̃i, c̃i)}

1. S = ∅

2. For s = 1 to O(d1+δ log d)

3. Draw g ∼ N(0, Idn), and compute M =
(
Idn ⊗ Idn ⊗ g>

)
· T .7

4. Compute the top left and right singular vectors u, v ∈ Rd of M. Let z = (u> ⊗ v> ⊗ Idn) · T .

5. If (u> ⊗ v> ⊗ z>) · T ≥ 1 − ζ, where ζ = O(ε), and u is 1/2-far away from any of ui’s with (ui, vi,wi) ∈ S ,
then add (u, v,w) to S .

6. Return S

Theorem 9 (Stronger version of Theorem 5). Suppose {ui}, {vi}, {wi} are three collection ε-approximate orthonormal

7Recall that product of two tensor (A ⊗ B ⊗C) · (E ⊗ D ⊗ F) = AE ⊗ BD ⊗CF
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vectors. Suppose tensor T is of the form

T =

r∑
i=1

ui ⊗ vi ⊗ wi + Z

with ‖Z‖{2}{1,3} ≤ τ and ‖Z‖{1}{2,3} ≤ τ. Then, with probability at least 0.9, Algorithm 11 returns S = {(ũi, ṽi, w̃i)} which

is guaranteed to be O((τ + ε)/δ)-close to {(ui, vi,wi)} in `2-norm up to permutation.

Proof Sketch of Theorem 9. The Theorem is a direct extension of (?)Theorem 10.2]MSS16 to asymmetric and ap-

proximate orthogonal case. We only provide a proof sketch here. We start by writing

M =
(
Id ⊗ Id ⊗ g>

)
· T =

m∑
i=1

〈g,wi〉uiv>i︸           ︷︷           ︸
:=Ms

+ (Idn ⊗ Idn ⊗ g>) · Z︸                  ︷︷                  ︸
:=Mg

(3.3.20)

Since ‖Z‖{2}{1,3} ≤ τ and ‖Z‖{1}{2,3} ≤ τ, (?)Theorem 6.5]MSS16 implies that with probability at least 1 − d2 over the

choice of g,

∥∥∥(Idn ⊗ Idn ⊗ g>) · Z
∥∥∥ ≤ 2

√
log d · τ

Let t = 2
√

log d. We have that with probability 1/(d1+δ logO(1) d), 〈g,w1〉 ≥ (1 + δ/3)t and 〈g,w j〉 ≤ t for every j , 1.

We condition on these events. Let ūi be a set of orthonormal vectors such that Eu = [u1, . . . , um]− [ū1, . . . , ūm] satisfies

‖Eu‖ ≤ ε (we can take ūi’s to be the whitening of ui’s). Similarly define v̄i’s. Then we have that the term (defined in

equation (3.3.20)) can be written as
∑

i〈g,w1〉ūiv̄i + E′ where ‖E‖′ . ε. Let M̄S =
∑

i〈g,w1〉ūiv̄i. Then M̄S has top

singular value 〈g,w1〉 ≥ (1 + δ/3)t, and second singular value at most t. Moreover, the term Mg + E′ has spectral

norm bounded by O(τ + ε). Thus by Wedin’s Theorem (Lemma 114), the top left and right singular vectors u, v of

MS + Mg = M̄S + Mg + E′ are O((τ + ε)/δ)-close to ū1 and v̄1 respectively. They are also O((τ + ε)/δ)-close to u1, v1

since u1 is close to ū1. Moreover, we have (u> ⊗ v> ⊗ Id) · T is O(τ/δ)-close to w1.

Therefore, with probability 1/(d1+δ logO(1) d), each round of the for loop in Algorithm 11 will find u1, v1,w1. Line

5 is used to verify if the resulting vectors are indeed good using the injective norm as a test. It can be shown that if

the test is passed then (u, v, z) is close to one of the component. Therefore, after d1+δ logO(1) d iterations, with high

probability, we can find all of the components.

�

3.3.4.2 General tensor decomposition

In many previous works, general tensor decomposition is reduced to orthogonal tensor decomposition via a whitening

procedure. However, here in our setting we cannot estimate the exact whitening matrix because of the systematic error.
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Therefore we need a more robust version of approximate whitening matrix, which we define below:

Definition. Let r ≤ d. A collection of r vectors {a1, . . . , ar} is ε-approximately orthonormal if the matrix A with ai as

columns satisfies

∥∥∥A>A − Id
∥∥∥ ≤ ε (3.3.21)

Definition. Let d ≥ r and A = [a1, . . . , ar] ∈ Rd×r. A PSD matrix Q ∈ Rd×d is an ε-approximate whitening matrix for

A if (Q+)1/2A is ε-approximately orthonormal .

Algorithm 12 Tensor decomposition with systematic error
Inputs: Tensor T ∈ Rn1×n2×n3 and ε-approximate whitening matrices Qa,Qb,Qc ∈ R

d×d.
Outputs: {âi, b̂i, ĉi}i∈[r]

1. Compute T̃ = (Q+
a )1/2 ⊗ (Q+

b )1/2 ⊗ (Q+
c )1/2 · T

2. Run orthogonal tensor decomposition (Algorithm 11) with input T̃ , and obtain {ăi, b̆i, c̆i}

3. Return: {Q1/2
a ăi,Q

1/2
b b̆i,Q

1/2
c c̆i}

With this in mind, we can state the guarantee on the tensor decomposition algorithm (Algorithm 12).

Theorem 10. Let d ≥ r, and A, B,C ∈ Rd×r be full rank matrices. Let Γ,∆,Θ ∈ Rd×` . Let ai, bi, ci, γi, δi, θi be the

columns of A, B,C,Γ,∆,Θ respectively. Suppose tensor T is of the form

T =

r∑
i=1

ai ⊗ bi ⊗ ci +
∑̀
i=1

γi ⊗ δi ⊗ θi + E (3.3.22)

Suppose matrices Qa ∈ R
d×d,Qb ∈ R

d×d,Qc ∈ R
d×d are ε-approximate whitening matrices for A, B,C, and suppose

Γ,∆,Θ are τ-spectrally bounded by Q1/2
a ,Q1/2

b ,Q1/2
c , respectively. Then, Algorithm 12 returns âi, b̂i, ĉi that are O(η)-

close to ai, bi, ci in Õ(d4+δ) time with

η . max(‖Qa‖ , ‖Qb‖ , ‖Qc‖)1/2 ·
(
τ3/2 + σ−3/2‖E‖{1,2}{3} + ε

)
· 1/δ

where σ = min(σmin(Qa), σmin(Qb), σmin(Qc)).

Note that in our model, the matrix E has very small spectral norm as it is the third order term in ρ (and ρ = O(1/n)).

The spectral boundedness of Γ,∆,Θ are discussed in Section 3.3.6. Therefore we can expect the RHS to be small.

In order to prove this theorem, we show after we apply whitening operation using the approximate whitening

matrices, the tensor is still close to an orthogonal tensor. To do that, we need the following lemma which is a useful

technical consequence of the condition (3.3.11).
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Lemma 93. Suppose F is τ-spectrally bounded by g. Then,

‖G>(FF>)+G‖ ≤ 2τ . (3.3.23)

Proof. Let K be the column span of F. Let Q = FF>. Multiplying (Q+)1/2 on both sides of equation (3.3.11), we

obtain that

(Q+)1/2GG>(Q+)1/2 � τ(IdK + σm(Q)Q+)

� τ(IdK + σm(Q)‖Q+‖IdK)

� 2τIdK

It follows that ‖(Q+)1/2G‖ ≤
√

2τ, which in turns implies that ‖G>(FF>)+G‖ = ‖G>(Q+)1/2(Q+)1/2G‖ ≤ 2τ. �

We also need to bound the {1, 2}{3} norm of the following systematic error tensor. This is important because we

want to bound the spectral norm of the perturbation after the whitening operation.

Lemma 94 (Variant of (?)Theorem 6.1]MSS16). Let Γ,∆,Θ ∈ Rd×`. Let γi, δi, θi be the i-th column of Γ,∆,Θ,

respectively. Then,

∥∥∥∥∥∥∥∑i∈[`] γi ⊗ δi ⊗ θi

∥∥∥∥∥∥∥
{1,2}{3}

≤ ‖Γ‖ · ‖Θ‖ · ‖∆‖1→2 ≤ ‖Γ‖ · ‖Θ‖ · ‖∆‖ (3.3.24)

Proof of Lemma 94. Using the definition of ‖·‖{1,2}{3} we have that

∥∥∥∥∥∥∥∑i∈[] γi ⊗ δi ⊗ θi

∥∥∥∥∥∥∥
{1,2}{3}

=

∥∥∥∥∥∥∥∑i∈[`](γi ⊗ δi)θ>i

∥∥∥∥∥∥∥ (3.3.25)

≤

∥∥∥∥∥∥∥∑i∈[`](γi ⊗ δi)(γi ⊗ δi)

∥∥∥∥∥∥∥
1/2 ∥∥∥∥∥∥∥∑i∈[`] θiθ

>
i

∥∥∥∥∥∥∥
1/2

(by Cauchy-Schwarz inequality)

=

∥∥∥∥∥∥∥∑i∈[`](γiγ
>
i ) ⊗ (δiδ

>
i )

∥∥∥∥∥∥∥
1/2

‖Θ‖

Next observe that we have that for any i, δiδ
>
i � (max ‖δi‖

2)Id and therefore,

(γiγ
>
i ) ⊗ (δiδ

>
i ) � γiγ

>
i ⊗ (max ‖δi‖

2)Id . (3.3.26)
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It follows that

∥∥∥∥∥∥∥∑i∈[r]

γi ⊗ δi ⊗ θi

∥∥∥∥∥∥∥
{1,2}{3}

≤

∥∥∥∥∥∥∥∑i∈[r]

γiγ
>
i ⊗ (max ‖δi‖

2)Id

∥∥∥∥∥∥∥
1/2

‖Θ‖

= ‖Γ‖ · ‖Θ‖ · ‖∆‖1→2 .

�

With this in mind, we prove the main theorem:

Proof of Theorem 10. Let Ã = (Q+
a )1/2A, B̃ = (Q+

b )1/2B, C̃ = (Q+
c )1/2C. Moreover, let Γ̃ = (Q+

a )1/2Γ and define ∆̃, Θ̃

similarly. Let ã1, b̃i, c̃i, γ̃i, δ̃i, θ̃i be their columns. Then we have that T̃ as defined in Algorithm 12 satisfies

T̃ =

r∑
i=1

ãi ⊗ b̃i ⊗ c̃i +
∑̀
i=1

γ̃i ⊗ δ̃i ⊗ θ̃i + Ẽ (3.3.27)

where Ẽ = (Q+
a )1/2 ⊗ (Q+

b )1/2 ⊗ (Q+
c )1/2 · E. We will show that T̃ meets the condition of Theorem 5. Since Qa is an

ε-approximate whitening matrix of A, by Definition, Ã = (Q+
a )1/2A is ε-approximately orthonormal . Similarly, B̃, C̃

are ε-approximately orthonormal .

Γ is τ-spectrally bounded by Qa, hence by Lemma 93, we have that ‖Γ̃‖ ≤
√

2τ. Similarly, ‖Θ‖, ‖∆‖ ≤
√

2τ.

Applying Lemma 94, we have,

∥∥∥∥∥∥∥∑̀i=1

γ̃i ⊗ δ̃i ⊗ θ̃i

∥∥∥∥∥∥∥
{1,2}{3}

≤ (2τ)3/2 (3.3.28)

Moreover, we have ‖Ẽ‖{1,2}{3} ≤ ‖(Q+
a )1/2‖·‖(Q+

c )1/2‖·‖(Q+
c )1/2‖‖E‖{1,2}{3} ≤ σ−3/2‖E‖{1,2}{3}, whereσ = min{σmin(Qa), σmin(Qb), σmin(Qc)}.

Therefore, using Theorem 5 (with ai, bi, ci there replaced by ãi, b̃i, c̃i, and Z there replaced by
∑`

i=1 γ̃i ⊗ δ̃i ⊗ θ̃i + Ẽ),

we have that a set of vectors {ăi, b̆i, c̆i} that are ε-close to {ãi, b̃i, c̃i} with ε = (2τ)3/2 + σ−3/2‖Ẽ‖{1,2}{3}. Therefore, we

obtain that ‖ai − Q1/2ăi‖ ≤ ‖Qa‖
1/2ε. Similarly we can control the error for bi and ci and complete the proof. �

3.3.5 Formal expression for the PMI tensor

In this section we formally derive the expressions for the PMI tensors and matrices, which we only informally did in

Section 4.4.

As a notational convenience for l ∈ N, we will denote by P̃l the matrix which has as columns the vectors 1 −
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exp(−lWk), k ∈ [m]. Furthermore, for a subset S a ⊆ [n], we will introduce the notation

Pl,S a =
∑
k∈[m]

(
(P̃l)k,S a

) (
(P̃l)k,S a

)>
=

∑
k∈[m]

(
1 − exp(−lWk)S a

) (
1 − exp(−lWk)S a

)>
These matrices will appear naturally in the expressions for the higher-order terms in the Taylor expansion for the PMI

matrix and tensor.

We first compute the formally the moments of the noisy-or model.

Lemma 95. We have

log Pr[si = 0] =
∑
k∈[m]

log
(
1 − ρ(1 − exp(Wik))

)
∀i , j log Pr

[
si = 0 ∧ s j = 0

]
=

∑
k∈[m]

log
(
1 − ρ(1 − exp(Wik + W jk))

)
∀ distinct i, j, k ∈ [n], log Pr

[
si = 0 ∧ s j = 0 ∧ s` = 0

]
=

∑
k∈[m]

log
(
1 − ρ(1 − exp(Wik + W jk + W`k))

)

Proof of Lemma 95. We only give the proof for the second equation. The rest can be shown analogously.

log Pr
[
si = 0 ∧ s j = 0

]
= E

[
Pr[si = 0|d] · Pr[s j = 0|d]

]
= E

[
exp(−(Wi + W j)>d)

]
=

∏
k∈[m]

E
[
exp(−(Wik + W jk)dk))

]
=

∏
k∈[m]

(
1 − ρ(1 − exp(−(Wik + W jk)))

)
.

�

With this in mind, we give the expression for the PMI tensor along with all the higher-order terms.

Proposition 96. For any equipartition S a, S b, S c of [n], the restriction of the PMI tensor PMITS a,S b,S c satisfies, for

any L ≥ 2,

PMITS a ,S b ,S c =
ρ

1 − ρ

∑
k∈[m]

Fk,S a ⊗ Fk,S b ⊗ Fk,S c +

L∑
l=2

(−1)l+1

1
l

(
ρ

1 − ρ

)l ∑
k∈[m]

(P̃l)k,S a ⊗ (P̃l)k,S b ⊗ (P̃l)S c + EL (3.3.29)

where

‖EL‖{1,2},{3} ≤
(mn)3

L

(
ρ

1−ρ

)L

1 −
(

ρ
1−ρ

)L
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Proof. The proof will proceed by Taylor expanding the log terms. Towards that, using Lemma 95, we have :

PMITi jl =

∑
k∈[m]

log

(
1 − ρ(1 − exp(−Wik −W jk))

) (
1 − ρ(1 − exp(−Wik −Wlk))

) (
1 − ρ(1 − exp(−W jk −Wlk))

)(
1 − ρ(1 − exp(−Wik −W jk −Wlk))

) (
1 − ρ(1 − exp(−Wik))

) (
1 − ρ(1 − exp(−W jk))

) (
1 − ρ(1 − exp(−Wlk))

)
By the Taylor expansion of log(1 − x), we get that

PMIi jl =

−

∞∑
t=1

1
t

∑
k∈[m]

ρt(
((

1 − exp(−Wik −W jk)
))t

+
((

1 − exp(−Wik −Wlk)
))t

+
((

1 − exp(−W jk −Wlk)
))t
−

(
1 − exp(−Wik)

)t
−

(
1 − exp(−W jk)

)t
−

(
1 − exp(−Wlk)

)t
−

(
1 − exp(−Wik −W jk −Wlk)

)t
)

Furthermore, note that

((
1 − exp(−Wik −W jk)

))t
+

((
1 − exp(−Wik −Wlk)

))t
+

((
1 − exp(−W jk −Wlk)

))t
−(

1 − exp(−Wik)
)t
−

(
1 − exp(−W jk)

)t
−

(
1 − exp(−Wlk)

)t
−

(
1 − exp(−Wik −W jk −Wlk)

)t
=

t∑
l=1

(
t
l

)
(−1)l (1 − exp(−lWik)

) (
1 − exp(−lW jk)

) (
1 − exp(−lWlk)

)
by simple regrouping of the terms. By exchanging l and t, we get

PMITS a ,S b ,S c =

∞∑
l=1

∑
t≥l

(−1)l+1
(
ρt 1

t

(
t
l

)) ∑
k∈[m]

(
1 − exp(−lWk)

)
S a
⊗

(
1 − exp(−lWk)

)
S b
⊗

(
1 − exp(−lWk)

)
S c

=

∞∑
l=1

(−1)l+1

1
l

(
ρ

1 − ρ

)l ∑
k∈[m]

(
1 − exp(−lWk)

)
S a
⊗

(
1 − exp(−lWk)

)
S b
⊗

(
1 − exp(−lWk)

)
S c

(3.3.30)

where the last equality holds by noting that

∑
t≥l

ρt 1
t

(
t
l

)
=

1
l

(
ρ

1 − ρ

)l

The term corresponding to t = 1 is easily seen to be

ρ

1 − ρ

∑
k∈[m]

Fk,S a ⊗ Fk,S b ⊗ Fk,S c

therefore we to show the statement of the lemma, we only need bound the contribution of the terms with ł ≥ L.

Toward that, note that ∀l, k‖1 − exp(−lWk)‖ ≤ n. Hence, we have by Lemma 94,
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∥∥∥∥∥∥∥
m∑

k=1

(
1 − exp(−lWk)

)
S a
⊗

(
1 − exp(−lWk)

)
S b
⊗

(
1 − exp(−lWk)

)
S c

∥∥∥∥∥∥∥
{1,2},{3}

≤ (mn)3

Therefore, subadditivity of the {12}, {3} norm gives

∥∥∥∥∥∥∥∥∥
∞∑

l=L

(−1)l+1


(

ρ
1−ρ

)l

l

 ∑
k∈[m]

(
1 − exp(−lWk)

)
S a
⊗

(
1 − exp(−lWk)

)
S b
⊗

(
1 − exp(−lWk)

)
S c

∥∥∥∥∥∥∥∥∥
{1,2},{3}

≤ (mn)3
∞∑

l=L


(

ρ
1−ρ

)l

l

 ≤ (mn)3

L

∞∑
l=L

(
ρ

1 − ρ

)l

=
(mn)3

L

(
ρ

1−ρ

)L

1 −
(

ρ
1−ρ

)L

which gives us what we need. �

A completely analogous proof gives a similar expression for the PMI matrix:

Proposition 97. For any subsets S a, S b of [n], s.t. S a ∩ S b = ∅, the restriction of the PMI matrix PMIS a,S b satisfies,

for any L ≥ 2,

PMIS a ,S b =
ρ

1 − ρ

∑
k∈[m]

Fk,S a F>k,S b
+

L∑
l=2

(−1)l+1

1
l

(
ρ

1 − ρ

)l ∑
k∈[m]

(P̃l)k,S a ((P̃l)k,S b )> + EL (3.3.31)

where

‖EL‖{1,2},{3} ≤
(mn)2

L

(
ρ

1−ρ

)L

1 −
(

ρ
1−ρ

)L

3.3.6 Spectral properties of the random model

The goal of this section is to prove that the random model specified in Section ?? satisfies the incoherence property

on the weight matrix and the spectral boundedness property of the PMI tensor. (Recall, the former is required for the

whitening algorithm, and the later for the tensor decomposition algorithm.)

Before delving into the proofs, we will need a few simple bounds on the singular values of Pl.

Lemma 98. Let S a ⊆ [n], s.t. |S a| = Ω(n). With probability 1 − exp(− log2 n) over the choice of W, and for all

l = O(poly(n)),

σmin(Pl,S a ) & np

and

σmax(Pl,S a ) . mnp2
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Proof. Let us proceed to the lower bound first.

If we denote by L the matrix which has as columns (P̃l)k,S a , k ∈ [m], it’s clear that Pl,S a = LL>. Since

σmin(LL>) = σmin(L>L)

we will proceed to bound the smallest eigenvalue of L>L.

Note that

L>L =
∑
k∈S a

(1 − exp(−lWk))(1 − exp(−lWk))>

Since the matrices (1−exp(−lWk))(1−exp(−lWk))> are independent, the bound will follow from a matrix Bernstein

bound. Denoting

Q = E
[
(1 − exp(−lWk))(1 − exp(−lWk))>

]
by a simple calculation we have

Q = p2E
[
1 − exp(−lW̃)

]2
11> +

(
pE

[
(1 − exp(−lW̃))2

]
− p2E

[
1 − exp(−lw̃)

]2
)

Idm (3.3.32)

where 1 is the all-ones vector of size m, and Idm is the identity of the same size. Furthermore, W̃ is a random variable

following the distributionD of all the W̃i, j.

Note that (3.3.2) together with the assumption ν = Ω(1) gives σmin(Q) = Ω(p)

Let Zi = Q−1/2(1 − exp(−lWi)). Then we have that E
[∑

i∈S a
Zi(Zi)>

]
= |S a| · Idm, and with high probability,

‖Zi‖2 ≤ 1/σmin(Q) · ‖F i‖2 . m and it’s a sub-exponential random variable. Moreover,

r2 =

∥∥∥∥∥∥∥∑i

E

[(∑
Zi(Zi)>

)2]∥∥∥∥∥∥∥ . m

∥∥∥∥∥∥∥E
∑

i

Zi(Zi)>

∥∥∥∥∥∥∥ ≤ mn .

Therefore, by Bernstein inequality we have that w.h.p,

∥∥∥∥∥∥∥∑i∈S a

Zi(Zi)> − nIdm

∥∥∥∥∥∥∥ .
√

r2 log n + max ‖Zi‖2 log n =
√

mn log n + m log n .

It follows that

∑
i∈S a

Zi(Zi)> �
(
n − O

( √
mn log n

))
Idm � nIdm .

which in turn implies that Pl,S a � nQ. But this immediately implies σmin(Pl,S a ) & np with high probability. Union

bounding over all l, we get the first part of the lemma.
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The upper bound will be proven by a Chernoff bound. Note that the matrices

(1 − exp(−lWk))S a (1 − exp(−lWk))>S a
, k ∈ [m]

are independent. Furthermore, ‖(1 − exp(−lWk))S a (1 − exp(−lWk))>S a
‖2 ≤ pn with high probability, and the variable

‖(1 − exp(−lWk))S a (1 − exp(−lWk))>S a
‖2 is sub-exponential. Finally,

r2 =

∥∥∥∥∥∥∥E
 m∑

k=1

((1 − exp(−lWk))S a (1 − exp(−lWk))>S a
)2


∥∥∥∥∥∥∥

≤

m∑
k=1

∥∥∥∥E [
((1 − exp(−lWk)S a )(1 − exp(−lWk))>S a

)2
]∥∥∥∥

≤ m
∥∥∥1 − exp(−lWk)S a

∥∥∥2
E

[
((1 − exp(−lWk))S a (1 − exp(−lWk))>S a

)
]
≤ mn2 p2

Similarly as in the lower bound,

E[Pl,S a ] = p2E
[
1 − exp(−lW̃)

]2
11> +

(
pE

[
(1 − exp(−lW̃))2

]
− p2E

[
1 − exp(−lw̃)

]2
)

Id|S a |

where 1 is the all-ones vector of size |S a|, and Id|S a | is the identity of the same size. Again, W̃ is a random variable

following the distributionD of all the W̃i, j. This immediately gives

Pl � E[Pl] + r log nId|S a | � mnp2 +

√
mn2 p2 log nId|S a | � O(mnp2)Id|S a |

A union bound over all values of l gives the statement of the Lemma.

�

3.3.7 Incoherence of matrix F

First, we proceed to show the incoherence property on the weight matrix.

Lemma 99. Suppose n is a multiple of 3. Let F = UΣV be the singular value decomposition of F. Let S a, S b, S c be

a uniformly random equipartition of the rows of [n]. Suppose F is µ-incoherent with µ ≤ n/(m log n). Then, with high

probability over the choice of and S a, S b, S c, we have for every i ∈ {a, b, c},

∥∥∥∥∥(US i
)>

US i −
1
3

Id
∥∥∥∥∥ . √

µm
n

log n .

152



Proof. Let S = S a. Then, since U>U = Idm, we have

E

∑
i∈S

(U i)(U i)>
 =

1
3
· Idm .

By the assumption on the row norms of U, ‖U i(U i)>‖2 = ‖U i‖2 ≤ µm
n . By the incoherence assumption, we have that

maxi‖U i‖2 ≤ µm/n.

We also note that U i’s are negatively associated random variables. Therefore by the matrix Chernoff inequality for

negatively associated random variables, we have with high probability,

∥∥∥∥(US )>US − E
[
(US )>US

]∥∥∥∥ . √
µm log n

n
.

But, an analogous argument holds for S b, S c as well – so by a union bound over k, we complete the proof. �

Lemma 100. Suppose n & m log n. Under the generative assumption in Section ?? for W, we have that we have that

F = 1 − exp(−W) is O(1)-incoherent.

Proof. We have that FF> = UΣ2UT and therefore, ‖F i‖2 = Σ2
i,i‖U

i‖2. This in turn implies that

‖U i‖2 ≤
1

min Σ2
ii

∥∥∥F i
∥∥∥ =

1
σ2

min(F)
‖F i‖2 .

Since
∥∥∥F i

∥∥∥2
≤ pm +

√
pm ≤ 2pm with high probability, we only need to bound σmin(F) from below. Note that

σ2
min(F) = σmin(F>F). Therefore it suffices to control σmin(F>F). But by Lemma 98 we have σ2

min(F) & np.

Therefore, we have that

‖U i‖2 ≤
1

σ2
min(F)

‖F i‖2 = O(
m
n

)

�

3.3.8 Spectral boundedness

The main goal of the section is to show that the bias terms in the PMI tensor are spectrally bounded by the PMI matrix

(which we can estimate from samples). Furthermore, we show that we can calculate an approximate whitening matrix

for the leading terms of the PMI tensor using the machinery in Section .

The main proposition we will show is the following:
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Proposition 101. Let W be sampled according to the random model in Section ?? with ρ = o
(

1
log n

)
, p = ω

(
log n
√

mn

)
. Let

S a ⊆ [n], |S a| = Ω(n). If RS a is the matrix that has as columns the vectors
(

1
l

(
ρ

1−ρ

)l
)1/3

(P̃l) j,S a , l ∈ [2, L], j ∈ [m] for

L = O(poly(n)), and A is the matrix that has as columns the vectors
(

ρ
1−ρ

)1/3
(P̃1) j,S a for j ∈ [m], with high probability

it holds that RS a R>S a
is O(ρ2/3 log n)-spectrally bounded by A.

The main element for the proposition is the following Lemma:

Lemma 102. For any set S a ⊆ [n], |S a| = Ω(n), with high probability over the choice of W, for every `, `′ = O(poly(n))

Pl,S a P>l,S a
is O(log n)-spectrally bounded by Pl′,S a .

Before proving the Lemma, let us see how the proposition follows from it:

Proof of 101. We have

RS a R>S a
=

L∑
l=2

1
l

(
ρ

1 − ρ

)l2/3

Pl,S a

By Lemma 102, we have that ∀l > 1, P̃l,S a is τ-spectrally bounded by P̃1,S a , for some τ = O(log n). Hence,

RS a R>S a
�

∞∑
l=2

1
l

(
ρ

1 − ρ

)l2/3

τ(P1,S a + σmin(P1,S a ))

- ρ4/3τ(P1,S a + σmin(P1,S a ))

Since AA> = ( ρ
1−ρ )2/3P1,S a , the claim of the Proposition follows.

It is clear analogous statements hold for S b and S c. �

Finally, we proceed to show Lemma 102.

For notational convenience, we will denote by Jm×n the all ones matrix with dimension m × n. (We will omit the

dimensions when clear from the context.)

This statement will immediately follow from the following two lemmas:

Lemma 103. For any set S a ⊆ [n], |S a| = Ω(n), with probability 1 − exp(− log2 n) over the choice of W, for all

` ≤ O(poly(n)),

Pl,S a � 10np log nId +
5
2

mp2J
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Lemma 104. For any set S a ⊆ [n], |S a| = Ω(n), with probability 1− exp(− log2 n) over the choice of W, ∀` = poly(n),

Pl,S a + 6np log nId - mp2J

Before showing these lemmas, let us see how Lemma 102 is implied by them:

Proof of Lemma 102. Let κ be the constant in 104, s.t. Pl,S a + 6np log nId - mp2J. Putting the bounds from Lemmas

103 and 104 together along with a union bound, we have that with high probability, ∀l, l′ = O(poly(n))

Pl,S a −
5
2
κPl′,S a �

(
10np log n +

15
2
κnp log n

)
Id � O(mp log n)Id

But, note that σmin(Pl′ ) = Ω(np), by Lemma 98. Hence, Pl−
5
2κPl′,S a � r log nσmin(Pl′ ), for some sufficiently large

constant r. This implies

Pl − r log nPl′,S a � Pl −
5
2
κPl′ � r log nσmin(Pl′,S a )

from which the statement of the lemma follows.

�

We proceed to the first lemma:

Proof of Lemma 103. To make the notation less cluttered, we will drop l and S a and use P = Pl,S a . Furthermore, we

will drop S a when referring to columns of P̃ so we will denote P̃k = P̃k,S a .

Let’s denote by e = 1
√
|S a |

1 . Let’s furthermore denote Id1 = ee>, and Id−1 = Id− ee>. Note first that trivially, since

Id1 + Id−1 = Id,

P = (Id1 + Id−1)P(Id1 + Id−1) (3.3.33)

Furthermore, it also holds that

0 � (2Id−1 −
1
2

Id1)P(2Id−1 −
1
2

Id1)

=
1
4

Id1PId1 + 4Id−1PId−1 − Id−1PId1 − Id1PId−1

where the first inequality holds since

(2Id−1 −
1
2

Id1)P(2Id−1 −
1
2

Id1) =

(
(2Id−1 −

1
2

Id1)P̃
) (

(2Id−1 −
1
2

Id1)P̃
)>
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From this we get that

Id−1PId1 + Id1PId−1 �
1
4

Id1PId1 + 4Id−1PId−1 (3.3.34)

We proceed to upper bound both the terms on the RHS above. More precisely, we will show that

Id1PId1 ≤ 2mp2nJ (3.3.35)

Id−1PId−1 � 2np log nId (3.3.36)

Let us proceed to showing (3.3.35). The LHS can be rewritten as

Id1PId1 = ee>
(
e>P̃P̃>e

)
Note that

e>P̃P̃>e =
1
n

 m∑
k=1

〈1, P̃k〉
2


All the terms 〈1, P̃k〉

2 are independent and satisfy and E[〈1, P̃k〉
2] ≤ (E[〈1, P̃k〉])2 ≤ p2n2. By Chernoff, we have that

m∑
k=1

〈1, P̃k〉
2 ≤ mp2n2 +

√
mp2n2 log n ≤ 2mp2n2

with probability at least 1 − exp(− log2 n), where the second inequality holds because p = ω( log n
√

mn ). Hence, e>P̃P̃>e ≤

2mp2n with high probability.

We proceed to (3.3.36), which will be shown by a Bernstein bound. Towards that, note that

E[(Id−1P̃k(Id−1P̃k)>] = Id−1E[P̃k(P̃k)>]Id−1

= Id−1
(
p2E[1 − exp(W̃)]211> + (p − p2)E[(1 − exp(W̃))2]Id

)
Id−1

� pId

where W̃ is a random variable following the distributionD of all the W̃i, j. The second line can be seen to follow from

the independence of the coordinates of P̃k according to our model.

Furthermore, with high probability ‖Id−1P̃k‖
2
2 ≤ ‖P̃k‖

2
2 ≤ np and the random variable ‖Id−1P̃k‖

2 is sub-exponential
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Finally,

r2 =

∥∥∥∥∥∥∥E
 m∑

k=1

(
(Id−1P̃k)(Id−1Γk)P̃

)2

∥∥∥∥∥∥∥ ≤ ∥∥∥P̃k

∥∥∥2
2

∥∥∥∥∥∥∥E
 m∑

k=1

(I−1P̃k)(Id−1P̃k)>

∥∥∥∥∥∥∥

≤ npm‖E[(Id−1P̃k)(Id−1P̃k)>]‖ ≤ np2m

Therefore, applying a matrix Bernstein bound, we get

Id−1PId−1 � mpId + np log nId + r log nId � 2np log nId

with high probability.

Combining this with (3.3.33) and (3.3.34), we get

P �
5
4

Id1PId1 + 5Id−1PId−1

�
5
2

mp2J + 10np log nId

�

Let us proceed to the second inequality, which essentially follows the same strategy:

Proof of Lemma 104. Similarly as in the proof of Lemma 103, for notational convenience, let’s denote by P̃ the matrix

which has column k the vector
(
1 − exp(lWk)

)
.

Reusing the notation from Lemma 104, we have that

P = (Id1 + Id−1)P(Id1 + Id−1) (3.3.37)

and

0 � (
1
2

Id1 + 2Id−1)P(
1
2

Id1 + 2Id−1)

= Id−1P′Id1 + Id1PId−1 +
1
4

Id1PId1 + 4Id−1PId−1

for similar reasons as before. From this we get that

Id−1PId1 + Id1PId−1 � −
1
4

Id1PId1 − 4Id−1PId−1 (3.3.38)
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Putting (3.3.37) and (3.3.38) together, we get that

P + 3Id−1PId−1 �
3
4

Id1PId1 (3.3.39)

We will proceed to show an upper bound Id−1PId−1 � 2np log nId on second term of the LHS. We will do this by

a Bernstein bound as before. Namely, analogously as in Lemma 104,

Id−1PId−1 =

m∑
k=1

(Id−1P̃k)(Id−1P̃k)>

and E[(Id−1P̃k)(Id−1P̃k)>] � pId and and ‖Id−1P̃k‖
2
2 ≤ ‖P̃k‖

2
2 ≤ np are satisfied so

r2 =

∥∥∥∥∥∥∥E
 m∑

k=1

(
(Id−1P̃k)(Id−1P̃k)>

)2

∥∥∥∥∥∥∥ ≤ np2m

Therefore, applying a matrix Bernstein bound, we get

Id−1PId−1 � mpId + np log nId + r � 2np log nId

with high probability.

Plugging this in in (3.3.39), we get

P + 6np log nId �
3
4

Id1PId1 =
3
4

ee>P̃P̃>ee> =
3
4

ee>
(
e>P̃P̃>e

)
Since we have e>P̃P̃>e = 1

n

(∑m
k=1〈P̃k, 1〉2

)
with the goal of applying Chernoff, we will lower bound E[〈1, Ak〉

2]. More

precisely, we will show E[〈1, P̃k〉]2 = Ω(n2 p2). In order to do this, we have

E[〈1, P̃k〉
2] =

∑
j∈S a

E[(P̃k)2
j ] +

∑
j, j′; j, j′∈S a

E[(P̃k) j]E[(P̃k) j′ ]

=
∑
j∈S a

pE[(1 − exp(− ˜lW)2] +
∑

j, j′; j, j′∈S a

p2E[1 − exp(− ˜lW)]2

≥
∑
j∈S a

pE[(1 − exp(−W̃)2] +
∑

j, j′; j, j′∈S a

p2E[1 − exp(−W̃)]2

= Ω(n2 p2)

where W̃ is a random variable following the distribution D of all the W̃i, j. and the last inequality holds because of

(3.3.2).

So by Chernoff, we get that e>P̃P̃>e = 1
n (Ω(mn2 p2)−

√
n2 p2m) = Ω(mnp2) with high probability. Altogether, this
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means

P + 6np log nId % mp2J

�

3.3.9 Robust whitening

Algorithm 13 Obtaining whitening matrices

Inputs: Random partitioning S a, S b, S c of [n]. Empirical PMI matrix P̂MI.
Outputs: Whitening matrices Qa,Qb,Qc ∈ R

d×d

1. Output

Qa = ρ−1/3P̂MIS a,S b (P̂MI
+

S b,S c
)>P̂MIS c,S a ,

Qb = ρ−1/3P̂MIS b,S c (P̂MI
+

S c,S a
)>P̂MIS a,S b ,

Qc = ρ−1/3P̂MIS c,S a (P̂MI
+

S a,S b
)>P̂MIS b,S c

In this section, we show the formula Qa = ρ−1/3P̂MIS a,S b (P̂MI
+

S b,S c
)>P̂MIS c,S a computes an approximation of the

true whitening matrix AA>, so that the error is ε-spectrally bounded by A. We recall Theorem 6.

@title. Let n ≥ m and A, B,C ∈ Rn×m. Suppose Σab,Σbc,Σca ∈ R
n×n are of the form,

Σab = AB> + Eab, Σbc = BC> + Ebc, and Σca = CA> + Eca.

where Eab, Ebc, Eca are ε-spectrally bounded by (A, B), (B,C), (C, A) respectively. Then, the matrix matrix

Qa = Σab[Σ>bc]+
mΣca

is a good approximation of AA> in the sense that Qa = Σab[Σ>bc]+
mΣca − AA> is O(ε)-spectrally bounded by A. Here

[Σ]m denotes the best rank-m approximation of Σ.

Towards proving Theorem 6, an intermediate step is to understand the how the space of singular vectors of BC>

are aligned with the noisy version Σbc. The following explicitly represent BC> + E as the form B′R(C′)> + ∆′. Here

the crucial benefit to do so is that the resulting ∆′ is small in every direction. In other words, we started with a relative

error guarantees on E and the Lemma below converts to it an absolute error guarantees on ∆′ (though the signal term

changes slightly).

Lemma 105. Suppose B,C are n × m matrices with n ≥ m. Suppose a matrix E is ε-spectrally bounded by (B,C),
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then BC> + E can be written as

BC> + E = (B + ∆B)RBC(C + ∆C)> + ∆′BC ,

where ∆B,∆C ,∆
′
BC are small and RBC is close to identity in the sense that,

‖∆B‖ ≤ O(εσmin(B))

‖∆C‖ ≤ O(εσmin(C))

‖∆′BC‖ ≤ O(εσmin(B)σmin(C))

‖RBC − Id‖ ≤ O(ε)

Proof. The key intuition is if the perturbation is happening in the span of columns of B and C, they cannot change the

subspace. By Definition , we can write E as

E = B∆1C> + B∆>2 + ∆3C> + ∆4.

Now since ‖∆1‖ ≤ ε < 1, we know (Id − ∆1) is invertible, so we can write

(BC> + E) = (B + ∆3(Id + ∆1)−1)(Id + ∆1)(C + ∆2(Id − ∆1)−>)> − ∆3(Id − ∆1)−1∆>2 + ∆4.

This is already in the desired form as we can let ∆B = ∆3(Id + ∆1)−1, RBC = (Id + ∆1), ∆C = ∆2(Id − ∆1)−>, and

∆′BC = −∆3(Id−∆1)−1∆>2 +∆4. By Weyl’s Theorem we know σmin(Id+∆1) ≥ 1−ε, therefore ‖∆B‖ ≤ ‖∆3‖σ
−1
min(Id+∆) ≤

ε
1−εσmin(B). Other terms can be bounded similarly.

Now we prove that the top m approximation of BC> + E has similar column/row spaces as BC>. Let UB be the

column span of B, U′B be the column span of (B + ∆B), and U′′B be the top m left singular subspace of (BC> + E).

Similarly we can define UC , U′C , U′′C to be the column spans of C, C + ∆C and the top m right singular subspace of

(BC> + E).

For B + ∆B, we can apply Weyl’s Theorem and Wedin’s Theorem. By Weyl’s Theorem we know σmin(B + ∆B) ≥

σmin(B) − ‖∆B‖ ≥ (1 − O(ε))σmin(B). By Wedin’s Theorem we know U′B is O(ε)-close to UB. Similar results apply to

C + ∆C .

Now we know σmin((B+∆B)RBC(C+∆C)>)) ≥ σmin(B+∆B)σmin(RBC)σmin(C+∆C) ≥ Ω(σmin(B)σmin(C). Therefore

we can again apply Wedin’s Theorem, considering (B + ∆B)RBC(C + ∆C)>) as the original matrix and ∆′BC as the

perturbation. As a result, we know U′′B is O(ε) close to U′B, U′′C is O(ε) close to U′B. The distance between UB,U′′B (and

UC ,U′′C ) then follows from triangle inequality.

�

160



As a direct corollary of Lemma 105, we obtain that the BC> and BC> + E have similar subspaces of singular

vectors.

Corollary 106. In the setting of Lemma 105, let [BC> + E]m be the best rank-m approximation of BC> + E. Then, the

span of columns of [BC> + E]m is O(ε)-close to the span of columns of B, span of rows of [BC> + E]m is O(ε)-close to

the span of columns of C.

Furthermore, we can write [BC> + E]m = (B + ∆B)RBC(C + ∆C)> + ∆BC . Here ∆B, ∆C and RBC as defined in

Lemma 105 and ∆BC satisfies ‖∆BC‖ ≤ O(εσmin(B)σmin(C)).

Proof. Since [BC> + E]m is the best rank-m approximation, because (B + ∆B)RBC(C + ∆C)>) is a rank m matrix, in

particular we have

‖BC> + E − [BC> + E]m‖ ≤ ‖BC> − (B + ∆B)RBC(C + ∆C)>)‖‖∆′BC‖.

Therefore

‖∆BC‖ = ‖[BC> + E]m − (B + ∆B)RBC(C + ∆C)>)‖

≤ ‖BC> + E − [BC> + E]m‖ + ‖BC> + E − (B + ∆B)RBC(C + ∆C)>)‖

≤ 2‖∆′BC‖.

�

In order to fix this problem, we notice that the matrix [Σ>bc]+
m is multiplied by Σab on the left and Σca on the right.

Assuming Σab = AB>, Σca = CA>, we should expect [Σ>bc]+
m to “cancel” with the B> factor on the left and the C

factor on the right, giving us AA>. Therefore, we should really measure the error of the middle term [Σ>bc]+
m after left

multiplying with B> and right multiplying with C. We formalize this in the following lemma:

Lemma 107. Suppose Σbc is as defined in Theorem 6, let ∆ = [Σ>bc]+
m − [CB>]+, then we have

‖B>∆C‖ = O(ε), ‖B>∆‖ ≤ O(
ε

σmin(C)
),

‖∆C‖ ≤ O(
ε

σmin(B)
), ‖∆‖ ≤ O(

ε

σmin(B)σmin(C)
).

We will first prove Theorem 6 assuming Lemma 107.

Proof of Theorem 6. By Lemma 105, we know Σab can be written as

(A + ∆1
A)RAB(B + ∆1

B)> + ∆AB.
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Similarly Σca can be written as

(C + ∆3
C)RCA(A + ∆3

A)> + ∆CA.

Here the ∆ terms and R terms are bounded as in Lemma 105.

Now let us write the matrix Σab[Σ>bc]+
mΣca as

(
(A + ∆1

A)RAB(B + ∆1
B)> + ∆AB

)
([CB>]+ + ∆BC)

(
(C + ∆3

C)RCA(A + ∆3
A)> + ∆CA

)

We can now view Σab[Σ>bc]+
mΣca as the product of three terms, each term is the sum of two matrices. Therefore we

can expand the product into 8 terms. In each of the three pairs, we will call the first matrix the main matrix, and the

second matrix the perturbation.

In the remaining proof, we will do calculations to show the product of the main terms is close to AA>, and all the

other 7 terms are small.

Before doing that, we first prove several Claims about PSD matrices

Claim 11. If ‖∆‖ ≤ ε, then A∆A> � εAA>. If ‖Γ‖ ≤ εσmin(A), then 1
2 (AΓ> + ΓA>) � εAA> + εσ2

min(A)Id .

Proof. Both inequalities can be proved by consider the quadratic form. We know for any x, x>A∆A>x ≤ ‖∆‖‖A>x‖2 ≤

εx>AA>x, so the first part is true.

For the second part, for any x we can apply Cauchy-Schwartz inequality

x>
1
2

(AΓ> + ΓA>)x = 〈
√
εA>x, ε−1/2Γ>x〉 ≤ ε‖A>x‖2 + ε−1‖Γ>x‖2 = x>(εAA> + εσ2

min(A)Id)x.

�

Now, we will first prove the product of three main matrices is close to AA>:

Claim 12. We have
(
(A + ∆1

A)RAB(B + ∆1
B)>

)
(CB>)+

(
(C + ∆3

C)RCA(A + ∆3
A)>

)
= AA>+EA, where EA is O(ε)-spectrally

bounded by AA>.

Proof. We will first prove the middle part of the matrix (B + ∆1
B)>(CB>)+(C + ∆3

C) is O(ε) close to identity matrix Id.

Here we observe that both B,C have full column rank so (CB>)+ = (B>)+C+. Therefore we can rewrite the product as

(Id + B+∆1
B)>(Id + C+∆3

C). Since ‖∆1
B‖ ≤ O(εσmin(B)) by Lemma 105 (and similarly for C), we know ‖B+∆1

B‖ ≤ O(ε).

Therefore the middle part is O(ε) close to Id. Now since ε � 1 we know R̂AB = RAB(B + ∆1
B)>(CB>)+(C + ∆3

C)RCA is

O(ε)-close to Id.
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Now we are left with (A + ∆1
A)R̂AB(A + ∆3

A)>, for this matrix we know

(A + ∆1
A)R̂AB(A + ∆3

A)> − AA> = A(R̂AB − Id)A> + ∆1
AR̂ABA> + AR̂AB(∆3

A)> + ∆1
AR̂AB(∆3

A)>.

The first term A(R̂AB − Id)A> � O(ε)AA> (Claim 11); the fourth term ∆1
AR̂AB(∆3

A)> � O(εσ2
min(A))Id (by the norm

bounds of ∆1
A and ∆3

A. For the cross terms, we can bound them using the second part of Claim 11. �

Next we will try to prove the remaining 7 terms are small. We partition them into three types depending on how

many ∆ factors they have. We proceed to bound them in each of these cases.

For the terms with only one ∆, we claim:

Claim 13. The three terms ∆AB(CB>)+(C + ∆3
C)RCA(A + ∆3

A)>, (A + ∆1
A)RAB(B + ∆1

B)>∆AB(C + ∆3
C)RCA(A + ∆3

A)>,(
(A + ∆1

A)RAB(B + ∆1
B)>

)
(CB>)+∆CA are all O(ε) spectrally bounded by AA>.

Proof. For the first term, note that both B,C have full column rank, and hence (CB>)+ = (B>)+C+. Therefore the first

term can be rewritten as

[∆AB(B>)+][(Id + C+∆3
C)RCA](A + ∆3

A)>.

By Lemma 105, we have spectral norm bounds for ∆AB,∆
3
C ,∆

3
A,RCA. Therefore we know ‖∆AB(B>)+‖ ≤ O(εσmin(A))

and [(Id + C+∆3
C)RCA] is O(ε) close to Id. Therefore ‖[∆AB(B>)+][(Id + C+∆3

C)RCA](∆3
A)>‖ ≤ O(εσ2

min(A)) is trivially

O(ε) spectrally bounded, and [∆AB(B>)+][(Id + C+∆3
C)RCA]A> is O(ε) spectrally bounded by Claim 11. The third term

is exactly symmetric.

For the second part, we will first prove the middle part of the matrix ∆̂BC = (B + ∆1
B)>∆BC(C + ∆3

C) has spectral

norm O(ε). This can be done y expanding it to the sum of 4 terms, and use appropriate spectral norm bounds on ∆BC

and its products with B> and C from Lemma 107. Now we can show (A + ∆1
A)RAB∆̂BCRCA(A + ∆3

A)> is O(ε) spectrally

bounded by the first part of Claim 11. �

Next we try to bound the terms with two ∆ factors.

Claim 14. The three terms ∆AB∆BC(C + ∆3
C)RCA(A + ∆3

A)>, ∆AB(CB>)+∆CA,(
(A + ∆1

A)RAB(B + ∆1
B)>

)
∆BC∆CA are all O(ε2) spectrally bounded by AA>.

Proof. For the first term, notice that ‖∆BC(C + ∆3
C)‖ is bounded by O(ε/σmin(B)) by Lemma 107, and ‖∆AB‖ =

O(εσmin(A)σmin(B)). Therefore we know ‖∆AB∆BC(C + ∆3
C)RCA‖ ≤ O(ε2σmin(A)), so by Claim 11 we know this

term is O(ε2) spectrally bounded by AA>. Third term is symmetric.

For the second term, by Lemma 105 we can directly bound its spectral norm by O(ε2σ2
min(A)), so it is trivially

O(ε2) spectrally bounded by AA>. �
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Finally, for the product ∆AB∆BC∆CA, we can get the spectral norm for the three factors by Lemma 105 and

Lemma 107. As a result ‖∆AB∆BC∆CA‖ ≤ O(ε3σ2
min(A)) which is trivially O(ε3) spectrally bounded by AA>.

Combining the bound for all of the terms we get the theorem. �

With that, we now try to prove Lemma 107

We first prove a simpler version where the perturbation is simply bounded in spectral norm

Lemma 108. Suppose B,C are n ×m matrices and n ≥ m. Let R be an n × n matrix such that ‖R − Id‖ ≤ ε, and E is a

perturbation matrix with ‖E‖ ≤ εσmin(B)σmin(C) and (CRB> + E) is also of rank m.

Now let ∆ = (CRB> + E)+ − (CRB>)+, then when ε � 1 we have

‖B>∆C‖ = O(ε), ‖B>∆‖ ≤ O(
ε

σmin(C)
),

‖∆C‖ ≤ O(
ε

σmin(B)
), ‖∆‖ ≤ O(

ε

σmin(B)σmin(C)
).

Proof. We first give the proof for ‖B>∆C‖. Other terms are similar.

Let UB be the column span of B, and U′B be the row span of (CRB> + E). Similarly let UC be the column span of

C and U′C be the column span of (CRB> + E). By Wedin’s theorem, we know U′B is O(ε) close to UB and U′C is O(ε)

close to UC . As a result, suppose the SVD of B is UBDBV>B , we know

σmin(B>U′B) = σmin(VBDBU>B U′B) ≥ (1 − O(ε))σmin(B).

The same is true for C: σmin(C>U′C) ≥ (1 − O(ε))σmin(C).

By the property of pseudoinverse, the column span of (CRB> + E)+ is U′B, and the row span of (CRB> + E)+ is

U′C , further, (CRB> + E)+ = U′B[(U′C)>(CRB> + E)U′B]−1U′C , therefore we can write

B>(CRB> + E)+C = B>U′B[(U′C)>(CRB> + E)U′B]−1(U′C)>C.

Note that now the three matrices are all n × n and invertible! We can write B>U′B = ((B>U′B)−1)−1 (and do the same

thing for (U′C)>C. Using the fact that P−1Q−1 = (QP)−1, we have

B>(CRB> + E)+C = (((U′C)>C)−1(U′C)>(CRB> + E)U′B(B>U′B)−1)−1

= (R + ((U′C)>C)−1(U′C)>EU′B(B>U′B)−1)−1 =: (R + X)−1.
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Here we defined X = ((U′C)>C)−1(U′C)>EU′B(B>U′B)−1. The spectral norm of X can be bounded by

‖X‖ ≤ ‖((U′C)>C)−1‖‖E‖‖(B>U′B)−1‖

= ‖E‖σ−1
min(B>U′B)σ−1

min(C>C′B)

≤ O(ε).

We can write B>∆C = B>(CRB> + E)+C − Id = (Id + (R − Id + X))−1 − Id, and we now know ‖(R − Id + X)‖ ≤ O(ε),

as a result ‖B>∆C‖ ≤ O(ε) as desired.

For the term ‖B>∆‖, by the same argument we have

B>(CRB> + E)+ = ((U′C)>(CRB> + E)U′B(B>U′B)−1)−1(U′C)>

= ((U′C)>CR + (U′C)>EU′B(B>U′B)−1)−1(U′C)>

= ((U′C)>C(R + X))−1(U′C)>

= (R + X)−1((U′C)>C)−1(U′C)>.

On the other hand, we know B>(CRB>)+ = R−1C+ = R−1((UC)>C)−1U>C . We can match the three factors:

‖R−1 − (R + X)−1‖ ≤ O(ε), ‖R−1‖ ≤ 1 + O(ε)

‖((UC)>C)−1 − ((U′C)>C)−1‖ ≤ O(ε/σmin(C)), ‖((UC)>C)−1‖ = O(1/σmin(C))

‖UC − U′C‖ ≤ O(ε), ‖UC‖ = 1.

Here, first and third bound are proven before. The second bound comes if we consider the SVD of C = UC DCV>C and

notice that ‖(U′C)>UC−Id‖ ≤ O(ε). We can write ∆1 = R−1−(R+X)−1, ∆2 = ((UC)>C)−1−((U′C)>C)−1, ∆3 = UC−U′C ,

then we have

B>∆ = B>(CRB> + E)+ − B>(CRB>)+

= (R−1 − ∆1)(((UC)>C)−1 − ∆2)(UC − ∆3)> − R−1((UC)>C)−1U>C .

Expanding the last equation, we get 7 terms and all of them can be bounded by O(ε/σmin(C)). The bounds on ‖∆C‖

and ‖∆‖ can be proved using similar techniques. �

Finally we are ready to prove the main Lemma 107:
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Proof of Lemma 107. Using Lemma 105, let E = E>bc, we can write the matrix before pseudoinverse as

[CB> + E]m = (C + ∆C)RBC(B + ∆B)> + ∆BC .

We can then apply Lemma 108 on (C + ∆C)RBC(B + ∆B)> + ∆BC . As a result, we know if we let ∆′ = [CB> +

E]+
m − ((C + ∆C)RBC(B + ∆B)>)+, we have the desired bound if we left multiply with (B + ∆B)> or right multiply with

(C + ∆C).

We will now show how to prove the first bound, all the other bounds can be proved using the same strategy:

First, we can write

B>∆′C = −(B + ∆B)>∆′(C + ∆C) + (B + ∆B)>∆′C + ∆>B∆′(C + ∆C) − ∆>B∆′∆C .

All the four terms on the RHS can be bounded by Lemma 108 so we know ‖B>∆′C‖ ≤ O(ε).

On the other hand, let ∆′′ = ((C + ∆C)RBC(B + ∆B)>)+ − (C>B)+ = ∆ − ∆′. We will prove ‖B>∆′′C‖ ≤ O(ε) and

then the bound on ‖B>∆C‖ follows from triangle inequality.

For B>∆′′C, we know it is equal to

B>[(B + ∆B)>]+R−1
AB(C + ∆C)+C − Id

Claim 15. ‖B>[(B + ∆B)>]+R−1
AB(C + ∆C)+C − Id‖ ≤ O(ε)

Proof. We will show all three factors in the first term are O(ε) close to Id. For R−1
AB this follows immediately from

Lemma 105. For (C + ∆C)+C, we know

(C + ∆C)+C − Id = −(C + ∆C)+∆C .

Therefore its spectral norm bound is bounded by ‖∆C‖σ
−1
min(C + ∆C) = O(ε) (where the bound on ‖∆C‖ comes from

Lemma 105). �

With the claim we have now proven ‖B>∆′′C‖ ≤ O(ε), therefore

‖B>∆C‖ ≤ ‖B>(∆′ + ∆′′)C‖ ≤ ‖B>∆′C‖ + ‖B>∆′′C‖ ≤ O(ε).

�
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3.3.10 Technical details: spectral boundedness and incoherence

Here we will show under mild incoherence conditions (defined below), if an error matrix E is ε-spectrally bounded by

FF>, then the partial matrices satisfy the requirement of Theorem 6.

Theorem 16. If F is µ-incoherent for µ ≤
√

n/m log2 n, then when n ≥ Ω(m log2 m), with high probability over the

random partition of F into A, B,C, we know σmin(A) ≥ σmin(F)/3 (same is true for B,C).

As a corollary, if E is ε-spectrally bounded by F. Let a, b, c be the subsets corresponding to A, B,C, and let Ea,b

be the submatrix of E whose rows are in set a and columns are in set b. Then Ea,b (also Eb,c, Ec,a) is O(ε)-spectrally

bounded by the corresponding asymmetric matrices AB> (BC>, CA>).

Proof. Consider the singular value decomposition of F: F = UDV>. Here U is a n × m matrix whose columns are

orthonormal, V is an m × m orthonormal matrix and D is a diagonal matrix whose smallest diagonal entry is σmin(F).

Consider the following way of partitioning the matrix: for each row of F, we put it into A, B or C with probability

1/3 independently.

Now, let Xi = 1 if row i is in the matrix A, and 0 otherwise. Then Xi’s are Bernoulli random variables with

probability 1/2. Suppose S is the set of rows in A, let UA be U restricted to rows in A, then we have A = UADV>. We

will show with high probability σmin(A) ≥ 1/3.

The key observation here is the expectation of U>A UA =
∑n

i=1 XiUiU>i , where Ui is the i-th row of U (represented

as a column vector). Since Xi’s are Bernoulli random variables, we know

E[U>A UA] = E[
n∑

i=1

XiUiU>i ] =
1
3

n∑
i=1

UiU>i =
1
3

Id.

Therefore we can hope to use matrix concentration to prove that U>A UA is close to its expectation.

Let Mi = XiUiU>i − 1/3UiU>i . Clearly E[Mi] = 0. By the Incoherence assumption, we know ‖Ui‖ ≤ 1/ log n.

Therefore we know ‖Mi‖ ≤ O(1/ log n). Also, we can bound the variance

‖E[
n∑

i=1

MiM>i ]‖ ≤ ‖E[
n∑

i=1

XiUiU>i UiU>i ]‖ ≤ max ‖Ui‖
2‖

n∑
i=1

UiU>i ‖ ≤ O(1/ log2 n).

Here the last inequality is because
∑n

i=1 XiUiU>i UiU>i � ‖Ui‖
2UiU>i .

Therefore by Matrix Bernstein’s inequality we know with high probability ‖
∑n

i=1 Mi‖ ≤ 1/6. When this happens

we know

‖U>A UA‖ ≥ σmin(E[U>A UA]) − ‖
n∑

i=1

Mi‖ ≥ 1/6.

Hence we have σmin(UA) ≥
√

1/6 > 1/3, and σmin(A) ≥ σmin(UA)σmin(D) ≥ σmin(F)/3. Note that matrices B, C have

exactly the same distribution as A so the bounds for B,C follows from union bound.
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For the corollary, if a matrix E is ε spectrally bounded, we can write it as F∆1F> + F∆>2 + ∆2F> + ∆4, where

‖∆1‖ ≤ ε, ‖∆2‖ ≤ εσmin(F) and ‖∆4‖ ≤ εσ
2
min(F). This can be done by considering different projections of E: let U be

the span of columns of F, then F∆1F> term corresponds to ProjU E ProjU ; F∆>2 term corresponds to ProjU E ProjU⊥ ;

∆2F> term corresponds to ProjU⊥ E ProjU ; ∆4 term corresponds to ProjU⊥ E ProjU⊥ . The spectral bounds are necessary

for E to be spectrally bounded.

Now for Ea,b, we can write it as A∆1B> + A(∆2)>b + (∆2)aB> + (∆4)a,b, where we also take the corresponding

submatrices of ∆’s. Since the spectral norm of a submatrix can only be smaller, we know ‖∆1‖ ≤ ε, ‖(∆2)b‖ ≤

εσmin(F) ≤ 3εσmin(B), ‖(∆2)a‖ ≤ εσmin(F) ≤ 3εσmin(A) and ‖(∆2)a,b‖ ≤ εσ
2
min(F) ≤ 9εσmin(A)σmin(B). Therefore by

Definition we know Ea,b is 9ε spectrally bounded by AB>. �

3.3.11 Putting things together: proof of Theorem 7 and Theorem 8

In this section, we provide the full proof of Theorem 7. We start with a simple technical Lemma.

Lemma 109. If Q is an ε-approximate whitening matrix for A, then ‖Q‖ ≤ 1
1−ε ‖AA>‖, σmin(Q) ≥ 1

1−ε ‖AA>‖

Proof. By the definition of approximate-whitening, we have

1 − ε ≤ σmin((Q+)1/2A>A(Q+)1/2), σmax((Q+)1/2A>A(Q+)1/2) ≤ 1 + ε

which implies that

1 − ε ≤ σmin((Q+)1/2AA>(Q+)1/2), σmax((Q+)1/2AA>(Q+)1/2) ≤ 1 + ε

by virtue of the fact that (Q+)1/2AA>(Q+)1/2 =
(
(Q+)1/2A>A(Q+)1/2

)>
. Rewriting in semidefinite-order notation, we

get that

(1 − ε)Id � (Q+)1/2AA>(Q+)1/2 � (1 + ε)Id

Multiplying on the left and right by Q1/2, we get

(1 − ε)Q � AA> � (1 + ε)Q

This directly implies 1
1+ε

AA> � Q � 1
1−ε AA> which is equivalent to the statement of the lemma. �

Towards proving Theorem 7, we will first prove the following proposition, which shows that we recover the

exp(−W) matrix correctly:

Proposition 110 (Recovery of exp(−W)). Under the random generative model defined in Section ??, if the number of

samples satisfies
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N = poly(n, 1/p/, 1/ρ)

the vectors W̃i, i ∈ [m] in Algorithm 17 are O(η
√

np)-close to exp(−Wi) where

η = Õ
(√

mpρ
)

Proof. The proof will consist of checking the conditions for Algorithms 13 and 12 to work, so that we can apply

Theorems 10 and 6.

To get a handle on the PMI tensor, by Proposition 96, for any equipartition S a, S b, S c of [n], we can it as

PMITS a,S b,S c =

ρ

1 − ρ

∑
k∈[m]

Fk,S a ⊗ Fk,S b ⊗ Fk,S c +

L∑
l=2

(−1)l+1

1
l

(
ρ

1 − ρ

)l ∑
k∈[m]

(P̃l)k,S a ⊗ (P̃l)k,S b ⊗ (P̃l)k,S c + EL

We can choose L = poly(log(n,
1
ρ
,

1
p

)) to ensure

‖EL‖ = o
(
p5/2ρ7/3 √mn2

)
(3.3.40)

Having an explicit form for the tensor, we proceed to check the spectral boundedness condition for Algorithm 13.

Let S a, S b, S c be a random equipartition. Let RS a be the matrix that has as columns the vectors

1
l

(
ρ

1 − ρ

)l1/3

(P̃l) j,S a ,

for all l ∈ [2, L], j ∈ [m] and let A be the matrix that has as columns the vectors
(

ρ
1−ρ

)1/3
F j,S a , for all j ∈ [m]. Since

L is polynomially bounded in n, by Proposition 101 we have that with high probability RS a is τ-spectrally bounded by

A, for a τ = O(ρ2/3 log n). Analogous statements hold for S b, S c.

Next, we verify the conditions for calculating approximate whitening matrices (Algorithm 13).

Towards applying Theorem 16, note that if R[n] is the matrix that has as columns the vectors

1
l

(
ρ

1 − ρ

)l1/3

(P̃l) j,

for all l ∈ [2, L], j ∈ [m], and D is the matrix that has as columns the vectors
(

ρ
1−ρ

)1/3
F j, for all j ∈ [m], R[n] then is

τ-spectrally bounded by D for τ = O(ρ2/3 log n). Furthermore, the matrix F is O(1)-incoherent with high probability

by Lemma 3.3.7. Hence, we can apply Theorem 16, the output of Algorithm 13 are matrices Qa,Qb,Qc which are

τ-approximate whitening matrices for A, B,C respectively.

Next, we will need bounds on

min(σmin(Qa), σmin(Qb), σmin(Qc)),max(σmax(Qa), σmax(Qb), σmax(Qc))
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to plug in the guarantee of Algorithm 13.

By Lemma 109, we have

σmax(Qa) ≤
1

1 − τ
‖AA>‖ . (1 + τ)‖AA>‖, σmin(Qa) ≥

1
1 + τ

σmin(AA>) & (1 − τ)σmin(AA>)

However, for the random model, applying Lemma 98,

σmin(AA>) ≥
(

ρ

1 − ρ

)2/3

np & ρ2/3np, σmax(AA>) ≤
(

ρ

1 − ρ

)2/3

mnp2 . ρ2/3mnp2 (3.3.41)

Analogous statements hold for B and C.

Finally, we bound the error due to empirical estimates. Since ρpm = o(1),

Pr[si = 0 ∧ s j = 0 ∧ sk = 0] ≥ 1 − Pr[si = 1] − Pr[s j = 1] − Pr[sk = 1] ≥ 1 − 3pmρ = Ω(1)

Hence, by Corollary 113, with a number of samples as stated in the theorem,

‖ ˆPMITS a,S b,S c − PMITS a,S b,S c‖{1,2},{3} . p5/2ρ5/2 √mn2 (3.3.42)

as well.

With that, invoking Theorem 10 (with ‖E‖{1,2},{3} taking into account both the EL term above, and the above error

due to sampling), the output of Algorithm 12 will produce vectors vi, i ∈ [m], s.t. vi is O(η′)-close to
(

ρ
1−ρ

)1/3
(1 −

exp(−Wi)), for

η′ . max(‖Qa‖ , ‖Qb‖ , ‖Qc‖)1/2 ·
(
τ3/2 + σ−3/2(‖EL‖{1,2},{3} + ‖ ˆPMITS a,S b,S c − PMITS a,S b,S c‖{1,2},{3})

)
where σ = min(σmin(Qa), σmin(Qb), σmin(Qc)).

Plugging in the estimates from (3.3.40), (3.3.41), (3.3.42) as well as τ = O(ρ2/3 log n), we get:

max(‖Qa‖ , ‖Qb‖ , ‖Qc‖)1/2τ3/2 .
√

mnp2ρ2/3(ρ2/3 log n)3/2 = ρ4/3 √mnp log3/2 n

σ−3/2‖EL‖{1,2},{3} . (
1
ρnp

)3/2‖EL‖{1,2},{3} . ρ
4/3 √mnp log3/2 n

σ−3/2‖ ˆPMITS a,S b,S c − PMITS a,S b,S c‖{1,2},{3} . ρ
4/3 √mnp log3/2 n

which implies the vectors (âi, b̂i, ĉi) are O(η′)-close to
(

ρ
1−ρ

)1/3
(1 − exp(Wi)), for all i ∈ [m].

However, this directly implies that
(

1−ρ
ρ

)1/3
(âi, b̂i, ĉi) are O(η′/ρ1/3)-close to 1 − exp(Wi), i ∈ [m], which in turn
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implies (ãi, b̃i, c̃i) are O(η′/ρ1/3) close to exp(Wi).

This implies the statement of the Lemma.

�

Given that, we prove the main theorem. The main issue will be to ensure that taking log of the values

Proof of Theorem 7. By Proposition 110, the vectors Yi, i ∈ [m] in Algorithm 17 are O(η
√

np)-close to exp(−Wi) with

η = Õ
(√

mpρ
)

. Let (Y ′i ) j = (Yi) j if (Yi) j > exp(−νu) and otherwise (Yi)′j = exp(−νu).

Then we have that ‖Y ′i −Wi‖ ≤ ‖Yi −Wi‖. By the Lipschitzness of log(·) in the region [νi,∞]

we have that

|(Ŵi) j − (Wi) j| = | log(Y ′i ) j − log(Wi) j| . |(Yi)′j − (Wi) j|

It follows that

‖Ŵi −Wi‖ = ‖log Y ′i − log Wi‖ . ‖Y ′i −Wi‖

Therefore recalling ‖Y ′i −Wi‖ ≤ ‖Yi −Wi‖ ≤ O(η
√

np) we complete the proof.

�

Proof of Theorem 8. The proof will follow the same outline as the proof of Theorem 7. The difference is that since

we only have a guarantee on the spectral boundedness of the second and third-order term, we will need to bound the

higher-order terms in a different manner. Given that we have no information on them in this scenario, we will simply

bound them in the obvious manner. We proceed to formalize this.

The sample complexity is polynomial for the same reasons as in the proof of Theorem 7, so we will not worry

about it here.

We only need to check the conditions for Algorithms 13 and 12 to work, so that we can apply Theorems 10 and 6.

Towards that, first we claim that we can write the PMI tensor for any equipartition S a, S b, S c of [n] as

PMITS a,S b,S c =

ρ

1 − ρ

∑
k∈[m]

Fk,S a ⊗ Fk,S b ⊗ Fk,S c −

1
2

(
ρ

1 − ρ

)2 ∑
k∈[m]

Gk,S a ⊗Gk,S b ⊗Gk,S c

+

1
3

(
ρ

1 − ρ

)3 ∑
k∈[m]

Hk,S a ⊗ Hk,S b ⊗ Hk,S c + E (3.3.43)
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where ‖E‖{1,2},{3} ≤ ρ4m(np)3/2. Towards achieving this, first we claim that Proposition 94 implies that for any

subsets S a, S b, S c,

∥∥∥∥∥∥∥
m∑

k=1

(
1 − exp(−lWk)

)
S a
⊗

(
1 − exp(−lWk)

)
S b
⊗

(
1 − exp(−lWk)

)
S c

∥∥∥∥∥∥∥
{1,2},{3}

≤ m(np)3/2

Indeed, if we put γk =
(
1 − exp(−lWk)

)
S a

, δk =
(
1 − exp(−lWk)

)
S b

, θk =
(
1 − exp(−lWk)

)
S c

, then we have ‖
∑

k γkγ
>
k ‖ ≤

√
mnp, and similarly for δk. Since maxk ‖θk‖ ≤ (np)1/2, the claim immediately follows. Hence, (3.3.43) follows.

Next, let RS a be the matrix that has as columns the vectors
(

1
l

(
ρ

1−ρ

)l
)1/3

(P̃l) j,S a , l ∈ [2, L], j ∈ [m] and A is the

matrix that has as columns the vectors
(

ρ
1−ρ

)1/3
(P̃1) j,S a for j ∈ [m] for some L = O(poly(n)), similarly as in the proof

of Theorem 7.

We claim that RS a R>S a
is τ spectrally bounded by ρFF>.

Indeed, for any l > 2, we have ‖
(

1
l

(
ρ

1−ρ

)l
)1/3

P̃l‖ . ρ
l/3‖P̃l‖ . ρ

l/3 √mnp Hence,

RS a R>S a
� ρ2/3GG> + ρ4/3HH> + ρ2LL> +

∑
l≥4

ρ2l/3mnp2

� 3ρ2/3τ(FF> + σmin(FF>)) + ρ8/3mnp2 - ρ2/3τ(FF> + σmin(FF>)) (3.3.44)

where the first inequality holds since HH>,GG>, LL> are τ-spectrally bounded bounded by F and the second since

σmin(FF>) & np and τ ≥ 1. Let τ′ = ρ2/3τ. Since we are assuming the matrix F is O(1)-incoherent, we can

apply Theorem 16, and claim the output of Algorithm 13 are matrices Qa,Qb,Qc which are τ-approximate whitening

matrices for A, B,C respectively.

By Lemma 109, we have again

σmax(Qa) ≤
1

1 − τ′
. (1 + τ′)‖AA>‖, σmin(Qa) ≥

1
1 + τ′

& (1 − τ′)σmin(AA>)

Then, applying Theorem 10, we get that we recover vectors (âi, b̂i, ĉi) are O(η′)-close to
(

ρ
1−ρ

)1/3
(1− exp(Wi)), for

all i ∈ [m]. for

η′ . max(‖Qa‖ , ‖Qb‖ , ‖Qc‖)1/2 ·
(
τ′3/2 + σ−3/2‖E‖{1,2},{3}

)
Recall that τ′ = ρ2/3τ, and ‖Qa‖ ≤ ρ

2/3σmax(F) . ρ2/3 √mnp and ‖E‖{1,2},{3} ≤ ρ4m(np)3/2 and σ & ρ2/3np, we obtain

that

η′ . ρ1/3 √mnp
(
(τρ2/3)3/2 +

ρ4m(np)3/2

(ρ2/3np)3/2

)
. ρ4/3 √mnpτ3/2

where the last inequality holds since ρ3m = o(1) = o(τ).

However, this directly implies that ( 1−ρ
ρ

)1/3(âi, b̂i, ĉi) are O(η′/ρ1/3) = O(η)-close to 1 − exp(−Wi), i ∈ [m], which
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in turn implies (ãi, b̃i, c̃i) are O(η) close to exp(−Wi).

Argument for recovering Wi from exp(−Wi) is then exactly the same as the one in Theorem 7.

�

3.3.12 Technical details: sample complexity and bias of the PMI estimator

Finally, we consider the issue of sample complexity. The estimator we will use for the PMI matrix will simply be the

plug-in estimator, namely:

ˆPMIi, j = log
P̂r[si = 0 ∧ s j = 0]

P̂r[si = 0]P̂r[s j = 0]
(3.3.45)

Notice that this estimator is biased, but as the number of samples grows, the bias tends to zero. Formally, we can show:

Lemma 111. If the number of samples N satisfies

N ≥
1

mini, j{Pr[si = 0 ∧ s j = 0}
1
δ2 log m

with high probability | ˆPMIi, j − PMIi, j| ≤ δ,∀i , j.

Proof. Denoting ∆i, j = P̂r[si = 0 ∧ s j = 0] − Pr[si = 0 ∧ s j = 0] and ∆i = P̂r[si = 0] − Pr[si = 0], we get that

ˆPMIi, j = log
P̂r[si = 0 ∧ s j = 0]

P̂r[si = 0]P̂r[s j = 0]
= log

Pr[si = 0 ∧ s j = 0] + ∆i, j

(Pr[si = 0] + ∆i)(Pr[s j = 0] + ∆ j)

= PMIi, j + log
(
1 +

∆i, j

Pr[si = 0 ∧ s j = 0]

)
− log

(
1 +

∆i

Pr[si = 0]

)
− log

(
1 +

∆ j

Pr[s j = 0]

)

Furthermore, we have that 2x
2+x ≤ log(1+ x) ≤ x

√
x+1

, for x ≥ 0, which implies that when x ≤ 1, 2
3 x ≤ log(1+ x) ≤ x.

From this it follows that if

max
(
max

i, j

∆i, j

Pr[si = 0 ∧ s j = 0]
,max

i

∆i

Pr[si = 0]

)
≤ δ

we have

PMIi, j −
δ

3
≤ ˆPMIi, j ≤ PMIi, j + δ

Note that it suffices to show that if N > 1
1−4pmaxmρmax

1
δ2 log m, we have

Pr
[

∆i

Pr[si = 0]
> (1 + δ) ∨

∆i

Pr[si = 0]
< (1 − δ)

]
≤ exp(− log2 m) (3.3.46)
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and

Pr
[

∆i, j

Pr[si = 0 ∧ s j = 0]
> (1 + δ) ∨

∆i, j

Pr[si = 0 ∧ s j = 0]
< (1 − δ)

]
≤ exp(− log2 m) (3.3.47)

since this implies

max
(
max

i, j

∆i, j

Pr[si = 0 ∧ s j = 0]
,max

i

∆i

Pr[si = 0]

)
≤ δ

with high probability by a simple union bound.

Both (3.3.46) and (3.3.47) will follow by a Chernoff bound.

Indeed, consider (3.3.46) first. We have by Chernoff

Pr

∆i >

1 +

√
log N

N Pr[si = 0]

 Pr[si = 0]

 ≤ exp(− log2 N)

Hence, if N > 1
Pr[si=0]

1
δ2 log m, we get that 1 − δ ≤ ∆i

Pr[si=0] ≤ 1 + δ with probability at least 1 − exp(log2 m).

The proof of (3.3.47) is analogous – the only difference being that the requirement is that N > 1
Pr[si=0]

1
δ2 log m

which gives the statement of the lemma.

�

Virtually the same proof as above shows that:

Lemma 112. If the number of samples N satisfies

N ≥
1

mini, j,k{Pr[si = 0 ∧ s j = 0 ∧ sk = 0}
1
δ2 log m

with high probability | ˆPMITi, j,k − PMITi, j,k | ≤ δ,∀i , j , k.

As an immediate corollary, we get:

Corollary 113. If the number of samples N satisfies

N ≥
1

mini, j,k{Pr[si = 0 ∧ s j = 0 ∧ sk = 0}
1
δ2 log m

N ≥
1

mini, j,k{Pr[si = 0 ∧ s j = 0 ∧ sk = 0}
1
δ2 log m

with high probability for any equipartition S a, S b, S c

‖ ˆPMITS a,S b,S c − PMITS a,S b,S c‖{1,2},{3} . n3δ
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3.3.13 Technical details: matrix perturbation toolbox

In this section we discuss standard matrix perturbation inequalities. Many results in this section can be found in

Stewart and Sun (Stewart, 1977). Given Â = A + E, the perturbation in individual singular values can be bounded by

Weyl’s theorem:

Theorem 17 (Weyl’s theorem). Given Â = A + E, we know σk(A) − ‖E‖ ≤ σk(Â) ≤ σk(A) + ‖E‖.

For singular vectors, the perturbation is bounded by Wedin’s Theorem:

Lemma 114 (Wedin’s theorem; Theorem 4.1, p.260 in (Stewart, 1990)). Given matrices A, E ∈ Rm×n with m ≥ n. Let

A have the singular value decomposition

A = [U1,U2,U3]


Σ1 0

0 Σ2

0 0

 [V1,V2]>.

Let Â = A + E, with analogous singular value decomposition. Let Φ be the matrix of canonical angles between the

column span of U1 and that of Û1, and Θ be the matrix of canonical angles between the column span of V1 and that of

V̂1. Suppose that there exists a δ such that

min
i, j
|[Σ1]i,i − [Σ2] j, j| > δ, and min

i,i
|[Σ1]i,i| > δ,

then

‖ sin(Φ)‖2 + ‖ sin(Θ)‖2 ≤ 2
‖E‖2

δ2 .

Perturbation bound for pseudo-inverse When we have a lowerbound on σmin(A), it is easy to get bounds for the

perturbation of pseudoinverse.

Theorem 18 (Theorem 3.4 in (Stewart, 1977)). Consider the perturbation of a matrix A ∈ Rm×n: B = A + E. Assume

that rank(A) = rank(B) = n, then

‖B† − A†‖ ≤
√

2‖A†‖‖B†‖‖E‖.

Note that this theorem is not strong enough when the perturbation is only known to be τ-spectrally bounded in our

definition.
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3.4 Beyond linearity II: provable algorithms for noisy-OR using anchor

symptoms

In this section, similar as in the case of topic models, we will design more efficient algorithms for noisy-OR which

are based on solving a non-linear variant of non-negative matrix factorization, rather than tensor decomposition.

The benefit will be two-fold: first, the structural assumptions will be completely transparent and verifiable – and in

fact, satisfied on the QMR-DT dataset, which is the standard testbed for this problem; second, the algorithms will

be computationally substantially more efficient – as was the case for topic models. In fact, the only obstacle to

getting completely practical algorithms will be sample complexity: given the population values of the PMI matrix,

the algorithm takes under an hour to learn the actual QMR-DT network; unfortunately, the sample complexity for

estimating the entries of the PMI matrix to a sufficient accuracy will still be rather prohibitive in practice.

The main contribution of this section is to combine the approach of linearizing the PMI matrix in Section 3.3 with

a fast algorithm for symmetric nonnegative matrix factorization (NMF), which provably works under a new structural

assumption about noisy-or networks that we call sequential 2-anchor condition(see (A2) in Section 3.4.0.1). This lets

us design a new algorithm whose running time is n3, improving both on the runtime of Section 3.3 and the n4 runtime

required for quartet learning in (Jernite et al., 2013). Our algorithm actually can be extended to a certain nonlinear

variant of symmetric NMF, which is defined in the following section.

3.4.0.1 Overview of assumptions and approach: a meta-algorithm for non-linear Symmetric NMF

We proceed now to describing our approach using algorithm for symmetric NMF. First, we set up some notation and

nomenclature that will be used throughout the paper. We introduce an analogue of an anchor word in (Arora et al.,

2013b):

Anchor row: An anchor row of a matrix X is a row that has a singleton support:

Definition (Anchor row). An anchor row of the matrix X ∈ Rn×m is a row of X with only one non-zero entry.

The anchor word assumption in (Arora et al., 2013b) in this language requires that for every column index j, there

exists an anchor row i such that supp(Xi) = { j}. Besides generalizing to non-linear situation, one of the features of this

paper is to weaken the anchor word assumption. (See Section 3.4.3) and Assumption A2 for details.

Our approach will solve a generalization of the symmetric NMF problem we call sym-NMF. In sym-NMF, the

observed matrix is the sum of a nonlinear function applied to each rank-1 component:

Definition (Non-linear sym-NMF). Let f : Rn×n
≥0 → R

n×n
≥0 be some known function that satisfies zero preservation in

the sense that for all (i, j), f (B)i j = 0 if and only if Bi j = 0. Let X1, . . . , Xm be unknown vectors in Rn
≥0. Given the
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matrix A ∈ Rn×n of the form

A =

m∑
j=1

f
(
X jX>j

)
, (3.4.1)

the problem of non-linear sym-NMF asks to recover the vectors X j’s.

The standard NMF problem of course corresponds to the sub-case where f is the identity mapping from Rn×n
≥0 to

Rn×n
≥0 . As for our original motivation – noisy-or networks, Proposition A.3 in (Arora et al., 2017b) implies that the

problem of recovering the weight matrix W from PMI corresponds to the following choice of f in the non-linear sym-

NMF problem. (Recall that in the definition , X jX>j is always a symmetric nonnegative rank-1 matrix, thus we only to

define f on such matrices.)

Lemma 115. Suppose f : Rn×n
≥0 → R

n×n
≥0 satisfies that for any symmetric nonnegative rank-1 Z of the form Z = zz>, we

have

f (Z) =

∞∑
k=1

βk(1 − (1 − z)�k), where βk = (−1)k+1 1
k

(
ρ

1 − ρ

)k

Then, the PMI matrix PMI for the noisy-or problem satisfies that

PMI =

m∑
j=1

f (F jF>j ) + D , (3.4.2)

where F j = 1 − exp(−W j), and D is a diagonal matrix.

In words, except for the diagonal entries, PMI can be written as sum of non-linear function of the rank matrics

F jF>j .

We design a meta-algorithm for sym-NMF, described in Algorithm 14, which consists of three generic steps. For

each one, we subsequently provide algorithms, and conditions under which they succeed. (Section 3.4.1 for Step 1,

Section 3.4.2 for Step 2 and Section 3.4.3 for Step 3.)

3.4.1 Step 1: anchor rows discovery

In the first step of the algorithm, we identify anchor rows by finding rows with minimal support. More precisely for

row i, if there exists another row whose support is strictly within the support of row i, then it is not an anchor row.

(Algorithm 15) We show this simple strategy works under the following assumption:

Assumption A1. [Missing triangle condition] For any two columns j, ` with overlapping supports, there exists row

i, k with disjoint supports such that i ∈ supp(X j)\ supp(X`) and k ∈ supp(X`)\ supp(X j).
8The number j is not identifiable since the the potential solutions are equivalent up to permutation of the columns.
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Algorithm 14 Meta-algorithm for non-linear NMF
Given: matrix function f and matrix A =

∑m
j=1 f (X jX>j ) as in definition .

Output: vectors X1, . . . , Xm (up to permutation).

Repeat until all of X1, . . . , Xm are found

Step 1 Anchor rows discovery: Find the indices i, k such that row i and row k are two anchor rows of the matrix X that
share same support (which is a singleton by definition).

Step 2 Column recovery: Given rows i, k both with support { j}8 Recover the column X j.

Step 3 Peeling-off: Remove the contribution of X j from A (by subtracting f (X jX>j ) from A)

Algorithm 15 Anchor detection
Given: A matrix A =

∑m
j=1 f (X jX>j ) and an row i.

Outputs No, if ∃k , i ∈ [n] such that i ∈ supp(Ak) and supp(Ai) * supp(Ak); otherwise, Yes

The reason we call condition (A1) the missing triangle condition is apparent from its graphical representation, as

shown on the left part of Figure 3.1; the blue ellipsoids in the figure denote the supports of columns j and l, and m is

used to indicate an arbitrary column; the dashed lines indicate that m doesn’t belong to support of row i or k, and a full

line denotes it does. The “missing triangles” refers to the fact that for every column m, it doesn’t belong to the support

of at least one of the rows i or k.

In the contexts of noisy-or networks and QMR-DT dataset , this means that for any two diseases that share at least

one symptom, there are two symptoms in the support of these two diseases respectively, but outside of the intersection,

that don’t share a common disease. What this condition intuitively ensures is that if a symptom isn’t an anchor

symptom, when we try to treat it as an anchor symptom and “subtract” its influence in the PMI matrix, we will see

negative values.

More formally, the following guarantee holds:

Lemma 116. Under the assumption A1, algorithm 15 outputs Yes iff coordinate i is an anchor-row.

Proof. Assume first that i is an anchor row for some column j. Because f is zero-preserving, supp(A) = supp(XX>).

This implies that ∀k, supp(Ak) =
∑m

j=1 supp(Xk, jX j). But, since i is an anchor row for j, the only rows k for which

i ∈ supp(Ak) will have also have Xk, j > 0. But this clearly implies supp(A j) ⊆ supp(Ak), so in this case, Algorithm 15

will output Yes, as we want.

Next, assume i is not an anchor row, namely exist two columns j, l, s.t. Xi, j > 0, Xi,l > 0. By (A1), there exist

also two rows a, k with disjoint supports outside of the intersection of supp(X j) ∩ supp(Xl), but in the support of X j

and Xl respectively. Then, we claim that supp(Ai) * supp(Aa). More precisely, we will show that k ∈ supp(Ai) but

k < supp(Aa). Indeed, k ∈ supp(Ai) follows since a ∈ supp(X j) and Xi, j > 0. On the other hand, k < supp(Aa) follows

since for any s ∈ supp(Xa), k < supp(As), so k < supp(Aa).
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Figure 3.1: Two graphical representations of condition (A1), on the left in Venn diagram form, on the right in matrix
form. The blue ellipsoids on the left denote the supports of columns j and l, and m is an arbitrary column. Dashed
lines indicate m doesn’t belong to support of row i or k, and full denotes it does. “Missing triangles” refers to the
fact that for every column m, it doesn’t belong to the support of at least on of the rows i or k. On the right, the same
condition is represented in matrix form, in which colored-in squares denote non-zero elements.

�

3.4.2 Step 2: column recovery

The key challenge of the algorithm is the second step where we aim to recover some column of the matrix X by

leveraging the information of the anchor rows. This step needs to be specialized to the choice of function of f . In

the following subsection, we present an algorithm for case of invertible and decomposable functions f , which sheds

light on the general idea and is of independent interests. Later in Section 3.4.4, we will design an substantially more

advanced algorithm that handles a class of function f , using which we can learn the noisy-or networks.

Definition. We call a mapping f : Rn×n
≥0 → Rn×n

≥0 decomposable if f applies on each coordinate individually, or

concretely, if f (Z) can be written as { fi j(Zi j)}(i, j)∈[n]×[n] for some single-value functions fi j’s. We call it invertible if f

is a one-to-one map.

Lemma 117. Suppose that f is decomposable and invertible and row i is an anchor row of X. Then Algorithm 16

returns a vector v that is equal to one of the columns of X.

Proof. Suppose row i of X has support supp(Xi) = {s} Then we claim that v = Xs. By the definition of A, that the sup-

port of Xi is {s} and f preserves zero entry wise, we have that Ai = f (XsX>s )i = [ fi1(XisX1s), fi2(XisX2s), . . . , fn1(XisXns)]

where the last equality uses the fact that f is decomposable. Now inverting the function f we obtain that w =
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Algorithm 16 Recovery algorithm for decomposable invertible function f
Inputs: A decomposable and invertible function f = { fi j} and invertible A matrix A =

∑m
j=1 f (X jX>j ), an anchor row

i.
Outputs: A vector v (one of the columns of X)

1. Let w = [ f −1
i1 (Ai1), f −1

i2 (Ai2), . . . , f −1
in (Ain)]

2. Let vi =
√

wi and ∀` , i, let v` = w`/vi.

3. Return v

[ f −1
i1 (Ai1), f −1

i2 (Ai2), . . . , f −1
in (Ain)] = [XisX1s, XisX2s, . . . , XisXns]. Then we can see that Xis =

√
wi and X`s = w`/Xis =

w`/vi. �

3.4.3 Iterative peeling-off

Assumption A2. [Sequential 2-anchor condition]: After removal of any subset U of columns from X, the remaining

matrix X[m]\U still has at least one pair of anchor rows with the same support.

Note that if we needed a single anchor row, this assumption would be weaker than the “anchor word” assumption

in (Arora et al., 2013b): in this paper’s language, this assumption requires that for every column j, there exists an

anchor row i such that supp(Xi) = { j}. Thus it requires at least m anchors in the matrix X, each with different support.

Here we are satisfied with a pair of anchors for a single column j, but we require more anchor row to appear after the

columns with identified anchors are “peeled off”. In fact, we know that the QMR-DT dataset satisfies our condition,

but doesn’t satisfy the anchor word assumption in (Arora et al., 2013b).

The assumption that we have a pair of anchor rows for a particular column is necessary for our noisy-or algorithm

– more concretely, for Step 2 of recovering a column X j. For the simpler case of decomposable and invertible f , in fact

even a single anchor row would suffice – hence our assumption is a strict relaxation of the “anchor word” assumption.

For computational efficiency, we would also like to remove the columns of X in stages: in each stage, we discover

multiple anchor row pairs, and then remove all of the corresponding columns simultaneously. We call the number of

stages to peel off all of the columns in a greedy fashion greedy peeling depth.

It’s obvious that assuming Step 1 and Step 2 in the Algorithm 14 are correct, under assumption A2, we can

inductively remove all the columns from X until recovering all of the columns. Applying this to the situation of

decomposable and invertible function f for which we have shown recovery algorithm in the Section 3.4.2, we obtain

the following result:

Theorem 19 ((Arora et al., 2017a)). Under Assumption A1 and A2, given matrix A of the form (3.4.1), we can

recover the vector X1, . . . , Xm up to permutation in polynomial time. In addition, if the greedy peeling depth is T , then

the runtime is at most O(Tn3).
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Proof of Theorem 19. The proof of correctness is immediate – only the runtime requires proof. Consider any stage

in the peeling off process. All anchor rows at that stage can be discovered in time O(n3): we iterate over all rows i,

and implement Algorithm 15 in the trivial manner by looping over all other rows k, checking whether their supports

agree in the trivial manner. Subsequently, we recover the columns corresponding to the anchor rows by running

Algorithm 16 in time O(n) per anchor-row – hence O(n2) in total. Finally, a column can be removed in time O(n2), so

we can remove all the columns from a particular stage in time O(n3). Overall, the runtime is O(n3) per stage, which

implies the theorem.

�

3.4.4 Main result: learning noisy-or networks via non-linear sym-NMF

In this section, we show how meta-algorithm for sym-NMF can be adapted to learn noisy-or networks. The main

difficulty here is how to recover the network parameters from the anchor symptoms. In order to do that we will also

keep track of the first and second order moments p(s̄i) and p(s̄i, s̄k) for all pairs of symptoms i, k. We give the main

algorithm in Algorithm 17 and prove the following guarantees.

Theorem 20 ((Arora et al., 2017a)). Suppose assumption A1 and A2 hold, with greedy peeling depth T . Moreover,

suppose in Algorithm 17 we are given the exact PMI matrix PMI and in addition to the first and second moments of

the symptoms s. Then algorithm 17 recovers the weight matrix exactly in time O(Tn3).

Algorithm 17 is very similar to Algorithm 14. The main difference is how we recover the weights of the network

from anchor symptoms. We describe this step (Algorithm 18) in Section 3.4.5. In Step 3 we also need to maintain the

first and second moments, which appears in Algorithm 20 and Section 3.4.5.1. Finally in Section 3.4.5.2 we describe

how to make Theorem 20 robust to noise.

Algorithm 17 Learning noisy-or networks

Inputs: Empirical PMI matrix ˆPMI, empirical estimates of p̂(s̄i, s̄ j), p̂(s̄i).
Outputs: Estimate Ŵ of weight matrix.
Repeat until all of W1, . . . ,Wm’s are found

Step 1 Anchor rows discovery: Find the indices i, k such that row i and row k are two anchor rows of the matrix X that
share same support (which is a singleton by definition).

Step 2 Column recovery: Suppose the supports of row i and k are both { j}9 Recover the column W j using algorithm
Algorithm 18.

Step 3 Peeling-off: Remove the contribution of disease j from PMI matrix and adjust the empirical moments using
Algorithm 20.

9As noted before, the number j is not identifiable since the the potential solutions are equivalent up to permutation of the columns.
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3.4.5 Column recovery algorithm for learning noisy-or

Suppose we are trying to recover disease j with two anchor symptoms i and k. The basic observation is that when

we observe an anchor symptom, we know the disease must be on. With more work, we can additionally relate

the observed pairwise correlations of various symptoms with parameters of the disease. Formalizing this, we can

calculate the parameters W j by solving quadratic equations, with coefficients calculated from empirical marginals of

the symptoms. More precisely we have

Lemma 118. Let i, k be anchor symptoms for disease j such that Wi, j , Wk, j, let y, z two arbitrary symptoms. Let a, b

be 2-dimensional vectors, defined as

a1 =
p(sy = 0|si = 0)
p(sy = 0|si = 1)

, b2 =
p(sz = 0|si = 0)
p(sz = 0|si = 1)

, b1 =
p(sy = 0|sk = 0)
p(sy = 0|sk = 1)

, b2 =
p(sz = 0|sk = 0)
p(sz = 0|sk = 1)

(3.4.3)

Furthermore, for a vector v, let R−1v be the projection of v to the direction orthogonal to 1. (Note that R−1v = v1−v2.)

Then, if p1, p2 are the solutions to the following quadratic equation in χ:

R−1b
R−1a

(1 − χ)(1 − ρ) =
p(si = 0|sl = 0)
p(si = 0|sl = 1)

χ(χρ + 1 − ρ) (3.4.4)

exactly one of p1, p2 is positive and equals 1 − exp(−Wi, j).

Using similar ideas we can recover all the other weights for disease j:

Lemma 119. Let i be an anchor symptom for disease j. Let a′ be the vector defined a′z =
p(sz=0|si=1)
p(sz=0|si=0) , z ∈ [n] and

r =
(1−exp(−Wi, j))ρ

(1−exp(−Wi, j))ρ+(1−ρ) . For all z , i, we have Wz, j = − log
( a′z−1

a′z−r

)
The proofs of these lemmas are somewhat technical, but essentially involve careful manipulation of the expressions

for marginals in the noisy-or model. The algorithm to find a disease is a straightforward implementations of the

statements of the lemmas as outlined in Algorithm 18

Let us now prove the above lemmas:

Proof of Lemma 118. Denote for notational convenience px = 1−exp(−Wx, j) and qx = p(d j = 1|sx = 0). Furthermore,

let rx = p(sx = 0|d j = 0). We claim that the lemma will follow easily from the following statements:

p(sy = 0|si = 0)
p(sy = 0|si = 1)

=
(1 − qi)

py
+ qi (3.4.5)

p(sk = 0|si = 0)
p(sk = 0|si = 1)

=
1 − qi

pk
+ qi (3.4.6)
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Algorithm 18 Reconstruct row W j for disease j

Inputs: Empirical PMI matrix ˆPMI, empirical estimates of p̂ all pairwise marginals, disease j to reconstruct, two
tentative anchor symptoms i, k.
Outputs: Estimate of weight vector for disease Ŵ j.

1. Pick two other diseases y, z randomly.

2. Let a, b be 2-dimensional vectors, defined as in equation (3.4.3)

3. Let R−1v be the projection of v to the direction orthogonal to 1. Note that R−1a = a1 − a2, R−1b = b1 − b2. Let
q1 be the (only) positive solution of equation (3.4.4) in χ

4. Set Wi, j = − log(1 − q1). Let a′ be the n-dimensional vector defined a′t =
p(st=0|si=1)
p(st=0|si=0) , t ∈ [n].

5. Let r =
(1−exp(−Wi, j))ρ

(1−exp(−Wi, j))ρ+(1−ρ) . For all t , i, set Wt, j = − log( a′t−1
a′t−r )

Let us show that first. Indeed, if a, b are the 2-dimensional vectors, as specified in the Lemma statement, (3.4.5)

implies that

R−1a = (1 − qi)R−1
1
py

R−1b = (1 − qk)R−1
1
py

from which it follows that
R−1a
R−1b

=
1 − qi

1 − qk
(3.4.7)

Furthermore, note that

qk = p(d j = 1|sk = 0) =
p(d j = 1)p(sk = 0|d j = 1)

p(sk = 0)
=

ρpk

ρpk + (1 − ρ)
(3.4.8)

Putting together (3.4.6) and (3.4.8), we get

p(sk = 0|si = 0)
p(sk = 0|si = 1)

− 1 = (1 − qi)
(
1 −

1
pk

)

and
1 − ρ

ρpk + (1 − ρ)
= 1 − qk

Diving the left and right-hand sides respectively, we get

p(sk=0|si=0)
p(sk=0|si=1) − 1

1−ρ
ρpk+(1−ρ)

=
1 − qi

1 − qk

(
1 −

1
pk

)
(3.4.9)

Putting (3.4.7) and (3.4.9) together, we get the statement of the lemma.
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Given that, we proceed to showing (3.4.5) and (3.4.6).

Consider (3.4.5) first. We will in fact show that

p(sy = 0|si = 1) = pyry (3.4.10)

and

p(sy = 0|si = 0) = (1 − qi)ry + qi pyry (3.4.11)

First, consider the (3.4.10). As a notational convenience, let d− j = [1,m] \ { j} denote the set of diseases except for

j.

By the law of total conditional probability, we have:

p(sy = 0|si = 1) =
∑

D− j∈{0,1}m−1

p(sy = 0, d− j = D− j, d j = 1|si = 1)

=
∑

D− j∈{0,1}m−1

p(sy = 0|d− j = D− j, d j = 1, si = 1)p(d− j = D− j, d j = 1|si = 1)

=
∑

D− j∈{0,1}m−1

p(sy = 0|d− j = D− j, d j = 1)p(d j = 1|si = 1)p(d− j = D− j|si = 1, d j = 1)

However, since i is an anchor symptom for disease j, p(d j = 1|si = 1) = 1. Similarly, since i < supp(l) for any l , j,

we have

p(d− j = D− j|si = 1, d j = 1) = p(d− j = D− j|d j = 1) = p(d− j = D− j)

. Finally, note that by (3.3.1), we have

p(sy = 0|d− j = D− j, d j = 1) = p(sy = 0|d− j = D− j, d j = 0)py

With this in mind, we have

p(sy = 0|si = 1) =
∑

D− j∈{0,1}m−1

p(sy = 0|d− j = D− j, dg = 1)p(d j = 1|si = 1)p(d− j = D− j|si = 1, d j = 1)

= py

∑
D− j∈{0,1}m−1

p(sy = 0|d− j = D− j, d j = 0)p(d− j = D− j)

= pyry
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Similarly, for (3.4.11), we have

p(sy = 0|si = 0) =
∑

d j∈{0,1},D−g∈{0,1}m−1

p(sy = 0, d− j = D− j, d j|si = 0)

=
∑

d j∈{0,1},D− j∈{0,1}m−1

p(sy = 0|d− j = D− j, d j)p(d− j = D− j, d j|si = 0)

= p(d j = 1|si = 0)
∑

D− j∈{0,1}m−1

p(sy = 0|d− j = D− j, d j = 1)p(d− j = D− j|si = 0)

+ p(d j = 0|si = 0))
∑

D− j∈{0,1}m−1

p(sy = 0|d− j = D− j, d j = 0)p(d− j = D− j|si = 0)

Similarly as before, we have

∑
D− j∈{0,1}m−1

p(sy = 0|d− j = D− j, d j = 0)p(d− j = D− j, d j|si = 0) = ry

and ∑
D− j∈{0,1}m−1

p(sy = 0|d− j = D− j, d j = 1)p(d− j = D− j, d j|si = 0) = ry py

Altogether, this gives (3.4.5).

The proof that (3.4.6) holds is completely analogous to the above.

Finally, the claim that only one of the roots is non-negative follows immediately from Vieta’s formulas.

�

Proof of 119. Analogously as in the proof of 118, the vector a′ satisfies a′z =
(1−qi)+qi pz

pz
. Similarly, by (3.4.8), we have

qi =
ρpi

ρpi+(1−ρ) . This implies the statement of the Lemma. �

3.4.5.1 Peeling-off step

Since Algorithm 17 needs to maintain both the PMI matrix and second order moments, whenever we “peel off” a

disease, we have to adjust accordingly both the PMI matrix and the moments.

Adjusting the PMI matrix:

To remove the contribution of W j from PMI, we can simply subtract f (W jW>j ) from PMI where f is defined in

Lemma 115. The full algorithm for this is specified as Algorithm 19.

Adjusting the pairwise probabilities:

Maintaining the first and second moments is done by Algorithm 20. The proof of correctness is based on observing

that as far as the marginals are concerned, peeling off a diseases j is equivalent to calculating the marginal probabilities

in the model, conditioned on the d j = 0. We formalize it below:
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Algorithm 19 Subtract disease j

Inputs: Empirical PMI matrix ˆPMI, estimated weights W j for a disease j.
Outputs: Estimate of PMI matrix with disease j subtracted.

1. Let L = 10 log(ν/ε)
log(1/ρ) and τ =

ρ
2 (1 − exp(−ν)). Define the matrix M as

M =

L∑
l=1

(−1)l+1 1
l

(
ρ

1 − ρ

)l

(1 − exp(−lW j))(1 − exp(−lW j))>

2. Return the matrix φτ( ˆPMI − M) where φτ(x) = x, if x > τ, and φτ = 0, otherwise.

Algorithm 20 Update pairwise correlations

Inputs: Empirical PMI matrix ˆPMI, empirical estimates of p̂(s̄i, s̄k), p̂(s̄i), estimate of disease W j

Outputs: New empirical estimates of p̃(s̄i, s̄k), p̂(s̄i), with disease j removed.

For each pair of symptoms i, k, update the first and second moment by

p̃(s̄i, s̄k) =
p(s̄i, s̄k)

1 − ρ + ρ(1 − exp(−Wi, j))(1 − exp(−Wk, j))

p̃(s̄i) =
p(s̄i)

1 − ρ + ρ(1 − exp(−Wi, j))
, and p̃(si, s̄k) = p̃(s̄i) − p̃(s̄i, s̄k)

Lemma 120. Given the values of the pairwise marginal probabilities p(s̄i, s̄k) for all pairs, Algorithm 20 calculates

the marginal probabilities p̃(i, k|d j = 0).

Proof. Consider first p(s̄i, s̄k |d j = 0). By (3.3.1), we have

p(s̄i, s̄k |dk = 1)
p(s̄i, s̄k |d j = 0)

= (1 − exp(−Wi, j)(1 − exp(−Wk, j)

Since

p(s̄i, s̄k |d j = 1)p(d j = 1) + p(s̄i, s̄k |d j = 0)p(d j = 0) = p(s̄i, s̄k)

and p(d j = 1) = ρ, we have

p(s̄i, s̄k |d j = 1) =
p(si, sk)

1 − ρ + ρ(1 − exp(−Wi, j))(1 − exp(−Wk, j))

which implies

p̃(s̄i, s̄k |d j = 1) =
p(si, sk)

1 − ρ + ρ(1 − exp(−Wi, j))(1 − exp(−Wk, j))

Completely analogously,

p̃(s̄i) =
p(si)

1 − ρ + ρ(1 − exp(−Wi, j))
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The equality

p(si, s̄k |d j = 0) = p(s̄i|d j = 1) − p(s̄i, s̄k |d j = 1)

implies

p̃(si, s̄k) = p̃(s̄i) − p̃(s̄i, s̄k)

�

Combining these claims with Lemma 118 and 119, we get Theorem 20. This shows if we have the exact PMI

matrix and pairwise correlations, the algorithm can recover the weight matrix exactly.

3.4.5.2 Error bounds for the components of Algorithm 17

In practice, we can only estimate the PMI matrix and the pairwise correlations with finite accuracy. To that end, we

show that the algorithm is robust to noise.

Before we state the guarantees, we need to define an important parameter pmin. Let Dt be the diseases peeled off

up to stage t. Then pmin is defined as

pmin = min
(
min

i,k
p(si = 0, sk = 0), min

Dt ,i,k<Dt
p(si = 0|sk = 1, dDt = 0)

)

To parse this quantity, note that marginals that include conditioning on dDt = 0 are the same as the marginals in

the network where we have peeled off the symptoms Dt. So, effectively this quantity is the minimum of the marginals

p(si = 0, s j = 0) and p(si = 0|s j = 1) in either the original network, or after we have peeled off some of the symptoms.

Now we can show that Algorithm 17 is robust to noise:

Theorem 21. Suppose Assumptions A1 and A2 hold with greedy peeling depth T . Further, if all non-zero weights

satisfy Wi, j ≥ ν for some constant ν > 0, Algorithm 17 recovers the parameters W up to error ε with high probability,

given O
(

1
ε2

(
ρn

pmin

)2T
)

samples. Moreover, the algorithm 10 runs in time O
(
Tn3

)
.

We have already shown that Algorithm 17 works with exact input. To make it robust, we need to make each step

robust and bound how the errors propagate.

To that end, we first state a few lemmas that show how the error propagates in different steps of the algorithm,

which we will combine these steps to prove the main theorem.

The lemmas needed for analyzing errors in the individual steps of the algorithm are the following:

10Excluding the time to construct the empirical PMI matrix
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Lemma 121 (Errors in the recovery of the W parameters). If the pairwise probabilities p(si, sk),∀i, k are accurate to

within additive error ε, then the result of Algorithm 18 recovers the weights for W j for all diseases with at least two

anchors to within additive error O(ε/pmin).

Lemma 122 (Errors when subtracting a disease). If the weight parameters W j and the entries of the PMI matrix are

accurate to within an additive error ε, after peeling off a diseases j via Algorithm 19, the entries of the PMI matrix are

accurate to within additive error O(ρε). Consequently, if all the weight parameters have additive error ε, and a pair of

symptoms appear in at most N diseases, after subtracting them all, the entries are accurate to O(ρNε). Furthermore,

if Nε = o(1), the support of the entries of the PMI matrix are correct.

Lemma 123 (Errors when adjusting probabilities when subtracting a disease). If the pairwise and singleton proba-

bilities p(si = 0, sk = 0),∀i, k, p(si = 0),∀i, as well as the parameters W j for a disease g are accurate to within

additive error ε, after peeling off a disease j by Algorithm 20, the new pairwise pairwise and singleton probabilities

are accurate to within additive error ε + O(ρε).

We proceed to the proofs:

Proof of Lemma 121. Consider Wi, j first. Algorithm 18 first recovers 1 − exp(−Wi, j) by solving a quadratic equation

in q in Step 3. Rearranging this equation to write it in canonical form, we have that q is the solution to

r2ρq2 + (r2 − r1)(1 − ρ)q − r1(1 − ρ) = 0

where r2 =
p̂(si=0|sk=0)
p̂(si=0|sk=1) and r1 = R−1b

R−1a . By the usual quadratic formula,

q =
−B ±

√
B2 − 4AC
2A

where B = (r2 − r1)(1 − ρ), A = r2ρ,C = r1(1 − ρ). Now, the following elementary inequalities for how the accuracy

behaves under various arithmetic operations are very easy to show:

x2 − 2∆ ≤ (x ± ∆)2 ≤ x2 + 3∆, for ∆, x < 1 (3.4.12)

xy − 2∆ ≤ (x ± ∆)(y ± ∆) ≤ xy + 3∆, for ∆, x, y < 1 (3.4.13)

1
x
−

∆

x
≤

1
x ± ∆

≤
1
x

+ (1 + e/2)
∆

x
, for ∆ < x (3.4.14)
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√
x −
√

∆ ≤
√

x ± ∆ ≤
√

x +
√

∆, for ∆ < x (3.4.15)

From these it is clear that under the assumptions of the Lemma, q will be accurate up to error O(ε/γ). Similarly as

in the proof of Lemma 122, log(x) is O(1)-Lipschitz in the region [ν,+∞] for any constant ν, so Wi, j will be accurate

up to error O(ε/γ).

The argument for Wz, j, z , i is analogous: all the arithmetic operations in Step 5 are again subsumed by the above

inequalities, so the a O(ε/γ) bound holds as well.

�

Proof of Lemma 122. We consider the i, k-th entry of the PMI-matrix. If Wi, j = 0 or Wk, j = 0, the peeling off procedure

does not influence the entry and ε′ will not change. By Lemma 115, the correct term to subtract is

∞∑
l=1

(−1)l+1 1
l

(
ρ

1 − ρ

)l

(1 − exp(−lWi, j))(1 − exp(−lWk, j))

Now we have estimates W ′i, j,W
′
k, j for Wi, j and Wk, j, and |W ′

i, j −Wi, j| ≤ ε, |W ′k, j −Wk, j| ≤ ε. The term we actually

subtract (prior to thresholding at τ) is

L∑
l=1

(−1)l+1 1
l

(
ρ

1 − ρ

)l

(1 − exp(−lW ′
i, j))(1 − exp(−lW ′k, j)),

so the error comes from truncating the Taylor series, and from the errors in the estimates W.

Consider the first error, let’s call it δ1. The function exp(−x) is 1-Lipschitz when x > 0, therefore | exp(−x) −

exp(−y)| ≤ |x−y| for any x, y. Using |(A+∆)(B+∆)−AB| ≤ (A+ B+ |∆|)|∆|, and the fact that exp(−lWi, j), exp(−lWk, j) ∈

[0, 1] we have

δ1 ≤

L∑
l=1

1
l

(
ρ

1 − ρ

)l

· 3lε ≤
∞∑

l=1

1
l

(
ρ

1 − ρ

)l

· 3lε

≤

∞∑
l=1

3ε
(

ρ

1 − ρ

)l

= 3ε
ρ

1 − 2ρ
≤ 4ρε.

Here the last inequality assumes ρ ≤ 1/8 so that 1 − 2ρ ≥ 3/4.
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Next, consider the second error, let’s call it δ2. We have

δ2 ≤

∞∑
l=L+1

(−1)l+1 1
l

(
ρ

1 − ρ

)l

(1 − exp(−lWi, j))(1 − exp(−lWk, j))

≤

∞∑
l=L+1

(−1)l+1 1
l

(
ρ

1 − ρ

)l

(1 − exp(−ν))2

≤

(
ρ

1 − ρ

)L+1 1 − ρ
1 − 2ρ

(1 − exp(−ν))2

≤
4
3

(
ρ

1 − ρ

)L+1

(1 − exp(−ν))2

By our choice of L, δ2 = O(ρε). The part of the lemma that concerns subtracting multiple diseases follows from

induction on the number of peeled off diseases, and notice that an entry (i, k) does not get effected if Wi, j = 0 or

Wk, j = 0.

Now, finally, note by the Taylor expansion (in Lemma 115), if a term in the PMI matrix is non-zero, it has magni-

tude at least 1
10ρ(1 − exp(−ν))2 for ρł/8, which implies that when Nε = o(1), the support will be correctly determined,

which completes the proof of the lemma. �

Proof of Lemma 123. The proof follows a similar outline as the proof of Lemma 122. Consider, for instance p̃(si, sk):

the quantities 1
1−ρ+ρ(1−exp(−Wi, j)(1−exp(−Wk, j))

are accurate up to O(ρε) additive, and p(si, sk) is accurate up to ε, so p̃(si, sk)

is accurate up to ε + O(ρε).

The singleton marginals are handled the same way. �

Finally, we put together all these error bounds to get the final guarantee in Theorem 21:

Proof of Theorem 21. We will prove by induction on the the number of peeling off stages the following statement: at

stage t, the support of the PMI matrix is correct, and the values p̂(s̄i, s̄k), p̂(s̄i), and the entries of the PMI matrix are

accurate up to error O(ε
(
ρN
pmin

)t
.

Consider the base step first. By Lemma E.1 in (Arora et al., 2017b), if the number of samples is Ω( 1
pmin

log n 1
ε2 ),

the empirical PMI matrix, as well as the pairwise marginals are entrywise accurate up to ε. Furthermore, Lemma 122

implies the thresholding step will correctly recover the supports of the PMI matrix.

Now, consider the inductive step. Towards that, suppose the statement is correct at time step t. Since the support

of the PMI matrix is correct, by Lemma 117, the anchor symptoms will be correctly identified. But, given this, by

Lemmas 118, 119 and 121, the weights of the diseases with at least two anchors will be recovered with accuracy

O
(
ε
(
ρN
pmin

)t+1
)
. Finally, by Lemma 123, the values p̂(s̄i, s̄k), p̂(s̄i) are accurate up to O

(
ε
(
ρN
pmin

)t+1
)

(since there are at

most N diseases at stage t), and by Lemma 122 the PMI matrix values are accurate up to O
(
ε
(
ρN
pmin

)t+1
)

and the support

is recovered correctly – thus finishing the proof of the theorem.
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3.4.6 A generative model to understand the algorithm

The disease-symptom connections in QMR-DT interesting properties such as the ones exploited in the “peeling”algorithms

of the current paper and also earlier by (Jernite et al., 2013). This section suggests a way to think about the structure

of such networks using a generative model for the edges connecting related diseases and symptoms, such that it has

these properties. By contrast, usual random graph models (such as the one assumed in (Arora et al., 2017b)) lack this

structure. We hope this model may be useful in thinking about more applications for the algorithm.

The generative model is a random graph model for generating a bipartite graph. It assumes that the diseases as

well as symptoms enter the graph in epochs. (Each epoch ends up being one of the stages in the ‘peeling”during the

algorithm.) Initially there is a set of diseases and symptoms that happen to be connected by a sparse random graph,

where the sparsity is such that all diseases have anchor symptoms during the epoch. In each epoch a new set of diseases

enter the graph, as do a new set of symptoms. The diseases take up some symptoms from the existing set of symptoms,

and some from the new set of symptoms. Since the newly arrived diseases took on old symptoms, now some of those

symptoms may stop being anchor symptoms if they now occur in two diseases. But the newly arrived diseases have

anchor symptoms among the new pool of symptoms that also arrived during the epoch. (Thus intuitively speaking, our

peeling algorithm will peel off epochs in reverse order that they arrived in.)

Now we make this model precise. Concretely, at epoch T , we will have mT diseases and nT symptoms, and each

symptom will be included in the support of one of the diseases with probability pT,T .

At each previous epoch t, we will increase the set of diseases by adding mt new diseases and nt symptoms to the

already existing ones; each of the ni, i ∈ [t,T ] symptoms will be included in the support of the new mt diseases with

probability pt,i.

We will call a symptom an anchor at epoch t, if the symptom is an anchor symptom when only considering the

diseases in epochs [t,T ]. Similarly, a disease has an anchor at epoch t, if it has an anchor at epoch t.

For notational convenience, let’s denote m =
∑T

t=1 mt; furthermore, let’s denote by Mt the set of diseases added

at epoch t, and by Nt the set of symptoms added at epoch t. We will say an event happens with high probability if it

happens with probability 1 − exp(−Ω(log2 m)).

The range of the parameters for the generative model will be as follows:

(G1) pt,tnt = Θ(log2 m) and nt = ω(mt log2 m)

(G2) pt,t ≤
1

2mt
and mt = ω(log2 m)

(G3)
∑T

i=1 1/mt ≤ 1, and pt,imt = Ω(log2 m)
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Graphically, the generative model is represented in Figure 3.2. Ochre denotes the symptoms that are anchors at

that epoch, while maroon denotes symptoms that are not anchors up to that epoch.

Figure 3.2: Pictorial representation of generative model. Ochre denotes symptoms that are anchors at that epoch,
maroon symptoms that are not anchors up to that epoch.

We will show the following properties of our generative model:

Theorem 22. Under the setup in this section, we have:

(i) With high probability, the diseases Mt have anchors at epoch t.

(ii) With high probability, the symptoms Nt are not anchors at epoch t′ < t.

(iii) Assumption (A1) is satisfied.

We note that (i) and (iii) are the only conditions relevant to the algorithm’s correctness, but (ii) is empirically true

as well, so we incorporate it in our generative model. We further note that by setting the parameters accordingly,

we can also ensure that each disease has roughly the same number of symptoms in addition to (i)-(iii). Namely,

we claim that there is a setting of the parameters, such that all diseases have roughly same number of symptoms:

∀t :
∑t

i=1 ni pt,i = Θ
(
log2 m

)
. One particular setting is:

• m1 = log3 m and mt = 2 log5 m · mt−1, for some other constant C. (Accordingly, the number of epochs is

T = O(log m/ log log m))

• nt = mt log3 m

• pt,t = 1
mt log m and pt,i = 1

2mt
, for i < t and t > 1.

For these settings,
∑t

i=1 ni pt,i =
∑t−1

i=1 ni pt,i + pt,tnt = log2 m
(∑t−1

i=1 mi pt,i

)
+ log2 m. But, note that mi pt,i =

(2 log5 m)i−t, so
∑t−1

i=1 mi pt,i ≤ 1/ log5 m, which implies that
∑t

i=1 ni pt,i = Θ(log2 m) for all t.
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3.4.7 Experimental results

Finally, we turn to practical aspects of our approach. The algorithm is quite fast: a vanilla implementation in Matlab

runs in under an hour on a dual, eight-core 2.8GHz Intel Xeon E5 2680 v2 processor machine on the QMR-DT

dataset, which has 4075 symptoms and 570 diseases. In contrast, (Jernite et al., 2013) do not report run times for

their algorithm on QMR-DT – only on a much smaller dataset (Singliar and Hauskrecht, 2006) with 8 latent and 64

observable variables.

Additionally, there are many operations in the algorithm (e.g. finding duplicate anchor symptoms for a particular

disease) that in principle could be substantially sped up using hashing tricks. With respect to the peeling depth: we

find 8 layers of peeling suffice to recover all but 2 diseases using our algorithm. This problematic disease pair —they

share all but 1 symptom—was already identified in (Halpern and Sontag, 2013)11

We can run our algorithm with real samples, but sample complexity is a problem due to numerical issues. Using

infinite samples (i.e., the correct PMI matrix), the algorithm should identify 229 diseases in the first iteration, 132 in

the second, 83 in the third. When we estimate the PMI matrix with 100 million samples, 90% of the diseases can be

correctly identified in the first iteration with almost no false positives, and 70% in the second one again with few false

positives. (Thus 300 of the 570 diseases were correctly identified with samples.) However, in the third round, the

precision/recall tradeoff significantly nosedives, and significant experimentation did not improve this.

11In principle, if we had an alternate procedure for peeling off diseases using only a single anchor even fewer rounds would suffice – on QMR-DT,
4 would be sufficient to recover all the diseases.
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Chapter 4

Provable guarantees for inference in

undirected, fully observable graphical

models

In this chapter, we will present new results on provable guarantees for inference in undirected graphical models.

More precisely, we will give guarantees for variational methods in the context of calculating partition functions. Our

algorithms will be based on convex relaxations of the optimization problem that arises in variational approaches.

First, in Section 4.1 we will survey traditional approaches for calculating partition functions based on variational

methods – both those with provable guarantees, and those without. In Section 4.3.1 we will describe our new relax-

and-round approach to these methods using convex relaxations.

In Section 4.3 we will derive new algorithms for coarse multiplicative approximations of the partition function of

Ising models, without any assumptions on the parameters of the model. These can be viewed as partition function

analogues of Goemans-Williamson type results in the context of optimization. This section is based on results in (Li

and Risteski, 2016).

In Section 4.4 we will improve the approximation guarantees of Section 4.3 when the graph of the Ising model has

more structure. More precisely, we will show that for dense and spectrally well-behaved graphs, we can design much

better algorithms. This section is based on results in (Risteski, 2016).
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4.1 Overview of variational methods for calculating partition functions

We will briefly survey variational approaches to calculating partition functions. For simplicity, we will focus on Ising

models, though the results are fully general. Recall, an Ising model is a distribution p : {−1, 1}n → [0, 1] that has the

form p(x) ∝ exp
(∑

i∼ j Ji, jxix j

)
and its partition function is Z =

∑
x∈{−1,1}n

(∑
i∼ j Ji, jxix j

)
.

The main idea all the algorithms use is the following simple lemma, which characterizes Z as the solution of an

optimization problem. The idea is essentially the same as Lemma 3. In machine learning, this approach was rediscov-

ered in efforts to understand belief propagation (Wainwright and Jordan, 2008; Yedidia et al., 2003). Concretely, the

following claim holds:

Lemma 124 (Variational characterization of log Z). For any distribution q : {−1, 1}n → [0, 1],

∑
i∼ j

Ji, jEq

[
xix j

]
+ H(q) ≤ log Z

with equality at q = p.

Proof. For any distribution q : {−1, 1}n → [0, 1], we can write the KL divergence between q and p as

KL(q||p) = Eq
[
log q(x)

]
− Eq

[
log p(x)

]
= −H(q) −

∑
i∼ j

Ji, jEq

[
xix j

]
+ log Z

Since the KL divergence is always non-negative, −H(q) −
∑
i∼ j

Ji, jEq

[
xix j

]
+ log Z ≥ 0. Hence, log Z ≥ H(q) +∑

i∼ j

Ji, jEq

[
xix j

]
which proves the first claim of the lemma. However, equality is achieved whenever the KL divergence

is 0, which happens when q = p. This finishes the second part of the lemma. �

An immediate consequence of the above is the following:

Corollary 125. log Z = maxq∼{−1,1}n
{∑

i∼ j Ji, jEq

[
xix j

]
+ H(q)

}
.

Of course, the above optimization problem is intractable, so the problem needs to be relaxed in some way. There

are a few ways this has been done hitherto, which we summarize in the subsequent sections.

4.1.1 Constraining the distribution to optimize over

The first approach towards solving the optimization in Corollary 125 is analogous to the one used in variational

Bayes in Section 2.1 – namely to optimize over a constrained class of distributions Q. A common choice is product

distributions – this is usually called a mean-field approximation. To make this concrete, note that the mean-field
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distribution can be parametrized by the single-variable marginals qi. So, the optimization to solve becomes:

max
qi∼{−1,1},i∈[n]

∑i∼ j

Ji, jEqi [xi]Eq j [x j] +

n∑
i=1

H(qi)

 (4.1.1)

Note that since each of the qi distributions have {−1, 1} as their domain, it is trivial to parametrize them, by say, qi(xi =

−1), so the above optimization problem involves O(n) variables only, and the objective function can be efficiently

evaluated. Though (4.1.1) is in general non-convex, practitioners frequently run iterative algorithms like gradient

descent. Provable guarantees however are extremely rare: for instance, in the Curie-Weiss Ising model (in which the

graph G is complete and Ji, j = J∀i, j), for sufficiently small J the objective (4.1.1) is convex, and one can (coarsely)

bound the quality of the approximation. (Friedli and Velenik, 2017)

4.1.2 Polytope-based approximations

Another family of approaches proceeds by reformulating the objective in Corollary 125 in terms of the low-order

marginals of the distribution, and subsequently relaxing the polytope of marginals in some manner. To make this

concrete, note that we can rewrite the objective in Corollary 125 as

log Z = max
q̃S (xS ),|S |≤2∈M2

 ∑
i, j∈E(G)

Ji, jEq̃{i, j} [xix j] + max
q∼{−1,1}n:qS (xS )=q̃(xS ),|S |≤2

H(q)

 (4.1.2)

whereM2 denotes the polytope of marginals over subsets of size 2.

In words, we can first optimize of the values of the pairwise marginals – which determines the value of the quadratic

portion of the objective and subsequently maximize the entropy of q subject to matching these marginals. While this

may seem like a trivial rewrite, this separate treatment of the entropy is very beneficial. Note that at this point, there

are two sources of difficulty in solving (4.1.2): optimization over the polytope of pairwise marginals is still intractable;

so is evaluating the quantity Hmax(q̃2).

Moment-based relaxations : The first difficulty is addressed by using moment-based convex relaxations of the poly-

tope of pairwise marginals. The idea behind these families of relaxations is to introduce variables for the marginals, and

impose certain constraints that would be satisfied by valid pairwise marginals. This is a technique which has received

a lot of recent study in theoretical computer science as well – where two families of relaxations, the Sherali-Adams

convex programming hierarchy and the Lasserre/Parrillo/Sum-of-Squares hierarchy have been extensively studied in

the context of combinatorial optimization. We will survey these methods detail in Section 4.2.1, but for the sake of

introducing approximations of the entropy (which address the second difficulty), we will formally define the polytope

corresponding to the basic Sherali-Adams relaxation of order 2, which we denote as S A(2).
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The polytope S A(2) is described by variables qS (xS ), xS ∈ {−1, 1}|S |, |S | ≤ 2 corresponding to local distributions

over subsets S ⊆ [n] of size at most 2. The following natural constraints are imposed:

• Non-negativity: ∀S ⊆ [n], |S | ≤ 2, xS ∈ {−1, 1}|S |, qS (xS ) ≥ 0.

• Consistency: ∀i , j ∈ [n],∀xi ∈ {−1, 1},
∑

x j∈{−1,1} qi, j(xi, x j) = qi(xi)

• Marginalization: ∀i ∈ [n],
∑

xi∈{−1,1} qi(xi) = 1

It is clear that these constraints would be satisfied by any valid marginals qS of a distribution over the hypercube, but

the converse need not be true – the variables qS may not correspond to marginals of any distribution. In other words,

M2 ⊆ S A(2). However, since the number of variables in S A(2) is O(n2), and the constraints we are imposing are

linear, we can in polynomial time optimize convex functions over the polytope of such variables.

Entropy approximations : The second difficulty is that the above relaxations merely contain variables for marginals

over sets of size 2. Thus it is unclear how to evaluate the quantity Hmax(q̃2). In fact, even if the values qS (xS ) were

valid marginals (which they need not be), this corresponds to a maximum entropy evaluation problem, subject to

second order marginal constraints, which is well known to be NP-hard to even approximate (?) A popular approach

for tackling this issue is to use the Bethe approximation of the entropy. For a distribution q, it is defined as

HBethe(q) =
∑
i∼ j

H(qi, j) −
∑

i

(di − 1)H(qi) (4.1.3)

where di is the degree of vertex i. Note the above quantity depends only on the pairwise marginals – so is well defined

and can be efficiently evaluated even for variables q̃2 in SA(2). Thus, when clear from the context, we will abuse

notation and refer to HBethe(q̃2). Thus, the relaxation to 4.1.2 we are solving

max
q̃2∈S A(2)

∑
i, j∈E(G)

Ji, jEq̃{i, j} [xix j] + HBethe(q̃2) (4.1.4)

The quantity (4.1.3) may seem strange at first sight. The rationale behind it is that if the graph G is a tree, the

entropy of the Ising distribution p corresponding to it is exactly HBethe(p). Thus, the hope is that for graphs that are

“tree-like”, a notion which we will make formal shortly, this approximation is not too far from being accurate. Two

important issues arise:

• HBethe(p) is in general neither an upper nor a lower bound on H(p). As a consequence, HBethe(q̃2) is neither

an upper nor a lower bound of Hmax(q̃2). As a result, (4.1.4) is not a “relaxation” in the standard sense of

theoretical computer science.
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• The resulting objective function is not necessarily concave – so even making claims as to whether a global

optimum of the optimization is reached is difficult in general. (In fact, the only known case when the objective

is concave are graphs with a single cycle (Weiss, 2000).)

Formally, the provable guarantees on this approximation proceed via analyzing a particular iterative heuristic to solve

(4.1.4) called Belief Propagation. A technical description of this procedure is beyond the scope of this thesis, but

surveys on the variational viewpoint of belief propagation can be found in (Yedidia et al., 2003). We will however

mention that the class of graphs G for which provable guarantees are known satisfy the following conditions:

• Locally tree-like: G has constant degree, and has large girth, i.e. no cycles of length O(log n).

• Correlation decay: far away nodes in the graph don’t influence much the marginals at a particular node. More

precisely, the marginal distributions at a node, conditioned on any two different values of the neighbors at

distance t, differ by at most O(e−t).

4.1.3 Advanced methods

Variational methods are still a very active research area, and as a consequence there are many variations on the above

approaches, but most of which come with few guarantees. We will briefly survey on a high level the main “tweaks and

tricks”, with a particular accent on the classes of graphs for which provable guarantees are known.

Higher-order analogues of the Bethe entropy : If the moment-relaxation polytope includes variables for higher-

order marginals – say, for sets of size k, similar “consistency” constraints as those in SA(2) can be imposed (see

Section 4.2.1), and it is clear that this would be a tighter relaxation of the moment polytope. However, it is unclear

how one can leverage this information to improve the quality of the Beth approximation. Heuristic arguments, based on

the inclusion-exclusion principle and attempting “not to overcount” the local entropies lead to a variety of higher-order

analogues, the most famous of which are the Kikuchi family of approximations. (Yedidia et al., 2003)

Convexifications of the Bethe entropy : One of the undesirable aspects of the Bethe approximation is that HBethe

is not necessarily convex. There have been some efforts to provide convexified variants of this approximation: (Wain-

wright et al.; 2005) suggested a concave approximation based on convex combinations of tree entropies in the spanning

trees of the graph; this approximation has the added property that it is an upper bound on Hmax. (Meshi et al., 2009)

explored ways to find the “nearest” convexification of the Bethe approximation under various notions of closeness.

Neither of these papers provide guarantees for the quality of the approximation on any class of graphs. (Additionally,

empirical results suggest these convexifications frequently give much worse approximations to the partition func-

tion/marginals of the graph than the Bethe approximation.)
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Loop-correcting the Bethe entropy : (Chertkov and Chernyak, 2006) provided a loop-series interpretation of the

Bethe approximation, which allows expressing exactly the partition function as a function of any fixed point of the

belief propagation iterations. Unfortunately, this expression requires iterating over all (simple) cycles in the graph G,

hence is provably efficient only for graphs with a small (polynomial) number of simple cycles. Techniques of this kind

were also used in the context of graphs with large girth, and counting independent sets (Chandrasekaran et al., 2011).

4.2 Our approach: rounding and entropy approximations

Our approach will follow the moment-based relaxation paradigm as far as relaxing the polytope of marginals is con-

cerned; where we will diverge is how we handle the entropy portion of the objective. We will construct entropy

approximations that remedy both issues with the Bethe entropy; namely, they will upper bound Hmax and they will be

concave. Subsequently, we will round the solution obtained to an actual distribution, in a manner that doesn’t lose

too much in terms of the value of the objective function. In this sense, our approach is much more akin to usual

relax-and-round approach of linear/semidefinite relaxations to combinatorial optimization problems. Concretely, the

simple proposition we use is the following:

Proposition 126. LetM2 ⊆ M′, and let the functionals H̃, Ẽ :M′ → R satisfy H(q̃) ≤ H̃(q̃),Eq̃

[
xix j

]
= Ẽq̃

[
xix j

]
for

q̃ ∈ M, then

log Z ≤ max
q̃∈M′

∑i∼ j

Ji, jẼq̃

[
xix j

]
+ H̃(q̃)



Subsequently, we will round the pseudo-distributions to actual distributions, in a manner that doesn’t lose too

much in terms of the value of the objective function. What this means is that we will provide an actual distribution q,

for which ∑
i∼ j

Ji, jEq

[
xix j

]
+ H(q)

is comparable to ∑
i∼ j

Ji, jẼq̃

[
xix j

]
+ H̃(q̃)

4.2.1 Convex programming hierarchies

We will introduce the general family of polytopes we will use for approximating the marginals polytope. we provide

only a (very) brief overview for completeness sake, and will not attempt to give a thorough survey of this rich area of

study. For more details, the reader can consult (Barak et al., 2011; 2014; Laurent, 2009).
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The k-level Sherali-Adams hierarchy polytope (henceforth SA(k)) is defined by variables q̃S (xS ), xS ∈ {−1, 1}|S |

specifying local distributions over all subsets S ⊆ [n], |S | ≤ k. The distributions q̃S : {−1, 1}|S | → [0, 1] and q̃T :

{−1, 1}|T | → [0, 1], for any S , T s.t. |S ∪ T | ≤ k must be “consistent” on S ∩ T . More precisely, it’s the case that

Pr
xS∼q̃S

[xS∩T = α] = Pr
xT∼q̃T

[xS∩T = α],∀S ,T ⊆ [n], |S ∪ T | ≤ k

The fact that these constraints can be written as a linear program was sketched in Section 4.1.2 for k = 2; for more

details, the reader can consult (Barak et al., 2011).

We can also define a conditioning operation thanks to the existence of these local distributions. More precisely,

for a vertex v, conditioning on v involves sampling v according to the local distribution q̃{v}. This operation specifies a

solution to the k − 1-st level SA hierarchies: just define q̃S (xS ) = q̃S∪{v}(xS∪v).

Moreover, a natural pseudo-expectation functional Ẽq̃[·] can be defined for any polynomial of degree at most k, by

definining for monomials πi∈I xi, I ⊆ [n],

Ẽq̃[πi∈I xi] = Pr
q̃

[πi∈I xi = 1] (4.2.1)

and extending it to polynomials by linearity.

The polytope corresponding to the k-th level Lasserre or Sum-of-Squares hierarchy (henceforth LA(k)) is a

semidefinite program s.t. there are vectors vS ,α for each subset S and possible assignment of values α to it satis-

fying 〈vS ,α, vT,β〉 = Prq̃S∪T (xS = α, xT = β), if |S ∪ T | ≤ k. The additional power that is gained by this is that the natural

pseudo-expectation functional Ẽq̃[·] satisfies

Ẽq̃[(r(x))2] ≥ 0

for any polynomial r of degree at most k/2.

4.3 Worst-case guarantees using approximate maximum entropy principles

To illustrate our approach, we will first tackle the task of giving worst-case guarantees for coarse approximations of

the partition function of Ising models, with no assumptions on the structure of the potentials. More precisely, we tackle

the following basic research question:

What is the best approximation guarantee on the partition function in the worst case (with no additional assump-

tions on the potentials)?

In the low-temperature limit, i.e. when |Ji, j| → ∞, log Z → maxx∈{−1,1}n
∑

i∼ j Ji, jJi, jxix j - i.e. the question reduces

to purely to optimization. In this regime, this question has a very satisfying answer: in the worst case, one can get
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O(log n) factor multiplicative factor approximation of the log of the partition function, and unless P = NP, one cannot

get better than constant factor approximations of it (Charikar and Wirth, 2004; Alon and Naor, 2006; Alon et al., 2006)

In the finite-temperature version, it is known that it is NP-hard to achieve a (1 + ε)-factor approximation to the

partition function (i.e. construct a FPRAS) (Sly and Sun, 2012), but nothing is known about coarser approximations.

We prove in this section, informally, that one can get comparable multiplicative guarantees on the log-partition function

in the finite temperature case as well. The methods are generic, and likely to apply to many other exponential families,

where algorithms based on linear/semidefinite programming relaxations are known to give good guarantees in the

optimization regime.

We will prove the following results:

Theorem 127 (Ferromagnetic Ising, informal). There is a convex optimization problem over LA(2) that calculates

up to multiplicative approximation factor 50 the value of log Z where Z is the partition function of the Ising model

p(x) ∝ exp(
∑
i, j

Ji, jxix j) for Ji, j > 0.

Theorem 128 (Ising model, informal). There is a convex optimization problem over LA(2) that calculates up to

multiplicative approximation factor O(log n) the value of log Z where Z is the partition function of the exponential

distribution p(x) ∝ exp(
∑
i, j

Ji, jxix j).

Theorem 129 (Ising model, informal). There is a convex optimization problem over LA(2) that calculates up to

multiplicative approximation factor O(log χ(G)) the value of log Z where Z is the partition function of the exponential

distribution p(x) ∝ exp(
∑

i, j∈E(G)

Ji, jxix j) and G has chromatic number χ(G).

Note Theorem 129 is strictly more general than Theorem 128, however the proof of Theorem 128 uses less heavy

machinery and is illuminating enough that we feel merits being presented as a separate result.

In all of the above theorems, the entropy functional H̃ will be trivial: we will set H̃(q̃) = n. This is trivially an

upper bound on Hmax, as needed by Proposition 126. The difficulty will be proving that the rounding can produce

a distribution with nearly-maximum entropy. The idea is similar for all three results above, but the intuition is most

readily illustrated in the ferromagnetic case, so we proceed to that one first.

4.3.1 Ferromagnetic Ising models

Denoting by G = mint∈[−1,1]

{
2
π

arcsin(t)/t
}
≈ 0.64, we will prove the following natural approximate maximum entropy

principle:

Theorem 130 (Ferromagnetic, approximate entropy principle, (Li and Risteski, 2016)). For any positive-semidefinite

matrix Σ with Σi,i = 1,∀i, there is an efficiently sampleable distribution q : {−1, 1}n → R, which can be sampled as
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sign(g), where g ∼ N(0,Σ + βI), and satisfies G

1+β
Σi, j ≤ Eq[xix j] ≤ 1

1+β
Σi, j and has entropy H(q) ≥ n

25
(31/4 √β−1)2
√

3β
, where

β ≥ 1
31/2 .

In order to parse the theorem, if we think of the covariance matrix as the moments of a distribution over {−1, 1}

for which the singleton marginals are 0, there is an efficiently sampleable distribution which preserves these moments

up to a constant multiplicative factor, and has linear entropy (i.e. at most a constant factor away from the maximum

possible entropy.) Of course, the theorem is true for any covariance matrix – i.e. the entries need not be actual

moments.

This is an approximate maximum entropy principle, in the sense that the maximum entropy distribution matching

certain second order moments is an Ising model. This is a well known fact (Jaynes, 1957) and is one of the justifications

for the widespread use of Ising models in machine learning (and more generally, Markov Random Fields.) However

determining the potentials of this Ising model, even approximately is impossible unless RP = NP. The above theorem

is a “bi-criteria” approximation of this principle: i.e. it only approximately matches both the moments and the entropy

of the distribution, but is efficient.

Before proving this theorem, we will see how it can be used to design an approximation algorithm for the partition

function of a ferromagnetic Ising model. Recall the celebrated First Griffiths inequality due to Griffiths (Griffiths,

1967) which states that for ferromagnetic Ising models, Ep[xix j] ≥ 0,∀i, j.

Using this inequality, we will look at the following natural relaxation:

max
q̃∈LA(2);Ẽq̃[xi x j]≥0,∀i, j

∑i∼ j

Ji, jẼq̃[xix j] + n

 (4.3.1)

Theorem 131 ((Li and Risteski, 2016)). The relaxation (4.3.1) provides a factor 50 approximation of log Z.

Proof. Due to Griffiths’ inequality and Proposition 126, (4.3.1) is an upper bound of log Z. We will provide a rounding

of (4.3.1), as described in Section . We will use the distribution q from Lemma 130: the sign of a Gaussian with

covariance matrix Σ +βI, for a β which we will specify. By Theorem 130, we then have H(q) ≥ n
25

(31/4 √β−1)2
√

3β
whenever

β ≥ 1
31/2 and Eq[xix j] ≥

G

1 + β
Ẽq̃[xix j]

By setting β = 21.8202, we get n
25

(31/4 √β−1)2
√

3β
≥ 0.02 and G

1+β
≥ 0.02, which implies that

∑
i, j

Ji, jEq[xix j] + H(q) ≥ 0.02

∑
i, j

Ji, jẼq̃[xix j] + n


which implies the claim we want. �

With this in mind, we will prove Theorem 130. We will do this in two parts – by first lower bounding the entropy

of µ̃, and then by bounding the moments of µ̃.
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Theorem 132 ((Li and Risteski, 2016)). The entropy of the distribution µ̃ satisfies H(µ̃) ≥ n
25

(31/4 √β−1)2
√

3β
when β ≥ 1

31/2 .

Proof. A sample g from N(0, Σ̃) can be produced by sampling g1 ∼ N(0,Σ), g2 ∼ N(0, βI) and setting g = g1 + g2.

The sum of two multivariate normals is again a multivariate normal. Furthermore, the mean of g is 0, and since g1, g2

are independent, the covariance of g is Σ + βI = Σ̃.

Let’s denote the random variable Y = sign(g1 + g2) which is distributed according to µ̃. We wish to lower bound

the entropy of Y. Toward that goal, denote the random variable S := {i ∈ [n] : |(g1)i| ≤ cD} for c,D to be chosen.

Then, we have: for γ = c−1
c ,

H(Y) ≥ H(Y|S) =
∑

S⊆[n]

Pr[S = S ]H(Y|S = S ) ≥
∑

S⊆[n],|S |≥γn

Pr[S = S ]H(Y|S = S )

where the first inequality follows since conditioning doesn’t decrease entropy, and the latter by the non-negativity of

entropy. Continue the calculation we can get:

∑
S⊆[n],|S |≥γn

Pr[S = S ]H(Y|S = S ) ≥
∑

S⊆[n],|S |≥γn

Pr[S = S ] min
S⊆[n],|S |≥γn

H(Y|S = S )

= Pr
[
|S| ≥ γn

]
min

S⊆[n],|S |≥γn
H(Y|S = S )

We will lower bound Pr[|S| ≥ γn] first. Notice that E[
∑n

i=1(g1)2
i ] = n, therefore by Markov’s inequality, Pr

 n∑
i=1

(g1)2
i ≥ Dn

 ≤
1
D

. On the other hand, if
∑n

i=1(g1)2
i ≤ Dn, then |{i : (g1)2

i ≥ cD}| ≤ n
c , which means that |{i : (g1)2

i ≤ cD}| ≥ n − n
c =

(c−1)n
c = γn. Putting things together, this means Pr

[
|S| ≥ γn

]
≥ 1 −

1
D

.

It remains to lower bound minS⊆[n],|S |≥γn H(Y|S = S ). For every S ⊆ [n], |S | ≥ γn, denote by YS the coordinates of

Y restricted to S , we get

H(Y|S = S ) ≥ H(YS |S = S ) ≥ H∞(YS |S = S ) = − log(max
yS

Pr[YS = yS |S = S ])

(where H∞ is the min-entropy) so we only need to bound maxyS Pr[YS = yS |S = S ]

We will now, for any yS , upper bound Pr[YS = yS |S = S ]. Recall that the event S = S implies that ∀i ∈ S ,

|(g1)i| ≤ cD. Since g2 is independent of g1, we know that for every fixed g ∈ Rn:

Pr[YS = yS |S = S , g1 = g] = Πi∈S Pr[sign([g]i + [g2]i) = yi]

For a fixed i ∈ [S ], consider the term Pr[sign([g]i + [g2]i) = yi]. Without loss of generality, let’s assume [g]i > 0

(the proof is completely symmetric in the other case). Then, since [g]i is positive and g2 has mean 0, we have
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Pr[[g]i + (g2)i < 0] ≤
1
2

.

Moreover,

Pr
[
[g]i + [g2]i > 0

]
= Pr[[g2]i > 0] Pr

[
[g]i + [g2]i > 0 | [g2]i > 0

]
+ Pr[[g2]i < 0] Pr

[
[g]i + [g2]i > 0 | [g2]i < 0

]
The first term is upper bounded by 1

2 since Pr[[g2]i > 0] ≤ 1
2 . The second term we will bound using standard

Gaussian tail bounds:

Pr
[
[g]i + [g2]i > 0 | [g2]i < 0

]
≤ Pr

[
|[g2]i| ≤ |[g]i| | [g2]i < 0

]
= Pr[|[g2]i| ≤ |[g]i|] ≤ Pr[([g2]i)2 ≤ cD] = 1 − Pr[([g2]i)2 > cD]

≤ 1 −
2
√

2π
exp (−cD/2β)


√

β

cD
−

√ β

cD

3
which implies

Pr[[g2]i < 0] Pr[[g]i + [g2]i > 0 | [g2]i < 0] ≤
1
2

1 − 2
√

2π
exp (−cD/2β)


√

β

cD
−

√ β

cD

3


Putting together, we have

Pr[sign((g1)i + (g2)i) = yi] ≤ 1 −
1
√

2π
exp (−cD/2β)


√

β

cD
−

√ β

cD

3
Together with the fact that |S| ≥ γn we get

Pr[YS = yS |S = s, g1 = g] ≤

1 − 1
√

2π
exp (−cD/2β)


√

β

cD
−

√ β

cD

3

γn

which implies that

H(Y) ≥ −

(
1 −

1
D

)
(c − 1)n

c
log

1 − 1
√

2π
exp (−cD/2β)


√

β

cD
−

√ β

cD

3


By setting c = D = 31/4 √β and a straightforward (albeit unpleasant) calculation, we can check that H(Y) ≥

n
25

(31/4 √β−1)2
√

3β
, as we need.

�

We next show that the moments of the distribution are preserved up to a constant G

1+β
. The analysis is very
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reminiscent of the standard analysis of Goemans-Williamson:

Lemma 133. The distribution µ̃ has G

1+β
Σi, j ≤ Eµ̃[XiX j] ≤ 1

1+β
Σi, j

Proof. Consider the Gram decomposition of Σ̃i, j = 〈vi, v j〉. Then, N(0, Σ̃) is in distribution equal to

(sign(〈v1, s〉), . . . , sign(〈vn, s〉)) where s ∼ N(0, I). Similarly as in the analysis of Goemans-Williamson (Goemans

and Williamson, 1995), if v̄i = 1
‖vi‖

vi, we have G〈v̄i, v̄ j〉 ≤ Eµ̃[XiX j] =
2
π

arcsin(〈v̄i, v̄ j〉) ≤ 〈v̄i, v̄ j〉. However, since

〈v̄i, v̄ j〉 =
1

‖vi‖‖v j‖
〈vi, v j〉 =

1
‖vi‖‖v j‖

Σ̃i, j =
1

‖vi‖‖v j‖
Σi, j and ‖vi‖ =

√
Σ̃i,i =

√
1 + β,∀i ∈ [1, n], we get that

G

1 + β
Σi, j ≤

Eµ̃[XiX j] ≤
1

1 + β
Σi, j as we want.

�

Lemma 132 and 133 together imply Theorem 130. Note that the above proof does not work in the general Ising

model case: when Ẽq̃[xix j] can be either positive or negative, even if we preserved each Ẽq̃[xix j] up to a constant

factor, this may not preserve the sum
∑

i, j Ji, jẼq̃[xix j] due to cancellations in that expression.

In the next section, we will show how to handle this difficulty, and prove analogous results for general Ising models.

4.3.2 General Ising models

As noted in the previous section, the straightforward application of the rounding results in the previous section doesn’t

work, so we have to consider a different rounding – again inspired by roundings used in optimization.

The intuition is the same as in the ferromagnetic case: we wish to design a rounding which preserves the quadratic

portion of the objective, while having a high entropy. In the previous section, this was achieved by modifying the

Goemans-Williamson rounding so that it produces a high-entropy distribution. We will do a similar thing here, by

modifying roundings due to (Charikar and Wirth, 2004) and (Alon et al., 2006).

The convex relaxation we will consider will be even simpler than the one before:

max
q̃∈LA(2)

∑i∼ j

Ji, jẼq̃[xix j] + n

 (4.3.2)

We will prove the following two theorems:

Theorem 134 ((Li and Risteski, 2016)). The relaxation (4.3.2) provides a factor O(log n) approximation to log Z.

Theorem 135 ((Li and Risteski, 2016)). The relaxation (4.3.2) provides a factor O(log(χ(G))) approximation to log Z

where χ(G) is the chromatic number of G.

As we mentioned before, since the chromatic number of a graph is bounded by n, the second theorem is in fact

strictly stronger than the first, however the proof of the first theorem uses less heavy machinery, and is illuminating
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enough to be presented on its own. Before delving into the proof of Theorem 134, we review the rounding used by

(Charikar and Wirth, 2004) in the case of maximizing quadratic forms:

Algorithm 21 Quadratic form rounding by (Charikar and Wirth, 2004)
1: Input: A pseudo-moment matrix Σi, j = Ẽq̃[xix j]
2: Output: A sample x from a distribution ρ
3: Sample g from the standard Gaussian N(0, I).
4: Consider the vector h, such that hi = gi/T,T =

√
4 log n

5: Consider the vector r, such that ri = hi
|hi |

, if |hi| > 1, and ri = hi otherwise.
6: Produce the rounded vector x ∈ {−1, 1}n, s.t.

xi =

{
+1, with probability 1+ri

2
−1, with probability 1−ri

2

}

Algorithm 22 Scaled down quadratic form rounding
1: Input: A pseudo-moment matrix Σi, j = Eν[xix j]
2: Output: A sample x from a distribution µ̃
3: Sample g from the standard Gaussian N(0, I).
4: Consider the vector h, such that hi = gi/T,T =

√
4 log n

5: Consider the vector r, such that r′i = 1
2

hi
|hi |

, if |hi| > 1, and r′i = 1
2 hi otherwise.

6: Produce the rounded vector x ∈ {−1, 1}n, s.t.

xi =

{
+1, with probability 1+ri

2
−1, with probability 1−ri

2

}

With that in hand, we can prove Theorem 134

Proof of Theorem 134. The proof again consists of exhibiting a rounding. Our rounding will essentially be the same

as (Charikar and Wirth, 2004), except in step 3, we will produce a vector r′i by scaling down the vector ri by 2

coordinate-wise. For full clarity, the rounding is presented in Algorithm 22.

We again, need to analyze the entropy and the moments of the distribution µ̃ that this rounding produces. Let us

focus on the entropy first.

Since conditioning does not decrease entropy, it’s true that H(µ̃) = H(x) ≥ H(x|r), so it suffices to lower bound

that quantity. However, note that it holds that ri ≤
1
2 , and each xi is rounded independently conditional on ri, so we

have:

H(x|r) =
∑

i

H(xi|ri) =
∑

i

(
1 + ri

2
log

(
1 + ri

2

)
+

1 − ri

2

(
1 − ri

2

))
≥

(
2 −

3
4

log 3
)

n

Consider now the moments of the distribution.

Let us denote the distribution that the rounding 21 produces by ρ. By Theorem 1 in (Charikar and Wirth, 2004),
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we have ∑
i, j

Ji, jEρ[xix j] ≥ O
(

1
log n

)∑
i, j

Ji, jEν[xix j]

Additional, both our and the (Charikar and Wirth, 2004) roundings are such that Eρ[xix j] = ErEx|r[xix j] and

Eµ̃[xix j] = Er′Ex|r′ [xix j]. Furthermore, as noted in (Charikar and Wirth, 2004), it is easy to check that E[xix j|r′] = r′i r
′
j

and obviously r′i = 2ri,∀i in distribution, so we have:

Eµ̃[xix j] = Er′Ex|r′ [xix j] =
1
4
ErEx|r[xix j] =

1
4
Eρ[xix j]

But, this directly implies

∑
i, j

Ji, jEµ̃[xix j] =
1
4

∑
i, j

Ji, jEρ[xix j] ≥ O
(

1
log n

)∑
i, j

Ji, jEν[xix j]

as we needed. �

Next, we prove the more general Theorem 135.

Before proceeding, let’s recall for completeness the following definition of a chromatic number.

Definition (Chromatic number). The chromatic number χ(G) of a graph G = (V(G), E(G)) is defined as the minimum

number of colors in a coloring of the vertices V(G), such that no vertices i, j : (i, j) ∈ E(G) are colored with the same

color.

Also, let us denote by Sn−1 the set of unit vectors in Rn and L∞[0, 1] the set of (essentially) bounded functions: the

functions which are bounded except on a set of measure zero.

Then, we can recall Theorem 3.3 from (Alon et al., 2006):

Theorem 136 ((Alon et al., 2006)). There exists an absolute constant c such that the following holds: Let G =

(V(G), E(G)) be an undirected graph on n vertices without self-loops1, let χ(G) be the chromatic number of G. Then

for every function f : V(G) → Sn−1, there exists a function F : V → L∞[0, 1] so that for every i ∈ V(G), ‖F(i)‖∞ ≤√
cχ(G) and for every (i, j) ∈ E(G),

〈 f (i), f ( j)〉 =

∫ 1

0
F(i)(t)F( j)(t)dt

Now, we can prove Theorem 135

Proof of Theorem 135. The proof is similar, though a little more complicated than the proof of Theorem 134.

Let Ẽν[·] be the solution of the relaxation. By matrix formulation of the pseudo-moment relaxation in Section ?? ,

we know that Ẽν[xix j] = 〈 f (i), f ( j)〉 for some unit vectors f (i), f ( j).
1Meaning no edge connects a vertex with itself
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Hence, by theorem 136, there exists a function F : V → L∞[0, 1] so that for every i ∈ V(G), ‖F(i)‖∞ ≤
√

cχ(G)

and for every (i, j) ∈ E(G),

Ẽν[xix j] =

∫ 1

0
F(i)(t)F( j)(t)dt

Consider the following rounding:

• Pick a t uniformly at random from [0, 1].

• Consider the function ht : V → R, such that ht(i) =
F(i)(t)

2
√

cχ(G)

• Produce the rounded vector x ∈ {−1, 1}V(G), s.t.

xi =


+1, with probability 1+ht(i)

2

−1, with probability 1−ht(i)
2


Note importantly that the algorithm does not need to perform this rounding – it is for the analysis of the approxi-

mation factor of the relaxation. Therefore, we need not construct it algorithmically.

Let us denote this distribution as µ̃. We first show that µ̃ has entropy at least
(
2 − 3

4 log 3
)

n. Note that each xi are

round independently conditional on t. Moreover, since ‖F(v)‖∞ ≤
√

cχ(G), we know that ht(v) ≤ 1
2 . Therefore, for

every fixed t0 ∈ [0, 1]

H(µ̃ | t = t0) =
∑

i∈V(G)

H(xi | t = t0)

=
∑

i∈V(G)

(
1 + ht0 (v)

2
log

1 + ht0 (v)
2

+
1 − ht0 (v)

2
log

1 − ht0 (v)
2

)

≥

(
2 −

3
4

log 3
)

n

Integrating over t0 we get that H(µ̃) ≥
(
2 − 3

4 log 3
)

n.

Next, we will show that µ̃ preserves the “energy” part of the objective up to a multiplicative factor O(log χ(G)):

Consider each edge (i, j) ∈ E(G). We have:

Eµ̃[xix j] =∫ 1

0

(
(1 + ht(i))(1 + ht( j))

4
+

(1 − ht(i))(1 − ht( j))
4

−
(1 + ht(i))(1 − ht( j))

4
−

(1 − ht(i))(1 + ht( j))
4

)
dt

=

∫ 1

0
ht(i)ht( j)dt =

1
4cχ(G)

∫ 1

0
F(i)(t)F( j)(t)dt =

1
4cχ(G)

Ẽν[xix j]

209



This implies that ∑
i, j∈E(G)

Ji, jEµ̃[xix j] ≥
1

4cχ(G)

∑
i, j∈E(G)

Ji, jẼν[xix j]

Therefore, the relaxation provides a factor O(χ(G)) approximation of logZ, as we wanted.

�

4.4 Guarantees for dense and low threshold-rank Ising models using entropy-

respecting roundings

In this section, we will show how we can leverage well-design entropy approximations H̃ in structured instances. More

precisely, we will be considering dense and low threshold-rank Ising models. These terms might be familiar to those

who have studied combinatorial optimization in the context of constraint satisfaction problems. We will generalize

these concepts to Ising models in the obvious manner.

An Ising model p(x) ∝ exp
(∑

i∼ j Ji, jxix j

)
, x ∈ {−1, 1}n is ∆-dense if it satisfies ∆|Ji, j| ≤

JT
n2 ,∀i, j ∈ [n], where

JT =
∑

i, j |Ji, j|.

This is a natural generalization of the typical way to define density for combinatorial optimization problems (see

e.g. (Yoshida and Zhou, 2014)). To see this consider a graph G = (V, E) with |E| = cn2. For constraint satisfaction

problems, we care about objectives that look like

Ee∈E f (e) =
∑
e∈E

1
|E|

f (e)

for some function f . Hence, the “weight” in front of each pair (i, j) in the objective is 0 if there is no edge or 1
|E| . This

corresponds to ∆ = 1
c in our definition. For partition function problems, however, scale matters (i.e. we cannot assume∑

i, j Ji, j = 1), so the above generalization is very organic.

We will then show:

Theorem 137 ((Risteski, 2016)). For ∆-dense Ising models, there is an algorithm based on Sherali-Adams hierarchies

which achieves an additive approximation of εJT to log Z, where Z =
∑

x∈{−1,1}n exp
(∑

i∼ j Ji, jxix j

)
and runs in time

nO
(

1
∆ε2

)
.

Our second contribution are analogous claims for Ising models whose potentials look like low rank matrices.

(More precisely, adjacency matrices of low threshold rank graphs, a concept introduced by (Arora et al., 2010) in the

context of their algorithm for Unique Games.)

Concretely, an Ising model p(x) ∝ exp
(∑

i∼ j Ji, jxix j

)
, x ∈ {−1, 1}n is regular if

∑
j:i∼ j |Ji, j| = J′,∀i. The adjacency

matrix of a regular Ising model is the matrix Ai, j = |Ji, j|/J′. Then, we show:
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Theorem 138 ((Risteski, 2016)). There is an algorithm based on Lasserre hierarchies which achieves an additive

aproximation of εnJ′ to log Z, where Z =
∑

x∈{−1,1}n exp
(∑

i∼ j Ji, jxix j

)
, and runs in time nrank(Ω(ε2))/Ω(ε2), where rank(τ)

is the number of eigenvalues of the adjacency matrix A greater than or equal to τ.

Interestingly this property of the graph was previously introduced for purposes of combinatorial optimization

problems like small-set expansion, Unique Games (Steurer, 2010; Arora et al., 2010) – yet it also helps with counting

type problems. Note that since we prove additive factor guarantees to log Z, using the fact the eε ≤ 1 + 2ε, we can

easily turn them to multiplicative factor guarantees on Z.

While these guarantees are not as strong as one usually gets in the correlation decay regime (i.e. 1+ε multiplicative

factor approximations to Z in time poly(n, 1
ε
)), to the best of our knowledge, these are the first approximations guaran-

tees for Z when correlation decay does not hold. We discuss interesting regimes of the potentials Ji, j in Section 4.4.4.

4.4.1 Entropy-respecting roundings

In contrast to Section4.3, we will use more carefully designed entropy approximations. The rounding of the cor-

responding relaxation will be such that it exactly preserves the entropy approximation we design – so the task will

be to analyze how well we preserve the quadratic portion of the objective. Hence, we call them entropy-preserving

roundings.

Recall, H̃ needs to be an upper bound on the entropy of a distribution on which we have essentially no handle other

than having the first few moments through the convex programming hierarchies we are using. A natural candidate to

get an upper bound is the chain rule.

Towards that, notice that for any set S of size at most k, where k is the number of levels of the Sherali-Adams or

Lasserre hierarchy, H(µS ) is a well-defined quantity: it’s exactly

H(µS ) =
∑

xS ∈{−1,1}|S |
µS (xS ) log(µs(xS ))

Since these local quantities are essentially all the information about the joint distribution µ we have, our functional

must involve such quantities only.

The simplest functional one can design surely is the following:

Definition. The mean-field pseudo-entropy functional HMF(µ) is defined as HMF(µ) =
∑n

i=1 H(µi).

Remark. Note, this is not the same as the usual mean-field approximation in statistical physics. The mathematical

program analogue of that approximation would be to enforce that Eµ[xix j] = Eµ[xi]Eµ[x j] – which would result in a

non-convex relaxation generally. We think the name is appropriate though, since the bound on the entropy is mean-

field, i.e. results by treating µ as if it were a product distribution.
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Almost trivially for any µ ∈ M, the following proposition holds:

Proposition 139. For any distribution µ : {−1, 1}n → [0, 1], H(µ) ≤ HMF(µ)

Proof. By the chain rule, H(µ) =
∑n

i=1 H(µi|µ[i−1]), where [i − 1] denotes the set {1, 2, . . . , i − 1} and H(X|Y) is the

conditional entropy of X given Y . However, since H(µi|µ[i−1]) ≤ H(µi) the claim trivially holds. �

We will also consider generalizations of the above – where before applying the above ”mean-field” bound on the

entropy, one can condition on a small subset first. Namely,

Definition. The augmented mean-field pseudo-entropy functional for subsets of size k, HaMF,k(µ) is defined as HaMF,k(µ) =

min|S |≤k
{
H(µS ) +

∑
i<S H(µi|µS )

}
.

The same proof as in Proposition 139 implies:

Proposition 140. H(µ) ≤ HaMF,k(µ)

Furthermore, it’s quite easy to show that HaMF,k(µ), like HMF(µ), is a concave function.

Lemma 141. The pseudo-entropy functional HaMF,k(µ) = min|S |≤k
{
H(µS ) +

∑
i<S H(µi|µS )

}
is concave in the variables

{µS∪{i}
(
xS∪{i}

)
||S | ≤ k, i ∈ [n]}.

Proof. Since HaMF,k(µ) = min|S |≤k
{
H(µS ) +

∑
i<S H(µi|µS )

}
, and the minimum of concave functions is concave, all we

need to show is that H(µS ) +
∑

i<S H(µi|µS ) is concave for all S . It’s well known that entropy is a concave function, so

H(µS ) is concave. What remains to be shown is that
∑

i<S H(µi|µS ) is concave. But, since the sum of concave functions

is concave, it suffices to prove H(µi|µS ) is concave.

The proof of this is essentially the same as the proof of concavity of entropy. Abusing notation a bit, we will denote

as µA|xB the conditional distribution on the variables in A, conditioned on the variables in B having the value xB. We

recall that

H(µi|µS ) =
∑

xS ∈{−1,1}|S |

µs(xS )H(µi|xs)

= −
∑

xS ∈{−1,1}|S |

∑
xi∈{−1,1}

µs(xS )µi|xS (xi) log(µi|xS (xi))

= −
∑

xS ∈{−1,1}|S |

∑
xi∈{−1,1}

µS∪{i}(xS∪{i}) log(µi|xS (xi))

= −
∑

xS ∈{−1,1}|S |

∑
xi∈{−1,1}

µS∪{i}(xS∪{i}) log
(
µS∪{i}(xS∪{i})
µs(xS )

)

We rewrite the last expression as a KL divergence as follows:

−
∑

xS ∈{−1,1}|S |

∑
xi∈{−1,1}

µS∪{i}(xS∪{i}) log
µS∪{i}(xS∪{i})

µs(xS ) 1
2

 + 1 = −KL(µS∪{i}||(µS × r)) + 1 (4.4.1)
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where r is a uniform distribution over {−1, 1}.

Then, if µλS∪{i} = λµ1
S∪{i} + (1 − λ)µ2

S∪{i}, we want to show

H(µλi |µ
λ
S ) ≥ λH(µ1

i |µ
1
S ) + (1 − λ)H(µ2

i |µ
2
S )

By (4.4.1) and the convexity of KL divergence,

H(µλi |µ
λ
S ) = −KL(µλS∪{i}||(µ

λ
S × r)) + 1

≥ −λKL(µ1
S∪{i}||(µ

1
S × r)) − (1 − λ)KL(µ2

S∪{i}||(µ
2
S × r)) + 1

= λH(µ1
i |µ

1
S ) + (1 − λ)H(µ2

i |µ
2
S )

which is what we want.

�

4.4.2 Guarantees for dense Ising models using entropy-respecting roundings

We will now use the entropy approximations roundings to design provable algorithms for approximating partition

functions of dense Ising models.

There are multiple reasons to study this particular subclass: from the theoretical computer science point of view,

we have various PTAS for constraint satisfaction problem when the constraint graph is dense (Yoshida and Zhou, 2014;

Arora et al., 1995) so we might hope to get results better than the worst-case one ones for partition function calculation

as well.

Another motivation comes from mean-field ferromagnetic Ising model (also known as the Curie-Weiss model (Ellis

and Newman, 1978)), which is frequently studied as a very simplified model of ferromagnetism because one can get

relatively easily results about global properties of the model like the partition function, magnetization, etc. In the

mean-field model, each spin interacts (equally strongly) with every other spin.

We will, in this section, generalize the classical results about the ferromagnetic Curie-Weiss model, as well as

provide the natural counterpart of the results in (Yoshida and Zhou, 2014; Arora et al., 1995) for partition functions.

Let us first review the standard results about Curie-Weiss. Recall, this model follows the distribution p(x) ∝

exp
(∑n

i, j=1
J
n xix j

)
, J > 0. It is easy to analyze because p(x) factorizes and can be “reparametrized” in terms of the

magnetization. Namely, since
∑n

i, j=1
J
n xix j = J

n (
∑

i xi)2, and (
∑

i xi)2 ∈ [−n, n], one can show (Ellis and Newman,

1978):

213



Theorem 142 ((Ellis and Newman, 1978)). For the Curie-Weiss model,

logZ = (1 ± o(1))
(
n max

m∈[−1,1]

(
Jm2 +

1 − m
2

log
1 − m

2
+

1 + m
2

log
1 + m

2

))

The proof of this theorem involves rewriting the expression for Z as follows:

Z =
∑

x∈{−1,1}n
exp

∑
i, j

J
n

xix j

 =
∑

l

exp
( J

n
l2
)
· nl

where nl is the number of terms where
∑n

i=1 xi = l. Then, using Stirling’s formula and some more algebraic manipula-

tion, one can estimate the dominating term in the summation. The claim of the theorem then follows.

We significantly generalize the above claim using notions from theoretical computer science. The goal is to prove

Theorem 137.

Let JT =
∑

i, j |Ji, j|. As discussed in Section 4.4, we define the following notion of density inspired by the definition

of a dense graph in combinatorial optimization (Yoshida and Zhou, 2014):

Definition. An Ising model is ∆-dense if ∀i , j,∆|Ji, j| ≤
JT
n2 , ∆ ∈ (0, 1].

We will consider the relaxation for log Z given by the augmented pseudo-entropy functional and the level k =

O(1/(∆ε2)) Sherali-Adams relaxation, namely:

max
µ∈SA(k),k=O(1/(∆ε2))

∑i, j

Ji, jEµ
[
xix j

]
+ HaMF,k(µ)

 (4.4.2)

We also recall correlation rounding as defined in (Barak et al., 2011). In correlation rounding, we pick a “seed

set” of a certain size, condition on it, and round the rest of the variables independently. The usual thing to prove is that

there is a good “seet set” of a small size to condition on. In particular, for the dense case, the following lemma was

proven in (Yoshida and Zhou, 2014):

Lemma 143 ((Yoshida and Zhou, 2014)). There exists a set S of size k = O(1/(∆ε2)), s.t.

∣∣∣∣∣∣∣∣
∑
i, j

Ji, jEµ
[
xix j|xS

]
−

∑
i, j

Ji, jEµ [xi|xS ]Eµ
[
x j|xS

]∣∣∣∣∣∣∣∣ ≤ 100
∆k

JT

With this in hand, we proceed to the main theorem of this section:

Theorem 144 (Restatement of Theorem 137). The output of 4.4.2 is an εJT additive approximation to log Z.
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Proof. The function 4.4.2 is optimizing is a sum of two terms:
∑

i∼ j Ji, jEµ
[
xix j

]
and an entropy term. Following

standard terminology in statistical physics, we will call the former term average energy.

We will analyze the quality of the convex relaxation by exhibiting a rounding of the pseudo-distribution to an actual

distribution. There is a difference in what this means compared to the roundings we use in combinatorial optimization:

there we only care about producing a single {+1,−1} solution. Here, because of the entropy term, it’s essential that we

produce a distribution over {+1,−1} solutions.

We use the fact that correlation rounding can be viewed as producing distributions with a fairly explicit expres-

sion for their entropy. Let S be the set of size O( 1
∆ε2 ) that Lemma 143 gives. Consider the distribution µ̃(x) =

µ(xS )Πi<S µ(xi|xS )2. In other words, this is the distribution which rounds the variables in S according to their local

distribution, and all other variables independently according to the conditional distribution on xS .

Consider the average energy first. By Lemma 143,

∣∣∣∣∣∣∣∣
∑
i, j

Ji, jEµ
[
xix j|xS

]
−

∑
i, j

Ji, jEµ̃
[
xix j|xS

]∣∣∣∣∣∣∣∣ ≤ JT ε

Now consider the entropy term. The entropy of the distribution µ̃ is H(µ̃) = H(µS ) +
∑

i<S H(µi|µS ). But, since

HaMF,k(µ) = min|S |≤k
{
H(µS ) +

∑
i<S H(µi|µS )

}
, HaMF,k(µ) ≤ H(µ̃) follows. This immediately implies that

∑
i, j

Ji, jEµ
[
xix j

]
+ HaMF,k(µ)

 −
∑

i, j

Ji, jEµ̃
[
xix j

]
+ H(µ̃)

 =

∑
i, j

Ji, jEµ
[
xix j

]
−

∑
i, j

Ji, jEµ̃
[
xix j

] +
(
HaMF,k(µ) − H(µ̃)

)
≤ JT ε

This exactly proves the claim we want.

�

Notice, in the case of the Curie-Weiss model, since J > 0, the value of the relaxation 4.4.2 is at least JT , Theorem

144 gives a 1 + ε multiplicative factor approximation to log Z for any constant ε, so generalizes the statement of

Theorem 142 to cases where the potentials Ji, j might vary in magnitude and sign.

4.4.3 Guarantees for low threshold rank Ising models using entropy-respecting Ising mod-

els

Concretely, an Ising model p(x) ∝ exp
(∑

i∼ j Ji, jxix j

)
, x ∈ {−1, 1}n is regular if

∑
j:i∼ j |Ji, j| = J′,∀i. The adjacency

matrix of a regular Ising model is the matrix Ai, j = |Ji, j|/J′. Then, we show:

2Notice this is an actual, well-defined distribution, and not only a pseudo-distribution anymore.
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Theorem 145. There is an algorithm based on Lasserre hierarchies which achieves an additive aproximation of εnJ′

to log Z, where Z =
∑

x∈{−1,1}n exp
(∑

i∼ j Ji, jxix j

)
, and runs in time nrank(Ω(ε2))/Ω(ε2), where rank(τ) is the number of

eigenvalues of the adjacency matrix A greater than or equal to τ.

Interestingly this property of the graph was previously introduced for purposes of combinatorial optimization

problems like small-set expansion, Unique Games (Steurer, 2010; Arora et al., 2010) – yet it also helps with counting

type problems. Note that since we prove additive factor guarantees to log Z, using the fact the eε ≤ 1 + 2ε, we can

easily turn them to multiplicative factor guarantees on Z.

If we use the added power of the Lasserre hierarchy, we can also handle Ising models whose weights look like low

rank matrices. We want to prove Theorem 145.

We will consider for simplicity in this section regular Ising models in the weighted sense, meaning
∑

j |Ji, j| = J′,∀i

3. The adjacency matrix of an Ising model will be the doubly-stochastic matrix with entries |Ji, j|/J′.

Let’s recall the definition of threshold rank from (Arora et al., 2010):

Definition. The τ-threshold rank of a regular graph is the number of eigenvalues of the normalized adjacency matrix

greater than or equal to τ.

We will, in analogy, define the threshold rank of an Ising model.

Definition. The τ-threshold rank of a regular Ising model is the number of eigenvalues of its adjacency matrix greater

than or equal to τ.

We will consider the following convex program:

max
µ∈LAS(k)

∑i, j

Ji, jEµ
[
xix j

]
+ HaMF,k(µ)

 (4.4.3)

Consider the vectors vi, i ∈ [n], s.t. 〈v j, v j〉 = Eµ
[
xix j

]
. Then, (Barak et al., 2011) prove that when the graph has

low threshold rank, “local” correlations propagate to “global” correlations, and as a consequence of this, there is a set

of size at most rank(Ω(ε2))/Ω(ε2), such that conditioning on it causes the
∣∣∣∣∑i, j Ji, jEµ

[
xix j|xS

]
−

∑
i, j Ji, jEµ̃

[
xix j|xS

]∣∣∣∣ to

drop below εJT . More precisely:

Lemma 146 ((Barak et al., 2011)). There exists a set S of size t ≤ rank(Ω(ε2))/Ω(ε2), where rank(τ) is the τ-threshold

rank of the Ising model, s.t. 4

∣∣∣∣∣∣∣∣
∑
i, j

Ji, jEµ
[
xix j|xS

]
−

∑
i, j

Ji, jEµ [xi|xS ]Eµ
[
x j|xS

]∣∣∣∣∣∣∣∣ ≤ εJT

3Though we remind again, all of the claims can be appropriately generalized at the expense of more bothersome notation.
4Note, JT = nJ′ in this case.
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Hence, analogously as in Theorem 144, we get:

Theorem 147 (Restatement of Theorem 145). The output of 4.4.3 is a εJT additive approximation to log Z.

4.4.4 Discussion on interpreting the results

Finally, we comment briefly on how to interpret the results in this section in different “temperature regimes” i.e.

different scales of the potentials Ji, j. Note that partition function approximation problems are not scale-invariant, and

their hardness is sensitive to the size of the coefficients Ji, j.

For simplicity of the discussion, let’s assume the graph G is d-regular. There are generically three regimes for the

problem:

• “High temperature regime”, i.e. when |J| = O
(

1
d

)
for a sufficiently small constant in the O (·) notation. In this

case, standard techniques like Dobrushin’s uniqueness criterion show that there is correlation decay. This is the

regime where generically Markov Chain methods work. Note that using such methods, generally one can get

a (1 + ε)-factor approximation for Z in time poly
(
n, 1

ε

)
, which is unfortunately much stronger than what our

method gets in that regime. It would be extremely interesting to see if the methods in our paper can be modified

to subsume this regime as well.

• “Around the transition threshold”, i.e. when |J| = Θ( 1
d ) for a sufficiently large constant in the Θ notation, such

that there is no correlation decay. Generally, unless there is some special structure, Markov Chain methods will

provide no non-trivial guarantee in this regime – however, we get an order εn additive factor approximation to

log Z, which translates to a (1 + ε)n factor approximation of Z. We do not, to the best of our knowledge, know

how to get such results using any other methods.

• “Low temperature regime”, i.e. when |J| = ω(1/d). In this case, in light of the variational characterization

of log Z and the fact that the entropy is upper bounded by n, the dominating term will typically be the energy

term
∑

(i, j)∈E(G) Ji, jEµ[xix j], so essentially the quality of approximation will be dictated by the hardness of the

optimization problem corresponding to the energy term. (e.g., for the anti-ferromagnetic case, where all the

potentials Ji, j are negative, the optimization problem corresponding to the energy term is just max-cut, and we

cannot hope for more than a constant factor approximation to log Z for general (negative) potentials.)
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Appendix A

Notations

We will use standard linear algebra and probability notation.

With respect to vector notation, we denote by 0 the all-zeroes vector and 1 the all-ones vector. We write ei ∈ R
d, i ∈

[d] for the i-th canonical vector. We denote by supp(x) the support of a vector (or matrix) x.

With respect to matrix notation, A+ will denote the Moore-Penrose pseudo-inverse of a matrix A, and for symmetric

matrices A, we use A−1/2 as a shorthand for (A+)1/2. The least non-zero singular value of matrix A is denoted σmin(A),

and the largest σmax(A). Ai will denote the i-th column of matrix A, and Ai the i-th row. We use exp(A) for the matrix

or vector obtained by taking the entries-wise exponential. For matrices A, B we define the Kronecker product ⊗ as

(A ⊗ B)i jkl = Ai jBkl. A useful identity is that (A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD) whenever the matrix multiplications are

defined.

With respect to asymptotic notation, we write a . b if there exists a universal constant c such that a ≤ cb and

we define & similarly. An analogous definition applies to the PSD ordering of matrices. The notation Õ(·) hides

polylogarithmic factors.
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