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Abstract

Probabilistic generative models are robust to noise, uncover unseen patterns, and make pre-

dictions about the future. These models have been used successfully to solve problems in

neuroscience, astrophysics, genetics, and medicine. The main computational challenge is

computing the hidden structure given the data—posterior inference. For most models of

interest, computing the posterior distribution requires approximations like variational infer-

ence. Variational inference transforms posterior inference into optimization. Classically,

this optimization problem was feasible to deploy in only a small fraction of models.

This thesis develops black box variational inference. Black box variational inference is

a variational inference algorithm that is easy to deploy on a broad class of models and has

already found use in models for neuroscience and health care. It makes new kinds of models

possible, ones that were too unruly for previous inference methods.

One set of models we develop is deep exponential families. Deep exponential families

uncover new kinds of hidden pattens while being predictive of future data. Many existing

models are deep exponential families. Black box variational inference makes it possible for

us to quickly study a broad range of deep exponential families with minimal added effort

for each new type of deep exponential family.

The ideas around black box variational inference also facilitate new kinds of variational

methods. First, we develop hierarchical variational models. Hierarchical variational mod-

els improve the approximation quality of variational inference by building higher-fidelity

approximations from coarser ones. We show that they help with inference in deep expo-

nential families. Second, we introduce operator variational inference. Operator variational

inference delves into the possible distance measures that can be used for the variational opti-

mization problem. We show that this formulation categorizes various variational inference

methods and enables variational approximations without tractable densities.
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By developing black box variational inference, we have opened doors to new models, better

posterior approximations, and new varieties of variational inference algorithms.
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Chapter 1

Introduction

Data are a staple of many disciplines. The goal of working with data is manyfold. First, we

would like to be able to find hidden structure—structure that cannot be read off directly from

the data. Second, we want to predict missing parts of our data or whole new instances of

data. Third, we want to be able to build prior knowledge into our models, thereby reducing

the data needed.

We can meet these goals with generative probabilistic models. Generative probabilistic

models contain three parts: observed data, hidden structure, and a probability function that

scores different combinations of data and hidden structure. The hidden structure can be

used to represent concepts like “factors” or “groupings,” while the rules of probability pro-

vide predictions. The scoring probability function encodes prior knowledge. Probabilistic

generative models have been successfully deployed to find population structure in genet-

ics (Pritchard et al., 2000), to infer brain connectivity in neuroscience (Manning et al., 2014),

to make recommendations (Wang and Blei, 2011) in user behavior platforms, and in many

other domains.
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The core computational task in working with generative probabilistic models is computing

the posterior distribution — the distribution of the hidden structure given the observations.

This computation is known as posterior inference or Bayesian inference.1 Computing the

posterior requires computing a high dimensional integral or sum. For most models this

computation is intractable.

To address this limitation, users of generative probabilistic models rely on approximate pos-

terior inference methods. These fall into two classes: those that simulate from the posterior

and those that try to match another distribution to the posterior via optimization. This latter

process is called variational inference. Variational inference has been used to scale posterior

inference to massive scientific data (Regier et al., 2015). The main challenge in using vari-

ational inference stems from the need to do analysis for every new model. This requirement

limits the use of variational inference and forces users to build models for easy-to-derive in-

ference rather than build models for their data. This thesis concerns itself with how to relax

the constraints on variational inference methods and the implications of doing so.

The remainder of this thesis is organized as follows.

We begin by introducing probabilistic models in Chapter 2. This chapter sets the goals for

modeling data and describes how generative probabilistic models meet these goals. We then

follow with examples of several generative probabilistic models. After this, we introduce

the central problem of working with these models: posterior inference. Computing the

posterior is intractable, so we review posterior approximation algorithms with a focus on

variational inference where it is easy to do, i.e., when models are conditionally conjugate.

Along the way, we review stochastic optimization.

In Chapter 3, we address the core limitation of traditional variational inference methods —

they require extensive mathematical derivations and model-specific analysis for each new
1The terms posterior inference and Bayesian inference can be exchanged in most places in this thesis.
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use case. We develop black box variational inference (bbvi). This is based on Ranganath

et al. (2014). bbvi makes use of stochastic optimization to step around the analytic diffi-

culties in traditional variational inference. The variance of the stochastic gradients can be

high, so we introduce several techniques to control this variance without requiring model-

specific analysis. We use bbvi to explore a set of models for medical lab values. Black

box variational inference requires minimal model-specific derivations and outperforms the

corresponding Markov chain Monte Carlo technique.

Black box variational inference expands the scope of possible models. In Chapter 4, we

introduce one such class of models, deep exponential families (defs). defs are a multilayer

probabilistic model that build upon the structures that underlie deep neural networks. We

show that several existing models fall into this class and develop new models based on

cascades of Poisson variables and on cascades of sparse gamma variables. defs outperform

competitors on problems in text and recommendation, while also yielding interpretable,

explorable hidden structure. This chapter follows Ranganath et al. (2015b, 2016a).

Black box variational inference also makes better posterior approximations feasible. Varia-

tional inference approximates the posterior distribution with a distribution from a tractable

approximating family. Traditionally, this approximating family was chosen to make varia-

tional inference easy to derive. With bbvi, making such a choice is no longer necessary.

We introduce hierarchical variational models (hvms) in Chapter 5. hvms construct richer

approximating families from simpler ones by placing priors over the simple families. This

chapter takes the view that tools that enrich models of data can be used to enrich variational

approximations. We demonstrate that hvms improve inference for a wide range of deep

exponential families. This work was presented in Ranganath et al. (2016c).

The most common form of variational inference relies on the Kullback-Leibler (kl) diver-

gence. This reliance partly stemmed from the fact that the kl divergence led to nice updates

for conditionally conjugate models. With bbvi, we are no longer limited to conditionally
3



conjugate models and are more free to explore alternative notions of distance between prob-

ability distributions. In Chapter 6, we develop operator variational inference (opvi). This is

based on Ranganath et al. (2016b). Operator variational inference constructs a broad class

of objectives that can be used for variational inference. We use opvi to characterize the

kinds of variational objectives, and we show that certain kinds of operators allow the use

of variational approximations without tractable densities, thus creating larger variational

families to approximate against.

Lastly, in Chapter 7 we review the key themes and discuss directions for future work.
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Chapter 2

Probabilistic Models

This chapter lays the foundations of probabilistic models, provides example uses, and

presents the main computational challenges associated with these models.

2.1 Goals of Modeling Data

Data consists of collections of observations of the world. Building models of data stems

from the desire to understand the process that generated the data using observations from

that process. The goals of building models can be both to find unobserved structure in the

data and to make predictions about the data. To aid in model construction, models should

be able to incorporate prior knowledge about the data generating process. These considera-

tions form three desiderata for a modeling framework: uncovering hidden structure, making

predictions, and specifying prior knowledge. We go into these in more detail.

• Uncovering Hidden Structure: Hidden structures are relationships within data not

explicitly observed. Examples include grouping of tumor cells into tumor types or

population structure in genetic measurements of people. In this sense, models used to
5



find hidden structures are measurement devices, and the quality of the measurement

depends on how well the model explains new data from the same process.

• Making Predictions: Predictions are completions of data. Examples include deter-

mining house prices from house age and size, survival time for cancer from genetic

sequences, and graduation status given family income and location. Models use

smoothness assumptions to complete data on new observations. The amount of faith

practitioners should place in the hidden structure recovered by a model depends on

how well the model predicts.

• Expressing Prior Knowledge: Prior knowledge is information about the data process

independent of the collected data. Examples include the spatial structure of the bas-

ketball court or properties of a physical system (Allanach et al., 2007). All of the

value in modeling comes from two sources: prior knowledge and observed data. Any

prediction or inference must be supported by one of these two sources of information.

These criteria provide requirements for a modeling framework.

2.2 Generative Probabilistic Models

Generative probabilistic models tell stories about how the data were generated. While never

capturing the entire detail, these stories encode the core features of the data. For example,

when modeling news documents, it is common to assume that documents have no temporal

structure. Though this assumption ignores information, these models still capture the core

content of individual documents.

6



2.2.1 Generative Probabilistic Models

The ingredients to define a generative probabilistic model are the observed data x, the hid-

den structure (or latent variables) z, and a joint probability distribution p over the hidden

structure and data. The model’s joint distribution provides a score for all possible x; z

configurations. The model tells the story of how the data were generated through the fac-

torization of the model’s joint distribution.

As an example, consider a mixture model. In a mixture model we have n observed data

points x1Wn. The mixture model narrates that each data point comes from one ofK classes.

These classes represent the hidden structure. To explicitly encode this structure, we assign

to each data point a latent variable zi that takes one ofK possible values. The last thing we

need to specify this model is the probability distribution that connects the variables:

p.x1Wn; z1Wn/ D
nY
iD1

p.zi/p.xi j zi/:

Here p.zi/ is the prior probability of selecting each of the K classes, and p.xi j zi/ is the
likelihood of the i th observation when it is assigned to the class zi . If ˇk denotes parameters

that identify each of the classes, the likelihood is

p.xi j zi/ D p.xi Iˇzi
/: (2.1)

Note that there is one parameter for each class. The joint distribution encodes the story that

the mixture model tells about the observations. First for each point choose a class (draw

from p.zi/), then given that class draw from the likelihood (Equation (2.1)).

7



To find the unobserved classes for each data point, we need to compute the distribution of

the hidden structure given the observations, the posterior distribution:

p.zi jxi/ D p.xi j zi/p.zi/
p.xi/

:

In terms of distributions specified in the model, we get

p.zi D k jxi/ D p.xi j zi D k/p.zi D k/PK
jD1 p.xi j zi D j /p.zi D j /

:

In general the normalization constant p.xi/ and thus the posterior will be computationally

intractable. This challenge is a central theme of subsequent chapters.

Randomness. The randomness in generative probabilistic models comes from multiple

sources. First, the randomness could be intrinsic—our measurements may be noisy simply

due to the tolerance of the measurement device. Second, the randomness could be due to

missing values—the system is partially observed, so the entire state is uncertain. Finally, the

randomness (or noise) accounts for model mismatch—if the model explains only a fraction

of the data, the rest must be explained by noise. The randomness in generative probabilistic

models stems from a combination of these sources.

Did we meet our desiderata? To start this chapter, we laid out criteria for modeling data.

Here we will address whether generative probabilistic models meet our criteria.

• Uncovering Hidden Structure: The latent variables z represent the posited hidden

structure in generative probabilistic models. To find the hidden structure from ob-

served data x, we compute p.z jx/, the posterior distribution.

• Making Predictions: Predictions of new data x� can be made by conditioning on the

observed data and averaging over all hidden structure configurations. Each config-
8



uration is weighted by the probability of that configuration of the hidden structure,

given the observations:

p.x� jx/ D
Z
p.x� j z;x/p.z jx/dz:

Again, the central requirement for making predictions is the posterior distribution.

• Expressing Prior Knowledge: The types of hidden structure, the factorization of the

model’s joint probability distribution, and the form of each individual factor can be

used to encode prior knowledge. A simple example would be to use a distribution

with positive support when building a predictive model of test scores.

In summary, generative probabilistic models meet our desiderata for a framework to model

data. Given data, the posterior distribution of generative probabilistic models encodes the

salient structure.

2.3 Examples

We now describe several classes of generative probabilistic models.

2.3.1 Dynamical Systems

Dynamical systems model observations over time. The canonical example is the linear

dynamical system or Kalman filter (Kalman, 1960). The linear dynamical system models

a sequence of observed values x1WT with a sequence of hidden states z1WT . The hidden

states zt evolve via a Gaussian transition with parameters A;B: zt � N .Azt�1; B/. The

observation xt at time t is conditionally independent of all the other time steps given zt . In

this sense, zt captures the state of the system, and it is what evolves over time.
9



xt�1 xt xtC1

ztC1ztzt�1

Figure 2.1: The graphical model for the Kalman filter. Shaded nodes are observed data.
Unshaded nodes are latent variables. The observations are independent given the latent
variables.

Figure 2.1 depicts the graphical model for the Kalman filter. Graphical models describe

the factorization of the model’s joint distribution. Simulation from a node needs only

the arrows pointing into to it. The graphical model implies a set of conditional indepen-

dences. These conditional independences can be read off using the Bayes-ball algorithm or

d-separation (Bishop, 2006). Graphical models do not specify the form of each conditional

distribution, thus Figure 2.1 also depicts more general dynamical systems, ones that may be

non-Gaussian. Dynamical systems form the backbone of many models in signal processing,

statistics, and machine learning. They have been used to study neural spike trains (Linder-

man et al., 2017), language (Bowman et al., 2016), health records (Ranganath et al., 2015a),

and video (Weng et al., 2006).

2.3.2 Sigmoid Belief Network

The sigmoid belief network (Neal, 1990) models a collection of data points x1Wn as inde-

pendent samples from a series of transformed binary variables. This sequential structure is

depicted in Figure 2.2. Let z` be the `th layer of binary variables for a single observation,

and W` be parameters for the `th layer. Then conditional on the layer above, the sigmoid

10
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K`C1

ˇ xn

W`

zn;`C1

zn;`

Figure 2.2: The graphical model for the sigmoid belief network. Each layer contains
Bernoulli variables that depend on all of the previous layer’s variables. The dependency
is controlled by the weights.

belief network says

z` � Bernoulli.�.W`z`C1//;

where � denotes the elementwise sigmoid function �.a/ D .1Cexp.�a//�1.1 To complete

the specification of the sigmoid belief network, we need to specify a prior on the highest

level and specify how each data point is generated given the hidden structure. If there are
1This is the multivariate vector of independent Bernoullis.
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L layers in the sigmoid belief network, the prior variable k is

zL;k � Bernoulli.�.�//:

Lastly, the data come from a parametric likelihood,

xi � p.xi j z1/:

Themain computational task for this model is to estimate the distributions of the unobserved

hidden state z given the data x.

The sigmoid belief network encodes very little prior knowledge. These models were con-

structed to learn arbitrary distributions (over binary vectors), with the speed at which they

learned as a main consideration (Neal, 1990). In this sense, it is an empirical model. Empir-

ical models use a large set of parameters to mimic the data generating process with minimal

data and computation requirements.

2.3.3 Mechanistic Models

In contrast to empirical models,mechanistic models describe a data generating process using

knowledge of the world rather than mimicry of observed data. Mechanistic models can

be defined as models that on known laws of nature. Being based on the laws of nature,

such models tend encode causal structure. The canonical example of a mechanistic model

would be to use Newton’s laws of motion to describe an undamped spring system. This

model can characterize observations from a spring system given the spring constant. For

another example, predator-prey systems can be modeled using the Lotka-Volterra coupled

differential equations (Wilkinson, 2011). If x1 is the prey population, x2 is the predator

12
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Equation Models
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Figure 2.3: The spectrum of models ranges from mechanistic models that encode a great
deal of information into the generative process to empirical ones that derive information
mainly from observed data.

population, and ˇ are latent parameters, this model is

dx1

dt
D ˇ1x1 � ˇ2x1x2 C �1; �1 � Normal.0; 10/;

dx2

dt
D �ˇ2x2 C ˇ3x1x2 C �2; �2 � Normal.0; 10/;

where Gaussian noises �1; �2 are added at each full time step. The differential equations

encode that more prey yield more predators, and more predators yield less prey. The com-

putational task to work with this model is to compute the posterior distribution of ˇ.2

The Lotka-Volterra model, like many other physical systems, is a dynamical system. Other

examples include models of bloodstream glucose (Sedigh-Sarvestani et al., 2012) and sim-

ulators of the world (Feynman, 1982) measured with noisy observations.

2.3.4 Model Spectrum

We have discussed an empirical model, the sigmoid belief network, and a mechanistic

model, the Lotka-Volterra predator-prey model. In terms of where they get their informa-

tion, these models represent the extremes. Empirical models mostly rely on the data, while

mechanistic models rely more on prior knowledge baked into the structure. All models lie
2 For brevity, we ignore the task of specifying the prior on ˇ.
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on a spectrum from mechanistic models to empirical models. The most extreme empiri-

cal models are density estimators and the most extreme mechanistic models are noise-free

physical systems that detail the full mechanism for data generation.

Measurement models are models with prescribed hidden structure, such as grouping in the

mixture model or topics in a topic model (Blei et al., 2003). They fall somewhere in the

middle of this spectrum. While not mechanistic, these models impose prior constraints,

which are a type of structure. However, this structure is meaningless without data to give it

context.

Figure 2.3 displays this spectrum with common models on it. To work with these models,

we need the posterior distribution. This is the main computational challenge.

2.4 Posterior Distribution

The posterior distribution p.z jx/ is the distribution of the hidden structure z given the

data x — it is the central quantity in Bayesian inference. Generative probabilistic models

specify the joint distribution of hidden structure and observed data p.x; z/. Given the joint

distribution, we can write the posterior as

p.z jx/ D p.x; z/

p.x/
D p.x; z/R

p.x; z/dz
: (2.2)

The challenge in computing the posterior lies in the intractability of the integral for the

marginal likelihood p.x/. For example, in the sigmoid belief network with L layers and

K variables in each layer, this integral corresponds to a sum over 2L�K terms. Computing

this integral is infeasible for all but the smallest models. The intractability of the posterior

in the sigmoid belief network is not special. The majority of the models of interest have

intractable posteriors.
14



Many techniques can be used to compute the posterior distribution. We present an overview

of several, including exact computation, importance sampling, Markov chain Monte Carlo,

variational inference, and stochastic variational inference.

2.5 Exact Computation

Exact computation uses numerical integration (Davis and Rabinowitz, 2007) to compute

the posterior Equation (2.2). For discrete variables this integration is a summation, like in

the sigmoid belief network. The difficulty of computing this integral can be exponential in

the dimension of the latent space, so exact computation only works in problems with low

dimensional latent spaces.

2.6 Importance Sampling

Importance sampling (Owen, 2013) is a key tool for computing expectations. The main idea

behind importance sampling is that samples from one distribution can be used to compute

expectations with respect to another. Let r; q be distributions and f be a function, then

importance sampling can be summarized by

Erf .z/ D
Z
f .z/r.z/dz D

Z
f .z/r.z/

q.z/
q.z/dz D Eq

�
f .z/r.z/

q.z/

�
: (2.3)

This expectation can be estimated using Monte Carlo, Draw S samples from q and aver-

age

Erf .z/ � 1

S

SX
iD1

f .zi/r.zi/

q.zi/
zi � q: (2.4)
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Importance sampling from Equation (2.3) requires knowing r , but the posterior is only

known up to a constant p.x/. Importance sampling for the posterior requires self-

normalized importance sampling.

Self-normalized importance sampling works as follows. First take a distribution q.z/ known

up to a multiplicative constant and which has a known simulation procedure. Next, to es-

timate the expectation of a function f .z/ with respect to the posterior distribution, draw S

samples z1WS from q, define wi D p.xi ;zi /

q.zi /
, then compute

Ep.z jx/f .z/ �
PS
iD1 f .zi/wiPS

iD1wi
:

Note that the joint distribution is the posterior distribution up to a constant. The unknown

normalization constants for the posterior and q cancel out in the numerator and denominator,

thus making the self-normalized estimate correct.

At face value, importance sampling works; there is nothing that is computationally in-

tractable. The challenge lies in the variance of the self-normalized importance sampling

estimate. The variance of the estimator depends on the divergence of qi , i.e., how close

q is to p.z jx/. This becomes very problematic in high dimensions (Tokdar and Kass,

2010).

2.7 Markov Chain Monte Carlo

Markov chainMonte Carlo (mcmc) methods are a staple in computingwith generative prob-

abilistic models. The main building block for mcmc algorithms is a transition probability

kernel T that stochastically maps a position in latent space zt to a new position ztC1. Ap-

plying T repeatedly defines a Markov chain (z1; z2; : : :). The stationary distribution � of a

16



Markov distribution is one where

Z
T .zt ; zt�1/�.zt�1/dzt�1 D �.zt/:

Put in words, applying the transition probability kernel does not change the probability dis-

tribution from the stationary distribution. For a Markov chain to generate samples from the

posterior, the posterior needs to be the Markov chain’s stationary distribution. In addition,

theMarkov chain must converge to the stationary distribution regardless of initialization (er-

godic) to guarantee that running the chain generates samples from the posterior. There are

many ways to design transition probability kernels that meet these criteria, and developing

new mcmc methods remains an active area of research. We detail a few below.

2.7.1 Metropolis-Hastings

The earliest example of a mcmc algorithm is the random walk Metropolis-Hastings algo-

rithm (Metropolis et al., 1953; Hastings, 1970). The Metropolis-Hastings transition kernel

requires a proposal distribution q, say the standard Gaussian. Let r be the target; the distri-

bution we want to sample. A Metropolis-Hastings transition produces samples as

z� � q.z� j zt/

a D min
�
1;
r.z�/q.zt j z�/
r.zt/q.z

�
t j z/

�

c � Bernoulli.a/

ztC1 D z�c C zt.1 � c/:

The existence of a stationary distribution can be verified by checking the detailed balance

condition (Bishop, 2006). The density r need only be known up to a constant. The constant

cancels out in the computation of the acceptance ratio a. This means Metropolis-Hastings
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can be used for posterior inference. The challenge with Metropolis-Hastings relates to

the challenge in importance sampling. Intuitively, the speed at which Metropolis-Hastings

mixes depends on the acceptance ratio. The acceptance ratio is high when the likelihood

ratio is high (q is close to r). This is a challenge to achieve in high dimensions.

2.7.2 Gibbs Sampling

Metropolis-Hastings can be slow in high dimensions. An alternative way to build anMCMC

transition probability kernel is to compose simpler ones. Consider splitting the latent space

z into two parts z1 and z2. Next, define two transition probability kernels, one for z1 given

z2 and one for z2 given z1, by their conditional distributions in � .

Each of these transitions preserve stationarity:

Z
T .zt ; zt�1/�.zt�1/dzt�1 D

Z
�.z2t j z1t�1/ız1

t�1
.z1t /�.z

1
t�1; z

2
t�1/dz

2
t�1dz

1
t�1

D
Z
�.z2t j z1t�1/ız1

t�1
.z1t /

Z
�.z1t�1; z

2
t�1/dz

2
t�1dz

1
t�1

D
Z
�.z2t j z1t�1/ız1

t�1
.z1t /�.z

1
t�1/dz

1
t�1

D �.z2t j z1t /�.z1t / D �.z1t ; z2t /:

This derivation shows that sampling from the conditional distributions preserves station-

arity. Alternating between two variable sets gives a posterior sampling algorithm called

the Gibbs sampler (Geman and Geman, 1984). For efficient sampling, the Gibbs sampler

requires easy-to-sample complete conditionals—the distribution of one latent variable z1

given the rest of the latent variables z2 and data x. Without easy-to-sample conditionals,

the Metropolis-Hastings algorithm can be used to sample each conditional at a cost of lower

acceptance rates. Finally, while mitigating the acceptance ratio problem in Metropolis-
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Hastings, the Gibbs sampler can be prone to getting stuck when variables with high corre-

lation fall into different groups.

2.7.3 Hamiltonian Monte Carlo

The proposal in the traditional Metropolis-Hastings algorithm does not take into account

information from the unnormalized density. One possible kind of information is the gradient

of the logarithm of the unnormalized density. We now discuss the intuitions behind an

mcmc algorithm that makes use of gradient information: Hamiltonian Monte Carlo (Duane

et al., 1987). Hamiltonian Monte Carlo defines a proposal by simulating a physical system.

Tie the energy of a physical system to the logarithm of the unnormalized target density r .

Then by conservation of energy, the proposal created by simulating the physical system

will be accepted with probability one (the energies, thus the probabilities are the same). In

Hamiltonian Monte Carlo, the potential energy of the system is set to beU D � log r.z/. In

the simplest case, the kinetic energy of the system can be defined via an auxiliary variable

m with form

K D 1

2
m>m;

meaning thatm is a standard Gaussian. Together, these define the HamiltonianH D UCK.

Next define a distribution h / exp.�H/. The marginal density of h on z is the target r .

This means sampling the joint space of .z;m/ according to h, then tossing out the dimension

corresponding to m produces samples from r . To generate proposals, Hamiltonian Monte

Carlo simulates the laws of motion, by following a discretized form of Hamilton’s equa-

tions using gradients, from an initial .z;m/ pair. This produces another .z�;m�/ pair with

the same Hamiltonian. This is a proposal will be accepted with probability one. To ensure

sampling of all possible states, the auxiliary variable should be resampled from the standard
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p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

Figure 2.4: A pictorial description of variational inference. The family of variational ap-
proximations is the oval, �init denotes the initial approximation, and �� the approximation
after running variational inference. The posterior lives outside the approximating family.
The distance between distributions in the picture maps to the kl divergence.

Gaussian. Finally, simulating discretized Hamilton’s equations incurs error, so the energy

may not be exactly conserved. This means an accept-reject step is still required. Hamilto-

nian Monte Carlo can be far more efficient than the classic Metropolis-Hastings approach

as it can use gradients to quickly find regions of high probability.

2.8 Variational Inference

Variational inference takes a different approach than the previous posterior approxima-

tion algorithms. The previous algorithms, like the Gibbs sampler, rely on stochastic pro-

cesses that yield samples from the posterior.3 Instead, variational inference transforms pos-

terior inference into optimization (Jordan, 1999; Bishop, 2006; Wainwright and Jordan,

2008).
3Importance sampling can be viewed as a type of posterior sampling procedure when resampling from the

weighted particle set.
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Variational inference posits a class of distributions q over the latent space with parameters �

and tries to find the closest distribution in kl divergence to the posterior. Figure 2.4 depicts

this. The kl divergence arises without explicitly being instantiated in many statistical prob-

lems. For example, maximum likelihood minimizes the kl divergence from the empirical

distribution on the observed data to the model, and posteriors concentrate to the point clos-

est in kl divergence to the true data generating distribution (Kleijn and van der Vaart, 2006).

We will use semicolons to denote parameters of probability distributions; these parameters

are not random variables.

The direct kl divergence optimization problem requires the posterior distribution:

KL.q.zI �/jjp.z jx// D Eq.zI�/
�
log

q.zI �/
p.z jx/

�
:

We can make this objective tractable by pulling out logp.x/

KL.q.zI �/jjp.z jx// D Eq.zI�/
�
log

q.zI �/
p.z jx/

�

D Eq.zI�/
�
log

q.zI �/p.x/
p.x; z/

�

D Eq.zI�/
�
log

q.zI �/
p.x; z/

�
C logp.x/: (2.5)

This means we can minimize the kl up to a constant.

Minimizing thekl divergence is equivalent tomaximizing the evidence lower bound (elbo)

denoted by L,

L.�/ D Eq.zI�/ Œlogp.x; z/ � log q.zI �/� : (2.6)

The elbo gets its name from being a lower bound on logp.x/, the “evidence.” This

property follows from Equation (2.5) and the non-negativity of the Kullback-Leibler di-

vergence.
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The choice of variational family q.zI �/ trades off the fidelity of the posterior approximation

with the difficulty of optimizing over the variational parameters. The classic choice of vari-

ational family is the mean field family, which factorizes across groups of hidden variables.

Assume that there are d groups. T he mean field family is

q.zI �/ D
dY
iD1

q.zi I �i/:

We can compute the optimal value of the mean field distribution for zi while keeping the

rest, z�i , fixed. This gives

L.�i/ D Eq.z/ Œlogp.x; z/ � log q.zI �/�

D Eq.zi /

�
Eq.z�i /Œlogp.x; z/� � log q.zi I �i/

�C C
D �KL

�
q.zi I �i/jj 1

Z
exp.Eq.z�i /Œlogp.x; z/�/

�
C C;

where C is an arbitrary constant andZ is introduced to normalize exp.Eq.z�i /Œlogp.x; z/�/

to make it a proper distribution. This equation implies that the optimal variational family for

zi keeping the rest z�i fixedminimizes thekl divergence to exp.Eq.z�i /Œlogp.x; z/�/. Thus

the optimal variational approximation across all distributions is 1
Z
exp.Eq.z�i /Œlogp.x; z/�/.

In general, the optimization problem Equation (2.6) is non-concave. This means that opti-

mization may not converge to the distribution with minimum kl divergence to the posterior.

Rather, it will converge to a local optimum.

2.9 Stochastic Variational Inference

Dealing with data sets is an ever-growing challenge inmodern data analysis. Stochastic vari-

ational inference (svi) scales variational inference to large datasets. sviworks over a subset
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N

Figure 2.5: The graphical model for hierarchical Bayesian models. The latent variable ˇ
is shared across data xi and data-specific latent variables zi . The local variables, data, and
data-specific latent variables are independent given the global variable.

of models that have conditional conjugacy. We describe this class of models, then derive

the traditional coordinate ascent algorithm (Ghahramani and Beal, 2001) and svi.

2.9.1 Model Class

We depict the class of models svi supports in Figure 2.5. There are three types of variables:

the data arex1Wn, the latent variables associated with each observation are z1Wn, and the latent

variables shared across data are ˇ. The model assumes that given the global hidden struc-

ture ˇ, the observations and their corresponding local hidden variables are conditionally

independent. Let � be a hyperparameter. The model factorizes as

p.ˇ;x1Wn; z1WnI�/ D p.ˇI�/
nY
iD1

p.zi ;xi jˇ/:

This expression describes a hierarchical model. In svi, each distribution in this factorization

is chosen to be in the exponential family (Brown, 1986),

p.zi ;xi jˇ/ D h.zi ;xi/ exp.ˇ>t .zi ;xi/ � a.ˇ//

p.ˇI�/ D h.ˇ/ exp.�>t .ˇ/ � a.�//;

where h is the base measure, t the sufficient statistics, and a the log-normalizers.
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The exponential families are chosen such that the model satisfies conditional conjugacy—

prior p.ˇI�/ is conjugate to p.zi ;xi jˇ/. Conditional conjugacy means the distribution of

the complete conditional p.ˇ j z1Wn;x1Wn/ is in the same family as the prior p.ˇI�/. Unlike
traditional Bayesian conjugacy, conditional conjugacy requires the presence of the hidden

variables z. In this model class, the conditional distribution given only the observations

need not be in the same family as the prior.

Though this model class imposes many restrictions, it includes many popular models such

as Bayesian Gaussian mixtures, latent Dirichlet allocation (Blei et al., 2003), probabilistic

matrix factorization (Salakhutdinov and Mnih, 2008), hierachical linear regression (Gel-

man and Hill, 2007), and several hierarchical Bayesian nonparametric models (Hjort et al.,

2010).

2.9.2 Approximating Family

The evidence lower bound (elbo) for the svi model family is

L D EqŒlogp.x1Wn; z1Wn;ˇ/ � log q.ˇ; z1WnI �/�:

svi specifies the variational distribution to be the mean field family. Let� be the variational

parameters for ˇ, and �i be the parameters for zi , then

q.ˇ; z1WnI�;�1Wn/ D q.ˇI�/
nY
iD1

q.zi I�i/:
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svi assumes that each variational distribution comes from the same family as the condi-

tional. Using the mean field family, the elbo is

L.�;�1Wn/ D Eq

"
logp.ˇI�/ � log q.ˇI�/C

nX
iD1

logp.xi ; zi jˇ/ � log q.zi I�i/
#
:

(2.7)

We review the coordinate ascent variational inference algorithm for this model before cov-

ering stochastic variational inference.

2.9.3 Coordinate Ascent Variational Inference

Coordinate ascent variational inference has been the workhorse for deploying variational

inference in a variety of applications (Blei et al., 2003; Nallapati et al., 2008; Airoldi et al.,

2008; Sudderth and Jordan, 2009).

svi writes the elbo as only a function of the global variational approximation by setting

each of the � to their optimal value given a fixed value of �,

L.�/ D max�L.�;�1Wn/:

This form is called the �-elbo.

Define the optimal local variational parameters �.�/ D arg max�L.�;�/. By Equa-

tion (2.7), the optimal �i can be computed separately for each data point. This compu-

tation has a closed form solution due to the conditional conjugacy assumption. Let �i be

the parameter of the complete conditional of zi . The gradient is

r�i
L D r2�i

a.�i/.Eq.ˇI�/Œ�i � � �i/:
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We derive this in the appendix of this chapter. Setting the gradient to zero gives the closed

form update

�i D Eq.ˇI�/Œ�i �:

In words, the optimal variational parameter equals the expected value of the complete con-

ditional’s natural parameter.

Returning back to the �-elbo, by a similar argument

L.�/ D a.�/Cr�a.�/>
 
��C �C

nX
iD1

Eq.zi I�i .�//Œt .xi ; zi/�

!
C C:

Differentiating this with respect to � yields

r�L.�/ D r2�a.�/
 
��C �C

nX
iD1

Eq.zi I�i .�//Œt .xi ; zi/�

!
: (2.8)

The chain rule term for �i.�/ disappears since �i.�/ is an optimum.

Setting the gradient equal to zero gives a fixed-point update for the global variational pa-

rameters. Let �t be the current iterate of the global variational parameters. Define

��t D �C
nX
iD1

Eq.zi I�i .�//Œt .xi ; zi/�: (2.9)

This equation is the optimal value for � given the current value of �t . Coordinate ascent

variational inference alternates between computing the optimal local variational parameters

given the global variational parameters and the optimal global parameters given the local

ones. Iteration of this fixed-point update increases the elbo. Coordinate ascent for hier-

archical Bayesian models can be generalized beyond conditionally conjugate hierarchical

models to all conditionally conjugate models.
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2.9.4 Stochastic Variational Inference

Hoffman et al. (2013) point out that computing the optimal variational parameter in Equa-

tion (2.9) requires computing a function of the current global variational parameters for each

data point. This is inefficient; particularly so at initialization, when the global variational

parameters are random. They propose a solution: use stochastic optimization.

Stochastic optimization. Stochastic optimization (Robbins andMonro, 1951) maximizes

a function by following noisy, yet unbiased gradients. Let f be a function to be maximized,

H be a random variable such that EH.a/ D raf .a/, and h.a/ be a draw from H.a/ .

Finally, let �t be nonnegative. Then stochastic optimization updates the current parameter

at as

atC1 D at C �th.at/:

This converges to a maximum of f when the �t satisfy the Robbins-Monro condi-

tions,

1X
iD1

�t D1;
1X
iD1

�2t <1:

The first condition is needed to ensure convergence from any starting position, while the

second is needed to control the variance caused by using noisy gradients.

Stochastic variational inference. The gradient of � contains a sum over the data points.

One can construct a noisy unbiased variant of the gradient by sampling a single data point
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and scaling by the number of data points,

i � Unif.1:::n/

Or�L.�/ D r2�a.�/
���C �C nEq.zi I�i .�//Œt .xi ; zi/�

�
:

The expected value of Or� with respect to the uniform sample is the gradient of the elbo.

Thus, it is a noisy and unbiased gradient suitable for use in stochastic optimization.

There remains a problem. The gradient in Equation (2.8) and thus the stochastic gradient

requires multiplication with a matrix r2�a.�/ that has the same dimension as the number

of global variational parameters.

Hoffman et al. (2013) step around this by scaling the gradient by the inverse of r2�a.�/,
which is also known as the Fisher information matrix. By properties of the exponential fam-

ily, the matrix r2�a.�/ is the covariance matrix of the sufficient statistics t .ˇ/. Thus, this

rescaling does not change the optima of the problem as the Fisher information matrix is pos-

itive definite (Sunehag et al., 2009). This rescaled gradient is the natural gradient (Amari,

1998). Natural gradients accelerate gradient methods over probability distributions by ac-

counting for their non-Euclidean nature.

Putting this all together gives stochastic variational inference. At iteration t :

1. Sample a data point i � Unif.1:::n/

2. Compute the optimal local parameter �i.�t/ given the current global �t

3. Compute intermediate global parameters as the coordinate update of � for data point

i :

O�t D �C nEq.zi I�i .�//Œt .xi ; zi/� (2.10)
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4. Following the noisy gradient

�tC1 D .1 � �t/�t C �t O�t : (2.11)

This process is much more efficient than coordinate ascent inference. Rather than analyzing

the whole data set before updating the global parameters, svi needs only analyze a single

sampled data point. Stochastic variational inference has scaled posterior inference to larger

datasets, but remains tied to conditioned conjugate models.

2.10 Conclusion

We laid out desiderata for models of data, showed that generative probabilistic models sat-

isfy the desiderata, and described example generative probabilistic models. Working with

probabilistic generative models requires computing the posterior distribution. However,

as models grow in complexity and data grow in size, computing the posterior distribution

quickly becomes intractable. The subsequent chapters wrestle with this question with a

focus on posterior approximation methods that are easy-to-use for non machine learning/s-

tatistics experts—scientists with data who build models to understand their data. The next

chapter develops a variant of variational inference that requires minimal work. This variant

opens the door to new model classes, better variational approximations, and new notions of

distance we study the subsequent chapters.
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2.11 Appendix

2.11.1 Gradient of the elbo with respect to �i

We differentiate the elbo and use properties of the exponential family:

r�i
L D r�i

EqŒlogp.xi ; zi jˇ/ � log q.zi I�i/�

D r�i
EqŒlogp.zi jxi ;ˇ/ � log q.zi I�i/�

D r�i
EqŒlog h.zi/C �>i t .zi/ � a.�i/ � log h.zi/ � �>i t .zi/C a.�i/�

D r�i
Eq.zi I�i /

�
Eq.ˇI�/Œ�i �>t .zi/ � a.�i/ � �>i t .zi/C a.�i/

�
:

Using the fact that the expected value of the sufficient statistics is the gradient of the log-

normalizer (EŒt .zi/� D r�i
a.�i/), we get

r�i
L D r�i

�
.Eq.ˇI�/Œ�i � � �i/>r�i

a.�i// � a.�i/C a.�i/
�

D r2�i
a.�i/.Eq.ˇI�/Œ�i � � �i/:

This is the gradient used in the main text.
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Chapter 3

Black Box Variational Inference

In the previous chapter, we reviewed both coordinate ascent variational inference and

stochastic variational inference (svi). svi provides a recipe for a broad class of condi-

tionally conjugate models, yet the use of variational inference in general models remains

difficult. The models where these algorithms apply are those where the conditionals

have convenient form (conditionally conjugate) and the variational approximations have

been matched appropriately to the conditionals. Outside of this setting, practitioners

have resorted to model-specific algorithms (Jaakkola and Jordan, 1997; Blei and Lafferty,

2006a; Braun and McAuliffe, 2010) or generic algorithms that require model-specific

computations (Knowles and Minka, 2011; Wang and Blei, 2013; Paisley et al., 2012).

Deriving variational inference for non-conjugate models on a model-by-model basis is te-

dious work. Rather than choosing models based on the needs of the data, models get chosen

based on the ease of deriving inference. The need to derive inference creates sunk costs that

hinder the rapid exploration of models. Moreover, the model-specific analysis required for

variational inference may be impractical for users of generative probabilistic models in the

sciences and social sciences.
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p.x; z/

q.zI ⌫/

Z
.� � � /q.zI ⌫/dz

q.zI ⌫/

r⌫

Figure 3.1: The recipe for variational inference. First, choose an approximating family.
Next, compute the elbo by integration. Then, differentiate the elbo. Maximize the elbo
either by following the derivatives or setting them to zero for coordinate ascent.

In this chapter, we develop a black box variational inference algorithm. bbvi is a varia-

tional inference method that can quickly be applied to almost any model and approximating

family with minimal effort. bbvi allows practitioners to design, apply, and revise models

of their data, without painstaking derivations each time they adjust the model. This moves

the generative probabilistic modeling process more towards building models for data rather

than models for inference.

3.1 A Case Study: Bayesian Logistic Regression

In the previous chapter, we showed how coordinate ascent variational inference and svi

give methods for variational inference in conditionally conjugate models. Both methods

were derived via a recipe: 1) compute the expectations in the elbo; 2) differentiate the

elbo with respect to its parameters; 3) use the derivative to maximize the elbo. Figure 3.1

summarizes this recipe. Here we explore what happens for a simple non-conjugate model,

Bayesian logistic regression (Cox, 1958).

Bayesian logistic regression is a prediction model for binary outcomes. The data come

in covariate, binary outcome .xi ; yi/ pairs. The model conditions on the covariates xi to
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generate the response

yi � Bernoulli.�.x>i w//;

and the prior on the regression coefficients is normal:

w � N .0; 1/:

For simplicity, we assume we have only a single data point .x; y/, and that the covariates

are scalars. In this case, the commonly used variational approximation is the Normal dis-

tribution with parameters �; �2:

q.wI�; �2/ D N .�; �2/:

We now follow the recipe. We write down the elbo and compute expectations with respect

to the variational approximations:

L.�; �2/ D EqŒlogp.w/ � log q.wI�; �2/C logp.y j x;w/�

D �1
2
.�2 C �2/C 1

2
log.�2/C EqŒlogp.y j x;w/�C C

D �1
2
.�2 C �2/C 1

2
log.�2/C EqŒyxw � log.1C exp.xw//�C C

D �1
2
.�2 C �2/C 1

2
log.�2/C yx� � EqŒlog.1C exp.xw//�C C:

At this point, we can proceed no further in following the recipe. The expected value of the

last term does not have a nice closed form in terms of the variational parameters. Possible

solutions include further model-specific lower bounds (Jaakkola and Jordan, 1997) or more

general techniques that require model-specific analysis (Knowles and Minka, 2011; Wang

and Blei, 2013). The model-specific nature of these approaches coupled with the additional

approximations limits their applicability. Instead, we need an approach that does not require
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p.x; z/

q.zI ⌫/

Z
.� � � /q.zI ⌫/dz

q.zI ⌫/

r⌫

Figure 3.2: The new recipe for variational inference. First, choose an approximating family.
Next, write the derivative of the elbo as an expectation. Then, use Monte Carlo with sam-
ples from q to compute noisy gradients. This approach avoids intractable integrals. Finally,
use stochastic optimization to maximize the elbo.

additional approximations nor manual computation of expectations. Black box variational

inference provides such an approach.

3.2 Black Box Variational Inference

Black box variational inference (bbvi) is a new recipe for variational inference. The prob-

lem in the old recipe was the that expectations of certain functions were analytically in-

tractable. We step around this problem by writing the derivative as an expectation and

using Monte Carlo estimates of this derivative to get noisy unbiased gradients. Figure 3.2

summarizes the procedure.

Consider a probabilistic model p.x; z/ with data x and latent variables z, and let q.zI �/ be
the variational approximation. The elbo is

L.�/ D Eq.zI�/Œlogp.x; z/ � log q.zI �/�:
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Define g.z; �/ D logp.x; z/�log q.zI �/ to be the instantaneous elbo. Then the derivative

of the elbo is

r�L D r�
Z
q.zI �/g.z; �/dz

D
Z
r�q.zI �/g.z; �/C q.zI �/r�g.z; �/dz

D
Z
q.zI �/r� log q.zI �/g.z; �/C q.zIu/r�g.z; �/dz

D Eq.zI�/ Œr� log q.zI �/g.z; �/Cr�g.z; �/� ; (3.1)

where we use r�q.zI �/ D q.zI �/r� log q.zI �/ between lines two and three. Interchang-

ing derivatives and integrals requires technical conditions to be met. Derivatives are limits,

so these conditions are given by the theorems for exchanging limits and integrals (the dom-

inated convergence theorem or the monotone convergence theorem (Cinlar, 2011)).

We have written the derivative of the elbo as an expectation with respect to the variational

approximation. The derivative Equation (3.1) can be simplified using properties of the in-

stantaneous elbo. Namely,

Eq.zIu/Œr�g.z; �/� D Eq.zIu/Œr� log q.zI �/�

D
Z
q.zI �/r� log q.zI �/dz

D
Z
r�q.zI �/dz

D r�
Z
q.zI �/dz D r�1 D 0: (3.2)

The expected value of the score function r� log q.zI �/ of a distribution equals zero. Sub-

stituting this back into the derivative Equation (3.1) gives

r�L D Eq.zIu/Œr� log q.zI �/.logp.x; z/ � log q.zI �//�: (3.3)
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Algorithm 1: Black box variational inference (bbvi)
Input: Data x, model p.x; z/, approximating family q.zI �/:
Initialize � randomly.
Initialize iteration counter i to zero.
while change in elbo is above some threshold do

Draw S samples zs � from q.zI �/ the variational approximation.

Compute noisy gradient Or�L using samples (Equation (3.4)).

Calculate step-size �.i/ (e.g., Robbins-Monro).

Update �  � � C �.i/ Or�L:
Increment iteration counter.

end
Return �.

With this representation of the gradient of the elbo as an expectation, we compute noisy

unbiased gradients using Monte Carlo

OrL D 1

S

SX
sD1
r� log q.zsI �/.logp.x; zs/ � log q.zsI �//;

where zs � q.zsI �/: (3.4)

With Equation (3.4), we can use stochastic optimization to maximize the elbo. This style

of gradient has appeared in reinforcement learning (Williams, 1992) and in general Monte

Carlo gradient estimation (Glynn, 1990).

Algorithm 1 summarizes this procedure. The requirements for this procedure are as fol-

lows:

• We need the score function of the variational approximation: r� log q.zI �/.

• We need to be able to sample from the variational approximation q.

• We need to be able to evaluate logp.x; z/ and evaluate log q.zI �/.
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�

pdf

jr� log qj

Figure 3.3: The score function for the mean of the normal distribution. It takes large values
when the density is small. This leads to high variance. (Y-axis is labeled small as precise
values are unimportant.)

The sampling algorithms and score functions depend only on the variational approximation,

not the underlying model. Thus, we can build a collection of the functions needed, and reuse

them across a broad class of models. We call these requirements the black box criteria. We

did not make any assumptions about the form of the model, only that the practitioner can

compute the logarithm of the joint distribution of the model. bbvi significantly reduces the

effort needed to implement variational inference.

3.3 Controlling the Variance

We can use Equation (3.4) to maximize the elbo, but the variance of the Monte Carlo

gradients can be too large to be useful. Figure 3.3 plots the absolute score function for the

mean of the standard Normal along with its density to understand the source of this variance.

The score function for the mean takes on large values when the density is small. This leads

to high variance.
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High variance gradients require small step sizes; this slows down convergence. We develop

two variance reduction methods: one based on Rao-Blackwellization (Casella and Robert,

1996) and the other on control variates (Ross, 2002). Both of these variance reductions take

advantage of the structure of the elbo and require no model-specific computations. This

preserves the goal of black box variational inference.

3.3.1 Rao-Blackwellization

Rao-Blackwellization (Casella and Robert, 1996) reduces the variance of a random variable

by replacing it with its conditional expectation with respect to a subset of the variables. The

conditional expectation is a random variable with respect to the conditioning set.

In the simplest setting, Rao-Blackwellization replaces a function of two variables with its

conditional expectation with respect to one of them. Consider two variables x and y, and

let �.x; y/ be a function whose expectation with respect to the joint distribution of x; y that

we seek.

Define Q�.x/ D EŒ�.x; y/ j x�, then EŒ Q�.x/� D EŒ�.x; y/�. Therefore Q�.x/ can be used in

place of �.x; y/ inMonte Carlo approximations ofEŒ�.x; y/�. The variance of Q�.x/ is

Var. Q�.x// D Var.�.x; y// � EŒ.�.x; y/ � Q�.x//2�:

The second term on the right is nonnegative, so Var. Q�.x// has lower variance than

�.x; y/.

Now return to the problem of estimating the gradient of L. Suppose there are d latent

variables groups zi , and we are using the mean field variational family. Recall that each
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random variable zi is governed by its own variational distribution,

q.zI �/ D
dY
iD1

q.zi I �i/:

Consider the gradient with respect to �i . Let q.i/ be the distribution of zi , its parents, its

children, and its children’s parents, i.e., theMarkov blanket inp; letp.i/.x; z.i// be the terms

in the joint that contain z.i/ andp.�i/.x; z.�i// and z.�i/ denote the respective complements.

Then we can write the gradient with respect to �i as

r�i
L D Eq

�r�i
log q.zi I �i/.logp.i/.x; z.i//

C logp.�i/.x; z.�i// �
dX
kD1

log q.zkI �k//
�

D Eq.z.i//

�r�i
log q.zi I �i/

�
logp.i/.x; z.i// � log q.zi I �i/

C Eq.z.�i//

�
logp.�i/.x; z.�i// �

dX
k¤i

log q.zkI �k//
���
:

D Eq.zi /

�r�i
log q.zi I �i/

�
logp.i/.x; z.i// � log q.zi I �i/

��

C Eq.z.i//

�r�i
log q.zi I �i/

�
Eq.z.�i//

�
logp.�i/.x; z.�i// �

dX
k¤i

log q.zkI �k//
�
:

D Eq.z.i//Œr�i
log q.zi I �i/.logp.i/.x; z.i// � log q.zi I �i//�:

This follows directly from the expected value of the score function (Equation (3.2)). This

equation says we can Rao-Blackwellize each component of the gradient with respect to the

variables outside itsMarkov blanket, without having to construct model-specific conditional

expectations.
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We build a Monte Carlo estimate for the gradient of �i by sampling the variational approx-

imation

OrL D 1

S

SX
sD1
r�i

log q.zsI �/.logp.i/.x; zs/ � log q.zsI �i//;

where zs � q.i/.zsI �/:

We can use these gradients in place of Equation (3.4) to maximize the elbo. (Note that the

sample can be shared across each factor.)

Here we Rao-Blackwellized z.�i/, the complement of the variable zi and itsMarkov blanket.

Titsias and Lázaro-Gredilla (2015) expand the Rao-Blackwellization procedure to include

zi . They rely on numeric integration to compute the expectation with respect to zi . This is

feasible when zi has low dimension or small discrete support.

3.3.2 Control Variates

Variance reduction methods work by replacing the function whose expectation is being

estimated by another function that has the same expectation, but smaller variance. For-

mally, to estimate EqŒf � via Monte Carlo, we instead estimate EqŒ Qf � where Qf is chosen so

EqŒf � D EqŒ Qf � and VarqŒf � > VarqŒ Qf �.

Control variates (Ross, 2002) provide a way to construct a family of functions with equiv-

alent expectation using functions with known expectation. Control variates have been used

in a model-specific way for variational inference (Paisley et al., 2012) and have been used to

control the variance in more general machine learning optimization problems (Wang et al.,

2013).
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Formally, for control variates, consider a function h which has known finite expectation,

and let a be a scalar. Define Qf to be

Qf WD f � a .h � E Œh�/ : (3.5)

This family of functions, indexed by a, has the same expectation as f , as required. Given

a particular function h, we can choose a to minimize the variance of Qf . The variance of Qf
is

Var. Qf / D Var.f /C a2Var.h/ � 2aCov.f; h/:

This expression for the variance of Qf shows that good control variates have high correlation

with the function whose expectation is being estimated. Minimizing the variance gives the

optimal value of a:

a� D Cov.f; h/
Var.h/

: (3.6)

We apply this method to bbvi. The main requirement to apply control variates to bbvi is

a function h that has known expectation without requiring model-specific computation. To

meet this criterion, we choose h to be the score function r� log q.zI �/, which as shown

above has expectation zero. This control variate relates to baseline estimation in reinforce-

ment learning (Williams, 1992).

To apply our control variate to the Rao-Blackwellized gradient, we choose

fj D r�j log q.zI �i/.logp.i/.x; z/ � log q.zi I �i//

hj D r�j log q.zI �i/;

where the j th entry belongs to the i th factor.
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We can estimate the variance and covariance for the optimal scaling in Equation (3.6). For

the expectation of Qf to remain unchanged, this estimate should be independent of the sam-

ples used in the Monte Carlo estimate of EŒ Qf �. This can be done by either using a small

number of held-out samples or in a round robin fashion where all but one sample are used

to estimate Oaj , and the held-out sample is used to compute the Monte Carlo gradient.

Formally for the round robin procedure, given S samples, let s be the current held-out

sample. Let OCov.b; cIS/ denote the empirical covariance between b and c evaluated on the

sample collection S , OVar be the empirical variance, and let z�s be the collection of samples

excluding the sth one. Then the estimate of the optimal scaling Oasj not including sample s

is

Oasj D
OCov.fj ; hj I z�s/
OVar.hj I z�s/

:

Using this expression, the sth gradient estimate is

Ors
�j L D r�j log q.zsI �i/.logp.i/.x; zs/ � log q.zsI �i/ � Oasj /: (3.7)

The estimated Oasj and the sample zs are independent. The expectation matches that of the

true gradient. Finally, we average over all S gradient estimates

Or�j L D 1

S

SX
sD1
Ors
�j L: (3.8)

We call these leave-one-out control variates. Though this estimator appears to take quadratic

time in the number of samples, it can be computed in linear time. This is done by first com-

puting the required variance and covariance using a one pass algorithm and then remov-

ing each sample one-by-one. A similar process for baseline estimation in alternative lower

bounds was developed in Mnih and Rezende (2016). The leave-one-out estimator combines

both Rao-Blackwellization and control variates. Algorithm 2 summarizes this procedure. It
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only requires samples from the variational distribution, computations about the variational

distribution, and easy computations about the model.

We compare the leave-one-out estimator with the standard score function estimator for es-

timating the gradient of the following problem

r�Eq.z/Œ�.xz/�; where z � Normal.�; 1/: (3.9)

The score function estimator for this problem is

r� D Eq.z/Œ.z � �/�.xz/�; where z � Normal.�; 1/:

To study the score function and leave-one-out estimators’ tolerance to additional noise, we

corrupt with gamma noise with varying shape and scale ˛,

r� D Eq.z/Œ.z � �/.�.xz/C a/�;

where z � Normal.�; 1/; and a � Gamma.˛; ˛�1/:

This corruption does not alter the gradient since EqŒr� log q.zI �/� D 0.

Figure 3.4 displays the result. We see that the leave-one-out estimator handles the added

noise much better than the score function estimator. Notice that the variance of the leave-

one-out estimator also increases. The control variate can remove the non-random portion

of a, EŒa�, but the variance it injects remains. This is why combining Rao-Blackwellization

and the score function control variates is a good idea. Rao-Blackwellization removes both

the random and non-random parts from the independent terms, while the control variate

removes additional correlated noise. Finally, the estimate Oa is computed by Monte Carlo

and is thus susceptible to the same variance issues. Rao-Blackwellization helps control the

variance of this estimate.
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Figure 3.4: Variance comparison with and without leave-one-out control variates. The x-
axis denotes the shape and scale of the added Gamma noise. The score function’s variance
grows rapidly. The leave-one-out control variate drastically reduces the variance. The leave-
one-out control variate removes the constant offset due to the gamma noise (its expectation).
However, its variance still grows due to the randomness of the gamma distribution.

What to do with additional facts about q? Sometimes we have additional knowledge

about q such as its entropy, kl divergence, or mean. For optimal variance reduction, these

facts should be used as control variates. For example, many variational implementations

with analytic entropies (kl divergences) can have higher variance than stochastic entropies,

depending on the correlation of the the entropy (kl divergence) with the joint (likelihood).

The optimal use of this information would be to use them to define h in a control vari-

ate.
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Algorithm 2: Black box variational inference (bbvi)
Input: Data x, model p.x; z/, approximating family q.zI �/:
Initialize � randomly.
Initialize iteration counter i to zero.
while change in elbo is above some threshold do

Draw S samples zs � from q.zI �/ the variational approximation.
for each dimension d in 1 W D do

Compute covariance and variance for a�.
for each sample s in 1 W S do

Compute Oas
d
by removing sample s from the precomputed variance and

covariance.
Compute Ors

�d L using Equation (3.7).
end
Compute Or�d L using Equation (3.8).

end
Calculate step-size �.i/ (e.g., Robbins-Monro).

Update �  � � C �.i/ Or�L:
Increment iteration counter.

end
Return �.

3.3.3 Reparameterization Gradients

An alternative way to reduce variance is to make more assumptions about the model

logp.x; z/. One such assumption is to assume we have access to gradients of the model

with respect to the latent variables: rz logp.x; z/. This assumption rules out models with

discrete random variables, but can lead to an estimator with lower variance for smooth

models. This approach was developed by many (Kingma andWelling, 2014; Rezende et al.,

2014; Titsias and Lázaro-Gredilla, 2014).

Recall the form of the original gradient of the elbo from Equation (3.1),

r�L D Eq.zIu/ Œr� log q.zIu/g.z; �/Cr�g.z; �/� :
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If we make the reparmeterization assumption, i.e., that z � q can be written as a determin-

istic transformation of parameter free noise source s,

� � s; z D t .�; �/ ! z � q.zI �/;

we have that

r�L D Es.�/ Œr�s.�/g.t.�; �/; �/Cr�g.t.�; �/; �/� :

Using the fact thatr�s.�/ D 0, we can simplify this with themultivariate chain rule to

r�L D Es.�/ Œr�g.t.�; �/; �/�

D Es.�/ Œrz Œlogp.x; z/ � log q.zI �/�r�t .�; �/ � r� log q.zI �/�

D Es.�/ Œrz Œlogp.x; z/ � log q.zI �/�r�t .�; �/� :

This is the pathwise gradient (Fu, 2006; Glasserman, 2013) known as the reparameterization

gradient in machine learning.

Figure 3.5 plots the variances for the reparameterization gradient, score function gradient,

and score function gradient with control variates versus the covariate x for the toy regres-

sion problem from Equation (3.9). We iterate each estimator 100,000 times to compute the

variance. We see that as the covariate increases in magnitude, the score function gradient

becomemore favorable. This makes intuitive sense. The logistic function is bounded, but its

gradient grows with x. The final curve shows the leave-one-out control variate. It performs

best across the covariates.

Figure 3.5 compares variance estimates with 16 samples. For the reparameterization and

score function gradients, changing the number of samples does not change the shape of the

curves; each sample independently contributes to the estimate. However, the leave-one-out
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Figure 3.5: Noise-to-signal of the reparameterization, score function, and leave-one-out
estimators as the function of a covariate x (see Equation (3.9)) on a logarithmic scale. Repa-
rameterization gradients have lower variances for small covariate values, while score func-
tion gradients have lower variances for large covariate values. The intuition is that �.zx/ is
bounded, while its gradient grows with x. The leave-one-out estimator performs best.

estimator requires multiple samples. Figure 3.6 plots the same variance comparison with

only 8 samples. Here the leave-one-out estimator’s variance varies wildly. In general, the

leave-one-out estimator controls the variance of the gradient well, but only with a sufficient

number of samples.

What if we can use both score function and reparameterization gradients? The pre-

vious observation leads to the question of when do we use the score function gradient and

when do we use the reparameterization gradient. This question can be answered by Monte

Carlo variance analysis. Consider two functions f; g that have equivalent expectation. Then

we can construct a family of functions h with equivalent expectation from convex combi-
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Figure 3.6: Same figure as Figure 3.5 except with 8 samples instead of 16. The character of
the score function and reparameterization gradients do not change. They are an average of
independent estimates. The leave-one-out estimate requires multiple samples. Its variances
varies wildly with only 8 samples.

nations of f and g:

h D .1 � ˛/f C ˛g:

To verify, Eh D .1 � ˛/Ef C ˛Eg D Ef D Eg. We can now compute the variance of h

and ask what value of ˛ minimizes the variance. The variance of h is

Var.h/ D .1 � ˛/2Var.f /C 2˛.1 � ˛/Cov.f; g/C ˛2Var.g/:
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Optimizing this with respect to ˛ gives

˛� D Var.f / � Cov(f, g)
Var.f / � 2Cov.f; g/C Var.g/

D Var.f / � Cov(f, g)
Var.f � g/ : (3.10)

The Monte Carlo estimate of h with ˛� is guaranteed to have smaller variances than either

the Monte Carlo estimate of f or the Monte Carlo estimate of g. If independent samples

are used to estimate f and g, then ˛� gives variance-weighted results:

˛� D Var.g/
Var.g/C Var.f /

f C Var.f /
Var.g/C Var.f /

g:

The parameter ˛� can be estimated by Monte Carlo. When considering variance, Equa-

tion (3.10) implies that when we have access to both score function and reparameterization

gradients, we should use both in a weighted manner.

3.3.4 Conjugacy and Additional Information

Rao-Blackwellization and control variates match conditional conjugacy. If the model

is conditionally conjugate, we can use Rao-Blackwellization to write gradients using com-

plete conditionals. For the i th variable, this gives

r�i
L D Eq.z/Œr�i

log q.zi I �i/.logp.zi j z�i ;x/ � log q.zi I �i//�:

When performing closed form variational inference in conditionally conjugate models, the

mean field factors are chosen to be in the same exponential family as the complete condi-

tionals. This yields

r�i
L D Eq.z/Œ.t.zi/ � ra.�i//.t.zi/t.z�i/t.x/ � t .zi/>�i � a.�i/�:
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All quantities inside have known expectation (given by derivatives of the log-normalizers),

and can thus be used as control variates. If these quantities are added as control variates to

bbvi, we get zero-variance gradients (up to the estimation of the control variate scalings).

Thus, bbvi with Rao-Blackwellization and sufficient statistic control variates match the

gradients used by the classical conditional conjugacy algorithm. In this sense, these are

not separate algorithms. We can handle conditionally conjugate models effectively within

bbvi.

Distance metrics and variance. Gradients point in the direction of steepest ascent. This

direction is the solution to

arg maxd�L.� C d�/; where jjd�jj2 < �2;

for sufficiently small �. Expanding this in the case of the elbo gives

arg maxd�Eq.zI�Cd�/Œg.zI � C d�/�; where jjd�jj2 < �2;

D arg maxd�Eq.zI�/
�
q.zI � C d�/
q.zI �/ g.zI � C d�/

�
; where jjd�jj2 < �2:

The score function gradient is the limit of importance sampling (Glasserman, 2013). The

variance of a Monte Carlo estimate of this estimator scales with how well small Euclidean

perturbations of the distribution work with importance sampling. This can be poor. As

an example, consider a normal distribution with variance �2 and mean �. Consider the

gradient with respect to �:

r�Eq.zI�/Œf .z/� D 1

�2
EŒ.z � �/f .z/�:

The variance of this estimator scales with the inverse of the current variance �2. Contrast

this with an equivalent parameterization of the normal where the mean is replaced by its
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natural parameters � D �

�2

r�Eq.zI�/Œf .z/� D EŒ.z � �/f .z/�I

The variance of this estimator (up to first order) is now independent of the current variance

�2. This can be more stable to optimize.

The problem in the original setup is that for small variances, a slight Euclidean pertur-

bation in the mean can lead to a massive difference in the distributions. This is because

the Euclidean distance is not a probability distance. Instead of finding the ascent direction

via Euclidean perturbations, it can be beneficial to consider symmetric-kl perturbations

or other distances like the �-divergence (appropriate for variances) that include a notion of

probability.

3.3.5 Data Subsampling

Though stochastic variational inference was developed for models that satisfy conditional

conjugacy, the principle of data subsampling still applies. This follows from the decompo-

sition of the log likelihood in hierarchical Bayesian models.

Recall that in a hierarchical Bayesian model we have a hyperparameter �, global latent vari-

ables ˇ, local latent variables z1Wn, and data x1Wn. The log joint distribution of a hierarchical

Bayesian model is

logp.x1Wn; z1Wn;ˇ/ D logp.ˇI�/C
nX
iD1

logp.xi ; zi jˇ/:

This is the same model class as Hoffman et al. (2013), but Hoffman et al. (2013) place

restrictions on the forms of the distributions and the complete conditionals. Let us assume

the variational approximation, with parameters � and �1Wn, follows the true factorization of
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the posterior

q.ˇ; z1Wn/ D q.ˇI�/
nY
iD1

q.zi jˇI�i/:

From Equation (3.4), we see that to compute the gradient of the elbo we need the log

probability of p, the log probability of q, and the score function of q. If we instead use a

noisy, unbiased estimate of the log-probability of p and q, the gradient remains unbiased.

This estimate can be constructed by subsampling data points

logp.ˇI�/ � log q.ˇI�/C n.logp.xi ; zi jˇ/ � log q.zi jˇI�i//:

Putting this together for a uniformly sampled data index i and samples zi;s and ˇs from the

variational approximation, we have

Or�L D 1
S

SX
sD1
r� log q.ˇsI�/.logp.ˇsI�/ � log q.ˇsI�/

C n.logp.xi ; zi;s jˇs/ � log q.zi;s jˇsI�i///;

and

Or�i
L D 1

S

SX
sD1
r� log q.zi;s jˇsI�i/.n.logp.xi ; zi;s jˇs/ � log q.zi;s jˇsI�i///;

where the gradients for �j for j ¤ i are zero by Rao-Blackwellization. It is not the distri-

butional properties of the model that determine if it is amenable to subsampling; rather, it

is the conditional independence structure that matters.
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3.4 Related Work

Variational inference has undergone a boom in the last few years. In addition to the works

referenced throughout the rest of the chapter, we highlight a few pieces of work here.

Wingate and Weber (2013) consider a similar procedure to ours for probabilistic programs.

Salimans et al. (2013) provide a framework based on stochastic linear regression. Their

approach can be more simply described as one which uses the vector of score function

control variates (each dimension uses all other dimensions as a control variate) and the

biased control variate estimation procedure from the Monte Carlo literature (Owen, 2013).

Carbonetto et al. (2009) present a stochastic optimization scheme for moment estimation

based on the specific form of the variational objective when both the model and the approx-

imating family are in the same exponential family. This differs from our general modeling

setting where latent variables may be outside of the exponential family. Finally, Paisley

et al. (2012) use Monte Carlo gradients for difficult terms in the variational objective and

also use control variates to reduce variance. However, theirs is not a black box method.

Both the objective function and control variates they propose require model-specific

derivations.

3.5 Results

We use black box variational inference to quickly construct and evaluate several models

on longitudinal medical data. We compare the speed and predictive likelihood of bbvi

to sampling based methods. We demonstrate the ease with which several models can be

explored.
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3.5.1 Longitudinal Medical Data

Our data consists of longitudinal data from 976 patients (803 train + 173 test) from an am-

bulatory clinic at the Columbia University Medical Center (CUMC). The data are obtained

fromCUMC under IRB protocol. These patients visited the clinic a total of 33K times. Dur-

ing each visit a subset of labs (determined by the doctor) were collected. The labs measure

the amount of a particular quantity (such as sodium) in the blood.

3.5.2 Evaluation and Hyperparameters

We evaluate models using predictive likelihood. To compute predictive likelihoods, we need

an approximate posterior on latent variables shared across patients and on latent variables

within patients. We use the training patients to get the approximate posterior for the vari-

ables shared across patients and use 75% of each test patient to compute the approximate

posterior for latent variables within patients. We then calculate the predictive likelihood on

the remaining 25%.

We initialize the approximations randomly and choose the mean field variational family.

We use AdaGrad (Duchi et al., 2011) for learning rates. We use a large number of samples

(1K) to estimate the gradient and use 100 samples to estimate the control variate scaling.

Finally, we subsample data in batches of 25 for all experiments.

3.5.3 Model

Our goal is to come up with a low dimensional summary of each patient’s labs that helps

complete the sparse observations. Further, wewant the summaries to be indicators of health.

From this, we aim to summarize each visit with positive random variables.
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To meet our modeling desiderata, we construct a Gamma-Normal time series (Gamma-

Normal-TS)model. Letxp;v be the lab values for patientp at visit v (some of the entriesmay

be missing). Further, let W be a matrix of shared latent variables, zp;v be latent variables

for patient p at visit v, and let op be an intercept term for a particular patient. The generative

model with hyperparameters � is

W � Normal.0; �w/; an L �K matrix

op � Normal.0; �o/; a vector of length L

zp;1 � GammaE.�z; �z/; a vector of length K

zp;v � GammaE.zp;v�1; �z/; a vector of length K

xp;v � Normal.Wzp;v C op; �x/; a vector of length L: (3.11)

We set �w , �o, �z to be 1.0 and �x to be 0.01. GammaE is the expectation/variance param-

eterization of the (L-dimensional) gamma distribution. The mapping between this parame-

terization and the more standard shape ˛, rate ˇ parameterization is

E D ˛

ˇ
; Var D ˛

ˇ2
:

Black box variational inference allows us to make use of non-standard parameterization for

distributions that are easier to reason about. This is an important observation—the standard

set of model families usable with classic variational inference methods is limited. In this

model, the expectation parameterization of the gamma distribution allows the previous visit

factors to define the expectation of the current visit factors. Finally, we emphasize that

coordinate ascent variational inference and Gibbs sampling are not available for this model

because the required conditional distributions do not have closed form.
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3.5.4 Sampling Methods

We compare bbvi to a standard sampling based technique that only requires the joint dis-

tribution, Metropolis-Hastings (Bishop, 2006).1

Recall that Metropolis-Hastings works by sampling from a proposal distribution and accept-

ing or rejecting the samples based on the likelihood. Standard Metropolis-Hastings works

poorly in the Gamma-Normal-TS model due to the dimensionality. Instead, we compare to

a Gibbs sampling method that uses Metropolis-Hastings to sample from the complete con-

ditional of each variable. For proposal distributions, we use model distributions with mean

equal to the value of the current parameter.

We compare bbvi to Metropolis-Hastings inside Gibbs. We used a fixed computational

budget of 20 hours. Figure 3.7 plots the predictive likelihood versus time on a held-out set

for both methods. We found similar results with different random initializations of both

methods. Black box variational inference gives better predictive likelihoods and gets them

in a shorter time.

3.5.5 Exploring Models

Black box variational inference enables us to quickly explore and fit many new models to

a data set. We demonstrate this by considering three variations of our model for this data:

Gamma-Normal, Gamma, and Gamma-TS.
1Methods that require more of the model such as Hamiltonian Monte Carlo (Duane et al., 1987) could

work in this setting. However, as black box variational inference requires only the joint distribution and could
benefit from the extra information used in complex methods, we compare only to Metropolis-Hastings within
Gibbs.
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Figure 1: Comparison between Metropolis-Hastings
within Gibbs and Black Box Variational Inference on
the Gamma-Normal-TS model. The x axis is time and
the y axis is the log predictive likelihood of the held
out set. Black Box Variational Inference reaches better
predictive likelihoods faster than Gibbs sampling. Vari-
ational inference overfits slightly in the 20 hour period.
The Gibbs sampler’s progress slows considerably after
5 hours.

Black Box Variational Inference allows us to make
use of non-standard parameterizations for distributions
that are easier to reason about. This is an important
observation, as the standard set of families used in
variational inference tend to be fairly limited. In this
case, the expectation parameterization of the gamma
distribution allows the previous visit factors to define
the expectation of the current visit factors. Finally, we
emphasize that coordinate ascent variational inference
and Gibbs sampling are not available for this algorithm
because the required conditional distributions do not
have closed form.

5.3 Sampling Methods

We compare Black Box Variational Inference to
a standard sampling based technique, Metropolis-
Hastings (Bishop, 2006), that also only requires the
joint distribution.2

Metropolis-Hastings works by sampling from a proposal
distribution and accepting or rejecting the samples
based on the likelihood. Standard Metropolis-Hastings
can work poorly in high dimensional models. We find
that it fails for the Gamma-Normal-TS model. Instead,
we compare to a Gibbs sampling method that uses
Metropolis-Hastings to sample from the complete con-

2Methods that involve a bit more work such as Hamil-
tonian Monte Carlo could work in this setting, but as our
technique only requires the joint distribution and could
benefit from added analysis used in more complex methods,
we compare against a similar methods.

ditionals. For our proposal distribution we use the same
distributions as found in the previous section, with the
mean equal to the value of the previous parameter.

We compute predictive likelihoods using the posterior
samples generated by the MCMC methods on held out
data in the test set.

We compared our method to Metropolis-Hastings inside
Gibbs on the Gamma-Normal-TS model. We used a
fixed computational budget of 20 hours. Figure 1 plots
predictive likelihood versus time on the held out set for
both methods. We found similar results with di↵erent
random initializations of both methods. Black Box
Variational Inference gives better predictive likelihoods
and gets them faster.3

5.4 Variance Reductions

We next studied how much variance is reduced by our
variance reduction methods. In Figure 2, we plot the
variance of various estimators of the gradient of the
variational approximation for a factor in the patient
time-series versus iteration number. We compare the
variance of the Monte Carlo gradient (Eq. 3) to that
of the Rao-Blackwellized gradient (Eq. 6) and that
of the gradient using both Rao-Blackwellization and
control variates (Eq. 9). We allow the estimators with-
out control variates to leverage the samples used by
the control variate estimator to estimate the scalings.
We found that Rao-Blackwellization reduces the vari-
ance by several orders of magnitude. Applying control
variates reduces the variance further. This reduction
in variance drastically improves the speed at which
Black Box Variational Inference converges. In fact, in
the time allotted, Algorithm 1—the algorithm without
variance reductions—failed to make much progress.

5.5 Exploring Models

We developed Black Box Variational Inference to make
it easier to quickly explore and fit many new models
to a data set. We demonstrate this by considering a
sequence of three other models for our data: Gamma,
Gamma-TS, and Gamma-Normal.

Gamma. We model the latent factors that summa-
rize each visit in our models as positive random vari-
ables; as noted above, we expect these to be indicative
of patient health. The Gamma model is a positive-
value factor model where all of the factors, weights,
and observations have positive values. The generative
process for this model is

3Black Box Variational Inference also has better pre-
dictive mean-squared error on the labs than Gibbs style
Metropolis-Hastings.

Figure 3.7: Comparison between Metropolis-Hastings inside Gibbs and bbvi. Black box
variational inference yields better predictive results in a shorter time.

Gamma-Normal. This variant of the model in Equation (3.11) removes the temporal

structure across visits.

W � Normal.0; �w/; an L �K matrix

op � Normal.0; �o/; a vector of length L

zp;v � GammaE.˛z; ˇz/; a vector of length K

xp;v � Normal.Wzp;v C op; �x/; a vector of length L.

This is a factor model that represents each visit with a low dimensional latent variable,

zp;v.

Gamma. Thismodel requires the factors to be nonnegative. We replace all of the normally

distributed variables with gamma distributed ones. The gamma model is a positive valued

factor model, where all of the factors, weights, and observations have positive values. This

limits the covariance between observed labs to be positive.
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Models Log-Predictive Likelihood

Gamma-Normal �31:2
Gamma-Normal-TS �30:0
Gamma-Gamma �146
Gamma-Gamma-TS �132

Table 3.1: A comparison between several models. Models that consider time and that allow
for negative correlations between observations perform best. Without bbvi, fitting each of
these models would have been a large undertaking.

Gamma-TS. We can link the factors through time using the expectation parameterization

of the gamma distribution. (Note that this is harder with the usual natural parameterization

of the gamma.) This changes zp;v to be distributed as GammaE.Wzp;v�1 C op; �o/. In

this model, the expected value of the factors at the next visit is the same as the value at the

current visit. This allows us to propagate patient states through time. It is the nonegative

analogue of the Gamma-Normal-TS model.

Model comparisons. We determined convergence using the change in the log-predictive

likelihood on a validation set. We use a smaller learning rate for the Gamma models as

optimization was less stable.

Table 3.1 summarizes our models along with their predictive likelihoods. We find that the

Gamma models perform poorly. This is likely because they cannot capture the negative cor-

relations that exist between different medical labs. By using black box variational inference,

we were able to quickly fit and explore a set of complicated non-conjugate models. Without

our generic algorithm, approximating the posterior of any of these models is a project in

itself.
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3.6 Conclusion

We developed black box variational inference, a new variational inference algorithm that

drastically reduces the analytic burden on practitioners. This approach uses samples from

the variational approximation to construct stochastic gradients. Essential to making it prac-

tical are model-free variance reductions. Black box variational inference is easy-to-use and

simple for nonexperts to deploy on newmodels. With neuroscientists, Manning et al. (2014)

used bbvi to build spatial factor models for functional MRI measurements of blood flow in

the brain.

Black box variational inference opens the door to many directions. First, models that were

impractical before now become possible to study. Second, variational approximations no

longer need to be matched to the model based on conjugacy considerations. This means we

can build new families of variational approximations that better approximate the posterior

distribution. Finally, the choice of closeness between distributions, the kl divergence, was

originally chosen for the computationally tractable algorithms that it yields. With black box

variational inference, we can study new distances. We explore all of these directions in the

subsequent chapters.
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Chapter 4

Deep Exponential Families

New computational methods lead to new models. For example, the sigmoid belief net-

work (Neal, 1990) hinged on the concurrent development of variational inference; the Gibbs

sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) ushered in the work on con-

ditionally conjugate models, and MCMC methods for the Dirchlet process (Neal, 2000)

fertilized the growth of Bayesian nonparametric methods. In a similar vein, black box vari-

ational inference (bbvi) reduces the barrier to exploring new kinds of models. We explore

one such family of models here, deep exponential families (defs). defs capture a hierarchy

of dependencies between latent variables. They build upon the intuitions behind deep unsu-

pervised feature learning. Through the flexibility of exponential families, defs generalize

to many settings.

As an example, consider modeling documents. We can represent a document as a vector of

term counts modeled by Poisson random variables. In one type of def, the rates of these

Poisson random variables come from a layer of latent variables specific to a document.

These variables are scaled by weights that are shared across data. The document specific

latent layers can be thought of as factor activations. Normally, in conditionally conjugate

models the modeling process would stop here. This happens because conjugate priors of
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Figure 4.1: A fraction of the three layer factor hierarchy on 166K the New York Times arti-
cles. The top words are shown for each factor. The arrows represent hierarchical groupings.

conjugate priors quickly become intractable. As an example, consider the conjugate prior

of the Dirichlet distribution. However, with bbvi we can proceed. One way to build a def

is to model the factor activations in a similar way. That is, the factor activations come from

a higher level of activations, scaled by weights shared across data. Just as the factors group

related words, the higher level factor activations group related factors.

Figure 4.1 displays an example of a three level def with nonnegative factors uncovered from

a large set of articles in the New York Times. (This style of model, though with different

details, has been previously studied in the topic modeling literature (Li and McCallum,

2006).) Conditional on the observed word counts, the def defines a posterior distribution

of the per-document latent variables and latent variables shared across data. This figure

visualizes two of the third-layer factors, which correspond to the themes of “Government”

and “Politics”. We focus on “Government” and notice at the second level that the the model

has discovered the three branches of government: judiciary (left), legislative (center), and

executive (right),

In defs, the latent variables can be from any exponential family. For example, Bernoulli

latent variables recover the classical sigmoid belief network (Neal, 1990); gamma latent

variables give deep variations of nonnegative matrix factorization (Lee and Seung, 1999);

and Gaussian random variables lead to the deep latent Gaussian models (Rezende et al.,
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2014). All of these models fall broadly into the class of stochastic feedforward networks

(Neal, 1990). We will develop several examples in this chapter.

defs can be used as drop-in replacements for distributions in traditional models from statis-

tics and machine learning, such as for grouped data (Gelman and Hill, 2007), sequential

data (Blei and Lafferty, 2006b), or pairwise data (Salakhutdinov and Mnih, 2008). As a

concrete example, we develop and study the double DEF. The double def models a matrix

of pairwise observations such as users rating items. It has one def for the users and one

for the items. The observed matrix entries depend on the defs for both the users and the

items.

In this chapter we develop defs, describe posterior inference for them using bbvi, and show

how they can be used as building blocks in more complex models.

4.1 Deep Exponential Families

Deep exponential families build upon exponential families. Recall that exponential families

have the following form

p.zI�/ D h.z/ exp.�>T .z/ � a.�//;

where h is the base measure, � are the natural parameters, T are the sufficient statistics,

and a is the log-normalizer. The expectation of statistics T provides an alternative parame-

terization for exponential families via the relation EŒT .x/� D r�a.�/ (Brown, 1986). The
sufficient statistics and base measure1 characterize an exponential family. For example, if

the base measure is h D p2� and the sufficient statistics are T .z/ D Œz; z2�, we get the Nor-
1Technically, this can be absorbed into the dominating measure for the family. In this case the dominating

measure and sufficient statistics characterize the exponential family.
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mal distribution. If the base measure is one on the unit interval, and the sufficient statistics

are T .z/ D Œlog z; log 1 � z�, we get the Beta distribution.

Deep exponential families. Deep exponential families chain together exponential fam-

ilies to form a hierarchy, where the draw from one layer controls the parameters of the

next.

For each data point xn, the model has L layers of latent variables zn;1; :::; zn;L, where each

zn;` D fzn;`;1; :::; zn;`;K`
g. We assume that zn;`;k is a scalar, but the model generalizes

beyond this. Shared across data, the model has L � 1 hidden parameters W1; :::;WL�1.

These hidden parameters have a prior distribution p.W`/.

For simplicity, we omit the data index n and describe the distribution of a single data point

x. Given a hyperparameter �, the top layer of latent variables follows

zL � expfam.�/;

where expfam.�/ denotes an exponential family with natural parameter �.

In lower layers, each latent variable is drawn conditional on the previous layer:

p.z` j z`C1;W`/ D expfam` .g`.z`C1;W`// :

The subscript ` on expfam denotes that the family can change at each layer. The function g`

defines a mapping from the higher level to the natural parameters of the current level. This

mapping is controlled by hidden parameters W . We call the function g` the link function.

As an example, consider the inner product link function. Let g` be a parameter-free function

such as z2 or log.z/. Then the inner product link sets the layer conditional distribution
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to

p.z`;k j z`C1;w`;k/ D expfam
�
g`.z

>
`C1w`;k/

�
: (4.1)

Here W` is a matrix and w`;k is a vector of dimension K`. defs of this form are random

effects models (Gelman et al., 2003) where each layer of variables are controlled by the

product of a weight vector and a set of latent variables. Other example link functions include

splines and multilayer neural networks. We will focus on the inner product family of links

for the rest of this chapter.

Likelihood. The likelihood defines the generative process for the data conditional on the

hidden structure. In the simplest case for a def, the likelihood depends on the lowest layer

of the def, p.x j z1/. Separating out the likelihood allows for simpler compositions and

embeddings of defs in other models.

As a concrete example, we will assume the nth observation xn is a vector of counts modeled

with a Poisson distribution. The Poisson distribution with mean (rate) � is

p.xn;i D x/ D e�� �
x

xŠ
:

If we let xn;i be the count of type i , then the likelihood is

p.xn;i j zn;1;W0/ D Poisson.g0.z>n;1w0;i//:

The observation weights have prior p.W0/, and the choice of function g0 ensures the

rate parameter’s positivity constraint is satisfied. (This likelihood can be generalized to

g0.zn;1;w0;i/.) For example, in the case where z is nonnegative,W0 can have a nonnegative

prior and g0 can be the identity function.
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Returning to the example of modeling documents, xn represents term counts. This means

that the first layer of the def groups similar terms, the second layer groups the groups

into higher level groups, and so on. Figure 4.1 depicts the compositionality and sharing

semantics of deep exponential families.

Nonlinearities. The nonlinearities in defs arise from two sources. The first source is

explicit; it is the link function. The second source is implicit and comes from the properties

of exponential families.

Using properties of exponential families we can determine how the link function alters

the distribution of the `th layer. The moments of the sufficient statistics of an exponen-

tial family completely characterize the distribution. They are given by the gradient of the

log-normalizer:

EŒT .z`;k/� D ra.g`.z>`C1w`;k//: (4.2)

Thus, in defs the mean of the next layer is controlled by both the link function g` and the

gradient of the log-normalizer. In the case of the identity link function, the expectation of

latent variables in deep exponential families gets transformed by the log-normalizer at each

level.

Here is a diagram of the transformation process.

zn,`+1

w`,k

g
ra

E[T (zn,`,k)]

For example, in the sigmoid belief network (Neal, 1990), we will see that the identity link

recovers the sigmoid transformation used in in neural networks.
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4.2 Examples

To demonstrate the possibilities with deep exponential families, we present three examples:

the sparse gamma def, the sigmoid belief network, and Poisson defs.

4.2.1 Sparse Gamma DEF

The sparse gamma def builds upon the gamma distribution. The gamma distribution has

support in the positive reals and is a member of the exponential family. It has two parame-

ters, the shape ˛ and the rate ˇ. In its exponential family form the gamma density is

p.z/ D 1

z
exp.˛ log.z/ � ˇz � log�.˛/C ˛ log.ˇ//;

where � is the gamma function. The mean of the gamma distribution is EŒz� D ˛ˇ�1. Fig-
ure 4.2 plots the gamma density for various shape and rates. We can see that both parameters

are well named. Changing the shape parameter alters the look of the density function, while

changing the rate only rescales it.

Gamma distributions with shape smaller than one exhibit a peculiar property— they asymp-

tote at zero. This is a kind of soft sparsity, where the majority of the probability mass re-

mains close to zero. This type of distribution is akin to a soft spike-and-slab prior (Ishwaran

and Rao, 2005). Spike-and-slab priors perform well on feature selection and unsupervised

feature discovery (Goodfellow et al., 2012; Hernández-Lobato et al., 2013). We will use

this observation to build sparse gamma defs.

For sparse gamma defs, we let the components in the higher level control the expected

value of the next hidden layer, while keeping the shape fixed to be less than one to get soft

sparsity. Let ˛` be the shape at layer `, then the link function for the sparse gamma def
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Figure 4.2: Gamma distribution at various shapes and scales. Moving to the right increases
the shapes by an order of magnitude, while moving down decreases the rates by an order of
magnitude. When the shapes are small, most of the mass is near zero.

is

g˛ D ˛`; gˇ D ˛`

z>
`C1w`;k

:

The rate of the gamma distribution has positive constraints, so we place a gamma prior on

the weights too.

The sparse gamma distribution differs from distributions such as the Poisson and the normal

in how probability mass moves when the mean changes. For example, when the expected

value is high, draws from the Poisson are likely to be high. However, in the sparse gamma

distribution draws will either be close to zero or very large. Figure 4.3 demonstrates this.

Changing the mean stretches the spike-and-slab. Hence, the sparse gamma def is a mul-
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Figure 4.3: Sparse gamma distribution versus the Poisson at two different means. Increas-
ing the mean moves the peak of the Poisson, but not the sparse gamma.

tilevel soft spike-and-slab model. The hierarchy shown in Figure 4.1 comes from a sparse

gamma deep exponential families.

4.2.2 Sigmoid Belief Network

Recall the sigmoid belief network (Neal, 1990; Mnih and Gregor, 2014) discussed in Chap-

ter 2. It consists of latent Bernoulli layers that represent the on-or-off state of a feature. The

distribution of a feature at layer ` is controlled by the previous layer `C1 scaled by a weight
vector. Its mean is the sigmoid transformation of the inner product of the two.

Consider, an example of a def with Bernoulli layers and identity link. The form of the

conditional Equation (4.1) in this setup is

p.z`;k j z`C1;w`;k/ D exp.z>`C1w`;kz`;k � log.1C exp.z>`C1w`;k///:

From Equation (4.2), we have that the expected value is the derivative of the log-

normalizer:

EŒz`;k j z`C1;w`;k� D r log.1C exp.�//jz>
`C1

w`;k
D �.z>`C1w`;k/:
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The conditional expectation of a hidden variable given the layer above and parameters is

the sigmoid transformation of the inner product of the previous layer and weights. A def

with Bernoulli exponential families and identity link function is equivalent to the sigmoid

belief network. The weights in the sigmoid belief network are real valued, so we place

a normal prior over the weights shared across data. We allow for each feature to have an

intercept term. This controls the baseline activation of each feature independent of the other

layers.

4.2.3 Poisson DEF

The sigmoid belief network models each observation with a cascade of binary switches that

represent whether a feature is expressed in that observation. This can be limiting. Obser-

vations may exhibit multiple instances of a feature, for example in an image that contains

multiple spoons. Here we develop the multi-feature generalization of the sigmoid belief

network in which observations can exhibit a feature a count-valued number of times.

The Poisson distribution models counts. Its exponential family form with parameter �

is

p.z/ D 1

zŠ
exp.�z � exp.�//:

Its mean is e�.

Replacing the binary-valued Bernoulli distribution in the sigmoid belief network with the

count-valued Poisson distribution gives the multi-feature generalization of the sigmoid be-

lief network. Consider the Poisson DEF with identity link function

p.z`;k j z`C1;w`;k/ D 1

z`;k
exp.z>`C1w`;kz`;k � exp.z>`C1w`;k//:
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The counts of the Poisson z`C1;k represent how many times the feature w`;k occurs in an

observation. Using the link function property of defs, the mean activation of each Poisson

is

EŒz`;k� D exp.z>`C1w`;k/:

In practice, we found that the exponential function leads to instability in optimization for

large natural parameters (because the derivative of the expected value gets exponentially

large, unlike in the sigmoid belief network). Instead we consider the log-softplus link func-

tion, g.�/ D log log.1Cexp.�//. The log-softplus link function implies a derivative close to

one for the expected value at large inputs. Similar to the sigmoid belief network, we allow

each hidden variable to have an intercept term.

Poisson defs can also be adapted for nonnegative matrix factorization. We do this by us-

ing the log-link. This implies that the expected value of one of the hidden variables z`;k

is z>
`C1w`;k. Poisson random variables and their expectations are nonnegative. With a

prior over nonnegative values on the weights, we get a variant of deep nonnegative matrix

factorization in which the factor expressions are discrete. This contrasts the identity and

log-softplus links that allow both positive and negative weights.

4.3 Connections

Via its relationship to exponential families, hierarchical models, and deep models, deep

exponential families connect to many areas. Here we discuss several of them.

Generalized linear models. Generalized linear models (McCullagh and Nelder, 1989)

provide a mechanism to build regression models from exponential families, such as, count-
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valued regression using the Poisson distribution. If xi are features or covariates (like house

size) and yi are responses (like house cost), a generalized linear model is

yi � expfam.g.x>i w//;

where w are the regression coefficients. Note that this is a slight redefinition of the link

function from the classic generalized linear models literature. Generalized linear mod-

els make predictions via conditional expectations. Given a covariate x, the prediction is

EŒy jx�. Compare generalized linear models to the def layer Equation (4.1). We see that,

conditional on the higher level z`C1, each hidden def unit is a generalized linear model

with covariates z`C1 and regression coefficients W`;k. defs are nested generalized linear

models, conditional on the top layer.

Randomness vs. determinism. The most general conditional layer distribution can

be represented as a function f of a variable �` from noise source s and the layer above

z`C1,

z` D f .z`C1; �`/; �` � s; (4.3)

with noise dimension K`. This describes stochastic feedforward networks.

For deep exponential families, if the noise is uniform, the transformation f is the inverse

cumulative distribution of an exponential family with parameters W`z`C1. The restriction

to a normalized exponential family in defs guarantees the existence of a joint likelihood

function. The existence of a likelihood function simplifies inference.
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Compare the general layer construction with deterministic feedforward neural networks,

where z`C1 is the input and z` is the output,

z` D f .z`C1/: (4.4)

The difference between this transformation and the one in Equation (4.3) is the presence of

noise. We can write the deterministic feedforward neural network transformation (Equa-

tion (4.4)) as a transformation of delta mass noise (noise that takes a fixed value, say zero,

with probability one):

z` D f .z`C1; �`/; �` � ı0:

This equation unifies the deterministic feedforward neural network with general conditional

layer distributions. It reveals two things. First, deterministic feedforward neural networks

are a subset of the general conditional ones. Second, inference with the conditional trans-

forms is harder. In the stochastic case, inference has to adjudicate on what the noise �`

explains and what the signal z`C1 explains (This is the explaining away problem.). In the

deterministic setting, the posterior on the noise is fixed and known, thus only the signal z`C1

can explain the data.

The distinction between the signal z`C1 and noise �` is made by the practitioner, who uses

z`C1 to encode structure. This structure is then modeled with parameters shared across data

points, while the noise remains unmodeled.

The representation in Equation (4.3) implies that any latent variable can be represented

as a deterministic transformation of a uniform random variable. Why then do we need

distributions beyond a fixed one like the uniform or the normal distribution? The problem

lies in the complexity of the transformation. As a concrete example, consider mapping the

uniform distribution to a gamma distribution with shape ˛ and rate ˇ. The true mapping f
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Figure 4.4: Here we use various width neural networks with five layers to learn the trans-
formation from a uniform distribution to a gamma distribution. It takes a width of 100 to
get a close approximation. The roughness comes from the width-500 network. The width-
100 neural network has more than 25,000 parameters. A simple change in distribution can
greatly reduce the number of parameters needed.

is

f .�/ D CDF-Gamma�1.�/:

We plot the approximations to this function for shape 0:5 and rate 0:1 using five layer neural

networks with varying widths in Figure 4.4. We compute the approximation by minimizing

the absolute distance to the true function on a grid of points in the uniform interval. The

widths need to get sufficiently large (� 100) for the neural networks to get close. The width-
100 neural network has more than 25,000 parameters.2 The use of alternative distributions

2The network used hyperbolic tangent nonlinearities. We tried rectifier activations, but we found that they
output only values close to zero.
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is a form of model structure that can drastically reduce the amount of data and parameters

needed.

Do we need latent variables? Models that transform randomness � can produce arbitrary

densities. This leads to the question: whether we need latent variables (holding computa-

tional considerations aside)?

As an example, consider the case where true data is generated as follows. Let zi be a K

dimensional vector, and let W be a matrix of size L �K, where L > K. Then the data is

generated as

zi � p

�i � s

xi D Wzi C �i ; (4.5)

where � is L dimensional. We will now consider a pair of models to fit the data from the

true model.

Let f be an arbitrary function, the first model is

�i � s

xi D f .�i/:

Since f is arbitrary, this model canmimic the model in Equation (4.5). However, this model

cannot separate out the K dimensional signal zi that appears in the true model. Latent

variables add value in that they can be used to posit and recover hidden structure.

For a second model, suppose we know a priori that the dimensionality of noise is L dimen-

sional and the dimensionality of the signal is K dimensional, like in the previous model
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(Equation (4.5), where zi is K dimensional and �i is L dimensional). Then we could pro-

pose the following model that posits both signal and noise

zi � p

�i � s

xi D f .zi ; �i/:

To understand the problem with this approach, we can compute the posterior distribution

on zi by writing down the elbo in terms of the true modelM ,

L D Ex�M ŒEqŒlogp.x j z/C logp.z/ � log q.z/��

L D EM ŒEqŒlogp.x j z/�� � KL.qjjp/;

where the noise �i is hidden in the likelihood (p.xi j zi/ D
R
�Wf .�;zi /Dxi

s.�/d�). The first

term is maximized by matching p toM . This is possible while also making x independent

of z because � has the same dimension as the data and f is arbitrary. The second term is

maximized by setting q to the prior p. This means the posterior is the prior. This model

also does not recover the hidden structure. The use of unrestricted transformations of noise

�i to produce the data makes the hidden structure independent of the data.

To get models with meaningful posterior distributions (to recover hidden structure), the di-

mension of randomness should exceed the data dimension and the noise’s role in generation

must be limited. Note that a similar argument applies to justify the use of multiple levels of

latent variables.

Many models are defs. Many latent variable models in the literature are deep expo-

nential families. For example, a Gaussian mixture model is a one layer def with a single
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multinomial layer,

zi � Multinomial.�/

xi � Gaussian.W zi ; �/:

Similarly, Poisson factorization (Canny, 2004; Gopalan et al., 2015), factorial mixture mod-

els (Ghahramani, 1995), and probabilistic matrix factorization (Salakhutdinov and Mnih,

2008) are all one layer defs with varying priors on zi . This class includes Bayesian fac-

tor analysis methods such as exponential family principle component analysis Mohamed

et al. (2008) and multinomial principle component analysis (Buntine and Jakulin, 2004).

The independent development of these related models partially stemmed from the need for

model-specific inference.

For multilayer examples, the correlated topic model (Blei and Lafferty, 2006a) is a mul-

tilayer def, where the highest layer is a multivariate normal and the subsequent layer is

multinomial. Deep latent Gaussian models (Rezende et al., 2014) are a multilayer def

where each layer is Gaussian.

Related work. Graphical models and neural nets have a long and distinguished history.

We highlight some key results as they relate to defs. More generally, deep exponential

families fall into the broad class of stochastic feedforward belief networks (Neal, 1990), but

Neal (1990) focuses mainly on one example in this class, the sigmoid belief network, which

is a binary latent variable model.

Undirected graphical models have also been used for inferring compositional hierarchies.

Salakhutdinov and Hinton (2009) propose deep probabilistic models based on restricted

Boltzmann machines (rbms) (Smolenksy, 1986). rbms are a two layer undirected proba-

bilistic model with one layer of latent variables and one layer of observations tied together
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by a weight matrix. Directed models such as defs have the “explaining away” property,

where independent latent variables under the prior become dependent, conditional on the

observations. This property makes inference harder than in rbms, but creates a more parsi-

monious representation where similar features compete to explain the data rather than work

in tandem (Goodfellow et al., 2012; Bengio et al., 2013).

rbms have been extended to general exponential family conditionals in a model called expo-

nential family harmoniums (Welling et al., 2005). A certain infinite DEF with tied weights

is equivalent to an exponential family harmonium (Hinton et al., 2006), but as our weights

are not tied, deep exponential families represent a broader class of models than exponential

family harmoniums (and rbms).

The literature of latent variable models relates to defs through both hierarchical models and

Bayesian factor analysis. Finally, latent tree hierarchies have been constructed with Dirchlet

distributions (Li and McCallum, 2006).

4.4 Inference

The main computational problem for working with deep exponential families is comput-

ing the posterior distribution of the latent units and the weights shared across data. Tra-

ditionally, for each def, we would need to develop variational approximation algorithms

individually (see for examples the models in the literature that are defs from the previous

section). Each of these would be an individual research project. However, with bbvi we

only need to specify the approximating families that meet the black box criteria (sampling

from the approximation, computing score function and log density). We choose the mean
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field family

q.z;W / D q.W0/

L�1Y
`D1

q.W`/

NY
nD1

q.zn;`/;

where each component comes from the same exponential family as in the model. We trans-

form all positively constrained variational parameters to the reals using the inverse softplus

function. Similarly, we use the inverse sigmoid function for variables on the unit inter-

val.3

We use the Rao-Blackwellized gradient with control variates (Equation (3.5)) and data

subsampling. Stochastic optimization requires a learning rate to scale the noisy gradi-

ents. We use RMSProp (Tieleman and Hinton, 2012). RMSProp captures both varying

length scales and noise by normalizing each dimension by the square root of a running

average of the square of that dimension. It tends to be more robust than AdaGrad for

problems with high variance gradients early in optimization. Code is available at https:

//github.com/blei-lab/deep-exponential-families.

4.5 Experiments

We perform extensive evaluations of defs. We provide predictive results from 28 different

def instances. We explore the number of layers (1, 2, or 3), latent variable distributions

(gamma, Poisson, Bernoulli), link functions (log, log-softplus), and weight distributions

(normal, gamma) using a Poisson observation model. We also show how two defs can be

composed to build a model for pairwise data.
3Due to numerical precision, it is possible to samples zeros from a gamma distribution. To address this,

we add small tolerances for the shape, scale (inverse rate), and sampled value.
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4.5.1 Text Modeling

We study two large text copora, Science and the New York Times. The New York Times

consists of 166K documents and 8K terms, and Science consists of 133K documents and

5.9K terms.

Baselines. We consider two baselines. The first is latent Dirichlet allocation (Blei et al.,

2003), a popular topic model. The second is a state-of-the-art DocNADEmodel (Larochelle

and Lauly, 2012). DocNADE models the probability of the word in a document given

the previous words. The generative structure is shared between each observation. Fi-

nally, the one layer sparse gamma def is equivalent to Poisson factorization (Canny, 2004;

Gopalan et al., 2015), but our approach is fully Bayesian and does not include auxiliary

variables.

Evaluation. On a held-out set of 1,000 documents, we compute perplexity. Perplexity

measures the amount of randomness in the prediction. Lower numbers are better. Held-out

perplexity is

exp
��Pd2docs

P
w2held-out in d logp.w j # held-out in d/

Nheld-out words

�
:

When we condition on the number of held-out words, the Poisson likelihood becomes a

multinomial with mean equal to the normalized Poisson rates. We set the rates to be equal

to the expected value from the variational approximation. To estimate per-document pa-

rameters, we let all methods see ten percent of each held-out document; the other ninety

percent is used in the perplexity calculation. In defs, the ten percent is used to compute the

document specific variational approximation. For DocNADE, it is used as the conditioning

set to predict the rest of the document.
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Architectures and hyperparameters. We build one, two, and three layer defs with

sparse gamma layers, Bernoulli layers, Poisson layers, and Poisson layers with log-link.

The sizes of the layers are 100, 30, and 15, respectively. A size of one hundred factors falls

into the range of topics searched in the topic modeling literature (Blei and Lafferty, 2007).

We set the RMSProp scaling to 0.2 and use a window size of 10 for all of our experiments.

We use a batch size of 10,000.

We use the same hyperparameters on gamma distributions on each layer with shape and rate

0:3. For the sigmoid belief network we use a prior of 0:1 to achieve some sparsity. We fix

the Poisson prior rate to be 0:1. For gammaW , we use shape 0:1 and rate 0:3. For Gaussian

W , we use a prior mean of 0:0 and variance of 1:0. We let the experiments run for 10,000

iterations at which point the validation likelihood is stable.

We observe two phases of convergence: defs converge quickly to a good held-out perplexity

(around 2,000 iterations) and then slowly improve until final convergence (around 10,000

iterations).

Results. Table 4.1 summarizes the predictive results on both corpora. defs outperform

the baselines on both datasets. Furthermore, moving beyond one layer models generally

improves performance. The table also reveals that stacking layers of gamma latent variables

always leads to similar or better performance.

Finally, as shown by the Poisson defs with different link functions, we find gamma dis-

tributed weights to outperform normally distributed weights. Somewhat related, we find

sigmoid defs (with normal weights) to be more difficult to infer, with the deeper version

performing poorly.
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Model p.W / NYT Science

LDA (Blei et al., 2003) 2717 1711
DocNADE (Larochelle and Lauly, 2012) 2496 1725

Sparse Gamma 100 ; 2525 1652
Sparse Gamma 100-30 � 2303 1539

Sparse Gamma 100-30-15 � 2251 1542

Sigmoid 100 ; 2343 1633
Sigmoid 100-30 N 2653 1665

Sigmoid 100-30-15 N 2507 1653

Poisson 100 ; 2590 1620
Poisson log-softplus 100-30 N 2423 1560

Poisson log-softplus 100-30-15 N 2416 1576
Poisson log-link 100-30 � 2288 1523

Poisson log-link 100-30-15 � 2366 1545

Table 4.1: Perplexity on a held-out collection of 1K Science and NYT documents. Lower
values are better. The p(W ) column indicates the type of prior distribution over the def
weights, � for the gamma and N for normal (recall that one layer defs consist only of a
layer of latent variables, thus we represent their prior with the ;). All multilayer Poisson
and sparse gamma defs outperform the baselines.

4.5.2 Composing DEFs

Previously, we constructed models out of a single def, but defs can be embedded and com-

posed in more complex models. We describe a model for pairwise data that uses multiple

defs and one for survival analysis.

Matrix Factorization

We now present double DEFs, a factorization model for pairwise data where both the rows

and columns are determined by defs. At a high level the double def corresponds to re-

placingW0 in the likelihood with another def.

Matrices can be used to represent pairwise data. The pairwise data we consider include

(user, item) ratings and (user, article) clicks. The observed data are counts. In a double
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Model Perplexity NDCG

Netflix Gaussian MF (Salakhutdinov and Mnih, 2008) – 0.008
1 layer Double DEF 2319 0.031
2 layer Double DEF 2299 0.022
3 layer Double DEF 2296 0.037

ArXiv Gaussian MF – 0.013
1 layer Double DEF 2138 0.049
2 layer Double DEF 1893 0.050
3 layer Double DEF 1940 0.053

Table 4.2: Comparison of matrix factorization methods on Netflix and the ArXiv. We
find that deep double defs outperform the shallow ones on perplexity. We also find that
the NDCG of low-activity users (users with less than 5 and 10 observations in the observed
10% of the held-out set respectively for Netflix and ArXiv). We use VowpalWabbit’s matrix
factorization implementation which does not readily provide held-out likelihoods and thus
we do not report the perplexity associated with matrix factorization.

def, we model the counts with a Poisson conditional on a def for rows (denoted with the

superscript r) and a def for columns (denoted with the superscript c):

p.xn;i j zcn;1; zri;1/:

For example, for rating data, the double def instantiates a def for both rows (items) and

columns (users). The rating for a (item, user) pair comes from the inner product of the

lowest layer of the def of the nth user zcn;1 and the lowest layer of the def for the i th item

zri;1.

We infer double defs on Netflix ratings and click data from the arXiv (www.arXiv.org)

which indicates how many times a user clicked on a paper. Our Netflix collection consists

of 50K users and 17.7K movies. The movie ratings range from zero to five stars, where zero

means the movie was unrated by the user. The ArXiv collection consists of 18K users and

20K documents. We fit a one, two, and three layer double def where the layer sizes of the

row def match the layer sizes of the column def.
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The sizes of the layers are 100, 30, and 15. We compare double defs to l2-regularized

(Gaussian) matrix factorization (MF) (Salakhutdinov andMnih, 2008). We reuse the testing

procedure introduced in the previous section (this is referred to as strong generalization in

the recommendation literature (Marlin, 2004)) where the held-out test set contains one thou-

sand users. For performance and computational reasons we subsample zero-observations

for MF, as is standard (Gopalan et al., 2015). We also report the commonly-used multi-

level ranking measure (untruncated) NDCG (Järvelin and Kekäläinen, 2000) for all meth-

ods.

Table 4.2 shows that two-layer defs improve performance over the shallow def and that all

defs outperform Gaussian MF. On perplexity the three layer model performs similarly for

Netflix and slightly worse for the ArXiv. The table highlights that when comparing rank-

ing performance on low-activity users, a data regime of particular importance for practical

recommender systems, multilayer defs help. Learning more complex priors help when

working with small data.

Deep Survival Analysis

Survival analysis studies the time to an event. For example, it could be the time to retirement,

the time to machine failure, or the time to dialysis from the onset of kidney disease. Esti-

mating survival is a core problem in healthcare. But health data, especially from electronic

health records, has many missing values. Furthermore, the relationships between different

observations such as age and hormone levels tend to be complex. At its core, survival analy-

sis is a density estimation problem. Deep exponential families can be used to build densities

that admit complex relationships between observations and can handle missing data.
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If for each patient i we get survival time, covariate pairs .ti ;xi/, we can build a surival

model as

zn � DEF

xn � p.� jWx; zn/

tn �Weibull.log.1C exp.f .znIWt/; k///:

Both the likelihood for the survival time and the covariates can contain nonlinear transfor-

mations of the draw zn from the def. This transformation is explicitly denoted by f for the

survival time.

Data. We study deep survival analysis for coronary heart disease (chd) on a collection

of 313,000 patients from a large metropolitan hospital. The patient population included all

adults (>18 years old) that have at least 5 months (not necessarily consecutive) where at least

one observation was recorded. The patient records contain documentation resulting from

all settings, including inpatient, outpatient, and emergency department visits. Observations

include 9 vital signs, 79 laboratory test measurements, 5,262 medication orders, and 13,153

diagnosis codes.

All real-valued measurements and discrete variables were aggregated at the month level,

leading to binned observations for each patient. For each continuous measurement, such

as vitals or laboratory values, we set the value of each bin to the average value over the

measurements from that month. The presence of discrete elements such as medication or-

ders and diagnosis codes was encoded as a binary variable. We use Student’s t-distributions

as likelihoods to model the observed labs and vitals, and we use Bernoulli likelihoods that

admit computation in time proportional to the number of non-zero Bernoulli entries (see

Ranganath et al. (2015a)) for diagnoses and medications.
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We set the shape of the Weibull to be two. The exponential family used inside the def is a

Gaussian. The mean and inverse softplus variance functions for each layer are a two layer

perceptron with rectified linear activations. We set all normal priors to have mean zero and

variance one.

Baselines. Of the 313,000 patients in the study, 263,000 were randomly selected for train-

ing, 25,000 for validation, and 25,000 for testing. We assess convergence with the validation

cohort and evaluate concordance4 on the test cohort. A coronary heart disease (chd) event is

defined as the documentation of any ICD-9 diagnosis code with the following prefixes: 413

(angina pectoris), 410 (myocardial infarction), or 411 (coronary insufficiency). In our exper-

iments, we vary the dimensionalityK of zn to assume the values of f5; 10; 25; 75; 100g. The
layer size for the perceptrons was set equal to the dimensionality of zn in each experiment.

We evaluate both the baseline risk score and deep survival analysis with concordance (Har-

rell et al., 1982).

While concordance enables the comparison of deep survival analysis to the baseline, it only

roughly captures the accuracy of the temporal prediction of the models. In deep survival

analysis, we can compute the predictive likelihood on the held-out set according to the

model. The predictive likelihood captures how well the model predicts failure in time. It is

the expected log probability of the observed time until failure, conditioned on the observed

covariates for a given patient in a given month.

We use the Framingham chd risk score that is used in clinical practice as the baseline.

It was developed in 1998 and is one of the earliest validated clinical risk scores. It is a

gender-stratified algorithm for estimating the 10-year coronary heart disease risk of an in-

dividual. Aside from gender, this score takes into consideration age, sex, LDL cholesterol,

HDL cholesterol, blood pressure, diabetes, and smoking. For example, a 43-year-old (1
4Concordance measures the fraction of correctly ordered survival times. All pairs may not be comparable

due to censoring.
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point) male patient with an LDL level of 170 mg/dl (1 point), an HDL level of 43 mg/dl (1

point), a blood pressure of 140/90 (2 points), and no history of diabetes (0 points) or smok-

ing (0 points) would have a risk score of 5, which would correspond to a 10 year chd risk of

9% (Wilson et al., 1998). The score was validated using curated data from the Framingham

Heart Study.

Model Concordance (%)

Baseline Framingham Risk Score 65.57
Deep Survival Analysis; K=10 69.35
Deep Survival Analysis; K=5 70.45
Deep Survival Analysis; K=25 71.20
Deep Survival Analysis; K=75 71.65
Deep Survival Analysis; K=100 72.71
Deep Survival Analysis; K=50 73.11

Table 4.3: Concordance on a held-out set of 25,000 patients for different values ofK and for
the baseline risk score. All deep survival analysis dimensionalities outperform the baseline.

Model performance and predictive likelihood. The baseline chd risk score yielded

65.57% in concordance on the held-out test set. Table 4.3 shows the concordance of the

deep survival analysis for different values of K. When considering full deep survival with

all data types considered, the best performance was obtained for K D 50.

When examining the deep survival analysis with the best concordance on the held-out set

(K D 50), we asked how well each individual data type predicts failure. All models in-

cluded age and gender, and predictive likelihoods were computed on the same month bins,

even in the absence of observations of a specific data type. Table 4.4 contains the results for

the four data types. The diagnoses only model yielded the best predictive likelihood.

Lastly, we studied models with multilayer nonlinear likelihoods. We found little difference

in concordance, but noticeably improved predictive likelihoods. For problems where the

absolute time is of interest rather than the relative time across patients (e.g., cancer versus

organ transplantation), the multilayer nonlinear likelihoods make a difference.
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Data Type Likelihood

Medications -1.24899
Laboratory Tests -0.998774
Vitals -0.961827
Diagnoses -0.855385

Table 4.4: Predictive likelihood of deep survival analysis (K D 50) for individual data
types. The diagnoses model performs best.

4.6 Conclusion

In this chapter, we developed deep exponential families. defs describe hierarchical relation-

ships of data and latent variables to capture compositional semantics of data. We presented

several examples of defs and showed that many models in the literature are also examples

of defs. defs achieve improved predictive power and provide interpretable semantic struc-

tures. We used deep exponential families to build survival models for medical events using

health records.

Deep exponential families were made possible by bbvi. In the subsequent chapter, we

return to inference and explore new kinds of variational approximations enabled by black

box variational inference.
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Chapter 5

Hierarchical Variational Models

The implementations of variational inference in the previous chapters use the mean field

family. In the mean field family, each latent variable is independent and governed by its

own parameters. Using the mean field family in conditionally conjugate models leads to

simple closed form updates. This property is one of the original motivations for using mean

field family approximations.

With black box variational inference this motivation wanes. In the previous chapter, we

explored models that were nonconjugate—even with mean field approximations, we do not

get closed form updates. Though the mean field family enables efficient inference, it is

limited by its strong factorization. It cannot capture posterior dependencies between latent

variables, dependencies which both improve the fidelity of the approximation and are some-

times of intrinsic interest. By breaking the requirement that the variational approximation

should be chosen to yield closed form updates, bbvi makes it possible to consider new

families of variational approximations.

With this motivation, we develop hierarchical variational models (hvms), a class of varia-

tional approximations that goes beyond the mean field family and beyond directly param-
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Data Models Variational Models

Model p.x/ q.z/

Target F p.z jx/
Information x � F p.x; z/

Table 5.1: Models for data and variational approximations are similar. Both try to match
distributions. The difference lies in the source of information. In data models, the samples
provide information about the target; in variational inference, the unnormalized posterior
provides the information.

eterized variational families. The main idea behind our method is to treat the variational

family as a model of the latent variables and then to expand this model hierarchically. Just

as hierarchical Bayesian models induce dependencies between data, hierarchical variational

models induce dependencies between latent variables.

5.1 Hierarchical Variational Models

Our central idea is to draw an analogy between probability models of data and variational

distributions (models) of latent variables. A probability model defines a collection of dis-

tributions over data; the size of the collection depends on the model’s complexity. In the

sameway, a variational approximating family defines a collection of distributions over latent

variables; the size of the collection depends on the variational family’s complexity.

A probability model of data works well if it looks like the data generating distribution; a

variational model works well if it looks like the posterior distribution. This similarity also

reveals the key difference. In modeling, samples (via the observed data) provide information

about the data generating distribution F , whose density is unknown. In posterior approx-

imation, the unnormalized posterior provides information about the posterior distribution,

while samples from the posterior are hard to get. Table 5.1 summarizes these similarities

and differences.
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(b) hierarchical model

Figure 5.1: Graphical model representation. (a) In mean field models, the latent variables
are strictly independent. (b) In hierarchical variational models, the latent variables are gov-
erned by a prior distribution on their parameters, which induces complex dependence.

5.1.1 Hierarchical Variational Models

One common approach to expanding the complexity, especially in Bayesian statistics, is to

expand a model hierarchically, i.e., by placing a prior on the parameters of the likelihood.

Expanding a model hierarchically has distinct advantages. It induces new dependencies

between the data, either through shrinkage or an explicitly correlated prior (Efron, 2012),

and it enables us to reuse algorithms for the simpler model within algorithms for the richer

model (Gelman and Hill, 2007).

We use the same idea to expand the complexity of the mean field variational family and

to construct hierarchical variational models (hvms). First, we view the mean field fam-

ily,

qmf.zI �/ D
Qd
iD1 q.zi I �i/; (5.1)

as a simple model of the latent variables. Next, we expand it hierarchically. We intro-

duce a “variational prior” q.�I�/ with “variational hyperparameters” � and place it on the

mean field model (a type of “variational likelihood”). Marginalizing out the prior gives
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(a) Normal.�I�/ (b)
Q2
iD1Gamma.zi j �i /

Figure 5.2: An hvm with mean field gamma likelihood and a multivariate Gaussian vari-
ational prior. (a) q.�I�/: The (reparameterized) natural parameters assume a multivariate
prior, with different areas indicated by red and blue. (b)

Q2
iD1 q.zi j �i/: The latent variables

are drawn from a mean field family, colorized according to the drawn parameters from the
multivariate prior. The covariance of the drawn variational parameters induces dependence
among the various dimensions

qhvm.zI�/, a hierarchical family of distributions over the latent variables

qhvm.zI�/ D
Z
q.�I�/

Y
i

q.zi j �i/d�: (5.2)

This family enjoys the advantages of hierarchical modeling in the context of variational

inference: it induces dependence among the latent variables and allows us to reuse simpler

computation when fitting the more complex family.

Figure 5.1 illustrates the difference between the mean field family and hvms. Mean field

variational inference fits the variational parameters � so that the factorized distribution is

close to the exact posterior; this ignores posterior correlation. Using the same principle,

an hvm fits the variational hyperparameters so qhvm.zI�/ is close to the exact posterior.

These hyperparameters control the variational prior, which induces dependence between

the dimensions of z. Thus hvms can capture posterior dependence.
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Figure 5.2 presents a simple example. The variational family posits that each zi is a scalar

from an exponential family. The variational parameters �i correspond to the natural param-

eters transformed to the real line (for example the log transform for positively constrained

parameters). Now place a multivariate Gaussian prior on the mean field parameters, with a

full covariance matrix. The resulting hvm is a two-level distribution: first draw the set of

mean field variational parameters �1; : : : ; �d from a Gaussian (Figure 5.2a); then draw each

zi given its corresponding parameter (Figure 5.2b). The covariance of the drawn variational

parameters induces dependence among the various dimensions.

If an hvm can express the same marginals as the mean field approximation, then qhvm.zI�/
is more expressive than the mean field family. As in the example, an hvm induces de-

pendences among the variables and expands the family of possible marginals that it can

capture. The number of parameters in a distribution defines the number of free moments of

that distribution, so the added flexibility requires the dimension of � to exceed �’s.

In the next section, we develop a black box algorithm for hvms. It exploits the mean field

structure of the variational likelihood and enjoys the corresponding computation advan-

tages. We first discuss how to specify an hvm.

5.1.2 Specifying an HVM

We can construct an hvm by placing a prior on any existing variational approximation. An

hvm has two components: the variational likelihood q.z j �/ and the prior q.�I�/. The

likelihood comes from an existing variational family that meets the black box criteria, such

as the mean field or the sequential approximations used in temporal modeling (Blei and

Lafferty, 2006b). We focus on the mean field family as the likelihood. For the prior, the

distribution of f�1; : : : ; �d g should not have the same factorization structure as the varia-

tional likelihood—otherwise it will not induce dependence between latent variables. In the
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previous section, we saw one example of a variational prior, the multivariate Gaussian. We

outline more examples of variational priors.

Variational prior: mixture of Gaussians. One option for a variational prior is to assume

the mean field parameters � are drawn from amixture of Gaussians. LetK be the number of

components, � be a probability vector, and�k and†k be the parameters of a d -dimensional

multivariate Gaussian. The variational prior is

q.�I�/ D
KX
iD1

�kNormal.�k; †k/:

The parameters � contain the probability vector � as well as the component means �k

and variances †k. The mixture locations �k capture relationships between different latent

variables. For example, a two-component mixture with two latent variables (and a mean

field variational likelihood) can capture that the latent variables are either very positive or

very negative.

Given enough components, mixtures can approximate arbitrary distributions, and have been

considered as variational families (Jaakkola and Jordan, 1998; Lawrence, 2000; Gershman

and Blei, 2012; Salimans et al., 2013). In the traditional setup, however, the mixtures form

the variational approximation on the latent variables directly. Here we use it on the varia-

tional parameters; this lets us use a mixture of Gaussians as the variational approximation

in many models, including those with discrete latent variables.

Variational prior: normalizing flows. Mixtures offer flexible variational priors. How-

ever, in the algorithms we derive, the number of model likelihood evaluations scales with

the number of mixture components. In high dimensions, the number of mixture compo-

nents needed to accurately approximate the posterior can be impractical. We seek a prior
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whose computational complexity scales better with its modeling flexibility. This motivates

normalizing flows.

Normalizing flows are variational approximations for probability models with differentiable

densities (Rezende andMohamed, 2015) that meet the black box criteria. Normalizing flows

build a parameterized probability distribution by transforming a simple random variable �0

through a sequence of invertible differentiable functions f1 to fK . Each function transforms

its input, so the distribution of the output is a complex warping of the original random

variable �0.

We can use normalizing flows as a variational prior. Let �k D fk ı ::: ı f1.�0/; then the

flow’s density is

q.�I�/ D q.�0/
KY
kD1

ˇ̌
ˇ̌det

�
@fk

@�k�1

�ˇ̌
ˇ̌�1 :

With the normalizing flow prior, the latent variables become dependent because their vari-

ational parameters are deterministic functions of the same random variable. General de-

terminant computations are cubic in the dimensionality of the transformation. This can be

computationally prohibitive. To avoid this, the transformations fk should be chosen to have

determinants computable in linear time. One general such way to achieve this is to transform

each dimension d sequentially:

�dkC1 D f dkC1.�1k; � � � ; �dk /;

which has a lower-triangular Jacobian. (See for example Kingma et al. (2016)).

The hvm expands the use of normalizing flows to non-differentiable latent variables, such

as those with discrete, ordinal, and discontinuous support. In the experiments, we use nor-

malizing flows to better approximate posteriors of discrete latent variables.
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Other variational models. Many modeling tools can be brought to bear on building hi-

erarchical variational models. Copulas explicitly introduce dependence among d random

variables by using joint distributions on d -dimensional hypercubes (Nelsen, 2006). hvms

can use copulas as priors on either point mass or general mean field likelihoods. As another

example, we can replace the mixture model prior with a factorial mixture (Ghahramani,

1995). This leads to a richer posterior approximation.

Note that there is a tradeoff at play in building variational models. On one hand, the random-

ness of the variational likelihood smooths out the inference problem and makes for easier

optimization. On the other hand, variational likelihoods that approximate randomness-free

delta distributions lead to arbitrary approximations. In the appendix of this chapter we

connect hvms to empirical Bayes and reinforcement learning, and consider multilevel hi-

erarchical priors.

5.2 Optimizing HVMs

We derive a black box variational inference algorithm for a large class of probability models

that use any hierarchical variational model as the posterior approximation. Our algorithm

enables efficient inference by preserving both the computational complexity and variance

properties of the stochastic gradients of the variational likelihood.

5.2.1 Hierarchical Evidence Lower Bound

We optimize over the parameters � of the variational prior to find the optimal distribution

within the class of hierarchical variational models. Using the hvm, the elbo is

L.�/ D Eqhvm.zI�/Œlogp.x; z/ � log qhvm.zI�/�: (5.3)
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The expectation of the first term is tractable as long as we can sample from q, and q has

proper support. The expectation of the second term is the entropy. It contains an integral

(Equation (5.2)) with respect to the variational prior, which is analytically intractable in

general.

Tractable bound on the entropy. Deriving an analytic expression for the entropy of qhvm

is generally intractable due to the integral in the definition of qhvm. However, it is tractable

when we know the distribution q.� j z/. This can be seen by noting from standard Bayes’

rule that

q.z/q.� j z/ D q.�/q.z j �/; (5.4)

and that the right hand side is specified by the construction of the hierarchical variational

model. The distribution q.� j z/ can be interpreted as the posterior distribution of the

original variational parameters � given the latent variables, thus we will denote it as

qpost.� j z/.

In general, computing qpost.� j z/ from the specification of the hierarchical variational

model is as hard as the integral needed to compute the entropy. We instead approximate

qpost with an auxiliary distribution r.� j zI�/ parameterized by �.1 This yields a bound

on the entropy in terms of the analytically known distributions r.� j z/, q.z j �/, and

q.�/.

First note that the kl divergence between two distributions is greater than zero and is

precisely zero only when the two distributions are equal. This means the entropy can be
1Technically, all distributions including r condition on x. We suppress this notation for compactness.
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bounded as follows:

�EqhvmŒlog qhvm.z/�

D �EqhvmŒlog qhvm.z/C KL.qpost.� j z/jjqpost.� j z//�

� �EqhvmŒlog qhvm.z/C KL.qpost.� j z/jjr.� j zI�//��

D �EqhvmŒEqpostŒlog qhvm.z/C log qpost.� j z/ � log r.� j zI�/��

D �Eq.z;�/Œlog qhvm.z/C log qpost.� j z/ � log r.� j zI�/�:

Then by Equation (5.4), the bound simplifies to

�EqhvmŒlog qhvm.z/� (5.5)

� �Eq.z;�/Œlog q.�/C log q.z j �/ � log r.� j zI�/�: (5.6)

As in variational inference, the bound is exact when r.� j zI�/matches the variational pos-

terior q.� j zI�/. From this perspective, we can view r as a recursive variational approxi-

mation. It is a model for the posterior q of the mean field parameters �, given a realization

of the latent variables z. A similar bound in derived by Salimans et al. (2015) directly for

logp.x/.

In the above derivation, the approximation r to the variational posterior qpost.� j z/ is placed
as the second argument of a kl divergence term. Replacing the first argument instead yields
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a different tractable upper bound:

�EqhvmŒlog qhvm.z/�

D EqhvmŒ� log qhvm.z/C KL.qpost.� j z/jjqpost.� j z//�

� EqhvmŒ� log qhvm.z/C KL.r.� j zI�/jjqpost.� j z//�

D EqhvmŒEr Œ� log qhvm.z/ � log qpost.� j z/C log r.� j zI�/��

D EqhvmŒEr Œ� log q.�/ � log q.z j �/C log r.� j zI�/��:

The bound is also tractable when r and qhvm can be sampled and all distributions are ana-

lytic. The derivation of these two bounds parallels the development of expectation propa-

gation (Minka, 2001) and variational Bayes (Jordan, 1999) which are based on alternative

forms of the kl divergence. This upper bound combined with the previous lower bound can

be used to assess the quality of hvm entropy estimates.

The entropy bound lower bound Equation (5.6) is tighter than the trivial conditional entropy

bound of HŒqhvm� � HŒq j �� (Cover and Thomas, 2012). This bound is attained when

specifying the recursive approximation as r.� j zI�/ D q.�I�/; i.e., it is the special case
when when the recursive approximation is the variational prior.

Hierarchical elbo. Substituting the entropy bound Equation (5.6) into the elbo gives a

tractable lower bound called the hierarchical elbo. It is

eL.�;�/ D Eq.z;�I�/
h
logp.x; z/C log r.� j zI�/ �

dX
iD1

log q.zi j �i/ � log q.�I�/
i
:

(5.7)

The hierarchical elbo is tractable, as all of the terms are tractable. We jointly fit q and r

by maximizing Equation (5.7) with respect to � and �. Alternatively, the joint maximiza-

tion can be interpreted as variational expectation-maximization on an expanded probability
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model, r.� j zI�/p.z jx/. In this light, � are model parameters and � are variational pa-

rameters, and the hierarchical elbo lower bounds the elbo through the extra use of Jensen’s

inequality on the new random variable �. Optimizing � improves the posterior approxima-

tion; optimizing � tightens the bound on the kl divergence by improving the recursive

variational approximation.

We can also analyze Equation (5.7) by rewriting it in terms of the mean field elbo,

eL.�;�/ D EqŒLmf.�/�C EqŒlog r.� j zI�/ � log q.�I�/�;

where Lmf D Eq.z j�/Œlogp.x; z/� log q.z j �/�. This shows that Equation (5.7) is a sum of

two terms: a Bayesian model average of the elbo of the variational likelihood, with weights

given by the variational prior q.�I�/; and a correction term that is a function of both the

auxiliary distribution r and the variational prior. Since mixtures (convex combinations)

cannot be bigger than their components, r must not be independent of z in order for this

bound to be better than the original bound.

5.2.2 Stochastic Gradient of the Hierarchical ELBO

To optimize the hierarchical elbo, we need to compute the stochastic gradient with respect

to the variational hyperparameters � and auxiliary parameters �. Most common probability

models are differentiable with respect to their parameters. As long as we specify the varia-

tional prior q.�I�/ to be differentiable, we can apply the reparameterization gradient for the

random variational parameters �. Recall that reparameterization implies � can be written

as a function of � and noise � drawn from a distribution such as the standard normal.
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Define the score function

c D r� log q.z j �/:

The gradient of the hierarchical elbo with respect to � is

r�eL.�;�/ D Es.�/Œr��.�I�/r�Lmf.�/�

C Es.�/Œr��.�I�/r�Œlog r.� j zI�/ � log q.�I�/��

C Es.�/Œr��.�I�/Eq.z j�/Œc log r.� j zI�/��: (5.8)

We derive this in the appendix. The first term is the gradient of the original variational ap-

proximation scaled by the chain rule from the reparameterization. Thus, hierarchical vari-

ational models inherit properties from the original variational approximation. Here hvms

get variance reduced gradients Equation (3.8) from the mean field factorization. The sec-

ond and third terms try to match r and q. The second term uses reparameterization, so it

generally exhibits low variance.

The third term potentially involves a high variance gradient due to the appearance of both the

score function and all of the latent variables. Since the distribution q.z j �.�I�// factorizes
by definition, we can apply the same variance reduction for r as for the mean field model in

Chapter 3 to mitigate this. We examine this issue below.

5.2.3 Choosing r

The practicality of hvms hinges on the variance of the stochastic gradients during optimiza-

tion. Specifically, any additional variance introduced by r needs to be minimal. Let ri be

the terms log r.� j z/ containing zi , and let ci D r�i
log q.zi j �i/. Then the last term in
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Equation (5.8) can be rewritten as

Es.�/Œr��.�I�/Eq.z j�/ŒV log r.� j zI�/��

D Es.�/

"
r��.�I�/Eq.z j�/

"
dX
iD1

ci log ri.� j zI�/
##

:

We derive this expression in the appendix. When ri does not depend on many variables, this

gradient combines the computational efficiency of the mean field with reparameterization,

enabling fast inference for discrete and continuous latent variable models. This expression

also gives us the criteria for building an r that admits efficient stochastic gradients: r should

be differentiablewith respect to �, flexible enough tomodel the variational posterior q.� j z/,
and factorize with respect to its dependence on each zi .

One way to satisfy these criteria is by first defining r to be a deterministic transformation.

Similar to normalizing flows, the deterministic transformation from �0 to � can be a se-

quence of invertible, differentiable functions g1 to gk . However unlike normalizing flows,

we let the inverse functions g�1 have a known parametric form. We call this the inverse

flow. Under this transformation, the log density of r is

log r.� j z/ D log r.�0 j z/C
KX
kD1

log
�ˇ̌
ˇ̌det

�
@g�1
k

@�k

�ˇ̌
ˇ̌
�
;

where each gk may depend on z. Next the interactions between z’s need to be controlled.

The simplest way would be to let �0 be

r.�0 j z/ D
dY
iD1

r.�0i j zi/; (5.9)

and have each gk be independent of z. Another choice comes from looking at the optimal

recursive variational family r . The optimal r , denoted by r�, is the variational posterior,

101



thus

log r�.z j �/ D log qpost D
dX
iD1

log q.zi j �i/C log q.�I�/C C;

for some normalization constant C . In the optimal r�, each �i only interacts locally with

zi . This gives a way to construct r . First, transform each � using joint transforms with

parameters independent of z, then transform each �i separately, with functions that depend

on zi . Formally,

log r.� j z/ D log r.�0/C
KX
kD1

log
�ˇ̌
ˇ̌det

�
@g�1
k

@�k

�ˇ̌
ˇ̌
�
C
LCKX
`DK

dX
iD1

log

 ˇ̌
ˇ̌
ˇdet

 
@g�1
k;i

@�`;i

!ˇ̌
ˇ̌
ˇ
!
:

More compactly, to sample from r we would first sample from �0 � r0, then transform to

get �k D gk.: : : .g1.�0///, then transforms each dimension i independently with the input

zi ,

�LCK;i D gLCK;i.: : : gLCK;i.�K;i ; zi//:

This choice of r has the same functional form as the optimal r� and isolates each of the zi

to control variance of the gradient.

For either choice of r , we can quickly compute the sequence of intermediary � by apply-

ing the known inverse functions—this enables us to quickly evaluate the log density of

inverse flows at arbitrary points. This contrasts with normalizing flows, where evaluating

the log density of a value (not generated by the flow) requires inversions for each transfor-

mation.

These constructions for r meet our criteria. They are differentiable, flexible, and isolate

each individual latent variable in a single term. They maintain the locality of mean field

inference and are therefore crucial to stochastic optimization.
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Algorithm 3: Black box inference with an hvm
Input : Model logp.x; z/,

Variational model q.z j �/q.�I�/.
Output: Variational Parameters: � .
Initialize � and � randomly.
while not converged do

Compute unbiased estimate of r�eL.
Compute unbiased estimate of r�eL.
Update � and � using stochastic gradient ascent.

end

5.2.4 Optimizing the Hierarchical ELBO with Respect to �

We derived how to optimize the hierarchical elbo with respect to � . Optimizing with

respect to the auxiliary parameters � is simple. The expectation in the hierarchical elbo

(Equation (5.7)) does not depend on �; therefore we can simply pass the gradient operator

inside,

r�eL D Eq.z;�/Œr� log r.� j z;�/�: (5.10)

5.2.5 Algorithm

Algorithm 3 outlines the inference procedure, where we evaluate noisy estimates of both

gradients using samples from the joint q.z; �/. In general, we can compute these gradi-

ents via automatic differentiation systems such as those available in Stan and Theano (Stan

Development Team, 2015; Bergstra et al., 2010). These tools remove the need for model-

specific computations (note that no assumption has been made on logp.x; z/ other than the

ability to calculate it).

Table 5.2 outlines variational methods and their complexity requirements. hvms with a

normalizing flow prior have complexity linear in the number of latent variables. The com-

plexity is also proportional to the total length of the flows used to represent q and r .
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Black box methods Compute Storage MF Class of models

bbvi (Ranganath et al., 2014) O.d/ O.d/ 7 discrete/continuous
dsvi (Titsias and Lázaro-Gredilla, 2014) O.d 2/ O.d 2/ 3 continuous-diff.
copula vi (Tran et al., 2015) O.d 2/ O.d 2/ 3 discrete/continuous
mixture (Jaakkola and Jordan, 1998) O.Kd/ O.Kd/ 3 discrete/continuous
nf (Rezende and Mohamed, 2015) O.Kd/ O.Kd/ 3 continuous-diff.
hvm w/ nf prior O.Kd/ O.Kd/ 3 discrete/continuous

Table 5.2: A summary of black box inference methods, which can support either
continuous-differentiable distributions or both discrete and continuous. The variable d is
the number of latent variables; for mixture, K is the number of mixture components;
for nf procedures, K is the number of transformations. MF (not mean field) marks if the
approximation captures correlations.

5.2.6 Inference Networks

Classically, variational inference on models with latent variables associated with a data

point requires optimizing over variational parameters whose number grows with the size

of data. This process can be computationally prohibitive, especially at test time. Inference

networks (Dayan, 2000; Stuhlmüller et al., 2013; Kingma andWelling, 2014; Rezende et al.,

2014) amortize the cost of estimating these local variational parameters by tying them to-

gether through a neural network. Specifically, the data point specific variational parameters

are outputs of a neural network that takes data points as input. The parameters of the neural

network then become the variational parameters; this reduces the cost of estimating the pa-

rameters of all the data points to estimating parameters of the inference network. Inference

networks can be applied to hvms by making both the parameters (of the variational model

and recursive posterior approximation) functions of their conditioning sets.

5.2.7 Related Work

There has been much work on learning posterior dependencies. Saul and Jordan (1996) and

Ghahramani (1997) develop structured variational approximations: they factorize the vari-
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ational family across subsets of variables, maintaining certain dependencies in the model.

Unlike hvms, however, structured approximations can require model-specific considera-

tions and can scale poorly when used with black box methods. Lawrence (2000) develop

mixture and Markov chain approximations for belief networks with lower bounds also de-

veloped with auxiliary distributions. These families complement the construction of hvms,

and can be applied as variational likelihoods.

Within the context of generic inference, Titsias and Lázaro-Gredilla (2014), Rezende and

Mohamed (2015), and Kucukelbir et al. (2015) propose rich approximating families in dif-

ferentiable probability models. These methods work well in practice; however, they are

restricted to probability models with densities differentiable with respect to their latent vari-

ables. For undirected models, Agakov and Barber (2004) introduce the auxiliary bound for

variational inference which we derived. Salimans et al. (2015) derive the same bound, but

limit their attention to differentiable probability models and auxiliary distributions defined

by Markov transition kernels, and Maaløe et al. (2016) study auxiliary distributions for

semi-supervised learning with deep generative models. Tran et al. (2015) propose copulas

as a way of learning dependencies in factorized approximations. Copulas can be efficiently

extended to hvms, whereas the full rank approach taken in Tran et al. (2015) requires com-

putation quadratic in the number of latent variables.

These generic methods can also be building blocks for hvms, employed as variational

priors for arbitrary mean field factors. As in our example with a normalizing flow prior,

this extends their scope to perform inference in discrete models (and, more generally, non-

differentiable models). In other work (Tran et al., 2016), we build hierarchical variational

models from Gaussian processes that can approximate arbitrary smooth posteriors.
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Figure 5.3: (a) The true posterior, which has correlated latent variables with countably
infinite discrete support. (b)Mean field Poisson approximation. (c)Hierarchical variational
model with a mixture of Gaussians prior. Using this prior, the hvm exhibits high fidelity to
the posterior as it capture multimodality on discrete surfaces.

5.3 Empirical Study

We introduced a new class of variational families and developed efficient black box algo-

rithms for their computation. We consider a simulated study on a two-dimensional discrete

posterior; we also evaluate our proposed variational models on deep exponential families

fromChapter 4. Recall thatdefs achieve state-of-the-art results on text analysis. In total, we

train two variational models for the simulated study and 12 models over two datasets.

5.3.1 Correlated Discrete Latent Variables

Consider amodel whose posterior distribution is a pair of discrete latent variables defined on

the countable support f0; 1; 2; : : : ; g� f0; 1; 2; : : : ; g; Figure 5.3 depicts its joint probability
mass. The latent variables are correlated and form a complex multimodal structure. A mean

field Poisson approximation has difficulty capturing this distribution; it focuses entirely on

the center mass. This contrasts with hierarchical variational models, where we place a

mixture prior on the Poisson distributions’ rate parameters (reparameterized to share the
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Model hvm Mean Field

Poisson 100 3386 3387
100-30 3396 3896
100-30-15 3346 3962

Bernoulli 100 3060 3084
100-30 3394 3339
100-30-15 3420 3575

Table 5.3: The New York Times. Held-out perplexity (lower is better). Hierarchical varia-
tional models outperformmean field in five models. Mean field fails at multi-level Poissons;
hvms make it possible to study multi-level Poissons.

same support). This hvm fits the various modes of the correlated Poisson latent variable

model and exhibits a “smoother” surface.

5.3.2 Deep Exponential Families

We now study hvms on defs from the previous chapter. We focus on the Bernoulli def,

the sigmoid belief network, and the Poisson def. In some sense the Poisson def creates one

of the hardest posterior inference problems. It is nonconjugate and discrete, but marginal-

ization tricks fail because Poisson defs have countable support.

Variational models. We consider the variational approximation that adds dependence to

the z’s. We parameterize each variational prior q.�zi
/with a normalizing flow of length two,

and use the inverse flow of length 10 for r.�zi
/. We use planar transformations (Rezende

andMohamed, 2015). In a pilot study, we found little improvement with longer flow lengths.

We compare to the mean field approximation from the previous chapter that achieves state

of the art results on text.

Data and evaluation. We consider two text corpora of news and scientific articles—the

New York Times (NYT) and Science. We draw 11K documents from both corpora uniformly
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Model hvm Mean Field

Poisson 100 3327 3392
100-30 2977 3320
100-30-15 3007 3332

Bernoulli 100 3165 3166
100-30 3135 3195
100-30-15 3050 3185

Table 5.4: Science. Held-out perplexity (lower is better). hvm outperforms mean field on
all six models. Hierarchical variational models identify that multi-level Poisson models are
best, while mean field does not.

at random. NYT consists of 8K terms and Science consists of 5.9K terms. We train six

models for each data set.

We examine held-out perplexity. This is a document completion evaluation metric (Wallach

et al., 2009) where the words are tested independently. This evaluation differs slightly from

the previous chapter. Instead of evaluating perplexity at the expectation, we sample from

the variational approximations and compute the perplexity. This evaluates the spread of

the variational approximation as well. Finally, as our evaluation uses data not included in

posterior inference, it is possible for the mean field family to outperform hvms.

Hyperparameters and convergence. We study one, two, and three layer defs with 100,

30, and 15 units respectively and set prior hyperparameters as in the previous chapter. For

hvms, we use Nesterov’s accelerated gradient with momentum parameter of 0:9, combined

with RMSProp with a scaling factor of 10�3 to maximize the lower bound. For the mean

field family, we use the learning rate hyperparameters from the previous chapter. The hvms

converge faster on Poisson models relative to Bernoulli models. The one layer Poisson

model was the fastest to infer.
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Results. hvms achieve better performance over six models and two datasets, with a mean

improvement in perplexity of 180 points. (Mean field works better on only the two layer

Bernoulli model on NYT.) hvmsmake it feasible to work with multi-level Poisson models.

This is particularly important on Science, where hierarchical variational models identify

that multi-level Poisson models are best and mean field does not.

5.4 Discussion

Variational inference hinges on the quality of the approximating family. Traditionally, this

family was chosen to match conjugacy constraints, but with the advent of bbvi, we can work

with new, more accurate variational approximations. In this chapter, we developed the view

that building a variational approximation parallels building a model for data. Using this

view, we constructed hierarchical variational models, a rich class of variational approxima-

tions constructed by placing priors on existing variational families. We develop an easy-

to-use algorithm for hvms and demonstrate they make it feasible to work with complex,

discrete models.

There are several avenues for future work: studying alternative entropy bounds, analyzing

hvms in the empirical Bayes framework, and using other data modeling tools to build new

variational models. Perhaps the most interesting direction would be to develop hvms for

models where the number of latent variables creates computational challenges.
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5.5 Appendix

5.5.1 Stochastic Gradient of the Hierarchical ELBO

Using the reparameterization �.�I�/, where � � s, the hierarchical elbo is

eL.�;�/ D Es.�/ŒLmf.�.�I�//C Eq.z j�/Œ.log r.�.�I�/ j zI�/ � log q.�.�I�/I�//�:

We now differentiate the three terms with respect to � . As in the main text, we define the

score function:

c D r� log q.z j �/:

By the chain rule, the derivative of the first term is

r�Es.�/ŒLmf.�.�I�//� D Es.�/Œr��.�I�/r�Lmf.�/�:

We now differentiate the second term:

r�Es.�/ŒEq.z j�/Œlog r.�.�I�/ j zI���

D r�Es.�/

�Z
q.z j �/ log r.�.�I �/ j zI�/dz

�

D Es.�/

�
r�
�Z

q.z j �/ log r.�.�I�/ j zI�/dz
��

D Es.�/

�
r��.�I�/r�

�Z
q.z j �/ log r.�.�I�/ j zI�/dz

��
:
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Applying the product rule to the inner derivative gives

r�
�Z

q.z j �/ log r.�.�I�/ j zI�/dz
�

D
Z
r�q.z j �/ log r.�.�I�/ j zI�/dzC

Z
q.z j �/r� log r.�.�I�/ j zI�/dz

D
Z
r� log q.z j �/q.z j �/ log r.�.�I�/ j zI�/dzC

Z
q.z j �/r� log r.�.�I�/ j zI�/dz

D Eq.z j�/Œc log r.�.�I�/ j zI�/�C Eq.z j�/Œr� log r.�.�I�/ j zI�/�:

Substituting this back into the previous expression gives the gradient of the second

term

Es.�/Œr��.�/Eq.z j�/Œc log r.�.�I�/ j zI�/Cr� log r.�.�I�/ j zI�/��:

The third term also follows by the chain rule:

r�Es.�/Œlog q.�.�I�/I�/�

D Es.�/Œr��.�I�/r� log q.�I�/Cr� log q.�I�/�

D Es.�/Œr��.�I�/r� log q.�I�/�;

where the last equality uses

Es.�/Œr� log q.�I�/� D Eq.�I�/Œr� log q.�I�/� D 0:
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Combining these together gives the total expression for the gradient,

r�eL.�;�/ D Es.�/Œr��.�I�/r�Lmf.�/�

C Es.�/Œr��.�I�/r�Œlog r.� j zI�/ � log q.�I�/��

C Es.�/Œr��.�I�/Eq.z j�/Œc log r.� j zI�/��:

5.5.2 Rao-Blackwellization and the Recursive Approximation r

One term of the gradient involves the product of the score function with all of the recursive

approximation r ,

Es.�/Œr��.�/Eq.z j�/Œc log r.� j zI�/��:

Rao-Blackwellizing the inner expectation can drastically reduce the variance. Recall

that

q.z j �/ D
dY
iD1

q.zi j �i/:

Next, we define ci to be the score function of the factor. That is

ci D r� log q.zi j �i/:

This is a vector with nonzero entries corresponding to �i . Substituting the factorization into

the gradient term yields

Es.�/

"
r��.�I�/

dX
iD1

Eq.z j�/Œci log r.� j zI�/�
#
: (5.11)

112



Now we define ri to be the terms in log r containing zi and r�i to be the remaining terms.

Then the inner expectation in the gradient term is

dX
iD1

Eq.z j�/Œci.log ri.� j zI�/C log r�i.� j zI�//�

D
dX
iD1

Eq.zi j�/ŒciEq.z�i j�/Œlog ri.� j zI�/C log r�i.� j zI�/��;

D
dX
iD1

Eq.z j�/Œci log ri.� j zI�/�;

where the last equality follows from the expectation of the score function of a distribution

being zero. Substituting this back into Equation (5.11) gives the desired result

Es.�/Œr��.�I�/Eq.z j�/Œc log r.� j zI�/��

D Es.�/

"
r��.�I�/Eq.z j�/

"
dX
iD1

ci log ri.� j zI�/
##

:

5.5.3 Relationship to Empirical Bayes+Reinforcement Learning

Augmentation with a variational prior has strong ties to empirical Bayesian methods, which

use data to estimate hyperparameters of a prior distribution (Robbins, 1964; Efron andMor-

ris, 1973). In general, empirical Bayes considers the fully Bayesian treatment of a hyperprior

on the original prior—here, the variational prior on the original mean field—and proceeds

to integrate it out. As this is analytically intractable, much work has been on parametric

estimation, which seeks point estimates rather than the whole distribution encoded by the

hyperprior. We avoid this at the level of the hyperprior (variational prior) via the hierarchi-

cal elbo. However, our procedure can be viewed in this framework at one level higher. That

is, we seek a point estimate of the “variational hyperprior” which governs the parameters

on the variational prior.
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A similar methodology also arises in the policy search literature (Rückstieß et al., 2008;

Sehnke et al., 2008). Policy search methods aim to maximize the expected reward for a

sequential decision-making task, by positing a distribution over trajectories and proceeding

to learn its parameters. This distribution is known as the policy, and an upper-level policy

considers a distribution over the original policy. This encourages exploration in the latent

variable space and can be seen as a form of smoothing or annealing.

5.5.4 Multi-level q.�I�/ andOptimizing with Discrete Variables in the

Variational Prior

Asmentioned in the main text, hierarchical variational models with multiple layers can con-

tain both discrete and differentiable latent variables. Higher level differentiable variables

follow directly from our derivation above. Discrete variables in the prior can pose a diffi-

culty due to high variance. Local expectation gradients (Titsias and Lázaro-Gredilla, 2015)

provide an efficient gradient estimator for variational approximations over discrete variables

with small support. This approach can be combined with the gradient of the main text to

form an efficient gradient estimator.
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Chapter 6

Operator Variational Inference

In Chapter 2, we summarized variational inference with a picture (reproduced here as Fig-

ure 6.1). This figure displays the variational family and the posterior distribution, along with

some notion of closeness between them. The majority of variational inference algorithms

use the kl divergence as a measure of closeness. However, this choice was not justified.

There are many other notions of closeness between probability distributions such as f -

divergences (Csiszár et al., 2004) and integral probability metrics (Müller, 1997).

When optimizing the kl divergence, there are two issues with the posterior approximation

that we highlight. First, it typically underestimates the variance of the posterior. Second,

it can result in degenerate solutions that zero out the probability of certain configurations

of the latent variables. While both of these issues can be partially circumvented by using

more expressive approximating families like hvms, they ultimately stem from the choice of

the objective. Under the kl divergence, we pay a large price when the spread of q is bigger

than the spread of p; this price becomes infinite when q has larger support than p.

The popularity of the kl divergence for variational inference partly stems from the abil-

ity to derive nice algorithms for conditionally conjugate models. Continuing the theme of
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p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

Figure 6.1: A pictorial description of variational inference. The family of variational ap-
proximations is the oval, �init denotes the initial approximation, and �� is the approximation
after running variational inference. The posterior lives outside the approximating family.
The distance between distributions in the picture maps to the kl divergence. Many other
choices of divergence are made possible by black box variational inference style methods.

the previous chapters, bbvi style algorithms weaken this motivation as we are no longer

limited to models, variational approximations, and probability distances that lead to nice

updates.

In this chapter, we reexamine variational inference from its roots as an optimization prob-

lem. We use operators, or functions of functions, to design variational objectives. We

develop a black box algorithm, opvi, for optimizing any operator objective. Importantly,

operators enable us to make explicit the statistical and computational tradeoffs for varia-

tional inference. We can characterize different properties of variational objectives, such as

objectives that admit data subsampling—allowing inference to scale to massive data—as

well as objectives that admit variational programs—a rich class of posterior approximations

that does not require a tractable density.
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6.1 Operator Variational Objectives

We define operator variational objectives and the conditions needed for an objective to be

useful for variational inference. We develop a new objective, the Langevin-Stein operator

objective, show how to place the classical kl divergence into this class, and explore connec-

tions between control variates, model estimation, and posterior inference. In the following

section, we develop a general algorithm for optimizing operator variational objectives.

6.1.1 Operator Variational Objectives

We define a new class of variational objectives, operator variational objectives. An operator

objective has three components. The first component is an operator Op;q that depends on

p.z jx/ and q.z/. (Recall that an operator maps functions to other functions.) The second

component is a family of test functions F , where each f .z/ 2 F maps realizations of

the latent variables to real vectors Rd . In the objective, the operator and a test function

are combined in an expectation Eq.z/Œ.Op;q f /.z/� designed such that values close to zero

indicate that q is close to p. The third component is a distance function t .a/ W R! Œ0;1/,
which is applied to the expectation so that the objective is nonnegative. (Our example uses

the square function t .a/ D a2.)

These three components combine to form the operator variational objective. It is a nonneg-

ative function of the variational distribution,

L.qIOp;q;F ; t / D sup
f 2F

t .Eq.z/Œ.O
p;q f /.z/�/: (6.1)

Intuitively, the objective is the worst-case expected value among all test functions f 2 F .

Operator variational inference seeks to minimize this objective with respect to the varia-

tional family q 2 Q.
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We use operator objectives for posterior inference. This requires two conditions on the

operator and the function family.

1. Closeness. The minimum of the variational objective is required to be the posterior,

q.z/ D p.z jx/. We meet this condition by requiring that Ep.z jx/Œ.Op;p f /.z/� D 0 for
all f 2 F . Thus, optimizing the objective will produce p.z jx/ if it is the only member

of Q with zero expectation (otherwise it will produce a distribution in the equivalence

class, q 2 Q with zero expectation). In practice, the minimum of the objective will be

the closest member of Q to p.z jx/.

2. Tractability. We can calculate the variational objective up to a constant without involving

the exact posterior p.z jx/. We do not require calculating the normalizing constant of

the posterior, which is typically intractable. We meet this condition by requiring that

the operator Op;q—originally in terms of p.z jx/ and q.z/—can be written in terms of

the joint distribution p.x; z/ and the variational approximation q.z/. Tractability also

imposes conditions on F : it must be feasible to find the supremum. Below, we satisfy

this by defining a parametric family for F that is amenable to stochastic optimization.

Equation (6.1) and these two conditions provide a mechanism to design meaningful vari-

ational objectives for posterior inference. Operator variational objectives try to match ex-

pectations with respect to q.z/ to those with respect to p.z jx/.

6.1.2 Understanding Operator Variational Objectives

Consider operators where Eq.z/Œ.Op;q f /.z/� only takes positive values. In this case, dis-

tance to zero can be measured with the identity t .a/ D a, so tractability implies the operator

need only be known up to a constant. This family includes tractable forms of familiar di-

vergences like the kl divergence (elbo), Rényi’s ˛-divergence (Li and Turner, 2016), and

the �-divergence (Nielsen and Nock, 2013).
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When the expectation can take positive or negative values, operator variational objectives

are closely related to Stein divergences (Gorham and Mackey, 2015).1 Consider a fam-

ily of scalar test functions F � that have expectation zero with respect to the posterior,

Ep.z jx/Œf �.z/� D 0. Using this family, a Stein divergence is

DStein.p; q/ D sup
f �2F �

jEq.z/Œf �.z/� � Ep.z jx/Œf �.z/�j:

Now recall the operator objective of Equation (6.1). The closeness condition implies

that

L.qIOp;q;F ; t / D sup
f 2F

t .Eq.z/Œ.O
p;q f /.z/� � Ep.z jx/Œ.Op;p f /.z/�/:

Operators with positive or negative expectations lead to Stein divergences with a more gen-

eralized notion of distance.

6.1.3 Langevin-Stein Operator Variational Objective

We developed the operator variational objective. It is a class of tractable objectives, each of

which can be optimized to yield an approximation to the posterior. An operator variational

objective is built from an operator, function class, and distance function to zero. We now

use this construction to design a new type of variational objective.

An operator objective involves a class of functions that has known expectations with respect

to an intractable distribution. There aremanyways to construct such classes (Barbour, 1988;

Assaraf and Caffarel, 1999). Let � be a density of interest, then the classic univariate Stein

operator comes from the density method (Stein et al., 2004; Ley et al., 2017). It has the
1The use of Stein divergence like quantities appears in multiple places in the literature, but the concept

was not formalized until the cited work.
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form

.O�f /.z/ D .�.z/f .z//0

�.z/
D f 0.z/C � 0.z/

�.z/
f .z/ D f 0.z/C .log�.z//0f .z/: (6.2)

This operator has � expected value zero under mild technical conditions. The density

method operator has a discrete analogue which looks at local differences of the product

of f and � rather than derivatives.

This operator can be generalized to a family of operators on multivariate densities by con-

sidering the conditional distributions of the multivariate density. Consider the two variable

case where z D .z1; z2/; now apply the density method to the conditional �.z1 j z2/.

.O�.z1 j z2/f1/.z/ D rz1
f1.z1/Crz1

log�.z1 j z2/f1.z1/

D rz1
f1.z/Crz1

log�.z1; z2/f1.z/: (6.3)

The last equality follows because there can be a different f1 for each value of z2 (i.e., f1.z/

is a function over z1 with fixed z2), and

rz1
log�.z1 j z2/ D rz1

Œlog�.z1 j z2/C log�.z2/� D rz1
log�.z1; z2/:

The operator cares about distributions up to normalization constants. The conditional op-

erator Equation (6.3) has expected value zero with respect to the conditional distribution

�.z1 j z2/. This implies that the conditional operator also has expectation zero with respect

to the joint distribution.

We can similarly apply the operator to the other conditional to get

.O�.z2 j z1/f /.z/ D rz2
f2.z/Crz2

log�.z1; z2/f2.z/:
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This operator also has expectation zero with respect to the joint distribution of � . Two oper-

ators that have expectation zero can be summed to produce an operator that has expectation

zero. Generalizing this to n dimensions, we get

.O�f /.z/ D
nX
iD1
rzi
fi.z/Crzi

log�.z1; z2/fi.z/ D rz log�.z/>f .z/Cr>f .z/;

where f is vector valued and r>f denotes the divergence of f . We call this operator the

Langevin-Stein (ls) operator after Gorham and Mackey (2015), which construct this op-

erator based on ideas from the generator method (Barbour, 1988). Related constructions

also appear in Assaraf and Caffarel (1999), Mira et al. (2013), and Oates et al. (2017). Our

conditional construction of the ls operator provides an alternative interpretation of its con-

struction as a Stein operator that breaks the model’s joint distribution down into its complete

conditionals. It provides a way to create operators for distributions over mixed discrete and

continuous spaces by adding operators of the respective complete conditionals.

Applying this to the posterior distribution, we get

.Op
ls f /.z/ D rz logp.x; z/>f .z/Cr>f: (6.4)

We obtain the corresponding variational objective by using the squared distance function

and substituting Equation (6.4) into Equation (6.1),

L.qIOp
ls;F / D sup

f 2F

.EqŒrz logp.x; z/>f .z/Cr>f �/2: (6.5)

The ls operator satisfies both our conditions. First, it satisfies closeness because it has

expectation zero under the posterior (Appendix A) and its unique minimizer is the posterior

(Appendix B). Loosely this follows from the fact that the operator tries to match complete

conditionals, and distributions with the same complete conditionals are equivalent (think the

Gibbs sampler). Second, it is tractable because it only requires the joint distribution. The
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test functions f will also be a parametric family, which we detail later. Finally, it does not

have the zero-forcing property of the kl divergence that causes variance underestimation.

That is, unlike thekl, when q hasmasswherep does not, the ls operator can be finite.

6.1.4 The KL Divergence as an Operator Variational Objective

We demonstrate how classical variational methods fall inside the operator family. For exam-

ple, traditional variational inference minimizes the kl divergence from an approximating

family to the posterior (Jordan et al., 1999). This can be construed as an operator variational

objective,

.O
p;q
KL f /.z/ D log q.z/ � logp.zjx/ 8f 2 F : (6.6)

This operator does not use the family of functions—it trivially maps all functions f to

the same function. Further, because kl is strictly positive, we use the identity distance

t .a/ D a.

The operator satisfies both conditions. It satisfies closeness becauseKL.p.z jx/jjp.z jx// D
0. It satisfies tractability because it can be computed up to a constant when used

in the operator objective of Equation (6.1). Tractability comes from the fact that

logp.z jx/ D logp.z;x/ � logp.x/.

The kl divergence is an example of an f -divergence (Csiszár et al., 2004). The conditions

of closeness and tractability to construct operator variational objectives provide constraints

on f -divergences feasible for variational inference. The choice of f is limited to where the

joint distribution can be used in place of the posterior (e.g., �-divergence based variational

inference (Dieng et al., 2016)).
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6.1.5 Control Variates

Properties of distributions provide ways to estimate those distributions. Control variates

(from Chapter 3) use known properties of distributions to compute expectation-zero func-

tions. In this sense, control variates are intimately tied to distribution estimation.

As an example, let r be a distribution with parameters � that we want to estimate. Then

from Chapter 3 we know that the the expected value of the score function is zero,

Er Œr� log r.zI�/� D 0: (6.7)

Now suppose we have access to a distribution F in the same family as r with unknown

parameter ��, and that we can sample from F . A natural way to estimate the true parameter

�� would be to change � until the invariant Equation (6.7) is met. Formally,

arg min�jjEF Œr� log r.zI�/�jj2

This is a score-matching-type estimator of distributions (Hyvärinen, 2005). However, from

Chapter 3, we know that control variates can be built using the score function. In a sim-

ilar vein, if we know moments of r , we can estimate r with generalized method of mo-

ments (Hansen, 1982). The known moments can also be used as control variates.

Operator variational objectives provide a similar view. Consider a control variate h, now for

an unnormalized density� . We have by the definition of control variatesE� Œh��E� Œh� D 0.
Changing the first expectation to be with respect to an approximation q, we get an operator

variational objective where F contains only h. The more functions that we know that have

known expectationwith respect to the unnormalized distribution, the better this objective. In

short, every control variate technique for unnormalized densities yields a variational objec-

tive. Furthermore, these variational objectives fall into the class of Stein divergences.
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6.2 Operator Variational Inference

We described operator variational objectives, a broad class of objectives for variational in-

ference. We now examine how this class of objectives can be optimized. We develop a black

box algorithm in the style of black box variational inference (bbvi) based on Monte Carlo

estimation and stochastic optimization. Our algorithm applies to a general class of models

and any operator objective.

Minimizing the operator objective involves two optimizations: minimizing the objective

with respect to the approximating family Q and maximizing the objective with respect to

the function class F (which is part of the objective).

We index the family Q with variational parameters � and require that it satisfies properties

typically assumed by black box methods (Ranganath et al., 2014): the variational distribu-

tion q.zI �/ has a known and tractable density; we can sample from q.zI �/; and we can

tractably compute the score function r� log q.zI �/. We index the function class F with

parameters � , and require that f�.�/ is differentiable. In the experiments, we use neural net-

works, which are flexible enough to approximate a general family of test functions (Hornik

et al., 1989).

Given parameterizations of the variational family and test family, operator variational infer-

ence (opvi) seeks to solve a minimax problem,

�� D inf
�

sup
�

t .E�Œ.O
p;qf�/.z/�/:

We will use stochastic optimization (Robbins and Monro, 1951; Kushner and Yin, 1997).

In principle, we can find stochastic gradients of � by rewriting the objective in terms of the

optimized value of � , ��.�/. In practice, however, we simultaneously solve the maximiza-

tion and minimization. Though computationally beneficial, this produces saddle points. In
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our experiments we found this choice to be stable enough. We derive gradients for the vari-

ational parameters � and test function parameters �. (We fix the distance function to be the

square t .a/ D a2; the identity t .a/ D a also readily applies.)

Gradient with respect to �. For a fixed test function with parameters � , denote the ob-

jective L� D t .E�Œ.Op;q f�/.z/�/: The gradient with respect to variational parameters �

is

r�L� D 2 E�Œ.O
p;q f�/.z/� r�E�Œ.Op;q f�/.z/�:

Now write the second expectation with the score function gradient from Chapter 3. This

gradient is

r�L� D 2 E�Œ.O
p;q f�/.z/� E�Œr� log q.zI �/.Op;q f�/.z/Cr�.Op;q f�/.z/�: (6.8)

Equation (6.8) lets us calculate unbiased stochastic gradients. We first generate two sets of

independent samples from q; we then form Monte Carlo estimates of the first and second

expectations.2 For the second expectation, we can use the variance reduction techniques

developed for black box variational inference, such as Rao-Blackwellization.

We described the score gradient because it is general. An alternative is to use the reparam-

eterization gradient for the second expectation (Kingma and Welling, 2014; Rezende et al.,

2014) also detailed in Chapter 3. Reparameterization gradients require that the operator be

differentiable with respect to z and that samples from q can be drawn as a transformation

of a parameter-free noise source �, z D z.�; �/. In our experiments, we use the reparame-

terization gradient.
2It is possible to use one set of samples using EŒx�EŒy� D EŒxy��Cov.x; y/ and the unbiased covariance

estimator.
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Gradient with respect to � . Mirroring the notation above, the operator objective for fixed

variational parameters � is

L� D t .E�Œ.Op;q f�/.z/�/:

The gradient with respect to the test function parameters � is

r�L� D 2 E�Œ.O
p;qf�/.z/� E�Œr�.Op;q f�/.z/�: (6.9)

Again, we can construct unbiased stochastic gradients with two sets of Monte Carlo esti-

mates. Note that gradients for the test function do not require score function gradients (or

reparameterization gradients) because the expectation does not depend on � .

Algorithm. Algorithm 4 outlines opvi. We simultaneously minimize the variational ob-

jective with respect to the variational family q� while maximizing it with respect to the

function class f� . Given a model, operator, and function class parameterization, we can

use automatic differentiation to calculate the necessary gradients (Carpenter et al., 2015).

Provided the operator does not require model-specific computation, this algorithm satisfies

the black box criteria.

Practicalities. For operators constructed from sums of operators, like the Langevin-Stein

(ls) operator, performance improves by considering a sum of operator variational objectives

rather than an operator variational objective of a sum of operators. For the squared distance,
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Algorithm 4: Operator Variational Inference
Input : Model logp.x; z/, variational approximation q.zI �/.
Output: Variational parameters �.
Initialize � and � randomly.
while not converged do

Compute unbiased estimates of r�L� from Equation (6.8).
Compute unbiased esimates of r�L� from Equation (6.9).
Update �, � with unbiased stochastic gradients.

end

the performance improvement follows from

X
i

�
EOp;q

i

�2 D 0!
 X

i

EOp;q
i

!2
D 0;

 X
i

EOp;q
i

!2
D 0 6!

X
i

�
EOp;q

i

�2 D 0:

That is, minimizing the sum of operator variational objectives implies minimizing the op-

erator variational objective of the sum, but the reverse does not hold. Finally, this decom-

position into a sum allows for the use of model structure to parallelize computation, e.g.,

in a hierarchal model, all operators for data-point-specific latent variables can be optimized

independently.

6.3 Characterizing Variational Methods with Opera-

tors

The operator view can be used to characterize classes of variational methods such as those

that admit simple data subsampling and those that support variational approximations with

intractable densities called variational programs.

127



6.3.1 Data Subsampling and OPVI

With stochastic optimization, data subsampling scales up traditional variational inference to

massive data (Hoffman et al., 2013). The idea is to calculate noisy gradients by repeatedly

subsampling from the data set, without needing to pass through the entire data set for each

gradient. We review it briefly in the next paragraph.

Stochastic variational inference works for hierarchical models. Hierarchical models consist

of global latent variables ˇ that are shared across data points and local latent variables zi

each of which is associated to a data point xi . The model’s log joint density is

logp.x1Wn; z1Wn;ˇ/ D logp.ˇ/C
nX
iD1

h
logp.xi j zi ;ˇ/C logp.zi jˇ/

i
:

Hoffman et al. (2013) calculate unbiased estimates of the log joint density (and its gradient)

by subsampling data and appropriately scaling the sum.

We can characterize whether opvi with a particular operator supports data subsampling.

opvi relies on evaluating the operator and its gradient at different realizations of the latent

variables (Equation (6.8) and Equation (6.9)). We can subsample data to calculate estimates

of the operator when the operator derives from linear operators of the log density of the

model. This is because as a linear operator of sums is a sum of linear operators, so the

gradients in Equation (6.8) and Equation (6.9) decompose into a sum. Examples of linear

operators include differentiation and the identity operator. This reveals that since both the

Langevin-Stein and kl operator are linear in the log density of the model, they support data

subsampling.
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6.3.2 Variational Programs

Given an operator and variational family, Algorithm 4 optimizes the corresponding operator

objective. Certain operators require the density of q. For example, the kl operator (Equa-

tion (6.6)) requires its log density. This potentially limits the construction of rich variational

approximations for which the density of q is difficult to compute.3

Some operators, however, do not depend on having an analytic density for the variational ap-

proximation q; the Langevin-Stein operator (Equation (6.4)) is an example. These operators

can be used with a much richer class of variational approximations; those that can be sam-

pled from, but might not have analytically tractable densities. We call such approximating

families variational programs.

Inference with one type of variational programs requires the family to be reparameteri-

zable (Kingma and Welling, 2014; Rezende et al., 2014).4 A reparameterizable varia-

tional program consists of a parametric deterministic transformation R of random noise

�. Let

� � Normal.0; 1/; z D R.�I �/: (6.10)

This generates samples for z, is differentiable with respect to �, and its density may be

intractable. For operators that do not require the density of q, variational programs can be

used as a powerful variational approximation. This is in contrast to the standard Kullback-

Leibler (kl) operator.

As an example, consider the following variational program for a one-dimensional random

variable. Let �i denote the i th dimension of � and make the corresponding definition for �.
3It is possible to construct rich approximating families using hierarchical variational models withkl.qjjp/,

but this requires the introduction of an auxiliary distribution or recursive variational approximation.
4We can also define variational programs with tractable joint distributions, but intractable marginal distri-

butions, using the score function gradient.
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Then we have

z D .�3 > 0/R.�1I �1/ � .�3 � 0/R.�2I �2/: (6.11)

When R outputs positive values, the previous equation separates the parameterization of

the density to the positive and negative half of the reals; its density is generally intractable.

In the experiments, we will use this distribution as a variational approximation.

Variational programs Equation (6.10) contain many densities when the function classR can

approximate arbitrary continuous functions (see the discussion in Chapter 4). Variational

programs combined with a q-independent operator that has the posterior as the unique min-

imizer lead to variational inference algorithms that approximate the posterior arbitrarily

well.

Operators that support variational programs must also be Markov chain Monte Carlo

(mcmc) sample quality metrics in the style of Gorham and Mackey (2015)—they measure

closeness to the posterior of a set of samples and do not require the density of the samples.

These operators must also be control variates for mcmc in the style of Assaraf and Caffarel

(1999), Mira et al. (2013), and Oates et al. (2017). We summarize this in the commutative

diagram Figure 6.2.

6.4 Empirical Study

We evaluate operator variational inference on a mixture of Gaussians, comparing different

choices in the objective. We then study logistic factor analysis for images.
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MCMC Sample

Quality Metrics

Control Variates

for MCMC

Variational Program

Operators

Figure 6.2: Operator variational objectives that support variational programs derive from
expectation zero functions with respect to the posterior. In this sense they can measure the
quality of samples from the posterior (Gorham and Mackey, 2015) and are control variates
for computing posterior expectations (Assaraf and Caffarel, 1999; Mira et al., 2013; Oates
et al., 2017).

6.4.1 Mixture of Gaussians

Consider a one-dimensional mixture of Gaussians as the posterior of interest,

p.z/ D 1

2
Normal.zI �3; 1/C 1

2
Normal.zI 3; 1/:

The posterior contains multiple modes. We seek to approximate it with three variational

objectives: Kullback-Leibler (kl) with a Gaussian approximating family, Langevin-Stein

(ls) with a Gaussian approximating family, and ls with a variational program.

�5 0 5
Value of Latent Variable z

KL
Truth

�5 0 5
Value of Latent Variable z

Langevin-Stein
Truth

�5 0 5
Value of Latent Variable z

Variational Program
Truth

Figure 6.3: The true posterior is a mixture of two Gaussians (the green curve). We approx-
imate it with a Gaussian using two operators (the blue curves). The density on the far right
is a variational program given in Equation (6.11) and using the Langevin-Stein operator; it
approximates the truth well. The density of the variational program is intractable. We plot
a histogram of its samples and compare this to the histogram of the true posterior.
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Figure 6.3 displays the posterior approximations. We find that the kl divergence and ls

divergence choose a single mode and have slightly different variances. These operators do

not produce good results because a single Gaussian is a poor approximation to the mixture.

The remaining distribution in Figure 6.3 comes from the toy variational program described

by Equation (6.11) with the ls operator objective. Because this program captures differ-

ent distributions for the positive and negative half of the real line, it is able to capture the

posterior.

In general, the choice of an objective trades off the statistical and computational properties

of variational inference. We highlight one tradeoff: the ls objective admits the use of a

variational program; however, the objective is more difficult to optimize than the kl.

6.4.2 Logistic Factor Analysis

Logistic factor analysis models binary vectors xi with a matrix of parametersW and biases

b,

zi � Normal.0; 1/

xi;k � Bernoulli.�.w>k zi C bk//;

where zi has fixed dimension K and � is the sigmoid function. This model captures corre-

lations of the entries in xi throughW .

We apply logistic factor analysis to analyze the binarized MNIST data set (Salakhutdinov

and Murray, 2008), which contains 28x28 binary pixel images of handwritten digits. (We

set the latent dimensionality to 10.) We fix themodel parameters to those learned with varia-

tional expectation-maximization using the kl divergence, and focus on comparing posterior

inferences.
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Inference method Completed data log likelihood

Mean field Gaussian + kl -59.3
Mean field Gaussian + ls -75.3
Variational Program + ls -58.9

Table 6.1: Benchmarks on logistic factor analysis for binarized MNIST. The same varia-
tional approximation with ls performs worse than kl on likelihood. The variational pro-
gram with ls performs better, without directly optimizing for likelihoods.

We compare the kl operator to the ls operator and study two choices of variational models:

a fully factorized Gaussian distribution and a variational program. The variational program

generates samples by transforming aK-dimensional standard normal input with a two layer

neural network, using rectified linear activation functions and a hidden size of twice the

latent dimensionality. Formally, the variational program we use generates samples of z as

follows:

z0 � Normal.0; I /

h0 D ReLU.W q
0

>
z0 C bq0/

h1 D ReLU.W q
1

>
h0 C bq1/

z D W q
2

>
h1 C bq2:

The variational parameters are the weights W q and biases bq. For f , we use a three-layer

neural network with the same hidden size as the variational program and hyperbolic tangent

activations where unit activations are bounded to have norm two. Bounding the unit norm

bounds the divergence. We use the Adam optimizer (Kingma and Ba, 2014) with learning

rates 2 � 10�4 for f and 2 � 10�5 for the variational approximation.

There is no standard for evaluating generative models and their inference algorithms (Theis

et al., 2016). Following Rezende et al. (2014), we consider a missing data problem. We

remove half of the pixels in the test set (at random) and reconstruct them from a fitted

posterior predictive distribution. Table 6.1 summarizes the results on 100 test images; we
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report the log likelihood of the completed image. ls with the variational program performs

best. It is followed by kl and the simpler ls inference. The ls performs better than kl even

though the model parameters were learned with kl.

6.5 Summary

We presented operator variational objectives, a broad, yet tractable, class of optimization

problems for approximating posterior distributions. Operator objectives are built from an

operator, a family of test functions, and a distance function. We outlined the connection

between operator objectives and existing divergences such as the kl divergence, and de-

veloped a new variational objective using the Langevin-Stein operator. In general, operator

objectives produce new ways of posing variational inference.

Given an operator objective, we develop a black box algorithm for optimizing it and show

which operators allow scalable optimization through data subsampling. Unlike the popu-

lar kl divergence, not all operators explicitly depend on the approximating density. This

freedom permits flexible approximating families, called variational programs, where the

distributional form is not tractable. We demonstrated this approach on a mixture model and

a factor model of images.

There are several possible avenues for future directions. There is room for more cross fer-

tilization between control variates, two-sample testing, and sample quality metrics. For

example, we could use newer operators derived for sample quality in variational infer-

ence (Gorham et al., 2016), and use their characterizations of operators via mixing time

to investigate the complexity of learning an accurate variational approximation.
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Other directions include developing new variational objectives, adversarially learn-

ing (Goodfellow et al., 2014) model parameters with operators, and learning model

parameters with operator variational objectives.

6.6 Appendix

6.6.1 Technical Conditions for Langevin-Stein Operators

We establish the conditions needed on the function class F and/or the posterior distribution

(shorthand p) for the operators to have expectation zero for all f 2 F . We derive properties

using integration by parts for supports that are bounded open sets. Then we extend the result

to unbounded supports using limits.

We start with the Langevin-Stein operator. Let S be the set over which we integrate and let

B be its boundary. Let v be the unit normal to the surface B , and vi be the i th component

of the surface normal (which is d dimensional). Then we have that

Z
S

p.O
p
LS f /dS D

Z
S

prz logp>f C pr>fdS

D
dX
iD1

Z
S

@

@zi
Œp�fi C p @

@zi
Œfi �dS

D
dX
iD1

Z
S

@

@zi
Œp�fidS C

Z
B

fipvidB �
Z
S

@

@zi
Œp�fidS

D
Z
B

v>fpdB:

A sufficient condition for this expectation to be zero is that either p goes to zero at its

boundary or that the vector field f is zero at the boundary.
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For unbounded sets, the result can be written as a limit for a sequence of increasing sets

Sn ! S and a set of boundaries Bn ! B using the dominated convergence theorem (Cin-

lar, 2011). To use dominated convergence, we establish absolute integrability. Sufficient

conditions for absolute integrability of the Langevin-Stein operator are for the gradient of

logp to be bounded and the vector field f and its derivatives to be bounded. Via dominated

convergence, we get that limn

R
Bn
v>fpdBn D 0 for the Langevin-Stein operator to have

expectation zero.

6.6.2 Characterizing the Zeros of the Langevin-Stein Operators

We provide analysis on how to characterize the equivalence class of distributions defined as

.Op;qf /.z/ D 0. One general condition for equality in distribution comes from equality in

probability on all Borel sets. We can test this equality with functions that have expectation

zero with respect to the posterior. For any Borel setA, let ıA be the indicator function, these

functions on A have the form

ıA.z/ �
Z
A

p.y/dy:

We show that if the Langevin-Stein operator satisfies L.qIOp
LS;F / D 0, then q is equiva-

lent to p in distribution. We do this by showing the above functions are in the span of Op
LS.

Expanding the Langevin-Stein operator, we have

.O
p
LS f / D p�1rzp>f Cr>f D p�1

dX
iD1

@fip

@zi
:

Setting this equal to the desired function above yields the differential equation

ıA.z/ �
Z
A

p.y/dy D p�1.z/
dX
iD1

@fip

@zi
.z/:
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To solve this, set fi D 0 for all but i D 1. This yields

ıA.z/ �
Z
A

p.y/dy D p�1.z/@f1p
@z1

.z/;

which is an ordinary differential equation with solution for f1

f A1 .z/ D
1

p.z/

z1Z

�1
p.a; z2:::d /

�
ıA.a; z2:::d / �

Z
A

p.y/dy

�
da:

This function is differentiable with respect to z1, so this gives the desired result. Plugging

the function back into the operator variational objective gives

Eq

�
ıA.z/ �

Z
A

p.y/dy

�
D 0 ” EqŒıA.z/� D EpŒıA.z/�;

for all Borel measurable A. This implies that the ls operator captures total variation.
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Chapter 7

Discussion

Generative probabilistic models underlie many of the tools for data in a range of areas in-

cluding language, imaging, personalization, and healthcare. For example, they find hidden

structure in a collection of news articles; they help make recommendations for users joining

a new system; they form the foundation for realistic image completion; they make survival

predictions in the face of noise and missing observations. These were just the uses pre-

sented in this thesis. More broadly, probabilistic models lay the foundation for reasoning in

the face of uncertainty.

The core challenge in working with generative probabilistic models stems from the in-

tractability of computing the posterior distribution. Approximate methods, whether based

on sampling like Markov chain Monte Carlo or optimization methods like variational in-

ference, form the main tools for managing this intractability. Variational inference was

hampered by the need for model-specific analysis for the majority of new models. This

added work made variational inference unpalatable to scientists outside the fields of ma-

chine learning and statistics.
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To remedy this, we developed black box variational inference. Black box variational infer-

ence provides an easy-to-use technique for deploying variational inference in a broad class

of models. It makes probabilistic modeling accessible to scientists and allows for models to

be built for data rather than for ease of analysis.

Black box variational inference not only frees us to build new kinds of models, it also opens

the door to improvements in inference itself. Black box variational inference based ideas

allow for better posterior approximations. We were also able to develop new distance mea-

sures that trade off different statistical and computational properties. These advances allow

the posterior approximations to be designed for the task at hand.

Combined with other advances in approximate inference, the methods in this thesis open

exciting new possibilities in analyzing data with models that are now possible to infer well.

But, many challenges still remain. The path forward requires systems for inference, tools to

understand the difficulty of inference in models, methods to use weak prior information, and

improved techniques to diagnose and debug models. I discuss a couple of these directions

in depth.

Systems for inference. New methods for inference simplify the process of working

with new models. However, reimplementing these algorithms wastes time and is prone to

bugs. Developing systems that provide standard implementations of inference algorithms

addresses this problem and leads to new research questions.

One big question for variational inference is how to automate nuisance parameters like

learning rates and initialization. As an example of this kind of work in sampling, setting

Hamiltonian Monte Carlo’s (Duane et al., 1987) nuisance parameters was greatly simplified

by Hoffman and Gelman (2014) which helped automate inference in the Stan probabilistic

programming system (Stan Development Team, 2015).
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Another question is how to check the quality of inference for a particular model. This ques-

tion is paramount for users to debug failures when using approximate inference. Model

checking tools are also be needed to help users figure out how to improve their models.

Systems for inference can be used as platforms for tackling the challenges of designing

tools for debugging models and checking inference.

Using prior information. The value of models comes from amixture of prior information

and observed data. Much of the focus in recent model-building work in machine learning

has been on models that approximate any distribution, empirical models. This approach

works for tasks where data are readily available. However for many problems, like rare

medical conditions, data are limited. This setting necessitates prior information. Building

models that mix weak prior information with efficient machine learning models is an area

ripe for further development. Such models would allow possibly incorrect knowledge to

form the basis for the model, and the observed data to correct it when possible.

Ultimately, generative probabilistic modeling requires posterior inference. The value of this

approach hinges on the ease-of-use, reliability, and scalability of posterior approximation

algorithms. With recent advances, we have pushed the boundary of feasible models and

improved the quality of inference. The time is right to push forward on inference, so that

generative probabilistic models can be go-to instruments in the tool boxes of datasmiths and

scientists everywhere.
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