
Streaming Data Visualization for Network Security

Huilian Sophie Qiu
Advisors: Walter Willinger, Jennifer Rexford

Abstract

The emergence of streaming data or “data in motion”
has motivated the development of new “streaming”
algorithms that provide up-to-date answers to con-
tinuous queries; that is, queries that are issued once
and then run continuously as new data streams in.
For example, in the context of network traffic man-
agement, continuous queries over streaming Netflow
data may be used to detect anomalies in the network
as they happen (e.g., performance degradation, onset
of an attack). One of the most popular approaches
for detecting unusual patterns in the network is fre-
quent itemset mining (FIM). Answers produced by
many FIM algorithms are often high-dimensional
and packed with rich information. As the rate of
data arrival may be rapid, interpreting the output in
real time can be challenging. The main objective of
this thesis is to introduce a new visualization method
that can visualize the continuous stream of answers
produced by existing streaming algorithms in an in-
tuitive and meaningful manner. The visualization
method is designed independent of the choice of FIM
algorithms. It is able to capture frequency of each
itemset, different relationship between network traf-
fic attributes, and the changes in frequent itemsets
over time. Ultimately, users should be able to lever-
age this visualization to respond to an ongoing attack
in real time.

1 Introduction

As the complexity of computer network has grown,
the quest for real-time or close-to real-time solutions
for managing these networks has remained elusive.
For example, in the area of network security, such
solutions would enable the timely detection of the
onsets of different types of network attacks followed
by swift and effective mitigative actions. With re-
spect to network performance, the sought-after so-

lution would be recognizant of user-experienced ser-
vice degredations as they happen and instruct the net-
work to perform corrective steps in a timely and pur-
poseful manner. Whether the concern is network se-
curity or network performance, the development of
new solutions to make (close-to) real-time network
management a reality relies critically on our abil-
ity to capture, process, and analyze large quantities
of high-quality network traffic measurements. How-
ever, not only does the sheer volume of traffic that
traverses many of today’s large backbones, Internet
exchange points (IXP), and interconnects create se-
rious challenges, but at Gbps to Tbps link speeds,
the velocity of the collected data is such that any at-
tempt at developing (close-to) real-time solutions has
to treat the measurements as streaming data where
one pass over the data is all that can be afforded.
Note that such streaming data is representative of
many recent “big data” occurrences in numerous dif-
ferent application domains (e.g., smart cities, IOT).

Since popular approaches that rely on offline
batch processing of such streaming data are counter-
productive in view of the desired real-time nature of
the envisioned solutions, the streaming data model
has motivated the development of a large number
of different queries, in essence, a streaming algo-
rithm simply transforms input in the form of a con-
tinuous data stream into a continuous stream of out-
put data that consists of up-to-date answers to the
posed query. Unfortunately, the output data gener-
ated by most streaming algorithms is typically only
amenable for manual inspection which makes pro-
cessing these answers and extracting detailed infor-
mation from them a time-consuming and often te-
dious endeavor. In this thesis, we present a visual-
ization design that can automatically process the out-
put produced by certain streaming data algorithms
and display the information in an intuitive and mean-
ingful way. In particular, we focus in this thesis
on a class of algorithms called FIM algorithms for

1



streaming data, a generalization of the well-known
algorithms for finding frequent items (e.g., top-k) in
streaming data.

1.1 Frequent itemset mining

FIM is often explained using a market-basket model.
This model of data is used to describe a many-
to-many relationship between two kinds of objects,
items in the market and baskets, or transactions. An
itemset is a set of items that may appear in many
transactions. The support of an itemset I is defined
as the number of transactions for which I is a subset.
In other words, the support of itemset I is the per-
centage of transactions that contain I. An itemset is
considered to be frequent if its support is higher than
a support threshold.

In the context of network traffic, an attribute value,
such as an IP address, a port number, or a proto-
cal type, is an item. Each individual network traf-
fic record is called a transaction. As in the market-
basket model, a transaction can contain several at-
tribute values. For example, a single record in Net-
flow data consists of values of many attributes, such
as source IP address, destination IP address, port
number, protocol, packet size, etc. An itemset may
contain values of some or all attributes in a transac-
tion. It is considered to be a frequent itemset if the
joint appearance of all its items is above a threshold.
Frequent items, or sometimes called heavy hitter can
be considered as a special case of frequent itemset
whose number of items is one.

1.2 Requirements for the visualization

A number of different FIM algorithms for stream-
ing data have been developed in the past two decades
(e.g. see [9] and references therein). While frequent
itemsets are in general costly (i.e., memory, CPU)
to find in real time, the output of existing FIM al-
gorithms for streaming data contains usually both
very detailed information and useful meta-data. At
the same time, processing this data and unpacking
the obtained information typically requires manual
inspection and analysis. Therefore, one of the re-
quirements of our visualization method is to auto-
mate the unpacking of the output and then display
it in an intuitive way so that users can easily iden-
tify patterns in the data and observe how they change

over time. The visualization method should also be
able to show the sizes of the different frequent item-
sets, exploit the relationships between different net-
work traffic attributes, and depict how frequent item-
sets change over time as new data streams in. Ulti-
mately, users should be able to leverage this visual-
ization to respond to an ongoing attack in real time.

There also exist many variations of the FIM ap-
proach. A special case is the class of frequent item
mining algorithms. These algorithms can identify
what attribute values appear frequently. For example,
an IP address is a frequent item because it may be
hosting a search engine and receiving many queries.
However, frequent items only reflect a single at-
tribute in the network data and only reveal items that
are globally popular. Therefore the output of fre-
quent item algorithms for streaming data may not
contain enough information to identify traffic pat-
tern of interest. Among the algorithms that are able
to identify slightly richer patterns than the frequent
item algorithms are the hierarchical heavy hitter and
correlated heavy hitter algorithms. Intuitively, the hi-
erarchical heavy hitter algorithm takes the result of
the frequent item algorithm applied to, say the IP ad-
dress which has a strong hierarchical structure [11]
and performs aggregation on various levels. Cor-
related heavy hitters are interested in items that are
locally popular. For example, for a globally popu-
lar destination machine, the correlated heavy hitter
algorithm identifies source machines that contribute
to a large portion of these connections [8]. Given
the wide variety of FIM algorithms, our visualization
method should be not only flexible enough to repre-
sent different types of relationship among the data,
but also independent of the streaming algorithm that
produces the output data.

1.3 Proposed visualization method

The contribution of this thesis is to show how the out-
put generated by different FIM streaming algorithms
can be displayed in an intuitive and meaningful man-
ner using our visualization method. Our visualiza-
tion method takes the output of a chosen streaming
algorithm as input. The generated diagram is ever-
growing towards the right when new output is pro-
duced by the algorithm as a result of new input data
streaming in. Each new stream of results is repre-
sented as a column of nodes. For each new output

2



data, a column of nodes is appended to the right of
the existing diagram. Each node corresponds to an
item. Nodes in two adjacent columns are connected
by flows (equivalent to “alluviums” in alluviam dia-
gram) that represent individual itemsets. The height
of a flow is proportional to the support of the itemset.
Nodes connected to the same flow belong to the same
itemset. We also provide an interactive interface that
allows users to further inquire into a particular item-
set or an item.

We introduce our method in more details in Sec-
tion 2 using the example of visualizing frequent
itemsets in Netflow data. Section 3 shows how our
method can be used with different algorithms for dif-
ferent network traffic scenarios. In Section 4 we re-
late our efforts to previous work and discuss future
work in Section 5.

2 Frequent Itemset Visualization
Method

This visualization model takes the continuous output
stream from FIM algorithms as input and generate
diagrams in real time. The way that the model works
makes no assumption on the choice of streaming data
algorithm. However, the attributes displayed in the
diagram depend on the algorithm. Figure 1 is a snap-
shot of a short segment of a diagram generated using
Borgelt’s split and merge algorithm, SaM [1], which
is implemented by Barthelemy Dagenais in Python.
Source code was found on his github repository [2].
In this diagram, we chose to examine pairs of source
IP and destination IP that jointly appear to be fre-
quent. In this section, we will use Figure 1 as an
example to first describe basic components in our
design and the interactive interface implemented in
JavaScript using D3 library. Then we use the same
example to show how an output from a FIM algo-
rithm can be effectively displaying using our method.

2.1 Basic components

The entire scheme is unbounded and ever grow-
ing towards the right. It is divided into successive
columns. Each newly arrival stream of data occu-
pies one column. Each column contains a number of
nodes. Associated time-stamp is printed below each
column. When new output streams in, a new column

of nodes can be easily appended on the right. Four
of such columns are shown in Figure 1.

Each column can be further divided vertically into
sub-columns. In Figure 1, each column has two sub-
columns. Each sub-column corresponds to one at-
tribute. Which attribute does this sub-column rep-
resent is decided by the user and the chosen algo-
rithm. The relationship between sub-columns can be
hierarchical. For example, one column can be IP ad-
dresses and another IP prefixes. It can also be as-
sociative with one column being source IP the other
being destination IP. It is also possible to have more
than two sub-columns and map each one of them to
an attribute in the itemset. We call the left most sub-
column as the first dimension sub-column, and the
next as the second dimension sub-column, so on and
so forth. Sub-columns are distinguished with differ-
ent brightness of grey. All nodes within the same
sub-column have the same color. Using the color
grey is to minimize the distraction of various hues,
which are needed for flows to distinguish itemsets.

Each sub-column is divided into individual rectan-
gle nodes horizontally. Each individual node is asso-
ciated with an item. The value of an item is written
on the node. For example, the node in the upper left
corner has value {41.43.163.74}, which, in our case,
is a destination IP. The heights of nodes will be dis-
cussed later.

Inspired by alluvial diagram, which is good at
tracing network changes over time, adjacent columns
are connected with a number of flows, each of which
represents an itemset. Different itemsets are distin-
guished by different colors. The same itemset ap-
pears in consecutive time-stamps uses the same color
to enable users to trace its changes. Nodes that are
connected by the same flow belong to the same item-
set. In Figure 1, one flow directly connects to one
node at each ends. Note that each window is divided
into two sub-columns. Therefore, items in the item-
set connected by the yellow flow is {41.43.195.44}
in the first dimension sub-column and {216.84.74.70
41.43.195.44} in the second dimension sub-column.
In other words, to see what items are contained in a
frequent itemset, one should look at nodes from all
sub-columns, unless otherwise specified, for exam-
ple, one of the sub-columns may be aggregated data
instead of real items.

Sometimes, two flows may merge to one node,
such as the green and blue flows at timestamp

3



Figure 1: Visaulizing results from a frequent itemsets mining algorithm. Grouping results with the same
destination IP address.

1361951970. This feature is inspired by Sankey dia-
gram, which is designed to show network structure
changes. The merging of flows means that these
two itemsets contain a common item. In the case
of green and blue flows, they both contain the item
{74.240.70.28}.

The height of each flow is proportional to the log
value of its support. Because usually frequent item-
sets may only take up a very small fraction of the
dataset, using log values instead of exact values can
make each flow have reasonable height. A light grey
node’s height is the sum of all the flows that are con-
nected to it. The height of nodes in each dimension
is the aggregated sum of correspondence nodes from
the lower dimension. The ordering of nodes starts
from the first dimension. All but the bottom ones are
ordered by height in descending order. Within each
nodes in the first dimension, second dimension nodes
are sorted by height again in descending order.

We implemented our visualization method using
JavaScript and its D3 library. A demo can be found
on http://cs.princeton.edu/~hqiu. There are two fea-
tures that we want to mention here. First is the an-
imation. When a new stream of data arrives and a
new column appends on the right, we make the flows
gradually expanding from the previous column as
if they are “flowing” into the current column. We

added this animation just to mimic the streaming na-
ture of network traffic data. The other feature is the
interactive interface. When users hover their mouse
over a node or a flow, they will be able to see more
information about this item or itemset, including val-
ues and support. For example, since the large node
at the bottom represents all transactions, its support
is 100%. From here, we can tell that, at time-stamp
1361951970, the blue flow’s height is roughly 1/3 of
the bottom node’s. Hovering our mouse to one of the
blue flows, we find out that its support is 6%.

2.2 Illustration with Netflow data

Let us now explain how does Figure 1 reflect the
result of a FIM algorithm. This diagram is gener-
ated by running a FIM algorithm on pairs of source
and destination IP addresses. Therefore, the frequent
itemsets here can also be considered as heavy hitters.

As we mentioned earlier, each column can be fur-
ther divided up vertically into sub-columns. The at-
tributes shown in each column is up the users. In
Figure 1, we decided to display the item in the sec-
ond dimension sub-column in lighter grey color. We
call these nodes item nodes. The largest node at the
bottom represents all transactions during this period
of them. We then decided to aggregate these heavy

4



hitters by their destination IP addresses and shown
these aggregation nodes in the first dimension sub-
column with darker grey color.

Each flow in Figure 1 represents a frequent item-
set, which, in this particular case, contains only one
item, a connection between two IP addresses. Trac-
ing the yellow flow from time-stamp 1361951969,
we can see that this itemset contains the item
{216.84.74.70 41.43.195.44}. The aggregated des-
tination IP address is {41.43.195.44}. At time-
stamp 1361951971, we see that the yellow flow
still connects to the same item node and aggrega-
tion node, but there is another flow connecting to
the same aggregation node. This is because at time-
stamp 1361951971, two connections, {216.84.74.70
41.43.195.44} and {160.11.203.23 41.43.195.44},
share the same destination IP. We can also see that
the height of the yellow flow changes at timestamp
1361951971. Note that the height corresponds to the
log value of the itemset’s support within at the cur-
rent time-stamp. The change in height here does not
necessarily mean that the exact number of transac-
tions containing this particular itemset has changed.
The change may suggest a change in the support. It
may also be affected by the increasing number of fre-
quent itemsets.

3 Application Examples

In this section, we demonstrate that out visualiza-
tion design is capable of visualizing outputs from
different FIM algorithms with different choices of at-
tributes. We applied our visualization method on two
sets of data: a Netflow data collected at University of
Oregon in Feburary 2013 and a DNS record data col-
lected at Princeton University in Janurary 2017.

3.1 Frequent itemsets of different sizes

While the frequent itemsets used in Figure 1 contain
only one item, which is a connection between two IP
addresses, it is often the case that frequent itemsets
may contain different numbers of items. Figure 2
shows how this diagram can visualize frequent item-
sets of different sizes.

Attributes shown in Figure 2 are source IP, des-
tination IP, destination port number, and an aggre-
gated source IP prefix. Here, each column is di-
vided into three sub-columns. The right most sub-

column shows the destination IP; the middle sub-
column shows the source IP; the left most column
shows the prefix of source IPs. Numbers shown on
some of the flows are port numbers. Note that not all
frequent itemsets contain all three of these attributes.
The missing attributes are represented by {-}. Port
numbers could also be shown by adding another sub-
column to the right. For example, the pink flow con-
tains items {248.207.38.29} as destination IP shown
in light grey node and {53} as port number shown on
the flow. Hovering the mouse over one of the flows
as shown in Figure 2, we can see that the bright green
flow is a frequent itemset with only one item, which
is the destination port number {443}. We see that
this flow does not show up in the previous window,
meaning that the itemset {443} has newly become
frequent at time-stamp 1361951968 and its support
is 5.3%. Moving our eyes to the next column, we
can see that it persists to be frequent and the support
remains at the same magnitude.

This diagram contains two levels of aggregation,
aggregating itemsets with the same source IP and
aggregating source IPs by prefix. Aggregations are
done by the visualization method and users can
choose to aggregate attributes in other ways. We
can see that at time-stamp 1361951968, two itemsets
{248.207.38.29} and {248.207.48.41} had the same
source IP prefix in common.

Figure 2: Visualization of frequent itemsets of vari-
ous sizes

3.2 Correlated heavy hitters

There are many discussions on the trade-offs be-
tween frequent itemsets, the information contained

5



Figure 3: Visualization of correclated heavy hitters

by which may be too rich and too costly to find, and
frequent items, which may not reveal enough infor-
mation. Several models fall between the spectrum of
frequent itemsets and frequent items have been pro-
posed. Many of them have to do with aggregating
data based on correlations between items or identify-
ing conditionally frequent items.

The diagram in Figure 3 uses the idea of corre-
lated heavy hitter proposed by Lahiri and Tirthapura
in [6]. The correlated heavy hitter algorithm con-
cerns not only on the support of a single attribute, but
also on the correlated support of an attribute. For ex-
ample, suppose an itemset has two items, p (parent)
and c (children). If the support of the item p is above
a certain threshold and the correlated support Pr[c|p]
of c is higher than a threshold, c is considered to be
a correlated heavy hitter.

Figure 3 shows correlated heavy hitters among
triples of attribute values (destination IP prefix, des-
tination IP, source IP). In this figure, dark grey nodes
represent destination IP prefix, lighter grey nodes
in second sub-column represent destination IP and
flows represent source IP. At the bottom of the col-
umn, a node {other} is added to represent all the
other transactions.

In the context of correlated heavy hitter algo-
rithms, items within an itemset have hierarchical re-
lationship. It is required that the first attribute, desti-
nation IP prefix in our example , should be globally

popular, i.e., its support should exceed some thresh-
old. The support of the second attribute, destination
IP, is the percentage of transactions that contain itself
among all the transactions containing its predecessor.
Therefore, unlike diagrams for frequent itemsets in
Figure 1 and Figure 2 where the a node’s height is
the aggregated sum over its children in the lower di-
mension, we decided to first determine the height of
the first dimension sub-column, which has the high-
est hierarchy, then let the height of nodes in the next
sub-column be proportional to its correlated support.
The heights of flows are also proportional to their
correlated support.

The height of the prefix nodes and the {other}
node is proportional to the log value of their sup-
port. Observe that transactions containing values in
the prefix nodes and those in the {other} node parti-
tion the dataset. Therefore, the height of the {other}
node no longer serves as a reference for the size of
entire dataset in the current window. Rather, it shows
the support of all non-frequent items in the dataset.
It might make sense to linearly map the exact value
of support instead of its log value to the height. The
reason we chose to use the log value instead of the
exact value is the same as we discussed before: pop-
ular items may only take up a small fraction. The
trade-off here is that we decided to sacrifice the intu-
itive level in order to display all items in reasonable
sizes.

3.3 DDoS attack pattern

Figure 4 shows how our visualization method can
capture potential DDoS attacks. Here we manually
in-planted a DDoS attack pattern in our data. Figure
4 is a short segment of the entire diagram. The sec-
ond dimension sub-column with lighter grey nodes
represents destination IPs. The first dimension sub-
column with darker grey nodes are aggregated data
on destination IPs’ prefix. Since this diagram uses
the output generated by a FIM algorithm, the height
of each flow is proportional to its support and the
{other} node at the bottom of each column represents
all transactions within the same time frame. It is ap-
parent from the diagram that the machine with IP ad-
dress {74.240.70.28} was receiving a huge amount
of traffic during at least within these two seconds.
Users can then inquire more information on these
connections.

6



Figure 4: Visualization of frequent itemsets showing potential DDoS attack

3.4 Port scan attack pattern

We also injected a port scan attack pattern into our
dataset (Figure 5). Basically, it shows up the same
as diagrams for DDoS attack. Since port numbers
are short, we decided to display it on each flow so
that users do not need to hover their mouse over each
individual flow to see what ports are being scanned.
We did not do this for DDoS attack because IP ad-
dresses can be long, especially IPv6. Showing all
source IP can make the diagram messy and difficult
to parse.

3.5 DNS-specific pattern

Our visualization method can also be used for
datasets other than Netflow data. Figure 6 shows
how frequent itemsets of DNS data can be visual-
ized using the same method. The first dimension
sub-column represents source IP prefixes; nodes in
the second dimension sub-column are source IPs;
nodes in the third dimension sub-column are destina-
tion IPs. From the diagram, we can see that at time
1361951968, {exchange.Princeton.EDU} became a
frequent DNS query name, which is expected as the
DNS data was capture at Princeton University.

4 Related Work

Many visuliaztion schemes for frequent itemsets
have been proposed previously. One large family
of such schemes relies on frequent pattern tree (FP-
Tree) algorithms proposed by Han et al. [4]. FP-Tree
consists of a set of item prefix sub-trees and shows
hierarchical relationships in the dataset. FP-Viz by
Keim et al. utilizes such relationships and visualizes
outputs from FP-Tree algorithms in a Radial Hier-
archical Layout [5]. The root of a FP-Tree, which
has a value null is placed by a circle in the middle
of the visualization. Each segment in the diagrams
represents a node in the FP-Tree. The frequency of
an item decides the order of these circle segments
within each level. Different colors are used to distin-
guish the support of each itemset with red associated
with higher support and green with lower. Users can
also choose a frequent item as root and generate a
new diagram of items that frequently appear together
with the root item. However, this scheme is not de-
signed for streaming data. Each diagram is generated
for a bounded dataset. Therefore, it does not reveal
how frequent itemsets change over time.

Another visualization method is frequent patterns
visual analytic tool (FpVAT) by Leung et al. It con-
sists of two modules: raw data visualization (Rd-
Viz) and frequent pattern visualization (FpViz). Rd-
Viz displays raw data (i.e. the input data) in a two-
dimensional diagram. The x-axis is the items and

7



Figure 5: Visualization of frequent itemsets showing potential port scan attack

Figure 6: Visualization of frequent itemsets of DNS data

y-axis is the transactions. Each transaction is repre-
sented by a horizontal line connecting k filled circles,
one for each item in the transaction. RdViz can re-
veal what transactions hold the same items. FpViz is
similar to RdViz but is applied on frequent patterns
from mining algorithms. The x-axis is the same as
in RdViz. The y-axis is the frequency of an item-
set [7]. Both FpVAT and FP-Viz show aggregations
of some frequent itemsets on shared items, which is
similar to the aggregation we have in our method.
However, like FP-Viz, FpVAT is also designed for of-
fline, bounded dataset and is not suitable for stream-
ing data.

Glatz et al. proposed a method of hypergraphs
in [3]. A hypergraph consists of three basic com-
ponents: arrows, circles, and rectangles. Each rect-
angle corresponds to an attribute value, e.g. IP ad-
dress, port number. Rectangles from the same fre-
quent itemset all point the same circle, which shows
the frequency of this itemset. A rectangle can belong
to several frequent itemsets and thus can connect to
several circles. This form of aggregation is designed
for network data. However, the version they pre-
sented in [3] is static and applied on bounded data.
They later release an animated version that can dis-
play how frequent itemset changes over time [12].
Graphs generated for consecutive time stamps place

8



the same items at the same place, allowing users to
track what items stay frequent but may belong to dif-
ferent itemsets in the next time-stamp. The problem
with their animated approach is that after a new di-
agram is generated for the new stream of data, the
previous one disappears. Although users are able to
see what items remain frequent from last time-stamp
to present, it is hard for them to keep track of how an
item or an itemset evolve in a longer period.

There exist two closely related diagrams, sankey
diagram and alluvial diagram, that are designed for
showing network changes. Sankey diagram was first
created by Charles Joseph Minard to show the num-
ber of Napoleon’s soldiers going to and back from
Russia. Later it was used by Captain H Riall Sankey
for energy flow of a steam engine in 1898. Al-
though its first usage by Minard showed how an
event changes over time, Sankey diagram is currently
used more often for showing many-to-many map-
ping between two domains or the structure changes
in a system. Therefore it lacks the sense of how the
changes progress over time.

Alluvial diagram is designed to illustrate how
the structure of network changes over time. In
[10], Rosvall and Bergstrom use significance clus-
tering method to cluster bootstrap network at differ-
ent time-stamp. This is done by repeatedly sampling
links in the network and clustering bootstrap network
along the way. Comparing the clustered bootstrap
network with the original network gives the degree
of support that the data provide in assigning a node to
each cluster. Significant clusters are those clustered
together in at least 95% of the 1000 bootstrap net-
works. These records of significant clusters at each
time stamp are then plotted using alluvial diagram.
Each alluvium represents a cluster. The height of
alluviums corresponds to the volume of the flow in
the cluster. Different colors are assigned to differ-
ent alluviums. The alluvial diagram they proposed
is capable of tracing the history of network struc-
ture changes. They applied their method on data of
changes in science and revealed how Neuroscience
has gradually become an independent field of stud-
ies combining Neurology, Psychology, and Molec-
ular & cell biology. Our work is more related to
this approach. However, the diagram presented in
[10] is not ideal for frequent itemset visualization,
especially frequent itemsets of network data. Their
diagram is capable of showing data of three dimen-

sion: time, clusters, and connections between clus-
ters. However, network data may have higher dimen-
sion. For example, their diagram may be capable
of showing popular destination machines over time
and the sources of the traffic. Nevertheless, its cur-
rent design does not allow one to show further details
of these network activities, such as protocol or port
number.

5 Future Work

One future direction can be extending the same visu-
alization approach to persistent itemset mining and
rare itemset mining. All diagrams in this report are
generated using FIM algorithms. They demonstrated
its ability of showing traffic patterns that appear fre-
quently and may require attention. However, fre-
quent itemset is not the only type of patterns we
are interested in. Some attacks may be identify by
looking at persistent itemsets or rare itemsets. Some
attacks may disguise themselves by making fewer
connections at each time-stamp but persisting for a
long while. The way we use flows to represent the
changes of itemsets as time passes enables users to
easily tell what itemsets have stayed frequent over
a period of time. However, we also need a way of
showing what are the itemsets that have persistently
existed for the longest period of time.

Most graphs we shown here do not reveal suffi-
cient information about how two machines interact
with each other. Two directions of the connection
between a pair of machines may show up in differ-
ent nodes and there is no indication of their relation-
ship. Therefore, in future work, we may explore how
we can incorporate the interactive aspect into our di-
agram. This can be helpful for detecting DoS at-
tack by looking at incomplete three way handshake,
where there is a huge discrepancy between the num-
ber of SYN and ACK.

While it is easy to trace how things progress, our
current design does not provide an easy way of ex-
amining the history of the traffic. Users can scroll
back in time to look at what happened before, but
this is inefficient. As new data keeps arriving, the
diagram grows rapidly. When the users go back and
examine a segment of history, they will lose track of
the current updates. It is desirable if a condensed
view can be provided.

9



6 Conclusions

In this thesis, we introduced a visualization method
that can take the output from a FIM or heavy hitter
mining algorithm and display it in an intuitive way.
We implemented our method in JavaScript and ap-
plied our method on outputs produced by several dif-
ferent algorithms. We also showed that our design is
capable of revealing potential attack in real time.

References
[1] C. Borgelt. Simple Algorithms for Frequent Item

Set Mining, pages 351–369. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2010. ISBN 978-3-
642-05179-1. doi: 10.1007/978-3-642-05179-1_
16. URL http://dx.doi.org/10.1007/
978-3-642-05179-1_16.

[2] B. Dagenais. pymining. https://github.
com/bartdag/pymining, 2015.

[3] E. Glatz, S. Mavromatidis, B. Ager, and X. Dim-
itropoulos. Visualizing big network traffic data
using frequent pattern mining and hypergraphs.
Computing, 96(1):27–38, Jan. 2014. ISSN
0010-485X. doi: 10.1007/s00607-013-0282-8.
URL http://dx.doi.org/10.1007/
s00607-013-0282-8.

[4] J. Han, J. Pei, and Y. Yin. Mining frequent
patterns without candidate generation. In Pro-
ceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, SIGMOD
’00, pages 1–12, New York, NY, USA, 2000.
ACM. ISBN 1-58113-217-4. doi: 10.1145/
342009.335372. URL http://doi.acm.org/
10.1145/342009.335372.

[5] D. A. Keim, J. Schneidewind, and M. Sips. Fp-viz:
Visual frequent pattern mining. In InfoVis, 2005.

[6] B. Lahiri and S. Tirthapura. Finding correlated
heavy-hitters over data streams. In 2009 IEEE 28th
International Performance Computing and Commu-
nications Conference, pages 307–314, Dec 2009.
doi: 10.1109/PCCC.2009.5403820.

[7] C. K.-S. Leung and C. L. Carmichael. Fpvat: a
visual analytic tool for supporting frequent pattern
mining. ACM SIGKDD Explorations Newsletter, 11
(2):39–48, 2010.

[8] K. Mirylenka, G. Cormode, T. Palpanas, and
D. Srivastava. Conditional heavy hitters: Detect-
ing interesting correlations in data streams. The

VLDB Journal, 24(3):395–414, June 2015. ISSN
1066-8888. doi: 10.1007/s00778-015-0382-5.
URL http://dx.doi.org/10.1007/
s00778-015-0382-5.

[9] B. Mozafari, H. Thakkar, and C. Zaniolo. Verify-
ing and mining frequent patterns from large win-
dows over data streams. In Proceedings of the
2008 IEEE 24th International Conference on Data
Engineering, ICDE ’08, pages 179–188, Wash-
ington, DC, USA, 2008. IEEE Computer Society.
ISBN 978-1-4244-1836-7. doi: 10.1109/ICDE.
2008.4497426. URL http://dx.doi.org/
10.1109/ICDE.2008.4497426.

[10] M. Rosvall and C. Bergstrom. Mapping change in
large networks. PLoS ONE, 5(1):e8694, 2010.

[11] D. Tong and V. Prasanna. High throughput hierar-
chical heavy hitter detection in data streams. In Pro-
ceedings of the 2015 IEEE 22Nd International Con-
ference on High Performance Computing (HiPC),
HIPC ’15, pages 224–233, Washington, DC, USA,
2015. IEEE Computer Society. ISBN 978-1-4673-
8488-9. doi: 10.1109/HiPC.2015.30. URL http:
//dx.doi.org/10.1109/HiPC.2015.30.

[12] R. Vogt and P. Frick. Animated big data vi-
sualization. https://deniaz.github.io/
animated-big-data/, 2015.

10

http://dx.doi.org/10.1007/978-3-642-05179-1_16
http://dx.doi.org/10.1007/978-3-642-05179-1_16
https://github.com/bartdag/pymining
https://github.com/bartdag/pymining
http://dx.doi.org/10.1007/s00607-013-0282-8
http://dx.doi.org/10.1007/s00607-013-0282-8
http://doi.acm.org/10.1145/342009.335372
http://doi.acm.org/10.1145/342009.335372
http://dx.doi.org/10.1007/s00778-015-0382-5
http://dx.doi.org/10.1007/s00778-015-0382-5
http://dx.doi.org/10.1109/ICDE.2008.4497426
http://dx.doi.org/10.1109/ICDE.2008.4497426
http://dx.doi.org/10.1109/HiPC.2015.30
http://dx.doi.org/10.1109/HiPC.2015.30
https://deniaz.github.io/animated-big-data/
https://deniaz.github.io/animated-big-data/

	Introduction
	Frequent itemset mining
	Requirements for the visualization
	Proposed visualization method

	Frequent Itemset Visualization Method
	Basic components
	Illustration with Netflow data

	Application Examples
	Frequent itemsets of different sizes
	Correlated heavy hitters
	DDoS attack pattern
	Port scan attack pattern
	DNS-specific pattern

	Related Work
	Future Work
	Conclusions

