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Abstract

Variational inference has risen in popularity with the advent of deep generative

models due to its efficient and scalable approximation of the posterior distribution.

However, VI is not generally guaranteed to capture the true posterior.

In this paper, we propose a mixture-based non-parametric variational inference

algorithm. We prove a convergence to the true posterior in O(1/t) where t is the

number of mixture components.

Using a mixture of Gaussians as the variational approximation, we propose

boosted stochastic backpropagation where we derive tractable approximations and

practical insights to avoid numerical instability when learning a new component in

the mini-batch setting.

We then use boosted stochastic backpropagation as an unsupervised boosting

meta-algorithm for non-parametric density estimation and apply it to Variational

Autoencoders.

We empirically demonstrate the advantage of flexible and multimodal posterior

approximations in density estimation on MNIST.
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Chapter 1

Introduction

Deep generative models, such as variational autoencoders (VAE) [20, 32], have risen

in popularity due to their tractable likelihood lower-bound, ease of sampling, and

state-of-the-art performance on natural image datasets [19]. VAEs couple the reg-

ularized latent variable representations with nonlinear likelihoods to learn flexible

representations of complex high-dimensional data. Variational inference (VI) is then

used as a probabilistic framework to shape a principled cost function and an intrin-

sic architecture for VAEs. [3] VI can scale to larger datasets more efficiently than

other probabilistic inference algorithms such as Markov Chain Monte Carlo since it

treats posterior inference as an optimization problem over a parametric family of

approximate posterior distributions. [3]

In deep generative models, we can efficiently compute unbiased and low-variance

Monte Carlo estimates of the gradient of the optimization objective without a vari-

ational EM algorithm. [3] This is possible due to the reparametrization trick. [20]

The resulting algorithm is stochastic backpropagation [32] or stochastic gradient vari-

ational Bayes (SGVB)[20] which is the current best practice in VI due to its compu-

tational efficiency.
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Most current implementations of variational inference are not generally guaran-

teed to retrieve the true posterior regardless of the runtime, unlike MCMC. [3] In

most standard applications, variational approximations are chosen from a family of

factorizable distributions such as diagonal Gaussians. These approximations fail to

recover the posterior covariance and thus underestimate the posterior variance [3] in

addition to failing to naturally capture posterior multimodality. These disadvantages

are tolerated in practice due to the tractability of such approximations. However, it

is unclear how to perform a finer trade-off between computational performance and

statistical accuracy in VI which is common for other algorithms such as MCMC.

Nonlinear transformations in deep generative models can improve the flexibility of

unimodal variational approximation in order to better capture the latent representa-

tion. Nonetheless, they are not theoretically guaranteed to capture the true posterior.

In practice, the use of unimodal distributions, such as diagonal Gaussians in stochas-

tic backpropagation, has been shown to hinder density estimation as witnessed in the

over-pruning problem of VAEs. [35] Additionally, nonlinearities can capture some

multimodality in the latent space by marginalizing the distribution of the top hid-

den layer. However, this latent representation suffers from local smoothing [34] and

mode symmetry which lead to difficulties in identifying which modes correspond to

which latent features [28]. This limits the performance on discriminative tasks such

as clustering and classification [8].

Designing richer and more flexible posterior approximations for variational in-

ference and deep generative models has been an active area of research. However,

most approaches either lack the statistical consistency guarantees or don’t allow for

a flexible nonparametric density estimation as explained in the related works section

(2). Mixture approximations, on the other hand, are intuitive to implement in a

non-parametric way, and can model both arbitrarily smooth distributions and strong
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modality. This approximation can thus improve both the generative and discrimina-

tive performance of unsupervised models.

In this paper, we propose a non-parametric variational approximation with

Gaussian mixtures which provides an intuitive trade-off between the computational

tractability and density estimation accuracy. Based on Breimans [5] observation that

boosting can be viewed as a greedy optimization of a convex loss function, we develop

boosted stochastic backpropagation as an unsupervised boosting meta-algorithm for

deep latent Gaussian models. This combines the flexibility of nonlinear transforma-

tions with the incremental refinement and multimodality of non-parametric mixtures

to efficiently retrieve rich posterior approximations.

In section 3, we introduce stochastic backpropagation as the best current practice

in variational inference.

In section 4 we propose Gaussian mixtures as a variational approximation. We

leverage T. Zhengs [37] approximation framework to prove the retrievability of any

smooth posterior distribution at a rate of O(1/t) as a function of the number of

mixture components. We then derive analytical bounds and efficient identities for

boosted stochastic backpropagation. We also propose a novel optimization method

to the optimization of the component and its weight on a per-minibatch basis.

In section 5 we apply boosted stochastic backpropagation to deep latent Gaussian

models in order to optimally add weighed encoder-decoder pairs into a mixture of

VAEs and improve the overall KL divergence. We also address the numerical insta-

bility issues of mixtures and boosting which is caused by high-dimensionality and

subsampling noise.

We then demonstrate, in section 6 the practical advantage of more flexible and

multimodal posteriors on density estimation for MNIST.
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Chapter 2

Related Work

The bulk of recent variational inference work has focused on designing more flexible

posterior approximations. This line of research extends to the recent development of

deep generative models.

2.1 Advances In Variational Inference

Rezende and Mohamed [31] propose normalizing flows (NF) which map a simple uni-

modal distribution through a sequence of invertible nonlinear transformation. Inverse

auto-regressive flows [19] are an example of normalizing flows which achieves state-of-

the-art performance on several density estimation tasks. However, these flows tend

to be difficult to design and implement which might explain the very limited number

of known transformations.

Combining Monte Carlo Markov Chain sampling with VI [33, 6] has displayed

competitive performance but tends to be computationally expensive and difficult to

scale to real-world problems.

Auxiliary variable variational models [25, 30] were used to enrich the variational

approximation and better estimate the posterior covariance. However, it is unclear

how the number of posterior modes relates to the design of such methods.
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2.2 Mixture Models in Variational Inference

Mixture models were considered for flexible posterior approximation in early VI lit-

erature [12, 17, 2, 38]. These works established some theoretical guarantees for the

monotonic improvement of the KL divergence with each additional mixture com-

ponent. Mixture approximations were recently explored for deep generative models

[8, 29, 34]. However, these works did not demonstrate an improvement in the log

likelihood due to the non-informative prior. Overall, mixtures with a fixed number

of components are sensitive to the initialization and require the evaluation of the

likelihood and gradients of all components for each parameter update.

The a priori fixed number of mixture components is also a major disadvantage

of these approaches since we might need an arbitrarily large number of components

to approximate the true posterior within some inaccuracy tolerance ε. Therefore, a

non-parametric density estimation and mixture building approach is more suitable

for asymptotic guarantees and ease of tuning or early termination.

2.3 Boosting in Variational Inference and Deep

Generative Models

Boosting variational inference was recently explored by Miller et al. [27] and Guo et

al. [15]. However, [27] makes strong assumptions when deriving the gradient of the

ELBO for each new component thus compromising the convergence of the algorithm.

Additionally, the mixture weights are learned with a computationally expensive EM

algorithm for each boosting iteration. [15] is motivated by the same greedy approxi-

mation framework by T. Zheng [37] and thus proves similar properties of the KL loss

function. However, [15] deviates from the general gradient boosting framework and

proposes a heuristic, the Laplacian Gradient Boosting, which requires computation-
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ally expensive finite-differences estimates of the Hessian. Additionally, [15] does not

consider stochastic backpropagation which requires the reparametrization of the gra-

dient boosting objective. Overall, both works focus on approximating a known target

distribution rather than learning the hidden representation of generative models. Ac-

cordingly, these works do not naturally extend to deep generative models where we

jointly learn the generative and inference parameters with minibatches. Furthermore,

both works were not applied to real-world datasets or benchmarks such as MNIST.

Grover and Ermon [14] propose a multiplicative boosting approach for generative

models that does not enjoy the same theoretic guarantees as additive models, suf-

fers from intractable likelihoods, and is difficult to sample from. Tolistikhin et al.

[36] propose a provably optimal reweighing scheme for building a mixture of GANs.

However, [36] requires heuristical approximations of the mixture coefficients. Addi-

tionally, [36] does not naturally extend to unsupervised models which lack the GAN

discriminator’s binary label accuracy output.
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Chapter 3

Stochastic Backpropagation for

Variational Inference

3.1 Variational Inference

Let x be the observed variables, z the latent variables and pθ(x, z) the parametric

model of their joint distribution, called the generative model. Performing inference

requires marginalizing over the latent variables to compute the likelihood of the prob-

abilistic model. However, the evaluation and differentiation of the marginal likelihood

integral in (3.1) is usually intractable.

log pθ(x) = log

∫
z

pθ(x|z)pθ(z)dz (3.1)

Variational inference introduces an approximate posterior qφ(z|x) from a parametric

family of distributions and provides a lower-bound on the marginal likelihood 3.2,

the so-called Evidence Lower BOund (ELBO). [3] VI then formulates the inference

problem as a minimization of the variational lower bound which allows the joint

optimization of the generative parameters θ and the variational parameters φ with

7



EM-like updates. [3]

log pθ(x) ≥ Eqφ(z|x) [log pθ(x, z)− log qφ(z|x)] (3.2)

As shown in (B.2) in the appendix, minimizing this objective is equivalent to mini-

mizing a Kullback-Leibler (KL) [22] divergence between the true posterior p(z|x) and

the approximate posterior qφ(z|x). [3]

3.2 Stochastic Backpropagation

For continuous probabilistic models, the optimization of the ELBO can be done

without resorting to the classic variational EM algorithm by using a deterministic

reparametrization of the expectation (3.2) with respect to the variational parameters

(3.3). This provides unbiased and empirically low-variance Monte Carlo estimates of

the gradients [10] which can be used with general stochastic optimization methods

such as SGD.

The resulting algorithm is known as stochastic backpropagation [32] which has

become the best practice in variational inference due to its scalability and suitability

for general inference in deep generative models (fig. 3.2). [31]

3.3 Choice of Variational Approximations

The KL divergence (eq. B.1) is strictly positive for P 6= Q and equal to 0 only for

Q = P . As a result, finding the general Q which minimizes the KL divergence is no

easier than the original inference task, which we assume is intractable. The usual

strategy therefore is to place simplifying constraints on Q, the most popular, due to

its simplicity, being the mean field approximation. [31]

8



Figure 3.1: Deep Latent Gaussian Models [32]

In the case of stochastic backpropagation, the reparametrization requirement lim-

its the choice of the approximation to handful of distributions. [20] In practice,

stochastic backpropagation is usually derived under the Gaussian approximation

which guarantees an analytical form of the KL term (eq. E.4). Additionally, the

log-likelihood in (eq. 3.2) can be rewritten using the location-scale transformation

(fig. 3.3) for the Gaussian distribution as:

Eqφ(z|x)[log (pθ(x|z))] = EN (ε|0,I)[log (pθ(x|µφ(x) + σφ � ε))] (3.3)

This expectation cannot be solved analytically for most expressive models. Therefore,

we compute the gradients with respect to the variational parameters φ with Monte

Carlo estimates:

∇θ,φEqφ(z|x)[log (pθ(x|z))] = EN (ε|0,I)[∇θ,φ log (pθ(x|µφ(x) + σφ � ε))] (3.4)

9



Figure 3.2: Illustration of the deterministic Reparametrization (by Jaan Altosaar)
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Chapter 4

Boosted Stochastic

Backpropagation

4.1 Mixture Variational Approximations

While there has been research on enriching unimodal distributions to better capture

high-dimensional latent structures [20, 6], the resulting algorithms are not generally

guaranteed to retrieve the true posterior. Additionally, it is usually unclear how to

control the modality of the representation or how to map the resulting modes to their

corresponding latent features which hinders the discriminative quality of the model.

[28]

On the other hand, mixture models (4.1) are easy to design, are inherently mul-

timodal and can capture several properties such as heteroscedasticity even when the

base distributions are homoscedastic. [38]

Therefore, to model complex distributions, we can use the t-component variational

mixture:

cot(F) = F =
t∑
i=1

αiFi ,
∑

αi = 1 , αi ≥ 0 (4.1)

11



For base distributions in F, the set of all finite mixture models defines the convex hull

of F:

conv(F) =
∞⋃
k=1

{
k∑
i=1

αiFi : αi ≥ 0,
k∑
i=1

αi = 1, Fi ∈ F

}
(4.2)

For the remainder of this paper, we will focus on finite Gaussian mixtures due to

the ubiquity of Gaussian assumptions, their easy reparametrization and their ana-

lytical KL divergence. Additionally, the convex hull of Gaussian distributions can

include any arbitrarily smooth distribution. [26] Therefore, Gaussian mixtures can

capture both heavy tails and strong modality, asymptotically in the number of mix-

ture components. Even more interestingly, a mixture of restricted Gaussian such

as locked-covariance or diagonal Gaussians, which are common for deep generative

models, can still retrieve the true distribution but might require more components.

[38]

Note that it should be trivial to extend this framework to other reparametrizable

distributions for use with stochastic backpropagation.

4.2 Greedy Mixture Building

At each step t, we select a new distribution from the base family F that we admixture

into the existing convex combination with a coefficient α while re-scaling the existing

mixture by 1− α. The resulting mixture (4.3) is a convex hull of F: cot(F) spanned

by t components:

Ft = (1− α)Ft−1 + αQt (4.3)

The new component and its weight are selected to minimize the KL divergence of the

resulting convex combination:

Q∗t , α
∗ = arg min

Qt,α
KL((1− α)Ft−1 + αQt‖P ) (4.4)

12



This iterative process allows a fine trade-off between the runtime and the accuracy

as the algorithm can theoretically search all of conv(F) (4.2) and terminate when the

overall accuracy reaches some predefined ε. This non-parametric approach is thus

guaranteed to retrieve the true posterior or an ε-approximate posterior as long as

the posterior is in conv(F) which we assume is valid for F consisting of Gaussian

distributions. [26]

This is a greedy stage-wise strategy for mixture building that is somewhat equiv-

alent to boosting as first noted by Breiman [5] and later formalized by Friedman [9]

in the Gradient Boosting framework.

In [9], boosting is interpreted as functional gradient descent on a loss function

where the functional gradient is defined as the direction of maximal change in the

loss function when adding an infinitesimal perturbation to the input.

A functional gradient ∇E[f ] is thus implicitly defined as the linear term of the change

in a function due to a small perturbation ε: E[f + εg] = E[f ] + ε 〈∇E[f ], g〉+O(ε2).

For the KL loss function, we derive the functional gradient in the appendix (eq.

C.1) resulting in:

∇KL(Ft−1‖P ) = log ft−1 − log p (4.5)

The negative gradient −∇KL(Ft−1‖P ) is said to define the steepest descent in the

functional space. [9] Therefore, at each iteration, we perform a step of restricted

gradient descent, within the class of base distributions, since we cannot follow the

gradient directly and instead replace it with a search direction from a set of allowable

descent directions. The step size is then determined using a line search (4.6) along the

steepest direction to find the optimal coefficient for the newly selected distribution

before adding it to the current mixture.

α∗ = arg min
α
KL((1− α)Ft−1 + αQt‖P ) (4.6)

13



Notice that the gradient projection onto the base distribution set could degenerate to

a point mass that maximizes
∫
x
q log ft−1

p
. Therefore, we follow the well-established

regularization scheme in [9] to select each new component which results in the follow-

ing optimization problem:

arg min
Qt

KL(Qt‖P )−KL(Qt‖Ft−1) +
λ

2

∥∥q2t − qtft−1∥∥2 = arg min
Qt

KL(Qt‖P )−KL(Qt‖Ft−1)

(4.7)

+
λ

2

∫
x

q2t − qtft−1

Optimizing (4.7) could be interpreted as biasing the learning of a new component to

be different from the previous mixture, similarly to the idea of reweighing the negative

samples in AdaBoost. [9] In this case, the L2 term reconciles the two different KL

terms.

4.3 Boosted Gaussian Backpropagation

If we limit our base distributions to the Gaussian family, we can simplify the objective

(4.7) by expressing the squared L2 distance analytically (as derived in the appendix

eq. E.2):

∫
x

q2t − qtft−1 =

∫
N (µt;µt, 2 ∗ Σt)−

t−1∑
i=1

αi

∫
N (µt;µi,Σt + Σi) (4.8)

Furthermore, unlike typical Gaussian mixture models, we sidestep the non-

differentiability of the discrete sampling step by marginalizing over the different

mixture components which perfectly suits our weighed summation model. Ac-

cordingly, we can re-write the expectation under the mixture as a weighed sum of

expectations (eq. 4.9) under unimodal Gaussian components, thus resulting in a

14



variant of stochastic backpropagation:

Eft [log p(x|z)− log p(z)− log ft(z|x)] =
t∑
i=1

αiEfi [log p(x|z)− log p(z)− log ft(z|x)]

(4.9)

Another useful consequence of our two-step steepest descent optimization is the con-

vexity of the linear in (4.6) due to the non-negative second derivatives in (4.10).

Therefore, we can tractably estimate the gradients using Monte Carlo estimates un-

der the expectation of individual components (as derived in the appendix eq. C.2):

∇αKL((1− α)Ft−1 + αQt‖P ) = Eqt [log
(1− α)ft−1 + αqt

p
]

−
t∑
i

αiEfi [log
(1− α)ft−1 + αqt

p
]

∇2
αKL((1− α)Ft−1 + αQt‖P ) =

∫
x

[ft−1 − qt]2

(1− α)qt + αft−1
(4.10)

Notice that, in the stochastic setting, we alternate between gradient descent on (4.6)

and on (4.7) per minibatch as this has demonstrated better numeric stability than the

naive implementation and is quite intuitive for dealing with outliers and degenerate

components that the L2 regularization term might not mitigate (which is the case for

any dimensionality d > 2).

4.4 Theoretical Guarantees

For a convex and strongly smooth loss function, T. Zheng’s [37] greedy approximation

framework provides a theoretical guarantee for the convergence to a target distribution

that’s in the convex hull of the base family at a rate of O(1/t). [37] also allows for non-

optimal components at each step provided that the discrepancy between the selected

component and the optimal solution tends to 0 with the number of iterations.
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This framework perfectly suits our setup where, at each step, we might not be

able to find the exact optimum since the objective in (C.15) is not necessarily convex.

However, the KL loss function is jointly-convex in its inputs, as proven in the appendix

(eq. C.11). We also prove that the KL divergence is strongly smooth under the

assumption of lower-bounded densities in the appendix (eq. C.11).

Note that Li et. al [24] demonstrated an optimal convergence rate of O(1/t) for

the iterative process of mixture density estimation when guided by the minimization

of the maximum likelihood or the KL divergence. However, in the case of the KL

divergence, [24] assumes the boundedness of the log ratio of densities in F instead

of the boundedness of the densities themselves. This might not be practical since

two Gaussian densities with the same variance and different means results in a log

density ratio that tends to infinity at the tails on a non-compact support. Therefore,

our boundedness assumption, which requires a compact support domain, for the base

distributions is practically justified.

4.5 Stopping Condition

If at an iteration t the current Ft−1 cannot be improved by adding any of the base

densities, the algorithm terminates.

To better understand this termination condition, let’s derive the functional gra-

dient in terms of the α gradients (C.2) as α tends to 0 since this corresponds to the

maximum possible perturbation we can introduce to the loss function of the current

mixture:

α↘ 0→ ∇αKL((1− α)Ft−1 + αQt‖P ) =

∫
x

qt log
ft−1
p
−
∫
x

ft−1 log
ft−1
p

= KL(Ft−1‖p)−KL(Qt‖P )−KL(Qt‖Ft−1)

(4.11)
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It is easy to check that the expression in eq. 4.11 is equivalent to that of the negative

gradient projection which we seek to maximize in (4.7) minus the L2 regularization.

The improvement of the KL divergence with respect to the admixture of a new com-

ponent at an iteration t is thus guaranteed if the expression (4.11) is negative.

Since the second derivative (4.10) is non-negative for all values of α: if

KL(Ft−1‖P ) ≥ KL(Qt‖P ) and (4.11) is positive, all mixtures (1 − α)Ft−1 + αQt

would have a higher KL divergence than the previous mixture independently of the

optimality of Ft−1.

This inequality could also be considered as a characterization of the expressivity

of the base distributions family F such that, to guarantee convergence, a base family

would need to satisfy:

KL(Qt‖P )−KL(Ft−1‖P ) ≤ KL(Qt‖Ft−1)

for all Ft−1 ∈ conv(F) and Qt ∈ F (assuming P is also ∈ conv(F)).
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Chapter 5

Boosting Variational Autoencoders

5.1 Boosting Deep Latent Gaussian Models

As discussed earlier, a nonlinear transformation can enrich a simple distribution (fig.

5.1) and allow for a more accurate representation of the latent space. Furthermore,

the use of inference networks to ”amortize” variational inference is an important prac-

tice that leverages the computational efficiency of back-propagating through neural

networks to learn inverse mapping from observations to the latent space. [11] This

accelerates the training and testing times as well as better scales the inference to

larger datasets. [20]

Therefore, the best current practice for variational inference is a combination of

fast amortized inference with stochastic backpropagation which is most suitable for

deep latent Gaussian models such as VAEs. Note that in most VAE implementations,

the prior pθ(z) is a spherical GaussianN (z|0, I) and the variational approximation is a

diagonal Gaussian distribution qφ(z|x). This unimodal and factorizable parametriza-

tion has been shown to cause over-pruning in the latent dimensions which hinders

density estimation. [35, 7]
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Figure 5.1: Deep generative models (e.g. GMVAE) capture a richer latent represen-
tation than other generative models such as Gaussian Mixture Mixtures

Therefore, VAEs are the perfect application for boosted stochastic backpropaga-

tion using a mixture of diagonal Gaussian distributions which can be combined with

VI advances such as normalizing flows [31] or importance weighed sampling [6].

5.2 Architecture

Figure 5.2: A mixture of Gaussians VAE model
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Boosted stochastic backpropagation is used as a meta-algorithm for the selection

and admixture of baseline encoder-decoder pairs into a mixture of VAEs (fig. 5.2)

while holding the previously-trained autoencoders fixed. We train a new decoder

for each encoder due to the coupling of their optimization and the known issues

of forgettability [21] in neural networks. Accordingly, if we were to keep the same

decoder throughout progress of our algorithm, the decoder would not be able to

generate relevant samples from the latent representation of earlier encoders.

We perform sampling in a reparametrizable fashion by generating a single sample

from each component or autoencoder and then taking a weighted average. This

can preserve the covariance among the latent dimensions and between the different

components since we have to evaluate an approximation of the pair-wise entropy for

each new encoder. If, however, we sought a computational compromise, we could

represent the mixture of the latent samples as a Gaussian sampling with matching

first and second moments which were computed in (E.4).

A discussion of the computational complexity is provided in the appendix (A).

5.3 Numerical Stability

In the general setting of VAEs, the neural network parametrization makes the boost-

ing optimization a bit more difficult since each data point maps to a different Gaussian

representation. This induces some noise into our residual fitting algorithm. Addition-

ally, for dimensions d >, the L2 regularization term vanishes since it’s not in the log

domain. Furthermore, due to minibatching with equal weights (since we should not

require reweighing when we are already performing gradient boosting), our early ex-

periments suffered from numerical instability and divergence problems as each new

component was extremely sensitive to the uniformly sampled minibatch which could

be well covered by the previous component whereas the next minibatch could a com-
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plete outlier to the rest of the dataset. These problems are not unique to our opti-

mization formulation as they seem to be recurrent in Mixture Density Networks as

well.[4]

To mitigate such problems, we first used Batch Normalization [16] to re-scale the

contribution of each batch and generally accelerate the VAE training as proposed in

[35].

However, our most successful practical contribution has been to alternate the

inference of the new component (thus the steepest descent) and the mixture weight

(the line search) on a per-minibatch basis rather than fully training a new component

and then proceeding to fitting a mixture weight to that component. This modification

should not invalidate the convergence guarantees of the framework in [37] but warrant

further theoretical analysis that is outside the scope of the current version of this

paper.
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Chapter 6

Experiments

6.1 Experiment Design

For our experiments, we parametrized our VAEs with two nonlinear (with softplus

activation) hidden layer for each of the encoder and the decoder. We then connect

these layers to a 2 linear layers: one for the log of the variance and another for the

mean of the Gaussian parametrization. These layers were taken at a size of 500 units

as is common in the VAE literature [35].

All parameters were initialized using the Glorot and Bengio scheme [13].

For training, we used the ADAM [18] optimization algorithm with a learning rate

of 0.001 and a batch size of 100. The models were implemented in Python using

TensorFlow [1] and the code should be available soon.

Our experiments in this version are limited to MNIST, the standard handwritten

digits dataset composed of 28x28 grayscale images (mapped to a 0-1 range) and con-

sisting of 55, 000 training samples, 5, 000 validation samples to terminate the boosting

algorithm in case of overfitting, and 10, 000 testing samples [23].

We cite our numerical instability issues as the main cause of our lack of substan-

tial experimentation as we did not formalize the process described in (5.3) until a few
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hours before the submission deadline. However, it is worthy to note that none of the

existing regularization schemes for gradient boosting scaled to the MNIST dimen-

sionality which might explain the limitation of existing literature to 2-dimensional

toy datasets and shallow models.

6.2 Results

We first evaluate the log-likelihood using importance sampling as described in [6] with

1000 Monte Carlo samples at each iteration of our boosting algorithm and noticed a

monotonic improvement in the test log likelihood on baseline VAEs. A small example

of such improvement can be seen in the convergence values for the models in fig. 6.2.

We noticed an improvement of the reconstruction error as show in fig. (6.2) and a

somewhat more disentangled latent representation as show in the t-SNE visualization

(fig. 6.2). Due to the marginal and almost unnoticeable improvement in generated

samples, we do not report qualitative results.

Figure 6.1: Comparison of the complementary reconstructions

Early experiments that we do not report due to the recent change in our frame-

work combined gradient boosting with reweighing process similar to that suggested

in [15] and demonstrated the adversary effect of combining reweighting and gradient

boosting. Early results also demonstrated a much better improvement, later in the
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Figure 6.2: Comparison of the ELBO for baseline models

Figure 6.3: t-SNE visualization of the latent space: a more disentangled representa-
tion for the mixtur

training process of VAEs, when adding mixture components as compared to running

the inference algorithm for a thousand or more extra epochs. This is motivated by

the theoretical guarantees established in [2] of the monotonic improvement for each

added mixture component when the neural network parametrization of the diagonal

Gaussian cannot generalize any further. A similar observation was made with regards

to adding depth or width to the neural networks, similarly to the observation made

in [14].

Overall, our framework offers the theoretical guarantees of statistical consistency

and inherent multimodality. In the case of MNIST, after 7 iterations of adding new

components and rescaling older mixtures, we retrieved 7 components that seem to
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specialize in specific digits. This can clearly enhance the performance on discrimina-

tive tasks.
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Chapter 7

Conclusion

7.1 Summary

In this paper, we propose a both practical and theoretically founded unsupervised

boosting algorithm variational inference that is guaranteed to converge with a rate of

O(1/t) to arbitrarily smooth posteriors.

Using a mixture of Gaussians, we derive boosted stochastic backpropagation which

is regarded as the best current practice in variational inference.

We propose a novel methodology to scale gradient boosting to the mini-batch and

higher dimensional setting of deep generative models with the per-batch alternation of

steepest descent and line search optimization processes to avoid numerical instabilities

that tend to plague mixture models in deep learning.[4]

Our promising initial results highlight the added flexibility and ease of tuning for

posterior approximations even for rich nonlinear parametrization.
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7.2 Future Work

As we build on this theoretical framework, we hope to establish a stronger empirical

proof of the practicality and scalability of this framework on real world datasets and

discriminative tasks.

Future directions would consist of rethinking of the L2 regularization scheme sug-

gested by [9] which does not scale well for densities.

Furthermore, as we struggled with the instability of the deep learning aspect of

this research, we noticed the lack of literature linking the boundedness of network

weights to the smoothness and boundedness of the top stochastic layer which would

have immediate impact on the stability of similar models and algorithms.
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Appendix A

Computational Complexity

Each forward pass for a single reparametrizable deep generative model costs CV AE =

O(LD2) where L is the total number of layers and D is the average width of the MLP

layers. At each boosting iteration, we use a single Monte Carlo estimate. However, we

need to compute pair-wise entropy terms that we cannot cache as in shallow models

due to the neural network parametrization which enforces a unique mapping from

each observation to the latent space. Therefore, at k iterations, similarly to other

mixture models, the complexity would be of the order of O(k(k−1)
2

CV AE). However, in

most practical applications, one’s marginal improvement for many iterations would

be so negligible that it’s possible to choose a stopping criterion tailored to one’s

computational resources and statistical needs.

Alternatively, we can estimate the parameters of each component by taking the

average over the whole dataset during training and using it instead of performing

forward passes for each newinput during the training of later components or iterations.
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Appendix B

Evidence Lower Bound

The Kullback-Leibler divergence is defined as:

KL(Q‖P ) =

∫
x

p(x) log
p(x)

q(x)
(B.1)

KL[Q(z‖x)‖P (z‖x)] = EQ[log q(z‖x)− log p(x‖z)− log p(z)] + log p(x)

arg min
Q
KL[Q(z‖x)‖Q(z‖x)] = arg min

Q
EQ[log q(z‖x)− log p(x‖z)− log p(z)]

= arg min
Q
KL(Q(z‖x)‖P (x, z))

= arg min
Q
KL(Q(z‖x)‖P (z))− EQ[log p(x|z)] (B.2)

Notice that the KL for Gaussian distributions has an analytical form.

The RHS expectation in (B.2) is the reconstruction error or expected data log likeli-

hood.

Throughout the paper, we use KL(Q‖P ) to signify the negative of thee ELBO and
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our main loss function of interest:

KL(q‖p) = KL[Q(z‖x)‖P (z‖x)]− logP (x) (B.3)
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Appendix C

Objective Derivation and

Theoretical Guarantees

C.1 The Functional Gradient

In the case of functional gradient descent, we would like to be able to work in a

generalized space of functions (such as loss functions) instead of a space of parameters.

A functional E : f → R is a function of functions f ∈ HK .

A functional gradient ∇E[f ] is defined implicitly as the linear term of the change

in a function due to a small perturbation ε in its inputs

E[f + εg] = E[f ] + ε 〈∇E[f ], g〉+O(ε2)
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Therefore, a functional gradient could be obtained as the limit of the gradient of

a function with respect to a perturbation as the perturbation tends to 0.

KL(Q+ εH‖P ) =

∫
x

(q + εh) log
q + εh

p

=

∫
x

q log
q + εh

p
+ ε

∫
x

h log
q + εh

p

=

∫
x

q log
q(1 + εh/q)

p
+ ε

∫
x

h log
q(1 + εh/q)

p

=

∫
x

q log
q

p
+

∫
x

(q + εh) log (1 + εh/q) + ε

∫
x

h log
q

p

≈ KL(Q‖P ) +

∫
x

(q + εh)εh/q + ε 〈log q − log p, h〉

= KL(Q‖P ) + ε 〈log q − log p, h〉+O(ε2) (C.1)

Accordingly, the functional gradient is ∇KL(Q‖P ) = log q − log p

C.2 Alpha Gradients

∇αKL((1− α)Ft−1 + αQt‖P ) =

∫
x

qt log
(1− α)ft−1 + αqt

p
−
∫
x

ft−1 log
(1− α)ft−1 + αqt

p

= Eqt [log
(1− α)ft−1 + αqt

p
]− Eft−1 [log

(1− α)ft−1 + αqt
p

]

= Eqt [log
(1− α)ft−1 + αqt

p
]−

t∑
i

αiEfi [log
(1− α)ft−1 + αqt

p
]

(C.2)

∇2
αKL((1− α)Ft−1 + αQt‖P ) =

∫
x

[ft−1 − qt]2

(1− α)qt + αft−1
(C.3)
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C.3 Gradient Boosting Objective

Derivation of the objective based on Friedman’s [9] framework:

arg min
q

∥∥−∇KL(ft−1) − λ(q − ft−1)
∥∥2 = arg min

q

∫
x

(−∇KL(ft−1) − λ(q − ft−1))2

= arg min
q

∫
x

2∇KL(ft−1)λ(q − ft−1) +

∫
x

λ2(q − ft−1)2

= arg min
q

∫
x

∇KL(ft−1) +
λ

2

∫
x

(q − ft−1)2

= arg min
q

∫
x

(log ft−1 − log p)(q − ft−1)

+
λ

2

∫
x

q2 − qft−1

= arg min
q

∫
x

q log ft−1 − q log p− ft−1 log ft−1 + ft−1 log p

+
λ

2

∫
x

q2 − qft−1

= arg min
q

∫
x

q log ft−1 − q log q + q log q − q log p

+
λ

2

∫
x

q2 − qft−1

= arg min
q
KL(Q‖P )−KL(Q‖Ft−1) +

λ

2

∫
x

q2 − qft−1

(C.4)

C.4 Joint Convexity of the KL divergence

Similarly to other f-divergences [cite f convexity], for any α ∈ [0, 1], KL divergence is

jointly convex in its arguments.

That is, for any(P1, Q1) and (P2, Q2) pairs of probability distributions over a random
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variable X we have:

P = αP1 + (1− α)P2 (C.5)

Q = αQ1 + (1− α)Q2 (C.6)

We want to prove:

KL(Q|P ) ≤ αKL(Q1‖P1) + (1− α)KL(Q2‖P2) (C.7)

Proposition: Log-Sum Inequality: If a1, , an, b1, , bn are non-negative numbers

then:
n∑
i=1

ai log (1/bi) ≤

(
n∑
i=1

ai

)
log

(∑n
i=1 ai∑n
i=1 bi

)
(C.8)

Proof : Let

a1 = αq1, a2 = (1− α)q2 (C.9)

b1 = αp1, b2 = (1− α)p2 (C.10)

We then have joint convexity:

KL(Q‖P ) =

∫
x

q log
q

p

=

∫
x

αq1 + (1− α)q2 log
αq1 + (1− α)q2
αp1 + (1− α)p2

=

∫
x

a1 + a2 log
a1 + a2
b1 + b2

≤
∫
x

a1 log
a1
b1

+ a2 log
a2
b2

≤
∫
x

αq1 log
αq1
αp1

+

∫
x

(1− α)q2 log
(1− α)q2
(1− α)p2

= αKL(Q1‖P1) + (1− α)KL(Q2‖P2) (C.11)
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In the special case of P1 = P2 we retrieve the following convexity property:

KL(Q‖P ) ≤ αKL(Q1‖P1) + (1− α)KL(Q2‖P1) (C.12)

Which entails the following inequality (can be used for stopping condition):

KL(Q1‖P )−KL(Q2‖P ) ≤ 〈∇KL(Q1‖P ), Q2 −Q1〉+
1

a
‖Q2 −Q1‖2 (C.13)

C.5 Strong Smoothness of the KL divergence

Let Q2 = Q1 + φ

Well use the fact that

log (1 + x) ≤ x→ log (a+ b) = log a(1 +
b

a
) ≤ log a+

b

a
(C.14)

Proof :

KL(Q1‖P )−KL(Q2‖P ) = KL(Q1‖P )−KL(Q1 + φ‖P )

= 〈q1 + φ, log q1 + φ〉+ 〈q1 + φ, p〉 − 〈q1 + φ, p〉 − 〈q1, log q1〉

= 〈q1 + φ, log q1 + φ〉 − 〈q1, log q1〉 − 〈φ, p〉

=

〈
q1 + φ, log q1(1 +

φ

q1
)

〉
− 〈q1, log q1〉 − 〈φ, p〉

≤
〈
q1 + φ, log q1 +

φ

q1

〉
− 〈q1, log q1〉 − 〈φ, p〉

= 〈q1, log φ〉+

〈
φ,
φ

q1

〉
− 〈φ, log p〉

≤ 〈log q1 − log p, φ〉+
1

a
‖φ‖2 (C.15)
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Appendix D

Analytical Mixture Bounds and

Practical Tricks

We focus on cross-entropies with Gaussians since the entropy can be written as a

weighed sum of these expressions.

D.1 Mixture Cross-Entropy Lower Bound

Proof : Using Jensen’s inequality:

−
∫
x

N (x;µq,Σq) log
t−1∑
i=1

αiN (x;µi,Σi) = − log

∫
x

N (x;µq,Σq)
t−1∑
i=1

αiN (x;µi,Σi)

≥ − log
t−1∑
i=1

αi

∫
x

N (x;µq,Σq)N (x;µi,Σi)

≥ − log
t−1∑
i=1

αi

∫
x

N (µq;µi,Σi + Σq) (D.1)
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D.2 Mixture Cross-Entropy Upper Bound

∀ k ≤ t− 1 we have:

−
∫
x

N (x;µt,Σt) log
t−1∑
i=1

αiN (x;µi,Σi) ≤ − logαk −
∫
x

N (x;µt,Σt) logN (x;µk,Σk)

(D.2)

Proof :

−
∫
x

N (x;µt,Σt) log
t−1∑
i=1

αiN (x;µi,Σi) = −
∫
x

N (x;µt,Σt) log (αkN (x;µk,Σk) · (1 + εk))

= −
∫
x

N (x;µt,Σt)[logαkN (x;µk,Σk) + log (1 + εk)]

≤ −
∫
x

N (x;µt,Σt)[logαkN (x;µk,Σk)]

= min
k
CrossEntropy(N (x;µt,Σt),N (x;µk,Σk))

− logαk

With εi defined as follows:

εi =

∑t−1
i 6=j=1 αjN (x;µj,Σj)

αiN (x;µi,Σi)
(D.3)

Notice that log (1 + εi) is always positive. Thus, we retrieve the upper bound.

For a tighter upper bound, we pick the component k from the mixture that minimizes

the upper bound

(the cross-entropy and the log mixing coefficient).
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D.3 Mixture Likelihood and LogSumExp

∫ N

n=1

log p(xn|αn, µn, σn) =
N∑
n=1

log
t∑
i=1

αiN (xn|µi,n, σi,n)

=
N∑
n=1

log
t∑
i=1

elogαiN (xn|µi,n,σi,n) (D.4)

=
N∑
n=1

log
t∑
i=1

elogαi+logN (xn|µi,n,σi,n) (D.5)

A log-sum-exp operation is known to encounter numerical stability. Therefore we use

the log-sum-exp

trick to subtract the maximum value before taking the log-sum-exp:

xmax = arg max
x

log
∑
i

exi

log
∑
i

exi = log exmax
∑
i

exi−xmax (D.6)

= xmax + log
∑
i

exi−xmax (D.7)
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Appendix E

Useful Gaussian Identities

E.1 L2 Norm Identity for Gaussian Distributions

∫
x

q2t − qtft−1 = Eqt [qt − ft−1] (E.1)

∫
x

q2t − qtft−1 =

∫
N (x;µt,Σt) ∗ N (x;µt,Σt)−

∫
N (x;µt,Σt) ∗

t−1∑
i=1

αiN (x;µi,Σi)

=

∫
N (µt;µt, 2 ∗ Σt)−

t−1∑
i=1

αi

∫
N (µt;µi,Σt + Σi) (E.2)
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E.2 Gaussian Cross-Entropy

Let Q = N (x;µ1,Σ1) and P = N (x;µ2,Σ2) and D is the number of latent dimensions.

−
∫
x

N (x;µ1,Σ1) logN (x;µ1,Σ1) = −H[Q]−KL(Q‖P )

=
1

2

[
D log (2π) + log |Σ2|+ Tr

(
Σ1

Σ2

)
+

(µ2 − µ1)
2

Σ2

]
(E.3)

E.3 Analytical KL

KL[N (µ(x),Σ(x))‖N (0, 1)] =
1

2

(∑
d

Σ(x) +
∑
d

µ(X)Tµ(X)−
∑
d

1− log
∏
d

Σ(x)

)

=
1

2

(∑
d

Σ(x) +
∑
d

µ(X)Tµ(X)−
∑
d

1−
∑
d

log Σ(x)

)

=
1

2

(
tr(Σ(X)) + µ(X)Tµ(X)− k − log det(Σ(X))

)
=

1

2

∑
d

(
σ2
i (x) + µi(X)2 − 1− log σ2

i (x)
)

for diagonal Gaussians

(E.4)

In general:

KL(N (µ1,Σ1)‖N (µ2,Σ2)) =
1

2

[
tr(Σ−12 Σ1) + log

|Σ2|
|Σ1|

+ (µ2 − µ1)
TΣ−12 (µ2 − µ1)−D

]
(E.5)
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E.4 Gaussian Mixture Statistics

The mean and covariance of a Gaussian mixture can be computed as follows:

µt = Eft [x] =
t∑
i

αiµi (E.6)

Σt = Covft [x] =
t∑
i

αiΣi − αi (µi − µt) (µi − µt)T (E.7)

=
t∑
i

αiσ
2
i +

∑
i

αiµ
2
i − (

∑
i

αiµi)
2for diagonal Gaussians (E.8)
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