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Abstract

The internet’s original design, guided by the end-to-end design principle, pushed all

application-specific logic and complexity to the edges of the network and kept the core

of the network focused on the simple task of delivering data. The original end-to-end

principle, however, did not explicitly account for trust and security. There are several

central points of trust and failure on the traditional internet. These include root servers for

the Domain Name System (DNS) and public-key infrastructure like Certificate Authorities

(CAs) that publish security certificates. Further, the success of cloud hosted services in the

last decade means that most user data is stored on remote servers and end-users need to

trust these remote servers for correct execution of their applications.

In this thesis, we present a new internet architecture that explicitly follows the trust-to-

trust design principle, i.e., end-users don’t need to trust the core of the network for anything,

and end-users can use applications and services in a fully decentralized way. We make the

observation that cryptocurrency blockchains, like Bitcoin, can be used to bootstrap trust

for new nodes joining a network. We identify the various limitations, like high latency

and limited bandwidth, of contemporary blockchains and discuss how our architecture can

scale by moving most operations outside of the blockchain layer.

We detail our experience of running a large production system on top of a cryptocur-

rency blockchain and how that experience guided our design. We present the implementa-

tion of a new decentralized internet, called Blockstack, that takes the trust-to-trust architec-

ture from a theoretical concept to a production system. Deploying new systems by modi-

fying production blockchains is hard because it requires coordination and agreement from

several parties. We introduce virtualchains, a virtual blockchain constructed by processing

data from underlying blockchains, to enable the seamless introduction of new functionality

on top of blockchains without requiring any consensus-breaking changes. Blockstack is

already powering several fully decentralized applications, like OpenBazaar; it’s released as

open-source software and, to date, more than 70,000 domains have been registered on it.
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Chapter 1

Introduction

“When Hiro first saw this place, ten years ago, the monorail hadn’t been written yet; he

and his buddies had to write car and motorcycle software in order to get around. They

would take their software out and race it in the black desert of the electronic night.”

– NEAL STEPHENSON (SNOW CRASH, 1992)

Our lives are increasingly dependent on the internet. Its hard to get any work done if

the internet goes down. The internet was designed more than 40 years ago and is showing

signs of age. Critical internet services can be taken offline by straight forward attacks like

the recent DDoS attack on DNS servers [109]. Further, in the current internet architecture

users implicitly trust certain hidden services and intermediaries like domain name servers

and certificate authorities (CAs). These trust points can be exploited to trick users into

connecting to malicious websites like the recent incident where a Turkish CA issued false

security certificates for Google [124].

Over the last decade, we’ve seen a shift from desktop applications running locally to

web services running on remote servers and storing user data remotely. These centralized

services are a prime target for hackers and frequently get hacked. In 2016, Yahoo! admitted

to losing information for 500 million people [117]. Security problems with core internet

infrastructure and the data models of centralized web services built on top have exposed

the ugly underbelly of the internet and exposed flaws in the internet’s original design.
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1.1 Internet Architecture

Internet’s Original Design

The internet started as an inter-network of different packet-switched networks in the 1970s.

Since the beginning, the internet was decentralized by design. Nodes on the internet were

designed to talk to each other directly without relying on any central services that controlled

internet traffic. The Domain Name System (DNS), a federated network, enables the use of

human-readable names, like cnn.com instead of IP addresses, for connecting to other nodes.

The internet gained wider adoption in the early 1990s with the introduction of the World

Wide Web and internet browsers, but the underlying architecture remained unchanged.

The internet was originally designed to keep all application-specific logic at the edges

and was designed as a “dumb network,” i.e., it doesnt know what data it delivers and just

transfers packets from point A to point B. This principle of not keeping complexity in the

network and pushing all complexity and logic to the edges is called the end-to-end design

principle [126] by David Clark et al.

Trust-to-Trust Design

The original end-to-end principle that guided internet design for the past decades did not

explicitly account for trust and security. Over time, trusted resources like DNS root servers

and Certificate Authorities (CAs) became a part of the core network. David Clark and

Marjory Blumenthal extended the end-to-end principle [44, 51]. According to the updated

principle, called the trust-to-trust principle [52], a new internet design should:

1. Give the end user explicit control over trust decisions, and

2. Move trust from the core of the network to the edges.
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This movement of trust from the core of the network to the edges is also called decen-

tralization and marks a shift in how new networks are being designed. A big part of that

shift comes from the advent of new decentralized blockchain networks like Bitcoin [127].

1.2 Blockchains and Decentralized Services

Blockchain networks started as networks for digital currencies (also called cryptocurren-

cies). Digital currency networks need to solve a double spend problem where a digital

token, unlike physical cash, can be spent twice [127]. Blockchains provide a solution to

this problem without introducing any central services. Blockchain networks are open mem-

bership networks that store data logs, called blockchains. These data logs are organized into

blocks that are cryptographically linked together in a hash chain [127]. Blockchain data

is stored redundantly on all computers connected to the network. Only new data can be

appended to blockchains, and historic logs cannot be modified or tampered with. Every

connected computer can verify that new data being written to logs obeys the rules of the

open blockchain network’s consensus mechanism (like checking that a new transaction is

not double spending a digital token). All nodes on the network have the same view of the

blockchain data. The network doesn’t have any central points of trust or failure.

Applications Beyond Cryptocurrencies

Blockchains were originally designed for new cryptocurrencies, like Bitcoin and Litecoin,

but they are useful beyond exchanging digital tokens. The cryptographically auditable,

append-only ledgers of blockchains are already being used to build new, decentralized ver-

sions of the Domain Name System (DNS) [104] and public-key infrastructure (PKI) [112],

along with other applications like file storage [67] and document timestamping [48]. They

enable a new class of decentralized applications and services that minimize the degree to

which users need to put trust in a single party, like a root certificate authority.
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Blockchains have attracted interest from enthusiasts, engineers, and investors with 1.5

billion USD invested in blockchain startups over the last several years [54]. With the rapid

capital infusion, infrastructure for blockchains is getting quickly deployed [56]. How-

ever, blockchains are at an early stage, there is very little production data available to

guide design trade-offs, and there are many scalability and performance challenges with

blockchains (Chapter 2). We believe that in spite of the current limitations, blockchains

provide important infrastructure for building secure, decentralized services.

1.3 A New Internet Architecture Secured by Blockchains

The decentralization benefits of blockchains motivated us to design a new internet architec-

ture that explicitly follows the trust-to-trust design principle and removes all points of trust

from the core of the network. We identify that the DNS, a federated network, and PKI ser-

vices, usually operated by large companies like Verisign [21], are the two most important

components of core internet infrastructure that need to be replaced with their decentralized

versions. There is a school of thought that argues that human-readable names are not im-

portant and long cryptographic IDs combined with search engines can be a replacement for

DNS [33, 80, 99]. In this thesis, we take the view that human-readable names are essential

for providing a good user experience and, in practice, it’d be very hard to convince internet

users to change their habits and stop using human-readable names online.

Decentralizing naming and PKI can enable end-users to connect to web services, like

Facebook and LinkedIn, without trusting any (hidden) parties in the middle. This appears

to satisfy the trust-to-trust principle in theory (with users and their web services in separate

trust zones) but doesn’t fully achieve the intended benefits of decentralization; web services

like Facebook and LinkedIn still own and store user data and two users, say Alice and Bob,

need to first connect to a centralized service before they can establish a connection between

each other. We consider decentralization of user data to be an essential part of the trust-
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to-trust design. End users should not trust third-parties with their personal data and should

not rely on any third-parties for connecting to other users.

In this thesis, we narrow down the design goals of a new trust-to-trust internet to the

following three requirements:

1. Users should be able to register and cryptographically own human-readable names

without trusting any service providers or intermediaries.

2. Users should have access to decentralized storage systems where they can store their

data without revealing it to any party that they need to trust.

3. Users should get comparable performance to the traditional internet, and a trust-to-

trust design based internet should be able to scale to billions of users.

In this thesis, we present how blockchains solve the bootstrapping of trust problem in

distributed systems (Chapter 2). We argue that bootstrapping of trust is the only function-

ality that needs to be handled at the blockchain layer and all other operations can be moved

off-chain for better scalability. We present our experiences from operating a production

naming and PKI system on the Namecoin network, which is one of the largest services

built on top of a blockchain to date (Chapter 3).

Our experience with Namecoin informed the design and implementation of a new

blockchain-based system, called Blockstack, which provides services for naming and stor-

age that can run on top of any blockchain (Chapter 4). Unlike previous blockchain-based

systems, Blockstack separates its control and data plane considerations: it keeps only

minimal metadata (names, data hashes and state transitions) in the blockchain and uses

external datastores for actual bulk storage. Blockstack enables users to register human-

readable names (Chapter 5). We have released Blockstack as open source software [42].

Modifying production decentralized systems like Bitcoin (and introducing new func-

tionality for which it was not designed) is quite difficult, particularly that the system still

needs to reach “consensus.” We extended the single state machine model of blockchains,
5



by introducing virtualchains, to allow for arbitrary state machines without requiring con-

sensus breaking changes in the underlying blockchain. Virtualchains (Chapter 6) are to

blockchains what virtual-machines are to physical computers; for applications running on

a virtualchain it’s a blockchain but is itself built on top of underlying blockchains and en-

ables fault tolerance and isolation. This design was non-intuitive before our work; indeed,

the standard approach for the past four years was to fork the main Bitcoin blockchain to

add new and different functionality.

Further, we present the design of two new peer networks for decentralized discovery of

content (Chapter 7) and outline the architecture of a decentralized storage system that can

give comparable performance to traditional centralized cloud providers (Chapter 8). We

discuss real-world use cases and present a case study of a decentralized marketplace that

uses Blockstack (Chapter 9).

1.4 Contributions

This thesis makes the following contributions:

• We present the design of a new internet architecture that extends the end-to-end de-

sign of the traditional internet and explicitly follows the trust-to-trust design prin-

ciple. Our design removes any trust points from the middle of the network. We

make the observation that, in theory, blockchains are sufficient for enabling trust-to-

trust networks, but the inherent bandwidth and latency limitations of contemporary

blockchains mean that practical trust-to-trust networks need to move most commu-

nications off blockchains.

• We present the implementation and early performance numbers of Blockstack, a sys-

tem that implements different components/layers of a new decentralized internet and

takes the trust-to-trust architecture from a theoretical concept to a production system.

We discuss lessons learned from running the Blockstack network in production and
6



how these lessons helped evolve the system for improving reliability and achieving

comparable performance to traditional internet services.

• We present the first security and network reliability analysis of a blockchain

other than Bitcoin and report a critical security problem where a major alternate

blockchain, Namecoin, had a single miner with well over 51% of the compute power.

• We present the design of virtualchain, a virtual blockchain constructed by process-

ing data from underlying blockchains. With virtualchains, it’s possible to introduce

new functionality on top of production blockchains without requiring any consensus-

breaking changes from the underlying blockchains.

• We present a novel Sybil-protection mechanism for peer-to-peer networks that uses

blockchains to introduce Sybil-protection against (a) junk data writes and (b) node

eclipse attacks. Unlike previous works, our Sybil-protection mechanism doesn’t in-

troduce any central gatekeepers.
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Chapter 2

Bootstrapping Trust

“The city’s central computer told you?

R2-D2, you know better than to trust a strange computer.”

– C-3PO (THE EMPIRE STRIKES BACK, 1980)

In this chapter, we consider the problem of bootstrapping trust in distributed systems.

Bootstrapping trust in a commodity computer is a more general problem [115]. Assuming

that a commodity computer’s local execution environment can be trusted, we define the

bootstrapping trust in distributed systems problem as follows:

Problem 1 Let n be a new node that (a) booted into a trusted local execution environment,

(b) is joining a distributed system of N nodes, and (c) doesn’t have any pre-established

secure communication channels. If M > 1 network states are presented to node n, then

how can node n independently decide which state m ∈M to trust?

In this thesis, we make the observation that proof-of-work (PoW) blockchains, like

Bitcoin [127], can be used to solve the bootstrapping of trust problem defined above under

certain conditions. This chapter first reviews blockchains and lists their limitations.
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… 

Prev. block-hash 

Block n Block n+1    Block n+2 
(in-progress) 

Meta-data 

   Nonce 
 (solution) Resulting hash 

Transactions 

+ 

SHA256 

   Nonce 

Figure 2.1: A blockchain with transactions organized in cryptographically linked blocks.

2.1 Background on Blockchains

Blockchains provide a global append-only log that is publicly writeable. Writes to the

global log, called transactions, are organized as blocks and each block packages multiple

transactions into a single atomic write. Writing to the global log requires a payment in the

form of a transaction fee. Nodes participating in a blockchain network follow a leader elec-

tion protocol for deciding which node gets to write the next block and collect the respective

transaction fees. Not all nodes in the network participate in leader election. Nodes actively

competing to become the leader of the next round are called miners. At the start of each

round, all miners start working on a new computation problem, derived from the last block,

and the miner that is the first to solve the problem gets to write the next block. In Bitcoin,

the difficulty of these computation problems is automatically adjusted by the protocol so

that 1 new block is produced roughly every 10 minutes.

Figure 2.1 shows a simplified version of the Bitcoin blockchain. Blocks n and n + 1

are confirmed on the network and block n + 2 is in progress. Blocks include (a) hash of

the previous block ( a reference to the previous block), (b) meta-data like software version,

current timestamp, difficulty level, and (c) transactions. The mining process calculates

the SHA256 hash of the Merkle root hash of all transactions proposed in a new block,

meta-data, hash of the previous block, and a nonce. The nonce is repeatedly incremented
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until a resulting hash with a particular property is calculated, e.g., assume that we want a

resulting hash that starts with 18 zeros like:

000000000000000000ec9897b4a82c526d8b7f93a0fa8f02fcc1dc5e90ae6c77

The mining process will continue to increment the nonce until a valid resulting hash is

calculated. The miner that finds the hash will package the new block and announce it to

the rest of the network. Miners have an economic incentive to work on the longest known

blockchain [127]. Even if there are temporary blockchain forks because of different miners

proposing different versions of the blockchain, the forks resolve within a few blocks as

miners on the network discard shorter blockchain forks and pick the longest blockchain to

work on. The longest blockchain has the most proof-of-work on it. This way the system

keeps making forward progress and participating nodes have exactly 1 global view of data

logs written to the longest blockchain. See [45, 106] for further details on how blockchains

work and how they reach consensus.

2.2 Limitations of Blockchains

The decentralized nature of blockchains introduce meaningful security benefits (no central

points of trust or failure), and various distributed systems and applications can be designed

to use blockchains. However, certain aspects of contemporary blockchains present techni-

cal limitations and building systems with blockchains presents challenges:

• Limits on Data Storage: Individual blockchain records are typically on the order

of kilobytes [127] and cannot hold much data. Moreover, the blockchain’s log structure

implies that all state changes are recorded in the blockchain. All nodes participating in the

network need to maintain a full copy of the blockchain, limiting the total size of blockchains
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to what current commodity hardware can support. As of May 2017, Bitcoin nodes need

112GB total disk space, for blockchain data, to stay synchronized with the network [2].

• Slow Writes: The transaction processing rate is capped by the blockchain’s write-

propagation and leader-election protocol, and it is pegged to the rate at which new blocks

are announced by leader nodes, called miners in many blockchain networks [45]. New

transactions can take several minutes to a few hours to be accepted and the latency of a

single block confirmation is typically on the order of 10-40 minutes [45].

• Limited Bandwidth: The total no. of transactions per block is limited by the block

size of blockchains. To maintain fairness and to give all nodes a chance to become the

leader in the next round, all nodes should receive a newly announced block at roughly the

same time. Therefore, the block size is typically limited by the average uplink bandwidth

of nodes [45]. For Bitcoin, the current bandwidth is 1MB (∼1000 transactions) per block.

• Endless Ledger: The integrity of blockchains depends on the ability for anyone to

audit them back to the first block. As the system makes forward progress and issues new

blocks, the cost of an audit grows linearly with time, which makes booting up new nodes

progressively more time-consuming. We call this the endless ledger problem. Bitcoin’s

blockchain currently has ∼463,000 blocks, and new nodes take 1-3 days to download the

blockchain from Bitcoin peers, verify it, and boot up.

In spite of these limitations, blockchains like Bitcoin are gaining commercial adop-

tion [54] and offer a secure base-layer on top of which other services and applications can

be built [28]. The cost of tampering with blockchains grows with their adoption: today, it

would require hundreds of millions of dollars to attack a large blockchain like Bitcoin [3].

2.3 Bootstrapping Trust in Distributed Systems

For proof-of-work (PoW) blockchains like Bitcoin, the PoW mining puzzle is hard to com-

pute but easy to verify. This implies that any node on the network can independently
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calculate the PoW on a blockchain on commodity hardware. Given two blockchains bn and

bm, a node can independently check if:

PoW (bn) > PoW (bm) (2.1)

We can use this property to give a solution to the bootstrapping trust in distributed

systems problem (Problem 1). We require that the M states presented to the new node n be

written to M distinct PoW blockchain forks, i.e., we require that the only communication

channel used to bootstrap a new node n is a read access to PoW blockchains. The node n

can independently calculate PoW (bm), for all m ∈ M , pick the blockchain fork with the

most proof-of-work, and trust the state m written to bm.

Attack Vectors

An attacker that wants to give a new node n fabricated state will need to either:

1. Write malicious state to the longest blockchain and spend more energy than the rest

of the honest network to make her blockchain longer than the rest of the network. Or

2. Try to stop node n from discovering the global longest blockchain and write mali-

cious state to a local longest blockchain.

The first attack is economically infeasible for large production blockchain networks like

Bitcoin and the second attack is not very practical because even a single honest peer node

that is aware of blockchain forks outside of the local network partition can relay the longer

blockchains to an otherwise disconnected network partition. The second attack translates

to an attacker being able to disconnect a set of peer nodes into a network partition, meaning

that the attacker can hide a subset of M states from the new node n. If an attacker can hide a

subset of states from all nodes on a (disconnected) network, then no mechanism can enable

a new node to discover the hidden states. In practice, as long as physical network links of
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participating nodes are not compromised, connecting to a large number of peers makes it

hard for an attacker to compromise all peers and force them into a partition.

Non Proof-of-Work Blockchains

It’s important to note that our solution to Problem 1 works for proof-of-work blockchains

and not for other types of blockchains like proof-of-stake (PoS) [58]. In PoS cryptocurren-

cies the writer of the next block is chosen in a deterministic (pseudo-random) way, and the

probability that a particular writer is chosen depends on its stake, i.e., the percent owner-

ship of total tokens [87]. However, in a PoS blockchain if a bootstrapping node is presented

with two conflicting transaction histories, then it is impossible for it to determine which one

is the “true” chain without some external input [58]. Our definition of Problem 1 doesn’t

allow any pre-established secure communication channels and therefore PoS blockchains

cannot be used. In general, as long as a node can independently differentiate between two

conflicting blockchain forks, i.e., a node n can independently find a solution to a property

similar to PoW comparisons (Equation 2.1), without any pre-established communication

channels, then that blockchain can be used to distribute initial network state to new nodes

and serve as a solution to the bootstrapping trust in distributed systems problem. In this

thesis, when referring to blockchains, we assume PoW blockchains unless stated otherwise.

Bootstrapping Trust-to-Trust Networks

Blockchains, and their respective use for bootstrapping trust can be used to establish com-

munication between two trust zones on the internet, e.g., Alice can discover Bob’s domain

name, public key, and IP address using a blockchain-based decentralized naming system

(Chapter 5) and then connect directly with Bob. We argue that bootstrapping of trust is the

only functionality that needs to be handled at the blockchain layer and all other operations

in a trust-to-trust network can be moved off-chain for better scalability (Chapter 4).
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Chapter 3

Lessons from Deployment

“In theory there is no difference between theory and practice. In practice there is.”

– JAN VAN DE SNEPSCHEUT (1953–1994)

We discussed in Chapter 2 that proof-of-work (PoW) blockchains can be used to build

trust-to-trust networks. There are many PoW blockchains in production [24] and there is

little to no data available for their performance and reliability. There are many open ques-

tions. Is it better to build trust-to-trust networks by starting new blockchains or by using

existing ones? What practical tradeoffs are there for the contemporary implementation op-

tions like sidechains [31], putting new logic on top of a blockchain [111], or on a main

logic-heavy chain [46]? In this chapter, we describe our experience with running a year-

long production system on a PoW blockchain, Namecoin, and the challenges we faced. We

describe the lessons we learned and how they influenced our design decisions for using

blockchains to build a new trust-to-trust internet (Chapter 4).

Namecoin is the oldest blockchain other than Bitcoin, that is still operational, with a

cryptocurrency market capitalization of 12 million USD as of May 2017 [24] (the mar-

ket capitalization of a cryptocurrency is the exchange-traded value of its coins multiplied

by its number of coins in existence). Namecoin started as an alternate DNS-like system

that replaces DNS root servers with a blockchain for mapping domain names to DNS
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records [104]. Given that blockchains don’t have central points of trust, a blockchain-

based DNS is much harder to censor and registered names cannot be seized from owners

without getting access to their respective private keys [83].

The production system we operated on Namecoin was a type of a public-key infrastruc-

ture (PKI) system; users registered human-readable names like “naval” and then associated

public keys and other data with their username [112]. We ran the system on Namecoin

between March 2014 and September 2015 and had to overcome many challenges for reg-

istering and updating over 33,000 user entries and for sending over 200,000 transactions

on the Namecoin network. Our production deployment led to many interesting experiences

where we observed and analyzed network anomalies and security problems that were not

discovered or documented before [27]. Our experience concludes that, for both security

and reliability reasons, blockchain-based services should use the largest and most secure

blockchain, which at the time of this writing is the Bitcoin blockchain.

3.1 Blockchain Security

The security of token or digital asset ownership is tied to the security of both the under-

lying blockchain and the software powering it. The most important factor in the security

of a blockchain is the total cost of attacking the blockchain and tampering with recently

written data. Miners often pool their resources to form a mining pool, which is essentially

a super node on the network (a lot of computational power behind a single miner node). If

the amount of computational power under the control of a single miner (or pool) is more

than the rest of the network, called a 51% attack, then that miner has the ability to attack

the network and rewrite recent blockchain history, censor transactions (e.g., for name reg-

istrations), and steal cryptocurrency using double spend attacks [127]. This is because it

will win the leader election for a majority of the time, and produce a blockchain history
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Figure 3.1: Weekly and daily mining distribution of the top two Namecoin miners in terms
of hashing power (07/2015 – 08/2015)

with more proof-of-work than any disagreeing miner. The more expensive it is to control a

majority of the compute power on a blockchain, the more secure the blockchain.

We noticed in late 2014 that a single mining pool consistently had more than 51% of

the compute power on Namecoin. Later, the situation got even worse, with a single mining

pool controlling over 60% of Namecoin’s compute power in 2015. Figure 3.1 shows the

weekly and daily distribution of mining power of the two top miners for the month of

August 2015, right before we migrated our system away from Namecoin. In fact, we have

observed F2Pool (also known as Discus Fish) control up to 75% of compute power in a

particular week. At such concentration, Namecoin is effectively controlled by a single

party; F2Pool writes most new blocks and can undermine the security of the blockchain.

Other than raw hashing power, software bugs can also introduce security problems, e.g.,

a Namecoin bug allowed people to steal names from anyone [74]. Denial-of-service attacks
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Figure 3.2: CCDF of Namecoin network latency (03/2014 – 04/2015)

are another attack vector; the more peers a cryptocurrency network has, the more resilient

the network is to denial-of-service attacks.

Bitcoin currently has the largest amount of computational power securing the

blockchain data. Bitcoin’s codebase is more actively developed with more bug boun-

ties and security reviews than other blockchains. Namecoin has many fewer peer nodes

than Bitcoin (170 vs. 4,600 in Jan 2016 [11]), which makes it more vulnerable to DDoS

attacks as well. The Bitcoin blockchain is currently by far the most secure blockchain.

However, it’s extremely hard to introduce new functionality to Bitcoin because that

requires consensus-breaking changes (Section 3.4).

Lesson #1: There is a fundamental tradeoff between blockchain security and in-

troducing new functionality to blockchains. Starting a new blockchain network is how

developers typically introduce new functionality not provided by Bitcoin, e.g., a naming

system that is of interest to many emerging applications. However, new blockchains are

significantly less secure than Bitcoin. In Chapter 6, we overcome this tradeoff by creating

virtualchains that introduce new functionality as a layer on top of Bitcoin.
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Figure 3.3: Namecoin network latency per new block (03/2014 – 04/2015)

3.2 Network Reliability and Throughput

The throughput of our production system (number of entries we can register/update) was

directly dependent on the throughput of the underlying blockchain. The number of new

register/update operations that can be performed per hour is limited by the number of trans-

actions that can be sent (and confirmed) on the underlying blockchain per hour. Similarly,

the reliability of our production system was impacted if the underlying blockchain network

cannot perform operations reliably and consistently.

Network Latency Spike: As Namecoin is based on Bitcoin, it shares many protocol

properties with Bitcoin, including a 10 minute average leader election time (the “latency

target”) and a 1MB bandwidth limit on block size (giving throughput of∼1000 transactions

per block). Figure 3.2 shows that after we launched our production system in March 2014,

Namecoin on average performed well on the network latency target. As expected, most new

blocks were written within 10 and 40 minutes (similar times have also been observed on

Bitcoin [45]). Figure 3.3 shows an incident in late August 2014 (at block number 192000),

where network latency skyrocketed for a couple of weeks (∼1000 blocks are roughly a

18



Block Confirmation Time (mins)

Transactions Accepted per Block

———————————— (tx target)

Figure 3.4: Throughput drop in the Namecoin network. (The number of transactions we
were trying to send is shown as “tx target”.)

week). After investigating the issue and having discussions with Namecoin developers, we

discovered that the latency spike was caused by software issues in Namecoin. Someone

on the network was sending transactions with a large number of data fields per transaction.

This triggered a bug in the Namecoin software, causing reliability problems for the miners

as their Namecoin daemons kept crashing. Without stable miner nodes, blocks were not

getting appended in a timely fashion. This shows that unexpected protocol/software issues

can trigger network latency problems. During this period, we noticed a slow down in rate

of new registrations on our production system along with a spike in user complaints.

Network Throughput Drop: In early September 2014, right after the latency spike

incident, we noticed that our transactions were not getting accepted for many consecutive

blocks and, after a while, will get accepted in bulk in a single block that packaged a lot of

transactions. We noticed that a lot of new blocks had no transactions in them. This issue

persisted for over a week and Figure 3.4 plots the number of transactions that we were try-

ing to send (shown as “tx target”) vs. the number of transactions that were getting accepted
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by the network. Network latency was completely normal (shown at top of Figure 3.4), but

network throughput went down because of no transactions in new blocks. We tried soft-

ware upgrades and transaction rebroadcasts, but the issue persisted. After more analysis,

We concluded that a large mining pool was either intentionally refusing to or was unable to

package transactions in the new blocks it was writing. Our transactions would get packaged

only when some other miner was elected to write the new block. We discuss the issue of

blocks with 0 transactions and miner incentives in more detail in the next section.

Lesson #2: There is currently a significant difference between the network relia-

bility of the largest public blockchain network (Bitcoin) and network reliability of the

long tail of alternate blockchains. Problems with the Bitcoin network impact a lot more

users and businesses than Namecoin and other smaller blockchains. This work is one of

the first analysis of the network reliability of a blockchain other than Bitcoin.

3.3 Potential Selfish Mining

The signs that we noticed in the incident where miners were not accepting our transactions

(Section 3.2) looked similar to a selfish mining attack [63]. In a selfish mining attack, (a)

a miner needs to have a large amount of mining power (more than 33%), (b) people would

notice a long delay in blocks followed by blocks in very quick succession, and (c) there will

be a lot of rejected blocks. We noticed all these signs, and believe that the unusually high

computing power of a single miner led to conditions similar to selfish mining; the miner

was able to work on new blocks faster than the others and append them in rapid succession.

Lesson #3: Selfish-mining is not just a theoretical attack, but selfish-mining like

behavior can already be observed in production blockchains. This is the first time

that data collected from a production network shows signs of selfish-mining like behavior,

regardless of if the miner was intentionally attacking the network or not.
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3.4 Consensus-breaking Changes

For major updates, like protocol changes, Namecoin requires a “hard fork” in which ev-

eryone on the network must upgrade their software, and nodes on previous versions can no

longer participate in the network. Anecdotal evidence suggests that it’s hard to get miners

to upgrade their software because they don’t have enough incentive to spend engineering

hours on maintaining a relatively small cryptocurrency like Namecoin, which is not their

main reason for operating a mining pool. Our experience monitoring the Namecoin net-

work showed that after Namecoin software updates there was a considerable fluctuation of

computing power. In fact, we noticed that after the recent upgrade to Namecoin Core [105],

a major upgrade to the Namecoin daemon, many miners dropped out and never came back.

Lesson #4: Other than the engineering problems, consensus-breaking changes are

complicated because of fundamental incentive structures of the parties involved. Sys-

tem designers have never dealt with consensus-breaking changes before cryptocur-

rencies; it’s a novel challenge. For software upgrades to cryptocurrency networks, we

should: (a) separate consensus-breaking upgrades from other upgrades as a software engi-

neering rule (Bitcoin recently started doing this in their codebase [38]) and (b) try to align

miner incentives given their cost (engineering time) of software upgrades. This resistance

to upgrades is present in Bitcoin as well [118] and is not unique to smaller blockchains. In

Chapter 4, we describe how we introduce new features without requiring miner upgrades.

3.5 Failure of Merged Mining

The security of a blockchain depends on the relative compute power of miners and the

cost for a single party to have more computing power than the rest of the network. New,

smaller blockchains have a bootstrapping problem: in the initial days of a new blockchain,

it would be relatively easy for a single party to take it over, since the total compute power

on the blockchain is not yet large enough to prevent this. To address this problem, Satoshi

21



Nakamoto (author of Bitcoin) introduced “merged mining” [102], where an alternate

blockchain can re-use proof-of-work computations done for Bitcoin, allowing miners to

participate in the new network without spending extra compute cycles. The miners can

make extra profits on the new blockchain without adding computational overhead. For

merge-mined cryptocurrencies the security of the blockchain is typically a subset of the

“main blockchain”; in practice not all main blockchain miners set up merged mining.

Namecoin switched to merged mining with Bitcoin to increase the security of its

blockchain [83]. Namecoin is the oldest and largest merged-mined cryptocurrency and in-

spired other cryptocurrencies to consider it as well. One of our key findings is that merged

mining is currently failing in practice: the leading merged-mined blockchain, Namecoin,

is vulnerable to the 51% attack (Section 3.1). Moreover, merged-mining provided a false

sense of security. F2Pool controls 30-35% computing power of Bitcoin, but over 60% of

Namecoin’s computing power through merged mining, leaving Namecoin vulnerable to a

51% attack. Unless the merged mined cryptocurrency can consistently attract a very high

ratio of the main blockchain miners to support their software, merged mining will not keep

it safe from 51% attacks.

Lesson #5: Merged-mining can give a false sense of security if you consider only

the absolute hash rate. What’s more important is getting a very high ratio (90% or

more) of main blockchain miner to participate on the smaller blockchain.

Summary

Namecoin deserves full credit for originally building decentralized naming on a blockchain.

However, after our experience, we strongly believe that decentralized applications and

services need to use the largest, most secure, and most actively maintained blockchain.

Currently, no other blockchain even comes close to Bitcoin in terms of these security re-

quirements. In the next chapter, we outline an architecture that decouples the choice of

underlying blockchains from the rest of the system and is blockchain-agnostic.
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Chapter 4

System Architecture

“Great scientists tolerate ambiguity very well. They believe the theory enough to go

ahead; they doubt it enough to notice the errors and faults so they can step forward and

create the new replacement theory. If you believe too much you’ll never notice the flaws;

if you doubt too much you won’t get started. It requires a lovely balance.”

RICHARD HAMMING (YOU AND YOUR RESEARCH, 1986)

In this chapter, we give an overview of a trust-to-trust principle based internet architec-

ture and discuss design tradeoffs. We presented in Chapter 2 that blockchains can provide

a solution to the bootstrapping of trust problem in distributed systems. Our internet archi-

tecture uses blockchains as the base-layer for bootstrapping trust and addresses the several

scalability and performance limitations of using contemporary blockchains.

4.1 Architecture Overview

The primary goal of our internet architecture is to enable new nodes to boot up, connect

to the network, and discover resources without trusting any remote party outside of their

local execution environment. A secondary goal is to enable internet users to store their data

reliably without revealing it to any remote party; user data cannot just stay on user devices
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for performance and redundancy reasons, and internet services should be able to read/write

data directly from/to a user’s personal storage buckets. These goals can be summarized as:

1. Decentralized Naming & Discovery: End-users should be able to (a) register and

use human-readable names and (b) discover network resources mapped to human-

readable names without trusting any remote parties.

2. Decentralized Storage: End-users should be able to use decentralized storage sys-

tems where they can store their data without revealing it to any remote parties.

3. Comparable Performance: The end-to-end performance of the new architecture

(including name/resource lookups, storage access, etc.) should be comparable to the

traditional internet with centralized services.

Until recently, decentralized naming systems with human-readable names were con-

sidered impossible to build (see Zooko’s Triangle in Chapter 5) and decentralized storage

systems like BitTorrent, etc. have never been able to offer performance comparable to cen-

tralized services [75]. Our architecture requires a solution to both these problems, is meant

to scale to hundreds of millions of users and survive failures of individual components.

In this chapter, we first outline the high-level design choices we made for our archi-

tecture and then present the different components of a new decentralized internet, called

Blockstack, that implements our trust-to-trust design. Blockstack is deployed in produc-

tion and, to date, 72,000 new domains have been registered on it with several companies

and open-source contributors actively developing new services on top [43].

Design Decision #1: Separation of the Control and Data Plane

Our architecture decouples the protocol for securely registering names and mapping them

to network resources from the availability and performance of the data associated with

name bindings. We do this by clearly separating the control and data planes. The control
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plane defines the protocol for a decentralized naming system and the associated bindings

(Chapter 5) and defines the protocol used to bootstrap trust using blockchains (Chapter 6).

The data plane is responsible for data storage and availability. It consists of discovery

services (pointers to user’s data stores) and external storage systems for storing data (such

as S3, IPFS [80], and Syndicate [81]). Data values are signed by the respective ownership

keys, defined in the control plane. Any clients that read data values from the data plane can

verify their authenticity by verifying the signatures.

We believe this separation is a significant improvement over systems like Namecoin

or Ethereum, which implement both the control logic and the data storage plane at the

blockchain level (although they leave open the possibility of using external data stores in

the future). Our design not only significantly increases the data storage capacity of the

system, but also allows each layer to evolve and improve independently of the other.

Design Decision #2: Agnostic of the Underlying Blockchain

Our architecture does not put any limitations on which blockchain can be used with it.

Any blockchain can be used, as long as it provides total ordering of operations (which

all blockchains do), but the security and reliability properties are directly dependent on the

underlying blockchain. We believe that enabling the ability to migrate from one blockchain

to another is an important design choice as it allows for the larger system to survive, even

when the underlying blockchain is compromised. Section 6.2 gives more details on the

migration process. Our architecture also allows for multiple underlying blockchains and

treats blockchains as communication channels that deliver totally-ordered operations; any

number of underlying communication channels can work as long as they can individually

deliver totally-ordered operations.
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Design Decision #3: Flexibility to Construct Arbitrary State Machines

We discussed in Section 3.4 that it’s hard to introduce new features to blockchains af-

ter they’ve been deployed and gained real-world usage. In our architecture, we logically

separate the blockchain layer from the rest of the architecture and give programmers the

ability to construct arbitrary state machines after processing information from the underly-

ing blockchain. More specifically, we introduce the concept of virtualchains (Chapter 6).

A virtualchain treats transactions from the underlying blockchain as inputs to the state ma-

chine and valid inputs trigger state changes. At any given time, where time is defined by the

block number of the underlying blockchain, the state machine can be in exactly one global

state. Time moves forward as new blocks are written in the underlying blockchain, and the

global state is updated. By using virtualchains in our architecture, we can introduce new

types of state machines without requiring any changes from the underlying blockchain;

virtually any new functionality can be added to the internet architecture over time without

requiring modifications to blockchains. The abstraction of total ordering of operations, on

top of the underlying blockchains. serves as the “narrow waist” of our architecture.

4.2 Overview of Blockstack

In this section, we present Blockstack, a system that implements different components

of a new decentralized internet and takes our trust-to-trust architecture from a theoretical

concept to a production system. Our architecture has four layers, with two layers (the

blockchain layer and the virtualchain layer) in the control plane and two layers (discovery

layer and data-storage layer) in the data plane. The control plane deals with smaller vol-

umes of data and is mostly concerned with bootstrapping trust and defining the mapping

between human-readable names and network resources. The data plane contains informa-

tion on how to discover data (routes/pointers to data) and the actual storage backends. Data

is replicated as widely as possible, and it doesn’t matter from what source clients read data;
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Figure 4.1: Overview of the Blockstack implementation (left) and the layered general ar-
chitecture (right). Blockchain records give (name, hash) mappings. Hashes are looked up
in the discovery layer to discover routes to data. Data, signed by name owner’s public-key,
is stored in cloud storage.

clients can independently verify from the control plane if they received the correct data or

not. The 4-layers of our architecture are shown on the right side of Figure 4.1.

Layer 1: Blockchain Layer

In our architecture, the blockchain occupies the lowest layer (layer-1), and serves two pur-

poses: it provides the storage medium for storing operations, and it provides consensus

on the order in which the operations were written. Higher-layer operations are encoded in

transactions on the underlying blockchain. The blockchain layer provides an abstraction of

totally-ordered operations to the layer above and serves as the “narrow waist” of our archi-

tecture. A lot of complexity, like mining operations, consensus algorithms, cryptocurrency

fluctuations, etc., are hidden underneath this abstraction. The higher layers only care about

reading/writing totally ordered operations and can operate on top of any blockchain.
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Layer 2: Virtualchain Layer

Above the blockchain, at layer-2, is a virtualchain, which defines new operations without

requiring changes to the underlying blockchain. Nodes of the underlying blockchains are

not aware of this layer. Virtualchains are like virtual machines, where a specific VM like

Debian 8.7 can run on top of a specific physical machine. Different types of virtualchains

(Chapter 6) can be defined and they run on top of the specific underlying blockchain. Vir-

tualchain operations are encoded in valid blockchain transactions as additional metadata.

Blockchain nodes do see the raw transactions, but the logic to process virtualchain opera-

tions only exists at the virtualchain level.

The rules for accepting or rejecting virtualchain operations are defined in the specific

virtualchain e.g., a virtualchain that defines a single state machine implementing operations

for a global naming system. Operations accepted by rules defined in the virtualchain are

processed to construct a database that stores information on the global state of the naming

system along with state changes at any given blockchain block.

Layer 3: Discovery Layer

The discovery layer (layer-3) is part of the data plane. Our architecture separates the task

of discovering resources (i.e., routes to data) from the actual storage of data. This avoids

the need for the system to adopt any particular storage service from the onset, and instead

allows multiple storage providers to coexist, including both cloud storage and P2P systems.

The Blockstack implementation uses zone files for storing routing information, which

are identical to DNS zone files in their format. The zone files are stored in the discovery

layer, implemented as a peer-to-peer network by Blockstack (Chapter 7). Users do not

need to trust the discovery layer because the integrity of any data record in the discovery

layer can be verified by checking the respective hash of that data record in the control plane.

In Blockstack’s current implementation, nodes form a peer network, called the Atlas

network (Chapter 7), for storing zone files. The peer network only allows zone files to be
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written if hash(zonefile) was previously announced in the blockchain. This effectively

whitelists the data that can be stored in the peer network. Data records representing routes

(irrespective of where they are fetched from) can be verified and therefore cannot be tam-

pered with. In the current implementation of the Atlas network, peer nodes maintain a full

copy of all zone files since the size of zone files is relatively small (4KB per file). Keeping

a full copy of all routing data introduces only a marginal storage cost on top of storing the

blockchain data (which is in the order of several GB s).

Layer 4: Storage Layer

The top-most layer (layer-4) is the storage layer, which hosts the actual data values and is

part of the data plane. All stored data values are signed by an owner key defined in the

control plane. By storing data values outside of the blockchain, our architecture allows

values of arbitrary size and allows for a variety of storage backends. Users do not need

to trust the storage layer and can verify their integrity in the control plane. Our design

benefits from the performance and reliability of the backend cloud storage systems used

and offers comparable performance to traditional internet services (Chapter 8).

Blockstack Components

Blockstack implements a decentralized naming system (Chapter 5), called the Blockchain

Name System (BNS) by defining operations in a new virtualchain (Chapter 6) and storing

discovery data in a peer network called the Atlas Network (Chapter 7). Our virtualchain

uses the underlying blockchain to achieve consensus on the state of BNS and binds names

to data records. Relying on the consensus protocol of the underlying blockchain, our virtu-

alchain can provide a total ordering for all operations supported by BNS, like name regis-

trations, name updates, and name transfers. Our virtualchain represents the global state of

BNS, including who owns a particular name and what data is associated with a name. We

present more details on these components in the next chapters.
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Chapter 5

Secure Naming

“The comsats rented processor time almost as cheaply as ground stations, and an

automatic payment transaction (through several dummy accounts set up over the last

several years) gave him sole control of a large data space .. Mr. Slippery (the other name

was avoided now, even in his thoughts) had achieved the fringes of the Other Plane ..”

– VERNOR VINGE (TRUE NAMES, 1981)

The traditional internet uses the Domain Name System (DNS) for mapping human-

readable names to IP addresses (which give the location of nodes and content). When

internet users type in cnn.com in their browser, DNS servers return the mapping of the

human-readable name to an IP address. ICANN, a non-profit organization, manages DNS

and the root servers. These servers are a central point of trust and failure; they can be

taken offline by DDoS attacks and mappings for domains can be changed by either forcing

changes to the DNS servers or by spoofing replies from them.

Historically, in the early days of the internet, there was no concept of names for nodes

(clients or servers) connected to the network. Every node had an IP address, and you could

connect to that node by using the IP address as the identifier on the network. By convention,

network admins maintained hosts.txt files where they’d map human- readable names to IP

addresses. Over time, the manual system of syncing host files was replaced by DNS.
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In our internet architecture, we need a decentralized replacement for DNS, i.e., a system

that binds human-readable names to discovery data but doesn’t have any central points of

failure or control. There is a school of thought that argues that human-readable names are

not important and long cryptographic IDs combined with search engines can be a replace-

ment for DNS [33, 80, 99]. In this thesis, we take the view that human-readable names are

essential for providing a good user experience and, in practice, it’d be very hard to convince

internet users to change their habits and stop using human-readable names online. In this

chapter, we outline the challenges of building decentralized naming systems, give a back-

ground on the current blockchain-based naming systems, and present a new decentralized

naming system called the Blockchain Name System (BNS).

5.1 Background on Decentralized Naming

In this section, we describe the motivation for building naming systems that have no central

point of trust and provide the relevant background on blockchain-based naming systems.

Zooko’s Triangle

There is a fundamental computer science challenge with building naming systems.

There are three properties we might want a name to have: the name is (1) unique

(meaning there is no situation where two people can independently create and use a

unique name like cnn.com), (2) human-readable (a name should look like Paul not

1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa), and (3) decentralized (names should be

chosen by users at the edges of the network and not on behalf of users by a central authority

at the center). The computer science challenge is that, before blockchains, naming systems

only allowed for any two of those three properties [83], never all three at the same time.

This limitation is called Zooko’s Triangle [84]. For example, public keys are unique and

decentralized as users can generate them on their computers without talking to any central
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service but are not human-readable. Twitter handles are human-readable and unique,

but not decentralized (Twitter, the company, controls the namespace). Nicknames are

human-readable and decentralized (users can choose any nickname for anyone) but are not

unique. Blockchains square Zooko’s Triangle, and for the first time it’s possible to have

human-readable names that are unique without using any centralized service [84].

In this chapter, we use the term naming system to mean (a) names are human-readable

and can be picked by humans, (b) name and any associated data have a strong sense of

ownership—that is, they can be owned by cryptographic keypairs, and c) there is no cen-

tral trusted party or point of failure. We use the term name-value pair to refer to a

key-value pair where the key is a human-readable name registered in a naming system.

Blockchain-based Naming Systems

It’s hard to tamper with data stored in a blockchain because it requires a prohibitively high

computing resources; re-writing blockchain data requires proof-of-work [25]. There are

several naming systems built using blockchains, like Namecoin [104], Ethereum Name

System [62] and BitShares [23], that store name ownership data in blockchains. These

naming systems make name registration decentralized, and no third-party can take away

ownership of domains from users. Users trust their personal computers, or servers that

they run, instead of relying on remote DNS servers, significantly reducing the attack vector

of DDoS (an attacker will need to DDoS individual users instead of centralized servers).

Further, blockchain-based naming systems make it prohibitively hard to tamper with name

bindings. However, with a few exceptions like Namecoin and our work, blockchain-based

naming projects are in an early stage and haven’t been widely deployed [97]. In this chapter,

we only focus on Namecoin and our work and discuss other related works in Chapter 10.
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Namecoin

Namecoin [104] was the first system to build a decentralized naming system using a

blockchain. Namecoin’s blockchain gives consensus on the global state of the naming

system and provides an append-only global log for state changes. Writes to name-value

pairs can only be announced in new blocks, as appends to the global log. The global log is

logically centralized (all nodes on the network see the same state), but is organizationally

decentralized (no central party controls the log).

Before our work, it was common practice to start new blockchains (by forking them

from Bitcoin) to introduce new functionality and make modifications required by the re-

spective service/application, which is the precise approach taken by Namecoin [104]. In

Namecoin, just like DNS, there is a cost associated with registering a new name. The name

registration fee discourages people from registering a lot of names that they don’t intend to

use; the recipient of registration fees is a “black hole” cryptographic address from which

money cannot be retrieved [83]. Namecoin defines a pricing function for how the cost of

name registrations changes over time. Namecoin supports multiple namespaces, like top-

level-domains (TLDs) in DNS, and the same rules for pricing and name expiration apply to

all namespaces. By convention, the d/ namespace is used for domain names. For example,

to register the domain yahoo on Namecoin, one must register the name d/yahoo and then

put the IP address of the Yahoo! website in the name/value pair.

In Namecoin, name registration uses a two-phase commit method where a user first

pre-orders a name hash in a new transaction that includes hash(name) in the transac-

tion. This does not reveal what name she is trying to register. After the pre-order trans-

action has been confirmed by the network—, i.e., enough blocks (typically 10) are later

added to the blockchain to make it computationally infeasible for any miner to re-write

recent blockchain history and reverse the transaction—the user can reveal the name she

was trying to register. This is done by sending a second transaction on the network that

completes the register step. The user also includes the value of the name/value pair in the
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second transaction. The cryptocurrency address that signed the two transactions becomes

the owner of the newly registered name/value pair. Name registrations expire after a fixed

amount of time, measured in new blocks written (currently 36,000 blocks, which translates

to roughly 8 months). Namecoin also supports updating the value associated with a name,

as well as ownership transfers.

5.2 BNS: Blockchain Name System

In this section, we present the design of a new blockchain-based naming system, called

the Blockchain Name System (BNS) and discuss an implementation of BNS that has been

running in production for more than 2 years. In our trust-to-trust internet architecture, BNS

is a replacement for DNS and is meant to provide similar functionality but without any cen-

tral root servers. In BNS, names are owned by cryptographic addresses of the underlying

blockchain and their associated private keys (e.g. ECDSA-based private keys used in Bit-

coin [45]). As with Namecoin, a user preorders and then registers a name in a two-phase

commit process. This is done to avoid front-running where an attacker can race the user in

registering the name because an attacker will be able to see the unconfirmed transaction on

the network. The first user to successfully write both a preorder and a register transaction

is granted ownership of the name. Further, any previous preorders become invalid when

a name is registered. Once a name is registered, a user can update the name-value pair

by sending an update transaction and uploading the name-value binding. Name transfer

operations simply change the address that is allowed to sign subsequent transactions, while

revoke operations disable any further operations for names.

In BNS, names are organized into namespaces, which are the functional equivalent of

top-level domains in DNS—they define the costs and renewal rates of names. Like names,

namespaces must be preordered and then registered. As shown in Figure 5.1, in BNS the

information for top-level domains (namespaces) is registered on a root blockchain. Entries
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Figure 5.1: A recursive DNS query (top) for princeton.edu and an iterative BNS query for
werner.id. End-user and the local BNS server are in the same trust zone.

for TLDs can point to other blockchains that store data for domains registered on that TLD.

The root blockchain can also be used for defining TLDs, in which case the TLD entry points

to the same blockchain. In DNS, the DNS root servers, TLD servers, and authoritative

servers are outside the trust zone of the end-user, where the trust zone is defined as either

a local machine or local network and can include a node controlled (and trusted) by the

end-user in the wide-area. Figure 5.1 (top) shows a recursive DNS query for princeton.edu.

The query is resolved outside the user’s trust zone. In BNS, the local BNS server fetches

blockchain data from the respective (decentralized) blockchain networks and keeps a local

copy that is continuously synced with the blockchain networks. Individual blockchain
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Example Zone File:

Figure 5.2: An example zone file for BNS.

records are small and contain pointers to data outside the blockchain, for example in a

peer network. To resolve a name, say werner.id, the end-user makes a query to the local

BNS server running inside her trust zone. The local BNS server looks at the respective

blockchain record and fetches the respective zone file from an external source, like a peer

network. The external source for zone files is untrusted. The hash of the zone file is present

in the blockchain record, and any tampering attempt can be easily detected by checking the

zone file against the hash. Figure 5.2 shows an example BNS zone file for a single domain.

Pricing Functions

Anyone can create a namespace or register names in a namespace, as there is no central

party to stop someone from doing so. Pricing functions define how expensive it is to create

a namespace or to register names in a namespace. Defining intelligent pricing functions is

a way to prevent “land grabs” i.e., stop people from registering a lot of namespaces/names

that they don’t intend to actually use. BNS has support for sophisticated pricing functions.

For example, we created a .id namespace in our implementation of BNS with a pricing

function where (a) the price of a name drops with an increase in name length and (b) intro-

ducing non-alphabetic characters in names also drops the price. With this pricing function,

the price of john.id > johnadam.id > john0001.id. The function is generally inspired by the

observation that short names with alphabets only are considered more desirable on names-

paces like the one for Twitter usernames. It’s possible to create namespaces where name

registrations are free as well. Further, we expect that in the future there will be a reseller

market for names, just as there is for DNS. A detailed discussion of pricing functions is
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out of the scope of this thesis, and the reader is encouraged to see [83] for more details on

pricing functions and name squatting problems in decentralized naming systems.

BNS Implementation

Our implementation of a new decentralized internet, Blockstack, uses BNS as the default

naming system. BNS is implemented by defining a state machine and rules for state tran-

sitions in a new virtualchain. We store zone files in a new peer network, called the Atlas

Network. We present the details for our BNS implementation with virtualchains and Atlas

in Chapter 6 and Chapter 7 respectively. Like names, namespaces also have a pricing func-

tion [42]. To start the first namespace on Blockstack, the .id namespace, we paid 40

bitcoins ($10,000 at the time) to the network. This shows that even the developers of

this decentralized system have to follow the rules and pay appropriate fees.

Simple Name Verification

In BNS, the local BNS server should be in the user’s trust zone. The local BNS server

needs to keep a consistent copy of all blockchains used by BNS, and the storage require-

ments can be in the order of hundreds of gigabytes (given the current size of contemporary

blockchains like Bitcoin [2]). BNS has support for “thin clients,” which can query the sys-

tem without running BNS servers locally or having access to the full blockchain history.

Support for thin clients is important for users on mobile devices.

Virtualchain nodes can independently calculate a consensus hash at any blockchain

block. Consensus hashes help virtualchain nodes figure out if they have the same view of

the global state at any given block. Each consensus hash CH(n) is constructed from block

n’s sequence of virtualchain operations Vn, and (a Merkle root of) geometric series of prior

consensus hashes Pn defined by:

CH(n) = Hash(Vn + Pn) (5.1)
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where

Pn = {CH(p)|p = n− 2i, i ∈ N, n− 2i >= n0} (5.2)

and n0 is the first block. Other than detecting that two virtualchain nodes have the

same global view, consensus hashes also address the endless ledger problem (defined in

Section 2.2). As the underlying blockchain grows in size, new nodes need to process more

and more blocks before they boot up.

A new node can bootstrap by using an untrusted database of state information at a given

block number, combined with a trusted consensus hash CH(n) of the same block number.

The block number is also termed the block height in the literature, and it increases with

each new block. A new node can reconstruct the virtualchain from the untrusted database

and reprocess virtualchain operations at each blockchain block, recalculating each CH(n)

along the way. If the final consensus hash matches the trusted consensus hash at block n,

then the database associated with n is trustworthy, and the node can start processing blocks

after n. This is much faster than the traditional approach of starting from the first block n0

and fetching all transactions, even though most of them will be discarded.

The process of verifying the authenticity of a prior name operation with a later trusted

consensus hash is called Simplified Name Verification (SNV). As such, if a user trusts that

CH(n) is authentic, then she can query and verify the virtualchain operations Vn and pre-

vious consensus hash Pn for block n. The construction of CH(n) allows a user to verify

the authenticity of any virtualchain operation from a block with height nprior < n, using

only a logarithmic number of queries. More details on consensus hashes are in Section 6.1.

Figure 5.3 shows an example SNV query. Each row represents the blockchain, in in-

creasing block height order from left to right (n > n0). Here, the user can verify the

authenticity of a name operation in a target block (marked with Tq). In each step, the user

recursively trusts the consensus hash for the white outlined blocks. To do so, the user

iteratively queries Vn and Pn for a given n verifies that they hash to CH(n), and then se-

38



Tq

T
b

q

nbn-1bn-2bn-4bn-8bn-16

bnbn-1bn-2bn-4bn-8

b     is trusted after the first iteration.     n-8

bn-12bn-16 bn-9bn-10

bn-10

Figure 5.3: Overview of SNV. Example SNV query of a record (Tq) in block bn−10.

lect n’s predecessor n′ to be the smallest height greater than nprior for which CH(n′) was

previously queried and verified.

5.3 Blockchain-based Public Key Infrastructure

On the traditional internet, DNS domains can be used with digital certificates to enhance

security. Digital certificates for websites are the foundational building block of internet

security. When users see the “green lock sign,” they feel that they’re on a secure connec-

tion. In the background, their browser checks the digital certificate of the website. The

“green lock sign” represents that some Certificate Authority (CA), like Verisign, issued a

digital certificate to a website and the website has ownership of that certificate. The Certifi-

cate Authority can issue “malicious” certificates that impersonate businesses and websites

without their permission and users would end up trusting the malicious certificates – a real

problem that has happened several times in recent history, e.g., Turktrust, a Turkish CA,

issued malicious certificates for Google.com [124].

A blockchain can be used as a global distribution mechanism for public keys and digital

certificates. Since blockchains give a global view and are extremely hard to tamper with,

it’d be impractical for an attacker to alter a certificate after its issued or present incorrect

information to only a subset of users. Also, in a blockchain-based public-key infrastructure

there are no central CAs that can be compromised to attack the system.
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Current blockchain-based naming systems like BNS or Namecoin, already provide pub-

lic key associations with domain names and all domains, by default, get certificates. While

efforts like Lets Encrypt [16] are reducing the cost of obtaining digital certificates and en-

couraging more websites to enable secure connections, a vast majority of the internet still

runs on insecure connections. If the naming system is built using a blockchain, then all

websites have security certificates; security is on by default. In BNS, domain names can

serve as memorable identifiers for public keys. Names make no implication about identity

and are used as memorable identifiers only. Third-party attestations can be attached to the

memorable name later on. Further, all BNS nodes can see the global state, so any key

revocations or state changes to public key mappings cannot be hidden from any user.

A Production Deployment on Namecoin

Before our implementation of BNS on Blockstack, we deployed a simple public-key infras-

tructure (PKI) service on Namecoin [112]. For our PKI service, we started a new names-

pace u/ on Namecoin. We defined the format for publishing public keys, like PGP [136],

along with other profile data in the blockchain [6]. Namecoin already had support for

human-readable names and registering name-value pairs. We launched a web service [112]

in March 2014 that enabled people to easily register names. All registered names have an

ECDSA public key [79] binding by default and a subset of users have added their PGP

keys as well. According to a study by Harry et al. [83], our system was the second largest

namespace on Namecoin by volume and the largest by the number of active users. Lessons

from this deployment (Chapter 3) guided the design of BNS and how we bind BNS do-

mains to public keys. Our design of storing most of the data outside of blockchains scales

much better [27]. Data read/writes are not limited by the blockchain bandwidth at all.
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Chapter 6

Virtualchain

“Time, he said, is what keeps everything from happening at once.”

– RAY CUMMINGS (THE GIRL IN THE GOLDEN ATOM, 1922)

Public blockchains are becoming a universal network service. However, it’s hard to

make consensus-breaking changes to production blockchain networks. Introducing new

features directly in a blockchain requires everyone on the network, including miners, to

upgrade. These upgrades potentially break consensus and cause forks [45]. Our experience

with the Namecoin blockchain shows that starting new, smaller blockchains leads to secu-

rity problems, like reduced computational power needed to attack the network, and should

be avoided when possible (Chapter 3). To overcome this, we created virtualchains, a vir-

tual blockchain for creating arbitrary state machines on top of already-running blockchains.

Virtualchains, like virtual machines, enable the ability to migrate (from one blockchain

to another) and improve fault tolerance. We present lessons from a successful migration

of a production network from Namecoin to Bitcoin, using a virtualchain. To the best of

our knowledge, this was the first cross-chain migration of a production system running on

blockchains. The migration showed that virtualchains could be used to cope with failures at

the blockchain layer (by migrating systems away from the underlying failing blockchain).
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Challenges with Building Applications with Blockchains

Blockchains provide a totally-ordered, tamper-resistant log of state transitions. New appli-

cations can store a log of all state changes in a public blockchain, such as Bitcoin [127],

Litecoin [94], or Ethereum [46]. By using the blockchain as a shared communication chan-

nel, these applications can then bootstrap global state in a secure, decentralized manner,

since every node on the network can independently construct the same state.

However, there are two key challenges to using blockchains as a building block for

decentralized applications and services:

1. First, a blockchain can fail, i.e., it can go offline, or its consensus mechanism can

become “centralized” by falling under the de facto control of a single entity. We

presented in Chapter 3 how Namecoin, the oldest cryptocurrency other than Bitcoin,

had a single miner with more than 51% mining power [133]. To tolerate such failures,

it should be possible to migrate application state across blockchains efficiently.

2. The second challenge is that the application’s log can be forked and corrupted if the

underlying blockchain forks. Under a blockchain fork, nodes on different forks will

write and read different events. The blockchain may drop and re-order transactions

when the forks resolve, causing bootstrapping nodes to construct different state than

already-running nodes. Applications must be able to recover from blockchain forks.

6.1 Design of Virtualchains

Virtualchain is a virtual blockchain (a logical layer) for building multiple state machines

and their respective transition logs (also called journals) on top of a blockchain. Virtu-

alchains process transactions in the underlying blockchains to construct state machines on

top of blockchains. Virtualchains provide a fork*-consistency model [92]. Application

nodes replay their logs to achieve application-level consensus at each block b, such that
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Figure 6.1: Virtualchain operations on top of an underlying blockchain.

two nodes will agree on a block if and only if the application transactions in that block

leave the nodes in an identical state. If their resulting state after executing the operations in

block b are identical, then their generated consensus hash (Section 5.2) for that block will

be the same. Consensus hashes enable nodes to independently audit and efficiently query

their log history, as well as detect forks and then migrate state between blockchains.

Figure 6.1 shows how virtualchains process only relevant transactions (transactions

with valid virtualchain opcodes) from the underlying blockchain and ignore other trans-

actions. The transactions accepted by virtualchain are organized in virtual blocks that are

linked together by a consensus hash per block; the consensus hash at a block reflects all pre-

vious virtualchain history. We have used virtualchains to implement a BNS (Section 5.2)

state machine in a new virtualchain. Our virtualchain currently uses Bitcoin as the un-

derlying blockchain. The new opcodes are announced in Bitcoin transactions in a field

designated for additional data, called OP RETURN. This is one of the largest use cases of

OP RETURN transactions on the Bitcoin blockchain today [114].

Consistency Model

At a high level, blockchains are append-only, totally-ordered logs of transactions that are

replicated across all nodes of the network [45]. A transaction t is a signed statement that

moves tokens owned by a cryptographic keypair. Transactions are causally linked: t1 hap-

pens before t2 if unspent tokens in t1 are used (spent) in t2. Blockchain peers append

transactions by announcing new (unwritten) transactions and executing a leader election
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protocol to determine the writer of the next block (containing new transactions) in the

global blockchain. Most public blockchains use a variant of Nakamoto consensus [45],

which allows concurrent leaders. Appending conflicting blocks creates blockchain forks,

which peers resolve using a proof-of-work [78] metric. Transactions in the fork with the

most proof-of-work are considered authoritative; conflicting transactions are silently dis-

carded, while non-conflicting transactions are incorporated into subsequent blocks.

Nakamoto consensus gives blockchains the property that longer forks are exponen-

tially rarer if there are no long-lasting network partitions and if most of the compute power

is controlled by honest peers [45]. This means that most of the time, transactions are

very likely to be durable and linearizable after a constant number of blocks (confirma-

tions) have been appended on top of them. We use these properties to implement fork*-

consistent replicated state machines (RSMs) on top of public blockchains. Application

nodes read the blockchain to construct state machine replicas and submit new transactions

to the blockchain to execute state transitions.

Our work differs from prior fork*-consistent systems [64, 65, 92], as we enable open

membership: the sets of both application users and application nodes are dynamic and may

be empty since we use an external blockchain to establish the ground truth of the state

and to propagate state transitions. In this section, we describe how consensus hashes are

calculated, how we enable efficient queries on prior state transitions without requiring a

full blockchain or state machine replica, and how we detect and recover from forks caused

by long-lived forks in the underlying blockchain.

Consensus Hashes

To make forward progress, nodes read new blockchain transactions and determine whether

or not each transaction of the underlying blockchains represents a valid state transition

in virtualchain. Since anyone can write transactions and they can get arbitrarily delayed,

nodes must be able to filter transactions (and associated state transitions) and ignore trans-
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Figure 6.2: Consensus Hash, CH(n), construction from virtualchain transactions.

actions that relate to a fork that they’re not interested in. We achieve this by requiring that

the current consensus hash is announced in new transactions.

A consensus hash is a cryptographic hash that each node calculates at each block. It

is derived from the accepted state transitions in the last-processed block, and a geometric

series of prior-calculated consensus hashes. Figure 6.2 shows this process. Let tx ∈ bn be

the sequence of transaction logs found in block bn, let Merkle(tx ∈ bn) be a function that

calculates the Merkle tree root over these transactions, and let Hash(x) be a cryptographic

hash function. Then, we define CH(n) to be the consensus hash at block n, where

Vn = Merkle(tx ∈ bn) (6.1)

CH(n) = Hash(Vn + Pn) (6.2)

Block b0 contains the first log entry, while Pn is the geometric series of prior consensus

hashes starting from b, i.e., the consensus hash for the previous block, two blocks ago, four

blocks ago, etc. Consensus hashes were discussed earlier in Section 5.2.

Users include their latest known CH(n) in each transaction they submit through their

clients, and applications ignore state transitions with “stale” (too old) or unknown consen-

sus hashes. This way, applications ignore forks of their own log/journal, and application
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users (or the clients they’re using) can tell when to retry lost transactions (announcing state

transitions). In doing so, consensus hashes preserve the join-at-most-once property of

fork*-consistency: an application will accept a state transition with CH(n) only if it has

accepted all the prior state-transitions that derived CH(n).

Fast Queries.

Not all users will have a copy of the full blockchain on their machine. We use a protocol

for fast queries that is useful for creating “lightweight nodes” that do not need blockchain

or state replicas. Instead, they can query highly-available but untrusted “full nodes” (which

have a full copy of the blockchain) as needed. For example, Blockstack’s virtualchain uses

this feature to implement a Simple Name Verification (SNV) protocol (Section 5.2).

For fast queries, application users obtain CH(n) from a trusted node, such as one run-

ning on the same host. A user can then use this trusted CH(n) to query previous state

transitions from untrusted nodes in a logarithmic amount of time and space. To do so, it

iteratively queries and verifies Pn and Merkle(tx ∈ bn) using CH(n) until it finds CH(n′)

and Merkle(tx ∈ b′n), where b′ is the block that contains the state transition to query. Once

it has Merkle(tx ∈ b′n), it can ask for and verify the previous state transitions (tx ∈ b′n).

Blockchain Fork Detection and Recovery.

If the transaction logs never retroactively fork, the application logic and consensus hashes

can preserve the legitimate-request property of fork*-consistency. Retroactive forks in

proof-of-work blockchains are highly unlikely, but they can occur since an entity can (the-

oretically) come up with a longer blockchain with a different transaction history of old

blocks (called a “deep chain reorg”). Short-lived forks, on the other hand, are fairly com-

mon and are not an issue for applications/services built with virtualchains. Nodes avoid

short-lived forks by only accepting sufficiently-confirmed transactions. Applications may
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Figure 6.3: A framework for migrating from blockchain A to blockchain B.

increase the number of required confirmations to decrease the likelihood of loss or reorder-

ing, e.g., Blockstack requires 10 confirmations (in the Bitcoin blockchain).

To detect deep chain reorgs, a node runs multiple processes that subscribe to a geomet-

ric series of prior block heights. If a process at a lower height derives a different consensus

hash than one from a higher height, then a blockchain fork might have occurred, and all

processes at higher heights have potentially-divergent state. This means all running nodes

may be in a separate fork set from bootstrapping nodes.

We can automate deep reorg discovery, but reconciling the fork sets requires human

intervention, since irreversible actions taken by the application may be based on now-lost

state transitions. Fortunately, long-lived forks are rare and severe enough to be widely

noticed [36] [37] [39]. This means that when they happen, end-users or app developers can

determine which transactions were affected, and re-send state-transitions.

6.2 Cross-chain Migration

Virtualchains can survive the failure of an underlying blockchain by migrating state to an-

other blockchain. Doing so requires announcing a future block until which the current

blockchain will be valid (no new transactions will be accepted on the current blockchain
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after that block), and then executing a two-step commit to bind the existing state to the new

blockchain. Figure 6.3 shows the framework where migrating from blockchain A to B. To

begin, the app/service administrator(s) announces a future block after which the current

blockchain will no longer be used for the app/service and sends special “migrate” transac-

tions to both the current and the new blockchain (to announce the migration process). The

administrator(s) (a) acquires a lock on the new blockchain, (b) writes the current application

state (excluding historic state transitions) to the new blockchain, and (c) releases the lock

on the new blockchain and opens up the new blockchain to new transactions. Virtualchain

verifies that the migrate transactions are signed by the same principal and verifies that the

last-known state on the old blockchain is consistent with the consensus hash announced on

the new blockchain. This enables seamless cross-chain migration.

Virtualchain enables applications to use any blockchain for consensus and migrate state

between them. Virtualchain stores each application’s state-transition journal on the un-

derlying blockchain, and handles application consensus at a logical-layer on top of the

blockchain. Virtualchain is already used in a production system on the Blockstack net-

work. Figure 6.4 shows the Blockstack Name System (BNS) state machine implemented
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Figure 6.5: All data-embedding transactions on Bitcoin; non-financial applications and
services on top of Bitcoin are already becoming a frequent use case.

by Blockstack, the different states a name can be in and how state transitions work. This

virtualchain implementation has been used to register 70,000 domains [27]. Virtualchain is

released as open source [132] and developers can build different state machines using it.

Lessons from a Migration to Bitcoin

Migration in virtualchains, from one underlying blockchain to another, works by first ac-

quires a lock on the new blockchain, transferring the current state of the state machine,

and then explicitly release the lock when the migration completes. In September 2015, we

completed migration of 33,000 users of our production system [112], from Namecoin to

Bitcoin, using a virtualchain. These users were migrated from the u/ namepsace on Name-

coin to the .id namespace on BNS, the default naming system of the Blockstack network.

Our virtualchain for this particular application embeds additional data in Bitcoin trans-

actions using special fields dedicated for including arbitrary data [40]. Embedding addi-

tional data in Bitcoin transactions is already a popular way of defining higher-level proto-

cols on top of Bitcoin, like Counterparty [57], Open Assets [113], etc. Figure 6.5 shows re-
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cent bandwidth usage of data-embedding protocols on the Bitcoin blockchain. The spike of

10,000+ transactions, near block 375000, was during our migration to Bitcoin. The Block-

stack network, running on Bitcoin, currently accounts for 18.6% of all data-embedding

transactions ever made on Bitcoin [114]. Below are some observations we made while

working with the Bitcoin network:

Network Throughput: Bitcoin currently supports between 3 and 7 transactions per

second with a 1MB block size. Even after two years of heated debate [135] amongst the

Bitcoin developers and the broader community, the block size has not been increased. We

noticed these limitations first hand when we throttled our transactions so that our transac-

tions wouldn’t exceed 20-30% of Bitcoin blocks, which in turn significantly increased the

amount of time it took for completing registrations. When scaling to millions of users, as

opposed to thousands, even 8MB or larger blocks will not suffice, and we need to look into

performing registrations across multiple chains [31] and explore novel methods for packing

multiple name operations in a single transaction [48].

Network Attacks: During our migration to Bitcoin, a UK-based company called Coin-

Wallet was performing a stress test on the Bitcoin network [55]. The stress test included

a high volume of small transactions which had transaction amounts that were too low for

miners to package in a block (due to protocol rules designed to prevent spam). This resulted

in an extremely high number of unconfirmed transactions on the network and we ended up

paying 2-3 times higher transaction fees to get our transactions packaged by miners. This

experience shows how a single actor can force high mining fees on the rest of the network

(although in this case there was a cost factor attached to the attack which limits the du-

ration of the attack). We believe that networking attacks on blockchains, like the one we

experienced or other DDoS attacks [100], are likely to become more frequent. Protections

against such attacks is an important area of future research.

50



Chapter 7

Content Discovery

“Information is the resolution of uncertainty.”

– CLAUDE E. SHANNON (1916-2001)

Blockchains have limited bandwidth and cannot store much data. Every node on the

network has a copy of the data stored on blockchains, and they typically grow linearly with

time, e.g., the Bitcoin blockchain grew from 14GB to 120GB between 2014 and 2017 [2].

In our architecture, only pointers to data values are kept in the blockchain; peer-networks

are used as additional storage. Using peer networks significantly increases the storage

capacity but comes with other challenges: traditional peer-networks are susceptible to Sybil

attacks [59] and are not a reliable source of data, especially under high churn. In this

chapter, we present two new peer-networks that we designed to improve the reliability of

peer networks and protect them against Sybil attacks.

These peer-networks logically exist at the discovery layer of our architecture and, in

addition to extending the storage capacity of blockchains, provide a discovery service for

other network resources like backend storage systems. In the Blockstack implementation,

the peer-networks store zone files for BNS (these zone files are identical to DNS zone files).
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7.1 Peer Networks for Content Discovery

In peer-to-peer networks (also called P2P networks or simply peer networks) participating

nodes are equally privileged and collaborate to perform a function or provide a service.

Peer networks were popularized by file sharing networks like Napster in 1999 [47]. Nodes

in a peer network maintain a connection to a subset of other peers on the network and

these connections can be structured or unstructured (random connections to peers). In our

architecture, we use peer networks for content discovery. Pointers to large data files are

stored in peer networks, while the actual data resides on storage backends (Chapter 8).

The reliability of the applications and services running on our internet architecture de-

pends on the reliability of the blockchain layer and discovery/storage peers. Out of the

different layers, the peer networks used for discovery are the most vulnerable to reliability

issues (cloud storage providers have 99.9% uptime SLAs [15] and blockchains are fully-

replicated across peers). Theoretically, any person or company can decide to run a (cen-

tralized) index of discovery data for their particular app/service. Apps can also choose to

index/mirror only a particular namespace (TLD), and they don’t have to index the pointers

to all data. This helps with scalability. Let’s say there are m namespaces with n name-value

pairs in each namespace. Instead of indexing O(m×n) records, you can index O(n) records

and n for your namespace could be significantly small. However, realistically, the global

Blockstack network should have at least one, if not more, default discovery service for

all data in addition to any specialized app-specific discovery services. Further, the global

discovery service cannot violate the trust-to-trust principle and cannot be centralized. This

implies the need to use decentralized peer-to-peer networks for content discovery.

Challenges with Peer Networks

Peer networks are well studied in distributed systems [30, 75] and researchers have identi-

fied several challenges with peer networks.
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• Scalability: In unstructured peer networks, as the number of participant peers in-

creases, the number of messages exchanged for a lookup grows [30]. Practical

unstructured peer networks, either use “super peers” (KaZaA [93]) or use central-

ized trackers (eDonkey 2000 [76]). Structured peer networks, mostly based on Dis-

tributed Hash Tables (DHTs) reduce no. of messages needed for lookups, to typically

O(logN ), but suffer from other problems like Sybil-attacks and node churn [95].

• Performance: Reads and writes on peer networks have very variable latency de-

pending on the underlying design, but in most cases, the worst-case performance

of lookups is unacceptable; a request can needlessly bounce through several high-

latency network links before being handled. Some work on DHTs (like DSHTs [70],

and Beehive [120]) try to fix this for frequently-requested data, but it doesn’t help the

long-tail performance and works for only certain type of workloads.

• Reliability: Public peer networks allow anyone to write to them. To deal with so

much data, they simply delete stale data. Applications need to re-announce data

every so often to keep it available. Data sources can go off-line before republish-

ing [69]. Structured peer networks can split into one or more disjoint networks due

to partitions, and re-join later on. This can lead to inconsistent state; some clients

can see one value for the key, and other clients can see a different value.

• Junk Data Writes: Without some rate-limiting or access-control mechanism, peer

networks have no way to limit the amount of data inserted. An adversary can flood

the peer network with lots of garbage data and knock nodes off-line.

• Node Eclipse Attack. In structured peer networks, an attacker can take over the

neighbors of all nodes storing a particular key/value pair and effectively censor

nodes/keys from the network. Such Sybil-attacks are a general problem for struc-

tured peer networks with no good solutions available without requiring centralized

gatekeepers or human input on peer connections [91].
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7.2 Kadamlia-TX: A Sybil-resistant DHT Network

Like other DHT-based peer networks, the Kademlia DHT [98] is susceptible to Sybil at-

tacks. Sybil attacks can be on (a) the DHT data storage or (b) the routing tables of the

DHT. Malicious nodes can write “junk data” to the DHT and overload the storage capacity

of individual nodes or can insert “junk entries” in the routing tables affecting the routing

of queries. We modified Kademlia to design a new DHT-based protocol, called Kademlia-

TX. Our work makes a contribution towards Sybil-resistant DHTs by enabling a cost to

launch an attack without introducing any central trusted party, i.e., the DHT system stays

decentralized while adding a significant cost of attack.

Protection Against Junk-Data Writes

We address this problem by creating a decentralized “white-list” of keys that can be written

to the DHT. Our mechanism requires that a (key, value) pair can only be written to the DHT

if Hash(key) was announced earlier in a proof-of-work blockchain transaction:

if key == Hash(value) and Hash(value) ∈ Tn then insert(key, value) (7.1)

where Tn is the set of all transactions up to block n of a blockchain. The writer needs to

present a blockchain transaction ID (txid) that contains the Hash(key) of the (key, value)

pair being written. The DHT node verifies that (a) the blockchain transaction has enough

confirmations (i.e., cannot be dropped from the blockchain) and (b) contains the correct

hash. This forces writers to pay for data writes to the DHT and associates a cost to launch-

ing SPAM attacks. The cost of a write can be a minimum blockchain transaction fee (e.g.,

0.0001 or approx 5-10 cents). This also makes the DHT storage content-addressable.
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Figure 7.1: Relationship between the secure index (stored on the blockchain) and the peer
network (Kademlia-TX). The peer network accepts writes only for keys in the secure index.

Protection Against Node Eclipse Attacks

For Sybil attack on routing tables, we modified Kademlia’s default way of assigning ran-

dom 160-bit node identifiers to include the requirement the node identifiers should be de-

rived from valid blockchain transactions, e.g., from Bitcoin transactions that have > 6

confirmations and > 0.0001 BTC transaction fee. In Kademlia-TX, a new node can only

be included in the routing tables if the new node can sign a challenge/message with

the private key that corresponds to the blockchain transaction from which the 160-

bit node identifier is derived. If the new node is unable to respond to the challenge, it

is not included in the routing table. This ensures that there is a cost to launching node

eclipse attacks and the cost can be made arbitrarily large simply by increasing the TX fee

requirement. Figure 7.1 shows how Kademlia-TX uses a secure index, announce through

the blockchain channel, to rate-limit data writes to the DHT. We can additionally require:

• Proof of ownership of a certain amount of cryptocurrency; putting a floor on the

money required to be part of the network, and
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• proof of ownership of certain age of cryptocurrency [10]; limiting an attacker from

moving crypocurrency between different addresses to generate node IDs.

Kademlia-TX gives a solution to the Sybil-attack problem without introducing any

centralized gatekeepers or human input and provides tunable parameters for decreas-

ing/increasing the cost of attack. We deployed a variant of Kademlia-TX as a production

peer network between Fall 2015 and Fall 2016.

7.3 Atlas Network

For BNS, the size of individual zone files is fairly small (<4KB) and the total space needed

to store them increases linearly with the no. of domain registrations. Currently, it takes

only 300MB to store all zone files of the 70,000 domains registered on BNS and 100GB

space can store zone files for all 250 million ICANN domains (which is smaller than the

size of the current Bitcoin blockchain). Inspired by the need to store the (small-sized) zone

files of BNS, we designed a new peer network called the Atlas Network. The Atlas network

solves a particular case of decentralized storage using peer networks–the case where:

1. The data set is small in size and

2. There is a full index of data available to the network.

All Atlas nodes maintain a 100% state replica, and they organize into an unstructured

overlay network. The unstructured approach is easier to implement, has no overhead for

maintaining routing structure and is resilient against targeted node attacks. When a new

Atlas node boots up, it first gets the index of all data keys and hashes of values stored in

the blockchain. After getting the index, Atlas nodes talk to their peers to fetch key/value

pairs they dont have. The Atlas network implements a K-regular random graph. Each node

selects K other nodes at random to be its neighbors using the Metropolis-Hastings Random

Walk algorithm with delayed acceptance (MHRW-DA [90]), and regularly asks them for
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the set of key/value pairs they have. Peers pull missing key/value pairs in rarest-first order to

maximize availability, i.e., new key/value pairs written to the network are given preference

for propagation through the network. In addition to storing key/value pairs locally, peers

can also write them to remote backup locations (e.g., a service like Dropbox or S3) for

additional protection against data loss. When a peer receives a missing key/value pair, it

pushes it to its immediate neighbors that dont have it yet.

Like Kademlia-TX, Atlas nodes already know the hashes of the zone files so that no one

can upload invalid data. But unlike Kademlia-TX, data is replicated on O(N) nodes instead

of only on a small subset of nodes. The Atlas network makes censoring attacks expensive.

Censoring the entire network requires attacking O(N) nodes. By contrast, only O(logN)

DHT nodes need to be taken over to censor a key/value pair for everyone. Even then, the

victim node will detect the censorship unless the attacker also eclipses the victims Bitcoin

node (which requires building a fraudulent blockchain fork with sufficient proof-of-work).

We believe that the Atlas network is a significant step forward towards having a reliable,

hard-to-censor, and decentralized peer network.

7.4 Analysis of a Production Deployment

The Blockstack production network used a variation of Kademlia-TX for hosting BNS zone

files between Fall 2015 and Fall 2016. Our implementation ensured that (1) each key was

the hash of its value, and (2) each key corresponded to an accepted registration transaction

in our virtualchain. This prevented most classical DHT attacks–no one could overwrite

a user’s key/value pairs, and no one could flood the DHT with lots of junk data writes.

However, we didn’t implement the node eclipse attack protection of Kademlia-TX, and our

production DHT deployment was still (theoretically) vulnerable to routing attacks.

In our production deployment, we didn’t notice any explicit node eclipse attacks, but we

did encounter partitions of the DHT overlay where some nodes hosted in Hong Kong and
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Figure 7.2: Avg. time for Atlas nodes to recover from a 100% data loss (80320 items).

Europe would end up on a different partition. Churn is a general problem with structured

DHTs. Our DHT nodes were programmed not to accept data writes unless a hash of the data

is present in the blockchain, i.e., someone has paid a fee to gain access to write data. The

DHT-based discovery network served as an acceptable initial design, but with a growing

network, the daily and hourly churn became a bigger issue. The Blockstack implementation

switched to the Atlas network from the DHT-based discovery network in Fall 2016, and

since November 2016, we have been distributing BNS zone files using the Atlas network.

Network Partitions

The Atlas network is more reliable than the previous Kademlia-TX-based DHT network.

For our Kademlia-TX deployment, we frequently ran into network partition issues where

some nodes, e.g., in Hong Kong would get disconnected from the “mainline” DHT. Be-

tween September 2015 and September 2016, there were at least 7 major incidents where

we had to work with our community to restore network partitions in our Kademlia-TX

DHT deployment. Since moving entirely to the Atlas network, between November 2016

and the time of this writing (May 2017), we’ve had 0 incidents of network partitions or

any other network outage. In fact, there is no concept of a network partition on the network

since Atlas is unstructured and all nodes have a full replica.
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Node Recovery

Atlas nodes can recover from failures on their own. If the local index of the Atlas data

becomes corrupt, the nodes can reconstruct it from the blockchain data. We ran an experi-

ment where we would intentionally destroy the Atlas index (containing information about

names and hash pairs) repeatedly and let the nodes repair the index. On current commodity

hardware, it took nodes an average of 5 hours and 45 minutes to locally regenerate the

full data index. In a second experiment, we destroyed all locally stored zone files on Atlas

nodes and measured how long it took for Atlas nodes to self-heal and fetch the zone files

from their peers. Figure 7.2 plots the average time it took for our nodes to re-fetch the

zone files. We repeated the experiment for different peer topologies. We see that nodes can

re-fetch data at the rate of roughly 1200 zone files every 5 minutes. Our network currently

indexes 80320 zone files in total (57199 zone files have unique hashes), and 248 of them

are not present on any Atlas node, i.e., the client application that registered the name was

unable to announce the zone file to any Atlas node and the information didn’t propagate

through the network. Our nodes recovered 99.57% of the data in 250 minutes (Figure 7.2)

and then kept looking for the remaining 248 files. The important metric is that 100% of

our nodes were able to recover from a complete data loss within hours fully. The Atlas

network is self-healing in that aspect and can recover from failures even if very few copies

of data remain on the peer network.
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Chapter 8

Decentralized Storage

“The greatest performance improvement of all is

when a system goes from not-working to working.”

– JOHN OUSTERHOUT (1954–PRESENT)

On the traditional internet, once end-users establish a secure connection to a website

like Facebook.com they then log in to the service and keep all their data with the remote

service. This model, along with advances in cloud computing, pushes all complexity and

user data to the remote cloud and user devices exist as “dumb screens.” This is a full

departure from the spirit of the end-to-end design where end-user devices were meant to

handle complexity and logic (Chapter 1).

Currently, with frequent use of an online service user data gets locked into “data silos”,

e.g. data that is understood and stored by Facebook, Yahoo!, Google and others respectively

but cannot be migrated across services. This leads to a centralized data model; the data silos

inevitably get hacked eventually, e.g., the recent hack of 500 million Yahoo! users [117].

Our trust-to-trust internet architecture has the potential to release users from these data

silos by giving users access to decentralized storage systems that provide comparable per-

formance to centralized cloud providers. Users can log in to apps and services by us-

ing blockchain-based decentralized identity systems, like the identity system used by our
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Blockstack implementation [41] and uPort [96], and save data generated by apps/services

on storage backends owned by the user (instead of the service provider). Decentralized

identity systems enable users to control a unique identity recorded on the blockchain that

can be recognized by any site (rather than a username and password combo that can only

be recognized by the site that had you create an account). Users can log in to websites by

proving ownership of their identity, i.e., by cryptographically signing a challenge from the

website. A detailed discussion of blockchain-based identity systems is out of the scope of

our work and readers should see [41, 96] for further details.

Encrypted & Signed Data on Storage Backends

In our architecture, our design philosophy is to reuse existing cloud providers and infras-

tructure in a way that end-users don’t need to trust the underlying cloud providers. We treat

cloud storage providers (like Dropbox, Amazon S3, and Google Drive) as “dumb drives”

and store encrypted and/or signed data on them. The cloud providers, like Dropbox, have

no visibility into user’s data; they only see encrypted data blobs. Further, since the asso-

ciated public keys or data hashes are discoverable through the blockchain channel, cloud

providers cannot tamper with user data. There are two modes of using the storage layer,

and they differ in how the integrity of data values is verified:

(a) Mutable Storage is the default mode of operation for the storage layer. The user’s

zone file contains a URI record that points to the data, and the data is constructed to include

a signature from the user’s private key. Writing the data involves signing and replicating

the data (but not the zone file), and reading the data involves fetching the zone file and data,

verifying that hash(zonefile) matches the hash in the blockchain, and verifying the data’s

signature with the user’s public key. This allows for writes to be as fast as the signature

algorithm and underlying storage system allow, since updating the data does not alter the

zone file and thus does not require any blockchain transactions. However, readers and

writers must employ a data versioning scheme to avoid consuming stale data.
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Figure 8.1: Overview of our storage system and steps for looking up data.

(b) Immutable Storage is similar to mutable storage, but additionally puts a TXT

record in the zone file that contains hash(data). Readers verify data integrity by fetching

the data and checking that hash(data) is in the zone file, in addition to verifying the data’s

signature and the zone file’s authenticity. This mode is suitable for data values that don’t

change often and where it’s important to verify that readers see the latest version of the

data value. For immutable storage, updates to data values require a new transaction on

the underlying blockchain (since the zone file must be modified to include the new hash),

making data updates much slower than mutable storage.

Figure 8.1 shows an overview of our storage system. We show an example encrypted

data blob with three replicated copies at Dropbox, Google Drive, and a FreeNAS Server

(and not on Amazon S3). In our Blockstack implementation, we have drivers for individual

cloud providers like Dropbox and S3, and integrate them as a storage backends. This
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hides the individual APIs for storage backends and exposes a simple PUT/GET interface

to Blockstack users. Looking up data for a name, like muneeb.id, works as follows:

1. Lookup the name in the virtualchain to get the (name, hash) pair.

2. Lookup the hash(name) in the peer network (Atlas in the Blockstack implementa-

tion) to get the respective zone file (all peers in the Atlas network have the full replica

of all zonefiles).

3. Get the storage backend URI from the zonefile and lookup the URI to connect to the

storage backend.

4. Read the data (decrypt it if needed and if you have the access rights) and verify the

respective signature or hash.

8.1 Performance of Reads and Writes

The goal of our architecture is to give comparable performance to traditional cloud

providers. We introduce meaningful security and fault-tolerance benefits by removing

central points of control and failure and paying a small overhead on read/write perfor-

mance is totally worth it as long as the overhead is not significant and not noticeable to

the average users. We implemented Blockstack in 40,344 lines of Python code [42]. The

current implementation uses Bitcoin as the underlying blockchain. Currently, Blockstack

core developers decide which underlying blockchain(s) to support in which version of the

software. Individual applications can decide to run the software version of their choice and

keep their namespace on a particular blockchain if they prefer not to migrate.

We evaluated the performance of reads and writes through Blockstack to demonstrate

that it reads and writes files at competitive rates with the underlying storage. Blockstack

adds a negligible constant storage space overhead per file (roughly 5% larger files with

compression). There is CPU overhead for encryption and compression, but since the file
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Figure 8.2: Performance overhead of Blockstack.

size difference is very small, the network performance for reads and writes is similar to

directly accessing the underlying storage service.

The write performance and overheads associated with uploading 1, 10, and 100

megabyte files to Amazon S3 is shown in Figure 8.2 (each trial was performed 25 times).

We see that the CPU-bound overhead is in the order of 2 seconds for large (100MB) files.

Many low-hanging performance optimizations still remain in our implementation. Simi-

larly, reading encrypted files from Blockstack with S3 as storage backend is competitive

with a direct read from S3 (Figure 8.2). We omitted the file download time to emphasize

the overhead in the graph. The sources of overhead, verifying the signature and decrypting

the data, are CPU-bound while in practice performance will largely be network-bound for

wide-area usage. On current commodity hardware, booting new Blockstack nodes can take

1-2 hours with SNV (Section 5.2), compared to 2-4 days without SNV. Further engineering

improvements in our Python implementation are currently possible.
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8.2 System Scalability

The storage layer of our architecture is not a scalability bottleneck. Contemporary cloud

storage systems are highly scalable [15]. The Atlas network also scales well because it

does not index individual user files or file-chunks but indexes pointers to user’s storage

backends. The storage backends deal with the bulk of data read/writes, and the Atlas net-

work is involved only when (a) a user is changing or updating her storage backends or

public key mappings, or (b) new users are registered on the system. When registering new

domains/users, zone file hashes must be announced on the underlying blockchain. The

underlying blockchains typically have low-bandwidth and are the bottleneck on scalability

(relative to the Atlas network). We’re exploring the option to pack multiple virtualchain

transactions into a single blockchain transaction [48] for addressing blockchain scalability.

This can enable us to register several hundreds of millions of end-users. Scaling Blockstack

to billions of users in practice will likely uncover scalability issues that are not obvious right

now and addressing these challenges is an area of future work. As the design of Blockstack

evolves, the latest design will be available at [8].
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Chapter 9

Applications

“People tend to think of the Web as a way to get information or perhaps as a place to

carry out ecommerce. But really, the Web is about accessing applications.”

– MARC ANDREESSEN (WIRED MAGAZINE, 2012)

Our implementation of Blockstack, a new decentralized internet, is already attracting

interest from application developers. As of May 2017, 5,571 meetup group members have

organized developer events in 7 different countries [7]. Two large cloud providers, Ama-

Figure 9.1: Total data-embedding transactions for non-financial use cases on the Bitcoin
network (all time transactions as of 05/2017).
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zon Web Services and Microsoft Azure, have integrated support for easily deploying new

Blockstack nodes on their respective cloud platforms [4, 5]. In this chapter, we first give an

overview of a wide range of applications/services that are using Blockstack (or are testing

an integration) and then discuss one case study (OpenBazaar) in more detail.

Overview of Applications

A broad range of applications and services are already using Blockstack. Figure 9.1 shows

the distribution of data embedding transactions, called OP RETURN transactions, on the

Bitcoin network. As of May 2017, Blockstack is the largest non-financial use case on the

Bitcoin blockchain with 200,184 total transactions which account for 48.4% of all non-

financial use cases and 18.6% of all OP RETURN transactions (including financial use

cases). This data is publicly available in the Bitcoin blockchain [20, 114]. Below is a list

of some applications/services that are either using Blockstack or are testing an integration:

• MediaChain: Mediachain is a blockchain-based media platform. It allows parties

to make statements about creative works; metadata statements are cryptographically

signed by the contributor and timestamped in the Bitcoin blockchain. Medichain

uses Blockstack for providing human-readable names in a decentralized way [107].

• Syndicate: is a wide-area file system that combines existing cloud storage providers

into a single (virtual) cloud storage [81]. Syndicate is using Blockstack for distribut-

ing public keys to virtual machines without introducing a centralized trusted party.

• Rushwallet: is a client-side JavaScript Bitcoin wallet that uses Blockstack to convert

human-readable names to Bitcoin addresses [18]. Rushwallet enables users to enter

memorable names for making payments (instead of copy/pasting Bitcoin addresses).

• Tor Project: is considering using Blockstack for replacing onion addresses with

domains while preserving user privacy [131]. There is already an implementation

available that is testing the use case [9].
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Figure 9.2: OpenBazaar network analysis (05/2016 – 05/2017).

• Souq: is a Blockstack-powered decentralized asset tagging and funding application.

Souq uses Blockstack to create an index of projects, e.g., road repair needs of a local

community and then allows people to fund initiatives [19]. It is one of the several

apps that came out of a decentralized app building challenge [12].

There are several other application uses cases, e.g., identity systems built by the Decen-

tralized Identity Foundation [13] (an initiative by Microsoft and several other companies)

and IDEO [61]. A detailed discussion of all current use cases of Blockstack is out of the

scope of this chapter. We will focus on one particular case study and present an analysis of

how OpenBazaar, a decentralized peer-to-peer marketplace uses Blockstack.

9.1 Case Study: OpenBazaar

OpenBazaar is a decentralized peer-to-peer marketplace that uses the Bitcoin network for

making payments [22]. It started in April 2014 as a hackathon project, and the production

release came out in April 2016. OpenBazaar is fully decentralized; users run their own

nodes and connect with each other directly over a peer-to-peer network. OpenBazaar re-

quired a decentralized naming system and couldn’t introduce a centralized naming system

as that would go against their primary design goal. OpenBazaar uses Bockstack as the
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naming system since the initial releases. Figure 9.2 plots the number of active OpenBazaar

stores and the number of store name registrations on Blockstack.

We collected OpenBazaar data from an OpenBazaar monitoring service that takes a

snapshot of all stores every 15 minutes [1] and collected the respective Blockstack data

from the Bitcoin blockchain. Below are some observations:

• We see that there was an initial spike in usage when more than 2000 active stores

were online in mid-May 2016. This dropped off in the next two months. The more

dedicated users who were actively selling goods on OpenBazaar not only kept their

nodes online but also registered human-readable domain names for their stores on

Blockstack. Our software was not fully polished, and these users still went through

all the manual steps to register names and debugged issues with our assistance.

• It’s interesting to see the correlation between name registrations on Blockstack and

active OpenBazaar nodes between mid-September 2016 to May 2017. Our analysis

shows that the Blockstack functionality was very popular amongst OpenBazaar users.

We crawled the OpenBazaar network (using data from [14]) in May 2017 to find that

81% of all online stores were reachable via their Blockstack domains and had listings.

• The total number of registered stores surpassed the total no. of active nodes in 2017.

This is likely due to old registrations of stores that are no longer actively maintained

by their owners, but the domains registered on Blockstack are still valid.

• We noticed a slowdown in new store registrations in 2017; this is likely because

OpenBazaar is planning a major upgrade to their software and move to a new net-

work, called OpenBaaar 2.0 [17], and store owners are testing the new network in-

stead of the current production network.
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Chapter 10

Related Work

“It will seem at first that you’re working on the proverbial needle, a tiny fragment of the

world, a minute crystal, beautiful but in the scheme of things, microscopic. Work with it.

And the more you work with it, ... you will come to see that your work, your subject,

encompasses the world. In time, you will come to see the world in your grain of sand.”

– MANUEL BLUM (WHAT IS RESEARCH, 2001)

A few clean-slate internet designs have been proposed over the years that note several

issues with the current internet architecture [34, 53]. Notable proposals include, Data-

Oriented Network Architecture [88], Software-Defined Internet Architecture [119], Ser-

val [110], i3 [129], Content-centric Networking [116], and others [66]. Our work differs

from these architectures in two ways (a) we explicitly focus on removing trust points from

the middle of the network (instead of other problems addressed by earlier works), and (b)

we have a production deployment for more than 3 years used by over 70,000 users and our

design incorporates the real-world lessons we learned. The trust-to-trust design principle

was originally proposed by David Clark and Marjory Blumenthal [44, 51] and we extend

their work by presenting an architecture and implementation that follows that principle.

We presented the Blockchain Name System (BNS) and use it in our Blockstack imple-

mentation. Binding names to values in naming systems is a well-explored problem space.

UIA [68] gives a great overview of global naming systems and their importance. We en-
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courage the reader to UIA [68] for a detailed background on naming systems. Unlike

Namecoin [104] or Blockstack, UIA doesn’t try to provide globally unique names. In au-

thentication systems like OpenID [122], InCommon [77], and certificate authorities (CAs),

a federation of authorities attests to bindings. BNS, however, does not require a federation.

Naming systems have been designed since the early days of the internet and distributed

systems [89]. The most comprehensive naming system other than DNS that has seen actual

deployment and use is Digital Object Architecture (DOA) [82] that is an object archival

system where the name/handle doesn’t change ever. We share that design philosophy where

names can be permanent (in a namespace where names don’t expire) as the underlying data

is stored in blockchains forever.

Other than Namecoin, blockchains like Ethereum [46] and BitShares [23] also have sup-

port for human-readable names. Further, sidechains [31] enable implementation of naming

systems as an alternate blockchain that is linked to the main Bitcoin blockchain. All these

designs involve smaller, alternate blockchains and Blockstack directly uses the most se-

cure blockchain (Bitcoin). Virtualchains [108] builds new state machine logically on top

of underlying blockchains and allow the system to migrate to any underlying blockchain,

e.g., a migration from Bitcoin to Zcash [35] or Litecoin [94] requires minimal engineering

effort given their similarity. Non-blockchain based PKI systems, like Keybase [86] and

CONIKS [101], achieve some of the same goals as Blockstack’s name ownership bindings

with public keys. Keybase and CONIKS focus on keeping remote servers accountable,

i.e., a remote server cannot lie without getting caught. Blockstack, however, focuses on

removing trusted remote services all together while giving the global state.

In networked systems, it’s hard to get global state without involving central trusted

parties [85], Blockstack is able to provide global state (and not just approximate global

state). Our system is open (“permissionless”), whereas existing wide-area systems like

OceanStore [60] and Bonafide [50] have a closed (“permissioned”) set of peers that use

BFT agreement to make progress for the whole system. Blockstack differs from decentral-
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ized storage systems which allow open membership but offer stronger-than-eventual data

consistency (like Shark [29], Pond [123], and Scatter [73]) by focusing on decentralization

while supporting a wide variety of external datastores that give strong consistency.

Storage-oriented cryptocurrency blockchains like Filecoin [67], Permacoin [103], and

Storj [128] seek to replace cloud storage by distributing files as sets of transactions within a

blockchain, and rewarding miners for proof-of-storage (instead of proof-of-work). Block-

stack differs from these systems by decoupling hosting data from operations of the under-

lying blockchain, allowing developers to use storage systems appropriate for their prob-

lem domains. Blockstack currently has drivers for Dropbox, Amazon S3, and Google

Drive. Our design allows other storage systems, like Syndicate [81], IPFS [80] or Tahoe-

LAFS [134], to be “plugged in” as storage backends and provides a simple meta-level

filesystem interface to storage systems.

In INS [26] names are based on intention e.g., “nearest printer” instead of location.

In Content Centric Naming [32, 49, 72], DNS-like binding to human-readable names is

dropped for flat namespaces. In self-certifying naming [33] names are not human-readable

and are self-certifying, meaning that it is possible to verify the association between the

name and the object it refers to with signed metadata [71]. Flat name structures have to

be resolved to their appropriate bindings by some infrastructure. This usually implies the

use of peer networks. We use peer networks for storing discovery data, but names in our

system are unique and human-readable.

DHTs such as Chord [130], CAN [121], Pastry [125] and Kademlia [98] provides struc-

tured peer networks with theoretical bounds on lookup times. DHTs are susceptible to Sybil

attacks and are not reliable under high-churn. We propose two peer networks (a) a modifi-

cation to Kademlia’s DHT that adds blockchain-based Sybil protection and (b) an unstruc-

tured peer network, Atlas, with full-replication of indexed data. Other improvements like

caching optimizations like Beehive [120] are also possible.
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Chapter 11

Conclusion

“We reject: kings, presidents and voting.

We believe in: rough consensus and running code.”

– DAVID D. CLARK (IETF TALK, 1992)

A lot of issues with the traditional internet, like attacks on the integrity or availability

of the domain name system and public-key infrastructure, along with exploits concerning

end-user data stored on centralized web services are a direct result of trusting intermedi-

aries and remote services. We propose a new internet architecture where users don’t need

to trust anything on the network other than their machines. In addition to pushing all com-

plexity and application-specific logic to the edge of the network (end-to-end principle), our

architecture also explicitly removes any trust points from the middle of the network as well

(trust-to-trust principle). Blockchains enable this trust-to-trust design by providing a mech-

anism for new nodes to join the network without trusting any remote party. Our architecture

enables a much-needed security and reliability upgrade to the traditional internet.

Our experience with running a production network on a cryptocurrency blockchain

Namecoin, one of the oldest blockchain other than Bitcoin, shows how a single miner

consistently had more than 51% hashing power and how we ran into network reliability

problems. Our data shows that out of the hundreds of blockchains currently in production,
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even the more popular blockchains like Namecoin cannot currently be used for large-scale

production systems. Currently, the security of Bitcoin far outweighs other blockchains.

We present Blockstack, a blockchain-based system that implements several compo-

nents of a trust-to-trust internet architecture, including services for naming, discovery, and

storage. Blockstack introduces separate control and data planes, and by doing so, it en-

ables the introduction of new functionality without modifying the underlying blockchain.

The design of Blockstack was informed by a year of production experience from one of

the largest blockchain-based production systems to date. We have made several novel im-

provements (like introducing the ability to do cross-chain migrations, faster bootstrapping

of new nodes, and keeping data updates off the slow blockchain network) that make it eas-

ier to build decentralized services using publicly-available infrastructure. Our performance

results show that Blockstack can give comparable performance to the underlying storage

service and only introduces a small CPU overhead.

We present two peer-networks, Kademlia-TX and Atlas, that can be used to augment

the limited storage capacity of contemporary blockchains. In our design, the global state

of the index is provided by blockchains, and the blockchain entry contains a pointer to

data stored outside. The peer-networks use this global state to (a) reject any junk/invalid

data write attempts and (b) fetch any missing data entries from their peers. Further, we in-

troduce mechanisms for Sybil-protection against node eclipse attacks without introducing

any central gatekeepers. Kademlia-TX is a kademlia-based structured peer network that

adds mechanism for Sybil protection. The Atlas network uses an unstructured approach

and keeps a full replica of all data at every node to improve data reliability. Our produc-

tion Blockstack network switched from Kademlia-TX to Atlas because the unstructured

approach is better suited for networks with high churn.

Blockstack takes our trust-to-trust internet architecture from a theoretical concept to a

production system and is already being used by decentralized applications like OpenBazaar,

a decentralized marketplace. We’ve released Blockstack as open-source [42].
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