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Abstract

This thesis considers the problem of sequentially making decisions under uncertainty,

exploring the ways where efficient information collection influences and improves

decision-making strategies. Most previous optimal learning approaches are restricted

to fully sequential settings with Gaussian noise models where exact analytic solutions

can be easily obtained. In this thesis, we bridge the gap between statistics, machine

learning and optimal learning by providing a comprehensive set of techniques that

span from designing appropriate stochastic models to describing the uncertain en-

vironment, to proposing novel statistical models and inferences, to finite-time and

asymptotic guarantees, with an emphasis on how efficient information collection can

expand access, decrease costs and improve quality in health care.

Specifically, we provide the first finite-time bound for the knowledge gradient

policy. Since there are many situations where the outcomes are dichotomous, we

consider the problem of sequentially making decisions that are rewarded by “suc-

cesses” and “failures”. The binary outcome can be predicted through an unknown

relationship that depends on partially controllable attributes of each instance. With

the adaptation of an online Bayesian linear classifier, we design a knowledge gradient

(KG) policy to guide the experiment. Motivated by personalized medicine where a

treatment regime is a function that maps individual patient information to a rec-

ommended treatment, hence explicitly incorporating the heterogeneity in need for

treatment across individuals, we further extend our knowledge gradient policy to a

Bayesian contextual bandits setting. Since the sparsity and the relatively small num-

ber of patients make learning more difficult, we design an ensemble optimal learning

method, in which multiple models are strategically generated and combined to min-

imize the incorrect selection of a particularly poorly performing statistical model.

Driven by numerous needs among materials science society, we developed a KG pol-

icy for sequential experiments when experiments can be conducted in parallel and/or
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there are multiple tunable parameters which are decided at different stages in the

process. Finally, we present a new Modular, Optimal Learning Testing Environment

(MOLTE) as a public-domain test environment to facilitate the process of more

comprehensive comparisons, on a broader set of test problems and a broader set of

policies.

iv



Acknowledgements

First and foremost, I would like to express my deep gratitude to my advisor and men-

tor, Professor Warren B. Powell, for his patience, enthusiasm, and immense knowl-

edge. His great passion for research taught me how to conduct myself in every aspect

of my academic life. In addition, my extended appreciation goes towards his constant

support, his confidence in my scholarly abilities, and other numerous reasons which

cannot be expressed in the space provided.

I would like to thank Professor Robert Schapire for guiding my research in the

area of machine learning and for his support during my Ph.D. study. I have learnt a

lot from his scientific insights and broad knowledge in machine learning, which laid

the ground work for my own research. I am also grateful to the members of my

committee, Professor Bernard Chazelle, Professor Mengdi Wang, Professor Han Liu

and Professor Szymon Rusinkiewicz for their patience, support and helpful comments.

I also would like to express my sincere gratitude to my former teachers. I am

sincerely grateful to everyone in the department of Computer Science and the depart-

ment of Operations Research and Financial Engineering, for creating the intellectually

stimulating atmosphere. I would particularly like to thank my fellow students and

friends in the CASTLE Lab for meaningful discussions, and their constant supports.

My special thanks go to my co-authors, Professor Chad Mirkin, Dr. Kris Reyes, Dr.

Keith Brown, Dr. Chu Wang, Dr. Tsvetan Asamov and Dr. Yan Li, for our research

collaborations.

Finally, I would like to dedicate this thesis to my husband who has been a constant

source of support and encouragement in my life. I am truly thankful for having you in

my life. Without you, I would not become the person I am today. I own my everlasting

gratitude to my parents who have always loved and supported me unconditionally. I

simply cannot imagine a life without them.

v



To my family.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Notes on Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Finite-time Analysis for the Knowledge Gradient Policy 14

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Ranking and Selection Problems . . . . . . . . . . . . . . . . . 17

2.1.2 The Knowledge Gradient Policy . . . . . . . . . . . . . . . . . 20

2.2 Finite-time Analysis of the Knowledge Gradient Policy . . . . . . . . 23

2.2.1 The Reduction of R&S to Adaptive Stochastic Set Maximization 24

2.2.2 The Value of Information . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Guarantees on the Prior-optimality of the Knowledge Gradient

Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Analysis of Submodularity of the Value of Information . . . . . . . . 37

2.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . 40

vii



2.4.1 Finite Time Performance of Different Policies . . . . . . . . . 42

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Optimal Learning with Stochastic Binary Feedbacks 47

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Background: Linear classification . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Online Bayesian Probit Regression Based on Assumed Gaussian

Density Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Online Bayesian Linear Classification Based on Laplace Approximation 56

3.4.1 Laplace Approximation . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Online Bayesian Linear Classification Based on Laplace Ap-

proximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Knowledge Gradient Policy for Bayesian Linear Classification Belief

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Markov Decision Process Formulation . . . . . . . . . . . . . . 61

3.5.2 Knowledge Gradient for Binary Responses . . . . . . . . . . . 63

3.5.3 Behavior and Asymptotic Optimality . . . . . . . . . . . . . . 66

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.1 Behavior of the KG Policy . . . . . . . . . . . . . . . . . . . . 72

3.6.2 Comparison with Other Policies . . . . . . . . . . . . . . . . . 74

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Bayesian Contextual Bandits for Personalized Health Care 78

4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Personalized Medicine . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 The Contextual Model . . . . . . . . . . . . . . . . . . . . . . 83

viii



4.3 Gaussian Process Classification . . . . . . . . . . . . . . . . . . . . . 86

4.4 Knowledge Gradient Policy with Contextual Information . . . . . . . 88

4.4.1 Markov Decision Process Formulation . . . . . . . . . . . . . . 89

4.4.2 Knowledge Gradient Policy with Contextual Information . . . 91

4.5 Cost Reduction of Knee Replacement . . . . . . . . . . . . . . . . . 93

4.5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.3 Community Detection of Caregivers . . . . . . . . . . . . . . . 100

4.5.4 Personalized Physicians and Caregivers Assignment . . . . . . 102

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Ensemble Bayesian Optimization for Sequential Information Pro-

cesses 108

5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Bayesian Learning with Expert Advice . . . . . . . . . . . . . . . . . 111

5.2.1 Generalized Weighted Majority . . . . . . . . . . . . . . . . . 112

5.2.2 A Bayesian Interpretation . . . . . . . . . . . . . . . . . . . . 112

5.3 Bayesian Optimal Learning with Ensembles . . . . . . . . . . . . . . 113

5.3.1 Markov Decision Process Formulation . . . . . . . . . . . . . . 113

5.3.2 Knowledge Gradient with Ensembles . . . . . . . . . . . . . . 116

5.3.3 Derivation for Bayesian Logistic Learners . . . . . . . . . . . . 118

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Computational Analysis . . . . . . . . . . . . . . . . . . . . . 122

5.4.2 Personalized Healthcare . . . . . . . . . . . . . . . . . . . . . 125

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Parallel Knowledge Gradient Method for Nested-batch Bayesian Op-

timization 130

ix



6.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Motivating Application . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 From Sequential Decision Making to Nested-Batch-Mode Decision

Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.1 Batch Mode Learning Model . . . . . . . . . . . . . . . . . . . 136

6.3.2 Nested Batch Mode Learning Model . . . . . . . . . . . . . . 140

6.4 Batch Knowledge Gradient (BKG) Policy . . . . . . . . . . . . . . . . 142

6.4.1 Definition of BKG Policy . . . . . . . . . . . . . . . . . . . . . 142

6.4.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.5 Nested Batch Knowledge Gradient (NBKG) Policy . . . . . . . . . . 148

6.6 Numerical Experiments on NBKG and Optimizing Photocurrent . . . 150

6.6.1 Prior Generation . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6.2 Performance of NBKG . . . . . . . . . . . . . . . . . . . . . . 153

6.6.3 Comparison with Other Policies . . . . . . . . . . . . . . . . . 157

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 MOLTE: a Modular Optimal Learning Testing Environment 160

7.1 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.1.1 Structural Overview . . . . . . . . . . . . . . . . . . . . . . . 162

7.1.2 Input Arguments . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.1.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.1.4 Pre-coded Problem Classes . . . . . . . . . . . . . . . . . . . . 167

7.1.5 Pre-coded Policies . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.1.6 Prior Generation . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2 Experiments for Offline (Terminal Reward) Problems . . . . . . . . . 173

7.3 Experiments for Online (Cumulative Reward) Problems . . . . . . . 176

7.3.1 Experiments with Independent Beliefs . . . . . . . . . . . . . 176

7.3.2 Experiments with Correlated Beliefs . . . . . . . . . . . . . . 178

x



7.4 Discussion: the Issue of Tuning . . . . . . . . . . . . . . . . . . . . . 181

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8 Conclusion and Future Work 184

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Appendix A Proofs 190

A.1 Proof of Lemma 2.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.2 Proof of Proposition 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . 191

A.3 Proof of Theorem 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.4 Proofs of Asymptotic Optimality . . . . . . . . . . . . . . . . . . . . 195

A.4.1 Proof of Proposition 3.5.1 . . . . . . . . . . . . . . . . . . . . 195

A.4.2 Proof of Proposition 3.5.2 . . . . . . . . . . . . . . . . . . . . 197

A.4.3 Proof of the Theorem 3.5.6: Consistency of the KG Policy . . 198

Bibliography 200

xi



List of Tables

3.1 Summary of datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Data description of the knee replacement. . . . . . . . . . . . . . . . 95

4.2 Summarized statistics on the number of times each policy assigned the

actual best physician. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1 Sample input spreadsheet. . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 The difference between each policy and OLKG (OC), and the proba-

bility that each policy outperforms OLKG, using uninformative priors

with a measurement budget 10 times the number of alternatives. . . . 178

7.3 The difference between each policy and OLKG (OC), and the proba-

bility that each policy outperforms OLKG, using uninformative priors

with a measurement budget 100 times the number of alternatives. . . 178

7.4 The difference between each policy and OLKG (OC), and the proba-

bility that each policy outperforms OLKG, using uninformative priors

with a measurement budget 500 times the number of alternatives. . . 179

7.5 Tuned parameters of IE and UCB-E under different problem classes

and measurement budgets. The second row indicates the ratio between

the measurement budget and the number of alternatives. . . . . . . 179

7.6 Comparisons with OLKG for correlated beliefs with the measurement

0.2 times the number of alternatives of each problem class. . . . . . . 180

xii



7.7 Tuned parameters of IE and UCB-E under different problem classes. . 181

7.8 Comparisons between tuned IE and IEs with fixed parameter values.

The second column indicates the belief model, with I for independent

belief and C for correlated belief. z∗α is the tuned value for each problem

class. The number included in the parenthesis is the parameter value

used by each IE policy. . . . . . . . . . . . . . . . . . . . . . . . . . . 182

xiii



List of Figures

2.1 Sample 1-d Gaussian process with four observations. The green line

is the true function values µx. The first figure represents the prior

distribution and the the second figure is illustrate the posterior after

the four observations. The solid red line is the GP surrogate mean

prediction of the objective function given the observed data, and the

error bar represents one standard deviation. The measured points and

their observed values are circled in blue. . . . . . . . . . . . . . . . . 19

2.2 Illustration of the knowledge gradient if we were to measure choice 5. 21

2.3 Examples of the knowledge gradient policy. The GP posterior after

five measurements (highlighted in blue circles) is shown at the top.

The other image shows the knowledge gradient value for the GP. The

maximum is shown with a star. . . . . . . . . . . . . . . . . . . . . . 22

2.4 Opportunity cost ratio. . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Comparisons for AUF and Goldstein. (a) and (c) depict the mean op-

portunity cost with error bars indicating the standard deviation of each

policy. The first bar group in (b) and (d) demonstrates the probability

that the final recommendation of each policy is the optimal one. The

second bar group in (b) and (d) illustrates the probability that the

opportunity cost of each policy is the lowest. . . . . . . . . . . . . . 44

2.6 OC obtained after each measurement under AUF (θ2 = 0.5θ1). . . . . 45

xiv



3.1 The scatter plots illustrate the KG values at 1-4 iterations from left to

right with both the color and the size reflecting the magnitude. The

star, the red square and pink circle indicate the true best alternative,

the alternative to be selected and the implementation decision, respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Snapshots on a 3-dimensional dataset. The scatter plots illustrate the

KG values at 1-10 iterations from left to right, top to bottom. The

star, the red square and pink circle indicate the best alternative, the

alternative to be selected and the implementation decision. . . . . . 73

3.3 Absolute error between the predictive probability of +1 under current

estimate and the true probability. . . . . . . . . . . . . . . . . . . . 73

3.4 Opportunity cost on UCI and synthetic datasets. . . . . . . . . . . . 75

4.1 Illustrations of dynamic programming and Bellman’s equation. . . . 90

4.2 Post-operative cost distribution. . . . . . . . . . . . . . . . . . . . . 96

4.3 Matrix-based patient representation. . . . . . . . . . . . . . . . . . . 97

4.4 Cluster of the diagnoses. . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Results of Lasso fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Clustering of the caregivers. . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Comparison of different algorithms on the knee replacement dataset. 104

4.8 Sampling frequency of each physician. . . . . . . . . . . . . . . . . . 106

5.1 Behavior of the KG policy with feature hierarchies. . . . . . . . . . . 124

5.2 Comparison of different algorithms on the knee replacement dataset. 128

6.1 Example plots of photocurrent I(d, ρ) obtained from the procedure

outlined above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xv



6.2 NBKG values before and after 3 batch measurements. The optimal NP

size at each step is indicated by the dashed line, and the corresponding

optimal batch of densities are also shown. The arrows indicate the

decrease in KG value for the NP size that was previously measured. . 154

6.3 Prior and posterior estimates of the true function surface after 0 and

15 batch measurements, using the NBKG policy. . . . . . . . . . . . . 154

6.4 Prior and posterior estimates of the true function surface after 0, 5, 10

and 15 batch measurements, using the NBKG policy. For each choice

of number of measurements, the plot shows the residual error between

this estimate and the true function. . . . . . . . . . . . . . . . . . . . 155

6.5 Opportunity cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.6 Performance of NGKB as K,B changes. Horizontal axis denotes the

logarithm of the number of batch measurement K = 0, 1, ..., 15. Verti-

cal axis is the logarithm of mean opportunity cost. Lines with differ-

ent colors correspond to different simulations with different batch sizes

B = 1, 2, ..., 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7 A comparison of policy performance. The graphs show mean opportu-

nity cost versus the number of measurement for the policies outlined

above. (a) Nested-batch experiments, in which a policy may perform

several experiments in parallel, varying NP density, provided that the

NP size is the same between the parallel experiments. Sequential poli-

cies use a batch size of B = 1. (b) Sequential experiments, in which

experiments must be performed one at a time. Here we equate 1 batch

measurement with B sequential measurements. . . . . . . . . . . . . 159

7.1 Example figure of online hist.pdf. . . . . . . . . . . . . . . . . . . . . 165

7.2 Example figure of the histogram of the frequency of choosing each of

the alternative under a policy. . . . . . . . . . . . . . . . . . . . . . 166

xvi



7.3 (a) depicts the mean opportunity cost with error bars indicating the

standard deviation. The first bar group in (b) demonstrates the prob-

ability that the final recommendation of each policy is the optimal

one. The second bar group in (b) illustrates the probability that the

opportunity cost of each policy is the lowest. . . . . . . . . . . . . . 166

7.4 Left column: sampling distribution. Right column: posterior distribu-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.5 Normalized opportunity cost between different policies. . . . . . . . . 180

xvii



Chapter 1

Introduction

In this thesis, we consider the problem of sequentially making decisions under un-

certainty, exploring the ways where efficient information collection influences and

improves decision-making strategies. In sequential decision problems, at each time

step, we choose one of finitely many alternatives and observe a random reward. The

rewards are independent of each other and follow some unknown probability distribu-

tion. One goal can be to identify the alternative with the best expected performance

within a limited measurement budget, which is the objective of offline ranking and

selection. Another goal can be to maximize the expected cumulative sum of rewards

obtained in a sequence of allocations, a problem class often addressed under the um-

brella of multi-armed bandit problems. Both ranking and selection problems and

bandit problems are examples of sequential decision making problems with partial in-

formation that address the exploration-exploitation trade-off. Since the learner does

not know the true distribution of each alternative, it needs to explore the choices that

might give good rewards in the future as well as exploit the alternatives that appear

to be better based on previous observations.

Ranking and selection problems and/or multi-armed bandits arise in many set-

tings. We may have to choose a type of material that has the best performance, the
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features in a laptop or car that produce the highest sales, or the molecular combi-

nation that produces the most effective drug. In health services, physicians have to

make medical decisions (e.g. a course of drugs, surgery, and expensive tests) to pro-

vide the best treatment. In online advertisements, the system would like to display

advertisements to gather the most ad-clicks.

Despite the previous successes of applying optimal learning techniques to trans-

portation, drug discovery, e-commerce, and material sciences, most approaches are

restricted to fully sequential settings with non-parametric Gaussian noise models

where exact analytic solutions can be easily obtained. My thesis work provides a

comprehensive set of techniques that span from designing efficient optimal learning

algorithms in parallel computing environments, to making decisions under paramet-

ric belief models which introduce additional computational hurdles, to finite-time and

asymptotic guarantees, with an emphasis on how efficient information collection can

expand access, decrease costs and improve quality in health care.

1.1 Background

There has been an enormous body of literature on the problem of optimizing the

expectation of an unknown function F (x,W ) with each noisy observation depending

on our choice x ∈ X and a random variable W . The utility function F (x,W ) can

be understood as costs, rewards or losses. This is largely different from the case of

deterministic optimization where the problem can be concisely formulated as:

max
x∈A⊂Rd

f(x),

with A a compact set and the objective function f(x) typically assumed to be con-

vex, or at least cheap to evaluate. Yet since many learning problems do not conform

to these strong assumptions, in stochastic optimization, function evaluation is usu-
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ally expensive, and the derivatives and convexity properties are not required. For

example, assume that a doctor faces a discrete set of medical choices, and that we

can characterize an outcome as a success (patient does not need to return for more

treatment) or a failure (patient does need followup care such as repeated operations).

Testing a medical decision may require several weeks to determine the outcome. This

creates a situation where experiments are time-consuming and expensive, requiring

that we learn from our decisions as quickly as possible.

The stochastic optimization problem has been studied in different communities,

most of which actively choose the next decision point based on the previous observa-

tions (Bubeck and Cesa-Bianchi, 2012; Powell and Ryzhov, 2012; Brochu et al., 2010;

Powell, 2016). An initial state S0 is used to capture all information given as prior in-

put. A policy π, also referred to as a decision function Xπ(S), is defined as a mapping

from the states S ∈ S to decisions x ∈ X . At each time step n, we use some policy

to choose one alternative to measure xn = Xπ(Sn) and receive a stochastic reward

F̂ n+1 = F (xn,W n+1). After the decision and information, the system transitions

to the state of belief at the next point in time according to some known transition

function Sn+1 = SM(Sn, xn, F̂ n+1). This is a case of partial observation, meaning

that we can only observe the value of the alternative we actually measured but not

others. Hence it faces the classic exploration/exploitation dilemma: (1) recommend

the decisions as effectively as possible while (2) learning to improve decisions in the

future. Making what we think is currently the best decision may not be the best

given the uncertainty in our model, forcing us to recognize that we have to learn to

make better decisions in the future.

There are two ways to write an objective function:

• Terminal reward – considered in Bayesian optimization, ranking and selection

problems, and also known as simple regret in multi-armed bandits. Here we

assume have a limited budget of N function evaluations which have to be se-
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quentially allocated over the different alternatives x ∈ X using a policy π. We

denote the best solution with some policy as Xπ,N . We can state the problem

of finding the best experimental policy as

max
π

E
[
F (Xπ,N ,W )|S0

]
. (1.1)

In this case, we are not punished for errors incurred during training and instead

are only concerned with the final recommendation after the offline training

phases. It should be noted that the expectation is over different sets of random

variables. The first is the sequence of observations W 1, . . . ,WN which then

produces the random Xπ,N . The second expectation is over W in the equation,

which is used to evaluate the solution. If a Bayesian approach is used, there is

a third level of expectation over the prior.

• Cumulative reward – extensively studied under the umbrella of multi-armed

bandits. If we have to experience the rewards while we do our learn-

ing/exploring, we may want to maximize contributions over some time horizon.

The (online) objective function would be written as

max
π

E
[N−1∑
n=0

F (Xπ(Sn),W n+1)|S0
]
, (1.2)

where the expectation is over the sequence of observations W 1, . . . ,WN and the

prior if any.

Despite different styles of objective functions, a general algorithm for sequential

decision problems can be summarized in Algorithm 1:

Bayesian optimization is a powerful strategy for optimizing objective functions

that are expense to evaluate (Mockus, 1994; Jones et al., 1998; Jones, 2001; Gut-

mann, 2001). It is suitable for cases when one does not have a closed-form expression
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Algorithm 1: General algorithm for sequential decision problems

input : time horizon N , initial state S0, policy π, transition function SM

for n = 0 to N do
Select the point xn = Xπ(Sn)
Observe F̂ n+1 = F (xn,W n+1)
Update the state Sn = SM(Sn, xn, F̂ n+1)

end

for the objective function, but one can obtain (possibly noisy) function evaluations

at sampled points. For example, function evaluations can involve actual physical ex-

periments. An alternative x can be a specific set of values of controllable parameters

in a physical experiments. After choosing the values of controllable parameters, the

experiments may take several weeks to run in order to gather one experimental result.

In Bayesian optimization, a prior belief is incorporated to represent our knowledge

about the space of possible objective functions, such as the smoothness and conti-

nuity. Let’s define xn as the nth sample, and Y n+1 as the noisy evaluation of the

objective function at xn. As we accumulate observations Dn = {xt, yt+1}nt=0, the pos-

terior distribution of µx := EF (x,W ) can be obtained by the prior distribution and

the likelihood function as follows:

P (µ|Dn) = P (Dn|µ)P (µ).

To sample efficiently so as to minimize the number of function evaluations required,

Bayesian optimization uses a decision function (or a policy) Xπ(S) : S 7→ X to de-

termine the next location xn+1 = Xπ(Sn) to sample. Examples of decision functions

include expected improvement (Huang et al., 2006), Bayesian expected loss mini-

mization (Osborne et al., 2009), probability of improvement (Kushner, 1964), Thomp-

son sampling (Thompson, 1933), response surface/surrogate models (Gutmann, 2001;

Jones, 2001; Regis and Shoemaker, 2005) and the knowledge gradient method (Frazier

et al., 2008).
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Raiffa and Schlaifer (1961) established the Bayesian framework for ranking and

selection (R&S) problems. Several two-stage and sequential procedures exist for se-

lecting the best alternative (terminal reward). Branke et al. (2007) made a thorough

comparison of several fully sequential sampling procedures. They indicate that the

optimal computing budget allocation (OCBA) (Chen et al., 1996, 2000; He et al.,

2007) and value of information procedures (VIP) (Chick, 2001) perform quite well

and better than a deterministic or two-stage policy (Chen et al., 2006). Another

single-step Bayesian look-ahead policy first introduced by Gupta and Miescke (1996)

and then further studied by Frazier et al. (2008) is called the “knowledge-gradient

policy” (KG). It chooses to measure the alternative that maximizes the single-period

expected value of information. Whereas the above mentioned policies assumed an in-

dependent normal or one-dimensional Wiener process prior on the alternatives’ true

means, Frazier et al. (2009) modified the knowledge-gradient policy to handle corre-

lated multivariate normal belief on the mean values of these rewards.

Another similar setting is multi-armed bandit problems (Auer et al., 2002; Bubeck

and Cesa-Bianchi, 2012; Filippi et al., 2010; Mahajan et al., 2012) for cumulative

regret minimization in an online setting. The bandit problem was originally studied

under Bayesian assumptions (Gittins, 1979). At each time step t, the learner selects

a single action It and observes some payoff Xt,It . In stochastic multi-armed bandit,

the reward of each arm is assumed to be drawn from some unknown probability

distribution. The goal is to maximize the cumulative reward obtained in a sequence

of n allocations over time, or equivalently minimizing the regret. A widely used

class of policies for multi-armed bandit problems is called upper confidence bounding

policies (UCB). The UCB algorithm is based on the principle of optimism in the face

of uncertainty. That is, despite our lack of knowledge in what actions are best we will

construct an optimistic guess as to how good the expected payoff of each action is,

and pick the action with the highest guess. The “optimism” comes in the form of an
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upper confidence bound which is the largest plausible estimate of the mean for each

alternative. For example, for Bernoulli distributed alternatives, the index θ̂nx+
√

2 logn
Nn
x

of the first UCB policy (Agrawal, 1995; Auer et al., 2002) is the sum of two terms,

with Nn
x the number of times the alternative x has been measured, up to time n. The

first term is the average reward of each alternative x. The second term is related to

the size (according to the Chernoff-Hoeffding inequality) of the one-sided confidence

interval for the average reward within which the true expected reward falls with

dominant probability. Different UCB-type variants have been developed for many

types of reward distributions and have provable logarithmic regret bounds (Lai and

Robbins, 1985; Auer et al., 2002; Kleinberg et al., 2010; Bubeck et al., 2012). Multi-

armed bandits has been extensively studied, and many algorithms are proposed and

have found applications in various domains. Some successful applications are news

and movie recommendation and online advertising (Li et al., 2011; Chapelle and Li,

2011; Chu et al., 2011a).

Scientists can draw on an extensive body of literature on the classic design of

experiments (DeGroot, 1970; Wetherill and Glazebrook, 1986; Montgomery, 2008)

whose goal is to decide what observations to make when fitting a function. Yet in

settings considered in this thesis, the decisions are guided by a well-defined utility

function (that is, maximize the terminal/cumulative reward).

This thesis focuses on the field of optimal learning, exploring the ways where

efficient information collection influences and improves decision-making strategies.

This issue is especially essential in situations where information collection is very ex-

pensive. There are many real-world optimization tasks where observations are time

consuming and/or expensive. One example arises in health services, where physicians

have to make medical decisions (e.g. a course of drugs, surgery, and expensive tests).

Assume that a doctor faces a discrete set of medical choices, and that we can charac-

terize an outcome as a success (patient does not need to return for more treatment)
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or a failure (patient does need followup care such as repeated operations). Testing a

medical decision may require several weeks to determine the outcome. This creates

a situation where experiments are time consuming and expensive, requiring that we

learn from our decisions as quickly as possible. In contrast to most experimental

work on UCB policies which tends to assume large observation budgets (which might

fit applications such as optimizing ad-clicks), we argue that the setting of expensive

experiments represents a different type of learning challenge. Some of the early work

in this field includes literature on determining the optimal number of samples form

an unknown distribution so as to answer a statistical question about that distribu-

tion. Advanced research covers a wide range of problem classes with both discrete

and continuous decision spaces with different belief models. For example, Gupta and

Miescke (1996) introduce the idea of maximizing the marginal value of information.

Frazier et al. (2008) extend this idea to the knowledge gradient policy (KG), which is

first proposed for offline (context-free) ranking and selection problems by maximizes

the value of information, with the performance of each alternative represented by a

(non-parametric) lookup table model. After its first appearance, KG has been ex-

tended to various belief models (e.g. hierarchical belief model in Mes et al. (2011),

linear belief model in Negoescu et al. (2011)). Although originally developed for of-

fline learning (where we do not pay attention to successes while we are learning), it is

easily adapted to online learning where we seek to maximize the cumulative number

of successes (Ryzhov et al., 2012).

1.2 Overview and Contributions

In many applications, decisions are made sequentially over time. For a rational deci-

sion maker, the perception of the “optimal” action should change as he observes the

feedbacks of past decisions. This is a challenging problem for several reasons. First,
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information has an economic value and yet information collection can be very expen-

sive. This creates a situation where information should be measured and balanced

against other economic concerns as part of the decision-making process, requiring that

we learn from our decisions as quickly as possible. Second, we need to come up with

appropriate stochastic models to describe the uncertain environment in which deci-

sions can be implemented. Third, we need optimization to balance between exploiting

short term earning and exploring information with long-term benefits. Finally, proper

statistical models and inferences are required to represent our changing beliefs about

the environment as new information collected, which is of high importance especially

when high-dimension or sparsity is a crucial characteristic of the environment.

Most previous optimal learning approaches are restricted to fully sequential set-

tings with non-parametric Gaussian noise models where exact analytic solutions can

be easily obtained. As already mentioned, my thesis work provides a comprehensive

set of techniques that span from designing efficient optimal learning algorithms in

parallel computing environments, to making decisions under parametric belief mod-

els which introduce additional computational hurdles, to finite-time and asymptotic

guarantees, with an emphasis on how efficient information collection can expand ac-

cess, decrease costs and improve quality in health care. Here, we provide an overview

and summarize the main contributions of the thesis.

Chapter 2: Finite-time Analysis for the Knowledge-Gradient Policy. Al-

though many value of information policies exist with nice asymptotic guarantees and

empirical performance, there is no finite-time bound for such policies mainly due

to the adaptive nature of the policies, that is, the current decision depends on the

stochastic outcomes of past decisions. We fill in this gap by offering a new perspective

of interpreting ranking and selection problems as adaptive stochastic multi-set maxi-

mization problems and deriving the first finite-time bound of the knowledge-gradient,
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which characterizes KG as a near-optimal algorithm with an approximation ratio of

e/(e − 1) ≈ 1.582. In addition, we introduced the concept of prior-optimality and

provide another insight into the performance of the knowledge gradient policy based

on the submodular assumption on the value of information.

Chapter 3: Optimal Learning with Stochastic Binary Feedbacks. Since

there are many situations where the outcomes are dichotomous, we consider the prob-

lem of sequentially making decisions that are rewarded by “successes” and “failures”

which can be predicted through an unknown relationship that depends on a par-

tially controllable vector of attributes for each instance. Our problem is motivated by

real-world applications where observations are time consuming and/or expensive. We

propose a stochastic binary feedback (success/failure) model and designed a knowl-

edge gradient (KG) policy under Bayesian generalized linear models. Unlike prior

work with the knowledge gradient which assumed Gaussian noise and/or linear belief

models, the non-linearity introduced by the link functions causes additional computa-

tional hurdle. To this end, different analytical approximation methods are developed

to overcome computational challenges. Theoretically, we provide a finite-time anal-

ysis and showed that the KG policy is asymptotically optimal. We demonstrate the

performance of the proposed algorithm on both synthetic problems and benchmark

UCI datasets.

Chapter 4: Bayesian Contextual Bandits for Personalized Health Care.

We study the problem of how sequentially assignment of physicians/facilities to indi-

vidual patients can reduce the health care costs. This is an example of the broader

area of personalized medicine, which takes into consideration the heterogeneity in

needs and responses of different patients. A treatment regime is a function that maps

individual patient information (including measures of disease stage severity, medical

history, clinical diagnosis) to a recommended treatment, hence explicitly capturing
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patient characteristics on treatment decisions. Patient responses can be predicted

through an unknown relationship that depends on the patient information and the

selected treatment. The goal is to find the treatments that lead to the best patient

responses, on average, over time. Each experiment is expensive, forcing us to learn

the most from each health episode.

We describe a methodology for quickly learning a contextual, binary response

model for personalized healthcare. We introduce a two-step Bellman’s equation for

Bayesian contextual bandits and develop an optimal learning policy to guide the

treatment assignment by maximizing the expected value of information. Due to

the intrinsic sparsity of health datasets, we use network modularity detection and

LASSO to perform feature selection. A detailed study on knee replacement dataset

demonstrates the significant value of an optimal learning policy to reduce health care

costs.

Chapter 5: Ensemble Bayesian Optimization. As in the healthcare example, a

patient can have a number of attributes, spanning from the age, weight, to diagnoses

and to their medical history. If we directly use these features, the highly sparsity

makes learning difficult and computationally expensive. We could instead find lower

dimension feature representations based on previously learned patient profiles. Yet if

a patient deviates from stereotypical patients, then a reduced space may not include

enough explanation power. One question is how to appropriately choose the explana-

tory variables. Another essential question is what type of prediction model should be

chosen among many competing models, such as perceptron, support vector machines

(SVM), and decision trees. Ensemble learning is of vital importance in these cases.

Since the high sparsity and the relatively small number of patients makes learning

more difficult, with the adaptation of an online boosting framework, we use Bayesian
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learning with expert advice as the belief model and develop optimal learning policies

to sequentially make decisions, especially in high-dimensional settings.

Chapter 6: Parallel Knowledge Gradient Method for Nested-batch

Bayesian Optimization. Most previous work in optimal learning assumes a fully

sequential setting where at each time step only one decision is made. However, the

sequential design fails to account for the ability to run several parallel experiments

in batches. Driven by numerous needs among materials science society, we develop

a Nested-Batch-KG policy for sequential experiments when experiments can be con-

ducted in parallel and/or there are multiple tunable parameters which are decided at

different stages in the process. We demonstrate the effectiveness of our approach on

the material design problem of maximizing output current of a photoactive device.

Chapter 7: MOLTE, a Modular Optimal Learning Environment. There has

been a long history in the optimal learning literature of proving some sort of bound,

supported at times by relatively thin empirical work by comparing a few policies on a

small number of randomly generated problems. To this end, we address the relative

paucity of empirical testing of learning algorithms (of any type) by introducing a

new public-domain, Modular, Optimal Learning Testing Environment (MOLTE) for

Bayesian ranking and selection problem, stochastic bandits or sequential experimental

design problems, to facilitate the process of more comprehensive comparisons, on a

broader set of test problems and a broader set of policies.

Chapter 8: Conclusion. We summarized the conclusion and important extensions

of this thesis and describes ongoing and future work. Specifically, it describes new

optimal learning strategies for a wide range of belief models that are arisen from real-

world applications of interest within healthcare, revenue management, and market

research, and new theoretical directions.
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1.3 Notes on Publication

The work included in this thesis has been submitted to academic conferences and

journals, and is in various stages of review. Chapter 2 was submitted as Wang and

Powell (2016a). Chapter 3 was submitted to Operations Research, with a conference

version published as Wang et al. (2016). The work in Chapter 4 was submitted as

Wang and Powell (2016c). The material in Chapter 6 was published as Wang et al.

(2015). The environment presented in Chapter 7 is described in the technical report

(Wang and Powell, 2016b). As of this writing, this work was also presented at the

following conferences: INFORMS Annual Meeting (2014, 2015, 2016), International

Conference on Machine Learning (ICML), INFORMS Optimization Society Confer-

ence, and Modeling and Optimization: Theory and Applications (MOPTA).

This research was supported in part by AFOSR grant contract FA9550-12-1-0200
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Chapter 2

Finite-time Analysis for the

Knowledge Gradient Policy

In this chapter, we consider sequential decision problems in which at each time step,

we choose one of finitely many alternatives and observe a random reward with our goal

as identifying the alternative with the best expected performance within a limited

measurement budget (terminal reward). Since the learner does not know the true

distribution of each alternative, it needs to explore the choices that might give good

rewards in the future as well as exploit the alternatives that appear to be better based

on previous observations.

We are particularly interested in a single-step Bayesian look-ahead policy, which

is called the knowledge gradient policy introduced by Gupta and Miescke (1996) and

then further studied by Frazier et al. (2008). Although the knowledge gradient policy

has been extended in various ways and enjoy some nice theoretical properties, it has

never been characterized by the type of regret bounds for which upper confidence

bounding (UCB) policies (Lai and Robbins, 1985; Agrawal, 1995; Auer et al., 2002;

Kleinberg et al., 2010; Bubeck et al., 2012), a widely used class of multi-armed bandit

algorithm, are famous.
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In what follows, we first establish the connection between Bayesian ranking and

selection problem and adaptive stochastic multi-set function maximization problems

where each multi-set corresponds to a set of selected alternatives. The multi-set rep-

resentation captures our ability to evaluate the same alternative more than once. This

new perspective offers a new line of analysis for the properties of value-of-information

policies. We derive the first distribution-free finite-time bound for the knowledge

gradient policy for R&S problems under the assumption that the utility function is

adaptive submodular, which characterizes KG as a near-optimal algorithm with an

approximation ratio of e/(e − 1) ≈ 1.582. However, adaptive submodularity, which

is effectively a pathwise assumption, can fail in offline learning settings when the

utility function itself involves a maximum. To this end, instead of the pathwise be-

havior analyses of the utility function, we further study its average behavior by taking

expectations over the observations given any fixed sample allocation, resulting in a

well-known quantity: the value of information. As a result, we introduce the concept

of the prior-value of a policy and analyze the prior-optimality of the KG policy to

provide another insight into its performance based on the submodular assumption of

the value of information that is weaker than adaptive submodularity. To accomplish

this, we build on the general structure of the analysis of greedy algorithms given in

Nemhauser et al. (1978) and Golovin and Krause (2010). We demonstrate submod-

ularity for the two-alternative case and provide other conditions for more general

problems, filling in a gap in the analysis of the knowledge gradient policy. Finally, we

propose experiments to illustrate our theoretical analysis on the finite time behavior

of the knowledge gradient policy. We further compare the KG policy with other poli-

cies with or without theoretical guarantees. Aside from the fact that the KG policy

performs competitively with or significantly better than other policies especially in

early iterations, we draw the conclusion that there is no universal best policy for

all problem classes, which means that theoretical guarantees are not by themselves
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reliable indicators of which policy is best for a particular problem class and empirical

experiments are needed to better understand their finite time performance.

2.1 Literature Review

We consider sequential decision problems in which at each time step, we choose one

of finitely many alternatives and observe a random reward. The rewards are inde-

pendent of each other and follow some unknown probability distribution. One goal

can be to identify the alternative with the best expected performance within a lim-

ited measurement budget, which is the objective of Bayesian ranking and selection

problems. Ranking and selection problems are examples of sequential decision making

problems with partial information that address the exploration-exploitation trade-off.

Since the learner does not know the true distribution of each alternative, it needs to

explore the choices that might give good rewards in the future as well as exploit the

alternatives that appear to be better based on previous observations.

Ranking and selection (R&S) problems arise in many settings. We may have to

choose a type of material that has the best performance, the features in a laptop or car

that produce the highest sales, or the molecular combination that produces the most

effective drug. Often, the cost of a measurement may be substantial. Laboratory or

field experiments may take a day or several weeks. For this reason, we assume we

have a limited budget for making measurements.

Raiffa and Schlaifer established the Bayesian framework for R&S problems (Raiffa

and Schlaifer, 1961). In this section, we are interested in a single-step Bayesian

look-ahead policy, first introduced by Gupta and Miescke (1996) and then further

studied by Frazier et al. (2008), called the “knowledge-gradient policy” (KG). It

chooses to measure the alternative that maximizes the single-period expected value

of information. In what follows, we first review the Bayesian R&S with terminal
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reward objective function and the knowledge gradient policy with a lookup table

belief model.

2.1.1 Ranking and Selection Problems

Suppose we have a collection X of M alternatives, each of which can be measured

sequentially to estimate its unknown mean µx. We assume normally distributed

measurement noise with known variance σ2
W . We have a finite measurement budget

of N . Our goal is to sequentially decide which alternative to measure so that when

the measurement budget is exhausted, we have maximized our ability to find the best

alternative.

We first introduce the model for independent Gaussian processes (GP). Although

the cost function is unknown, it is reasonable to assume that there is some knowledge

about some of its properties, such as smoothness. Since there is the possibility of

measurement noise, which is assumed to be Gaussian white noise, a GP prior is well-

suited due to conjugacy. In fact, Gaussian process priors for Bayesian optimization

date back at least to the work of O’Hagan (1978). Mockus (1994) later set additional

conditions for defining priori distributions: 1) continuity of the objective; 2) homo-

geneity of a priori distribution; 3) independence of m-th differences. This includes a

very large family of optimization tasks and Mockus (1994) showed that a GP prior is

well-suited to the task. In the meantime, the advantage of using Gaussian processes

includes, but not limited to, having confidence intervals for predictions, usability,

flexibility in implementation, and its ability to encode various linear models with

different basis functions by choosing different kernel functions.

We begin with a normally distributed Bayesian prior belief on the sampling means

that is independent across alternatives, µx ∼ N (θ0
x, σ

0
x). At the nth iteration, we

choose one alternative xn = x to measure and observe W n+1 = µx + εn+1
x , where εn+1

x
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is a Gaussian random measurement noise, εn+1
x ∼ N (0, σW ). Here we assume that

σW is known to the learner.

For convenience, we introduce the σ-algebras Fn for any n = 0, 1, ..., N − 1 which

is formed by the previous n measurement choices and outcomes, x0,W 1, ..., xn−1,W n.

We define θnx = E[µx|Fn] and (σnx)2 = Var[µx|Fn]. Then conditionally on Fn,

µx ∼ N (θnx , σ
n
x). Let βnx = 1

(σnx )2
be the conditional precision of µx and our state

of knowledge be Sn = (θnx , β
n
x )x∈X . After the nth measurement we update our beliefs

using Bayes’ rule (Gelman et al., 2014):

θn+1
x =


βnx θ

n
x+βWWn+1

βn+βW
if xn = x

θnx otherwise,
βn+1
x =

 βn + βW if xn = x

βnx otherwise,

where βW = 1/σ2
W .

We may impose correlated beliefs between alternatives in order to strengthen the

effect of each measurement. Starting from a prior distribution N (θ0,Σ0) and after

measurement W n+1 of alternative x, by Bayes’ theorem, a posterior distribution is

also a normal distribution, with the mean and covariance matrix as follows (Gelman

et al., 2014):

θn+1 = Σn+1
(
(Σn)−1 θn + βWW n+1ex

)
, (2.1)

Σn+1 =
(
(Σn)−1 + βW exe

T
x

)−1
, (2.2)

where ex is the vector with 1 in the entry corresponding to alternative x and 0

elsewhere. Sn = (θn,Σn) is then our state of knowledge in this case. We may rewrite

this formula using the Sherman-Morrison formula (see, e.g. Golub and Van Loan
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(2012)) to obtain a recursion that does not require matrix inversion:

θn+1 = θn +
W n+1 − θnx
λW + Σn

xx

Σnex, (2.3)

Σn+1 = Σn − Σnex(ex)
TΣn

λW + Σn
xx

, (2.4)

where λW = σ2
W and Σxx is the variance of x in the covariance matrix Σ. An example

of the update with four observations are illustrated in Figure 2.1.

Figure 2.1: Sample 1-d Gaussian process with four observations. The green line is
the true function values µx. The first figure represents the prior distribution and the
the second figure is illustrate the posterior after the four observations. The solid red
line is the GP surrogate mean prediction of the objective function given the observed
data, and the error bar represents one standard deviation. The measured points and
their observed values are circled in blue.

A policy π, also referred to as a decision function Xπ(S), is defined as a mapping

from the states S ∈ S to decisions x ∈ X . For example, for the case of independent

beliefs, the state space S can be formally defined as S := RM × (0,∞]M . In other

words, a policy sequentially guides our experiments by deciding which alternative

to measure based on past observations. If we are limited to N measurements, the
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objective is to find out the optimal policy that maximizes the expected reward of the

final recommended alternative:

max
π∈Π

E [µxπ ] , (2.5)

where xπ ∈ arg maxx∈X θ
N
x and xn = Xπ(Sn) for 0 ≤ n < N .

2.1.2 The Knowledge Gradient Policy

For R&S problems, the knowledge gradient is a policy that at the nth iteration chooses

its (n + 1)st measurement from X to maximize the single-period expected increase

in value (Frazier et al., 2008, 2009). To be more specific, if we represent the state of

knowledge at time n as Sn = (θnx ,Σ
n), then the value of being in state Sn is

V n(Sn) = max
x∈X

θnx .

If we choose to measure xn = x right now, allowing us to observe W n+1
x , then we

transition to a new state of knowledge Sn+1 = (θn+1,Σn+1). At iteration n, θn+1
x is a

random variable since we do not yet know what W n+1 is going to be. We would like

to choose x at iteration n which maximizes the expected value of maxx∈X θ
n+1
x . We

can think of this as choosing an alternative to maximize the incremental value, given

by

νKG,n
x = E[max

x′
θn+1
x′ −max

x′
θnx′ |xn = x, Sn]. (2.6)

The knowledge gradient policy XKG(Sn) is defined by

XKG(Sn) ∈ arg max
x∈X

νKG,n
x , (2.7)

where ties are broken randomly.
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Figure 2.2: Illustration of the knowledge gradient if we were to measure choice 5.

The knowledge gradient, νKG,n, is the amount by which the solution improves if

we choose to measure alternative x. The knowledge gradient for independent normal

belief is illustrated in Figure 2.2, where the posterior mean of the fourth alternative is

currently the best. If we would like to measure alternative 5 at current time step, the

estimated mean of alternative 5 will go up or down according to a normal distribution.

The shaded area under the curve that exceeds the estimate of alternative 4 is the

probability that measuring alternative 5 will produce a value that is better than the

current best alternative. The knowledge gradient value is the expected amount by

which it will increase.

An illustration of the KG acquisition function for correlated normal beliefs is

shown in Figure 2.3. It can be seen from the figure that the KG value of a previously

measured point will be decreased. In the meantime, if an alternative has a higher

estimated mean, or a higher variance, the KG value tends to be higher, since it

provides more value of information.

The knowledge gradient policy can handle the presence of a variety of belief models

such as linear (Negoescu et al., 2011) or nonparametric (Mes et al., 2011; Barut and

Powell, 2013).
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Figure 2.3: Examples of the knowledge gradient policy. The GP posterior after five
measurements (highlighted in blue circles) is shown at the top. The other image
shows the knowledge gradient value for the GP. The maximum is shown with a star.

The knowledge gradient policy has some nice properties (Frazier et al., 2009,

2008). For Bayesian ranking and selection problems, the knowledge gradient policy

is optimal (by definition) if the measurement budget N = 1. The knowledge gradient

is guaranteed to find the best alternative as the measurement budget N tends to

infinity. If there are only two choices, the knowledge gradient policy is optimal for

any measurement budget. The knowledge gradient policy is the only stationary policy

that is both myopically and asymptotically optimal. However, the KG has not enjoyed

the finite-time bounds that have been popular in the UCB policies.
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2.2 Finite-time Analysis of the Knowledge Gradi-

ent Policy

We follow the general structure of the analysis of greedy approximation (Nemhauser

et al., 1978; Goldengorin et al., 1999) to develop the first finite-time bound for the

knowledge gradient policy for R&S problems. Nemhauser et al. (1978); Goldengorin

et al. (1999) provide guarantees for simple greedy algorithms, which adds the element

that maximally increases the objective value. Yet, in this chapter, the challenge lies

in generalizing the results to adaptive planning, where the action taken in each step

depends on the information collected in previous steps, and thus the feasible solutions

are (adaptive) policies, that mapping from states to actions, rather than subsets. In

Section 2.2.1, by interpreting the Bayesian R&S problems as the adaptive stochas-

tic multi-set maximization problems, we demonstrate how the KG policy enjoys the

performance guarantees similar to the greedy algorithm for classic nonadaptive sub-

modular maximization problems, if the utility function is adaptive submodular. We

theoretically analyze the adaptive submodular assumption and point out that it can

fail in the ranking and selection problems. In such cases, instead of the pathwise

behavior analyses of the utility function, we study its average behavior by taking

expectation over the observations in Section 2.2.2. In Section 2.2.3, based on a well-

understood quantity: value of information, we propose a natural definition of the

prior value of an adaptive policy. We show how the results of Nemhauser et al.

(1978); Goldengorin et al. (1999) generalize to the adaptive setting under the concept

of prior-optimality. This provides another insight into the performance of the KG

policy based on value of information.

It is important to note that both the submodular maximization reduction and the

theoretical analyses on the prior-optimality are not limited to the specific setup of

Gaussian noise in observations and Gaussian prior structure. The theoretical guar-
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antees are more generally applicable to any prior and measurement noise model as

long as the adaptive submodular assumption or the submodular value of information

assumption holds.

2.2.1 The Reduction of R&S to Adaptive Stochastic Set

Maximization

We first introduce the adaptive stochastic set maximization problem. Let E be a

finite set of items. Each of the Φe is a random variable that maps the sample space

Ω to a set O of possible values. We use Φ to denote the multivariate random variable

Φ = (Φe)e∈E. A realization is defined as φ := Φ(ω) with each φe representing the

observation of item e in the ground set E. Under Bayesian interpretation, we assume

that there is a known prior probability distribution p(φ) := P(Φ = φ) over all possible

realizations. The adaptive stochastic optimization problem consists of sequentially

picking an item e ∈ E, revealing its outcome Φe and picking the next item. In

adaptive stochastic set maximization problem, each item can be picked only once.

After each pick, the observations so far can be represented as a partial realization

ψ. For notational convenience, we sometimes also represent ψ as a relation, i.e. ψ ⊆

E×O equals {(e, o) : ψe = o}. A partial realization ψ is consistent with realization φ,

denoted as φ ∼ ψ, if they are equal everywhere in the domain of ψ, where the domain

(the set of items observed in ψ) of ψ is defined as dom(ψ) = {e : ∃o, s.t.(e, o) ∈ ψ}.

If ψ and ψ′ are both consistent with φ, and dom(ψ) ⊆ dom(ψ′), then ψ is said to be

a sub-realization of ψ′, denoted as ψ ⊆ ψ′.

We wish to maximize some utility function f : 2E × OE 7→ R that depends on

which items we pick and which states they are in. A policy π in this case is a function

from a partial realization ψ to E, specifying which item to pick next based on previous

observations. We use the notation Zπ(φ) to denote the set of items chosen by policy

π under realization φ. The expected utility of a policy π is favg(π) := E
[
f
(
Zπ(Φ),Φ

)]
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where the expectation is taken over the prior distribution p(φ). The goal of adaptive

stochastic set maximization problem is to find an optimal policy π∗ that maximizes

its expected utility under a cardinality constraint,

π∗ ∈ arg max
π

favg(π), subject to |Zπ(φ)| ≤ N, for all φ,

where N is the measurement budget.

It is not obvious to treat the ranking and selection problem in an adaptive stochas-

tic multi-set maximization way of thinking. To see this, define the ground set E = X .

The outcomes are real numbers with O = R. Each alternative e = x can be selected

multiple times. After each selection, its random outcome Φe = Wx ∈ O is revealed.

Since the true values µx are assumed to be random variables in a Bayesian in-

terpretation, we can let ϕ be a sample realization of the truth with a (correlated)

prior distribution p(ϕ) = N (θ0,Σ0). We use φ to denote a realization of the random

observations in ranking and selection problems. The prior probability distribution

over the realizations φ is determined by p(ϕ) and the noise distribution N (0, σW ).

For example, if in the ranking and selection problems each alternative can only be

selected only once, Φ = (Φx)x∈X . Since in ranking and selection problems, we can

choose each alternative more than once, one way of defining the realization is by

first making replicas of each item to construct X ′ and then selecting each x′ ∈ X ′ at

most once. To be more specific, it is equivalent to a set representation if we make

N replicas of each alternative x ∈ X to construct set X ′. At the same time, the

prior distribution p(ϕ) needs to be extended to the set of X ′ with the correlation of

different replicas of each alternative x set to be one. The sample realization in this

case should also be extended to the set X ′ such that φ′ := Φ′(ω) with each φ′x′ ∈ O

representing the observation of each item x′ in the extended set X ′.
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Consider any sampling allocation z = (zx)x∈X , by which we measure alternative

x for zx ∈ N times. We use Z to represent its corresponding multi-set. Each of the

sampling allocation Z corresponds to at least one subset of X ′. We use Zπ(φ′) to

refer to the alternatives selected by π under realization φ′. It is worth noting that

if in the translation between ranking and selection problems and set maximization,

we stipulate that if a policy π chooses an alternative x for the nth time, exactly the

observation of the nth replica of x in X ′ is revealed, then Zπ(φ′) maps to only one

subset of X ′. Let θn be our vector of estimates of the means after n measurements

according to allocation Z under realization φ′, where |Z| = n. θn can be obtained

according to the updating equation (2.1) and (2.2), and does not depend on the order

of the allocations according to independency and the Bayes’ theorem. It can thus be

denoted as θn(Z, φ′) : NX × OX×N 7→ RM . The next lemma states the equivalence of

E[µxπ ] and E[maxx θ
N
x ], where xπ ∈ arg maxx θ

N
x . Hence, the utility function f̃ : NX ×

OX×N 7→ R can be defined as maxx θ
n
x(Z, φ′) and f̃avg(π) := E

[
maxx θ

N
x

(
Zπ(Φ′),Φ′

)]
.

The R&S objective (2.5) can then be re-written as

π∗ ∈ arg max
π

f̃avg(π), subject to |Zπ(φ′)| ≤ N, for all φ′.

Lemma 2.2.1 (Chapter 4.4.2 of Powell and Ryzhov (2012)). Let π be a policy, θn be

the vector of estimates of the means after n measurements following policy π, and let

xπ ∈ arg maxx θ
N
x be the alternative selected by the policy. Then

E[µxπ ] = E[max
x

θNx ].

If in ranking and selection problems, each alternative can be measured at most

once, it can be seen that the definition of the knowledge gradient νKG,nx (Eq. (7.1.5))

coincides with the Conditional Expected Marginal Benefit ∆(e|ψ) for stochastic set
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maximization defined by Golovin and Krause (2010):

∆(e|ψ) := E
[
f
(
dom(ψ) ∪ {e},Φ

)
− f

(
dom(ψ),Φ

)
|Φ ∼ ψ

]
.

The knowledge gradient policy is thus in fact the adaptive greedy policy with uniform

item costs, with a slight difference in the ability of selecting each item more than

once. To this end, we generalize the definition of adaptive monotonicity and adaptive

submodularity for set functions given by Golovin and Krause (2010) to the case of

multi-selection as follows.

Definition 2.2.2 (Adaptive Monotonicity). A function f̃ : NX ×OX×N 7→ R is adap-

tive monotone with respect to distribution p(φ′) if the conditional expected marginal

benefit of any item is nonnegative: for all ψ and all x ∈ X .

∆(x|ψ) ≥ 0.

Definition 2.2.3 (Adaptive Submodularity). A function f̃ : NX × OX×N 7→ R is

adaptive submodular with respect to distribution p(φ′) if for all ψ and ψ′ such that

dom(ψ) ⊆ dom(ψ′) and both ψ, ψ′ are consistent with some realization φ′ (i.e. ψ ⊆

ψ′), we have that the conditional expected marginal benefit of any fixed item x ∈ X

does not increase as more items are selected and observed,

∆(x|ψ) ≥ ∆(x|ψ′).

Let π∗ be the optimal policy to R&S problems. By a similar argument as in

Golovin and Krause (2010) for adaptive stochastic set maximization problem, we

provide the first finite-time bound for the knowledge gradient policy for R&S problems

as follows. This is the first bound that characterizes KG as a near-optimal algorithm

with an approximation ratio of e/(e− 1) ≈ 1.582.
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Theorem 2.2.4 (Posterior optimality bound). If f̃ := maxx θ
n
x(Z, φ′) is adaptive

monotone and adaptive submodular with respect to the prior distribution p(φ′), then

f̃avg(KG) > (1− e−1)f̃avg(π
∗).

We next show that the instances generated by ranking and selection problems are

adaptive monotone.

Lemma 2.2.5. In ranking and selection problems, the utility function maxx θx is adap-

tive monotone with any general prior distribution.

Proof. For any ψ, let n = |ψ|. For any general prior distribution, recall that θnx =

E[µx|Fn] with Fn as the σ-algebra generated by the partial realization ψ. Then for

any item x ∈ X , ∆(x|ψ) can be rewritten as

E
[

max
x′

E[µx′ |Fn+1]−max
x′

E[µx′ |Fn]|xn = x,Fn
]

= νKG,n
x .

We notice that the function maxx′ E[µx′ |Fn+1] is convex, so we have

E
[

max
x′

E[µx′|Fn+1]|xn = x,Fn
]
≥ max

x′
E
[
E[µx′ |Fn+1]|xn = x,Fn

]
by Jensen’s inequality. Due to the properties of conditional expectations, we have

E
[
E[µx′|Fn+1]|xn = x,Fn

]
= E[µx′ |Fn].

Hence we have ∆(x|ψ) = νKG,n
x ≥ 0.

Even though intuition suggests that the utility function should be adaptive sub-

modular in the amount of information collected, as we collect more information it

is natural to expect that the marginal value of this information should decrease, yet
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it is not always the case as shown in the next lemma. The proof can be found in

Appendix A.1.

Lemma 2.2.6. For any independent normal prior distribution p(ϕ) and nondegener-

ated noise distribution (i.e. σW 6= 0), there exists ψ, ψ′ and x ∈ X such that ψ ⊆ ψ′

and ∆(x|ψ) < ∆(x|ψ′).

It can be seen that the adaptive submodular assumption can fail in the ranking and

selection problems with the special utility function f̃ = maxx θ
n
x(Z, φ′) that involves

maximization itself. Hence, instead of the above pathwise behavior analyses of the

utility function, we would like to study its average behavior by taking the expectation

over the observations given any fixed sample allocation Z in the next section.

2.2.2 The Value of Information

For notational simplicity, we use φ(Φ), instead of φ′(Φ′), to denote sample realizations

(random variable) for multi-set functions for the rest of our manuscript. We define

the pathwise value of information v̂(Z, φ) as the incremental improvement over the

best expected value that can be obtained without measurement, which is maxx∈X θ
0
x,

v̂(Z, φ) := max
x∈X

θnx(Z, φ)−max
x∈X

θ0
x.

The value of information v(Z) is then defined to be

v(Z) := EΦ[v̂(Z,Φ)],

where the expectation is taken over the prior distribution p(φ).

The value of information has a long history spanning the literatures of several dis-

ciplines. Stigler considers the value of information in economics when buyers search

for the best price (Stigler, 1961). Howard laid the groundwork for the value of infor-
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mation in a decision-theoretic context and spawned a great deal of work in this area

(Howard, 1966). Yokota and Thompson gives a first comprehensive review of value

of information analyses related to health risk management (Yokota and Thompson,

2004). Raiffa and Schlaifer poses the Bayesian R&S problem and defines the associ-

ated value of information (Raiffa and Schlaifer, 1961), which marked the beginning

of a number of literature on the value of information within Bayesian R&S and the

budgeted learning problem (Guttman et al., 1964; Kapoor and Greiner, 2005; Chen

et al., 1996; Chick, 2001; Frazier et al., 2008).

Since the value of information is a multi-set function, we first generalize the def-

initions and properties of submodular set functions described by Nemhauser et al.

(1978) to submodular multi-set functions.

Definition 2.2.7. Given a finite set E, a real-valued function g on the set of multi-

sets over E is called submodular if for all multi-sets S and T whose elements belong

to E,

ρx(S) ≥ ρx(T ),∀S ⊆ T,∀x ∈ E,

where ρx(S) , g(S ∪ {x})− g(S) is the incremental value of adding element x to the

multi-set S.

Proposition 2.2.1. Each of the following statements is equivalent and defines a

submodular multi-set function (S and T are multi-sets on E, x, y ∈ E):

1. ρx(S) ≥ ρx(T ),∀S ⊆ T and ∀x.

2. ρx(S) ≥ ρx(S ∪ {y}),∀S, x, y.

3. g(T ) ≤ g(S) +
∑

x∈T−S ρx(S),∀S ⊆ T .

4. g(T ) ≤ g(S) +
∑

x∈T−S ρx(S)−
∑

x∈S−T ρx(S ∪ T − {x}),∀S, T .

This proposition follows from a similar proof of Proposition 2.1 in Nemhauser

et al. (1978).
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It is obvious that if θnx(Z, φ) is adaptive monotone or adaptive submodular with

respect to p(φ), then so does v̂(Z, φ). It is also easy to show that if θnx(Z, φ) is

adaptive monotone or adaptive submodular with respect to p(φ), then by the law of

total expectation, i.e. E[E[U |V ]] = E[U ] for an integrable random variable U and

some random variable V , the value of information v(Z) is monotone or submodular.

We close this section by showing the monotonicity of the multi-set function v and

leave the analysis of submodularity in Section 2.3.

Lemma 2.2.8. (Monotonicity of the value of information)

For any sampling allocation Z1 and Z2, if Z1 ⊆ Z2, then v(Z1) ≤ v(Z2).

Proof. We prove the monotonicity of v by showing v(Z) ≤ v(Z ∪ {xn+1}) for any

allocation Z (with
∑

x∈X zx = n) and any additional measurement xn+1. By the

tower property,

v(Z ∪ {xn+1})− v(Z) = EΦ[E[max
x

θn+1
x (Z ∪ {xn+1})−max

x
θnx(Z)|Φ ∼ ψZ ]]

= EΦ[νKG,n
x ],

where ψZ is the partial realization with dom(ψZ) = Z. The lemma follows from the

adaptive monotonicity, νKG,n
x ≥ 0.

2.2.3 Guarantees on the Prior-optimality of the Knowledge

Gradient Policy

There are two ways to evaluate the value of a policy. The first, which we call the

posterior view, conditions on the allocation Z = Zπ(Φ) that would have occurred

under policy π for each sample path φ ∈ Φ. This is the more conventional approach for

evaluating policies. The second, which we call the prior view, starts by characterizing

the value of an arbitrary allocation Z (before we have seen any sample realizations).
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More formally, the classical way to estimate the value of a policy is to calculate the

incremental improvement over what we could do before we collect any information,

is given by

f ′avg(π) = E[f̃(Zπ(Φ),Φ)]−max
x

θ0
x.

We let P(π  Z) be the probability that policy π produces allocation Z. Since with

a fixed budget of N measurements, the number of possible allocations is finite, using

the tower property, we can condition on the allocation Zπ = Z which gives us

f ′avg(π) =
∑
Z∈ZN

P(π  Z)

(
E[max

x
θnx(Zπ(Φ),Φ)|Zπ = Z]−max

x
θ0
x

)
,

where ZN is the set of all possible allocations with a limited budget N . We note

that in this method for evaluating a policy (which is the standard method), we only

consider allocations Z that are actually produced by policy π for the outcomes in φ.

This approach makes it much more difficult to understand the relationship between

the allocation Z and the value of a policy.

For this reason, we adopt a different method of evaluating a policy which we term

the prior view. Since this idea is new, we define it formally as follows

Definition 2.2.9 (The prior-value of a policy). Let Zn be the set of all possible

allocations with a limited budget n. The value of a policy π with N measurements is

defined as

F π := E
[
v(Zπ)

]
=
∑
Z∈ZN

P(π  Z)v(Z)

=
∑
Z∈ZN

P(π  Z)

(
EΦ[max

x
θnx(Z,Φ)]−max

x
θ0
x

)
.
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In this view, we use the prior probability of an outcome p(φ) instead of the pos-

terior p(φ|Zπ(φ) = Z) which is conditioned on an allocation Z. The value of this

approach is that it writes the value of a policy directly as a function of v(Z), mak-

ing it easier to study the effect of the properties of v(Z) on the value of a policy.

Intuitively, since a policy could generate different allocations Z for different sample

realizations, it is natural to define the value of a policy π as the weighted sum of

the expected value of information based on all possible allocations Z and the weight

should be the probability of occurrence of Z based on policy π. In comparison, we

term the previous bound obtained for f̃ (or equivalently, f ′) in Section 2.2.1 as the

posterior-optimality.

We make the following assumption which is weaker than the adaptive submodu-

larity assumption and will analyze it further in Section 2.3.

Assumption 2.2.1. The value of information v is a submodular multi-set function

on the set of alternatives X with respect to the prior distribution p(φ):

v(Z1 ∪ {x})− v(Z1) ≥ v(Z2 ∪ {x})− v(Z2),∀Z1 ⊆ Z2,∀x ∈ X .

Let π∗ be the optimal sequential policy under a budget of N measurements in the

sense that the prior-value of π∗ is the largest. We call it prior-optimality. In what

follows, we first bound KG’s sub-prior-optimality in Proposition 2.2.1:

F π∗ ≤ FKG[n]�π∗ ≤ FKG[n−1]

+N(FKG[n] − FKG[n−1]

), n = 1, 2, ..., N.

Then we derive the worst-case bound for the KG policy in Theorem 2.2.14:

FKG

F π∗
≥ 1− (

N − 1

N
)N ≥ e− 1

e
≈ 0.632.
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Besides the posterior-optimality bound (Theorem 2.2.4) obtained from the adap-

tive stochastic multi-set maximization, the prior-optimality provides another insight

into the performance of the KG policy based on a well-understood quantity: value of

information.

Definition 2.2.10 (Policy concatenation (Golovin and Krause, 2010)). A concate-

nated policy π = π1�π2 is constructed by running π1 to completion, and then running

policy π2 from a fresh start ignoring all the information collected while running π1.

To be more specific, suppose πi has a budget of ni, i = 1, 2, the first phase is to

run π1 for n1 iterations starting from S0 and we get a sample realization including

decisions and their corresponding measurements. The second phase is to run π2 for

n2 measurements starting from S0 and we get another sample realization. Thus the

sample realization of the concatenated process is all the decisions and their corre-

sponding measurements collected in two phases. Note here, when running the second

policy, we ignore all the information collected during running the first one, but when

calculating the value of π1 � π2, F π1�π2 , we use all the information collected in two

phases.

Definition 2.2.11 (Policy truncation (Golovin and Krause, 2010) ). For a policy π,

define the j-truncation π[j] of π as the policy that runs exactly (j + 1) steps under π’s

decision rule and π{j} as the single step policy that randomly chooses an alternative

according to the probability distribution of policy π’s decision for the (j + 1)-th step.

To be more specific, if the policy π is a deterministic policy, then for any sample

realization φ, following π’s decision rule for j steps, a (j+1)-th measurement decision

can be made. Then π{j} is the corresponding random variable representing the (j+1)-

th measurement decision with the probability distribution obtained by grouping all

the sample realizations that chooses the same (j + 1)-th alternative. If the policy
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π is a randomized policy, the probability distribution will also take into account the

randomness in π.

We now show that the value of π1 is no larger than the value of π1 � π2.

Lemma 2.2.12. F π1 ≤ F π2�π1 for all policies π1 and π2 under any prior and probability

distribution that describes a measurement.

Proof. In a concatenated policy, the two phases are independent since no information

is shared among the two phases. Thus by definition, we have F π1�π2 = F π2�π1 .

Therefore F π1 ≤ F π1�π2 holds if and only if F π1 ≤ F π2�π1 . We have

F π1�π2 − F π1 = E
[
v(Zπ1�π2)− v(Zπ1)

]
=

∑
Z1∈Zn1

∑
Z2∈Zn2

[
v(Z1 ∪ Z2)− v(Z1)

]
P(π1  Z1)P(π2  Z2)

≥ 0,

where inequality holds because of the monotonicity of multi-set function v.

Based on the monotonicity of v and a similar argument as in Proposition 2.2.12,

F is non-decreasing with respect to the number of measurements. Thus the more

measurements, the better the policy. Hence π∗ has exactly N measurements. We have

the following sub-optimality bound on KG’s prior-value. For a proof see Appendix

A.2.

Proposition 2.2.1. Let ρKG,n = FKG[n] − FKG[n−1]
, then

F π∗ ≤ F KG[n−1]�π∗ ≤ F KG[n−1]

+NρKG,n

=
n−1∑
i=0

ρKG,i +NρKG,n, n = 0, 1, ..., N − 1. (2.8)

We now derive a bound for the adaptive greedy policy by applying linear program-

ming to the problem of minimizing FKG

Fπ∗
subject to the inequalities (2.8), which is a
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worst-case analysis. The following lemma states the linear program and its solution.

We use it afterwards to establish the bounds.

Lemma 2.2.13. Given N ∈ Z+, consider the following linear program

min
N−1∑
i=0

ai,

t−1∑
i=0

ai +Nat ≥ 1, t = 0, 1, ..., N − 1.

Then under these N constraints, min
∑N−1

i=0 ai = 1− αN , where α = N−1
N

.

The proof of this lemma can be found in Nemhauser et al. (1978).

We have the following results, which generalizes the classic result of the greedy

algorithm that achieves (1− 1/e)-approximation to prior-optimality for ranking and

selection problems.

Theorem 2.2.14. Assume we have a budget of N measurements. Let π∗ denote the

optimal sequential policy for the ranking and selection problem, then we have

FKG

F π∗
≥ 1− (

N − 1

N
)N .

Proof. By Proposition 2.2.1, we have F π∗ ≤
∑n−1

i=0 ρ
KG,i+NρKG,n, n = 0, 1, ..., N−1.

Divide by F π∗ on both sides of this inequality, we have

1 ≤
n−1∑
i=0

ρKG,i

F π∗
+N

ρKG,n

F π∗
, n = 0, 1, ..., N − 1.
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Let ai = ρKG,i

Fπ∗
, and then these inequalities are identical to the constraints in Lemma

2.2.13. We notice that

min
N−1∑
i=0

ai = min
N−1∑
i=0

ρKG,i

F π∗
≤

N−1∑
i=0

ρKG,i

F π∗
=
FKG

F π∗
.

By Lemma 2.2.13, we have min
∑N−1

i=0 ai = 1 − αN , so FKG

Fπ∗
≥ 1 − αN = 1 −

(N−1
N

)N .

2.3 Analysis of Submodularity of the Value of In-

formation

The finite-time bounds obtained in the previous sections assume that the value of

information is submodular. In real world applications, submodularity is the dimin-

ishing returns property, meaning that in all productive processes, adding more of

one factor of production, while holding all others constant, will at some point yield

lower incremental per-unit returns. It can be applied in situations where there is

an objective function to be optimized does not feature synergies in the benefits of

items conditioned on observations. In general, submodularity does not hold for ar-

bitrary value functions. We will show in this section that value of information for

measuring a single alternative can be made concave by using sufficiently precise mea-

surements. In what follows, we analyze the submodularity of the two-alternative case

for independent beliefs.

While submodularity is a property for multi-set functions, we can extend it to

any continuous function by making it possible for the increment to take any positive

value. This allows us to use results from real analysis to study submodularity.
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Definition 2.3.1. A function f : Rn 7→ R is submodular if for all x, y ∈ Rn, xi ≤ yi

and δ ∈ Rn
+,

f(x+ δ)− f(x) ≥ f(y + δ)− f(y).

We show that submodularity of C2 functions is directly related to its second deriva-

tives and cross-derivatives (the proof is given in Appendix A.3):

Theorem 2.3.2. C2 function f: Rn → R is submodular if and only if every element

of its Hessian is non-positive.

The concavity of the value of information has been studied extensively by Frazier

and Powell (2010). In this section, we only study the cross-derivatives of the value of

information.

Let M = 2 and the measurement allocation z = (z1, z2). The value of information

v(z) = s(z)f(− |θ
0
1−θ02 |
s(z)

), where s(z) =
√
σ̃2

1(z1) + σ̃2
2(z2), σ̃2

i (zi) =
σ2,0
i zi

σ2
W /σ2,0

i +zi
, f(a) =

aΦ(a) + φ(a), Φ and φ are the standard normal cumulative distribution and density

respectively (Frazier and Powell, 2010).

Although the value of information is not concave in general in the two-alternative

case, v is concave on the region where all zi’s are large enough (see Theorem 2 in

Frazier and Powell (2010)).

We directly calculate the first derivative and cross-derivative of v as

∂v

∂z1

=
σ̃1(z1)σ̃′1(z1)

s(z)

[
f(−|θ

0
1 − θ0

2|
s(z)

) + |θ0
1 − θ0

2|
Φ(− |θ

0
1−θ02 |
s(z)

)

s(z)

]
,

∂2v

∂z1∂z2

=
σ̃1(z1)σ̃′1(z1)σ̃2(z2)σ̃′2(z2)

s3(z)
φ(−|θ

0
1 − θ0

2|
s(z)

)

(
|θ0

1 − θ0
2|2

σ̃2
1(z1) + σ̃2

2(z2)
− 1

)
.

In many optimal learning scenarios, we have very limited field knowledge about

the performance of different alternatives and are only allowed a small number of

sample points to estimate a prior distribution. In these cases, a common practice

and a reasonable way is to adopt a uniform prior with the same mean value θx for all
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alternatives. For the two alternative case, we can show that the value of information

is submodular by noting the concavity of v(z) (see Remark 2 in Frazier and Powell

(2010)) and ∂2v
∂z1∂z2

≤ 0.

For other cases, ∂2v
∂z1∂z2

≤ 0 is equivalent to |θ0
1 − θ0

2|2 ≤ σ̃2
1(z1) + σ̃2

2(z2). Rewriting

this inequality, we get

1
1

σ2,0
1

+ z1
σ2
W

+
1

1

σ2,0
2

+ z2
σ2
W

≤ σ2,0
1 + σ2,0

2 − |θ0
1 − θ0

2|2. (2.9)

We need σ2,0
1 +σ2,0

2 −|θ0
1−θ0

2|2 ≥ 0, which can be achieved by setting our prior variance

large enough or using a uniform prior over all alternatives. This is very reasonable

when we have very little information about our problem domain.

Inequality equation (2.9) defines a region in the z1 − z2 plane. Specifically, this

region has the hyperbolic line 1
1

σ
2,0
1

+
z1
σ2
W

+ 1
1

σ
2,0
2

+
z2
σ2
W

= σ2,0
1 + σ2,0

2 − |θ0
1 − θ0

2|2 as its

boundary and contains infinity. In particular, when z1 and z2 are large enough,

or when the variance of the measurement noise σ2
W is small enough, the value of

information is submodular.

Since there is no closed-form expression for the value of information under arbi-

trary allocations, we cannot verify submodularity in a simple way for problems with

more than two alternatives and for correlated beliefs. Instead, it can be checked using

numerical approximation and is easy to guarantee by running repeated experiments

and averaging to reduce measurement noise. A necessary condition is the concavity

of the value of information for measuring a fixed alternative x for n times, which can

be checked exactly.

Intuitively, we may expect that the marginal value of information should decline

as we make more observations. But it is not always the case. It is shown that the

value of information for measuring a single alternative may form an S-curve which

is concave when there are many measurements, but may be convex at the beginning
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(e.g. Theorem 1 in Frazier and Powell (2010)). The S-curve behavior arises when the

measurement noise is large and thus a single measurement simply contains too little

information, leading to algorithmic difficulties and apparent paradoxes. This issue

is not related to any specific policy, but rather is an inherent property of learning

problems. Although the value of information is not necessarily concave, it can be

made concave by measuring each alternative enough times or (equivalently) using

sufficiently precise measurements.

2.4 Computational Experiments

Since the seminal paper by (Lai and Robbins, 1985), there has been a long history

in the optimal learning literature of designing algorithms with provable asymptotic

or finite-time bounds (Audibert and Bubeck, 2010; Cappé et al., 2013; Auer et al.,

2002; Audibert et al., 2009). But none of these bounds are tight in finite time and

different bounds can be based on different metrics. Hence, empirical experiments are

needed to better understand the finite time performance of each policy. To this end,

we propose experiments to illustrate the finite time behavior of both KG and other

optimal learning policies. We consider the following learning settings that arise a lot

in black box Bayesian optimization.

Equal-prior: M = 100. The true values µx are uniformly distributed over

[0, 60] and measurement noise σW = 100. θ0
x = 30 and σ0

x = 10 for every x.

Asymmetric unimodular function (AUF): x is a controllable parameter rang-

ing from 21 to 120. The objective function is F (x, ξ) = θ1 min(x, ξ)− θ2x, where θ1,

θ2 and the distribution of the random variable ξ are all unknown. The aim is to solve

maxx EF (x, ξ) while learning θ1, θ2 and the parameters that determine the distribu-

tion of ξ. The true distribution of ξ is taken as a normal distribution with mean 60

and standard deviation 18 (corresponding to a 30% noise ratio).
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Goldstein-Price’s function with additive noise:

f(x, y, φ) = [1 + (x+ y + 1)2(19− 14x+ 3x2 − 14y + 6xy + 3y2)] ·

[30 + (2x− 3y)2(18− 32x+ 12x2 + 48y − 36xy + 27y2)] + φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3 and are uniformly discretized into 13 × 13 alterna-

tives.

In order to obtain the prior distribution, we follow Jones et al. (1998) and Huang

et al. (2006) to use Latin hypercube designs for initial fit. For independent beliefs,

we adopt a uniform prior with the same mean value θ0
x and standard deviation σ0

x

for all alternatives. For correlated beliefs, we use a constant mean value θ0
x for all

alternatives and a prior covariance matrix of the form

Σ0
xx′ = σe−

∑d
i=1 λi(xi−x′i)2 ,

where each arm x is a d-dimensional vector and σ, λi are constant. We adopt the

rule of thumb by Jones et al. (1998) for the default number (10× p) of points, where

p is the number of parameters to be estimated. In addition, as suggested by Huang

et al. (2006), to estimate the random errors, after the first 10×p points are evaluated,

we add one replicate at each of the locations where the best p responses are found.

Maximum likelihood estimation is then used to estimate the parameters based on the

points in the initial design.

The policies considered in this section is described as follows. All the tunable

parameters of different policies are tuned using a coarse-to-fine brute-force procedure

to find the optimal value that yields the highest final reward, averaged over 1000

replicas, in the range of 10−5 ∼ 105.

EXPL: A pure exploration strategy that tests each alternative equally often.

EXPT: A pure exploitation strategy, XEXPT,n(Sn) = arg maxx µ̂
n
x.
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Interval Estimation (IE): (Kaelbling, 1993)

X IE,n(Sn) = arg max
x

θnx + zα/2σ
n
x .

Expected Improvement (EI): (Huang et al., 2006; Picheny et al., 2013)

Let x∗ = arg maxx(θ
n
x + σnx), then

XEI,n(Sn) = arg max
x

(θnx − θnx∗)Φ(
θnx − θnx∗
σnx

) + σnxφ(
θnx − θnx∗
σnx

),

where φ and Φ are the standard normal density and cumulative distribution functions.

UCB-E: (Audibert and Bubeck, 2010)

XUCB-E,n(Sn) = arg max
x

µ̂nx +

√
α

Nn
x

,

where µ̂nx, Nn
x are the sample mean of µx and number of times x has been measured

up to time n. The quantity µ̂0
x is initialized by measuring each alternative once.

SR: (Audibert and Bubeck, 2010) Let A1 = X , log(M) = 1
2

+
∑M

i=2
1
i
,

nm =
⌈ 1

log(M)

n−M
M + 1−m

⌉
.

For each phase m = 1, ...,M − 1:

1. For each x ∈ Am, select alternative x for nm − nm−1 rounds.

2. Let Am+1 = Am \ arg minx∈Am µ̂x.

2.4.1 Finite Time Performance of Different Policies

Although the theoretical analysis in the previous section is to bound the performance

of the knowledge gradient policy to the optimal policy (in theory), the optimal se-

quential policy is impossible to find in practice. To this end, we compare the value
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(a) Equal-prior
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(b) AUF with θ2 = 0.2θ1
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(c) AUF with θ2 = 0.8θ1

Figure 2.4: Opportunity cost ratio.

of KG to the expected value of the best alternative maxx µx. Define the opportunity

cost (OCπ) of any policy π at any time step n as:

OCπ = max
x

µx − µx̃n ,

where x̃n = arg maxx θ
n
x . We illustrate the finite time behavior of the KG policy under

Equal-prior and AUF with independent normal beliefs. We run KG and calculate the

opportunity cost ratio = maxx µx−µx̃n
maxx µx

in each iteration. We report the mean of the

opportunity cost ratio averaged over 1000 experiments in Figure 2.4, with the error

bar indicating one standard deviation.

We next compare the performance of KG, IE with tuning, UCB-E with tuning,

SR, EXPL and EXPT. Figure 2.5 shows the performance in problem classes AUF

and Goldstein with independent beliefs under a measurement budget five times the

number of alternatives. We run each policy for 1000 times. In each run, we pre-

generate all the observations and share across different policies. We illustrate in the

first column of Figure 2.5 the mean opportunity cost and the standard deviation of

each policy over 1000 runs after the measurement budget is exhausted.

In order to give a comprehensive comparison based on different metrics, we also

calculate the probability that the final recommendation of each policy is the optimal
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(c) Goldstein: Opportunity cost
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Figure 2.5: Comparisons for AUF and Goldstein. (a) and (c) depict the mean oppor-
tunity cost with error bars indicating the standard deviation of each policy. The first
bar group in (b) and (d) demonstrates the probability that the final recommendation
of each policy is the optimal one. The second bar group in (b) and (d) illustrates the
probability that the opportunity cost of each policy is the lowest.

one and the probability that the opportunity cost of each policy is the lowest, as

illustrated in the figures on the right hand side of Figure 2.5.

The three criteria characterize the behavior of policies from different perspectives.

For example, under AUF, if one cares about the average performance of the policy

and its stability, SR is the best choice concluding from Figure 2.5 (a). Yet, if one can

only run one trial (as in most cases of experimental science) and want to identify the

best alternative, KG might be a better choice since it has the highest probability of

finding the optimal alternative. Or if one can live with fairly good alternatives other

than the optimal one, UCB-E could be the choice (although it has to be carefully
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tuned). One observation is that there is no universal best policy for all problem classes

or under all criteria, which means that theoretical guarantees are not by themselves

reliable indicators of which policy is best for a particular problem class.

We further exploit correlated beliefs between alternatives in order to strengthen

the effect of each measurement so that one measurement of some alternative can

provide information for other alternatives.

First, we present the OC of different policies after each iteration under AUF (θ2 =

0.5θ1) in Figure 2.6. We tune zα for IE and α for UCB for N = 400 measurements

and the optimal values are zα = 0.969 and α = 6.657. Since UCB-E needs to measure

each alternative once, we omit the OC for its first 100 (which is the number of

alternatives) steps. KG uses independent beliefs while KGCB, IE and EI start from

MLE fitted correlated beliefs. When incorporating correlated beliefs, a measurement

of one alternative tells us something about other alternatives. As a result, KGCB

learns faster than KG and reaches a better performance. We draw the conclusion

that correlated beliefs make learning faster and make learning possible for the case

where the measurement budget is smaller (and potentially much smaller) than the

number of alternatives.
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Figure 2.6: OC obtained after each measurement under AUF (θ2 = 0.5θ1).
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2.5 Conclusion

In this chapter, we offer a new perspective of interpreting ranking and selection prob-

lems as adaptive stochastic multi-set maximization problems. We present the first

finite-time bounds for the knowledge gradient on both the posterior optimality and

the prior optimality. The prior view provides a cleaner relationship between the per-

formance of the policy and the sample taken, making it possible to relate the value of

information to the submodularity of the sample. Both the submodular maximization

reduction and the theoretical analyses on the prior-optimality are not limited to the

specific setup of Gaussian noise in observations and Gaussian prior structure, and are

more generally applicable to any prior and measurement noise. We can infer from the

bounds that KG is a near-optimal algorithm with an approximation ratio of 1.582. We

analyze the submodularity of the two-alternative case and provide other conditions

for more general problems, bringing out the issue and importance of submodularity

in learning problems. We propose experiments to further illustrate the finite time

behavior of the knowledge gradient policy as well as other policies with or without

theoretical guarantees.
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Chapter 3

Optimal Learning with Stochastic

Binary Feedbacks

In this chapter, we consider the problem of sequentially making decisions that are re-

warded by “successes” and “failures”. The binary feedback can be predicted through

an unknown relationship that depends on a partially controllable vector of attributes

for each instance. The learner takes an active role in selecting samples from the

instance pool. The goal is to maximize the probability of success in either offline

(training) or online (testing) phases. Our problem is motivated by real-world appli-

cations where observations are time consuming and/or expensive.

A number of applications can easily fit into our success/failure model:

• Producing single-walled nanotubes. Scientists have physical procedures to pro-

duce nanotubes. It can produce either single-walled or double walled nanotubes

through an unknown relationship with the controllable parameters, e.g. laser

poser, ethylene, Hydrogen and pressure. Yet only the single-walled nanotubes

are acceptable. The problem is to quickly learn the best parameter values with

the highest probability of success (producing single-walled nanotubes).
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• Personalized health care. We consider the problem of how to choose clinical

pathways (including surgery, medication and tests) for different upcoming pa-

tients to maximize the success of the treatment.

• Minimizing the default rate for loan applications. When facing borrowers with

different background information and credit history, a lending company needs

to decide whether to grant a loan, and with what terms (interest rate, payment

schedule).

• Enhancing the acceptance of the admitted students. A university needs to

decide which students to admit and how much aid to offer so that the students

will then accept the offer of admission and matriculate.

This chapter focus on offline settings such as laboratory experiments or medical

trials where we are not punished for errors incurred during training and instead are

only concerned with the final recommendation after the offline training phases. In

Chapter 4, we then extend our discussion to online learning settings where the goal

is to minimize cumulative regret and consider problems with partially controllable

attributes, which is known as contextual bandits. For example, in the health care

problems, we do not have control over the patients (which is represented by a feature

vector including demographic characteristics, diagnoses, medical history) and can only

choose the medical decision. A university cannot control which students are applying

to the university. When deciding whether to grant a loan, the lending company cannot

choose the personal information of the borrowers.

We investigate a knowledge gradient policy that maximizes the value of informa-

tion, since this approach is particularly well suited to problems where observations

are expensive. After its first appearance for ranking and selection problems (Fra-

zier et al., 2008), KG has been extended to various other belief models (e.g. Mes

et al. (2011); Negoescu et al. (2011); Wang et al. (2015)). Yet there is no KG vari-
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ant designed for binary classification with parametric belief models. In this chapter,

we extend the KG policy to the setting of classification problems under a Bayesian

classification belief model which introduces the computational challenge of working

with nonlinear belief models. We show that the maximum likelihood estimator based

on the KG policy is consistent and asymptotically normal. We also show that the

knowledge gradient policy is asymptotically optimal in an offline setting. We report

the results of a series of experiments that demonstrate its efficiency.

3.1 Literature Review

Scientists can draw on an extensive body of literature on the classic design of exper-

iments (DeGroot, 1970; Wetherill and Glazebrook, 1986; Montgomery, 2008) where

the goal is to decide which observations to make when fitting a function. Yet in our

setting, the decisions are guided by a well-defined utility function (that is, maximize

the probability of success). The problem is related to the literature on active learning

(Schein and Ungar, 2007; Tong and Koller, 2002; Freund et al., 1997; Settles, 2010),

where our setting is most similar to membership query synthesis where the learner

may request labels for any unlabeled instance in the input space to learn a classifier

that accurately predicts the labels of new examples. By contrast, our goal is to max-

imize a utility function such as the success of a treatment. Moreover, the expense of

labeling each alternative sharpens the conflicts of learning the prediction and finding

the best alternative.

Another similar sequential decision making setting is multi-armed bandit problems

(Auer et al., 2002; Bubeck and Cesa-Bianchi, 2012; Filippi et al., 2010; Mahajan et al.,

2012; Srinivas et al., 2009; Chapelle and Li, 2011). Different belief models have been

studied under the name of contextual bandits, including linear models (Chu et al.,

2011a) and Gaussian process regression (Krause and Ong, 2011). The focus of bandit
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work is minimizing cumulative regret in an online setting, while we consider the

performance of the final recommendation after an offline training phase. There are

recent works to address the problem we describe here by minimizing the simple regret.

But first, the UCB type policies (Audibert and Bubeck, 2010) are not best suited for

expensive experiments. Second, the work on simple regret minimization (Hoffman

et al., 2014; Hennig and Schuler, 2012) mainly focuses on real-valued functions and

do not consider the problem with stochastic binary feedbacks.

There is a literature on Bayesian optimization (He et al., 2007; Chick, 2001; Powell

and Ryzhov, 2012). Efficient global optimization (EGO), and related methods such

as sequential kriging optimization (SKO) (Jones et al., 1998; Huang et al., 2006)

assume a Gaussian process belief model which does not scale to the higher dimensional

settings that we consider. Others assume lookup table, or low-dimensional parametric

methods, e.g. response surface/surrogate models (Gutmann, 2001; Jones, 2001; Regis

and Shoemaker, 2005). The existing literature mainly focuses on real-valued functions

and none of these methods are directly suitable for our problem of maximizing the

probability of success with binary outcomes. A particularly relevant body of work

in the Bayesian optimization literature is the expected improvement (EI) for binary

outputs (Tesch et al., 2013). Yet when EI decides which alternative to measure, it

is based on the expected improvement over current predictive posterior distribution

while ignoring the potential change of the posterior distribution resulting from the

next stochastic measurement (see Section 5.6 of Powell and Ryzhov 2012 and Huang

et al. 2006 for detailed explanations).

3.2 Model

We assume that we have a finite set of alternatives x ∈ X = {x1, . . . ,xM}. The

observation of measuring each x is a binary outcome y ∈ {−1,+1}/{failure, success}
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with some unknown probability p(y = +1|x). The learner sequentially chooses a

series of points (x0, . . . ,xN−1) to run the experiments. Under a limited measurement

budget N , the goal of the learner is to recommend an implementation decision xN

that maximizes p(y = +1|xN).

We adopt probabilistic models for classification. Under general assumptions, the

probability of success can be written as a link function acting on a linear function of

the feature vector

p(y = +1|x) = σ(wTx).

In this paper, we illustrate the ideas using the logistic link function σ(a) = 1
1+exp(−a)

and probit link function σ(a) = Φ(a) =
∫ a
−∞N (s|0, 12)ds given its analytic simplicity

and popularity, but any monotonically increasing function σ : R 7→ [0, 1] can be used.

The main difference between the two sigmoid functions is that the logistic function has

slightly heavier tails than the normal CDF. Classification using the logistic function

is called logistic regression and that using the normal CDF is called probit regression.

We start with a multivariate prior distribution for the unknown parameter

vector w. At iteration n, we choose an alternative xn to measure and observe a

binary outcome yn+1 assuming labels are generated independently given w. Each

alternative can be evaluated more than once with potentially different outcomes. Let

Dn = {(xi, yi+1)}ni=0 denote the previous measured data set for any n = 0, . . . , N .

Define the filtration (Fn)Nn=0 by letting Fn be the sigma-algebra generated by

x0, y1, . . . ,xn−1, yn. We use Fn and Dn interchangeably. Note that the notation

here is slightly different from the (passive) PAC learning model where the data are

i.i.d. and are denoted as {(xi, yi)}. Yet in our (adaptive) sequential decision setting,

measurement and implementation decisions xn are restricted to be Fn-measurable

so that decisions may only depend on measurements made in the past. This notation

with superscript indexing time stamp is standard, for example, in control theory,
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stochastic optimization and optimal learning. We use Bayes’ theorem to form a

sequence of posterior predictive distributions p(w|Dn).

The next lemma states the equivalence of using true probabilities and sample

estimates when evaluating a policy (Powell and Ryzhov, 2012).

Lemma 3.2.1. Let Π be the set of policies, π ∈ Π, and xπ = arg maxx p(y =

+1|x,DN) be the implementation decision after the budget N is exhausted. Then

Ew[p(y = +1|xπ,w)] = Ew[max
x

p(y = +1|x,DN)],

where the expectation is taken over the prior distribution of w.

By denoting X I as an implementation policy for selecting an alternative after the

measurement budget is exhausted, then X I is a mapping from the history DN to

an alternative X I(DN). Then as a corollary of Lemma 3.2.1, we have (Powell and

Ryzhov, 2012)

max
X I

E
[
p
(
y = +1|X (DN)

)]
= max

x
p(y = +1|x,DN).

In other words, the optimal decision at time N is to go with our final set of beliefs.

By the equivalence of using true probabilities and sample estimates when evaluating

a policy as stated in Lemma 3.2.1, while we want to learn the unknown true value

maxx p(y = +1|x), we may write our objective function as

max
π∈Π

Eπ[max
x

p(y = +1|x,DN)]. (3.1)

3.3 Background: Linear classification

Linear classification, especially logistic regression, is widely used in machine learn-

ing for binary classification (Hosmer Jr and Lemeshow, 2004). Assume that the
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probability of success p(y = +1|x) is a parameterized function σ(wTx) and fur-

ther assume that observations are independently of each other. Given a training set

D = {(xi, yi)}ni=1 with xi a d-dimensional vector and yi ∈ {−1,+1}, the likelihood

function p(D|w) is p(D|w) =
∏n

i=1 σ(yi · wTxi). The weight vector w is found by

maximizing the likelihood p(D|w) or equivalently, minimizing the negative log likeli-

hood:

min
w

n∑
i=1

− log(σ(yi ·wTxi)).

In order to avoid over-fitting, especially when there are a large number of parameters

to be learned, l2 regularization is often used. The estimate of the weight vector w is

then given by:

min
w

λ

2
‖w‖2 −

n∑
i=1

log(σ(yi ·wTxi)). (3.2)

It can be shown that this log-likelihood function is globally concave in w for both

logistic regression or probit regression. As a result, numerous optimization techniques

are available for solving it, such as steepest ascent, Newton’s method and conjugate

gradient ascent.

This logic is suitable for batch learning where we only need to conduct the min-

imization once to find the estimation of weight vector w based on a given batch of

training examples D. Yet due to the sequential nature of our problem setting, ob-

servations come one by one as in online learning. After each new observation, if we

retrain the linear classifier using all the previous data, we need to re-do the minimiza-

tion, which is computationally inefficient. In this paper, we instead extend Bayesian

linear classification to perform recursive updates with each observation.

A Bayesian approach to linear classification models requires a prior distribution

for the weight parameters w, and the ability to compute the conditional posterior

p(w|D) given the observation. Specifically, suppose we begin with an arbitrary prior

p(w) and apply Bayes’ theorem to calculate the posterior: p(w|D) = 1
Z
p(D|w)p(w),
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where the normalization constant Z is the unknown evidence. An l2-regularized

logistic regression can be interpreted as a Bayesian model with a Gaussian prior on

the weights with standard deviation 1/
√
λ.

Unfortunately, exact Bayesian inference for linear classifiers is intractable since

the evaluation of the posterior distribution comprises a product of sigmoid functions;

in addition, the integral in the normalization constant is intractable as well, for both

the logistic function or probit function. We can either use analytic approximations

to the posterior, or solutions based on Monte Carlo sampling, foregoing a closed-form

expression for the posterior. In this paper, we consider different analytic approxima-

tions to the posterior to make the computation tractable.

3.3.1 Online Bayesian Probit Regression Based on Assumed

Gaussian Density Filtering

Assumed density filtering (ADF) is a general online learning schema for computing

approximate posteriors in statistical models (Boyen and Koller, 1998; Lauritzen, 1992;

Maybeck, 1982; Sahami et al., 1998). In ADF, observations are processed one by

one, updating the posterior which is then approximated and is used as the prior

distribution for the next observation.

For a given Gaussian prior distribution on some latent parameter θ, p(θ) =

N (θ|µ,Σ) and a likelihood t(θ) := p(D|θ), the posterior p(θ|D) is generally non-

Gaussian,

p(θ|D) =
t(θ)p(θ)∫
t(θ̃)p(θ̃)dθ̃

.

We find the best approximation by minimizing the Kullback-Leibler (KL) divergence

between the true posterior p(θ|D) and the Gaussian approximation. It is well known

that when q(x) is Gaussian, the distribution q(x) that minimizes KL(p(x)||q(x)) is

the one whose first and second moments match that of p(x). It can be shown that
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the Gaussian approximation q̂(θ) = N (θ|µ̂, Σ̂) found by moment matching is given

as:

µ̂ = µ+ Σg, Σ̂ = Σ−Σ(ggT − 2G)Σ, (3.3)

where the vector g and the matrix G are given by

g =

∂ log

(
Z(µ̃, Σ̃)

)
∂µ̃

|µ̃=µ,Σ̃=Σ, G =

∂ log

(
Z(µ̃, Σ̃)

)
∂Σ̃

|µ̃=µ,Σ̃=Σ,

and the normalization function Z is defined by

Z(µ,Σ) :=

∫
t(θ̃)N (θ̃|µ,Σ)dθ̃.

For the sake of analytic convenience, we only consider probit regression under

assumed Gaussian density filtering. Specifically, the distribution of w after n obser-

vations is modeled as p(w) = N (w|µn,Σn). The likelihood function for the next

available data (x, y) is t(w) := Φ(ywtx). Thus we have,

p(w|x, y) ∝ Φ(ywtx)N (w|µn,Σn).

Since the convolution of the normal CDF and a Gaussian distribution is another

normal CDF, moment matching (5.1) results in an analytical solution to the Gaussian

approximation:

µn+1 = µn +
yΣnx√

1 + xTΣnx
v

(
yxTµn√

1 + xTΣnx

)
, (3.4)

Σn+1 = Σn − (Σnx)(Σnx)T

1 + xTΣnx
w

(
yxTµn√

1 + xTΣnx

)
, (3.5)

where

v(z) :=
N (z|0, 1)

Φ(z)
and w(z) := v(z)

(
v(z) + z

)
.

55



In this work, we focus on diagonal covariance matrices Σn with (σni )2 as the diago-

nal element due to computational simplicity and its equivalence with l2 regularization,

resulting in the following update for the posterior parameters:

µn+1
i = µni +

yxi(σ
n
i )2

σ̃
v(
yxTµn

σ̃
), (3.6)

(σn+1
i )2 = (σni )2 − x2

i (σ
n
i )4

σ̃2
w(
yxTµn

σ̃
), (3.7)

where σ̃2 := 1 +
∑d

j=1(σnj )2x2
j . See, for example, Graepel et al. (2010) and Chu et al.

(2011b) for successful applications of this online probit regression model in prediction

of click-through rates and stream-based active learning.

Due to the popularity of logistic regression and the computational limitations

of ADF (on general link functions other than probit function), we develop an online

Bayesian linear classification procedure for general link functions to recursively predict

the response of each alternative in the next section.

3.4 Online Bayesian Linear Classification Based

on Laplace Approximation

In this section, we consider the Laplace approximation to the posterior and develop

an online Bayesian linear classification schema for general link functions.

3.4.1 Laplace Approximation

Laplace’s method aims to find a gaussian approximation to a probability density

defined over a set of continuous variables. It can be obtained by finding the mode of

the posterior distribution and then fitting a Gaussian distribution centered at that

mode (see Bishop et al., 2006, chap. 4.5). Specifically, define the logarithm of the
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unnormalized posterior distribution as

Ψ(w) = log p(D|w) + log p(w).

Since the logarithm of a Gaussian distribution is a quadratic function, we consider a

second-order Taylor expansion to Ψ around its MAP (maximum a posteriori) solution

ŵ = arg maxw Ψ(w):

Ψ(w) ≈ Ψ(ŵ)− 1

2
(w − ŵ)TH(w − ŵ), (3.8)

where H is the Hessian of the negative log posterior evaluated at ŵ:

H = −∇2Ψ(w)|w=ŵ.

By exponentiating both sides of Eq. (3.8), we can see that the Laplace approximation

results in a normal approximation to the posterior

p(w|D) ≈ N (w|ŵ,H−1). (3.9)

For multivariate Gaussian priors p(w) = N (w|m,Σ),

Ψ(w|m,Σ) = −1

2
(w −m)TΣ−1(w −m) +

n∑
i=1

log(σ(yi ·wTxi)), (3.10)

and the Hessian H evaluated at ŵ is given for both logistic and normal CDF link

functions as:

H = Σ−1 −
n∑
i=1

t̂ixix
T
i , (3.11)

where t̂i := ∂2 log p(yi|xi,w)

∂f2i
|fi=ŵTxi and fi = wTxi.
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3.4.2 Online Bayesian Linear Classification Based on Laplace

Approximation

Starting from a Gaussian prior N (w|m0,Σ0), after the first n observations, the

Laplace approximated posterior distribution is p(w|Dn) ≈ N (w|mn,Σn) accord-

ing to (3.9). We formally define the state space S to be the cross-product of Rd and

the space of positive semidefinite matrices. At each time n, our state of knowledge is

thus Sn = (mn,Σn). Observations come one by one due to the sequential nature of

our problem setting. After each new observation, if we retrain the Bayesian classifier

using all the previous data, we need to calculate the MAP solution of (3.10) with

D = Dn to update from Sn to Sn+1. It is computationally inefficient even with a

diagonal covariance matrix. It is better to extend the Bayesian linear classifier to

handle recursive updates with each observation.

Here, we propose a fast and stable online algorithm for model updates with in-

dependent normal priors (with Σ = λ−1I, where I is the identity matrix), which is

equivalent to l2 regularization and which also offers greater computational efficiency.

At each time step n, the Laplace approximated posterior N (w|mn,Σn) serves as

a prior to update the model when the next observation is made. In this recursive

way of model updating, previously measured data need not be stored or used for

retraining the model. By setting the batch size n = 1 in Eq. (3.10) and (3.11), we

have the sequential Bayesian linear model for classification as in Algorithm 2, where

t̂ := ∂2 log(σ(yf))
∂f2

|f=ŵTx.

It is generally assumed that log σ(·) is concave to ensure a unique solution of

Eq. (3.10). It is satisfied by commonly used sigmoid functions for classification

problems, including logistic function, probit function, complementary log-log function

σ(a) = 1− exp(− exp(a)) and log-log function exp(− exp(−a)).

We can tap a wide range of convex optimization algorithms including gradient

search, conjugate gradient, and BFGS method (see Wright and Nocedal, 1999). But
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Algorithm 2: Online Bayesian linear classification

input : Regularization parameter λ > 0
mj = 0, qj = λ. (Each weight wj has an independent prior N (wj|mj, q

−1
j ))

for t = 1 to T do
Get a new point (x, y).
Find ŵ as the maximizer of (3.10): −1

2

∑d
j=1 qi(wi−mi)

2 + log(σ(yiw
Txi)).

mj = ŵj
Update qi according to (3.11): qj ← qj − t̂x2

j .

end

if we set n = 1 and Σ = λ−1I in Eq. (3.10), a stable and efficient algorithm for

solving

arg max
w
−1

2

d∑
j=1

qi(wi −mi)
2 + log(σ(ywTx)) (3.12)

can be obtained as follows. First, taking derivatives with respect to wi and setting

∂F
∂wi

to zero, we have

qi(wi −mi) =
yxiσ

′(ywTx)

σ(ywTx)
, i = 1, 2, . . . , d.

Defining p as

p :=
σ′(ywTx)

σ(ywTx)
,

we then have wi = mi + ypxi
qi
. Plugging this back into the definition of p to eliminate

wi’s, we get the equation for p:

p =
σ′(p

∑d
i=1 x

2
i /qi + ymTx)

σ(p
∑d

i=1 x
2
i /qi + ymTx)

.

Since log(σ(·)) is concave, by its derivative we know the function σ′/σ is mono-

tonically decreasing, and thus the right hand side of the equation decreases as p goes

from 0 to ∞. We notice that the right hand side is positive when p = 0 and the left

hand side is larger than the right hand side when p = σ′(ymTx)/σ(ymTx). Hence

the equation has a unique solution in interval [0, σ′(ymTx)/σ(ymTx)]. A simple one
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dimensional bisection method is sufficient to efficiently find the root p∗ and thus the

solution to the d-dimensional optimization problem (3.12).

We illustrate and validate this schema using logistic functions. For logistic function

σ(wTx) = − log(1 + exp(−ywTx)), by setting ∂F/∂wi = 0 for all i and then by

denoting (1 + exp(ywTx))−1 as p, we have

qi(wi −mi) = ypxi, i = 1, 2, . . . , d,

resulting in the following equation for p:

1

p
= 1 + exp

(
y

d∑
i=1

(mi + yp
xi
qi

)xi

)
= 1 + exp(ymTx) exp

(
y2p

d∑
i=1

x2
i

qi

)
.

It is easy to see that the left hand side decreases from infinity to 1 and the right

hand side increases from 1 when p goes from 0 to 1, therefore the solution exists and

is unique in [0, 1].

3.5 Knowledge Gradient Policy for Bayesian Lin-

ear Classification Belief Model

First recall from Section 2.1.2 the definition of the knowledge gradient (KG) for rank-

ing and selection problems, where each of the alternative can be measured sequentially

to estimates its unknown underlying expected performance µx. The goal is to adap-

tively allocate alternatives to measure so as to find an implementation decision that

has the largest mean after the budget is exhausted. In a Bayesian setting, the perfor-

mance of each alternative is represented by a (non-parametric) lookup table model of

Gaussian distribution. Specifically, by imposing a Gaussian prior N (µ|θ0,Σ0), the

posterior after the first n observations is denoted by N (µ|θn,Σn). At the nth itera-

tion, the knowledge gradient policy chooses its (n + 1)th measurement to maximize
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the single-period expected increase in value (Frazier et al., 2008):

νKG,n
x = E[max

x′
θn+1
x′ −max

x′
θnx′ |xn = x, Sn].

The knowledge gradient can be extended to online problems where we need to maxi-

mize cumulative rewards (Ryzhov et al., 2012),

νOLKG,n
x = θnx + τνKG,n

x ,

where τ reflects a planning horizon.

Yet there is no KG variant designed for binary classification with parametric mod-

els, primarily because of the computational intractability of dealing with nonlinear

belief models. In what follows, we first formulate our learning problem as a Markov

decision process and then extend the KG policy for stochastic binary outcomes where,

for example, each choice (say, a medical decision) influences the success or failure of

a medical outcome.

3.5.1 Markov Decision Process Formulation

Our learning problem is a dynamic program that can be formulated as a Markov

decision process. Define the state space S as the space of all possible predictive

distributions for w. By Bayes’ Theorem, the transition function T : S ×X × {−1, 1}

is:

T

(
q(w),x, y

)
∝ q(w)σ(ywTx). (3.13)

If we start from a Gaussian prior N (w|µ0,Σ0), after the first n observed data,

the approximated posterior distribution is p(w|Dn) ≈ N (w|µn,Σn). The state space

S is the cross-product of Rd and the space of positive semidefinite matrices. The

transition function for updating the belief state depends on the belief model σ(·) and
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the approximation strategy. For example, for different update equations in Algorithm

2 and (3.6)(3.7) under different approximation methods, the transition function can

be defined as follows with degenerate state space S := Rd × [0,∞)d:

Definition 3.5.1. The transition function based on online Bayesian classification

with Laplace approximation T : S × X × {−1, 1} is defined as

T L
(

(µ,σ2),x, y
)

=
(

arg min
w

Ψ
(
w|µ,σ−2

)
,σ−2 + t̂(y) · diag(xxT )

)
,

where t̂(y) := ∂2 log p(y|x,w)
∂f2

|f=ŵTx for either logistic or probit functions, diag(xxT ) is

a column vector containing the diagonal elements of xxT and σ−2 is understood as

a column vector containing σ−2
i , so that Sn+1 = T L(Sn,x, Y n+1). Y n+1 denotes the

unobserved binary random variable at time n.

Definition 3.5.2. The transition function based on assumed density filtering T : S×

X × {−1, 1} is defined as

TADF
(

(µ,σ2),x, y
)

=
(
µ+

yxTσ2

σ̃
v(
yxTµ

σ̃
),σ2 − (x2)Tσ4

σ̃2
w(
yxTµ

σ̃
)
)
,

where σ̃ =
√

1 + (x2)Tσ2, v(z) := N (z|0,1)
Φ(z)

, w(z) := v(z)
(
v(z) + z

)
and x2 is under-

stood as the column vector containing x2
i , so that Sn+1 = TADF(Sn,x, Y n+1).

In a dynamic program, the value function is defined as the value of the optimal

policy given a particular state Sn at time n, and may also be determined recursively

through Bellman’s equation. In the case of stochastic binary feedback, the terminal

value function V N : S 7→ R is given by (3.1) as

V N(s) = max
x

p(y = +1|x, s),∀s ∈ S.
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The dynamic programming principle tells us that the value function at any other

time n = 1, . . . , N , V n, is given recursively by

V n(s) = max
x

E[V n+1(T (s,x, Y n+1))|x, s],∀s ∈ S.

Since the curse of dimensionality on the state space S makes direct computation of

the value function intractable, computationally efficient approximate policies need to

be considered. A computationally attractive policy for ranking and selection problems

is known as the knowledge gradient (KG) (Frazier et al., 2008), which will be extended

to handle Bayesian classification models in the next section.

3.5.2 Knowledge Gradient for Binary Responses

The knowledge gradient of measuring an alternative x can be defined as follows:

Definition 3.5.3. The knowledge gradient of measuring an alternative x while in

state s is

νKG
x (s) := E

[
V N
(
T (s,x, Y )

)
− V N(s)|x, s

]
. (3.14)

V N(s) is deterministic given s and is independent of alternatives x. Since the label

for alternative x is not known at the time of selection, the expectation is computed

conditional on the current belief state s = (µ,Σ). Specifically, given a state s =

(µ,Σ), the outcome y of an alternative x is a random variable that follows from a

Bernoulli distribution with a predictive distribution

p(y = +1|x, s) =

∫
p(y = +1|x,w)p(w|s)dw =

∫
σ(wTx)p(w|s)dw. (3.15)
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We can calculate the expected value in the next state as

E[V N(T (s,x, y))] = p(y = +1|x, s)V N
(
T (s,x,+1)

)
+ p(y = −1|x, s)V N

(
T (s,x,−1)

)
= p(y = +1|x, s) ·max

x′
p
(
y = +1|x′, T (s,x,+1)

)
+p(y = −1|x, s) ·max

x′
p
(
y = +1|x′, T (s,x,−1)

)
.

The knowledge gradient policy suggests at each time n selecting the alternative

that maximizes νKG,n
x (sn) where ties are broken randomly. Because of the errors

incurred by approximation and numerical calculation, the tie should be understood

as within ε-accuracy. The knowledge gradient policy can work with any choice of

link function σ(·) and approximation procedures by adjusting the transition function

T (s, x, ·) accordingly. That is, T L or TADF.

The predictive distribution
∫
σ(wTx)p(w|s)dw is obtained by marginalizing with

respect to the distribution specified by current belief state p(w|s) = N (w|µ,Σ).

Denoting a = wTx and δ(·) as the Dirac delta function, we have σ(wTx) =
∫
δ(a−

wTx)σ(a)da. Hence

∫
σ(wTx)p(w|s)dw =

∫
σ(a)p(a)da,

where p(a) =
∫
δ(a − wTx)p(w|s)dw. Since the delta function imposes a linear

constraint on w and p(w|s) = N (w|µ,σ2) is Gaussian, the marginal distribution

p(a) is also Gaussian. We can evaluate p(a) by calculating the mean and variance of

this distribution (Bishop et al., 2006). We have

µa = E[a] =

∫
p(a)a da =

∫
p(w|s)wTx dw = µTx,

σ2
a = Var[a] =

∫
p(w|s)

(
(wTx)2 − (µTx)2

)
dw =

d∑
j=1

σ2
jx

2
j .
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Thus
∫
σ(wTx)p(w|s)dw =

∫
σ(a)p(a)da =

∫
σ(a)N (a|µa, σ2

a)da.

For probit function σ(a) = Φ(a), the convolution of a Gaussian and a normal CDF

can be evaluated analytically. Thus for probit regression, the predictive distribution

can be solved exactly as p(y = +1|x, s) = Φ( µa√
1+σ2

a

). Yet, the convolution of a Gaus-

sian with a logistic sigmoid function cannot be evaluated analytically. We apply the

approximation σ(a) ≈ Φ(αa) with α = π/8 (see Barber and Bishop 1998; Spiegelhal-

ter and Lauritzen 1990), leading to the following approximation for the convolution

of a logistic sigmoid with a Gaussian

p(y = +1|x, s) =

∫
σ(wTx)p(w|s)dw ≈ σ(κ(σ2

a)µa),

where κ(σ2) = (1 + πσ2/8)−1/2.

Because of the one-step look ahead, the KG calculation can also benefit from the

online recursive update of the belief either from ADF or from online Bayesian linear

classification based on Laplace approximation. We summarize the decision rules of

the knowledge gradient policy at each iteration under different sigmoid functions and

different approximation methods in Algorithm 3, 4 and 5, respectively.

Algorithm 3: Knowledge Gradient Policy for Logistic Model based on Laplace
approximation

input : mj, qj (Each weight wj has an independent prior N (wj|mj, q
−1
j ))

for x in X do

Let Ψ(w, y) = −1
2

∑d
j=1 qj(wj −mj)

2 − log(1 + exp(−ywTx))
Use bisection method to find
ŵ+ = arg maxw Ψ(w,+1), ŵ− = arg maxw Ψ(w,−1) µ = mTx,
σ2 =

∑d
j=1 q

−1
j x2

j

Let σ(a) =
(
1 + exp(−a)

)−1

µ+(x′) := ŵT
+x
′, µ−(x′) := ŵT

−x
′

σ2
±(x′) :=

∑d
j=1

(
qj + σ(ŵT

±x)(1− σ(ŵT
±x))x2

j

)−1

(x′j)
2

ν̃x = σ(κ(σ2)µ) ·maxx′ σ
(
κ(σ2

+(x′))µ+(x′)
)

+ σ(−κ(σ2)µ) ·
maxx′ σ

(
κ(σ2

−(x′))µ−(x′)
)

end
xKG ∈ arg maxx ν̃x
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Algorithm 4: Knowledge Gradient Policy for Probit Model based on Laplace
approximation

input : mj, qj (Each weight wj has an independent prior N (wj|mj, q
−1
j ))

for x in X do

Let Ψ(w, y) = −1
2

∑d
j=1 qi(wi −mi)

2 + log(Φ(ywTx))
Use bisection method to find
ŵ+ = arg maxw Ψ(w,+1), ŵ− = arg maxw Ψ(w,−1)
µ = mTx, σ2 =

∑d
j=1 q

−1
j x2

j

µ+(x′) := ŵT
+x
′, µ−(x) := ŵT

−x
′

σ2
±(x′) :=

∑d
j=1

(
qj + (

N (ŵT±x|0,1)2

Φ(ŵT±x)2
+

ŵT±xN (ŵT±x|0,1)

Φ(ŵT±x)
)x2

j

)−1

(x′j)
2

ν̃x = Φ( µ√
1+σ2 ) ·maxx′ Φ( µ+(x′)√

1+σ2
+(x′)

) + Φ(− µ√
1+σ2 ) ·maxx′ Φ( µ−(x′)√

1+σ2
−(x′)

)

end
xKG ∈ arg maxx ν̃x

Algorithm 5: Knowledge Gradient Policy for Probit Model based on assumed
density filtering

input : mj, qj (Each weight wj has an independent prior N (wj|mj, q
−1
j ))

σ2
j = 1/qj

for x in X do

Define v(z) := N (z|0,1)
Φ(z)

and w(z) := v(z)
(
v(z) + z

)
µ = mTx, σ2 =

∑d
j=1 σ

2
jx

2
j

m+j = mj +
xjσ

2
j√

1+σ2v( mTx√
1+σ2 ), m−j = mj −

xjσ
2
j√

1+σ2v(− mTx√
1+σ2 )

σ2
+j = σ2

j −
x2jσ

4
j√

1+σ22
w( mTx√

1+σ2 ), σ2
−j = σ2

j −
x2jσ

4
j√

1+σ22
w(− mTx√

1+σ2 )

µ+(x′) := mT
+x
′, µ−(x) := mT

−x
′

σ2
+(x′) :=

∑d
j=1 σ

2
+j(x

′
j)

2, σ2
−(x′) :=

∑d
j=1 σ

2
−j(x

′
j)

2

ν̃x = Φ( µ√
1+σ2 ) ·maxx′ Φ( µ+(x′)√

1+σ2
+(x′)

) + Φ(− µ√
1+σ2 ) ·maxx′ Φ( µ−(x′)√

1+σ2
−(x′)

)

end
xKG ∈ arg maxx ν̃x

3.5.3 Behavior and Asymptotic Optimality

In this section, we study theoretically the behavior of the KG policy, especially in

the limit as the number of measurements N grows large. For the purposes of the

theoretical analysis, we do not approximate the predictive posterior distribution. We
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use logistic function as the sigmoid link function throughout this section. Yet the

theoretical results can be generalized to other link functions. We begin by showing

the positive value of information (benefits of measurement).

Proposition 3.5.1 (Benefits of measurement). The knowledge gradient of measuring

any alternative x while in any state s ∈ S is nonnegative, νKG
x (s) ≥ 0. The state space

S is the space of all possible predictive distributions for w.

The next lemma shows that the asymptotic probability of success of each alter-

native is well defined.

Lemma 3.5.4. For any alternative x, pnx converges almost surely to a random variable

p∞x = E
[
σ(wTx)|F∞

]
, where pnx is short hand notation for p(y = +1|x,Fn) =

E
[
σ(wTx)|Fn

]
.

Proof. ProofSince |σ(wTx)| ≤ 1, the definition of pnx implies that pnx is a bounded

martingale and hence converges.

The rest of this section shows that this limiting probability of success of each

alternative is one in which the posterior is consistent and thus the KG is asymptot-

ically optimal. We also show that as the number of measurements grows large, the

maximum likelihood estimator wMLE based on the alternatives measured by the KG

policy is consistent and asymptotically normal. The next proposition states that if we

have measured an alternative infinitely many times, there is no benefit to measuring

it one more time. This is a key step for establishing the consistency of the KG policy

and the MLE. The proof is similar to that by Frazier et al. (2009) with additional

mathematical steps for Bernoulli distributed random variables. See Appendix A.4.2

for details.

Proposition 3.5.2. If the policy π measures alternative x infinitely often almost

surely, then the value of information of that alternative νx(F∞) = 0 almost surely

under policy π.
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Without loss of generality, we assume ‖x‖2 ≤ 1 and that the d×d matrix P formed

by (x1,x2, . . . ,xd) is invertible. The next theorem states the strong consistency and

asymptotic normality of the maximum likelihood estimator wn
MLE (e.g. with λ = 0)

based on KG’s sequential selection of alternatives by verification of the following

regularity conditions:

(C1) The exogenous variables are uniformly bounded.

(C2) Let λ1n and λdn be respectively the smallest and the largest eigenvalue of the

Fisher information of the first n observations Fn(w∗). There exists C such that

λdn/λ1n < C , ∀n.

(C3) The smallest eigenvalue of the Fisher information is divergent, λ1n → +∞.

Theorem 3.5.5. The sequence of wn
MLE based on KG’s sequential selection of alter-

natives converges almost surely to the true value w∗ and is asymptotically normal:

F
1
2
n (wn

MLE −w∗)
d−→ N (0, I).

Proof. Proof We first prove that for any alternative x, it will be measured infinitely

many times almost surely. We will prove it by contradiction. If this is not the case,

then there exists a time T such that for any n > T ,

µKG,n
x < max

x∈X
µKG,n
x − ε. (3.16)

This is because otherwise the difference between the KG value of x and the maximum

KG value will be smaller than ε for infinitely many times, and thus the probability

of not measuring x after T will be 0.

In addition, since the KG value is always non-negative, we have maxx∈X µ
KG,n
x > ε

for each n > T . Notice that X is a finite set, then it follows that there exists an
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alternative x′ such that the following happens infinitely many times:

µKG,n
x′ = max

x∈X
µKG,n
x . (3.17)

Therefore, x′ is measured infinitely many times almost surely. However, we have

proved in Proposition 3.5.2 that µKG,n
x′ goes to 0 zero as long as we measure x′ infinitely

many times, which contradicts (3.17). The contradiction shows that our original

assumption that x only being measured finite times is incorrect. As a consequence,

we have prove that, almost surely, x will be measured infinitely many times.

Since our proof is for arbitrary x, we actually proved that every alternative will

be measured infinitely many times, which immediately leads to maxx∈X µ
KG,n
x → 0.

Therefore the algorithm will eventually pick the alternative uniformly at random.

Hence it satisfies the conditions (C2) and (C3), leading to the strong consistency

and asymptotic normality (Gourieroux and Monfort, 1981; Fahrmeir and Kaufmann,

1985; Haberman and Haberman, 1974; Cox and Hinkley, 1979).

In particular, we can prove that the smallest eigenvalue of the Fisher’s informa-

tion goes to infinity in a simple way. Without loss of generality, assume that the

alternatives x1,x2, . . . ,xd are in general linear position, which means that the d× d

matrix P := (x1,x2, . . . ,xd) is invertible. We use X ′ to denote the set of these d

alternatives and denote P−1 by Q. Then Qxtx
T
t Q

T is a matrix whose every element

equals 0 except that its k-th diagonal element equals one.

We use Fn to denote the Fisher’s information at time n. Then from the fact that

the matrix of type xxT is positive semi-definite, it is straightforward to see that

Fn(w) ≥ min
x∈X

(1− σ(xTw))σ(xTw)
∑

1≤t≤n,xt∈X ′
xtx

T
t ,
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where the constant minx∈X (1 − σ(xTw))σ(xTw) > 0 since X is a finite set. Now

define matrix Rn as

Rn :=
∑

1≤t≤n,xt∈X ′
Qxtx

T
t Q

T ,

which is a diagonal matrix whose i-th element equals the times that xi is estimated.

Since xk is measured infinitely many times for 1 ≤ k ≤ d, then each diagonal element

of Rn goes to infinity. Now notice that
∑

1≤t≤n,xt∈X ′ xtx
T
t = Q−1Rn(Q−1)T is congru-

ent to Rn and Q−1 is a constant matrix, then it follows that the smallest eigenvalue

of
∑

1≤t≤n,xt∈X ′ xtx
T
t , and hence the smallest eigenvalue of Fn, goes to infinity.

After establishing the consistency and asymptotic normality for wn
MLE, for any

λ > 0 as the inverse of the variance of the prior Gaussian distribution, the asymptotic

bias of the estimator wn
λ is as follows (Le Cessie and Van Houwelingen, 1992):

E[wn
λ −w∗] = −2λ{Fn(w∗) + 2λI}−1w∗,

and the asymptotic variance of wn
λ is {Fn(w∗) + 2λI}−1Fn(w∗){Fn(w∗) + 2λI}−1.

Finally, we show in the next theorem that given the opportunity to measure

infinitely often, for any given neighborhood of w∗, the probability that the posterior

distribution lies in this neighborhood goes to 1 and KG will discover which one is the

true best alternative. The detailed proof can be found in Appendix A.4.3.

Theorem 3.5.6 (Asymptotic optimality). For any true parameter value w∗ ∈ Rd

and any normal prior distribution with positive definite covariance matrix, under the

knowledge gradient policy, the posterior is consistent and the KG policy is asymptot-

ically optimal: arg maxx EKG[σ(wTx)|F∞] = arg maxx σ((w∗)Tx).
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UCI dataset Number of alternatives Number of attributes
sonar 208 60
glass identification 214 10
blood transfusion 748 5
survival 306 3
breast cancer 198 34
planning relax 182 13
climate 540 18

Table 3.1: Summary of datasets.

3.6 Experimental Results

In this section, we evaluate the proposed method in offline learning settings where we

are not punished for errors incurred during training and only concern with the final

recommendation after the offline training phases.

We experiment with both synthetic datasets and the UCI machine learning repos-

itory (Lichman, 2013) which includes classification problems drawn from settings in-

cluding sonar, glass identification, blood transfusion, survival, breast cancer (wpbc),

planning relax and climate model failure. We first analyze the behavior of the KG

policy and then compare it to state-of-the-art learning algorithms. On synthetic

datasets, we randomly generate a set of M d-dimensional alternatives x from [−3, 3].

At each run, the stochastic binary labels are simulated using a d + 1-dimensional

weight vector w∗ which is sampled from the prior distribution w∗i ∼ N (0, λ). The

+1 label for each alternative x is generated with probability σ(w∗0 +
∑d

j=1w
∗
jxj). For

each UCI dataset, we use all the data points as the set of alternatives with their orig-

inal attributes. We then simulate their labels using a weight vector w∗. This weight

vector could have been chosen arbitrarily, but it was in fact a perturbed version of the

weight vector trained through logistic regression on the original dataset. A summary

of the datasets is listed in Table 3.1.
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Figure 3.1: The scatter plots illustrate the KG values at 1-4 iterations from left to
right with both the color and the size reflecting the magnitude. The star, the red
square and pink circle indicate the true best alternative, the alternative to be selected
and the implementation decision, respectively.

3.6.1 Behavior of the KG Policy

To better understand the behavior of the KG policy, Fig. 3.1 shows the snapshot of the

KG policy at each iteration on a 2-dimensional synthetic dataset and a 3-dimensional

synthetic dataset in one run. Fig. 3.1 shows the snapshot on a 2-dimensional dataset

with 200 alternatives. The scatter plots show the KG values with both the color

and the size of the point reflecting the KG value of the corresponding alternative.

The star denotes the true alternative with the largest response. The red square is

the alternative with the largest KG value. The pink circle is the implementation

decision that maximizes the response under current estimation of w∗ if the budget is

exhausted after that iteration.

It can be seen from the figure that the KG policy finds the true best alternative

after only three measurements, reaching out to different alternatives to improve its

estimates. We can infer from Fig. 3.1 that the KG policy tends to choose alternatives

near the boundary of the region. This criterion is natural since in order to find the

true maximum, we need to get enough information about w∗ and estimate well the

probability of points near the true maximum which appears near the boundary. On

the other hand, in a logistic model with labeling noise, a data x with small xTx

inherently brings little information as pointed out by Zhang and Oles (2000). For an

extreme example, when x = 0 the label is always completely random for any w since

72



−2
0

2

−2

0

2

−2

−1

0

1

2

x
1

x
2

x
3

−2
0

2

−2

0

2

−2

−1

0

1

2

x
1

x
2

x
3

−2
0

2

−2

0

2

−2

−1

0

1

2

x
1

x
2

x
3

−2
0

2

−2

0

2

−2

−1

0

1

2

x
1

x
2

x
3

−2
0

2

−2

0

2

−2

−1

0

1

2

x
1

x
2

x
3

−2
0

2

−2

0

2

−2

−1

0

1

2

x
1

x
2

x
3

−2
0

2

−2

0

2

−2

−1

0

1

2

x
1

x
2

x
3

−2
0

2

−2

0

2

−2

−1

0

1

2

x
1

x
2

x
3

−2
0

2

−2

0

2

−2

−1

0

1

2

x
1

x
2

x
3

−2
0

2

−2

0

2

−2

−1

0

1

2

x
1

x
2

x
3

Figure 3.2: Snapshots on a 3-dimensional dataset. The scatter plots illustrate the KG
values at 1-10 iterations from left to right, top to bottom. The star, the red square
and pink circle indicate the best alternative, the alternative to be selected and the
implementation decision.

p(y = +1|w,0) ≡ 0.5. This is an issue when perfect classification is not achievable.

So it is essential to label a data with larger xTx that has the most potential to

enhance its confidence non-randomly.

Fig. 3.2 illustrates the snapshots of the KG policy on a 3-dimensional synthetic

dataset with 300 alternatives. It can be seen that the KG policy finds the true best

alternative after only 10 measurements. This set of plots also verifies our statement

that the KG policy tends to choose data points near the boundary of the region.
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Figure 3.3: Absolute error between the predictive probability of +1 under current
estimate and the true probability.
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Also depicted in Fig. 4.2 is the absolute class distribution error of each alternative,

which is the absolute difference between the predictive probability of class +1 under

current estimate and the true probability after 6 iterations for the 2-dimensional

dataset and 10 iterations for the 3-dimensional dataset. We see that the probability

at the true maximum is well approximated, while moderate error in the estimate is

located away from this region of interest.

3.6.2 Comparison with Other Policies

Recall that our goal is to maximize the expected response of the implementation

decision. We define the Opportunity Cost (OC) metric as the expected response of

the implementation decision xN+1 := arg maxx p(y = +1|x,wN) compared to the

true maximal response under weight w∗:

OC := max
x∈X

p(y = +1|x,w∗)− p(y = +1|xN+1,w∗).

Note that the opportunity cost is always non-negative and the smaller the better.

To make a fair comparison, on each run, all the time-N labels of all the alternatives

are randomly pre-generated according to the weight vector w∗ and shared across all

the competing policies. We allow each algorithm to sequentially measure N = 30

alternatives.

We compare with the following state-of-the-art active learning and Bayesian op-

timization policies that are compatible with logistic regression: Random sampling

(Random), a myopic method that selects the most uncertain instance each step

(MostUncertain), discriminative batch-mode active learning (Disc) (Guo and Schu-

urmans, 2008) with batch size equal to 1, expected improvement (EI) (Tesch et al.,

2013) with an initial fit of 5 examples and Thompson sampling (TS) (Chapelle and

Li, 2011). Besides, as upper confidence bounds (UCB) methods are often considered
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(h) Synthetic data, d = 10
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(i) Synthetic data, d = 15

Figure 3.4: Opportunity cost on UCI and synthetic datasets.

in bandit and optimization problems, we compare against UCB on the latent function

wTx (UCB) (Li et al., 2010) with α tuned to be 1. All the state transitions are based

on the online Bayesian logistic regression framework developed in Section 3.4, while

different policies provides different rules for measurement decisions at each iteration.

The experimental results are shown in Figure 3.4. In all the figures, the x-axis de-

notes the number of measured alternatives and the y-axis represents the averaged

opportunity cost averaged over 100 runs.

It is demonstrated in Figure 3.4 that KG outperforms the other policies in most

cases, especially in early iterations, without requiring a tuning parameter. As an

unbiased selection procedure, random sampling is at least a consistent algorithm.
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Yet it is not suitable for expensive experiments where one needs to learn the most

within a small experimental budget. MostUncertain and Disc perform quite well

on some datasets while badly on others. A possible explanation is that the goal

of active learning is to learn a classifier which accurately predicts the labels of new

examples so their criteria are not directly related to maximize the probability of

success aside from the intent to learn the prediction. After enough iterations when

active learning methods presumably have the ability to achieve a good estimator of

w∗, their performance will be enhanced. Thompson sampling works in general quite

well as reported in other literature (Chapelle and Li, 2011). Yet, KG has a better

performance especially during the early iterations. In the case when an experiment

is expensive and only a small budget is allowed, the KG policy, which is designed

specifically to maximize the response, is preferred.

We also note that KG works better than EI in most cases, especially in Figure

3.4(b), 3.4(c) and 3.4(e). Although both KG and EI work with the expected value

of information, when EI decides which alternative to measure, it is based on the

expected improvement over current predictive posterior distribution while ignoring

the potential change of the posterior distribution resulting from the next (stochastic)

outcome y. In comparison, KG considers an additional level of expectation over the

random (since at the time of decision, we have not yet observed outcome) binary

output y.

Finally, KG, EI and Thompson sampling outperform the naive use of UCB policies

on the latent function wTx due to the errors in the variance introduced by the

nonlinear transformation. At each time step, the posterior of log p
1−p is approximated

as a Gaussian distribution. An upper confidence bound on log p
1−p does not translate

to one on p with binary outcomes. In the meantime, KG, EI and Thompson sampling

make decisions in the underlying binary outcome probability space and find the right

balance of exploration and exploitation.
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3.7 Conclusion

Motivated by real world applications, we consider binary classification problems where

we have to sequentially run expensive experiments, forcing us to learn the most from

each experiment. With a small budget of measurements, the goal is to learn the

classification model as quickly as possible to identify the alternative with the highest

probability of success. Due to the sequential nature of this problem, we develop a

fast online Bayesian linear classifier for general response functions to achieve recursive

updates. We propose a knowledge gradient policy using Bayesian linear classification

belief models, for which we use different analytical approximation methods to over-

come computational challenges. We further extend the knowledge gradient to the

contextual bandit settings. We show that the maximum likelihood estimator based

on the adaptively sampled points by the KG policy is consistent and asymptotically

normal. We show furthermore that the knowledge gradient policy is asymptotic op-

timal. We demonstrate its efficiency through a series of experiments.
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Chapter 4

Bayesian Contextual Bandits for

Personalized Health Care

According to the Centers for Medicare and Medicaid Services (CMS), U.S. health care

expenditures grew 5.3 percent in 2014, reaching $3 trillion or $9, 523 per person. As

a share of the nation’s Gross Domestic Product, health spending accounted for 17.5

percent. Rising health care costs have become a major concern for hospital chains

(Bodenheimer, 2005; Ginsburg, 2008; Wennberg et al., 2008; Lehnert et al., 2011),

which increasingly have to deliver the best care possible within a given budget.

Common practice is to assign patients to medical professionals (general practi-

tioners, specialists, nurse practitioners) on a first-available basis. This ignores special

expertise with particular medical conditions, as well as the past performance of the

physician or facility. At the same time, physicians may face choices in terms of how

to treat a condition, which tends to be guided in part by the past experiences of each

physician. Thus, we have choices of physician (or type of physician), care facility, and

specific treatments. The best choices depend on a combination of the characteristics

of the patient, the physician, the facility, and the treatment plan. We address the

problem of how to make the best decisions in the presence of imperfect (and some-
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times highly imperfect) understanding of the relationship between patient attributes,

medical decisions and medical outcomes.

We are particularly interested in total knee replacement (Callahan et al., 1994;

Buckwalter and Lohmander, 1994), a common operation for people with osteoarthri-

tis of the knee which affects more than 27 million people in the U.S. according to

the Arthritis Foundation. More than 600,000 knee replacements are performed each

year in the U.S., which also leads to extensive post-operative rehabilitation which

varies widely from one patient to the next. In 2013, the cost is more than $7 billion

for hospitalization alone. In order to promote a health care system that provides

better care and spends health care dollars more wisely, in 2016, the United States

Department of Health and Human Services (HHS) proposed the Comprehensive Care

for Joint Replacement (CJR) where the hospital may be required to repay Medicare

for a portion of the cost of a knee replacement episode if the cost and quality fall

outside of specified ranges (HHS, 2015).

We focus on the case of a single decision and take an online view, continuously

using accumulating data to modify aspects of the treatment regime as new patients

come in. We adopt a Bayesian approach where a prior on the response is used to help

balance making the best decision now, while maximizing the value of information

from each episode to make better decisions in the future.

In this chapter, we consider a binary feedback (success/failure) model where if the

post-operative cost is below some threshold, the episode of care (spanning initial di-

agnosis and testing, inpatient treatment and outpatient care) is said to be successful;

otherwise it is treated as failure. The aim is to decide the most appropriate physicians

and caregivers for each individual patient and maximize the success rate over time.

This is an example of the broader area of personalized medicine, which formalizes clin-

ical decision making as a function that maps individual patient information (including

measures of disease stage severity, medical history, clinical diagnosis, genomic infor-
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mation and environmental information) to a recommended treatment. Our work is

part of a growing trend toward personalized care where medical decisions are tuned to

the characteristics of each patient. This approach, however, introduces considerable

uncertainty in the identification of the best treatments since there is very little data

describing patients with the same (or even similar) attributes. As a result, there is

considerable uncertainty in models of the relationship between medical decisions (and

patient attributes) with treatment outcomes. This motivates our work that addresses

the problem of balancing between making what appears to be the best decisions, and

learning to make better decisions in the future.

We formalize personalized medicine as a Bayesian contextual bandit problem. We

encounter two challenges. First, there are very few patients with the same charac-

teristics, which means that it is unlikely that an individual physician sees a sufficient

number of eligible patients to produce statistically reliable performance measure-

ments on medical outcomes. We overcome this situation using a parametric belief

model that allows us to learn relationships across a wide range of patients and health

providers. This is different from the earlier multi-armed bandit formulations in clin-

ical trials (Lai, 1987; Lai and Liao, 2012) which ignore the attributes of individual

patients, effectively assuming that patients are homogeneous. In this paper, we use

context information to explicitly model the heterogeneity in need and responses. The

context-specific best action, which requires finding a function (that is, a policy), is dra-

matically more difficult computationally than finding the best single action required

by the context-free case. Second, testing a treatment decision is expensive. This puts

us in the setting of optimal learning where we need to learn the best treatment as fast

as possible. This represents a distinctly different learning environment than what has

traditionally been considered using popular policies such as upper confidence bound-

ing (UCB) which have proven effective in settings with high sampling rates such as

learning ad-clicks or the doubly robust estimation which is trained on historical data
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(Dud́ık et al., 2014; Zhang et al., 2012). We therefore adopt a Bayesian approach

and the knowledge gradient policy which takes advantage of domain knowledge to

produce rapid learning, and which maximizes success rates for both the current and

future patients.

In what follows, we describe a methodology for quickly learning a contextual,

binary response model for personalized healthcare. We introduce a two-step Bellman’s

equation for Bayesian contextual bandits and develop an optimal learning policy to

guide the treatment assignment by maximizing the expected value of information.

We use modularity detection and LASSO to help overcome the intrinsic sparsity of

health datasets, and show that the method significantly increases the results of knee

replacement surgeries through careful selection of physicians.

4.1 Literature Review

There is a variety of new methods to aid in the search for the optimal treatment

regime, where a single decision or a series of sequential decisions may be involved,

including sequential multiple assignment randomized trials (SMART) (Almirall et al.,

2012; Murphy, 2005), doubly robust estimators (Murphy et al., 2001; Zhang et al.,

2012; Brinkley, 2014), Q-learning (Laber et al., 2015; Qian and Murphy, 2011), adap-

tive strategies (Lavori and Dawson, 2000) and other dynamic treatment regimes stud-

ied at length by Robins and colleagues (Murphy, 2003; Murphy and Collins, 2007;

Robins, 2004, 1993). Much of the work is trained on past observational data and

the treatment regime is not updated with new patient responses. Yet when working

with historical data, the result is less objective and can be biased substantially due

to the differences, for example, in patient populations and in medical facilities or the

evolution of the diseases. This is known as offline settings where we are not punished
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for errors incurred during training and where we are only concerned with the final

treatment regime after the offline training phases.

Our work also bears similarity to adaptive designs (Ashby, 2006; Berry et al.,

2010; Jack Lee and Chu, 2012; Chow, 2014; Bather, 1985; Yin et al., 2012). Decisions

are made adaptively throughout the running of the trial. The sequence 1) make an

observation, 2) update your knowledge and 3) decide what information to collect next,

is the basis of the scientific method, following the guidelines given by Thall and Simon

(1994). Both our setting and adaptive designs face the same exploration/exploitation

dilemma: (1) treat current patients as effectively as possible while (2) learning to

improve treatments in the future. Making what we think is currently the best decision

may not be the best given the uncertainty in our model, forcing us to recognize that

we have to learn to make better decisions in the future.

4.2 Problem Definition

Personalized medicine takes into consideration the heterogeneity in needs and re-

sponses of different patients. It aims to effectively integrate and analyze healthcare

data to provide the right intervention to the right patient at the right time. With the

popularization of the electronic health record (EHR), defined as a systematic collec-

tion of electronic health information about individual patients or populations, it is

easier for us to make data-driven decisions that facilitates optimized patient-centered

and automated healthcare delivery.

4.2.1 Personalized Medicine

A patient can be characterized by a set of unique characteristics such as measures of

disease stage severity, medical history, clinical diagnosis, genomic information, and en-

vironmental information, with a health complaint that requires medical intervention.
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We use this information as a basis for decisions about medical treatment, including

choice of physician, tests, drugs, surgery, and rehabilitation/follow up.

The challenge lies in the sequential nature of the problem which can happen both

across different patients and within a patient. For example, patients come to the

hospital one by one. For each patient visit, a medical decision is made from which

we learn a response and update our model, allowing us to make better decisions for

the next upcoming patient. However, we need to use this knowledge in the context

of new patients, each described by their own attributes, leading to different medical

decisions. The second sequential nature involves development of dynamic treatment

regimes. In treating each individual, there are usually multiple hospital visits which

correspond to different stages of the health conditions of each patient. In this case,

different decisions may be needed for different stages depending on patient attributes

at that time.

In this work, for simplicity, we only consider the case where there is a single medical

decision to be made for each patient. After the medical decision is made, at the end

of a treatment episode, we observe a dichotomous health outcome (e.g. whether cost

is below a Medicare-specified threshold, whether the treatment is effective), which is

then used to update our understanding of relationships between medical decisions and

health outcomes for a patient with a specific set of characteristics. This model can

be easily extended to account for dynamic treatment regimes by gathering patient

features of each hospital visit. It is worth mentioning that not only the patients are

the beneficiaries, it potentially benefits all the components of a healthcare system,

including the healthcare provider, individual patient, policy maker and management.

4.2.2 The Contextual Model

For the nth patient xn, the learner or the decision maker is presented with a con-

text vector φX(xn) =
(
φXf (xn)

)
f∈FX and a set of actions a ∈ A (doctors, treat-
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ments, rehabilitation). Here a learner can be a doctor or a hospital administrator,

the context vector is the characteristics of the nth patient xn, and each action can

be different treatments, different doctors or rehabilitation facilities. Each action a

is associated with a feature vector φA(a). For example, a drug can be represented

by a binary vector with each item representing the presence of a specific molecular

compound. A treatment decision can also be handled with indicator variables (such

as I(a, “doctor”) = 1 if an action a refers to assigning a particular doctor). For any

context x and action a, there is an unknown function p : X ×A 7→ [0, 1] which repre-

sents the underlying binomial probability of success of an experiment. After choosing

an action a, a response of patient yn+1 ∈ {−1,+1}/ {failure, success} for the action

a is revealed, but the rewards of other actions are not observable. The “success” or

“failure” depends stochastically on x and a. This setting is also known as contextual

bandits.

A policy π or a treatment regime is a function mapping from any context in-

formation x to an action a. We denote the “patient horizon” as N which is the

number of present and future patients who will be treated with one of the treatment

in A. It is worth noting that N need not be known beforehand and may depend

on the pattern of an emerging disease, the performance of current treatments, the

emergence of new treatments, and may be infinite for recurring conditions such as

knee replacements. Chapter 3 has proposed optimal learning methods for sequential

decision making with stochastic binary feedbacks for context-free Bayesian optimiza-

tion. In terms of personalized medicine scenarios, it is equivalent to assuming that all

patients are homogeneous. In this paper, context information explicitly models the

heterogeneity in needs and responses and the context-specific best action is a more

demanding benchmark than the best action identification in the context-free case.

We adopt probabilistic modeling for the unknown probability of success. Specifi-

cally, for any continuous-valued latent function f(x, a), the corresponding probability
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density over class probability functions can be obtained by mapping a model with

range of (−∞,∞) to an output in [0, 1] using sigmoid response functions σ. For

example, given a linear regression model f = wTφ, the predicted probability of

class +1 is σ(wTφ). The link function σ(b) is often chosen as the logistic function

σ(b) = 1
1+exp(−b) or probit function σ(b) = Φ(b) =

∫ b
−∞N (s|0, 12)ds.

We encode assumptions about the smoothness of the latent function by modeling

it as a sample from a Gaussian process defined over the joint context-action space.

Specifically, this paper, we assume that the latent function f : X ×A 7→ R is a sample

from a known Gaussian process (GP) distribution. A Gaussian process is a statistical

distribution of dependent random variables such that every finite collection of those

random variables has a multivariate normal distribution. We use Z = X ×A to refer

to the set of all context-action pairs. A GP is fully specified with its mean function µ

and covariance function (kernel) Σ which can often be naturally decomposed into the

kernels on actions and contexts. For example, in our knee replacement experiments

(described in Section 4.5), we choose the kernel function for actions ΣA = I as the

|A| × |A| identity matrix, and ΣX as the linear kernel on the patient features.

We use Kn to denote the “state of knowledge” which captures the uncertainty

in our system at time n. In the case of Gaussian processes for classification, Kn

represents the posterior distribution over the latent function N (µn,Σn). We then

define Sn = (Kn, xn) to be the state of the system at time n. Each of the past

observations are made of triplets (xn, an, yn+1), assuming labels y are generated in-

dependently. Let Dn = {(xi, ai, yi+1)}n−1
i=0 denote the previous measured data set for

any n = 0, . . . , N − 1. Note that the notation here is slightly different from the

(passive) PAC learning model where the data are i.i.d. and are denoted as {(xi, yi)}.

Yet in our (adaptive) sequential decision setting, a decision an depends on the state

Sn, while Y n+1 is a random variable that has not been observed at time n. This

notation with superscript indexing time stamp is standard, for example, in control
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theory, stochastic optimization and optimal learning. A history of the process can be

represented using

hn = (K0, x0, S0, a0, Y 1, K1, x1, S1, a1, Y 2, ..., an−1, Y n, Kn, xn, Sn).

The goal is to find a policy that selects actions such that the cumulative reward

is as large as possible over time, or equivalently, treatment on patients is as effective

as possible:

max
π

E
[N−1∑
n=0

Y n+1
(
Sn, Aπ(Sn)

)
|S0

]
, (4.1)

where Y denotes the random variable of the patient response, Aπ denotes the treat-

ment recommended by the dynamic treatment regime π.

4.3 Gaussian Process Classification

Since we do not observe values of the latent function fz directly, the inference step for

our GP conditioning on the previous observations D involves computing the following

posterior distribution at any points z = (x, a):

p(f |D) =
1

Z
p(D|f)p(f),

where p(f) is the prior distribution in our GP and the normalization constant Z is

the unknown evidence.

Unfortunately, exact Bayesian inference for GP classifiers are intractable since

the evaluation of the posterior distribution comprises a factorial likelihood, which is

a product of sigmoid (non-Gaussian) functions; in addition, the integral in the nor-

malization constant is intractable as well. We can either use analytic approximations

to the posterior, or solutions based on Monte Carlo sampling, foregoing a closed-
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form expression for the posterior. Different approximation methods are discussed by

Nickisch and Rasmussen (2008). In this work, for algorithmic simplicity, we adopt a

linear kernel on the latent function f . To be more specific, we use φ(x, a) to denote

the vector of features for each (context, action) pair. This can be generated by the

context vector φX(x) and the action feature vector φA(a). Then the latent function

is represented by a linear regression model f = wTφ.

Observations come one by one due to the sequential nature of our problem setting.

After each new observation, retraining the GP classifier using all the previous data is

computationally inefficient in terms of both time and space complexity. To this end,

we use the online Bayesian linear classification algorithm proposed in Section 3.4.2

to handle recursive updates with each patient response with an independent normal

prior distribution of the unknown parameter w is N (0, λ−1I), which is known to be

equivalent to l2 regularization.

In our setting, the use of this convenient approximation of the posterior is twofold.

It first serves as a prior on the weights to update the model when a new patient re-

sponse becomes available. Second, it defines the belief states in the Bayesian policies,

for example, the knowledge gradient policy and Thompson sampling that we intro-

duce later. Starting from Gaussian priors N
(
wj|m0

j , (q
0
j )
−1
)

over wj with mean m0
j

and variance (q0
j )
−1, after the first n patient responses, the Laplace-approximated

posterior distribution is p(wj|Dn) ≈ N
(
wj|mn, (qnj )−1

)
. At the nth time step, we find

the MAP solution (3.8) to the posterior after the new information (xn, an, yn+1) by a

one-dimensional bisection method:

mn+1 = arg max
w

1

2

d∑
j=1

qni (wi −mn
i )2 + log

(
1 + exp

(
− yn+1wTφn

))
, (4.2)
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where φn is a compact notation for φ(xn, an). The inverse variance of each weight

wj is given by the curvature at the mode as:

qn+1
j = qnj + ζn(1− ζn)(φnj )2, (4.3)

where ζn =

(
1 + exp

(
(wn+1)Tφn

))−1

.

4.4 Knowledge Gradient Policy with Contextual

Information

The knowledge gradient (KG) policy, first proposed for offline (context-free) rank-

ing and selection problems, maximizes the value of information from a decision. In

ranking and section problems, the performance of each alternative is represented by a

(non-parametric) lookup table model. Although originally developed for offline learn-

ing (where we do not pay attention to successes while we are learning), it is easily

adapted to online learning where we seek to maximize the cumulative number of suc-

cesses. This is particularly well suited to personalized medicine where we want to

learn as fast as possible from each patient response so as to provide better treatment

on the upcoming patients. In comparison, policies like upper confidence bounding

(UCB) are known to explore more than necessary, which is particularly undesirable

in a medical setting.

While knowledge gradient policies have been designed for a variety of belief mod-

els, as of this writing it has not been adapted to the setting of contextual bandits.

Chapter 3 has proposed optimal learning methods for sequential decision making with

stochastic binary feedbacks for context-free Bayesian optimization, e.g. all patients

are homogeneous. In this section, we use context information to explicitly model the

heterogeneity in needs and responses of different patients. The context-specific best

88



action, which requires finding a function (that is, a policy), is dramatically more dif-

ficult computationally than finding the best single action required by the context-free

case, comparable to the difference between static stochastic optimization and fully

sequential dynamic programming.

4.4.1 Markov Decision Process Formulation

We define the knowledge state in our setting as Kn = (mn, qn). For the context-

free case, the state of the system Sn is identical to the state of knowledge Kn. In

a dynamic program, the value function is defined as the value of the optimal policy

given a particular state Sn ∈ S at time n, and may also be determined recursively

through Bellman’s equation. At time N , we should simply choose the alternative

that looks the best given everything we have learned, because there are no longer

any future decisions that might benefit from learning. Since the goal of personalized

medicine is to maximize the cumulative success of treatment, the terminal value

function V N : S 7→ R is given by

V N(s) = max
a

EY
[
Y N+1(s, a)

∣∣s] = max
a
p(y = +1|s, a),∀s ∈ S.

The value function at any other time n = 0, 1, ..., N − 1 is given recursively by

Bellman’s equation for dynamic programming:

V n(Sn) = max
a

Ex,Y
[
Y n+1(Sn, a) + V n+1(Sn+1)|Sn

]
, (4.4)

where Sn+1 = (Kn+1, xn+1) is the random state of the system and the expectation is

over the context xn+1 and the outcome Y n+1, which means over the Bernoulli random

outcome given the model, and the uncertainty in the model.

All the previous optimal learning literature considers transitions from Sn to Sn+1

(as in Figure 4.1(a)) and develops algorithms based on the value at state Sn. Yet in
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contextual bandits, the contexts are given as arbitrary, meaning that we do not explic-

itly model the distribution of the context information. Hence, we cannot compute the

expectation over the context vector x in Eq. (4.4). In what follows, we break down

the Bellman’s equations into two steps, and provide the first formal mathematical

model for the contextual bandits from a perspective of dynamic programming.

(a) One-step transition. (b) Two-step transition.

Figure 4.1: Illustrations of dynamic programming and Bellman’s equation.

To be more specific, we write Bellman’s equation in its standard form (Eq. (4.4))

by writing the sequence of states, actions and information using:

(S0, a0, Y 1, S1, a1, Y 2, . . . , Sn, an, Y n+1, . . .)

When we include contextual information, this sequence would be written as

(
K0, x0, S0 = (K0, x0), a0, Y 1, K1, x1, S1 = (K1, x1), a1, Y 2, . . .

)

Here, the knowledge state Kn is the post-observation state, while Sn is the pre-decision

state, representing the state after a patient has arrived. Instead of relating V n(Sn) to

V n+1(Sn+1) as is classically done in Bellman’s equation, we break the recursion into

two steps: from Sn to Kn+1, and then from Kn+1 to Sn+1 (see Figure 4.1(b)), giving

us the following two-step version of Bellman’s equation.

V n(Sn) = max
a

E

{
Y n+1(Sn, a) + V k,n+1

(
Kn+1

(
Y n+1(Sn, a)

))∣∣Sn},
V k,n+1(Kn+1) = Ex

[
V n+1(Sn+1)|Kn+1

]
.
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Bellman’s equation works well for problems with small state and action spaces, and

where the transition matrix can be easily computed. But in personalized health care,

the context information xn can only be observed (the distribution is unknown). The

context information can be an arbitrary sequence which is fixed beforehand or stored

in historical data, or it can be non-stochastically chosen by an adversary. The attrac-

tiveness of the post-observation state that the maximum and the expectation over

context x are interchanged, giving us computational advantages to use a simulation-

based approach without probabilistic modeling of the contextual information and by

treating the contextual information as arbitrarily given by the oracle.

4.4.2 Knowledge Gradient Policy with Contextual Informa-

tion

In order to approximately solve the Bellman’s equations in the previous section, we

for the first time propose to develop the knowledge gradient policy around the values

in post-observation states Kn. The knowledge gradient νKG,n
a (Sn) of measuring an

action a in state Sn = (Kn, xn) is defined as the single-step expected improvement in

value if action a is taken.

νKG,n
a (Sn) := EY

[
V k,N

(
Kn+1

(
Y n+1(Sn, a)

))
− V k,N(Kn)|Sn

]
, (4.5)

where Kn+1
(
Y n+1(Sn, a)

)
is the next stochastic state of knowledge if we choose treat-

ment an = a right now, allowing us to observe the stochastic patient response Y n+1.

This allows us to update mn and qn according to Eq. (4.2) and Eq. (4.3), transi-

tioning to the next state of knowledge Kn+1. The knowledge gradient policy then

balances the treatment that appears to be the current best and the one that learns
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the most by choosing an action a at time n as:

AKG,n(Sn) = arg max
a
p(y = +1|Sn, a) + τνKG,n

a (Sn),

where τ reflects a planning horizon that captures the value of the information we

have gained on future patients. If the time horizon N is known beforehand, τ can be

chosen as N − n. Otherwise, we can also treat τ as a tunable parameter.

Given a knowledge state k = (m, q), or equivalently p(wj|k) = N (wj|mj, q
−1
j ), the

predictive Bernoulli distribution of patient response y for a context x and a treatment

a can be found by marginalization over w,

p(y = +1|x, a, k) =

∫
p(y = +1|x, a,w)p(w|k)dw =

∫
σ
(
wTφ(x, a)

)
p(w|k)dw.(4.6)

For notational simplicity, we drop φ’s dependence on x and a. Denoting b = wTφ

and δ(·) the Dirac delta function, we have σ(wTφ) =
∫
δ(b−wTφ)σ(b)db. Hence we

have ∫
σ(wTφ)p(w|k)dw =

∫
σ(b)p(b)db,

where p(b) =
∫
δ(b−wTφ)p(w|k)dw. Since the delta function imposes a linear con-

straint on w and p(w|k) is Gaussian, the marginal distribution p(b) is also Gaussian.

We can evaluate p(b) by calculating the mean and variance of this distribution. We

have

µb = E[b] =

∫
p(b)b db =

∫
p(w|k)wTφ dw = mTφ,

σ2
b = Var[b] =

∫
p(w|k)

(
(wTφ)2 − (mTφ)2

)
dw =

d∑
j=1

q−1
j φ2

j .

Thus
∫
σ
(
wTφ(x, a)

)
p(w|k)dw =

∫
σ(b)p(b)db =

∫
σ(b)N (b|µb, σ2

b ). Since the con-

volution of a Gaussian N (b|µb, σ2
b ) with a logistic function σ(b) cannot be evaluated
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analytically, we apply the approximation σ(b) ≈ Φ(αb) with α = π/8. Denoting

κ(σ2) = (1 + πσ2/8)−1/2, we have

p(y = +1|x, a, k) =

∫
σ
(
wTφ(x, a)

)
p(w|k)dw ≈ σ(κ(σ2

b )µb).

We are now ready to compute the knowledge gradient value νKG,n
a (Sn) in Eq.

(4.5). First, V k,N(Kn) is deterministic at time n. Since the patient response Y n+1 is

not known at the time of selection, the expectation is computed over the Bernoulli

distribution and the current belief model specified byKn. Specifically, the expectation

can be obtained by averaging the two possible responses +1/− 1 as follows:

E
[
V k,N

(
Kn+1(Y n+1(Sn, a))

)
|Sn
]

= p(y = +1|x, a,Kn)V k,N
(
Kn+1

+1 (Sn, a)
)

+ p(y = −1|x, a,Kn)V k,N
(
Kn+1
−1 (Sn, a)

)
= p(y = +1|x, a,Kn) ·max

a′
p
(
y = +1|x, a′, Kn+1

+1 (Sn, a)
)

+p(y = −1|x, a,Kn) ·max
a′

p
(
y = +1|x, a′, Kn+1

−1 (Sn, a)
)
,

where Kn+1
Y (x, a) denotes the next belief state given outcome Y according to Eq.

(4.2) and Eq. (4.3).

It can be seen that the Laplace approximation and the recursive update make

the computation of the knowledge gradient tractable by analytically approximating

the value in the next state V n+1(Sn+1) and offering computational simplicity with

Gaussian distributions.

4.5 Cost Reduction of Knee Replacement

We obtained knee replacement datasets from major hospital chains in New York and

New Jersey. To make a fair statement of the costs, we selected 26,735 structured

claim records that are obtained from the same health care provider. Each record
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includes age, gender, episode identifier, episode start data, claim line paid amount,

diagnosis codes, procedure codes, attributed physician identifiers and so on. Specifi-

cally, for example, the diagnosis is represented with ICD-9 codes which is the ninth

revision of the International Classification of Diseases, a hierarchical terminology of

diseases, signs, symptoms, abnormal findings, complaints, social circumstances, and

external causes of injury maintained by the World Health Organization (WHO). In

the procedure type record, each health care procedure is encoded by the Healthcare

Common Procedure Coding System (hcpcs) based on the American Medical Associ-

ation’s Current Procedural Terminology (cpt). The episode ID, beneficiary ID and

claim ID have been replaced with randomly assigned numbers for anonymization.

4.5.1 Data Description

All the patients in the knee replacement dataset have undergone knee replacement

surgery which is represented by the hcpcs code 27447. After the knee replacement

surgery, different patients have been involved in different lengths of rehabilitations

and incurred a wild range of post-operative costs. In this work, we want to under-

stand the effect of different physicians and/or facilities on the post-operative costs

of each individual, and provide guidelines on how to more effectively assign different

physician/facility to each patient based on patient attributes.

To this end, we are interested in the following data fields. The first one is the

demographic information, including age and gender. The next category is the episode

information, including the Episode id and the Claim date. We will later use these

to group different claim records by episode ID and use time stamps to distinguish

between pre-operative or post-operative clinical visits. We use Procedure code and

Diagnosis code to later construct the patient feature vector. Attributed phys npi indi-

cates the attributed physician for an episode and Rndrg prvdr npi num represents the

specific provider delivering a service. We are also interested in the amount paid for
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Variable Variable Definition

Episode id Episode identifier of each claim record
Age Age
Gender Gender
Claim date The date of the service
Attributed phys npi Attributed physician for episode
Rndrg prvdr npi num The specific provider delivering a service, e.g. physical therapist
Claim line paid amount Amount paid for service
Procedure code Procedure hcpcs codes
Diagnosis code Diagnosis icd-9 codes

Table 4.1: Data description of the knee replacement.

service Claim line paid amount in order to optimize on the post-operative costs. Table

4.1 summarizes the selected variables.

The key response variable in our analysis is the post-operative cost. In order to

obtain the post-operative cost for each episode, we first group all the claim records

based on their Episode id and sort the claim records within each episode chronolog-

ically. This results in a total of 211 different episodes. We then locate the surgery

with hcpcs code of 27447. By summing up the Claim line paid amount of the records

that happened after the surgery, we get the post-operative cost for each episode. We

see a variety of different post-operative costs of 211 episodes, ranging from $1787.69

to $11571.44, as depicted in Figure 4.2. Based on the Comprehensive Care for Joint

Replacement (CJR) project, the threshold is set to be $5878 for this region. Since the

hospital is required to repay Medicare for a portion of the cost of a knee replacement

episode if the cost is higher than the specified threshold, from the perspective of hos-

pital administration, we say that if the cost is smaller than the specified threshold,

we think it as acceptable, otherwise we treat it as failure. Then the binary response

(successes/failure) is the dependent variable in our prediction model.

For predictors, we first translate the claim records into matrix-based attributes.

Specifically, we create a set of columns consisting of every diagnosis (icd-9 diagnosis

code) and/or pre-operative procedure ( hcpcs/cpt procedure code) that has appeared
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in the dataset. For each patient, mark the value of that column as 1 if the patient has

a diagnosis or uses the procedure in his/her historical medical records, otherwise mark

as 0. Beyond this binary valued vector that encodes diagnoses and pre-operative pro-

cedures, we also include the demographic characteristics (sex and age) to constitute

the feature vector of a patient.

Figure 4.2: Post-operative cost distribution.

Not surprisingly, there are a huge number of features associated with each patient,

e.g. 979 columns of possible diagnoses and 772 columns of pre-operative procedures.

These features are typically sparse – compared to nearly 2000 features, the number

of 1’s for each patient ranges from 8 to 110, with an average of 31. For example,

Figure 4.3 is a snapshot of the binary representation of patient information for 50

different episodes. The y-axis depicts around 40 distinct diagnosis icd-9 codes. In

the construction of the matrix, if a patient has a specific diagnosis, we will mark that

location. We can see from this figure that the patient feature matrix is extremely

sparse, with a density of only 3%. If we directly use these features, the sparsity

and the relative small number of patients makes learning more difficult and is com-

putationally expensive. Besides, simplification of models can make them easier to

interpret by researchers and enhance generalization by reducing overfitting. To this

end, we instead find the lower dimension feature representation as explained in the

next section.
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Figure 4.3: Matrix-based patient representation.

4.5.2 Feature Selection

There are several ways to look for more compact representations, such as principal

component analysis (PCA), singular value decomposition (SVD) or auto encoder to

perform the dimension reduction. However, the features from the non-linear dimen-

sion reduction lose the original meanings of the health terminologies. Yet in health

care analytics, interpretability of the resulting feature subspace is desired. For exam-

ple, it is interesting to know whether age or malignant essential hypertension affect

the cost or quality of total knee replacement.

Due to the nature of health analytics, many features tend to happen at the same

time. For example, in terms of diagnoses, obesity and hypertension are linked, with

obese patients having higher rates of hypertension than normal-weight individuals

(Chiang et al., 1969). In addition, certain tests are often run together. In order to

capture this characteristic, we first cluster the diagnoses into groups based on their

occurrences. We construct an undirected network to represent the relationship of

different diagnoses as follows. We treat each icd9 diagnosis code as a node in the

network. We measure the occurrence similarity of any diagnosis pair (d1, d2) by their

intersection angle. Specifically, each diagnosis is represented by a 211 dimensional

binary vector indicating whether each patient has that diagnosis. We then set a

97



Figure 4.4: Cluster of the diagnoses.

threshold of the cosine of the intersection angle 〈 d1,d2〉
‖d1‖‖d2‖ . For a diagnosis pair (d1, d2),

if the cosine of the intersection is larger than the threshold, we draw an edge between

them. It is worth noting that if we set the threshold to be 1, it is equivalent to saying

that d1 and d2 always happen at the same time across all the patients if there is an

edge between them. When we set the threshold to 0.8, the presence of an edge means

that d1 and d2 are recorded together 80 percent of the time.

After the construction of the network, we find the clusters/groups by detecting

the weakly connected components in the network. In Figure 4.4, each node is labeled

with its icd9 diagnosis code with the size of the node corresponding to its degree.

Different colors represent different groups/cliques. The nodes with degree less than 3

are filtered. After clustering, 979 diagnoses have been grouped into 608 components.

For example, the red group on the upper right consists of icd9 diagnosis code V160

(Family history of malignant neoplasm of gastrointestinal tract), V161 (Family history

of malignant neoplasm of trachea, bronchus, and lung), 99527 (Other drug allergy),
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6273 (Postmenopausal atrophic vaginitis), E9300 (Penicillins causing adverse effects

in therapeutic use), V7262 (Laboratory examination ordered as part of a routine

general medical examination).

Instead of using individual diagnosis codes as the features for the patients, we

first use the clusters as features. We further conduct feature selection by selecting

a subset of relevant features for use in model construction. Specifically, we use the

l1 regularized (LASSO) logistic regression to yield the sparse solutions of selecting a

subset of relevant features using 30 regularization parameter (Lambda) values and

10-fold cross validation on the patient datasets. Figure 4.5(a) identifies the minimum-

deviance point with a green circle and dashed line as a function of the regularization

parameter. The blue circled point has minimum deviance plus no more than one

standard deviation. Under the lambda value (0.0652) at the blue circled point, 25

features are selected in the sparse model and the deviance of the LASSO fit is 233.2678,

where the deviance is the value of negative log-likelihood averaged over the validation

folds in the cross-validation procedure. In the meantime, it yields a deviance of

99.763 on the entire dataset with a p-value � 0.001. The corresponding residuals of

the sparse model for the 211 episodes are depicted in Figure 4.5(b). In words, the

25 selected features provide reasonable explanatory power for the binary response

variable with statistical significance. We then use the 25 selected features as the

set of relevant patient attributes to proceed our contextual bandit learning in the

next section. Many other interesting statistical questions can be asked regarding

this dataset, e.g. feature importance, best prediction model or statistical significance

of each explanatory variable. Yet they are not the main focus of this work which

addressed the optimal learning challenge with stochastic binary feedback.
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(a) Cross-validated deviance of Lasso fit. (b) Histogram of residuals.

Figure 4.5: Results of Lasso fit.

4.5.3 Community Detection of Caregivers

We discovered from data that not surprisingly there is a number of caregivers (with na-

tional provider identifier NPIs) performing the rehabilitation. The caregivers should

be divided naturally into communities or modules. Different people doing rehab on

the same patient will belong to the same facility. Since some facilities keep patients

longer than other ones, in this case, what is important is the facility, not the individ-

ual caregiver. If we can detect and characterize this community structure, this should

give us a set of “facilities” (in the form of these clusters). To this end, we propose

the next hypothesis:

Hypothesis 4.5.1. There is presence of community structure: different people per-

forming rehabilitation on the same patient belong to the same rehabilitation facility.

We use the same idea as in the previous section to construct a network that repre-

sents the relationships between different caregivers. Each node is one caregiver. We

construct the caregiver representation vector as follows: we build an N -dimensional

feature vector for each caregiver with each item standing for the frequency of that

caregiver giving services to the nth patient. Since two caregivers from the same facil-

ity do not always work with the same patients, we lower the threshold of the cosine

of their intersection angle to 0.5 to capture this reality.
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Figure 4.6: Clustering of the caregivers.

In the previous section, when the threshold is 1, the edge represents an equiva-

lence relation (reflexive, symmetric and transitive), making each weakly connected

components a clique. Yet when lowering the threshold, it is less meaningful to treat

weakly connected components as a group. We instead use the concept of modularity,

which is the number of edges falling within groups minus the expected number in an

equivalent network with edges placed at random (Newman, 2006). A positive mod-

ularity value indicates the possible presence of community structure. We detect the

modularity of the total 768 caregivers using spectral community detection (Newman,

2006), which maximizes the modularity defined as:

Q =
1

m

∑
i,j

(
Aij −

kikj
2m

)
(sisj + 1).

Here, for any division of the network into two groups, si = 1 if vertex i belongs to

group one. The number of edges between two vertices i, j is Aij, ki is the degrees of

vertex i, and the total number number edges in the network is defined as m = 1
2

∑
i ki.
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Figure 4.6 depicts the modular classes (58 in total) with different classes drawn in

different colors. The community detection yields a modularity score around 0.5.

Network visualization provides strong hints of connectional relationships. We can see

from the figure that nodes within each modular class have dense connections with

each other while inter-modular-class connections are sparse. This provides strong

evidence of the existence of the rehabilitation facilities.

4.5.4 Personalized Physicians and Caregivers Assignment

We now study the problems of how physicians and facilities (rather than each care-

giver) affect the post-operative cost of each patient. We use Gaussian process classifi-

cation, as described in Section 4.3, to model the probability of the post-operative cost

below the threshold given a patient feature vector φX(x): the probability of success

of each physician and/or facility a is σ
(
wT
aφ

X(x)
)

for some unknown weight vector

wa to be learned. We have a different weight vector for each physician and/or facility,

which is affordable since the number of physicians and/or facilities and patient fea-

tures are both small, i.e. in our experiments the number of physicians and/or facilities

is 20 and the dimension of patient attributes is 25 after clustering and LASSO. This is

equivalent to decomposing the kernel Σ of the Gaussian process into a product kernel

Σ = ΣX ⊗ΣA, where (ΣX ⊗ΣA)
(
(x, a), (x′, a′)

)
= ΣX(x, x′)ΣA(a, a′), and choosing

ΣA = I as the |A| × |A| identity matrix and ΣX as the linear kernel on the patient

features. For each patient, one and only one physician (or facility) can be assigned.

We sort the patient data chronologically. For each patient visit, based on the

patient attributes x, we assigned a physician for the surgery and/or a facility for the

rehab. We then receive a payoff of whether it is success or failure. The goal is to

maximize the number of successes across all 211 patients. There is a fundamental

exploration vs. exploitation tradeoff: in order to learn the success rate of each physi-
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cian/facility, it needs to be tried for long time benefit, leading to a potential drop in

the short-term performance.

Evaluating an exploration/exploitation policy is difficult since we do not know

the outcome for physicians and facilities that were not chosen for a particular patient

in the record data (Chapelle and Li, 2011). Using real world context and patient

features in the knee replacement dataset, we instead simulate the true outcomes

using a weight vector w∗. This weight vector could be chosen arbitrarily, but it was

in fact a perturbed version of some weight vector learned from real data. Although we

have modeled the choice of physician and rehabilitation facilities, these are handled

in an identical way as in σ
(
wT
aφ

X(x)
)
, and as a result we focused just on the choice

of physician.

The number of available physicians is M = 20. The experimental results are

reported on 100 repetitions of each algorithm. The only difference is the way each

policy selects the actions; all the rest, including the model updates, is identical as

described in Section 4.3.

We compare our policy with pure exploitation (which assigns the physician that

seems to be the best), pure exploration (which randomly assign a physician, as would

happen if you assigned the first available physician) and Thompson sampling (Thomp-

son, 1933). Pure exploration is the most used strategy in nowadays health systems.

Thompson sampling has been successfully applied to two-treatment adaptive designs

(Berry and Eick, 1995; Hu and Rosenberger, 2006) and other applications (Graepel

et al., 2010; Agrawal and Goyal, 2012). In our personalized health settings, at each

time step n, given the patient information xn, it first draws a sample ŵ according to

the posterior distribution p(w|Dn). It then selects a treatment an (that is, the physi-

cian) that maximizes the probability of success under the sample parameter value

an = arg maxa p(y = +1|xn, a, ŵ).
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Figure 4.7: Comparison of different algorithms on the knee replacement dataset.

We report the number of cumulative success divided by the number of treated

patients after each of the 211 patient visits in Figure 4.7(a). We also report the

distribution of the number of successes produced by each policy after last patient

visit in Figure 4.7(b). On each box, the central red line is the median, the edges of

the box are the 25th and 75th percentiles, and outliers are plotted individually.

We can see from the figures that the KG policy yields the best performance. Pure

exploitation also does comparatively well. This seems at first a bit odd given that

the system has no prior knowledge about the true parameter value w∗. A possible

explanation is that the change in context induces some level of exploration. In the

meantime, KG policy is more robust than pure exploitation with smaller variance and

fewer outliers. Random assignment does not perform well since it is not learning from

its past experiences while other policies use their past observations to guide the next

assignment. We conclude that even though the data is sparse (no two patients are

alike), through careful selection of physicians we can improve success rates by around

60 percent over current strategy (pure exploration) used by many health systems.

The real value of the knowledge gradient is its rapid learning, which is especially

important in a health setting since if we can learn faster, we can benefit more pa-

tients. The knowledge gradient correctly captures the full value of information, prop-
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erly balancing exploitation (doing well now) and exploration (learning to do well in

the future). Thompson sampling captures the exploration-exploitation tradeoff only

approximately. The appeal of Thompson sampling is the ease of computation which is

useful in high-frequency internet applications. Other optimizing policies such as pure

exploitation (a greedy policy based on the prior) or Bayes greedy (a greedy policy

based on the posterior, similar to Thompson sampling) do not accurately capture the

value of information which requires capturing the value of reducing the uncertainty

in the belief.

In the meantime, we also report the sampling frequency of each physician on

three randomly chosen runs in Figure 4.8. In the “Truth” figure, it depicts the

number of times each of the M = 20 physicians is the actual best physician for the

211 patients, under the underlying true parameter value w∗ (which is unknown to

the learner). The x-axis is corresponding to the 20 physicians. For example, in the

first row, physician #13 is in general a very good physician who is the best for around

70 different patients. The histogram of each policy illustrates the number of time

the policy chose to assign each physician. For example, in the first run, KG policy

assigned physician #13 for around 95 times in a total of 211 episodes. We can see from

the figures that the KG policy manages to achieve a sampling pattern very similar to

the true physician distribution. It largely concentrates on the best physician for each

patient with moderate exploration. As seen before, pure exploration learns nothing

from the past and it fails to infer anything about the performance of each physician.

Thompson sampling is also discovered to explore more than necessary, which explains

the lower success rate by waisting time on unpromising physicians. It is known that

pure exploitation is a non-consistent policy and will generally become stuck without

further improvement. In our case, pure exploitation concentrates samples on a very

limited portion of physicians without even trying others once. This will lead to a

biased estimation of the performance of each physician.
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Figure 4.8: Sampling frequency of each physician.

Table 4.2: Summarized statistics on the number of times each policy assigned the
actual best physician.

KG TS Random Exploit
Mean 55.8200 31.5500 10.8100 40.1800

Standard deviation 30.2188 13.8290 3.0771 33.6048

We also summarize the sampling statistics over 100 runs in Table 4.2. It reports the

number of times the physician assigned by each policy is actually the best physician

for each patient and its standard deviation, averaged over 100 runs. We can see that

KG yields the highest number of correctness, which is consistent with the previous

discovery on the sampling pattern.

In sum, beyond the fact that KG achieves the highest cumulative success rate, it

also rapidly learns the underlying distribution of the physicians, which means that

KG well balances exploitation v.s. exploration and it is expected to have a reasonable

generalization on the entire population.
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4.6 Conclusion

In this chapter, we consider the problem of personalized medicine which formalizes

clinical decision making as a function that maps individual patient information to

a recommended treatment. The learner is rewarded by “successes” and “failures”

which can be predicted through an unknown relationship that depends on the pa-

tient information and the selected treatment. Each experiment is expensive, forcing

us to learn the most from each experiment. The goal is to treat current patients as

effectively as possible and correctly identify the better treatment as quickly as pos-

sible. We adopt a Bayesian approach both to incorporate possible prior information

and to update our treatment regime continuously as information accrues, with the

potential to allow smaller yet more informative trials and for patients to receive bet-

ter treatment. We formulate the problem as contextual bandits which use context

information to explicitly model the heterogeneity in needs and responses of different

patients. We for the first time introduce a two-step Bellman’s equation, based on

which a knowledge gradient policy is developed for Bayesian contextual bandits. The

context-specific best action is a more demanding benchmark than the best action

identification in the context-free case. We provide a detailed study on the problem

of how sequentially assignment of physicians/facilities to individual patients can re-

duce the health care cost. We use modularity detection and LASSO to deal with

the intrinsic sparsity in health datasets. We show experimentally that even though

the problem is sparse, through careful selection of physicians (versus picking them at

random), we can significantly improve the success rates.
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Chapter 5

Ensemble Bayesian Optimization

for Sequential Information

Processes

The existing literature on Bayesian optimization, multi-armed bandits and optimal

learning assumes a single prediction model for describing the performance of each

alternative. For example, different belief models have been studied under the name

of contextual bandits, including linear models (Chu et al., 2011a) and Gaussian pro-

cesses (Krause and Ong, 2011). There is a literature on Bayesian optimization (He

et al., 2007; Chick, 2001; Powell and Ryzhov, 2012). EGO (and related methods

such as SKO (Jones et al., 1998; Huang et al., 2006)) assumes a Gaussian process

belief model which does not scale to the higher dimensional settings that we con-

sider. Others assume lookup table, or low-dimensional parametric methods (e.g. re-

sponse surface/surrogate models (Gutmann, 2001; Jones, 2001; Regis and Shoemaker,

2005)). We are particularly interested in a knowledge gradient policy that maximizes

the value of information, since this approach is particularly well suited to problems

where observations are expensive. After its first appearance for ranking and selection
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problems (Frazier et al., 2008), KG has been extended to various other belief models

(e.g. hierarchical belief model in Mes et al. (2011), linear belief model in Negoescu

et al. (2011), logistic regression in Wang et al. (2016)).

An open question, however, is the identification of which belief model is most ap-

propriate for a given problem. For example, a patient can have a number of attributes,

spanning the usual age, weight, gender, ethnicity, body type, to the information about

their condition (diagnoses), to their medical history. Yet if we directly use these fea-

tures, the sparsity and the relatively small number of patients makes learning more

difficult and is computationally expensive. Besides, simplification of models can make

them easier to interpret by researchers and enhance generalization by reducing over-

fitting. We could instead find the lower dimension feature representation or perform

dimensionality reduction based on prior knowledge such as previously learned patient

profiles. Yet if a patient deviates from stereotypical patients, then a reduced space

may not include enough explanatory power. One question is how to appropriately

choose the explanatory variables. Another essential question is what type of predic-

tion model should be chosen among many competing models, such as perceptron,

support vector machines (SVM), and decision trees. Ensemble learning is of vital

importance in these cases. Ensemble learning is the process by which multiple mod-

els, such as classifiers or experts, are strategically generated and combined to solve

a particular computational intelligence problem. For example, we ask the opinions

of different doctors before deciding on a medical procedure, and we ask the views of

parents, friends and advisors before we make a life decision. In each case, the pri-

mary goal of ensemble learning is to minimize the incorrect selection of a particularly

poorly performing prediction model.

Boosting is one of the most powerful ensemble learning techniques in batch learn-

ing. It aims to convert weak learners to strong ones. The theoretical perspective

of boosting in the batch setting has been studied extensively (Schapire and Freund,
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2012), with a huge practical impact (He and Thiesson, 2007; Ferreira and Figueiredo,

2012). Yet sequential decision problems does not require a batch of training data be-

forehand but processes streaming examples one by one. Although there are relatively

few existing studies on online boosting algorithms, as opposed to their offline coun-

terparts, there is an increasing interest in the realm of online learning (Beygelzimer

et al., 2015; Chen et al., 2012; Oza, 2005; Babenko et al., 2009; Lin et al., 2014).

In this chapter, similar to the idea of online boosting, we use Bayesian learning

with expert advise as the belief model for sequential decision making problems for

statistical, computational and representational reasons (Dietterich, 2000), aiming to

improve the prediction of the performance of each alternative overall, so as to spend

the limited measurement budget more wisely. To the best of our knowledge, this work

is the first attempt to use an online boosting framework as the prediction model in

Bayesian optimization and multi-armed bandit literature. We use logistic learners as

an illustration of the base models and derive an efficient and practical algorithm for

ensemble sequential decision making. Synthetic experiments and real-world experi-

ments on a knee replacement dataset demonstrate the effectiveness of our proposed

algorithms.

5.1 Problem Formulation

We assume that we have a finite set of alternatives x ∈ X = {x1, ...,xm}

and an unknown function µ : X 7→ R which represents the underlying perfor-

mance of an experiment. The learner sequentially chooses a series of alternatives

{x0,x1, · · · |xi ∈ X} to measure. After choosing each of the point xn, the learner

will receive a feedback yn+1. The choice of xn can be made based on past ob-

servations {x0, y1,x1, y2, · · · ,xn−1, yn}. Any strategy that specifies the choice of

measurement at each time step is called a policy π. Under a limited measurement
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budget N , the goal of the learner is to recommend an implementation decision xN

that maximizes the performance µ(x), or equivalently, minimizing the simple regret,

maxx∈X µ(x) − µ(xN). There are two optimization problems involved: 1) we would

like to optimize a prediction model to most accurately describe the performance of

each alternative; 2) We need to spend our limited measurement budget wisely in

order to find out the best alternative that has highest expected performance.

5.2 Bayesian Learning with Expert Advice

Boosting is one of the most powerful ensemble learning techniques in batch learning.

It aims to convert weak learners to strong ones. In batch learning settings, the

whole set S of training examples are given beforehand. In each round n, it chooses

a distribution pn over the training set and feeds pn and S to a weaker learner which

in return produces a weak hypothesis hn. After N rounds, N weak hypotheses are

combined to produce a final hypothesis of the form HN(x) =
∑N

n=1 α
nhn(x), where

αn ∈ R is the voting schema of hn.

In our sequential decision problem, the examples only become available one at a

time. Thus, the online boosting algorithm must fix the number of K weak learners

before it starts (Chen et al., 2012). In each round n, a new example is fed to K

weak learners and they return K updated weak hypotheses hn+1
k , and the boosting

algorithm predicts the next example xn+1 by Hn+1(x) =
∑K

k=1 α
n+1
k hn+1

k (x), where

αn+1
k ∈ R is the voting weight of hn+1

k .

Similarly to the case of online boosting, we fix the number of base (prediction)

models as K. Each of the base model hk(·;θk) is parameterized by some vector θk.

The final model is an ensemble system obtained by H(x) =
∑K

k=1 αkhk(x;θk).
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5.2.1 Generalized Weighted Majority

In sequential decision making problems, each data point is actively selected by some

policy. This is very different from the PAC learning model whose key assumption

is that the distribution over data points is fixed over time, both for training and

test points, and that samples are i.i.d. In contrast, in our case, no distributional

assumption is made. In this regard, we borrow the ideas from online learning and

treat each base model as an expert.

The generalized weighted majority algorithm works as follows (Algorithm 6).

First, set initial weights to each expert wi = 1/K, where K is the number of base

models. At each time step n, select expert εi in proportion to the normalized weights

wni∑
j w

n
j

and predict the same as what expert εi predicts. The learner receives the actual

outcome and each expert incur a loss ln(εi) ∈ [0, 1]. Adjust the weight of each expert

by wn+1
i = wni e

−αln(εi).

Algorithm 6: Generalized Weighted Majority Algorithm

Initialize w0
i = 1/K, for all i

for n = 1 to N do

Receive example xn

Predict expert εi in proportion to the normalized weights, wni /
∑

j w
n
j

Receive loss: ln(εi) for all i
Update weights of experts: wn+1

i = wni e
−αln(εi), ∀i, with ln(εi) ∈ [0, 1]

end

5.2.2 A Bayesian Interpretation

Many loss functions can be represented as log likelihoods. To this end, suppose each

expert εk’s prediction is a probability distribution pk(y|x). This is natural either

for continuous or discrete responses, for example, in Bayesian optimization where a

Gaussian additive noise is added to the observation y = f(x) + ε. Or, as in logistic

regression, the probability of class +1 can be written as σ(θTx). Standard loss for
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making a probabilistic prediction is log-loss, which is corresponding to log likelihoods:

ln(εk) = log
(
pk(y

n+1|x)
)
, (5.1)

where yn+1 is the true observation. Plugging the log-loss into the weight update rule,

we have

wn+1
k = wnke

α log
(
pk(yn+1|x)

)
= wnk

(
pk(y

n+1|x)
)α
.

In the meantime, at time step n, wnk can be interpreted as a prior on experts p(εk).

Now, the posterior distribution given a new data point (xn, yn+1) can be obtained by

Bayes’ theorem:

wn+1
k = p(εk|yn+1) ∝ p(yn+1|εk)p(εk) = wnkpk(y

n+1|x).

We can see that when setting α = 1 in weighted majority algorithm (Eq. (5.1)),

the update of the weights becomes Bayes’ rule. This interpretation gives us great

flexibility to design Bayesian policies based on the value of information.

5.3 Bayesian Optimal Learning with Ensembles

As of this writing, there is no KG variant designed for ensemble models. In what

follows, we first formulate our learning problem as a Markov decision process and

then extend the KG policy for ensemble systems.

5.3.1 Markov Decision Process Formulation

We assume our base models are Bayes’ learners. To be more specific, each of the

models hk(·;θ) is parameterized by some parameters θk. Each observation is modeled

using some known likelihood function P
(
y|hk(x,θk)

)
. For a Bayes’ learner, θk is a

random variable, and each of the learners will consequently update their beliefs on
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the unknown parameters through Bayesian inference. Given some prior distribution

P (θk) on these parameters, the posterior distribution for one observed data point

(x, y) can be obtained by Bayes’ theorem,

q(θk) := P
(
θk|x, y

)
∝ P

(
y|hk(x,θk)

)
P (θk).

Our learning problem is thus a dynamic program that can be formulated

as a Markov decision process as follows. First, we can define the state space

S as the cross-product of [0, 1]K and the space of all possible predictive distri-

butions for θk of each Bayes’ learner. This captures the probability distribu-

tions that describe the uncertainty about unknown parameters. We will write

Sn =
(
(wn1 , · · · , wnK), qn(θ1), · · · , qn(θK)

)
to refer to the state at time n after

previous n observations Dn, where qn(·) is defined as the posterior distribution

qn(θk) := P
(
θk|Dn

)
at time n. Recall that the way the Generalized Weighted

Majority algorithm works can be interpreted as Bayes’ rule. The weight update

can be obtained by marginalizing over the parameters θ. We can summarize the

Bayesian inference of the ensemble system as follows, for ∀k = 1, · · · , K:

wn+1
k := P (εk|yn+1, Dn) ∝ P (yn+1|εk, Dn)P (εk|Dn)

= wnk

∫
θk

P (yn+1|εk,θk, Dn)P (θk|Dn)dθk

= wnk

∫
θk

P
(
yn+1|hk(xn,θk)

)
qn(θk)dθk, (5.2)

qn+1(θk) := P
(
θk|yn+1, Dn

)
∝ P (yn+1|θk)P (θk|Dn)

= P
(
yn+1|hk(xn,θk)

)
qn(θk). (5.3)
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We can thus define the transition function T : S × X × Y as:

T
((

(w1, · · · , wK), q(θ1), · · · , q(θK)
)
,x, y

)
=

([
wk

∫
θk

P
(
y|hk(x,θk)

)
q(θk)dθk/Zw

]K
k=1

,
[
P
(
y|hk(x,θk)

)
q(θk)/Zθk

]K
k=1

)
, (5.4)

where Y is the domain of the observations, Zw =
∑
wk
∫
θk
P
(
y|hk(x,θk)

)
q(θk)dθk

and Zθk =
∫
θk
P
(
y|hk(x,θk)

)
q(θk)dθk are the normalizing factors, so that Sn+1 =

T (Sn,x, Y n+1) with Y n+1 as the unobserved outcome random variable at time n.

In a dynamic program, the value function is defined as the value of the optimal

policy given a particular state Sn at time n, and may be determined recursively

through Bellman’s equation. For any state s ∈ S, since the goal is to maximize

µ(xN), if there is no measurement left, the value of each state is the maximal value

we can get under our current belief. Thus, for our ensemble system, by the law of

total expectation, the terminal value function V N : S 7→ R is given by

V N(s) = max
x

E[Y |s, x] = max
x

K∑
k=1

E[Y |s,x, ε = εk]P (εk|s)

= max
x

K∑
k=1

wk

∫
θk

q(θk)E[Y |hk(x,θk)]dθk, (5.5)

for any s =
(
(w1, · · · , wK), q(θ1), · · · , q(θK)

)
∈ S.

The dynamic programming principle tells us that the value at any other time

n = 1, · · · , N , V n is given recursively by

V n(s) = max
x

E[V n+1(T (s,x, Y n+1))|x, s],∀s ∈ S.

Since the curse of dimensionality on the state space S makes direct computation

of the value function intractable, we develop a knowledge gradient type policy for our

ensemble system in the next section.
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5.3.2 Knowledge Gradient with Ensembles

The concept of knowledge gradient is the expected improvement in value of measuring

an alternative x (Frazier et al., 2008):

Definition 5.3.1. The knowledge gradient of measuring an alternative x while in

state s is

νKG
x (s) := E

[
V N
(
T (s,x, Y )

)
− V N(s)|x, s

]
.

In the case of ensemble systems, given any state s =
(
(w1, · · · , wK), q(θ1), · · · , q(θK)

)
,

the outcome y of an alternative x is a random variable with a predictive distribution,

marginalized over the posterior,

p(y|x, s) =
K∑
k=1

wk

∫
θk

P (y|hk(x,θk))q(θk)dθk = Zw.

Hence by some algebra and recalling from Eq. (5.4) and Eq. (5.5) the definition of

T (s,x, y) and V N(s), we have

E
[
V N
(
T (s,x, Y )

)
|x, s

]
=

∫
y

p(y|x, s)V N (T (s,x, y))dy

=

∫
y

p(y|x, s) ·max
x′

K∑
k=1

wk
∫
θk
P (y|hk(x,θk))q(θk)dθk

p(y|x, s)

∫
θk

P
(
y|hk(x,θk)

)
q(θk)

Zθk
E[y|hk(x′,θk)]dy

=

∫
y

max
x′

K∑
k=1

wk

∫
θk

E[y|hk(x′,θk)]P
(
y|hk(x,θk)

)
q(θk)dθkdy. (5.6)

Since under current belief state s, V N(s) does not depend on the next measure-

ment, the knowledge gradient policy for ensemble belief model can thus be defined at

each time step, choosing the alternative that yields the largest expected incremental
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value:

Xπ,KG(s) := arg max
x

νKG
x (s)

= arg max
x

∫
y

max
x′

K∑
k=1

wk

∫
θk

E[y|hk(x′,θk)]P
(
y|hk(x,θk)

)
q(θk)dθkdy.

We next show the positive value of information, which is the benefit of measure-

ment, meaning that the more measurement, the higher the objective function value.

This is essential for studying the theoretical behavior of the KG policy in that if an

alternative cannot provide any more information, we will never choose it again unless

the performance of all the alternatives are perfectly learnt.

Lemma 5.3.2. The knowledge gradient of measuring any alternative x while in any

state s ∈ S is nonegative, νKG
x (s) ≥ 0.

Proof. By Jensen inequality, for any x,

E
[
V N
(
T (s,x, Y )

)
|x, s

]
=

∫
y

max
x′

K∑
k=1

wk

∫
θk

E[y|hk(x′,θk)]P
(
y|hk(x,θk)

)
q(θk)dθkdy

≥ max
x′

∫
y

K∑
k=1

wk

∫
θk

E[y|hk(x′,θk)]P
(
y|hk(x,θk)

)
q(θk)dθkdy

= max
x′

K∑
k=1

wk

∫
y

P
(
y|hk(x,θk)

)
dy

∫
θk

E[y|hk(x′,θk)]q(θk)dθk

= max
x′

K∑
k=1

wk

∫
θk

E[y|hk(x′,θk)]q(θk)dθk = V N(s).

Since V N(s) is deterministic under current state s, we have

νKG
x (s) = E

[
V N
(
T (s,x, Y )

)
|x, s

]
− V N(s) ≥ 0.
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5.3.3 Derivation for Bayesian Logistic Learners

In general, the prior and the likelihood are not necessarily conjugate to each other, so

that there is no compact representation of the state space since the posterior distribu-

tions are not usually in the same family as the prior probability distribution. In the

meantime, the knowledge gradient value requires the computation of the expectation

of a maximization which is a difficult computational challenge, and a closed-form

solution can be seldom obtained.

In this section, we consider the case of binary outcomes and our goal is to maxi-

mize the probability of success. Many real world applications easily fit into the suc-

cess/failure model. For example, in online advertisement, a user feedback is whether

or not he/she clicks on the displayed ad. In health care, the outcome is whether a

treatment is successful. In loan applications, a lending company needs to minimize

the default rate.

We assume that we have a finite set of alternatives x ∈ X = {x1, ...,xm} and an

unknown function µ : X 7→ [0, 1] which represents the underlying binomial probability

of success of an experiment. After choosing each of the point xn, the learner will

receive a binary feedback yn+1 with the probability of yn+1 = 1 as µ(xn). We choose

Bayesian logistic regression as base models. That is, for each base model k, the

posterior probability of class +1 can be written as a link function acting on a linear

function of the feature vector

Pr(y = +1|x) = σ(θTk x[k]),

with the link function σ(a) often chosen as the logistic function σ(a) = 1
1+exp(−a)

and x[k] can be different sets of features for each base model k, allowing individual

classifiers to generate different decision boundaries. Ideally, if proper diversity is

achieved, a different error is made by each base model, strategic combination of
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which can then reduce the prediction error. For example, in personalized healthcare, a

patient can have a number of attributes, including age, weight, gender, diagnoses, and

medical history. Directly using these features would cause sparsity and computational

inefficiency. Besides, simplification of models can make them easier to interpret by

researchers and enhance generalization by reducing overfitting. We could instead find

the lower dimension feature representation based on prior knowledge such as historical

patient profiles. Yet a reduced space may not include enough explanatory power. In

this case, we can develop base learners using multi-level feature hierarchies in order

to strike a balance between coarse-to-fine feature representations.

Adapting the concept of Gaussian processes, for each base learner hk(·;θk) we

start with a multivariate prior distribution for the unknown parameter vector θk,

θk ∼ N
(
m0

k, (β
0
k)
−1
)
, where βk,j is the inverse of variance of θk,j. Note here a diagonal

covariance matrix is adopted due to simplicity and its equivalence to l2 regularization.

The likelihood function P (y|hk(x,θk)) in this case is expressed as σ(y · θTk x[k]).

For any given data point (x, y), according to Eq. (5.2) and (5.3), the posterior

can be calculated as follows:

wn+1
k ∝ wnk

∫
θ

σ(y · θTk x[k])N
(
mn

k , (β
n
k )−1

)
dθk

≈ wnkσ
(
y · κ(σ2

k)µk
)
,

qn+1(θk) ∝ P (y|θk)qn(θk)

= σ(y · θTk x[k])N
(
mn

k , (β
n
k )−1

)
,

where µk = (mn
k)Tx[k] and σk =

∑d
j=1(βnk,j)

−1x2
[k],j (Bishop et al., 2006). Unfortu-

nately, exact Bayesian inference for linear classifiers is intractable since the evaluation

of the posterior distribution comprises a product of sigmoid functions; in addition,

the integral in the normalization constant is intractable as well. Following the work

in Chapelle and Li (2011) and Wang et al. (2016), we use a Laplace approximation
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of qn+1(θk), yielding an approximated posterior in the form of N
(
mn+1

k , (βn+1
k )−1

)
as

follows: for any measurement x and potential outcome y = +1/− 1,

Ψn
k(θk, y) := −1

2

d∑
j=1

βnk,j(θk,j −mn
k,j)

2 − log(1 + exp(−y · θTk x[k])), (5.7)

mn+1
k± = arg max

w
Ψn
k(θk,±1), (5.8)

βn+1
k±,j = βnk,j + σ

(
(mn+1

k± )Tx[k]

)(
1− σ

(
(mn+1

k± )Tx[k]

))
x2

[k],j. (5.9)

Since each of the posterior is approximated as a normal distribution, the state

space can be compactly represented by s =
(

(w1, · · · , wK), (θ1,β1), · · · , (θK ,βK)
)

.

For the case when y is discrete, recalling from Eq. (5.6), we have,

E
[
V N
(
T (Sn,x, Y )

)
|x, Sn

]
= max

x′

K∑
k=1

wnk

∫
θk

E[y = +1|hk(x′,θk)]P
(
y = +1|hk(x,θk)

)
qn(θk)dθk

+ max
x′

K∑
k=1

wnk

∫
θk

E[y = −1|hk(x′,θk)]P
(
y = −1|hk(x,θk)

)
qn(θk)dθk

= max
x′

∑
k

wnk

∫
θk

σ(θTk x
′
[k])σ(θTk x[k])q

n(θk)dθk

+ max
x′

∑
k

wnk

∫
θk

σ(θTk x
′
[k])σ(−θTk x[k])q

n(θk)dθk.

In order to compute this, one can use numerical integration. Yet since θk can be

high dimensional and the numerical integration needs to be repeated for any pair

of alternatives for each time step, the computation is very time consuming. We

instead develop a general approximation schema for
∫
σ(θTx′)σ(θTx)N (m,β−1)dθ

to overcome the computational hurdle. First, by linear algebra, we have,

∫
θk

σ(θTk x
′
[k])σ(θTk x[k])q

n(θk)dθk

=

∫
θk

σ(θTk x
′
[k])

σ(θTk x[k])q
n(θk)∫

θ′k
σ
(
(θ′k)

Tx[k]

)
qn(θ′k)dθ

′
k

dθk ·
∫
θ′k

σ
(
(θ′k)

Tx[k]

)
qn(θ′k)dθ

′
k.
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We can see that
σ(θTk x[k])q

n(θk)∫
θ′
k
σ
(

(θ′k)Tx[k]

)
qn(θ′k)dθ′k

is the posterior distribution qn+1(θk) over

θk after an observed point (x,+1). Again based on Laplace approximation (Eq.

(5.8)(5.9)), the posterior distribution qn+1(θk) can be approximated as a normal dis-

tribution N
(
mn+1

k+ , (βn+1
k+ )−1

)
. Then making use of the standard approximation of

the convolution of a logistic function and a normal density function (Bishop et al.,

2006), we have

∫
θk

σ(θTk x
′
[k])

σ(θTk x[k])q
n(θk)∫

θ′k
σ
(
(θ′k)

Tx[k]

)
qn(θ′k)dθ

′
k

dθk ≈
∫
θk

σ(θTk x
′
[k])N

(
mn+1

k+ , (βn+1
k+ )−1

)
dθk

≈ σ

(
κ
(
σ̃2(βn+1

k+ ,x′[k])
)
µ(mn+1

k+ ,x′[k])

)
,

where µ(m,x) := mTx and σ̃2(β,x) :=
∑d

j=1 β
−1
j x2

j . At the same time,

∫
θ′k

σ
(
(θ′k)

Tx[k]

)
qn(θ′k)dθ

′
k. = σ

(
(θ′k)

Tx[k]

)
N (mn

k ,β
n
k )dθ′k

≈ σ

(
κ
(
σ̃2(βnk ,x[k])

)
µ(mn

k ,x[k])

)
.

A similar approximation derivation can be conducted for the case of

∫
σ(θTx′)σ(−θTx)N (m,β−1)dθ.

As a result, for Bayesian logistic learners, the knowledge gradient value can be

effectively calculated as

E
[
V N
(
T (Sn,x, Y )

)
|x, Sn

]
≈ max

x′

∑
k

wnkσ

(
κ
(
σ̃2(βnk ,x[k])

)
µ(mn

k ,x[k])

)
σ

(
κ
(
σ̃2(βn+1

k+ ,x′[k])
)
µ(mn+1

k+ ,x′[k])

)
+ max

x′

∑
k

wnkσ

(
− κ
(
σ̃2(βnk ,x[k])

)
µ(mn

k ,x[k])

)
σ

(
κ
(
σ̃2(βn+1

k− ,x′[k])
)
µ(mn+1

k− ,x′[k])

)
,
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leading to an efficient and practical algorithm for Bayesian optimization using an

ensemble system. The resulting knowledge gradient policy at time step n is

Xπ,KG(Sn) = arg max
x

E
[
V N
(
T (Sn,x, Y )

)
|x, Sn

]
.

5.4 Experimental Results

In this section, we first propose empirical experiments to illustrate the behavior of

the knowledge gradient policy with ensemble logistic belief models. We then compare

our proposed algorithm with other policies in a real-world knee replacement dataset.

5.4.1 Computational Analysis

There are many real world applications that involves high dimensional feature vec-

tors, but only a few of them have actual explanatory power. For example, as we

mentioned previously, modern health data acquisition routinely produces massive

amounts of high dimensional datasets, including various patient attributes, medical

history, medical images, genetic information, behavior data and unstructured clinical

notes. Another example arises in movie recommendation where not only user infor-

mation can be high dimensional (including watch history, age, geographic information

and visited pages), standard technique (feature hashing) also maps movie attributes,

e.g. cast, popularity, genre, premiere time, to sparse binary vector of dimension 224.

In batch learning settings, LASSO or dimension reduction can be adopted to achieve

feature selection while in our sequential decision making problems, without seeing the

remaining examples, it does not seem easy to determine a good set of explanatory

variables. To this end, in this section, we consider a set of synthetic experiments with

a sparse feature structure.
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We randomly sample a set of 300 alternatives x with each alternative as a 100-

dimensional feature vector from [0, 1]. We assume that the true model is a logistic

regression with the weights of only the first 25 predictors non-zero. We randomly

generate the weight for each non-zero feature from the distribution θ∗i ∼ N (0, 1). The

+1 label for each alternative x is simulated with probability σ(θ∗0 +
∑25

j=1 θ
∗
jxj). Note

that each alternative can be measured more than once, yielding different observations.

To begin with, we randomly pre-sample 200 data points (x, y) from the true model and

performed l1 regularized logistic regression on the pre-generated batch data set. By

changing the value of regularization parameter Lambda, we can obtain a hierarchical

representation of the alternatives. We next examine the behavior of our knowledge

gradient policy with an ensemble system of different logistic base models with different

sets of explanatory variables.

Figure 5.1 illustrates the behavior of the KG policy with different feature hierar-

chies. The results are reported on 100 different random runs. The first row depicts

the changing values of the weights on each base model, averaged over 100 different

replicas. For example, in the left-most figure, we have four base models which have

5,10, 14 and 22 selected features as the explanatory variables in logistic regression,

respectively. The first figure illustrates the intuitive property that the weights on the

most aggregate level are highest when there are only a few observations, with a shift

to the more disaggregate level as more data points are acquired. This is a very im-

portant behavior when approximating functions recursively. With a few data points,

it is simply not possible to produce good function approximations, so it is reasonable

to use simple functions.

At the same time, the behavior in the middle column seems contradictory to the

previous observation as the most aggregate level yields the highest weights all the

time. One explanation is that since the actual model has only 25 non-zero features,

the more complex model is largely overfitting and does not have a good generalization
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Figure 5.1: Behavior of the KG policy with feature hierarchies.

on the upcoming data points, leading to a higher loss as the algorithm processes. In

the right figure where there are both models simpler than the true model and those

more complex, the model that is most similar to the true model is gradually winning

over others. It means that even though the experiments are guided by the KG policy

rather than sampled i.i.d., it manages to identify the best base model that yields both

good accuracy and generalization.

Recall that our goal is to maximize the expected response of the implementation

decision. We define the Opportunity Cost (OC) metric as the expected response of

the implementation decision xN+1 := arg maxx p(y = +1|x, SN) compared to the

true maximal response under weight θ∗:

OC := max
x∈X

p(y = +1|x,θ∗)− p(y = +1|xN+1,θ∗).

The second row in Figure 5.1 depicts the opportunity cost of the KG policy with

different feature hierarchies, averaged over 100 runs. Note that the opportunity cost

is always non-negative and the smaller the better. We can see that in any case, the
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OC quickly decays as the number of measurements increases, showing that the KG

policy learns rapidly the location of the maximal probability of success.

5.4.2 Personalized Healthcare

In this section, we consider a real-world personalized healthcare problem. We obtained

knee replacement datasets from major hospital chains in New York and New Jersey.

To make a fair statement of the costs, we selected 211 episodes with 26,735 structured

claim records that are obtained from the same health care provider. Each record

includes age, gender, episode identifier, episode start data, claim line paid amount,

diagnosis codes, procedure codes, attributed physician identifiers and so on. All the

patients in the knee replacement dataset have undergone knee replacement surgery.

After the knee replacement surgery, different patients have been involved in different

lengths of rehabilitations and incurred a wild range of post-operative costs. We

study a success/failure model where if the post-operative cost is below a Medicare

specified threshold, then the episode is said to be successful. In this work, we want

to understand the effect of different physicians and/or facilities on the post-operative

costs, and provide guidelines on how to more effectively assign different physicians to

each patient based on patient attributes.

The additional challenge in this problem is that the “success” or “failure” can be

predicted through an unknown relationship that depends on a partially controllable

vector of attributes for each instance. For example, the patient attributes are given

which we do not have control over. We can only choose a medical decision, and the

outcome is based on both the patient attributes and the selected medical decision.

This problem is known as a contextual bandit (Langford and Zhang, 2008; Li et al.,

2010; Krause and Ong, 2011). At each round n, the learner is presented with a

context vector cn (patient attributes) and a set of (vectorized) actions a ∈ A (medical

decisions). After choosing an alternative a, we observe an outcome yn+1. The goal
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is to find a policy that selects actions such that the cumulative reward is as large as

possible over time. In contrast, the previous section considers a context-free scenario

with the goal of maximizing the probability of success (terminal reward) after the

offline training phase so that the error incurred during the training is not punished.

Each of the past observations are made of triplets (cn,an, yn+1). We consider the

success/failure model with an unknown function µ : C × A 7→ [0, 1] representing the

underlying binomial probability of success of an experiment. Each base model hk is

chosen as a logistic regression where the binomial outcome p(y = +1|c,a) is predicted

though σ
(
F (c[k],a)

)
,

F (c[k],a) = θ0 + (θC)Tc[k] + (θA)Ta. (5.10)

At each round n, the model updates can be slightly modified based on the observation

triplet (cn,an, yn+1) by treating 1||c||a as the alternative x, where u||v denotes the

concatenation of the two vectors u and v.

The knowledge gradient νKG
a|c (s) of measuring an action a given context c can be

defined as follows:

Definition 5.4.1. The knowledge gradient of measuring an action a given a context

c while in state s is

νKG
a|c (s) := E

[
V N
(
T
(
s, 1||c||a, y

))
− V N(s)|c,a, s

]
. (5.11)

The calculation of νKG
a|c (s) can be modified based on Section 5.3.3 by replacing x as

1||c||a throughout. Since the objective in the contextual bandit problems is to max-

imize the cumulative number of successes, the knowledge gradient policy developed

in Section 5.3.3 for stochastic binary feedback can be easily extended to online learn-

ing following the “stop-learning” (SL) policy adopted by (Ryzhov et al., 2012). The

action XKG,n
c (sn) that is chosen by KG at time n given a context c and a knowledge
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state sn can be obtained as:

XKG,n
c (Sn) = arg max

a
p(y = +1|c,a, Sn) + τνKG,n

a|c (Sn),

where τ reflects a planning horizon.

After a pre-processing of feature selection, we use 161 selected patient features

as the true model, out of which 54 of them are chosen by LASSO with minimum

deviation via 25 fold cross-validation as non-zero features. To make a fair comparison,

on each run, all the time-N labels of all the alternatives are randomly pre-generated

according to the weight vector θ∗ and shared across all the competing policies. In

our experiments, we have M = 20 different physicians and treat each physician a as

an indicator variable as follows in each base model:

F (c, p) = θ0 + (θc)Tc[k] +
M∑
m=1

θAmI(p, pm).

For each patient, one and only one p (or f) can be assigned such that exactly one

I(p, pm) is 1.

We sort the patient data chronologically. For each patient visit, based on the

patient attributes x, we assigned a physician for the surgery and/or a facility for

the rehab. We then receive a payoff of whether it is success or failure. Evaluating

an exploration/exploitation policy is difficult since we do not know the outcome for

physicians and facilities that were not chosen for a particular patient in the record

data. Based on the real world context and patient features in the knee replacement

dataset, we instead simulate the true outcomes using a weight vector θ∗.

The experimental results are reported on 100 repetitions of each algorithm. The

only difference is the way each policy selects the actions; all the rest, including the

model updates, is identical as described in Section 5.3.3.
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We compare our ensemble model with simple logistic models. We compare our

policy (hier KG) with pure exploitation (which assigns the physician that seems to

be the best), pure exploration (which randomly assign a physician, as would happen

if you assigned the first available physician) and the KG policy for a single level of

logistic regression (see Section 4).

Since binary feedbacks are inherently noisy, we learn very little from a single

outcome. Now consider what happens if we decide to test, say, k patients. The

value of information from k = 1 patients may be quite low, but the value can grow

nonlinearly (specifically, in the shape of an S-curve), producing much greater value

if we are willing to consider the combined information learned from, say, k = 20

patients (Frazier and Powell, 2010). As a result of this non-concavity in the value

of information, we propose to boost the performance of KG without ensembles by

considering the impact of posterior reshaping. In our simulations, we have tried

to reshape the covariance matrix Σn to η2Σn. This only affects the calculation of the

knowledge gradient and does not change the model updates.
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Figure 5.2: Comparison of different algorithms on the knee replacement dataset.

We report the number of cumulative success divided by the number of treated

patients after each of the 211 patient visits in Fig. 5.2. We can see from the figure that

the KG policy with feature hierarchies yields the best performance. The knowledge

gradient policy with a posterior reshaping parameter value of 0.5 is the best among
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non-hierarchical policies. Pure exploitation also does well. This seems at first a

bit odd given that the system has no prior knowledge about the true parameter

value θ∗. A possible explanation is that the change in context induces some level

of exploration. Random assignment does not perform well since it is not learning

from its past experiences while other policies use their past observations to guide

the next assignment. We conclude that even though the data is sparse and high-

dimensional, an ensemble optimal learning method can additionally improve success

rates by around 10 percent.

5.5 Conclusion

There is variety of belief models for sequential decision making problems, e.g. look-

up table model, or a specified non-parametric/parametric model. However, given

the unknown structural of the underlying problem, it can be hardly decided what

is the most appropriate belief model/prediction model. In this work, we purpose

to develop belief models based on ensemble system, in which multiple base models

can be strategically generated and combined. The primary goal is to minimize the

unfortunate selection of a particularly poorly performing prediction model. Similar

to the idea of online boosting, we develop Bayesian optimal learning methods with

ensembles, aiming to improve the prediction of the performance of each alternative

overall, so as to spend the limited measurement budget more wisely. We use logistic

learners as an illustration of the base models and derive an efficient and practical

algorithm for ensemble sequential decision making. Synthetic experiments and real-

world experiments on a knee replacement dataset demonstrate the effectiveness of our

proposed algorithms.
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Chapter 6

Parallel Knowledge Gradient

Method for Nested-batch Bayesian

Optimization

Our work is motivated by problems in the laboratory sciences where we have to select

a series of parameters (e.g. size, shape, density and concentration) that guide the

design of a material where we are trying to achieve a particular goal (e.g. maximum

strength, conductivity, or reflexivity). For example, in this chapter we are interested in

identifying the density, size and type of nanostructures on the surface of a photoactive

device that maximizes output current (see Section 6.2 for more details). The number

of potential parameter settings is much larger than we can explore experimentally,

especially when we consider that an experiment can take hours or even days. This

is exacerbated by the complication that certain parameters may be more difficult to

vary than others in a serial fashion.

There are several factors contributing to this. First is the curse of dimensionality,

in which the set of potential experiments (identified by a selection of tunable param-

eters) increases exponentially with the number of tunable parameters. Second is the
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continuous nature of certain parameters. For example, the density or concentration

of a solute in solution may often be varied within several orders of magnitude, and

yet the optimum selection of density could occur within a small window of values.

This problem of separation of scales may be naively dealt with by using a refined dis-

cretization, which results in a large number of experimental alternatives. Third is the

fact that physically, varying one parameter may be more difficult than another. For

example, in our reflexivity problem (see Section 6.2), a selection of “type” and size

of nanostructure (e.g. nanorods, nanodots or some other geometrical shape) entails

chemically synthesizing such a structure, which may take a day in the laboratory.

Contrast this with a selection of density, which can be varied more readily by an

appropriate choice of solution concentration.

This sequential design of experiments considered in previous chapters fails to

account for the realities encountered by experimentalists, who may be able to run

several parallel experiments in batches. For example, an experimenter can easily

vary nanoparticle density over a sample, effectively performing parallel, batch ex-

periments through a single sample. While the idea of batch experimentation is well

established throughout all of the physical sciences, recently new tools have provided

experimentalists the ability to vary parameters such as surface feature lengths and

areas on the nanometer length scale (Huo et al., 2008; Liao et al., 2013; Eichelsdoerfer

et al., 2013). As a second constraint, it may be difficult or expensive for a scientist

to explore the set of experiments in the order prescribed by the knowledge gradient

policy, which often suggests consecutively vastly different experiments. For example,

the choice of nanoparticle size described above cannot be readily changed between

experiments since their synthesis is expensive. The choice of nanoparticle size and

density can therefore be modeled as a nested decision in which a nanoparticle size is

first selected, and several densities are chosen to maximize the marginal value of infor-
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mation given the fixed nanoparticle size. Such batch and nested batch experimental

modes must be taken into consideration in designing a sequence of experiments.

In this chapter, we extend the knowledge gradient concept to handle both batch

experiments, as well as nested experiments that are performed within a batch. We

derive the marginal value of information for each possible experiment which the sci-

entists can use as a guide.

6.1 Literature Review

Commonly used sequential decision making policies (Auer et al., 2002; Bubeck and

Cesa-Bianchi, 2012; Frazier et al., 2008; He et al., 2007) allocate only one alternative

at a time and are not directly applicable to the above mentioned batch and nested

batch experimental setting. More relevant to this setting, there exists literature on

stochastic and/or adversarial bandit problems addressing the problem of multi-plays

(playing several alternatives at the same time), which can be viewed as batch-mode

decision making (Agrawal et al., 1990; Audibert et al., 2013; Uchiya et al., 2010; Kale

et al., 2010; Cesa-Bianchi and Lugosi, 2012; Radlinski et al., 2008; Gopalan et al.,

2014). However, the bandit objective is to maximize the cumulative rewards over

time, which is not suitable for our laboratory setting where the objective is to find

the controllable parameters that maximizes some utility function. Chen and Krause

(2013) have studied batch mode active learning and more general information-parallel

stochastic optimization problems. But their objective is to let a set function exceed

a threshold value while at the same time minimizing the number of items allocated.

Moreover, the proposed algorithm in Chen and Krause (2013) is specifically designed

for batch-mode active learning and cannot be generalized to other information-parallel

stochastic optimization problems.
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The most related models are the stochastic subset selection problems introduced in

Ryzhov and Powell (2009a,b), where the choice in each round is a subset of alternatives

while the objective is to find the set of alternatives that maximizes some function on

such sets. This differs fundamentally from finding one alternative that maximizes

some utility function through batch measurements, as is the case in our setting. In

Ryzhov and Powell (2009a,b), the way to recommend a set of alternatives in each

round is to treat each subset of alternatives as a singly super alternative in the space

of subsets and construct beliefs over the set function values rather than the function

values of the alternatives. The number of subsets with B elements out of M elements

is
(
M
B

)
, which grows exponentially with the number of alternatives. As the number of

alternatives increases, even storing and updating the requisite
(
M
B

)
×
(
M
B

)
covariance

matrix becomes problematic. For example, the size of the choice set considered in

Ryzhov and Powell (2009b) was
(

10
5

)
= 252. Instead, to address this, we derive the

policies presented in this paper with beliefs on the function values of the alternatives

whose number is far smaller than the super alternatives.

6.2 Motivating Application

As a motivating example and as discussed briefly above, we consider a photoactive

device in which anisotropic gold nanoparticles (NPs) are immobilized on the surface of

the device. The immobilization is performed using a DNA-mediated approach using

thiol-gold chemistry in which both the surface and the NPs are functionalized with

complimentary DNA strands that subsequently bind to hold the particles onto surface

(Senesi et al., 2013). The NP’s role is to enhance the photocurrent of the device via

photonic and plasmonic phenomena, thereby potentially increasing the photoelectric

efficiency of such a device. Understanding the particular configuration of the device
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that yields optimal photoactivity is desirable in applications such as efficient solar

cells.

Among the tunable parameters that describe the device’s configuration are NP

size and the density of NPs functionalized onto the surface of the device. Synthesis

of NPs of a particular size is done via solution-phase chemistry, and requires several

hours to days to complete (Millstone et al., 2009; Langille et al., 2012). In contrast,

once NPs are synthesized, it is straightforward to immobilize them onto the device at

some prescribed density (Senesi et al., 2013; Park et al., 2008), and often several such

densities can be considered in parallel. Therefore, in selecting which configurations

(i.e. a choice of NP size and density) to experimentally test, we are naturally led to

a nested, batch decision. Different densities may be run in a batch setting, provided

that the size of the NPs is the same within the batch.

While the exact mapping between the tunable parameters of NP size and density

and the response output current is not well established, we may make some qualita-

tive statements using domain expert prior knowledge. Specifically, both NP size and

density affect the phenomena of surface plasmon resonance, photon absorption, and

scattering, which subsequently influence output current. The full description of the

effect of the parameters on these physical phenomena and output current is beyond

the scope of this paper (see e.g. Djurii and Leung (2006); Gehr and Boyd (1996);

Flory and Berginc (2011)) for a general treatment of discussions on optical and elec-

trical properties of nanostructured devices). However, we state that due to competing

effects, there exists a critical value of both NP size d and the logarithm of NP den-

sity ρ that optimizes output current I(d, ρ), and further assume that there exists a

single such extrema in the domain of interest. Our task is to find this critical value

under uncertainty of the true physics of the system. In what follows, we describe the

technique employed to adaptively and iteratively select those configurations to test

in order to maximize output current in a nested batch setting.
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6.3 From Sequential Decision Making to Nested-

Batch-Mode Decision Making

We first recall the definition of the ranking and selection (R&S) problem introduced in

Section 2.1.1. For correlated normal beliefs, by Bayes’ rule and the Sherman-Morrison

formula, the update equations (see Eq. (2.3) and (2.4)) can be written as

θn+1 = θn +
W n+1 − θnx
λW + Σn

xx

Σnex, (6.1)

Σn+1 = Σn − Σnex(ex)
TΣn

λW + Σn
xx

, (6.2)

where ex is a vector with 1 at index x and zeros everywhere else.

Alternatively, we can formulate the problem within a dynamic programming

framework (Frazier et al., 2009). Define the state space S to be the cross-product of

RM and the space of positive semi-definite matrices. We next define the transition

function from the updating equations (6.1) (6.2). Define a vector valued function σ̃

as

σ̃(Σ, x) =
Σex√

λW + Σxx

, (6.3)

where Σ is any covariance matrix. Next define the random variable

Zn+1 =
W n+1
xn − θnxn√

Var[W n+1
xn − θnxn|Fn]

,

which is a one-dimensional standard normal random variable when conditioned on

Fn.

We can write (6.1) as

θn+1 = θn + σ̃(Σn, xn)Zn+1. (6.4)
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Update (6.2) can also be rewritten as

Σn+1 = Σn − σ̃(Σn, xn)
(
σ̃(Σn, xn)

)T
. (6.5)

Now we can define the transition function.

Definition 6.3.1. The transition function T : S × X × R is defined as

T

(
(θ,Σ), x, z

)
:=

(
θ + σ̃(Σ, x)z,Σ− σ̃(Σ, x)

(
σ̃(Σ, x)

)T
)
, (6.6)

so that Sn+1 = T (Sn, xn, Zn+1). Here θ is a vector, Σ is a covariance matrix, z ∈ R

and Zn+1 is a one-dimensional standard normal random variable.

In what follows, we will first give the formal model for batch learning and then

we will extend it to nested batch mode decision making.

6.3.1 Batch Mode Learning Model

In real world applications, it often occurs that information collectors do not sim-

ply take one measurement at a time. For example, in a pharmaceutical company,

researchers might test the efficiency of a medicine by taking measurements of five dif-

ferent concentrations simultaneously, observing all the outcomes, and then measuring

the next five concentrations. Or in the motivating application, if we fix a NP size,

then we can test on different densities simultaneously. This leads us to the idea of

batch measurements.

Suppose we have a collection X = {1, 2, ...,M} of M alternatives. Instead of

sequentially measuring some alternatives to estimate the constant but unknown un-

derlying mean µx, we can measure a batch of alternatives simultaneously at each step.

We begin with a prior multivariate normal distribution of belief about the performance

µx for each alternative x ∈ X , µ ∼ N (θ0,Σ0), where µ = (µx)x∈X , θ
0 = (θ0

x)x∈X and
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Σ0 is the covariance in our belief about the alternatives. Denote the batch size by

B and the total number of batches by K. Then the total number of measurements

allowed is N = BK. At the kth batch (starting with n = 0), instead of choosing

one alternative to measure as in Section 2.1.1, we choose to measure B alternatives

xk,0, xk,1, ..., xk,B−1. Let εk+1 be the measurement error which is assumed to be nor-

mally distributed with known variance λW = σ2
W . The resulting observations are

W k+1,0 ∼ N (µxk,0 , σW ),W k+1,1 ∼ N (µxk,1 , σW ), ...,W k+1,B−1 ∼ N (µxk,B−1 , σW ).

We modify our notations to fit batch measurements. The superscript (k, b) for

some k = 0, 1, ..., K − 1 and b = 1, 2, ..., B − 1 should be understood as meaning

that we have done k batches and use xk,0, ..., xk,b−1,W k+1,0,W k+1,...,b−1 to update our

belief. Thus the prior multivariate normal belief can be rewritten as (θ0,0,Σ0,0). The

new updating equations can be written as

θk,b+1 = θk,0 +
b∑

j=0

W k+1,j − θk,j
xk,j

λW + Σk,j
xk,jxk,j

Σk,jexk,j , (6.7)

Σk,b+1 = Σk,b − Σk,bexk,b(exk,b)
TΣk,b

λW + Σk,b
xk,bxk,b

, (6.8)

where k = 0, 1, ..., K−1, b = 0, 1, ..., B−1, θk+1,0 = θk,B and Σk+1,0 = Σk,B. It is worth

emphasizing that in the batch setting the covariance matrix would be updated within

a batch since it is determined by the measurement decisions and is independent of the

observations, whereas the mean values θn are only updated after the observations are

collected for the whole batch. Additionally, the updating formula (6.7) is not affected

by whether the observations are obtained sequentially or in batch.

A decision function Xπ(Sn) is defined as a mapping from the knowledge states to

XB, where Sn is short for Sn,0 = (θn,0,Σn,0).
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If we are limited to N = KB measurements, the objective is to maximize the

expected reward of the final recommended alternative:

max
π∈Π

E [µxK ] , (6.9)

where xK = arg maxx∈X θ
K
x and {xk,0, ..., xk,B−1} = Xπ(Sk) for k = 0, 1, ..., K − 1.

We can also formulate the problem within a dynamic programming framework.

We first define the transition function from the updating equations.

For convenience, we introduce the σ-algebras Fk,b for any b = 0, 1, ..., B− 1 which

is formed by the previous k batch measurement outcomes and the first b observations

in the current batch. The idea is that even when performing experiments in batch,

we can model the updating as if each outcome is collected sequentially. Suppose we

are at the k + 1th batch and have made the measurement decisions for the whole

batch. For any b = 0, 1, ..., B − 1, define the random variable Zk+1,b as

Zk+1,b :=
W k+1,b − θk,b

xk,b√
Var[W k+1,b − θk,b

xk,b
|Fk,b]

.

Since θk,bx ∈ Fk,b,

Var[W k+1,b − θk,b
xk,b
|Fk,b] = Var[µxk,b + εk+1|Fk,b] = Σk,b

xk,bxk,b
+ λW .

It is important to note that if conditioned on Zk+1,0, ..., Zk+1,b−1, or in other words,

Fk,b, the Zk+1,b is a standard normal distribution.

Recall the definition of a vector valued function σ̃ as

σ̃(Σ, x) =
Σex√

λW + Σxx

, (6.10)
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where Σ is any covariance matrix. We can rewrite (6.7) and (6.8) as

θk,b+1 = θk,0 +
b∑

j=0

σ̃(Σk,j, xk,j)Zk+1,j, (6.11)

Σk,b+1 = Σk,b − σ̃(Σk,b, xk,b)
(
σ̃(Σk,b, xk,b)

)T
. (6.12)

Now we can define the transition function for batch mode learning recursively by

pretending the outcomes are obtained sequentially.

Definition 6.3.2. The transition function TB : S × XB × RB is defined as

TB

(
(θ,Σ), (x1, ..., xB), (z1, ..., zB)

)
:= T (...T ((θ,Σ), x1, z1), .., xB, zB), (6.13)

so that Sk+1,0 = TB
(
Sk,0, (xk,0, ..., xk,B−1), (Zk+1,0, ..., Zk+1,B−1)

)
. Here θ is a vector,

Σ is a covariance matrix, zk+1,j ∈ R, Zk+1,j is a one-dimensional standard normal

random variable and T is the transition function defined in Definition 6.3.1.

We then define the value function V B,k : S 7→ R after k batch measurements at

times k = 0, 1, ..., K − 1 as

V B,k(s) := max
π

Eπ
[

max
x

θKx |Sk = s
]
,∀s ∈ S.

By noting that θK is deterministic given SK , the terminal value function V B,K

can be computed directly as:

V B,K(s) = max
x∈X

θx,∀s = (θ,Σ) ∈ S. (6.14)
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The dynamic programming principle tells us that the value function at times k =

0, 1, ..., K − 1, V B,k is given recursively by :

V B,k(s) = max
(xi)Bi=1∈XB

E
[
V B,k+1

(
TB(s, (xi)

B
i=1, (Zi)

B
i=1

)]
, s ∈ S, (6.15)

where Zi is a one dimensional standard normal variable.

A Knowledge-Gradient policy is provided for batch learning model in section 6.4.

6.3.2 Nested Batch Mode Learning Model

Motivated by the applications given by the real world applications in Section 6.2,

right now we have a collection X1×X2 of M alternatives, where at each decision step,

we choose one x ∈ X1 and a set Y ∈ XB
2 , constructing B alternatives to measure

simultaneously (e.g. design 50nm triangle particles and experiment with densities of

3%, 10%, 27%, 78% and 92% with a batch size B = 5).

As before, we begin with a prior multivariate normal distribution of belief about

the performance µ(x,y) for each alternative x ∈ X1 and y ∈ X2, µ ∼ N (θ0,Σ0), where

µ = (µ(x,y))(x,y)∈X1×X2 , θ
0 = (θ0

(x,y))(x,y)∈X1×X2 and Σ0 is a M ×M covariance matrix.

Let K be the total number of batches. At any decision step k = 0, 1, ..., K − 1

after we make the B measurement decisions (xk, yk,0), (xk, yk,1), ...(xk, yk,B−1) and get

their outcomes, we can also pretend that the information is collected sequentially. So

the updating equations are the same as those in the batch mode model when treating

(x, y) as the alternative and replacing xk,j with (xk, yk,j). It is worth noting here,

we are not only updating our belief about the alternatives with xk, but we are also

updating our belief about all M alternatives.

A decision function Xπ(Sn) is defined as a mapping from the knowledge state to

X1×XB
2 . The objective is to maximize the expected reward of the final recommended
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alternative:

max
π∈Π

E
[
µ(xK ,yK)

]
, (6.16)

where (xK , yK) = arg max(x,y)∈X1×X2 θ
K
(x,y) and {xk, yk,0, ..., yk,B−1} = Xπ(Sk) for k =

0, 1, ..., K − 1.

We formulate the problem within a dynamic programming framework. By a sim-

ilar argument as that in batch mode, we can define the transition function as

Definition 6.3.3. Define the transition function TNB : S × (X1 ×XB
2 )× RB as

TNB

(
(θ,Σ), (x, y1, ..., yB), (z1, ..., zB)

)
:= T

(
...T
(
(θ,Σ), (x, y1), z1

)
, .., (x, yB), zB

)
,

(6.17)

so that Sk+1 = TNB
(
Sk, (xk, yk,0, ..., yk,B−1), (Zk+1,0, ..., Zk+1,B−1)

)
. Here θ is a vector,

Σ is a covariance matrix, zk+1,j ∈ R, Zk+1,j is a one-dimensional standard normal

random variable and T is the transition function defined in Definition 6.3.1.

We then define the value function V NB,k : S 7→ R after k nested batch measure-

ments at times k = 0, 1, ..., K − 1 as

V NB,k(s) := max
π

Eπ
[

max
(x,y)

θK(x,y)|Sk = s
]
,∀s ∈ S.

The terminal value function V NB,K can be computed directly as:

V NB,K(s) = max
(x,y)∈X1×X2

θ(x,y),∀s = (θ,Σ) ∈ S. (6.18)

The dynamic programming principle tells us that the value function at times k =

0, 1, ..., K − 1, V B,k is given recursively by :

V NB,k(s) = max
(x,Y)∈X1×XB2

E
[
V NB,k+1

(
TNB(s, (x, y1, ...yB), (Z1, ...ZB)

)]
, s ∈ S, (6.19)
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where Zi is a one dimensional standard normal variable.

A KG-type policy is provided for nested batch learning in the section 6.5.

6.4 Batch Knowledge Gradient (BKG) Policy

In this section, we extend the original idea of the KG policy for batch mode learning.

We first give the formal definition of the batch knowledge gradient policy and then

provide a Monte Carlo algorithm for any given batch size.

6.4.1 Definition of BKG Policy

Following the basic idea of the knowledge gradient, we would like to design a policy

that seeks to measure the B alternatives that provide the single-period expected

increment as a batch. We first define the value of information from measuring a

batch of alternatives.

Definition 6.4.1. The knowledge gradient for measuring a batch of j alternatives

{x1, ...xj} at state s is defined as

νBKG
x1,...xj

(s) := E
[
V B,K

(
TB(s, (x1, ...xj), (Z1, ..., Zj))

)
− V B,K(s)

]
, (6.20)

where Zi is a one-dimensional standard normal random variable.

Recall from (6.14) that V B,K(Sk) = maxx∈X θ
k
x. Thus, suppose we are in knowl-

edge state Sk = (θk,Σk) = (θk,0,Σk,0). If we choose to measure (xk,0 = x1, ..., x
k,j−1 =

xj) right now, allowing us to observe (W k+1,0
xk,0

, ...,W k+1,j−1
xk,j−1 ), then we transition to a

new state of knowledge Sn+1 = (θn+1,Σn+1). At iteration k, θk+1 is a random vector

since we do not yet know what W k+1 is going to be. The knowledge gradient of

142



measuring (x1, ..., xj) is then

νBKG
x1,...xj

(Sk) = E[max
x

θk+1
x −max

x
θkx|xk,0 = x1, · · · , xk,j−1 = xj, S

k]. (6.21)

One way to design a policy π′ using the knowledge gradient concept is to directly

find the {x1, ..., xj} that maximizes νBKG
x1,...xj

(Sk) subject to j ≤ B. Since the mea-

surement is noisy, measuring the same xi several times will most likely give different

observations and thus it is meaningful if we measure some alternative xi more than

once within a batch. For example, in the motivating application, we can choose to

test on 5 densities (ρ1, ρ1, ρ3, ρ3, ρ7) all at once. Thus the batch decision procedure

is analogous to multi-set function maximization problems. Let X be a finite set of

M elements. Define the multi-set function f : NX 7→ R. The problem is to find a

multi-set A of cardinality less than or equal to some specified number B, such that

f(A) is the maximum:

max
A⊂NX

{f(A) : |A| ≤ B}. (6.22)

The problem with π′ is that it involves testing all
∑B−1

b=0

(
b+M−1
M−1

)
which would be

computationally costly when B and M are large. Alternatively, as a common tech-

nique to deal with set function maximization problems, we can use a greedy heuristic

to start from the null set and add elements one at a time. We first claim that the

more measurements, the larger the value of information. Thus, if we are limited to

B measurements in a batch, we will indeed measure B alternatives in each batch.

Proposition 6.4.1. (Benefits of Measurement)

νBKG
x1,...xj+1

(s) ≥ νBKG
x1,...xj

(s) for all j ≥ 0, s ∈ S and xi ∈ X .
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Proof. In the following proof, we use properties of conditional expectations

E[E[U |V ]] = E[U ] for any random variables U and V .

νBKG
x1,...xj+1

(s)− νBKG
x1,...xj

(s)

= E
[
V B,K

(
TB(s, (xi)

j+1
i=1 , (Zi)

j+1
i=1 )

)
− V B,K

(
TB(s, (xi)

j
i=1, (Zi)

j
i=1)
)]

= E
[
E
[
V B,K

(
TB(s, (xi)

j+1
i=1 , (Zi)

j+1
i=1 )

)
− V B,K

(
TB(s, (xi)

j
i=1, (Zi)

j
i=1)
)
|(xi)ji=1, (zi)

j
i=1

]]
= E

[
E
[
V B,K

(
T (s′, xj+1, Zj+1)

)
− V B,K(s′)

]]
,

where s′ = TB
(
s, (xi)

j
i=1, (zi)

j
i=1

)
, T (s, x, z) is the transition function defined in Def-

inition 6.3.1 and in the last equation the first expectation is taken over the random

choices of s′ or equivalently the choices of (zi)
j
i=1 and the second expectation is taken

over Zj+1. By the definition of T and V B,K , we have V B,K
(
T (s′, xj+1, Zj+1)) =

maxx∈X
(
θ′x + σ̃x(Σ

′, xj+1)Zj+1

)
and V B,K(s′) = maxx θ

′
x. By Jensen’s inequality, we

have

E
[
V B,K

(
T (s′, xj+1, Zj+1))

]
= E

[
max
x∈X

(
θ′x + σ̃x(Σ

′, xj+1)Zj+1

)]
≥ max

x∈X
E
[(
θ′x + σ̃x(Σ

′, xj+1)Zj+1

)]
= max

x∈X
θ′x

= V B,K(s′).

Since this inequality holds for any realization of s′, the proposition follows.

Corollary 6.4.2. The knowledge gradient of measuring a batch of j alternatives at

any state s is always non-negative, νBKG
x1,...xj

(s) for all j ≥ 0, s ∈ S and xi ∈ X .

Proof. It follows from Proposition 6.4.1 by noting that νBKG
∅ (s) = 0 for any s ∈ S.
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Since the more measurements the better, if we are limited to at most B measure-

ments at each time step, we will exactly choose to make B measurements. We thus

can define the batch knowledge gradient (BKG) policy that greedily adds in each

alternative that maximizes the expected increment of value one at a time until B

alternatives are chosen.

Definition 6.4.3. The Batch Knowledge Gradient (BKG) policy has the decision

function

xk,b := XBKG
b (Sk) = arg max

x∈X
νBKG
xk,0,...,xk,b−1,xk,b=x(S

k), (6.23)

for any b = 0, ..., B − 1 and decision points k = 0, 1, ..., K − 1.

The above formulation tells us that we make each measurement decision in the

batch by conditioning on the earlier decisions made in the same batch and the state.

With (6.11) and (6.21), we can rewrite (6.23) as

XBKG
b (Sk) = arg max

x∈X
E

[
max
x′

(
θk,0 +

b−1∑
j=0

σ̃(Σk,j, xk,j)Zk+1,j + σ̃(Σk,b, x)Zk+1,b

)]
,

(6.24)

where xk,j, j ≤ b are fixed when choosing xk,b and Σk,j can be updated within a batch

according to (6.8). This formula will be of use in the following computations.

6.4.2 Computation

We notice from (6.23) that at each batch decision point k, we can find the first

measurement decision explicitly by carrying out the original KG calculation described

since the objective function (6.24) to be maximized for the first decision in the batch

is exactly the same as the sequential knowledge gradient policy that was described in

Section 2.1.2.

Since an analytic expression for the expected maximization as in (6.24) is un-

known, we utilize Monte Carlo sampling to approximate the expectation. After the
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first measurement decision xk,0 is made, the following decisions are made one at a

time to find xk,b according to (6.24) using Monte Carlo Simulation. To be more spe-

cific, the second decision is made by randomly generating both Zk+1,0 and Zk+1,1 for

Q times, where Zk+1,i are independent standard normal variables. We then define

the second decision xk,1 as:

arg max
x∈X

1

Q

Q∑
q=1

[
max
x′

(
θk,0 + σ̃(Σk,0, xk,0)z0

q + σ̃(Σk,1, x)z1
q

)]
,

where z0
q and z1

q are realizations of Zk+1,0 and Zk+1,1 respectively and Σk,1 is updated

according to (6.8). We then have xk,0 and xk,1 fixed, and proceed to find xk,2 similarly

by sampling Zk+1,0, Zk+1,1 and Zk+1,2 for Q times and finding the alternative that

maximizes the analogous expression coming from (6.24) that contains these three

random variables. It is worth re-emphasizing here that all three variables are standard

normal when we generate their realizations after fixing the previous decisions.

In general, after we get the first b decisions within a batch, we are looking to find

the solution to

xk,b = arg max
x∈X

1

Q

Q∑
q=1

[
max
x′

(
θk,0 +

b−1∑
j=0

σ̃(Σk,j, xk,j)zjq + σ̃(Σk,b, x)zbq

)]
,

where Σk,j are updated within this batch according to (6.8).
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The pseudo-code of the algorithms are presented below. Algorithm 7 is the BKG

policy for the kth batch decision, which calls Algorithm 8 to find the next measure-

ment decision for B times.

Algorithm 7: Batch Knowledge Gradient Policy

input : θk,0,Σk,0 and the number of sample Q for the Monte Carlo simulation

Use the sequential KG policy presented in Section 2.1.2 to find xk,0;

σ̃0 ← σ̃(Σk,0, xk,0);

Update Σk,1 according to (6.8);

for b = 1 to B − 1 do

Use Algorithm 8 below to find xk,b;

σ̃b ← σ̃(Σk,b, xk,b);

Update Σk,b+1 according to (6.8);

end

output: batch decisions xk,0, xk,1, ..., xk,B−1

Algorithm 8: Monte Carlo Simulation for the (b+ 1)th decision within a batch

input : b, θk,0, σ̃0, σ̃1, ..., σ̃b−1,Σk,b and Q

for each x ∈ X do
sumx = 0;

for q = 1 to Q do

for j = 0 to b do

Generate a realization zjq of Zk,j;

end

temp ← maxx′
(
θk,0x′ +

∑b−1
j=0 σ̃

j
x′z

j
q + σ̃(Σk,b, x)zbq

)
;

sumx ← sumx+ temp;

end

end

xk,b = arg maxx∈X sumx;

output: the b+ 1th decision xk,b within the batch
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6.5 Nested Batch Knowledge Gradient (NBKG)

Policy

A nested batch decision may involve the selection of a particular NP size and sub-

sequent selection of several NP densities (given the NP size fixed in the first stage

of the decision). In general, we would like to design a policy that seeks to measure

the B alternatives (x, y1), ..., (x, yB) that provide the largest single period value of

information. We first define the knowledge gradient of measuring a nested batch of

alternatives.

Definition 6.5.1. The knowledge gradient of measuring a nested batch of j alterna-

tives {(x, y1), ..., (x, yj)} for any x ∈ X1 and yi ∈ X2 at state s is defined as

νNBKG
x;y1,...yj

(s) := E
[
V NB,K

(
TNB(s, (x, y1, ...yj), (Z1, ..., Zj))

)
− V NB,K(s)

]
, (6.25)

where Zi is a one-dimensional standard normal random variable.

By a similar argument as Proposition 6.4.1, we can show that if we are limited to

B measurements in a batch we will indeed evaluate B alternatives.

We define the Nested Batch Knowledge Gradient policy as directly finding out

{x, y1, ..., yB} that maximizes νNBKG
x;y1,...yj

(s) at any decision point k = 0, 1, ..., K. For

clarity, we use Y to denote the multi-set {y1, ..., yB} since the alternatives being

measured in each batch are not necessarily distinct.

Definition 6.5.2. The Nested Batch Knowledge Gradient (NBKG) policy has the

decision function

XNBKG(Sk) = arg max
(x,Y)

νNBKG
x;Y (Sk), (6.26)

for any decision points k = 0, 1, ..., K − 1.
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We can show analytically that

 x∗ = arg maxx
(

maxY ν
NBKG
x;Y

)
Y∗ = arg maxY ν

NBKG
x∗;Y

is a solution to the optimization problem (6.26). This gives us a two-stage decision

process. At the first step, for each x ∈ X1, find the multi-set (a batch) Yx that gives

the most value of information; i.e. maxY ν
NBKG
x;Y . This can be done by using the Batch

Knowledge Gradient policy for each fixed x with the value function νNBKG
x;y1,...,yB

instead

of νBKG. Namely, for example, when calculating a similar expression as (6.21):

νNBKG
x;y1,...yj

(Sk) = E[max
(x′,y′)

θn+1
(x′,y′) − max

(x′,y′)
θn(x′,y′)|xk = x, yk,0 = y1, · · · , yk,j−1 = yj, S

k],

(6.27)

it should be noted that even though the BKG is constructed for each x ∈ X1, when

taking the maximization inside the expectation, x′, y′ should include all the choices

in the domain X1 × X2. Since calculating the expected maximum is needed to make

the decision, Monte Carlo sampling is used as in Algorithm 7 to approximate the

expectation.

We next define the nested knowledge gradient νNKG
x for each x ∈ X1 at state s in

the nested dimensions as

νNKG
x (s) = max

Y
νNBKG
x;Y (s). (6.28)

If the set function maximization problem and the expectation of maximization

can be solved exactly (without using greedy heuristic and Monte Carlo sampling),

the asymptotic convergence of both the nested batch and batch knowledge gradient

policy follows from the sequential KG cases (Frazier et al., 2009; Frazier and Powell,

2011). Specifically, it can be shown that the knowledge gradient policy will measure
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each alternative infinitely often as the (nested) batch measurement budget goes to

infinity and will discover which alternative is the best regardless of the imperfection

of the prior.

6.6 Numerical Experiments on NBKG and Opti-

mizing Photocurrent

In this section, we present simulation results for the material science application

described in Section 6.2: optimizing the photocurrent of a photoactive device that

has anisotropic nanoparticles immobilized onto its surface. We wish to maximize the

output current I(d, ρ) with respect to size d and the logarithm of NP density ρ. In

the physical setting, preparing NPs of a particular size is expensive, while varying the

density of a NP can be done easily and in parallel experiments. Therefore, we model

the choice of experiment to perform as a nested-batch decision, and apply the NBKG

policy toward finding the optimal choice of size and density.

6.6.1 Prior Generation

There are many ways to incorporate domain expert’s knowledge about the role of NP

size and density on output current. Here we use a simplified linear model purely for

the purpose of initializing a prior, but the belief model is still represented as a lookup

table. Once we have initialized our prior on function values I(d, ρ) (as a lookup table),

the experiments are used to update our belief, which will move the posterior away

from our initial linear estimate. To this end, we consider a third-order polynomial

approximation of the output current I(d, ρ) with respect to size d and the logarithm

of NP density ρ:

I(d, ρ) = c1 + c2d+ c3ρ+ c4d
2 + c5dρ+ c6ρ

2 + c7d
3 + c8d

2ρ+ c9dρ
2 + c10ρ

3. (6.29)
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This polynomial regression model is meant as a third-order local approximation to

the true response function. A cubic polynomial was specifically selected to provide

a balance between the accuracy of this approximation without containing too many

terms, which would expose the model to overfitting noisy measurements.

To generate a prior distribution on the values of the regression coefficients, we in-

corporate the following observations, which reflect a domain expert’s prior knowledge

about the role of NP size and density on output current. Nanoparticles typically have

physical dimensions in the range of 10 to 100 nm, but it is more instructive to param-

eterize them through the wavelength of light that they interact with most strongly.

In the case of metal nanoparticles, this is related to their localized surface plasmon

resonance, which is in turn dictated by properties including their size, shape, and

aspect ratio. For the purposes of this example, we simply designate a NP geometry

using the wavelength of light that they absorb most strongly. First, the experimental

range of size was assumed to be between 550 nm to 1300 nm (wavelength), while the

range for NP density was assumed to be between 1 NP/m2 to 1015 NP/m2. When

d = 550 nm and ρ = 0, the output current is simply the output current of the pho-

toactive device non-functionalized with NPs. We presume that this current is scaled

to 1 nanoamp (nA). For extreme values where d = 1300 nm and ρ = 15, we assume

the current is a nominally small value 0.001 nA. Lastly, we presume that for points

away from the extremes, the current has moderate values between 1 and 20 nA.

Prior generation was performed by uniformly sampling values

d1 = 550 ≤ d2 ≤ d3 ≤ d4 = 1300 nm,

and

ρ1 = 0 ≤ ρ2 ≤ ρ3 ≤ ρ4 = 15.
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Sixteen points of the form (di, ρj, I(i) + I(j)) were calculated, where

I(i) =


0.5 i = 1;

1 i = 2, 3;

0.0005 i = 4.

We then computed the least-squares fit of the polynomial model in Equation (6.29) to

these points, and obtained an instance of the regression parameters ci. This procedure

was repeated several times, resulting in an empirical distribution on c, which we use

as the regression parameters’ prior distribution. From this, we obtain the induced

prior distribution on function values (as a lookup table) that incorporate the domain

expert’s prior (albeit limited) knowledge about the behavior of the photocurrent with

respect to NP size and density. Figure 6.1 plots several instances of I(d, ρ) obtained

in the above manner.

Figure 6.1: Example plots of photocurrent I(d, ρ) obtained from the procedure out-
lined above.
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6.6.2 Performance of NBKG

In order to assess the performance of the NBKG policy, we performed several numer-

ical experiments in which the decision-measurement-update loop was simulated over

several batch measurements and over several trials. For each simulation trial, a true

value of the regression parameters (and hence a true response surface) was fixed, but

unknown to the simulation.

Illustration on NBKG Policy

We first illustrate how NBKG works under a measurement noise of 30% of the function

range. At each iteration, a NBKG value was calculated for each choice of NP size.

Example NBKG values are depicted in Figure 6.2, which is an example of NBKG

values after zero, one and two measurements, respectively. The optimal NP size

and corresponding batch of log density values are given at each step. The figure

also illustrates a key feature of the KG policy, as shown by a marked decrease in

the relative KG value of a NP size after it has been measured. Due to correlation,

the values of measuring adjacent alternatives also drops since they roughly provide

similar information. As shown in Figure 6.2, the KG value for NP size = 800nm

drops after measuring NP size = 883nm. This gives the KG policy the ability to

explore parameter space during the initial set of measurements. From the KG values,

the optimal NP size and five corresponding NP densities were selected in the nested-

batch method outlined above. After a noisy measurement is made from the true

surface, the posterior distribution on µ is calculated according to Equations (6.1).

This process is repeated until 15 batch measurements are made.

Figure 6.3 together with Figure 6.4 shows an example of the prior and posterior

estimates of the true photocurrent function for a particular simulation. In Figure 6.3,

the leftmost figure depicts the true photocurrent function values. The middle and

rightmost figures demonstrate the prior and posterior estimates of the true function
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(c) 2 batch measurements

Figure 6.2: NBKG values before and after 3 batch measurements. The optimal NP
size at each step is indicated by the dashed line, and the corresponding optimal batch
of densities are also shown. The arrows indicate the decrease in KG value for the NP
size that was previously measured.

surface after 0 and 15 batch measurements, respectively, using the NBKG policy.

Also depicted in Figure 6.4 is the residual error, which is the difference between the

estimate and true function values. The residual errors are calculated after 0, 5, 10 or

15 batch measurements. By examining the residual error plot after 15 measurements,

we see that the function value at the true maximum alternative is well approximated,

while moderate error in the estimate is located away from this region of interest.
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Figure 6.3: Prior and posterior estimates of the true function surface after 0 and 15
batch measurements, using the NBKG policy.

Computational Analysis

In this section, we analyze the performance of NBKG as parameters vary. As a more

quantitative measure of the performance of NBKG, we consider the opportunity cost
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Figure 6.4: Prior and posterior estimates of the true function surface after 0, 5, 10
and 15 batch measurements, using the NBKG policy. For each choice of number of
measurements, the plot shows the residual error between this estimate and the true
function.

(OC) as a function of the number of batch measurements K:

OCK = max
(x,y)

µ(x,y) − µ(xK ,yK), (6.30)

where (xK , yK) = arg max(x,y) θ
K
(x,y).

Figure 6.5 shows the mean OC versus number of batch measurements, averaged

over 500 simulation trials. In Figure 6.5(a), we see this plot for the case when the

measurement error is 30% of the true function’s range (as before). We observe that

the OC quickly decays as the number of measurements increases, showing that the

NBKG value rapidly finds the location of the maximal photocurrent. Figure 6.5(b)

shows the mean OC versus the number of batch measurements and measurement
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error. We observe that the OC increases with increasing error, as expected. Such

a plot is meaningful in experimental budgeting, and shows the requisite number of

measurements needed to obtain a certain level of optimality for a particular level of

noise. This plot can suggest to the experimenter the amount of measurement precision

needed in order to achieve a desired level of optimality as measured by opportunity

cost.

(a) OC under 30% measurement error (b) OC vs. number of batch measure-
ment and measurement error

Figure 6.5: Opportunity cost

We may also assess the performance of NGKB as the problem size increases. We

experiment with different batch sizes B = 1, 2, 3, 4, 5 and report in Figure 6.6 the

mean opportunity cost after each batch measurement ranging from 0 to 15, averaged

over 500 runs. In order to make a fair comparison, all the observations are pre-

generated and shared for simulations with different batch sizes. We observe that

no matter which batch size it uses, the OC quickly decays as the number of batch

measurements increases. Since a larger batch size means more measurements at each

iteration, thus providing more information and yielding more precise estimation. This

intuition is also verified in Proposition 6.4.1 (Benefits of measurement). We see from

the figure that for any measurement budget K, larger batch sizes yield lower OC, as

expected.
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Figure 6.6: Performance of NGKB as K,B changes. Horizontal axis denotes the
logarithm of the number of batch measurement K = 0, 1, ..., 15. Vertical axis is
the logarithm of mean opportunity cost. Lines with different colors correspond to
different simulations with different batch sizes B = 1, 2, ..., 5.

6.6.3 Comparison with Other Policies

In this section, we consider the performance of NBKG in comparison to other policies.

We consider the following policies:

1. Nested-Batch KG: The policy described in the paper.

2. Sequential KG: The basic, sequential KG policy as described in Frazier et al.

(2009).

3. Sequential Exploration: The pure exploration policy, which chooses an al-

ternative uniformly at random.

4. Nested-Batch Exploration: A random NP size is selected, and then B NP

densities are selected in batch.

5. Sequential Exploitation: The pure exploitation policy, which chooses the

alternative xn corresponding to the maximum value, maxx θ
n
x .

6. Nested-Batch Exploitation: Select the batch of experiments

{(d, ρ1), . . . , (d, ρB)} ,
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that maximizes

I(d, ρ1, . . . , ρB) =
B∑
i=1

θn(d,ρi).

7. Sequential ε-Greedy: A sequential policy that provides a mixture between

the pure exploration and exploitation policy. The alternative xn selected at

time n is obtain by choosing between pure exploration with probability εn and

pure exploitation with probability (1− εn), where εn = 0.9/n.

8. Nested-Batch ε-Greedy: Similar to the sequential ε-greedy policy, but

chooses between the nested-batch versions of exploration and exploitation with

probability εn and (1− εn), respectively.

Figure 6.7(a) plots the mean opportunity cost for the nested-batch policies as a

function of the number of batch measurements, averaged over 200 independent sim-

ulations and plotted in log scale for clarity. We observe that NBKG outperforms all

the nested-batch policies. Also included in the figure is the opportunity cost for the

sequential KG policy. In the nested-batch setting, the sequential KG does not take

advantage of batch experiments, opting instead of performing the single experiment

with largest KG value, effectively using a batch size of B = 1. We note that NBKG

outperforms the sequential KG policy, as illustrated in Figure 6.6. The comparison

between NBKG and sequential KG exhibits the experimental savings to be gained

in performing experiments in batch mode. Figure 6.7(b) compares NBKG versus

the sequential policies in a sequential experiment setting. In this context, we equate

one batch measurement performed using the NBKG policy with B sequentially mea-

surements for comparison. The sequential policies are more adaptive than NBKG

in this manner, as they can incorporate information obtained from experiments one

at a time, while NBKG only updates the state of knowledge after B measurements.

Nevertheless, we observe that for a large number of measurements, NBKG outper-

forms all sequential policies except for sequential KG. Between sequential and NBKG,
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we observe similar performance, hinting that while NBKG has a delay in updating

information, the effect of this delay is minimal.
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Figure 6.7: A comparison of policy performance. The graphs show mean opportunity
cost versus the number of measurement for the policies outlined above. (a) Nested-
batch experiments, in which a policy may perform several experiments in parallel,
varying NP density, provided that the NP size is the same between the parallel ex-
periments. Sequential policies use a batch size of B = 1. (b) Sequential experiments,
in which experiments must be performed one at a time. Here we equate 1 batch
measurement with B sequential measurements.

6.7 Conclusion

In this chapter, motivated by several applications, we extended the sequential ranking

and selection problem into a general framework for batch-mode learning and nested-

batch-mode learning. By formulating the problem within a dynamic programming

framework, we derived the Knowledge-Gradient variants to tackle both batch and

nested-batch measurements. Since the Knowledge-Gradient variants require comput-

ing expectations which may be intractable, a Monte Carlo sampling procedure was

applied. We empirically demonstrate the effectiveness of the NBKG policy on the

immobilized nanoparticles design problem. We see that NGKB is competitive with

a fully sequential strategy and significantly outperforming pure exploration, pure ex-

ploitation and ε-greedy strategies for the model application presented in this chapter.
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Chapter 7

MOLTE: a Modular Optimal

Learning Testing Environment

Since the seminal paper by Lai and Robbins (1985), there has been a long history in

the optimal learning literature of proving some sort of bound, supported at times by

relatively thin empirical work by comparing a few policies on a small number of ran-

domly generated problems (Audibert and Bubeck, 2010; Cappé et al., 2013; Srinivas

et al., 2009; Auer et al., 2002; Audibert et al., 2009). The problem, of course, is that

compiling a library of test problems, and then running an extensive set of comparisons,

is difficult. In the last chapter, we address the relative paucity of empirical testing

of learning algorithms (of any type) by introducing a new public-domain, Modular,

Optimal Learning Testing Environment (MOLTE) for Bayesian ranking and selec-

tion problem, stochastic bandits or sequential experimental design problems. The

Matlab-based simulator allows the comparison of a number of learning policies (rep-

resented as a series of .m modules) in the context of a wide range of problems (each

represented in its own .m module) which makes it easy to add new algorithms and

new test problems. State-of-the-art policies and various problem classes are provided

in the package. The choice of problems and policies is guided through a spreadsheet-
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based interface. Different graphical metrics are included. MOLTE is designed to be

compatible with parallel computing to scale up from local desktop to clusters and

clouds. We demonstrate the capabilities of MOLTE through a series of comparisons

of policies on a starter library of test problems. We also address the problem of

tuning and constructing priors that have been largely overlooked in optimal learning

literature. We envision MOLTE as a modest spur to provide researchers an easy

environment to study interesting questions involved in optimal learning.

Similar libraries have been proposed for Bayesian optimization in different

programming languages with different metrics and visualizations, for example,

BayesOpt (Martinez-Cantin, 2014) and Spearmint (Snoek et al., 2012). Yet the

uniqueness of MOLTE lies in its design goal to facilitate comprehensive compar-

isons, on a broader set of test problems and a broader set of policies (which is not

to restricted to Bayesian algorithms), rather than just a code library. With its

unique modular design, MOLTE allows users to easily specify their own problems or

their own algorithms without limitation as long as they follow the general function

interface. The choice of problems and policies is guided through a spreadsheet-based

interface. Since many of the algorithms have tunable parameters, we include the

feature that the user can easily indicate in the spreadsheet to specify the value of the

tunable parameter, or ask the package to optimize the tunable parameter. We have

designed various (graphical) comparison metrics in order to gain a comprehensive un-

derstanding of different policies from different perspective. MOLTE is also designed

to be compatible with parallel computing to scale up from local desktop to clusters

and clouds. We offer MOLTE as an easy-to-use tool for the research community

that provides a highly flexible environment for testing a range of learning policies on

a library of test problems, so that researchers can more easily draw insights into the

behavior of different policies in the context of different problem classes.
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MOLTE is designed for problems where decisions can be represented as a set

of discrete alternatives. These might be materials, drug combinations, features in a

product, and medical decisions. They might also be discretized continuous decisions

such as temperatures, pressures, concentrations, length and time (e.g. how long a

material is soaked in a bath).

7.1 Software Implementation

In this section, we describe the implementation of MOLTE1 that is designed to test

a variety of different learning policies on a library of test problems. The architecture

makes it particularly easy for researchers to add new policies, and new problems.

7.1.1 Structural Overview

MOLTE is a Matlab-based modular architecture, where policies and problems are

captured in a set of .m files, which makes it easy for researchers to add new policies

and new problems. MOLTE.m compares the polices specified in an Excel spreadsheet

for each problem class for numP times. Each time the simulator is run, it generates

numTruth different sample paths, shared between all the policies, computes the value

of the objective function for each sample path and then averages the numTruth repli-

cas as the expected terminal reward or the expected cumulative rewards. The user

may select in the spreadsheet to evaluate policies using either an online (cumula-

tive reward) objective function Eq. (1.2), or an offline (terminal reward) objective

function Eq. (1.1) (ranking and selection, Bayesian optimization).

In order to speed up the comparison, MOLTE is specially designed to be com-

patible with parallel computing to scale up from local desktop to clusters and clouds.

1The software is available at http://www.castlelab.princeton.edu/software.htm.

162

http://www.castlelab.princeton.edu/software.htm


This can be achieved by first invoking matlabpool to submit a batch job to start a

parallel environment and then use parfor i=1:numP instead of for i=1:numP.

7.1.2 Input Arguments

The input to the simulator is an Excel spreadsheet ProblemsandAlgorithms.xls

which allows users to specify the problem classes and competing policies, as well

as the belief models, the objectives, the prior construction and the measurement

budgets. We provide a sample input spreadsheet in Table 7.1. For policies that

have tunable parameters, a star included in the parentheses after the policy will

initiate an automatic brute force tuning procedure with the optimal value reported

in alpha.txt. The logic anticipates that tunable parameters may be anywhere from

10−5 up to 105. Whereas the user can also specify the value to be used for the policy

in the parentheses.

Table 7.1: Sample input spreadsheet.
Problem

class
Prior

Measurement
Budget

Belief Model
Offline/
Online

Number
of policies

Bubeck1 Uninform 10 independent Online 3 OLKG IE(*) UCB
Branin MLE 5 independent Offline 4 UCBE(*)IE(1.7) KG SR
GPR Default 0.3 correlated Online 4 KLUCB EXPL UCBTS

NanoDesign MLE 0.5 correlated Offline 3 Kriging EXPT KG

Problem class is the name of a pre-coded problem with a specified truth func-

tion, the number of alternatives and a default noise level. If it is a user defined

problem, the user should write a .m file in the ./problemClasses folder with the

same name as presented in this spreadsheet. Due to the high popularity of Gaussian

Process Regression (GPR), we offer the flexibility of directly specify the values of the

parameter of GPR in the spreadsheet. For example, GPR(σ, β;M) specifies the value

of the parameters as follows (Powell and Ryzhov, 2012): the prior mean θ0
x is drawn

from N (0,
√
σ), the prior covariance matrix Σ0 is of the form σ exp(−β(x− x′)) and

M is the number of alternatives.
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Prior indicates the ways to get a prior, MLE, Default, Given and Uninformative.

Measurement Budget specifies the ratio between the time horizon of the deci-

sion making procedure to the number of alternatives. For example, in the spreadsheet

a 5 means that the horizon will be 5 times the number of alternatives (which is 100),

producing a total experimental budget of 500.

Belief Model specifies whether we are using independent or correlated beliefs for

the policies which use a Bayesian belief model.

Offline/Online controls whether the objective is to maximize the expected ter-

minal reward Eq. (1.1) or the expected cumulative rewards Eq. (1.2).

Number of Policies is the number of policies under comparison. This specifies

the number of columns which contain the name of a policy to be tested, each rep-

resented in the corresponding .m file with the same name. If there are parentheses

with a number after the name of the policy, it means setting the tunable parameter

to the value specified in the parentheses. If there are parentheses with ∗, it means

tuning the parameters and using the tuned value in the comparison; otherwise use

the default value (in fact some policies, e.g. KG and Kriging, do not have tunable

parameters). All policies are compared against the first policy in the list.

7.1.3 Output

All the data and figures are saved in a separate folder for each problem class. Within

the folder of each problem class, each one of the numP folders (with the folder name

from 1 to numP) contains:

objectiveFunction.mat saves the value of the online or offline objective function

achieved by each policy for each of the numP replica.

choice.mat saves the decisions made by each policy in a variable named choices

and the name of all policies in another variable policies.
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FinalFit.mat saves the final estimate of the surface by each policy after the

measurement budget exhausted, together with the corresponding truth. This file is

only obtained for the first trial.

alpha.txt saves the value of tunable parameter for each policy that requires

tuning, i.e. with a (∗) in the input spreadsheet.

offline hist.pdf is the histogram for each policy describing the distribution

over numP trials of the expected terminal reward compared to the reward obtained by

the reference policy (which is the first policy in the input spreadsheet).

online hist.pdf is the histogram describing the distribution of the expected

cumulative reward over numP trials. One of the example figure is Fig. 7.1. A distribu-

tion centered around a positive value implies the policy underperforms the reference

policy, which in this example is UCBV.
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Figure 7.1: Example figure of online hist.pdf.

It is always useful for researchers to examine the sampling pattern of each policy

to gain a better understanding of its behavior. To this end, we provide a function

histChoice.m that reads in the choice.mat and generates the distribution of the

frequency of choosing each of the alternatives for each policy. filedir specifies which

one of the numP trials is used to generate the sampling pattern, e.g. filedir=’./1/’.

Since within each trial, numTruth different truths are sampled, numT is used to indicate

the number of truths the user would like to draw the sampling pattern from. Figure

165



7.2 is an example of a sampling pattern with the x-axis the 100 alternatives and the

histogram of the sampling pattern under a measurement budget of 300.

Figure 7.2: Example figure of the histogram of the frequency of choosing each of the
alternative under a policy.

We also provide other graphical metrics for comparing the policies. genProb.m

can read in the objectiveFunction.mat and depict the mean opportunity cost with

error bars indicating the standard deviation of each policy as shown in Figure 7.3(a),

together with the probability of each policy being optimal and being the best in

Figure 7.3(b).
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(a) Opportunity cost
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(b) Probability of optimality/winning

Figure 7.3: (a) depicts the mean opportunity cost with error bars indicating the
standard deviation. The first bar group in (b) demonstrates the probability that the
final recommendation of each policy is the optimal one. The second bar group in (b)
illustrates the probability that the opportunity cost of each policy is the lowest.
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The statistics stored in objectiveFunction.mat, choice.mat and FinalFit.mat

can easily be used for other illustrations. For example, one can use the truth values

stored in FinalFit.mat and the number of times each policy samples each alternative

in choice.mat to generate two dimensional contour plot using Matlab commands

contour(...), plot(...) and text(...), as well as the corresponding posterior

contour using the final estimate of the surface stored in FinalFit.mat, as we demon-

strate later in Fig. 7.4.

7.1.4 Pre-coded Problem Classes

While a wide range of problem classes and policies are precoded in MOLTE, in

the next two subsections we only briefly summarize the problem classes and policies

mentioned in the following numerical experiments of this paper. As of this writing,

MOLTE includes 23 pre-coded problem classes, and 20 pre-coded policies.

Bubeck’s Experiments: (Audibert and Bubeck, 2010) We consider Bernoulli

distributions with the mean of the best arm always µ1 = 0.5. M is the number of

arms.

Bubeck1: M = 20, µ2:20 = 0.4.

Bubeck2: M = 20, µ2:6 = 0.42, µ7:20 = 0.38.

Bubeck3: M = 4, µi = 0.5− (0.37)i, i ∈ {2, 3, 4}.

Bubeck4: M = 6, µ2 = 0.42, µ3:4 = 0.4, µ5:6 = 0.35.

Bubeck5: M = 15, µi = 0.5− 0.025i, i ∈ {2, · · · , 15}.

Bubeck6: M = 20, µ2 = 0.48, µ3:20 = 0.37.

Bubeck7: M = 30, µ2:6 = 0.45, µ7:20 = 0.43, µ21:30 = 0.38.

Asymmetric unimodular function (AUF): x is a controllable parameter rang-

ing from 21 to 120. The objective function is F (x, ξ) = θ1 min(x, ξ)−θ2x, where θ1, θ2

and the distribution of the random variable ξ are all unknown. ξ is taken as a normal

distribution with mean 60. Three noise levels are considered by setting different noise
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ratios between the standard deviation and the mean of ξ: HNoise–0.5, MNoise–0.4,

LNoise–0.3. Unless explicitly pointed out, experiments are taken under LNoise.

Equal-prior: M = 100. The true values µx are uniformly distributed over

[0, 60] and measurement noise σW = 100. θ0
x = 30 and σ0

x = 10 for every x.

All the standard optimization test functions are flipped in MOLTE to generate

maximization problems instead of minimization in line with R&S and bandit prob-

lems. The standard deviation of the additive Gaussian noise is set to 20 percent of

the range of the function values.

Rosenbrock functions with additive noise:

f(x, y, φ) = 100(y − x2)2 + (1− x)2 + φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13

alternatives. This function is unimodel with the global minimum lies in a narrow,

parabolic valley.

Pinter’s function with additive noise:

f(x, y, φ) = log10

(
1 + (y2 − 2x+ 3y − cosx+ 1)2

)
+ log10

(
1 + 2(x2 − 2y + 3x− cos y + 1)2

)
+ x2 + 2y2 + 20 sin2(y sinx− x+ sin y) + 40 sin2(x sin y − y + sinx) + 1 + φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13

alternatives.

Goldstein-Price’s function with additive noise:

f(x, y, φ) = [1 + (x+ y + 1)2(19− 14x+ 3x2 − 14y + 6xy + 3y2)] ·

[30 + (2x− 3y)2(18− 32x+ 12x2 + 48y − 36xy + 27y2)] + φ,
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where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13

alternatives. This function has several local minima.

Branins’s function with additive noise:

f(x, y, φ) = (y − 5.1

4π2
x2 +

5

π
x− 6)2 + 10(1− 1

8π
) cos(x) + 10 + φ,

where −5 ≤ x ≤ 10, 0 ≤ y ≤ 15. x and y are uniformly discretized into 15 × 15

alternatives. Branins’s function has three global minima.

Ackley’s function with additive noise:

f(x, y, φ) = −20 exp
(
−0.2·

√
1

2
(x2 + y2)

)
−exp

(1

2
(cos(2πx)+cos(2πy))

)
+20+exp(1)+φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13

alternatives. In its two-dimensional form, it is characterized by a nearly flat outer

region, and a large hole at the centre. The function poses a risk for optimization

algorithms, to be trapped in one of its many local minima.

Hyper Ellipsoid function with additive noise:

f(x, y, φ) = x2 + 2y2 + φ.

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13

alternatives. This function is a rotated version of the axis parallel hyper ellipsoid

function. It is convex and unimodal.

Rastrigin function with additive noise:

f(x, y, φ) = 20 +
[
x2 − 10 cos(2πx)

]
+
[
x2 − 10 cos(2πy)

]
+ φ,
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where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 11 × 11

alternatives. This function is highly multimodal, but locations of the minima are

regularly distributed.

Six-hump camel back function with additive noise:

f(x, y, φ) = (4− 2.1x2 +
x4

3
)x2 + xy + (−4 + 4y2)y2 + φ,

where −2 ≤ x ≤ 2, −1 ≤ y ≤ 1. x and y are uniformly discretized into 13 × 13

alternatives. With the selected input domain, the function has six local minima, two

of which are global.

7.1.5 Pre-coded Policies

We have pre-coded various state-of-the-art policies π, which differ according to their

decision Xπ,n(Sn) of the alternative to measure at time n given state Sn.

Knowledge gradient (KG): (Frazier et al., 2008, 2009) This policy is designed

for offline objective (1.1). Define the knowledge gradient as

νKG,n
x = E[max

x′
θn+1
x′ −max

x′
θnx′ |xn = x, Sn].

XKG,n(Sn) = arg max
x∈X

νKG,n
x .

Online knowledge gradient (OLKG): (Ryzhov et al., 2012)

XOLKG,n(Sn) = arg max
x∈X

θnx + (N − n)νKG,n
x .

Interval Estimation (IE): (Kaelbling, 1993)

X IE,n(Sn) = arg max
x

θnx + zα/2σ
n
x ,
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where zα/2 is a tunable parameter.

Kriging: Huang et al. (2006)

Let x∗ = arg maxx(θ
n
x + σnx), and then

XKriging,n(Sn) = arg max
x

(θnx − θnx∗)Φ(
θnx − θnx∗
σnx

) + σnxφ(
θnx − θnx∗
σnx

),

where φ and Φ are the standard normal density and cumulative distribution functions.

Thompson sampling (TS): (Thompson, 1933)

XTS,n(Sn) = arg max
x

θ̃nx ,

where θ̃nx ∼ N (θnx , σ
n
x) for independent beliefs or θ̃nx ∼ N (θn,Σn) for correlated beliefs.

UCB: (Auer et al., 2002)

XUCB,n(Sn) = arg max
x

θ̂nx +

√
2V n

x log n

Nn
x

,

where θ̂nx , V n
x , Nn

x are the sample mean of µx, sample variance of µx, and number of

times x has been sampled up to time n, respectively. The quantity θ̂0
x is initialized by

measuring each alternative once. These are similarly defined in the following variants

of UCB.

UCB-E: (Audibert and Bubeck, 2010)

XUCB-E,n(Sn) = arg max
x

θ̂nx +

√
α

Nn
x

,

where α is a tunable parameter.

UCB-V: (Audibert et al., 2009)

XUCB-V,n(Sn) = arg max
x

θ̂nx +

√
V n
x log n

Nn
x

+ 1.5
log n

Nn
x

.
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SR: (Audibert and Bubeck, 2010) Let A1 = X , log(M) = 1
2

+
∑M

i=2
1
i
,

nm =
⌈ 1

log(M)

n−M
M + 1−m

⌉
.

For each phase m = 1, ...,M − 1:

1. For each x ∈ Am, select alternative x for nm − nm−1 rounds.

2. Let Am+1 = Am \ arg minx∈Am θ̂x.

KLUCB: (Cappé et al., 2013)

XKLUCB,n(Sn) = arg max
x

θ̂nx +

√
2V n

x (log n+ 3 log log(n))

Nn
x

.

EXPL: A pure exploration strategy that tests each alternative equally often

through random sampling of the set of alternatives.

EXPT: A pure exploitation strategy.

XEXPT,n(Sn) = arg max
x

θ̂nx .

7.1.6 Prior Generation

MOLTE features the following strategies for building a prior:

• If an uninformative prior is specified by the user for independent beliefs, a

uniform prior will be used with θ0
x = 0 and σ0

x = inf for every x. In such case,

same as with frequentist approaches (for example, UCBs), Bayesian approaches

will measure each alternative once at the very beginning.

• User-defined priors can be achieved either by specifying the parameters of the

problem class, e.g. GPR(50, 0.45;100), or by providing a Prior problemClass.mat

file containing mu 0, covM and beta W in the ./Prior folder, e.g. Prior GPR.mat.
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• If maximum likelihood estimation (MLE) is chosen to obtain the prior distri-

bution for either independent beliefs or correlated beliefs, we follow Jones et al.

(1998) and Huang et al. (2006) to use Latin hypercube designs for initial fit.

For independent beliefs, we adopt a uniform prior with the same mean value θ0
x

and standard deviation σ0
x for all alternatives. For correlated beliefs, we use a

constant mean value θ0
x for all alternatives and a prior covariance matrix of the

form

Σ0
xx′ = σe−

∑d
i=1 λi(xi−x′i)2 ,

where each arm x is a d-dimensional vector and σ, λi are constant. We adopt

the rule of thumb by Jones et al. (1998) for the default number (10 × p) of

points, where p is the number of parameters to be estimated. In addition, as

suggested by Huang et al. (2006), to estimate the random errors, after the first

10× p points are evaluated, we add one replicate at each of the locations where

the best p responses are found. Maximum likelihood estimation is then used to

estimate the parameters based on the points in the initial design.

7.2 Experiments for Offline (Terminal Reward)

Problems

In this section we report on a series of experiments with the goal of illustrating the

use of MOLTE and the types of reports that it produces. We do not attempt to

demonstrate that any policy is better than another, but our experiments support

the hypothesis that different policies work well on different problem classes. This

observation supports the claim that more careful empirical work is needed to develop

a better understanding of which policies work best, and under what conditions.
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We consider correlated beliefs between alternatives in order to strengthen the

effect of each measurement so that one measurement of some alternative can provide

information for other alternatives.

In order to better understand the behavior of each policy, a useful way is to

examine the sampling pattern of each policy. We present an example of the frequency

of measuring each alternative for each competing policy for Branin functions with a

measurement budget of 100. To take advantage of correlated beliefs, rather than

measuring each alternative once to initialize the empirical mean, we use the prior

mean as the starting point and use the posterior mean θn in place of the empirical

mean θ̂n for UCB-E. In the left column of Figure 7.4, the sampling pattern of each

policy is displayed together with the contour of the Branin objective function which

exhibits one global maximum at (−3, 12) and other two local maxima at (9, 3) and

(16, 4). The frequency that each alternative is measured is marked in numbers. The

right column depicts the final prediction under each policy. All the observations are

pre-generated and shared for all policies. We see from the figures that since KGCB

and Kriging take correlation into consideration in the decision functions, they need

less exploration and rely on the correlation to provide information for less explored

alternatives. They quickly begin to focus on the alternatives that have the best

values. Yet Kriging wanders around local minima for a while before it heads toward

the global maximum. Note that the prediction of KGCB gives a good match in

general. The function value at the true maximum alternative is well approximated,

while moderate error in the estimate is located away from this region of interest. UCB-

E is exploring more than necessary and wasting time on less promising regions. But

when the budget is big enough, the exploration will contribute to better prediction

of the surface, leading to a potentially larger final outcome in the long run. Pure

exploitation gets stuck in a seemingly good alternative and the sampling pattern is

not reasonable nor meaningful.
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Figure 7.4: Left column: sampling distribution. Right column: posterior distribution.
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7.3 Experiments for Online (Cumulative Reward)

Problems

In this section, we provide sample comparisons of different policies using the online

(cumulative reward) objective function. The performance measure that we use to

evaluate a policy π in an online setting is
R̄πN
N

, where the pseudo-regret R̄π
N is defined

as

R̄π
N = N max

x∈X
µx −

N∑
n=0

E[µXπ,n(sn)].

The opportunity cost (OC) between two policies in an online setting is defined as the

difference of their pseudo-regrets.

7.3.1 Experiments with Independent Beliefs

In real world problems, especially in experimental science, frequentist techniques can-

not incorporate prior knowledge from domain experts, relying instead on the training

from vast pools of data. This may be infeasible to perform in reality since running

one experiment might be very expensive. The advantage of a Bayesian approach is

unarguable in such cases. However, if we use MLE to fit the prior instead of using

domain knowledge, it seems that the comparisons are in favor of Bayesian approaches

by using an extra 11× p measurements. In order to make a seemingly more fair com-

parison in our synthetic experimental setting, we also experiment with uninformative

priors with no additional information provided for Bayesian approach.

Tables 7.2, 7.3 and 7.4 provide comparisons of OLKG, IE with tuning, UCB-E

with tuning, UCB, UCB-V, KLUCB, pure exploration (EXPL) using the Bubeck

problems with uninformative prior. The measurement budgets are set to 10, 100 and

500 times the number of alternatives of each problem class in Tables 7.2, 7.3 and

7.4, respectively. IE and UCB-E are carefully tuned for each problem class. Under
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each problem class, we ran each policy for numP=1000 times. In each run, all the

measurements are pre-generated and shared across all the policies. For each policy we

record the normalized opportunity cost between OLKG and other competing policies,

where the normalized opportunity cost is defined as the ratio between the opportunity

cost
R̄πN
N
− R̄OLKG

N

N
and the range of the truth µ. Positive values of OC indicate that the

corresponding policy underperforms OLKG on average. Other than the interest of

average performance measured by pseudo-regret, only one sample path will be realized

in real world experiments and it is meaningful to find out which policy is most likely

to perform the best in one sample run. Thus we also report the probability that

each of the other policy outperforms (obtains a lower regret than) OLKG within 1000

realizations. Any policy can be set as a benchmark by placing it as the first policy in

the input spreadsheet.

We see from the three tables that the probability of any other policy that outper-

forms OLKG is in general much less than 0.5. If this criterion is what an experimenter

anticipates, then OLKG is a safe choice in most situations. We then discuss the per-

formance of each policy in terms of OC. At the beginning of each trial, IE and UCB-E

are more exploiting than exploring while OLKG tends to explore before it moves to-

ward the best estimates. This contributes to good performance (measured by OC) of

IE and UCB-E in Table 7.2 with a small measurement budget. The tuned values of

parameters further sharpen this effect by utilizing smaller values compared to those

under larger measurement budgets as reported in Table 7.5 which summarizes the

optimally tuned values for each parameter. Since UCB policies tend to explore more

than necessary (which can be seen from the sampling pattern, for example, Figure

7.4), the performance degenerates with a moderate measurement budget as shown

in Table 7.3. In this case, OLKG yields the best performance since after an explo-

ration period, it begins to focus on the alternatives that have the best estimates while

looking for alternatives whose estimates are less certain. Yet exploration benefits in
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Table 7.2: The difference between each policy and OLKG (OC), and the probability
that each policy outperforms OLKG, using uninformative priors with a measurement
budget 10 times the number of alternatives.

Problem Class
IE UCBE UCBV UCB KLUCB EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck1 -0.031 0.43 -0.032 0.43 0.073 0.51 0.016 0.35 0.054 0.50 0.078 0.50
Bubeck2 -0.032 0.55 -0.031 0.52 0.097 0.30 0.025 0.43 0.070 0.35 0.105 0.29
Bubeck3 -0.000 0.29 0.006 0.30 0.068 0.26 0.021 0.53 0.020 0.34 0.095 0.23
Bubeck4 -0.004 0.39 -0.003 0.57 0.100 0.36 0.029 0.48 0.040 0.40 0.124 0.33
Bubeck5 -0.019 0.71 -0.020 0.71 0.213 0.01 0.018 0.48 0.087 0.11 0.255 0.00
Bubeck6 -0.034 0.49 -0.035 0.48 0.139 0.34 0.034 0.41 0.098 0.37 0.151 0.33
Bubeck7 -0.036 0.70 -0.036 0.71 0.065 0.17 0.009 0.48 0.043 0.22 0.073 0.15

Table 7.3: The difference between each policy and OLKG (OC), and the probability
that each policy outperforms OLKG, using uninformative priors with a measurement
budget 100 times the number of alternatives.

Problem Class
IE UCBE UCBV UCB KLUCB EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck1 0.006 0.34 0.015 0.32 0.387 0.36 0.245 0.14 0.311 0.37 0.431 0.36
Bubeck2 0.006 0.31 0.017 0.35 0.399 0.09 0.226 0.17 0.309 0.22 0.458 0.06
Bubeck3 0.002 0.32 0.007 0.31 0.111 0.18 0.077 0.39 0.052 0.25 0.214 0.07
Bubeck4 -0.014 0.31 -0.005 0.30 0.232 0.27 0.156 0.32 0.114 0.30 0.365 0.17
Bubeck5 -0.003 0.39 0.003 0.34 0.228 0.01 0.064 0.26 0.094 0.15 0.425 0.00
Bubeck6 0.014 0.38 0.025 0.38 0.522 0.10 0.274 0.12 0.380 0.10 0.619 0.09
Bubeck7 0.015 0.52 0.016 0.44 0.260 0.00 0.158 0.21 0.215 0.09 0.303 0.00

the long run. Thus the performance of UCB policies and IE improves if allowed to

explore for a sufficiently long time as reported in Table 7.4.

7.3.2 Experiments with Correlated Beliefs

In this section, we summarize numerical experiments on problems with correlated

beliefs between different policies, including OLKG, IE with tuning, UCBE, UCB-

V, Kriging, UCB, Thompson Sampling (TS) and pure exploration (EXPL). To take

advantage of correlated beliefs, we use the prior mean as the starting point and use

posterior mean θn in place of the empirical mean for UCB-V and UCB policies.

In order to gain a good understanding of the performance of the policies, MOLTE

produces histograms illustrating the distribution of the difference between the nor-
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Table 7.4: The difference between each policy and OLKG (OC), and the probability
that each policy outperforms OLKG, using uninformative priors with a measurement
budget 500 times the number of alternatives.

Problem Class
IE UCBE UCBV UCB KLUCB EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck1 -0.105 0.30 -0.098 0.30 0.296 0.26 0.288 0.10 0.175 0.27 0.634 0.26
Bubeck2 -0.089 0.28 -0.080 0.26 0.253 0.31 0.226 0.15 0.139 0.32 0.609 0.02
Bubeck3 -0.009 0.34 -0.006 0.31 0.069 0.18 0.077 0.39 0.035 0.29 0.268 0.03
Bubeck4 -0.075 0.28 -0.069 0.27 0.091 0.26 0.174 0.24 0.014 0.26 0.462 0.12
Bubeck5 -0.030 0.33 -0.026 0.31 0.066 0.28 0.050 0.23 0.012 0.34 0.462 0.00
Bubeck6 -0.024 0.26 -0.022 0.24 0.310 0.05 0.227 0.16 0.190 0.06 0.771 0.05
Bubeck7 -0.045 0.33 -0.045 0.34 0.262 0.11 0.152 0.23 0.200 0.27 0.430 0.00

Table 7.5: Tuned parameters of IE and UCB-E under different problem classes and
measurement budgets. The second row indicates the ratio between the measurement
budget and the number of alternatives.

Problem Class
IE UCBE

10 100 500 10 100 500

Bubeck1 0.0007079 1.295 2.036 0.0008991 0.3934 1.103
Bubeck2 0.1675 1.295 2.169 0.002359 0.337 0.9063
Bubeck3 0.8991 1.395 1.878 0.1206 0.4562 0.8635
Bubeck4 0.8991 1.571 2.196 0.004392 0.5332 1.197
Bubeck5 0.004566 1.395 2.169 0.0003102 0.3518 1.002
Bubeck6 0.09063 1.197 1.642 0.000505 0.3201 0.7748
Bubeck7 0.002773 0.8991 1.878 0.0005936 0.2169 0.8007

malized OC of a benchmark policy and either of the other policies over 1000 runs.

Whichever policy that is listed as the first policy is treated as the benchmark. The

measurement budget is set to 0.2 times the number of alternatives of each problem

class. Figure 7.5 compares the performance of several policies under various problem

classes with different benchmark policies. A distribution centered around a positive

value implies the policy underperforms the benchmark policy, while one centered

around a negative number means the policy outperforms the benchmark. For exam-

ple, Figure 7.5(a) compares the performance of UCBV, OLKG, IE, TS and EXPL

under Goldstein with UCBV as the benchmark policy. We can see that the tuned IE

and OLKG are outperforming UCBV and others are underperforming.
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Figure 7.5: Normalized opportunity cost between different policies.

Table 7.6: Comparisons with OLKG for correlated beliefs with the measurement 0.2
times the number of alternatives of each problem class.

Problem Class
IE UCBE UCBV Kriging TS EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.
Goldstein -0.061 0.81 -0.097 0.92 -0.003 0.45 -0.031 0.73 0.100 0.09 0.041 0.16

AUF HNoise 0.058 0.40 0.022 0.43 0.037 0.54 0.031 0.39 0.073 0.22 0.047 0.48
AUF MNoise 0.043 0.29 0.027 0.42 0.343 0.21 0.023 0.28 0.173 0.21 -0.057 0.52
AUF LNoise -0.043 0.73 -0.013 0.64 0.053 0.51 0.005 0.53 0.038 0.20 0.003 0.62

Branin -0.027 0.76 0.025 0.24 0.026 0.26 0.004 0.54 0.041 0.07 0.123 0.00
Ackley 0.007 0.42 0.04 0.41 0.106 0.20 0.037 0.42 0.100 0.23 0.344 0.00

HyperEllipsoid -0.059 0.73 0.064 0.12 0.08 0.07 0.146 0.22 0.011 0.38 0.243 0.03
Pinter -0.028 0.56 -0.003 0.51 0.029 0.42 -0.055 0.65 0.122 0.19 0.177 0.04

Rastrigin -0.082 0.70 -0.03 0.56 0.162 0.04 -0.026 0.57 0.136 0.08 0.203 0.01

We close this section by providing more comparisons between other policies with

OLKG under various problem classes. The measurement budget is set to 0.2 times the

number of alternatives of each problem class. Table 7.6 reports the normalized mean

OCs and the probability that each of the other policy outperforms OLKG under 1000

runs. IE and UCB-E are carefully tuned for each problem classes with the optimal

value shown in Table 7.7. IE and UCB-E after tuning works generally well. Yet the

optimal values of the tuned parameters are quite different for different problems as

shown in Table 7.5 and 7.7. In addition, the performance of the policies are sensitive

to the value of the tunable parameters. In light of this issue, we can conclude that

OLKG and Kriging have one attractive advantage over IE and UCB-E: they require

no tuning at all, while yielding comparable performance to a finely tuned IE or UCB-E

policy. A detailed study on the issue of tuning is presented in Section 7.4.
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Table 7.7: Tuned parameters of IE and UCB-E under different problem classes.
Problem Class IE UCBE

Goldstein 0.009939 2571
AUF HNoise 0.01497 0.319
AUF MNoise 0.01871 1.591
AUF LNoise 0.01095 6.835

Branin 0.2694 0.0003664
Ackley 1.197 1.329

HyperEllipsoid 0.8991 21.21
Pinter 0.9989 0.0001636

Rastrigin 0.2086 0.001476

Table 7.6 together with the comparisons shown in previous sections suggests that

there is no universal best policy for all problem classes and one could possibly design

toy problems for either policy to perform the best. Similar observations have also

been reported by (Kuleshov and Precup, 2000) for different bandit problems on dif-

ferent metrics. Besides, there are theoretical guarantees proved for each of the policy

mentioned above, but the existence of these bounds does not appear to provide re-

liable guidance regarding which policy works best. An asymptotic bound does not

provide any assurance that an algorithm will work well on a particular problem in

finite time. In practice, we believe that more useful guidance could be obtained by

abstracting a real world problem, running simulations and using these to indicate

which policy works best.

7.4 Discussion: the Issue of Tuning

We close our presentation by discussing the tuning issues (of heuristic parameters)

that tend to be overlooked in comparisons of learning algorithms.

Previous experimental results show that tuned version of IE and UCB-E yield good

performance in general and yet the optimal value for IE and UCB-E may be highly

problem dependent. Our experiments also suggest that the performance of a policy

is sensitive to the value of the tuned parameter. For example, Figure 7.8 provides
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the comparisons between the performances of IE with different parameter values

(provided in the parentheses) with the online objective function under various problem

classes. The measurement budget is set to five times the number of alternatives for

each problem class experimented with independent beliefs and 0.3 times the number

of alternatives for each problem class experimented with correlated beliefs. ‘OC’ is

the mean opportunity cost comparing tuned IE with others OCIE − OCπ, with a

positive value indicating a win for tuned IE. ‘Prob.’ is the probability that other

policies outperform the tuned IE. We see from the table that zα is highly problem

dependent and the performance degrades quickly away from the optimal value. For

some experimental applications, tuning can require running physical experiments,

which may be very expensive or even entirely infeasible.

Problem Class B z∗α
IE(1) IE(2) IE(3) IE(4) IE(5)

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.
Bubeck4 I 2.086 0.002 0.40 0.001 0.45 0.002 0.46 0.015 0.47 0.017 0.47
Bubeck6 I 2.01 0.003 0.44 0.001 0.48 0.004 0.43 0.013 0.23 0.028 0.13

AUF MNoise I 1.1305 0.004 0.38 0.041 0.04 0.071 0.00 0.095 0.00 0.114 0.09
CamelBack I 1.295 0.006 0.35 0.069 0.32 0.108 0.03 0.145 0.00 0.172 0.00
AUF LNoise C 0.9498 0.043 0.00 0.080 0.00 0.105 0.00 0.123 0.03 0.136 0.00

Branin C 0.4438 0.001 0.25 0.005 0.32 0.014 0.07 0.023 0.01 0.032 0.01
Goldstein C 0.079 0.071 0.00 0.090 0.00 0.101 0.00 0.108 0.00 0.113 0.00

Rosenbrock C 0.9989 0.007 0.18 0.060 0.08 0.093 0.05 0.120 0.04 0.143 0.03

Table 7.8: Comparisons between tuned IE and IEs with fixed parameter values. The
second column indicates the belief model, with I for independent belief and C for
correlated belief. z∗α is the tuned value for each problem class. The number included
in the parenthesis is the parameter value used by each IE policy.

7.5 Conclusion

We offer MOLTE as a public-domain test environment to facilitate the process of more

comprehensive comparisons, on a broader set of test problems and a broader set of

policies, so that researchers can more easily draw insights into the behavior of different

policies in the context of different problem classes. There has been a long history in

the optimal learning literature of proving some sort of bound, supported at times
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by relatively thin empirical work by comparing a few policies on a small number of

randomly generated problems. When choosing policies from a huge algorithms pool,

we hope MOLTE can be a starting point for researchers, experimental scientists and

students to more easily draw insights into the behavior of different policies in the

context of different problem classes. We demonstrate the ability of MOLTE through

extensive experimental results. We draw the conclusion that there is no universal

best policy for all problem classes, and bounds, by themselves, do not provide reliable

guidance to the policy that will work the best. We envision MOLTE as a modest spur

to induce other researchers to come forward to study interesting questions involved in

optimal learning, for example, the issue of tuning in this paper. We hope MOLTE

can help with the current issue of relative paucity of empirical testing of learning

algorithms.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

My thesis lies at the intersection of data analytics, statistics and machine learning, fo-

cusing on sequential decision-making under uncertainty, exploring the ways where effi-

cient information collection influences and improves decision-making strategies. This

area is known as “optimal learning”, an interdisciplinary field that spans Bayesian op-

timization, multi-armed bandit problems, derivative-free stochastic search, statistical

learning and many others, with potential applications as diverse as business analytics,

healthcare, natural sciences, financial data analysis and revenue management.

In many applications, decisions are made sequentially over time. Despite the previ-

ous successes of applying optimal learning techniques to transportation, e-commerce,

and material sciences, most approaches are restricted to fully sequential settings with

non-parametric Gaussian noise models where exact analytic solutions can be easily

obtained. My thesis work centers around a class of value of information policies,

known as the knowledge gradient, and provides a comprehensive set of techniques

that span from designing appropriate stochastic models to describe the uncertain en-

vironment, to proposing novel statistical models and inferences with new information

184



collected, to finite-time and asymptotic guarantees, with an emphasis on how effi-

cient information collection can expand access, decrease costs and improve quality in

health care.

First, we provide the first finite-time bound for the knowledge gradient policy,

solving the open problem of long standing. We offer a new perspective of inter-

preting ranking and selection problems as adaptive stochastic multi-set maximiza-

tion problems and deriving the first finite-time bound of the knowledge-gradient,

which characterizes KG as a near-optimal algorithm with an approximation ratio of

e/(e − 1) ≈ 1.582. In addition, we propose the concept of prior-optimality which

provides a cleaner relationship between the performance of the policy and the sample

taken, making it possible to relate the value of information to the submodularity of

the sample.

Since there are many situations where the outcomes are dichotomous, we consider

the problem of sequentially making decisions that are rewarded by “successes” and

“failures” which can be predicted through an unknown relationship that depends on

a partially controllable vector of attributes for each instance. The learner takes an

active role in selecting samples from the instance pool. The goal is to maximize

the probability of success, either after the offline training phase or minimizing regret

in online learning. Unlike prior work with the knowledge gradient which assumed

Gaussian noise and/or linear belief models, the non-linearity introduced by the link

functions causes additional computational hurdle. With the adaptation of an online

Bayesian linear classifier, we propose a stochastic binary feedback (success/failure)

model and designed a knowledge gradient (KG) policy to guide the experiment by

maximizing the expected value of information of labeling each alternative, in order

to reduce the number of expensive physical experiments.

We further study the problem of how sequentially assignment of physi-

cians/facilities to individual patients can reduce the health care costs. This is
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an example of the broader area of personalized medicine, which formalizes clinical

decision making as a function that maps individual patient information (including

measures of disease stage severity, medical history, clinical diagnosis) to a recom-

mended treatment. Each experiment is expensive, forcing us to learn the most from

each health episode. By formulating the problem as Bayesian contextual bandits and

introducing the concept of post-observation state, we develop an optimal learning

policy to guide the treatment assignment. We provide a detailed case study on a

real-world knee replacement dataset. The goal is to find the treatments that lead to

the best patient responses, on average, over time. Due to the intrinsic sparsity of

health datasets, we use network modularity detection and LASSO to perform feature

selection.

As in the healthcare example, a patient can have a number of attributes, span-

ning from the age, weight, to diagnoses and to their medical history. One of the most

important elements in sequential decision making problems is stochastic models of

the environment and proper statistical models and inferences to represent our chang-

ing beliefs about the environment as new information is collected. For this reason,

we design an ensemble optimal learning method to respond quickly and robustly to

complex data streams. In our ensemble systems, multiple models, such as classifiers

or experts, are strategically generated and combined to minimize the unfortunate

selection of a particularly poorly performing statistical model. Similar to the idea

of online boosting, we use Bayesian learning with expert advice as the belief model,

aiming to improve the prediction of the performance of each alternative overall, so as

to spend the limited measurement budget more wisely. To the best of our knowledge,

this work is the first attempt to use an online boosting framework as the prediction

model in Bayesian optimization and multi-armed bandit literature. We use logistic

learners as an illustration of the base models and derive an efficient and practical al-
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gorithm for ensemble sequential decision making, overcoming massive computational

hurdles.

Most previous work in optimal learning assumes a fully sequential setting where

at each time step only one decision is made. However, the sequential design fails

to account for the ability to run several parallel experiments in batches. Driven

by numerous needs among materials science society, we develop a Nested-Batch-KG

policy for sequential experiments when experiments can be conducted in parallel

and/or there are multiple tunable parameters which are decided at different stages in

the process. We demonstrate the effectiveness of our approach on the material design

problem of maximizing output current of a photoactive device.

There has been a long history in the optimal learning literature of proving some

sort of bound, supported at times by relatively thin empirical work by comparing a few

policies on a small number of randomly generated problems. In the last past of this

thesis, we present a public-domain test environment MOLTE, aiming to facilitate

the process of more comprehensive comparisons, on a broader set of test problems

and a broader set of policies, so that researchers can more easily draw insights into

the behavior of different policies in the context of different problem classes.

8.2 Future Research

By bridging statistical machine learning and stochastic optimization, my goal is to

develop information collection strategies that are efficient, flexible and broadly appli-

cable.

My approach to this goal has two folds. First, I plan to develop optimal learning

strategies for a wide range of belief models that are arisen from real-world applications

of interest within healthcare, revenue management, market research, and elsewhere.

Second, I plan to provide theoretical guarantees to characterize the performance of
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information collection strategies in general and use these results to motivate better

practical strategies. Possible future research directions are listed below:

Optimal learning for expensive multi-objective optimization. Many real-

world applications involve multi-objective optimization. For example, in healthcare

analytics, one might want to minimize healthcare cost and maximize quality of life

at the same time. Multi-objective optimization then involves simultaneously opti-

mizing more than one objective function. My goal is to develop an optimal learning

algorithm that iteratively and adaptively selects a sequence of designs so as to effec-

tively identify the Pareto frontier. Besides health care applications, other application

includes financial data analysis, environmental data analysis, and transportation.

Optimal learning with ordered feedback. Many clinical procedures are mea-

sured on an ordinal scale (e.g. poor, fair, good, very good and excellent), which

ideally should not be reduced for analysis to a simple dichotomy. It can be thought

of as an extension of the binary generalized linear model that allows for more than

two ordered response categories. The challenge lies in the ability to sequentially make

decisions under ordered feedback.

Optimal learning under nonlinear constraints. Current optimal learning liter-

ature is mainly focused on Bayesian optimization with constraints only on the ranges

of the design variable values to be considered. I plan to extend the methodology to

general nonlinear constraints. For example, in revenue management, we care about

the risk of total revenue falling below a target. One interesting line of research ad-

dresses how to compute the knowledge gradient while using a risk measure as the

objective.
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Active preference learning. Many online recommender systems provide each

user a pair of items and record the user’s choice. The goal of preference learning is

to learn a predictive preference model from observed preference information. I plan

to study the problem of how to adaptively select the next measuring pair so as to

find the item with the highest user valuation in as few comparisons as possible. One

possible way is to use Gaussian processes and design a knowledge gradient policy that

depends on the probability of each alternative is preferred to another one.

Sparse optimal learning in high-dimensional settings with Relevance Vec-

tor Machine. How to effectively learn in the presence of high-dimensional data is

always a challenge. Relevance Vector Machine uses Bayesian inference to obtain par-

simonious solutions for regression and probabilistic classification. I plan to develop

effective optimal learning methods for high-dimensional data by taking advantage

of Relevance Vector Machine and kernel methods. It has the potential to be used in

healthcare, image processing, text mining, bioinformatics, and financial data analysis.

Information collection using deep learning. Deep learning attempts to model

high-level abstractions in data by using a deep structure with multiple processing

layers, which is composed of multiple linear and non-linear transformations. I plan

to design efficient information collection methods under proper deep neural net belief

models and develop (approximated) updating schemas. With its ability to approxi-

mate any continuous function, this class of optimal learning methods will be broadly

applicable in, but not restricted to, image processing, healthcare, revenue manage-

ment, energy and economics.
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Appendix A

Proofs

A.1 Proof of Lemma 2.2.6

For any ψ with |ψ| = n, we consider the resulting knowledge state Sn = (θnx , β
n
x )x∈X .

Since σW 6= 0, there exists such ψ that maxx θ
n
x > maxx 6=x′ θ

n
x with positive probabil-

ity. Now consider another realization ψ′ with dom(ψ′) = dom(ψ) ∪ {x2}, where x2 is

the second largest alternative of θnx . We denote the observation of x2 in ψ′ as W2 and

the resulting Sn+1 as (θn+1
x , βn+1

x )x∈X according to Bayes’ rule. With independent

normal beliefs, the knowledge gradient ∆(x|ψ) = νKG,n
x can be analytically expressed

by

νKG,n
x = σ̃nxf(ζnx ),

where σ̃nx =
√

(βnx )−1 − (βnx + βW )−1, ζnx = −
∣∣∣ θnx−maxx′ 6=x θ

n
x′

σ̃nx

∣∣∣ and f(ζ) = ζΦ(ζ)+φ(ζ).

Φ(ζ) and φ(ζ) are, respectively, the cumulative standard normal distribution the

standard normal density (Frazier et al., 2008). We first notice that f ′(ζ) = Φ(ζ) ≥ 0

for any ζ ∈ R so that f(ζ) is non-decreasing. We next compare νKG,n
x1

and νKG,n+1
x1

for

x1 = arg maxx θ
n
x . According to Bayes’ rule, the precision β of x changes only when x

is measured. So we have σ̃nx1 = σ̃n+1
x1

. Similarly we have all the θn+1
x unchanged except

for alternative x2.
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We will next show that for any W2 such that θnx2 < W2 ≤
βnx2
βW

(θnx1 − θnx2) + θnx1 ,

we have νKG,n
x1

< νKG,n+1
x1

. Recall that θn+1
x2

=
βnx2θ

n
x2

+βWW2

βn+βW
. When W2 > θnx2 , we

have θn+1
x2

> θnx2 . Since θn+1
x = θnx for all x 6= x2, and θnx2 = maxx′ 6=x1 θ

n
x′ , we have

θn+1
x2

= maxx′ 6=x1 θ
n+1
x′ and thus ζn+1

x1
= −

∣∣∣ θn+1
x1
−maxx′ 6=x1

θn+1
x′

σ̃n+1
x

∣∣∣ = −
∣∣∣ θnx1−θn+1

x2

σ̃nx

∣∣∣.
If W2 ≤

βnx2
βW

(θnx1 − θ
n
x2

) + θnx1 holds, we have θnx1 − θ
n+1
x2

> 0 and

ζn+1
x1

= −
(θnx1 − θn+1

x2

σ̃nx

)
> −

(θnx1 − θnx2
σ̃nx

)
= −

∣∣∣θnx1 − θn+1
x2

σ̃nx

∣∣∣ = ζnx1 .

Due to the fact that f(ζ) is non-decreasing, we have

νKG,n
x1

= σ̃nx1f(ζnx1) < σ̃nx1f(ζn+1
x1

) = σ̃n+1
x1

f(ζn+1
x1

) = νKG,n+1
x1

.

Since θnx1 > θnx2 by construction, such W2 that satisfies θnx2 < W2 ≤
βnx2
βW

(θnx1−θ
n
x2

)+

θnx1 can be obtained with positive probability.

A.2 Proof of Proposition 2.2.1

Let z∗(Z, π,Φ) be the next adaptive greedy choice that maximizes the expected

marginal increment given that policy π has generated Z. We first show that

F π2�π1 ≤ F π2 + n1

∑
Z∈Zn

P(π2  Z)
(
E
[
v̂(Z ∪ {z∗(Z, π2,Φ)},Φ)

]
− v(Z)

)

for all policies π1 with a measurement budget n1 and π2 with a budget n2 under any

prior and probability distribution that describes a measurement.

Proof. Let π[j] denote the first j measurement decisions under some policy π. First

of all we break F π2�π1 − F π2 into n1 consecutive differences,

F π2�π1 − F π2 =

n1∑
j=1

(
F π2�π[j]

1 − F π2�π[j−1]
1

)
.
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Similar to what we did in the last lemma, for each difference we have

F π2�π[j]
1 − F π2�π[j−1]

1

=
∑

Z1∈Zn2+j
P(π2 � π[j]

1  Z1)v(Z1)−
∑

Z2∈Zn2+j−1

P(π2 � π[j−1]
1  Z2)v(Z2)

=
∑

Z1∈Zn2+j

∑
Z2∈Zn2+j−1,Z2∪Z3=Z1

P(π2 � π[j−1]
1  Z2)P(π

{j}
1  Z3|π2 � π[j−1]

1  Z2)v(Z1)

−
∑

Z2∈Zn2+j−1

∑
Z3∈Z1

P(π2 � π[j−1]
1  Z2)P(π

{j}
1  Z3|π2 � π[j−1]

1  Z2)v(Z2)

=
∑

Z2∈Zn2+j−1

∑
Z3∈Z1

P(π2 � π[j−1]
1  Z2)P(π

{j}
1  Z3|π2 � π[j−1]

1  Z2)
(
v(Z2 ∪ Z3)− v(Z2)

)
.

Now we consider all possible pair (Z4, Z5) such that Z4 ∈ Zn2 , Z5 ∈ Zj−1 and

Z4 ∪ Z5 = Z2. Notice that the policy π2 � π[j]
1 employs a fresh start at the time n2,

therefore the events before and after time n2 are independent. Then we have

∑
Z2∈Zn2+j−1

∑
Z3∈Z1

P(π2 � π[j−1]
1  Z2)P(π

{j}
1  Z3|π2 � π[j−1]

1  Z2)
(
v(Z2 ∪ Z3)− v(Z2)

)
=

∑
Z2∈Zn2+j−1

∑
Z4∪Z5=Z2

∑
Z3∈Z1

P(π2  Z4)P(π
[j−1]
1  Z5)P(π

{j}
1  Z3|π2 � π[j−1]

1  Z2)

×
(
v(Z2 ∪ Z3)− v(Z2)

)
.

Based on the submodular property of function v, we have

v(Z2 ∪ Z3)− v(Z2) ≤ v(Z4 ∪ Z3)− v(Z4).

Then from the definition of z∗, we have
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v(Z4 ∪ Z3)− v(Z4) = E[v̂(Z4 ∪ Z3,Φ)− v̂(Z4,Φ)]

= EΦ

[
E[v̂(Z4 ∪ Z3,Φ)− v̂(Z4,Φ)|Zπ2(Φ) = Z4]

]
≤ EΦ

[
E[v̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)− v̂(Z4,Φ)|Zπ2(Φ) = Z4]

]
= EΦ[v̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)]− v(Z4).

Combining the last two inequalities, we have

∑
Z2∈Zn2+j−1

∑
Z4∪Z5=Z2

∑
Z3∈Z1

P(π2  Z4)P(π
[j−1]
1  Z5)P(π

{j}
1  Z3|π2 � π[j−1]

1  Z2)

×
(
v(Z2 ∪ Z3)− v(Z2)

)
≤

∑
Z2∈Zn2+j−1

∑
Z4∪Z5=Z2

∑
Z3∈Z1

P(π2  Z4)P(π
[j−1]
1  Z5)P(π

{j}
1  Z3|π2 � π[j−1]

1  Z2)

×
(
Ev̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)− v(Z4)

)
=

∑
Z2∈Zn2+j−1

∑
Z4∪Z5=Z2

P(π2  Z4)P(π
[j−1]
1  Z5)

(
Ev̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)− v(Z4)

)
=

∑
Z4∈Zn2

∑
Z5∈Zj−1

P(π2  Z4)P(π
[j−1]
1  Z5)

(
Ev̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)− v(Z4)

)
=

∑
Z4∈Zn2

P(π2  Z4)
(
Ev̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)− v(Z4)

)
,

and this ends the proof.

Set π1 = π∗ and π2 = KG[n−1] in Lemma 2.2.12 and the above proposition then

what left to show is that

FKG[n] − FKG[n−1] ≥
∑
Z∈Zn

P(π2  Z)
(
Ev̂(Z ∪ {z∗(Z,KG[n−1],Φ)},Φ)− v(Z)

)
.
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From the definition, the left hand side of the last equation:

FKG[n] − FKG[n−1]

=
∑

Z1∈Zn+1

P(KG Z1)v(Z1)−
∑
Z2∈Zn

P(KG Z2)v(Z2)

=
∑
Z2∈Zn

∑
Z3∈Z1

P(KG Z2)P(KG Z3|KG Z2)v(Z2 ∪ Z3)

−
∑
Z2∈Zn

P(KG Z2)v(Z2).

Now it is enough to show that

∑
Z3∈Z1

P(KG Z3|KG Z2)v(Z2 ∪ Z3)− v(Z2)

≥ Ev̂(Z2 ∪ {z∗(Z2,KG[n−1],Φ)},Φ)− v(Z2).

We could group together the partial realizations ψ that lead to the same single step

optimal decision z∗(Z2,KG[n−1],Φ), and then the last inequality follows from the

adaptive greedy nature of the KG policy.

A.3 Proof of Theorem 2.3.2

First of all, we consider the case when f is a two dimensional function and the four

points we pick form a rectangle. Assume f(x, y) is submodular. For any given point

(x0, y0), we have f(x0 + t + s, y0) − f(x0 + t, y0) ≤ f(x0 + s, y0) − f(x0, y0) and

f(x0 + t, y0)− f(x0, y0) ≤ f(x0 + t, y0 + s)− f(x0, y0 + s) for any s, t > 0. From the

first inequality we get fxx(x0, y0) ≤ 0 directly. From the second inequality, we have

fx(x0, y0) ≤ fx(x0, y0 + s), and finally fx,y(x0, y0) ≤ 0. On the other hand, if we have

fxy ≤ 0, fxx ≤ 0, for any (x, y), then due to the fact that f(x0 + t, y0 + s) − f(x0 +

t, y0)−
(
f(x0, y0 + s)− f(x0, y0)

)
=
∫ x0+t

x0

∫ y0+s

y0
fxy(u, v)dudv ≤ 0, f(x0 + t+ s, y0)−
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f(x0 +t, y0)−
(
f(x0 +s, y0)−f(x0, y0)

)
= stfxx(x0 +ξ, y0) ≤ 0, for some 0 < ξ < t+s,

we obtain the submodularity.

We next consider the general case when f is n dimensional and the four points

only form a parallelogram. Since the difference between the two marginal values can

be decomposed into summation of several marginal value differences whose reference

points form rectangles that parallel to coordinate planes, the result for the general

case is straightforward from the two dimensional case.

A.4 Proofs of Asymptotic Optimality

In this section, we provide detailed proofs of all the asymptotic optimal results in

Section 3.5.3.

A.4.1 Proof of Proposition 3.5.1

We use q(w) to denote the predictive distribution under the state s and use

p(w|s,x, yx) to denote the posterior distribution after we observe the outcome of x

to be y. By Jensen’s inequality, we have

µKG
x (s) = E

[
max
x′

p(y = +1|x′, T (s,x, yx))
]
−max

x′
p(y = +1|x′, s)

≥ max
x′

E
[
p(y = +1|x′, T (s,x, yx))

]
−max

x′
p(y = +1|x′, s).

We then show that E
[
p(y = +1|x′, T (s,x, yx))

]
= p(y = +1|x′, s) for any x,x′

and s, which leads to µKG
x (s) ≥ 0. Since yx is binomial distributed with mean

p(yx = +1|x, s), we have

E
[
p(y = +1|x′, T (s,x, yx))

]
= p(yx = +1|x, s)p(y = +1|x′, T (s,x,+1)) + (1− p(yx = +1|x, s))p(y = +1|x′, T (s,x,−1)).

195



Recall that p(y = +1|x, s) =
∫
σ(wTx)p(w|s)dw. By Bayes’ Theorem, the pos-

terior distribution in the updated state T (s,x, yx) becomes

p(w′|T (s,x,+1)) =
σ((w′)Tx)p(w′|s)∫
σ(wTx)p(w|s)dw

,

and

p(w′|T (s,x,−1)) =

(
1− σ((w′)Tx)

)
p(w′|s)∫

(1− σ(wTx)) p(w|s)dw
.

Notice that

p(y = +1|x′, T (s,x,+1)) =

∫
σ((w′)Tx′)p(w′|T (s,x,+1))dw′

=

∫
σ((w′)Tx′)

σ((w′)Tx)p(w′|s)∫
σ(wTx)p(w|s)dw

dw′

=

∫
σ((w′)Tx′)σ((w′)Tx)p(w′|s)dw′∫

σ(wTx)p(w|s)dw
,

and similarly, we have

p(y = +1|x′, T (s,x,−1)) =

∫
σ((w′)Tx′)(1− σ((w′)Tx))p(w′|s)dw′∫

(1− σ(wTx))p(w|s)dw
.

Therefore,

E
[
p(y = +1|x′, T (s,x, yx))

]
= p(y = +1|s,x)p(y = +1|x′, T (s,x,+1)) + p(y = −1|s,x)p(y = +1|x′, T (s,x,−1))

=

∫
σ((w′)Tx′)σ((w′)Tx)p(w′|s)dw′ +

∫
σ((w′)Tx′)(1− σ((w′)Tx))p(w′|s)dw′

=

∫
σ((w′)Tx′)p(w′|s)dw′

= p(y = +1|s,x′),
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and thus we obtain

E
[
p(y = +1|x′, T (s,x, yx))

]
= p(y = +1|s,x′).

A.4.2 Proof of Proposition 3.5.2

The proof is similar to that by Frazier et al. (2009) with additional tricks for

Bernoulli distributed random variables. Let G be the sigma-algebra by the collection

{ŷn+11{xn=x}}. Since if the policy π measures alternative x infinitely often, this

collection is an infinite sequence of independent random variables with common

Bernoulli distribution with mean σ(wTx), the strong law of large numbers implies

σ(wTx) ∈ G. Since G ∈ F∞, we have σ(wTx) ∈ F∞. Let U be a uniform ran-

dom variable in [0, 1]. Then the Bernoulli random variable yx can be rewritten as

1U≤σ(wTx). Since U is independent with F∞ and the σ-algebra generated by σ(wTx),

it can be shown that by properties of conditional expectations,

E
[
σ(wTx′)|F∞,1U≤σ(wTx)

]
= E

[
σ(wTx′)|F∞

]
.

We next show that the knowledge gradient value of measuring alternative x is zero

by substituting this relation into the definition of the knowledge gradient. We have

νx(F∞) = E
[

max
x′

E
[
σ(wTx′)|F∞,1U≤σ(wTx)

]
|F∞

]
−max

x′
E
[
σ(wTx′)|F∞

]
= E

[
max
x′

E
[
σ(wTx′)|F∞

]
|F∞

]
−max

x′
E
[
σ(wTx′)|F∞

]
= max

x′
E
[
σ(wTx′)|F∞

]
−max

x′
E
[
σ(wTx′)|F∞

]
= 0.
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A.4.3 Proof of the Theorem 3.5.6: Consistency of the KG

Policy

It has been established that almost surely the knowledge gradient policy will achieve

a state (at time T) that the KG values for all the alternatives are smaller than

ε, after which the probability of selecting each alternative is 1/M where M is the

number of alternatives. Notice that in each round, KG policy first picks one out

of M alternatives, then a feedback of either 1 or -1 is observed. Equivalently, we

can interpret the two procedures as one of the 2M possible outcomes from the set

Ỹ := {(0, . . . ,+1/− 1, . . . 0)}, where each ỹ ∈ Ỹ is a M -dimensional vector with only

element being +1 or -1. It should be noted that by changing the feedback schema in

this way will not affect the Bayesian update equations because the likelihood function

and the normalization factor in the posterior will both multiply by a factor of 1/M .

On the other hand, this combined feedback schema makes it possible to treat each

measurement (xn, yn) as i.i.d. samples in Ỹ .

Define the K-L neiborhood as Kε(u) = {v : KL(u, v) < ε}, where the K-L diver-

gence is defined as KL(u, v) :=
∫
v log(v/u). Since the prior distribution is Gaussian

with positive definite covariance matrix, and the likelihood function is the sigmoid

function which only takes positive values, then after time T , the posterior probability

in the K-L neighborhood of w∗ is positive. Based on standard results on the consis-

tency of Bayes’ estimates (Ghosal and Roy, 2006; Ghosal et al., 1999; Tokdar and

Ghosh, 2007; Freedman, 1963), the posterior is weakly consistent at w∗ in the sense

that for any neighborhood U of w∗, the probability that µ(w) lies in U converges to

1.

P[U |ỹ1, ỹ2, . . . , ỹn]→ 1.

Without loss of generality, assume that the alternative x∗ with the largest prob-

ability of +1 is unique, which means σ((x∗)Tw∗) > σ(xTw∗) for any alternative
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x other than x∗. Then we can pick U to be the neighborhood of w∗ such that

σ((x∗)Tw) > σ(xTw) holds for any w ∈ U . The neighborhood U exists because we

only have finite number of altervatives. From the consistency results, the probability

that the best arm under posterior estimation is the true best alternative goes to 1 as

the measurement budget goes to infinity.
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