
Supervised Machine Learning for
Greedy Agglomeration in Connectomics

Karan Kathpalia

A Thesis
Presented to the Faculty
of Princeton University

in Candidacy for the Degree
of Master of Science in Engineering

Recommended for Acceptance
by the Department of

Computer Science
Adviser: Hyunjune Sebastian Seung

June 2017

c© Copyright by Karan Kathpalia, 2017.
All rights reserved.

Abstract

This study explores the use of supervised machine learning methods for greedy ag-
glomeration in the application of constructing connectomes or neural wiring dia-
grams that show how neurons are connected to each other. The current approach
to this problem is mean affinity greedy agglomeration, which makes locally optimal
merge/not-merge decisions. The rationale behind using supervised learning methods
is that they may lead to locally optimal merge/not-merge decisions that are more
globally optimal than those made by mean affinity agglomeration. The results of this
study are inconclusive on whether supervised machine learning methods are better
than mean affinity agglomeration because of evaluation issues. Future work should
thus explore better methods of evaluating agglomeration performance. In addition,
future work should address the specific weaknesses of the pipeline for producing con-
nectomes: misalignment errors and errors where the dendritic spines do not grow out
from the dendritic shafts.

iii

Acknowledgements

The work presented in this thesis was performed in collaboration with Jonathan
Zung, Ignacio Tartavull, Kisuk Lee and Sebastian Seung. I would like to acknowl-
edge their contributions as this thesis would not have been possible without their
work. Jonathan and Ignacio built the greedy agglomeration framework, formulated
the supervised machine learning approach to greedy agglomeration, implemented the
random forest machine learning model and designed the majority of the feature set.
Kisuk trained the multi-scale convolutional neural network used to predict affinity
maps. Sebastian gave constructive advice about the experimental setup and helped
with the graph analysis.

iv

Contents

Abstract . iii
Acknowledgements . iv

1 Introduction 1

2 Related Work 3

3 Design 6
3.1 Datasets . 6
3.2 Methods . 8

3.2.1 Multi-scale Convolutional Neural Network for Boundary Detec-
tion and Affinity Map Prediction 8

3.2.2 Mean Affinity Agglomeration 8
3.2.3 Supervised Greedy Agglomeration 9

3.3 Experiments . 10
3.3.1 Classification Precision-Recall Graphs 10
3.3.2 Agglomeration Precision-Recall Graphs 11

4 Evaluation 12
4.1 Classification Precision-Recall Graphs 12
4.2 Agglomeration Precision-Recall Graphs 14

5 Conclusion 18

Bibliography 20

v

Chapter 1

Introduction

Connectomics is a field of study that seeks to map the connections between neu-
rons in the brain (the connectome) to understand how these connections shape our
thoughts, feelings, perceptions and memories. Please see Figure 1.1 for an illustration
of a connectome. The human brain contains over 10 billion neurons and 100 trillion
synapses and so it is impractical to construct a connectome manually. At present,
only the connectome of C. elegans has been fully reconstructed in a labour-intensive,
manual process because the brains of C. elegans contain roughly 300 neurons [23]. It
is thus necessary to perform automatic reconstruction of the connections between the
neurons in the human brain in order to map the connectome of a human brain in a
feasible amount of time.

Neuroscientists are currently trying to construct partial connectomes of the mouse
brain (in particular, the retina and cortex) to test the hypothesis that the connections
between neurons in the brain shape our thoughts, feelings, perceptions and memories.
The standard approach to the problem of automatic reconstruction is to cut a sub-
section of a mouse brain into tiny slices, capture high-resolution serial section EM
(electron microscopy) images of these slices to create a 3D stack or volume of aligned
images, use a multi-scale convolutional neural network to predict voxel-wise affinity
maps for the volume in the x,y,z directions, run the watershed algorithm on the
affinity maps to create oversegmented supervoxels, perform greedy agglomeration of
the oversegmented supervoxels to assemble neuron part volumes and correct the errors
in the partially assembled connectome via human proof-reading.

The current approach to greedy agglomeration is to first compute the mean affin-
ity of voxels along the shared boundaries of two supervoxels for every pair of adjacent
supervoxels and then repeat the following process until there are no more supervox-
els to be merged: find the supervoxel pair with the highest mean affinity and if the
mean affinity exceeds a threshold, merge the two supervoxels and update the mean
affinities of pairs consisting of the surrounding supervoxels and the merged supervox-
els. The goal of this study is to investigate whether a supervised machine learning
approach (which performs inference using models trained on labelled data) to greedy
agglomeration would lead to the construction of more accurate connectomes.

1

Figure 1.1: Partial connectome of mouse retina constructed in the citizen science
game Eyewire [1]

2

Chapter 2

Related Work

In this paper, convolutional neural networks are used to perform boundary detec-
tion and affinity map prediction. Convolutional neural networks are part of a special
class of artificial neural networks called multi-layer perceptrons [6]. Artificial neural
networks consist of neurons, weighted connections between neurons and a non-linear
activation function for the neurons. Multi-layer perceptrons are feedforward neural
networks (directed acylic graphs where nodes are neurons and edges are connections)
arranged in layers such that each neuron in a given layer is only connected to neurons
in the next layer. Typically, each neuron is connected to every neuron in the next
layer in multi-layer perceptrons. Artificial neural networks are trained using back-
propagation, which computes the partial derivatives of the reward/loss function with
respect to each individual weight and bias parameter in the network [19].

Convolutional neural networks were invented at Bell Labs to solve the problem
of recognising handwritten digits and letters in images [12]. Convolution is the op-
eration of applying a flipped kernel to a signal by ”sliding” it around the image and
computing a linear combination of the inputs ”covered” by the kernel using the kernel
weights. A convolutional layer contains a convolutional kernel for each possible com-
bination of input feature map and output feature map, and applies the appropriate
convolutional kernel to the appropriate input feature map to obtain part of the pre-
activity image for the output feature map. A pooling layer simply down-samples the
resolution of the input feature maps, which is typically performed by either taking
the maximum or average of input feature map values within some small rectangular
grid. A convolutional neural network consists of alternating convolutional layers and
pooling layers, followed by a multi-layer perceptron [13].

Deep learning, the training of neural networks with a large number of layers, has
become the prevalent approach in computer vision in recent literature. Before 2012,
standard supervised machine learning methods and hand-designed features were com-
monly used in computer vision. This was because the labelled datasets used for train-
ing machine learning classifiers for computer vision applications were relatively small
before 2012, which prevented high capacity models such as deep neural networks from
being properly fitted to the data. The performance capabilities of deep convolutional
neural networks in computer vision were finally realised with the introduction of Ima-
geNet, a database of images of objects (i.e. visual categories) containing over 1 million

3

labelled images and over 1000 object classes [5, 20]. In 2012, a deep convolutional
neural network model developed by researchers at the University of Toronto won the
ImageNet Large-scale Visual Recognition Challenge by a large margin over tradi-
tional supervised machine learning models [11]. This development convinced many
computer vision researchers to develop large-scale annotated datasets of images and
train deep convolutional neural networks on these datasets to solve computer vision
problems. At the time of writing, convolutional neural networks have demonstrated
high performance at object recognition [11], scene recognition [24], semantic segmen-
tation [15], the playing of classic Atari games [16], and many other applications.

In connectomics, convolutional neural networks are used to perform boundary
prediction (i.e. predict which voxels contain a neuronal boundary) and affinity map
prediction (i.e. predict affinities or similarities between pairs of adjacent voxels in
the x, y, z directions) given EM images of the brain. Using sliding-window deep
convolutional neural networks for boundary prediction became prevalent after Ciresan
et al. won the ISBI 2012 competition with a deep convolutional neural network
that outperformed the other entries by a considerable margin [2, 4]. Convolutional
neural networks were first used to predict affinity maps in 2010 before Ciresan et al.
won the ISBI 2012 competition and AlexNet won the ImageNet Large-scale Visual
Recognition Challenge [22]. Recent literature on deep learning applied to biomedical
images (including EM images of the brain) has focused on the use of recursive training
of 2D-3D convolutional neural networks (i.e. train a 2D convolutional neural network
first, add a 3D convolutional neural network at the end that takes 2D input from
the 2D convolutional neural network output along with the raw voxel values, and
then train both networks simultaneously) [14], and on the use of deconvolutions (up-
sampling convolutions) in U-shaped network architectures [18].

The literature in agglomeration for connectomics features a variety of approaches
involving reinforcement learning, context-aware delayed agglomeration and unsuper-
vised deep learning. Jain et al. interpret agglomeration as a reinforcement learning
problem with value estimation (i.e. use a machine learning method to predict values
of the action-value function) and infinite discounting [9]. Their method attempts to
learn the similarity function between two superpixels and then use the learned simi-
larity function for agglomeration. On the other hand, Parag et al. use a method that
separates superpixels into different semantic classes (cytoplasm and mitochondria)
and then performs class-specific agglomeration but some supervoxel merges are de-
layed until a more confident boundary prediction can be generated [17]. This method
uses greedy delayed-agglomeration, and a supervised machine learning method for
boundary prediction that helps cluster the cytoplasm superpixels. In contrast to the
two aforementioned papers, Bogovic et al. use unsupervised deep learning to learn 3D
agglomeration features and show that the automatically learned features combined
with hand-designed features lead to better agglomeration performance [3]. Compared
to the aforementioned methods, the agglomeration approach taken in this paper is
different in the following manner:

• The basic approach is that a multi-scale convolutional neural network is used to
predict voxel affinities in the x, y, z directions and the mean affinity of the shared

4

boundary voxels between two adjacent supervoxels is used to decide whether to
merge the supervoxels in greedy agglomeration.

• Supervised machine learning is used with some features generated from the
affinity map multi-scale convolutional neural network to learn a function that
predicts whether or not to merge two adjacent supervoxels.

• A special procedure called teacher-forced mean affinity agglomeration is used to
generate labelled examples for the supervised machine learning classifiers using
the agglomeration ground truth (i.e. the expected output of agglomeration).

In short, the major contribution of this paper is the use of supervised machine learning
methods for merge decisions in greedy agglomeration in conjunction with a novel
procedure for generating labelled examples to help train and test these methods.

5

Chapter 3

Design

This chapter introduces the datasets, methods and experiments used to design the su-
pervised machine learning formulation for greedy agglomeration and evaluate whether
this formulation of greedy agglomeration leads to higher quality connectomes.

3.1 Datasets

The SNEMI3D and AC3 datasets are used in experiments in this study. Both datasets
are subvolumes of the dataset used in the paper ”Saturated Reconstruction of a
Volume of Neocortex” [10]. Both datasets contain 3D image stacks of the mouse
neocortex taken using serial section Scanning Electron Microscopy (ssSEM). The
SNEMI3D dataset contains a training set with 100 EM image sections of size 1024
x 1024 and a test set with 100 EM image sections of size 1024 x 1024. The AC3
dataset contains a training set with 256 EM image sections of size 1024 x 1024 and
a test set with 256 EM image sections of size 1024 x 1024. Each dataset contains
labels in the following format: each voxel in the dataset is assigned a number that
corresponds to some object so that all the voxels inside a particular object have the
same number. Please see Figure 3.1, which contains a sample serial section from the
SNEMI3D dataset with labels superimposed.

For SNEMI3D, the multi-scale convolutional neural network was trained on the
SNEMI3D training set while greedy agglomeration was trained on the training set
and tested on the test set. Observe that the convolutional neural network is used
to predict affinities on data that it was trained on. To ensure that this does not
significantly affect the results, the AC3 test set was split into a training set containing
128 EM image sections and a test set containing 128 EM image sections. The multi-
scale convolutional neural network was trained on the original training set while
greedy agglomeration was respectively trained and tested on the training and test
sets created by partitioning the original test set.

6

Figure 3.1: Training labels superimposed on serial section image from SNEMI3D
dataset [8]

7

3.2 Methods

3.2.1 Multi-scale Convolutional Neural Network for Bound-
ary Detection and Affinity Map Prediction

A multi-scale convolutional neural network is used to perform boundary detection
and affinity map prediction. The two tasks are closely related and similar network
architectures are used for both. The difference is that in boundary detection, the
network predicts a label from the set {boundary, not-boundary} for each voxel (i.e.
detect neuronal boundaries in the stack) [4] while in affinity map prediction, the
network predicts affinity maps in the x, y and z directions (the affinity between two
voxels indicates how similar the voxels are) [22]. The following description focuses
on networks for boundary detection because they are easier to describe. Given a
stack of EM images, each training iteration randomly samples a mini-batch of 3D
context windows centred at specific voxels in the stack along with the true labels
for these specific voxels and performs backpropagation to obtain the weight updates
for each neuron in the network. The multi-scale neural network was trained using
mini-batch stochastic gradient descent with momentum, dropout regularisation, a
manual learning rate schedule (i.e. drop the learning rate by a factor of 2 every time
the validation error flatlines until this is no longer effective) and data augmentation
(rotation, horizontal flipping and vertical flipping of context windows) [7, 11, 21].
The convolutional neural network makes multi-scale predictions because there are
different parallel paths in the network architecture with different receptive fields that
are combined at the end to give the final prediction (i.e. branching architecture).

3.2.2 Mean Affinity Agglomeration

The mean affinity agglomeration algorithm is a greedy agglomeration algorithm that
starts off by computing the mean affinity of the supervoxels along the shared boundary
of every two adjacent supervoxels. The algorithm then repeats the following steps
until no more supervoxels can be merged:

1. Find the supervoxel pair with the highest mean affinity. Break ties arbitrarily.

2. If the mean affinity of that pair exceeds a threshold t, merge the two supervoxels
in the pair and update the mean affinities of the merged supervoxels and the
adjacent supervoxels.

8

3.2.3 Supervised Greedy Agglomeration

Machine Learning Methodology

Greedy agglomeration is formulated as a machine learning task in the following man-
ner: given two adjacent supervoxels as input, make a merge or not-merge decision
and give the degree of confidence in that decision. The confidence is given as a real
number in the interval [0, 1] where 0 represents 0% confidence in merging and 1 rep-
resents 100% confidence in merging. This task can be interpreted as both a binary
classification task (predict 0/1 labels and the confidence) and a regression task (pre-
dict the merge confidence directly). The following machine learning methods are
used for supervised greedy agglomeration: logistic regression (classification), random
forest (regression) and linear regression (regression).

Labelled training and test datasets for greedy agglomeration were generated us-
ing teacher-forced mean affinity agglomeration. Teacher-forced mean affinity agglom-
eration follows the same process as the mean affinity agglomeration algorithm de-
scribed above but the agglomerator is prevented from making any mistakes (incor-
rect merge/non-merge decisions). For each supervoxel pair considered for merging,
the features and the correct label are recorded. Teacher-forced mean affinity agglom-
eration is respectively performed on the training and test images to get the supervised
greedy agglomeration training and test sets.

Each record or example in the supervised greedy agglomeration datasets comes
with a set of features and a label. The following features are computed for each
supervoxel pair under consideration: the mean affinity of the voxels along the shared
boundary, the maximum affinity of the voxels along the shared boundary, the log10
of the minimum volume of the two supervoxels in the pair, the log10 of the maximum
volume of the two supervoxels in the pair and the log10 of the amount of contact
area between the two supervoxels in the pair. For logistic regression, the features
are standardised to have a mean of 0 and standard deviation of 1 by subtracting the
feature means from the original feature vector and dividing the resulting vector by
the feature standard deviations. Furthermore, the logistic regression agglomerator is
only trained using examples with labels at most 0.1 or at least 0.9.

Recall that the labels are real numbers in the interval [0, 1]. For each supervoxel
pair under consideration, the label is computed using the steps:

1. Find the volume of the intersection of the first supervoxel with each ground
truth segment (each possible label) and compute a vector with length equal to
the number of ground truth segments (the number of labels).

2. Find the volume of the intersection of the second supervoxel with each ground
truth segment (each possible label) and compute a vector with length equal to
the number of ground truth segments (the number of labels).

3. Normalise both vectors to have unit length.

4. Compute the dot product between the two vectors to obtain the label for su-
pervised greedy agglomeration.

9

The intuition behind this labelling technique is that the dot product is 1 if both
supervoxels are completely inside the same ground truth segment. The dot product
is 0 if both supervoxels do not intersect with any common ground truth segment. In
practice, this labelling technique leads to labels that are close to 0 or 1.

Greedy Agglomeration Algorithm

The supervised greedy agglomeration is initialised by computing the merge confidence
of every two adjacent supervoxels. The algorithm then repeats the following steps
until no more supervoxels can be merged:

1. Find the supervoxel pair with the highest merge confidence. Break ties arbi-
trarily.

2. If the merge confidence exceeds a threshold t, merge the two supervoxels in
the pair and update the merge confidences of the merged supervoxels and the
adjacent supervoxels.

3.3 Experiments

3.3.1 Classification Precision-Recall Graphs

This set of experiments is intended to evaluate the classification performance of the
machine learning models (including mean affinity agglomeration) on the supervised
greedy agglomeration datasets (both the training and test sets) generated using the
SNEMI3D and AC3 datasets. The classification task involves predicting whether or
not to merge a given supervoxel pair. Note that the regression methods have their
output rounded to the nearest whole number. The machine learning methods are
evaluated using graphs with precision-recall curves (one curve per method) where a
higher curve means better performance. The vertical axis represents precision while
the horizontal axis represents recall. For a given threshold t, the precision and recall
of each machine learning method is computed. The precision is the number of true
positives over the sum of the number of true positives and the number of false positives
(positive = merge, negative = not-merge). The recall is the number of true positives
over the sum of the number of true positives and false negatives. For each machine
learning method, the precision and recall are computed for thresholds t ∈ {0.05 :
0.05 : 0.95} to obtain the data required to draw a full precision-recall curve.

10

3.3.2 Agglomeration Precision-Recall Graphs

This set of experiments is intended to evaluate the agglomeration performance of the
machine learning models (including mean affinity agglomeration) on the SNEMI3D
and AC3 datasets (both the training and test sets). The output of agglomeration
is a set of supervoxels, which correspond to neuron parts. The metrics of precision
and recall are used to evaluate agglomeration performance. However, precision and
recall are defined differently for agglomeration in a manner that is similar to how the
Rand index is computed. The Rand index numerator is the sum of the number of
voxel pairs in the same set in both the predicted segmentation and the ground truth
segmentation, and the number of voxel pairs in different sets in both the predicted
segmentation and the ground truth segmentation. The Rand index denominator is
the number of combinations of two voxels that can be formed from all the voxels in
the volume. The Rand index is thus computed by dividing the Rand index numerator
by the Rand index denominator.

The agglomeration precision is computed by dividing the number of voxel pairs in
the same segment in both the predicted segmentation and ground truth segmentation
by the number of voxel pairs which the predicted segmentation reports are in the
same segment. The agglomeration recall is computed by dividing the number of
voxel pairs in the same segment in both the predicted segmentation and ground truth
segmentation by the number of voxel pairs which the ground truth segmentation
reports are in the same segment.

Greedy agglomeration starts with a high threshold and continues with that thresh-
old until no more supervoxels can be merged. When no more supervoxels can be
merged, the threshold is decreased. Greedy agglomeration then continues in the
same manner and stops completely when the threshold reaches 0. The precision and
recall are computed every 100 merges during greedy agglomeration. This process
generates enough data to plot a roughly full precision-recall curve for each machine
learning method. All the precision-recall curves are plotted on a graph with precision
on the vertical axis and recall on the horizontal axis.

11

Chapter 4

Evaluation

4.1 Classification Precision-Recall Graphs

Figure 4.1: Classification precision-recall graph for the SNEMI3D dataset

12

As seen in Figure 4.1, all the methods have better classification performance on
the SNEMI3D training set than on the SNEMI3D test set (higher curve means bet-
ter performance). Out of all the methods, random forest has the best classification
performance on both the training and test set. However, random forest only has signif-
icantly better classification performance than the other supervised machine learning
models on the training set and slightly better classification performance than the
other supervised machine learning models on the test set. On the training set, all the
supervised machine learning methods give better classification performance than the
mean affinity agglomeration baseline. On the test set, random forest, linear regres-
sion and logistic regression have similar classification performance and they all have
significantly higher classification performance than the mean affinity agglomeration
baseline.

On the other hand, Figure 4.2 indicates that all the methods have comparable
classification performance on the AC3 training and test sets. It appears that random
forest is slightly better than the other methods but this is difficult to ascertain.
The machine learning methods perform significantly better than the mean affinity
agglomeration baseline on the SNEMI3D test set but not on the AC3 test set.

Figure 4.2: Classification precision-recall graph for the AC3 dataset

13

4.2 Agglomeration Precision-Recall Graphs

Figure 4.3 indicates that all methods have comparable agglomeration performance
on both the SNEMI3D training and test sets. It is difficult to say that one method
performs better than the others because of the curves intersecting in the graph. The
supervised machine learning classifiers do not give better agglomeration performance
than the mean affinity agglomeration baseline on both the training and test sets. This
contrasts with the classification performance evaluation for the SNEMI3D dataset,
which showed that supervised machine learning methods give better classification
performance than the mean affinity agglomeration baseline on both the training and
test sets.

As shown in Figure 4.4, the agglomeration performance of the supervised machine
learning methods is better than that of the mean affinity agglomeration baseline on
the AC3 training set while the agglomeration performance of all methods is compara-
ble on the AC3 test set. On the AC3 training set, the agglomeration performance of
all supervised machine learning classifiers is comparable. The AC3 test set agglomera-
tion performance results are consistent with the classification performance results - all
methods give similar performance. However, the AC3 training set agglomeration re-
sults are different than the classification performance results - the supervised machine
learning classifiers give better agglomeration performance but the same classification
performance as the mean affinity agglomeration baseline.

Figure 4.5 identifies which features are most important for the linear supervised
machine learning models using the learned feature weights. The mean affinity, max-
imum affinity and minimum volume features were found to be the most important
features. High values for the mean affinity and maximum affinity features are cor-
related with merge decisions for the linear models. The large positive weights for
these features strongly indicate that two supervoxels with high affinities along their
shared boundary are highly likely to be part of the same neuron segment. In addi-
tion, logistic regression models learn that low values for the minimum volume feature
are correlated with not-merge decisions. The large negative weights for this feature
strongly indicate that supervoxel pairs, where one of the supervoxels is very small,
are highly likely to be part of two different neuron segments. There are small specks
of dust in the EM image volumes that should not be merged so the logistic regression
models are correct to penalise low values for the minimum volume feature.

14

Figure 4.3: Agglomeration precision-recall graph for the SNEMI3D dataset

15

Figure 4.4: Agglomeration precision-recall graph for the AC3 dataset

16

Figure 4.5: Feature weights of trained linear supervised machine learning models by
dataset and method. The most important features for linear models are the mean
affinity, maximum affinity and minimum volume features.

17

Chapter 5

Conclusion

In summary, the results were inconclusive about whether supervised machine learn-
ing methods are better than the mean affinity agglomeration baseline for the task of
greedy agglomeration. With the classification evaluation framework, the supervised
machine learning methods performed better than the mean affinity agglomeration
baseline on both the SNEMI3D training and test sets while all methods performed
comparably on both the AC3 training and test sets. With the agglomeration evalu-
ation framework, all methods performed comparably on the SNEMI3D training and
test sets. On the other hand, the supervised machine learning methods performed
better than the mean affinity agglomeration baseline on only the AC3 training set
but all methods performed comparably on the AC3 test set.

There is an obvious discrepancy between the classification evaluation framework
results and the agglomeration evaluation framework results. This discrepancy is likely
caused by the fact that the classification framework evaluates each merge/not-merge
decision independently of every other decision (i.e. the sequence of merge/not-merge
decisions is irrelevant) while the agglomeration framework directly evaluates the ag-
glomeration output over time, which is strongly affected by the sequence of merge/not-
merge decisions. This observation suggests that the classification evaluation frame-
work should be used to assess how well the supervised machine learning classifiers
are learning and whether or not they are overfitting to the training data while the
agglomeration evaluation framework should be used to directly evaluate the perfor-
mance of the methods for the task. Furthermore, it is difficult to distinguish between
curves in the agglomeration performance graphs because of the noisiness inherent in
the path choices made by greedy agglomeration methods. However, the agglomer-
ation performance graphs do show high precision and high recall for all the greedy
agglomeration methods despite the noisiness.

Nevertheless, the greedy agglomeration methods suffer from two kinds of errors:
misalignment errors and errors where the dendritic spines are not grown out from
the dendritic shaft. The misalignment errors are best described as random transla-
tion, in-plane rotation, out-of-plane rotation, and/or skew transformations that are
applied at all z-slices below some z-slice in the interior of an EM image stack because
of imaging issues. It is unlikely that any agglomeration approach will correct for mis-
alignment errors because these errors are caused at the imaging stage of the pipeline

18

and they are random. Thus this kind of error is best addressed at the imaging stage
of the pipeline. The failure to grow out dendritic spines from the dendritic shafts is
caused by low affinities between voxels belonging to the same dendritic spine because
the dendritic spines are akin to small strands of spaghetti. The mean affinity, max-
imum affinity and minimum volume features were found to be the most important
features for all the linear supervised machine learning methods while the other fea-
tures were found to be relatively less important (see Figure 4.5). Thus it is likely that
the low affinities between voxels belonging to the same dendritic spine impede the
greedy agglomeration methods from successfully growing out the dendritic spines. It
is possible that a deep learning and semantic segmentation approach to segmenting
and predicting distinct neuron parts such as soma, axon, dendrite, synapse and glia
may yield better performance than greedy agglomeration methods because it takes
a more global view of the connectome (i.e. less randomness due to greedy or locally
optimal merge/not-merge decisions) and automatically learns a hierarchy of features
that are more useful for growing out dendritic spines than the hand-designed features
used in greedy agglomeration [15].

Future work should explore better ways of evaluating agglomeration performance
since the classification evaluation framework evaluates each merge/not-merge deci-
sion independently and the agglomeration evaluation framework is sensitive to the
sequence of merge/not-merge decisions. Furthermore, future work should focus on
improving the imaging technology used in the pipeline so that misalignment errors
become less severe and/or less frequent, and on deep learning methods for semantic
segmentation of EM image stacks. Advances in both aspects should alleviate the
errors produced by the current version of the pipeline and hopefully lead to higher
quality connectomes. These higher quality connectomes will then aid neuroscientists
in making discoveries about the functioning of the brain that could not have been
made otherwise.

19

Bibliography

[1] About Eyewire, A Game to Map the Brain. http://blog.eyewire.org/about/.

[2] Ignacio Arganda-Carreras, Srinivas C Turaga, Daniel R Berger, Dan Cireşan,
Alessandro Giusti, Luca M Gambardella, Jürgen Schmidhuber, Dmitry Laptev,
Sarvesh Dwivedi, Joachim M Buhmann, et al. Crowdsourcing the creation of
image segmentation algorithms for connectomics. Frontiers in Neuroanatomy,
9:142, 2015.

[3] John A Bogovic, Gary B Huang, and Viren Jain. Learned versus hand-designed
feature representations for 3d agglomeration. arXiv preprint arXiv:1312.6159,
2013.

[4] Dan Ciresan, Alessandro Giusti, Luca M Gambardella, and Jürgen Schmidhuber.
Deep neural networks segment neuronal membranes in electron microscopy im-
ages. In Advances in Neural Information Processing Systems, pages 2843–2851,
2012.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–255. IEEE, 2009.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press,
2016.

[7] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. Improving neural networks by preventing co-adaptation of
feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[8] ISBI Challenge: Segmentation of neuronal structures in EM stacks. http://

brainiac2.mit.edu/isbi_challenge/home.

[9] Viren Jain, Srinivas C Turaga, K Briggman, Moritz N Helmstaedter, Winfried
Denk, and H Sebastian Seung. Learning to agglomerate superpixel hierarchies.
In Advances in Neural Information Processing Systems, pages 648–656, 2011.

[10] Narayanan Kasthuri, Kenneth Jeffrey Hayworth, Daniel Raimund Berger,
Richard Lee Schalek, José Angel Conchello, Seymour Knowles-Barley, Dongil
Lee, Amelio Vázquez-Reina, Verena Kaynig, Thouis Raymond Jones, et al. Sat-
urated reconstruction of a volume of neocortex. Cell, 162(3):648–661, 2015.

20

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[12] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989.

[13] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[14] Kisuk Lee, Aleksandar Zlateski, Vishwanathan Ashwin, and H Sebastian Seung.
Recursive training of 2D-3D convolutional networks for neuronal boundary pre-
diction. In Advances in Neural Information Processing Systems, pages 3573–3581,
2015.

[15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[17] Toufiq Parag, Anirban Chakraborty, Stephen Plaza, and Louis Scheffer. A
context-aware delayed agglomeration framework for electron microscopy segmen-
tation. PLoS ONE, 10(5):e0125825, 2015.

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 234–241.
Springer, 2015.

[19] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning in-
ternal representations by error propagation. Technical report, DTIC Document,
1985.

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International Journal of Com-
puter Vision, 115(3):211–252, 2015.

[21] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

21

[22] Srinivas C Turaga, Joseph F Murray, Viren Jain, Fabian Roth, Moritz Helm-
staedter, Kevin Briggman, Winfried Denk, and H Sebastian Seung. Convolu-
tional networks can learn to generate affinity graphs for image segmentation.
Neural Computation, 22(2):511–538, 2010.

[23] Lav R Varshney, Beth L Chen, Eric Paniagua, David H Hall, and Dmitri B
Chklovskii. Structural properties of the caenorhabditis elegans neuronal network.
PLoS Computational Biology, 7(2):e1001066, 2011.

[24] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.
Learning deep features for scene recognition using places database. In Advances
in Neural Information Processing Systems, pages 487–495, 2014.

22

