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1 Abstract
In this thesis we explore the limitations of efficient computation by way of the com-
plexity of proofs.

One of the goals of theoretical computer science is to understand algorithms broadly
– to identify meta-algorithms that may be useful in a variety of cases, understand how
they work, when they work well, and when they don’t.

For several important groups of algorithms, there is a relatively simple mathematical
proof that the algorithm is correct for every input. Moreover, when the algorithm is run
on any particular input, this proof specializes to produce a very simple combinatorial
proof of the correct answer for that input. A simple example is a linear program, which
may find an optimal point and give a dual solution proving the optimality, or a graph
search algorithm which may fail to find a path between two points and yield a cut
separating them instead.

Often times, self-contained proofs that the answer to some query is yes or no are just
as important as the answer itself. When the algorithm is meant to identify problems in
some system, or opportunities, the proof may actually represent actionable information
in some domain. A good example is when a SAT solver is used to validate a system that
is being designed. When the validation fails, the proof indicates where the problem is
with the current design.

Proof complexity attempts to place limits on how efficient such algorithms can be
by showing that these proofs must sometimes be very complex, growing rapidly as the
problem scales up. More broadly, proof complexity attempts to understand the proving
power of traditional formal systems for logic, and to corroborate hypotheses like P !=
NP.

We develop novel combinatorial techniques for studying proof complexity in several
well-studied proof systems. We give substantial quantitative improvements on existing
results, and also, develop a new method that allows us to study the time and space
needed for a proof simultaneously and prove “tradeoff” lower bounds. We show that
small reductions in space can sometimes lead to large increases in time, even in situa-
tions where the algorithm has large amounts of space to work with. Previously no such
results were known in that situation.
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2 Introduction
We assume that the reader has some mathematical background and so has some famil-
iarity with the idea of proofs. However, the proofs which we study in proof complexity
are not exactly the same as the proofs that students learn and that mathematicians pro-
duce, and we would like to clarify the difference right away.

For our purposes, a proof is a rigorous argument establishing a fact which is based
in logic and independent of physical reality. (We’d like to avoid epistemological issues
in this discussion.) Proofs are the currency of modern mathematics. Rigor means that
the proof leaves no room for doubt and that the argument is ultimately rooted in the
commonly accepted foundational principles of mathematics.

Proofs are often informally stated, and even in a professional context, proofs are
often written in a way that places some of the burden of verification upon the reader. A
rigorous proof is one which could in principle be written such that verification is made
purely syntactic. This means that the claims of the proof could be encoded using math-
ematical symbols in the language of a formal proof system, and each statement of the
proof could then be deduced from earlier statements or axioms of the proof system. In
a formal proof, any deduction is required to be exact – rather than leaving room for the
ambiguity of human language, each implication and condition must match exactly at
the level of the symbols in order for the conclusion to be drawn. Then, each step of the
proof could be checked by inspection without thinking of the meaning, or even mechan-
ically. When a statement has been proved and verified in this way, we are absolutely
certain that that the statement is true – this is the most compelling form of scientific
evidence that we as humans can establish.

Besides this epistemic role, formal proofs and proof systems also play a role within
mathematics itself. In logic and proof theory, proofs themselves are the object of math-
ematical study, with a goal of understanding the power and limits of different proof
systems. An important chapter in the historical development of mathematics was the
discovery of “Gödel’s first incompleteness theorem”, which shows that in any (finitely
generated) proof system sufficiently powerful to reason about the integers, there are
statements such that neither the statement nor its negation can be proved. The system
can’t resolve the truth of these statements – they are “independent” of the axioms under-
lying the system. Subsequently, the technique of “forcing” was used to resolve certain
questions about infinite sets in this way – within the commonly accepted foundations
of mathematics, there are some natural questions like the Continuum Hypothesis which
simply cannot be resolved, and moreover, this phenomenon is inevitable and cannot
be “fixed” by adding more axioms or using a different system. This came as a great
shock to many mathematicians of the day, who expected that anything that is true can
be proven [50, 51].

Let us give a concrete example of a formal proof system.
Peano Arithmetic is a proof system for properties of the natural numbers [73]. We

won’t define it in detail, but we’ll give a brief description of some of the syntax that it
uses, to give the idea. In Peano Arithmetic, a number referred to in some step of the
proof may be named by a variable such as x or y. A related number can be represented
by a numeric expression using arithmetic operators, like x× y or x+ y. When numbers
are substituted for each variable, a numeric expression evaluates to a number.

Two numeric expressions can be compared to each other using relational opera-
tors like =, <, which represent equals to and less than. The combined expression is a
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boolean expression, which resolves to a truth value, either true or false. For example
x × y < x + y might be true or might be false, depending on the values of x and y.
A complex boolean expression can be formed from smaller boolean expressions using
boolean connectives, such as ∨, ∧, which represent logical-or and logical-and, or →
which represents logical impliction. For example the expression (x > y) ∨ (y > x) is
true when x and y are not equal. Boolean expressions can be negated with the unary
operator ¬. For example the expression ¬(x = y) has the same meaning.

Finally, variables in a boolean expression can be quantified. The two quantifiers are
∃ and ∀, which may be explained by example. The expression x+ 5 = y ∧ 10× y = z
may be true or false depending on the values of x, y and z. When y is quantified, as in
the expression ∃y, x + 5 = y ∧ 10 × y = z, this expression is true or false depending
only on the values of x and z – it is true if there is some value for y which makes the
condition true, and false if not. The expression ∀x, x = y ∨ x > 1 is true if every
number x is equal to y or greater than one.

A boolean expression is a sentence if all of its variables are bound to quantifiers.
In this case, its truth value doesn’t depend on anything else – it either represents a true
property of the natural numbers or it doesn’t.

A proof in Peano Arithmetic is a sequence of statements, each of which is either an
axiom, or a deduction using two previous statements of the proof. (We won’t describe
here the axioms of Peano arithmetic, which are numerous.)

A sound proof system is one in which only true statements can be derived in this
manner.

A consistent proof system is one which does not derive a contradiction. That is, for
each sentence φ, at most one of φ,¬φ is derived.

A complete proof system is one in which for every sentence φ, exactly one of φ,¬φ
is derived. 1

An example of a famous mathematical conjecture which can easily be stated in the
language of Peano Arithmetic is the twin primes conjecture. A twin prime is a number p
such that both p and p+2 are prime. The conjecture is that there are infinitely many such
primes. First, the property of a number n being prime can be coded as an expression

∀x,∀y, x× y = n→ (x = 1 ∨ x = n) .

In english, this can be read literally “for all x and all y, if x times y is n, then either x
is 1 or x is n.” Or more simply, “for all x which divides n, x is 1 or x is n.”. We could
then state the conjecture using the form, “for any n, there is a twin prime which is larger
than n”.

∀n∃p, p > n∧(∀x∀y, x×y = p→ (x = 1∨x = p))∧(∀x∀y, x×y = p+2→ (x = 1∨x = p+2))

1From a model-theoretic point of view, the notion of truth is relative and soundness is not conceptually
a property of a proof system – statements are only true or false relative to a model, and a proof system or
theory might apply to many different models. In computer science, or in finite settings, this is less relevant
and there may not be any interesting alternative models. It’s common to see soundness discussed in the
context of propositional proof systems, and also probabilistically-checkable proofs, protocols, and other
settings. In logic, usually it’s better to consider consistency.

Soundness aside, it is widely believed that Peano Arithmetic is consistent, and that the natural numbers
themselves are a model of it. (Of course that is begging the question.) Gentzen gave several proofs of
PA’s consistency using weaker theories of arithmetic plus the principle of transfinite induction, but it’s
ultimately a foundational issue. Gödel famously proved that Peano Arithmetic is not complete.
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This is a complete sentence – every variable which appears is quantified either with
∀ or ∃, and as a result it is either a true statement about the natural numbers or it isn’t.
Either there is a largest twin prime, or there isn’t. However, no one knows scientifically
(at time of writing) whether this statement is true or false, and no one knows any finite
mechanical procedure which could determine this. One could imagine systematically
trying different integers, but you can’t try all the integers, and there’s no way to know
whether you have tried “enough”. One could imagine searching mechanically for valid
proofs of the sentence within Peano Arithmetic – if there is a proof, then it is true, but
there is no bound on how large that proof could be. And even if it is true, there may be
no proof. The only known way it could be resolved, is if a mathematician has a new
insight into the prime numbers that allows a proof one way or the other.

Moreover, it follows from Gödel’s work that there is no general algorithm that can
resolve the truth of any question formed in this fashion. Any program, no matter how
clever, must fail to compute the correct answer for some of the sentences, even if it is
allowed unlimited time and memory. This is closely related to the undecidability of the
Halting Problem, a foundational result in Computability Theory. In general, we know
for quite fundamental reasons that the automated proving of theorems is hard in most
circumstances.

There is a major distinction to be made, however, between the proving of theorems
about all of the integers, statements about an infinite number of objects, and statements
about a finite number of objects. If we ask instead a question like “is there a twin prime
between 1,000,000 and 2,000,000”, then of course there is a finite mechanical procedure
to resolve it.

With few exceptions, mathematicians generally are focused day-to-day on proving
the former kind of statements within whatever field they work. But we are nevertheless
very interested in efficient algorithms for the latter kind, and indeed, it is a question of
fundamental importance how efficient they can be.

The boolean satisfiability problem is a computational problem which is representa-
tive of this latter kind. It is much simpler to define than Peano Arithmetic. An instance
of the boolean satisfiability problem is an expression containing only variables and
boolean connectives – the variables represent boolean values rather than integers here.
The expression is satisfiable if there is some setting of the variables that makes it true.
If you like, you can think that in this problem, every variable is implicitly quantified
using ∃, and we want to know if the resulting sentence is true.

For example, the expression

(x ∨ y) ∧ (¬x)

is satisfiable, since we can take x to be false and y to be true.
The boolean satisfiability problem, often abbreviated SAT , is one of the fundamen-

tal NP-complete problems, and has been intensely studied for decades. Usually we are
most interested in the scenario where there are n different boolean variables in the ex-
pression, and the overall expression has size similar to n – say linear, or polynomial
in n. This problem can be solved by brute force search in time 2n · poly(n), but as n
gets large this is infeasible. The P vs NP question is equivalent to, whether or not this
problem has a solution which uses time only polynomial in n. Many researchers con-
jecture that P does not equalNP , and that this problem is in fact hard in the worst case.
Impagliazzo and Paturi make a stronger conjecture – the exponential time hypothesis is
that SAT requires time 2cn) for some c > 0 [70].
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The problem also has significant practical significance. Like all NP-complete prob-
lems, it is polynomially equivalent to many search and optimization problems which
are important in practice, but it is also directly important for certain problems like val-
idating a design of a complex digital circuit, and for “model checking” of software
systems [44]. Automated theorem provers based on modern SAT solver technologies
are used in a variety of application areas, including planning and AI [75, 77, 115, 116].
There are SAT conferences, and a community of researchers who develop and maintain
highly optimized SAT solvers and compete on an annual basis against a large selection
of benchmarks from various application areas [104]. These “International SAT Solver
Competitions” have been active since at least 1992.

Despite the importance of P vs NP, it is generally believed that we lack the mathe-
matical tools to resolve the question right now. The known techniques which can show
that a computational problem requires superpolynomial time in the size of the input
generally are highly specific and can’t be applied in the case of SAT.

To understand how proof complexity factors into this, we’d like to introduce the
concept of a witness. Some computational problems have the property that, given an in-
stance of the problem, x, there is another string y that convinces you of what the answer
is. For instance, in the case of SAT , when I have a formula x which is satisfiable, the
witness y is simply the satisfying assignment to the variables. Moreover, any supposed
witness to a formula can be verified very quickly and deterministically, and any satisfi-
able formula has such a witness, while unsatisfiable formulas never have a witness. The
existence of such witnesses for the “affirmative” case of the problem is in fact one way
to define NP – any problem in NP has an efficient witness scheme like this [86].

It’s natural to ask, are there also witnesses for the negative case of the problem? Is
there always a short string that convinces you that a formula is unsatisfiable? This is
called the NP vs. coNP problem. It is conjectured that there are no such short witnesses
for unsatisfiable formulas – that in the worst case, the only “proofs” are essentially
transcripts of the brute-force algorithm.

However, an obvious candidate for such witnesses is the set of strings corresponding
to formal proofs in some deductive proof system. When such a proof system is sound
and complete, then its proofs can serve as negative witnesses. In the case of boolean
statements, where each sentence is inherently finite and thus checkable, it is easy to
construct sound and complete proof systems. However, no such system is known where
every true sentence has a short proof. If such a system exists, then NP = coNP, con-
tradicting our assumptions. This observation was originally made by Cook and Reck-
how [47].

Historically, this has been one way that researchers have motivated proof complex-
ity, by way of its connection to NP vs coNP. However, it seems fair to say that proof
complexity is not realistically an attempt to solve this problem, at best it would build
intuition for this, or disprove our conjectures. The reason is that SAT may have an effi-
cient witness system for negative instances which has no connection to deductive proof
systems. Thus, even if we made a major breakthrough and proved strong exponential
lower bounds for all known propositional proof systems, it would not imply directly
that NP != coNP, nor would it lead in any obvious way necessarily to a proof of such.
Proving NP != coNP would imply P != NP, and any potential “avenue” towards a proof
is speculative at best.

A different way to motivate the study of proof complexity lower bounds from the
point of view of Computer Science, is simply to think of them as lower bounds for
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“classes” of algorithms rather than general lower bounds against computation. In many
cases, algorithms quite naturally yield proofs, stemming directly from their operation.

• A linear programming algorithm may produce a solution to a linear program, and
a dual solution showing that it is optimal.

• An algorithm for st-connectivity in graphs may fail to find a path, and produce
an explicit cut separating two vertices instead.

• An algorithm for solving systems of polynomial equations may prove that there
is no solution, by deducing an explicit algebraic contradiction, e.g. 1 = 0, from
the system.

• A pure backtracking algorithm for SAT may prove that a formula is not satisfiable
by producing a decision tree, such that if any path is followed from the root to a
leaf and the variables of the formula assigned accordingly, it simplifies immedi-
ately to “false”. (This can be confirmed in time similar to the size of the formula
and the size of the decision tree.)

This phenomenon is somewhat broader than SAT and NP . One way to explain
why we might expect an algorithm to yield a proof like this is that, we usually only
use algorithms that we know will work and give us the right answer. Generally, this
means that we actually have a mathematical proof of the algorithm’s correctness, for all
n, which might be formalizable in some system like Peano Arithmetic. Oftentimes, the
proof may not actually need the full power of Peano Arithmetic – it may be able to use a
small subset of that power. It may be possible that it can be formalized in one of a series
of special sub-systems called Bounded Arithmetic [37, 73]. Bounded Arithmetic is one
way of restricting Peano Arithmetic that forces it to create “effective” or “constructive”
proofs. In cases where the correctness of an algorithm can be proved in such a system,
generally it means that for each n, a formula corresponding to the correctness of the
circuit corresponding to the algorithm can be proved to be true for all inputs of size n
using a short propositional proof, e.g. polynomial in n.

The bounded arithmetic proof (which is finite) essentially serves as a template for
each member of this (infinite) series of propositional proofs. Exactly which proof sys-
tem is used for them, depends on which Bounded Arithmetic the original proof used.
Thus, just as Turing Machines may be thought of as a way of specifying uniform se-
quences of circuits, built from a common template, Bounded Arithmetic is a way of
specifying uniform sequences of propositional proofs. To the extent that Bounded
Arithmetic can formalize many arguments in combinatorics and algebra, we can ex-
pect that many common algorithms will “yield proofs” in some sense.

This is all that we will say about proof theory, arithmetic, and general motivations
of proof complexity – proof theory and arithmetic will not be directly relevant to our
results or subsequent discussion. Instead, in this thesis we are generally concerned with
combinatorial and algebraic techniques which have applications in proof complexity.
In the next section we will formally define two well-studied proof systems directly
relevant to the thesis, resolution and polynomial calculus.
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2.1 Resolution
In the effort to study SAT , researchers have often considered restricted forms of SAT
and attempted to resolve whether they are as hard as the general problem, or easier.
Generally, this means that instead of considering all possible boolean expressions, we
consider only those with a special form. One such form is called conjunctive normal
form or “CNF”.

Given a set of boolean variables x1, . . . , xn, we say that a literal is an expression
which is either a variable or its negation. A clause is a disjunction of literals, such as,
x1 ∨ ¬x2 ∨ x7. A CNF is a conjunction of clauses. (An “and of or’s”.)

It is well known that the general case of SAT can be reduced in polynomial time
to the special case of CNF satisfiability (“CNF SAT”), that is, any boolean expression
can be converted efficiently to a related expression in the conjunctive normal form. In
fact, in this reduction, each clause of the CNF may be assumed to contain at most three
variables. SAT in this form is often called “3SAT”, and has been intensely studied [86].

Given a formula in CNF, a natural point of view to take is that it is a collection of
“assumptions”, which are each small clauses, and the satisfiability problem then asks if
they are logically consistent. Resolution is a very simple proof system which operates
only with clauses like this. It is usually said to have originated with work of Davis and
Putnam [53, 52]. Given a collection of “axiom” clauses, the resolution rule permits to
derive a new clause from two clauses fitting the following schema:

A ∨ x B ∨ x

A ∨B
.

We say that the variable x is resolved in this instance of the resolution rule.
A resolution proof consists of a sequence of derivations of this form, which each

statement is either an axiom or derived from earlier statements.
A resolution refutation is a derivation of a contradiction from some set of axioms.

The contradiction is usually represented by the “empty clause” or by the symbol ⊥,
and may be derived from any pair of unit clauses corresponding to a variable and its
negation:

x x

⊥
.

It is straightforward to see that the resolution rule is logically sound, that is, if a truth
assignment satisfies A ∨ x and it satisfies B ∨ x, then it must also satisfy A ∨ B. By
induction, if the contradiction is ever derived, then the original axioms clauses cannot
be simultaneously satisfied.

It is also straightforward to see that resolution is complete, that is, the contradiction
can always be derived whenever a collection of unsatisfiable axioms is given. A trivial
refutation may always be constructed with size ≈ 2n. This may be proved for instance
by induction on the number of variables.

2.2 Polynomial Calculus
Another way of approaching proofs of unsatisfiability is via algebraic techniques.

One of the oldest topics in mathematics is the solutions to systems of polynomial
equations. A fundamental result in the area is Hilbert’s Nullstellensatz. This theorem
provides a basic connection between the collection of solutions to a set of polynomial
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equations (in multiple variables), and the set of polynomials which can be derived from
those polynomials by adding and multiplying them (the algebraic ideal generated by
the polynomials).

It’s not too difficult to see that 3SAT instances can be transformed into collections of
polynomial equations over a field. Intuitively, we can convert our boolean variables into
variables over the field, by associating true and false with one and zero respectively. We
can add an equation x2

i −xi = 0 for each variables, which prohibits it from taking other
values. Then we can translate each initial clause to a small polynomial. For instance
given the clause x1∨x2∨x3, we could write (1−x1)·(1−x2)·x3 = 0. Since each factor
is zero-one valued (because of our earlier equations), the product is zero if and only if
at least one of them is actually zero. Then, the collection of polynomials is satisfiable
over the field if and only if the original clauses were.

The polynomial calculus proof system, originally introduced by Clegg, Edmonds
and Impagliazzo [45], manipulates expressions of the form p = 0 for p a polynomial
over a field. The allowed derivations are adding equations, and multiplying equations
by a variable or constant. (Since, these are the closure properties of an ideal.)

p = 0 q = 0

p+ q = 0
.

p = 0

xi · p = 0
.

Clearly, if an assignment satisfies the assumptions of either of these rules, it satisfies
the conclusion, so the proof system is sound. There are several ways to see that polyno-
mial calculus is complete – one might appeal to the Nullstellensatz, or simply observe
that a resolution refutation can be simulated via polynomials [17].

For purposes of establishing the completion of polynomial calculus, it doesn’t mat-
ter if this simulation is efficient or not. However, it easy to see that in general it isn’t,
because clauses must map to products, and literals may sometimes map to binomials
(1 − xi). In polynomial calculus, all polynomials are represented in a fully expanded
form, so there is (naively) an exponential blow-up in the representation of the clause as
a polynomial.

For this reason, researchers tend to study instead a common extension of Resolution
and Polynomial Calculus called Polynomial Calculus Resolution or PCR. In this version
of polynomial calculus, we introduce for each boolean variable xi also a variable xi, and
a constraint that 1 − xi = xi. In this system, each clause of a resolution proof may be
mapped to a monomial in polynomial calculus, avoiding the exponential blow-up. If
polynomial has few terms, then for any i we can exchange the xi for xi when we like
using the axiom, incurring small blow-up. If a polynomial has many terms, it implies
that the proof was already large to begin with, and hence not terribly efficient anyways.
It’s easy to see that the new system efficiently simulates both Resolution and naive
Polynomial Calculus, so the added robustness makes it an attractive target for study.

A basic question is, does this reformulation as polynomials over a field give any
advantage for SAT, and when? Naively, it appears much more expressive than resolu-
tion, since for instance, if you work over a field F2, you can succinctly represent parity
as a short proof line, or if you work over another prime, you can efficiently represent
MODp constraints. More generally, inconsistent systems of linear equations can be
refuted efficiently in the same system as the prime that they work over, since one can
essentially mimic the short Gaussian elimination proof of this fact.
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Despite their differences, the theories of Resolution and Polynomial Calculus are
historically linked. In a well-known paper of Ben-Sasson and Wigderson [24], it was
shown that the “Size-Degree tradeoff” technique developed for Polynomial Calculus
also translates naturally to Resolution, in the form of a “Size-Width tradeoff”. In our
modern understanding, we now think of these systems as somehow closely related.

2.3 Complexity of Proofs
Now we’d like to talk about, how precisely do we define when a proof is complex,
in a way that corresponds usefully to algorithms and the mathematics that we wish to
study. Particularly, we want to define analogs of time and space complexity associated
to a propositional proof. This line of research was essentially initiated by Cook and
Reckhow [47, 48].

There are a few different ways that this could be formalized, and the definitions that
we select are quite important. In this section we explain what we study in this thesis
and give a rationale.

The issue is that there are basically two ways to look at what a proof complexity
lower bound is doing.

• It is giving a lower bound for the resource usage of a “class” of deterministic
algorithms.

• It is giving a lower bound for the resource usage of a specific nondeterministic
algorithm.

Historically, researchers tend to be motivated most by the first in forming a defi-
nition, but post hoc, it seems that the definitions that get traction tend to have simple
explanations in terms of both of these things.

Generally speaking, we adopt measures of proof complexity that will correspond
closely to the Time or Memory used by the verifier algorithm, given the proof. We
don’t require the verifier to find the proof – showing that it is hard to find the proofs is
studying a different aspect of algorithms and complexity.

For this reason, we generally associate the Size of the description of the proof with
the Time. In resolution, even further, we tend to focus just on the number of clauses.
A clause can only contain at most n variables, so this can’t be much different from
the representation size of the entire proof. Resolution is simple in the sense that Size
thus corresponds roughly to “number of lines” in the proof. In Polynomial Calculus,
this is not true in a satisfactory sense – a single polynomial may have an exponential
number of monomials. Thus, we tend to count the total number of monomials in the
proof instead. Since for each variable we have an axiom x2

i = xi, a proof never needs
to contain large powers of any variable, and if it did, it could always be restructured so
that they are eliminated. So, an individual monomial, like a clause, is never very large
anyways.

It’s clear that this definition also provides lower bounds against the time of an algo-
rithm searching for a proof in the proof system, since it is actually generating this proof.
In practice, surely it would have to be larger than this, since the search will backtrack
inevitably many times. What is most interesting for us is that often, we can prove proof
size lower bounds which are comparable to the running time of a trivial algorithm for
SAT, so in some sense, we can’t actually be losing too much by focusing on proof size.
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Defining proof space is a little more difficult. Naturally, we’d like to adopt a defi-
nition that will allow us to bound the memory usage of a proof search algorithm. If a
formula is hard to prove, we might hope to show that not only does the search algorithm
have to consider a large number of clauses / proof lines, but also that it must hold a large
number of them in memory while it executes.

However, if the point of view we are taking is that the space should correspond
to the memory usage of the verifier in a nondterministic algorithm, then this seems
problematic. Since, for an NP language, the verifier can always be assumed to be
in logarithmic space. And for e.g. verifying a resolution proof given as input, the
verification should also be doable in logarithmic space if one has random access to the
proof, since the verifier only needs a counter to remember what proof line they are
currently at, and some space for pointers so that it can find the referenced clauses and
confirm the derivation of that line.

In Resolution, the fundamental measure of proof space is clause space, introduced
by Esteban and Toran [56].

Definition 2.1. The proof DAG associated to a proof is the directed acyclic graph whose
vertices are the lines of the proof, such that each proof line has an arc leading to it from
all of the proof lines it directly relies upon.

Definition 2.2. A topological sort of a DAG is a linear ordering of the DAG consistent
with each arc.

Definition 2.3. Given a topological sort of the proof DAG of a resolution derivation,
say that the clause space is the maximum over all time points (positions in the linear
ordering) of the number of arcs crossing the cut corresponding to “vertices before this
time” and “vertices after this time”.

The clause space of a proof is the minimum over all toplogical sorts of this value.

This definition makes a lot of sense from the point of view of a deterministic search
algorithm. If a search algorithm is generating a proof, and not keeping the whole proof
in memory, that means that some of the clauses get used at the beginning, but discarded
later. If a proof is being generated in some order, the clause space gives a lower bound
on how many clauses must be held in memory at once, since if there is an arc crossing
this cut, it means that a clause was derived before some point in time, but is still needed
after that point in time, so it must still be in memory that point, if this proof is ultimately
generated.

Note that the definition allows that a clause may be evicted from memory, and then
an identical clause later rederived. This is essential especially in work that considers
sublinear proof space, i.e. less than enough to hold the entire set of axioms at once.
In such a scenario, useful proofs require “random access” to the axiom set at various
points in the derivation. When considering superlinear proof space, i.e. enough to hold
the entire set of axioms at once, it’s not as essential, but if a clause could only be derived
once in the entire proof, that would unreasonably cripple the model.

From the point of view of the nondeterministic verifier, one way to look at this is
that the verifier has only one-way access to the proof string when it is verifying the
proof. In that case, the proof cannot be verified in log-space anymore using pointers,
since it can’t go back and look at clauses that it already processed long ago. Instead,
while verifying the proof, parts of the proof string that are needed for later need to be
copied into the work tape of the verifier, and they can only be removed when they aren’t
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needed anymore. One can assume that, the information telling the verifier when a clause
is no longer needed is provided as an annotation to the lines of the proof. This does
not meaningfully increase the size of the proof string, and it allows the naive verifier to
achieve optimal memory usage, essentially corresponding to the clause space.

While there’s no obvious reason to assume that the nondeterministic verifier has
only one-way access to the proof tape – that is usually only assumed for space-bounded
computation, rather than in the context of NP – this does seem to produce the most
interesting and useful proof complexity measures. And it does make sense when the
real focus is a deterministic search algorithm – in that case, the proof tape isn’t really
there anyways, and the nondeterminism is standing in for decisions that in practice are
being made by complex heuristics [15, 75, 77, 115, 116].

A final way to motivate clause space is that ostensibly, the definition appears sim-
ilar to the definitions of other important graph-theoretic complexity measures, such as
bandwidth or pathwidth. Intuitively, a proof requires large clause space relative to its
size, when the proof DAG is highly connected, in the sense of it being difficult to give a
hierarchical decomposition of the graph without ever making large cuts. So, space com-
plexity in proofs can also be understood as a measure of the internal complexity of the
proof’s graph-theoretic structure, without necessarily giving reference to a machine2.

Note that just as with proof size, we are potentially giving up a factor n by treating
each clause as of size one, rather than of size corresponding to the number of variables.
In our work, we generally don’t care too much about this, since we will usually consider
space much larger than n. It has only been recently that lower bounds on any of these
space measures could really be proved – somehow, clause space is the natural place to
start. Later work has considered a measure called total space, which really focuses on
the automata-theoretic view of a proof, and considers the space to be the maximum size
of the representation of a configuration of the verifier during the course of verifying the
proof – that is, for each clause in memory at each time step, you have to pay one for
each variable in that clause, rather than just one for the whole clause. We only mention
this in passing – we won’t actually study that measure in this thesis.

In Polynomial Calculus, the measure of size is the sum over all polynomials in the
proof of the number of monomials. Similar to clause space, we study monomial space,
that is, the same as clause space, except that for each polynomial in memory it counts
for an amount of memory equal to the number of monomials.

2This may sound like a superficial observation, but in my opinion it is actually a useful technical
insight, at least at a high level. Intuitively, a time-space lower bound is supposed to show that short
proofs of some sentence require large space. By this analogy, what one should actually attempt to show
formally is that short proofs require large cuts in some sense. Since there is a well-understood connection
between cuts and flows in graph theory, this leads to the idea that we should try to construct a useful flow
in the proof DAG of a short proof, in order to prove a time-space lower bound. This is more closely
related to the bottleneck-counting argument of Haken [62, 63, 108], and much subsequent research. See
section 3.6 for an illustration.
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2.4 Contents of this thesis
In the next two chapters, we show new time-space tradeoff results in Resolution and in
Polynomial Calculus, respectively.

A time-space tradeoff result shows, informally, that a computational model exhibits
a true time-space tradeoff in regards to solutions of a given problem. There are two
components – an upper bound, showing that an efficient solution exists which uses a lot
of memory, and a lower bound showing that if the memory is reduced, then any solution
must require significantly more time. These results are interesting because in general
models of computation, it’s a major open quesiton whether this ever happens. This is in
some sense the essence of the L vs. P problem for instance. 3

The results in these chapters represent significant qualitative improvements over the
previous state of the art. Prior to our work, there were time-space tradeoff results known
in resolution, but only when the model is restricted to sublinear amounts of space, which
is somewhat artificial in the context of proof complexity. Moreover, those lower bounds
relied on very different techniques from the other known lower bound techniques in
proof complexity. Our results yield tradeoffs for all space bounds from linear all the
way up to exponential, and produce a super-polynomial blowup in time when the space
is reduced. Our techniques our novel, but they build naturally on existing lower bound
arguments from proof size, so we end up with a more unified theoretical understanding
of intractibility in proof complexity than we had previously.

In the final chapter, we consider the worst-case resolution proof size, in connection
to the Strong Exponential Time Hypothesis. We prove a version of this hypothesis for
regular resolution, and get a substantially improved bound for general resolution than
was previously known.

3In some cases, researchers are able to show nontrivial time-space lower-bounds in which the upper
bound is not known or even suspected to be true. These results may still be very interesting, but our results
have the stronger character of proving formally that time and space cannot always be simultaneously
optimized in well-established models of computation.
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3 Time Space Tradeoffs in Resolution
We give the first time-space tradeoff lower bounds for Resolution proofs that apply
to superlinear space. In particular, we show that there are formulas of size N that
have Resolution refutations of space and size each roughly N log2N (and like all formu-
las have Resolution refutations of space N ) for which any Resolution refutation using
space S and length T requires T ≥ (N0.58 log2N/S)Ω(log logN/ log log logN). By downward
translation, a similar tradeoff applies to all smaller space bounds.

We also show somewhat stronger time-space tradeoff lower bounds for Regular Res-
olution, which are also the first to apply to superlinear space. Namely, for any space
bound S at most 2o(N

1/4) there are formulas of size N , having clauses of width 4, that
have Regular Resolution proofs of space S and slightly larger size T = O(NS), but for
which any Regular Resolution proof of space S1−ε requires length TΩ(log logN/ log log logN).
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3.1 Introduction
For many modern SAT solvers, memory use is as much a bottleneck as time. Earlier
DPLL-based SAT-solvers used very little memory, just needing to keep track of the
stack in recursion. However, a major reason for the improved performance of recent
SAT solvers is the inclusion of clause learning [75], which adds a large number of
derived clauses to the input clauses. Clause learning uses considerable extra space
corresponding to the number (and size) of derived clauses that are active at any one
time. This creates opportunities for finding smaller refutations of unsatisfiable formulas,
but at the cost of potentially requiring huge amounts of memory. Balancing these two
factors is an art that determines the success of the SAT-solver. (See e.g, [116] for a
discussion of how one successful SAT-solver handles this.)

This raises the question of whether such tradeoffs between total time and memory is
an inherrent limitation, or just an artifact of the known algorithms. To make this ques-
tion precise while also being general enough to handle the wide variety of SAT-solving
algorithms, we can use the well-known correspondence between these algorithms and
the Resolution proof system. All of the DPLL-based SAT solvers, when run on unsatis-
fiable formulas, implicitly or explicitly find resolution refutations of the input formulas.
Thus, the minimum size of such a refutation is a lower bound on the time taken by
any such algorithm. This observation has been part of the motivation for proof com-
plexity studies of resolution for many years. More recently, an analogous measure of
the space of a resolution proof has been introduced, which lower bound the number of
derived clauses that must be remembered throughout the algorithm, and hence bounds
the memory requirements of resolution-based SAT solvers.

If we use a pure backtracking approach to SAT-solving, like many of the earlier
generation of SAT-solvers did, the proofs generated have at most linear space. Thus, we
cannot hope to prove a super-linear space lower bound in isolation. Our goal is instead
to show that the small space of these proofs come at the expense of being substan-
tially larger than proofs using more space, i.e., to give time-space tradeoffs for proof
complexity. There has been substantial work devoted to understanding space in proof
complexity, proving almost linear lower bounds on the space required, and giving sharp
time-space tradeoffs for refutations. However, previous work always hit a barrier at
linear space. Until this current paper, no known time-space trade-off lower bound for
proof complexity was meaningful when the space allowed was greater than that of the
input formula. Since SAT solvers have ample memory to hold the input formulas, this
meant that such work was not of direct benefit to understanding time-memory trade-offs
for SAT-solvers. Ben-Sasson (see [79, 81]) posed the question of whether such trade-
offs existed as follows: do all CNF formulas have resolution proofs of linear space that
are at most polynomially larger than the resolution proof length possible when space is
unrestricted?

We give a strong negative answer to this question. We give explicit CNF tautologies
of size N that have proofs of size TUB ≤ NO(log2N) (and hence space at most TUB),
but when space is restricted to SLB ≤ T

1/2
UB , any resolution proof requires size TLB ≥

(TUB)Ω(log logN/ log log logN). In other words, restricting memory to any polynomial in
the input formula size has a super-polynomial cost in terms of time the SAT-solver
will take. Our formulas are Tseitin graph tautologies for complete bipartite graphs
connected along a path and so are totally explicit, as are the proofs in the upper bound
on TUB. In fact, [3] has shown that proofs of such tautologies are derivable by standard
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SAT-solving techniques in time proportional to TUB, so the trade-off applies to actual
SAT-solvers, not just the theoretical optimal SAT-solver.

We obtain an even stronger tradeoff for Regular Resolution, a subclass of Resolution
proofs that includes most natural Resolution proofs. Using Tseitin formulas on a family
of grid graphs, we show that for any integer m, there is a sizeN = O(m4) formula with
unbounded space regular resolution proof size at most TUB = poly(m)2m so that any
space SLB ≤ 2m(1−Ω(1)) proof requires size TLB ≥ (TUB)Ω(log logm/ log log logm). This is
an improvement over the previous result in that space restrictions provably cost in terms
of size even for (weak) exponential amounts of space. Furthermore, the lower bound
holds for space almost equal to the upper bound on total size. Finally, the tautologies
where we prove this lower bound are constant width.

These results show that restricting space can increase size by more than a polyno-
mial amount. It seems possible that space restrictions could have an exponential cost;
however, that would require a different kind of tautology than the ones we consider. The
quasipolynomial time-space tradeoff lower bound we achieve for Resolution proofs of
these Tseitin tautologies is qualitatively not far from optimal. In particular, the Tseitin
tautologies to which our bounds apply have Regular Resolution refutations of space
O(log TUB log n) and size TO(logn)

UB . A recent result [8] shows a general purpose res-
olution based SAT algorithm which finds this proof as well, answering a question of
[3]; see also [11]. [8] also gives an algorithm for high space which finds a refutation
matching our high space refutation – this is also achieved by the algorithm of [3].

3.1.1 History and Related Work

Much initial work on proof space concentrated on the space required by Resolution
proofs as a parameter on its own. Early work [56] showed that every unsatisfiable
formula has a Resolution refutation in which the total space required is at most the
number of variables (plus one), and the focus moved to finding matching space lower
bounds. Atserias and Dalmau [9] showed that Resolution space is at least Resolution
width, the length of the longest clause in any Resolution proof, for which Ω(n) lower
bounds were already known for many formulas because width lower bounds are the
most widely used method for proving Resolution proof size lower bounds [24]. (Despite
its utility, Resolution width alone can be far from characterizing Resolution space [78].)

Lately, there has been great theoretical interest in understanding the interplay be-
tween the resources of Resolution proof length (time) and space [79, 21], and in show-
ing tradeoffs between them [22]. For example, Nordström [80] shows that there are
formulas with linear size proofs but for which reducing the total space used by a con-
stant increases the length required to exponential4. At higher space levels, Ben-Sasson
and Nordström [22] recently showed the existence of families of formulae that have
linear size (and hence linear space) proofs, but which require exponentially large proofs
when the space is constrained to be O(n/ log n).

3.1.2 Overview of our techniques

Many of the earlier papers on bounds for sub-linear space proofs modified arguments
taken from time-space tradeoffs for pebbling games. We also use arguments based on

4This was claimed in [66] which used a more complicated approach, but this has been retracted as has
the claim that determining the minimum space required for Resolution refutations is PSPACE-hard.
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time-space tradeoffs for straight-line programs such as [109, 89]. In such a bound,
one typically defines a notion of “progress”, and divides up the program into intervals
called “epochs”. Then one shows that, starting from any given point in the program, on
a random input, one is unlikely to make significant progress in a short amount of time.
The conclusion is that either there are many values that are in memory at those points,
or the length of epochs is large, giving a time-space trade-off.

We follow a similar strategy, combined with a “bottleneck counting” argument as
introduced in [62]. We consider the time steps to be the derived clauses in order, and
divide these into equal sized intervals, or epochs. We consider the sets of clauses in
memory at the start and end of epochs. We use a simple measure of the complexity
of clauses, akin to those in [62, 24], the number of vertices of the graph G associated
with the input clauses of the Tseitin formula that are required to derive them. The input
clauses have complexity 1, the final contradiction has complexity |V (G)|, and each
resolution step can at most double the complexity. Thus, clauses of each approximate
(to within factors of 2) complexity between 1 and |V (G)| must occur in the proof. The
current complexities of clauses in memory is our measure of progress.

We show that clauses of intermediate complexities involve many variables and are
hence intuitively are “unlikely” to be false, and we show that the likelihoods of very
different clauses are in some sense independent. Because of the small space, the clauses
in memory at the frontiers of epochs are “bottlenecks” ; it is unlikely that clauses of
many distinct complexities are in memory at these times. If this does not happen, we
must make a great deal of progress during some epoch, in that the largest complexity of
a clause in memory has increased substantially. We then apply the argument recursively
to that epoch.

While this intuitive picture is the same for the two lower bounds, the techniques
used to formalize them are quite different. For general resolution, we formalize “like-
lihood” by looking at the proof after a random restriction. We show that if we apply a
restriction to a Tseitin formula on a suitable graph G, then the probability that a clause
has medium complexity after the restriction is quite small, and the probability that k
clauses simultaneously have different intermediate complexities is a Θ(k)-th power of
this small probability. We use this to show that, with high probability, there are not
many distinct complexities in memory at the frontiers of epochs after the restriction.
Thus, after the restriction, there is one epoch that contains clauses of many approxi-
mate complexities within a large interval. We then use a recursive version of the same
argument to show that this is also unlikely.

In the case of regular resolution, we define a probabilistic process that works its way
backwards from the contradiction to one of the input clauses. It always visits clauses of
each approximate complexity. “Likelihood” is then the probability of being visited in
this process. We show that this probability is small for intermediate complexity clauses,
and, with a few exceptions, uncorrelated for clauses of very different complexities. A
bottleneck counting argument then shows that it is unlikely that this process visits many
different clauses of distinct complexities that are each in memory at the frontiers of
epochs, and thus must almost always visit a large interval of complexities within some
epoch. The argument is repeated recursively within the chosen epoch.
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3.2 Basic Definitions and Notation
We consider Boolean formulas over a set of variablesX = {x1, ..xn}. As usual, a literal
is a Boolean variable or its negation, a clause is a disjunction of literals, and a CNF is
a conjunction of clauses. We think of clauses as being specified by their sets of literals,
and CNFs as specified by their sets of clauses. For a clause C, we write Vars(C) to be
the set of variables appearing in C. The width w(C) of a clause C is |Vars(C)| and the
width of a set or sequence of clauses F , is the maximum width of clauses in F . The
size of a CNF formula F is the total number of literal occurrences in the formula, i.e.,∑

C∈F w(C).
One of the simplest and most widely studied propositional proof systems is reso-

lution which operates with clauses and has one rule of inference, the resolution rule:
A∨x B∨ x

A∨B . We say that the variable x is resolved in this instance of the resolution
rule. A resolution refutation of a CNF formula (a set of clauses) is a sequence of clauses
ending in the unsatisfiable empty clause ⊥, each of which is either a clause of from the
formula (an “axiom”) or follows from two previous clauses via the resolution rule. (The
term resolution proof is used more generally to refer to any inference of this sort that
may not necessarily result in ⊥.) Every resolution proof naturally corresponds to a di-
rected acyclic graph (DAG), known as the proof DAG, in which every clause derived
via the resolution inference rule has a directed edge “backwards” from a derived clause
to each of its antecedents. (Note that, formally, a resolution proof corresponds to one
of possibly many topological sorts of its proof DAG.)

A resolution proof is regular if along each path in the proof DAG, each variable is
resolved at most once. (Regular) resolution is sound and complete in that every CNF
formula is unsatisfiable if and only if it has a regular resolution refutation.

The size or length of a resolution proof is the total number of clauses in the proof.
The usual definition of the space (clause space) used by a resolution proof is the maxi-
mum number of clauses which need to be held in memory at any one time when carrying
out the proof. Say that a clause is active at time step t if it has been derived before t but
is still needed for an inference step to be made at time t or later. Then the clause space
is the maximum number of clauses active at any time step. In the most straightforward
model, the initial clauses are made available at t = 0. To consider sublinear space, this
model is modified, and the input clauses become available only as needed, accessed
by “axiom download” steps, and may be cleared from local memory and derived again
later, in analogy with the usual off-line definition of Turing machine space. In our re-
sults, we will be considering superlinear space and hence it is unnecessary to treat the
input clauses this way. Doing so does not increase the space bound by even a constant
factor. We allow clauses to be derived multiple times in a proof, since that may allow
fewer clauses to be active at any one time.

A restriction is a mapping ρ : X → {0, 1, ?}. Restrictions on X can be identified
with partial assignments on X by viewing unassigned inputs as being mapped to ?
and vice versa. We will use the two terms interchangeably, depending on the context.
Given two partial assignment π and ρ that are compatible, i.e., they agree on dom(π) ∩
dom(ρ), we use ρ ∪ π to denote the partial assignment that applies both assignments.
The restriction of a clause C by ρ, denoted by C|ρ is the clause obtained from C by
setting the value of each x ∈ ρ−1({0, 1}) to ρ(x), and leaving each x ∈ ρ−1(?) as a
variable. The restriction of a set of clauses is defined by restricting each one.
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3.2.1 Tseitin Tautologies

Following [110] we use the following formula to represent the principle that every undi-
rected graph has even total degree.

Definition 3.1. Let G = (V,E) be an undirected graph, and χ : V → {0, 1} an odd
charge function, i.e. one such that

⊕
v∈V χ(v) is odd. For each edge e ∈ E, we have a

variable xe. For v ∈ V, ε ∈ {0, 1}, let

PARITYv,ε :=
∧
{
∨
e∼v

xa(e)
e |

⊕
e

(a(e)⊕ 1) 6≡ ε}

be the CNF representation of the parity constraint
⊕

e∼v xe ≡ ε. The Tseitin tautology
on (G,χ) is defined by the conjunction

τ(G,χ) :=
∧
v

PARITYv,χ(v) .

Also, independent of whether or notG is connected and χ has odd charge, the result-
ing formula is known as a Tseitin formula. Frequently we will suppress reference to χ,
since when G is connected, any two odd charge functions χ give essentially equivalent
formulae.

By a simple counting argument, if charge function χ is odd, then the parity con-
straints cannot all be satisfied – this would correspond to an undirected graph such that
the sum of its degrees is odd.

Observation 3.2. When χ is odd, τ(G,χ) is unsatisfiable.

When the degree of the graph is d, each constraint can be written as a CNF formula
of O(2d) clauses of width d. It is easy to see that the formula τ(G) has size O(2d|V |).

Definition 3.3. Let G = (V,E) be a graph. For E ′ ⊂ E let G|E ′ denote the graph
G = (V,E−E ′). When π is a partial assignment to E, we overload the notation G|π to
mean G| dom(π). (Alternatively, if ρ is a restriction then G|ρ denotes G|ρ−1({0, 1}).)

Definition 3.4. If χ is a charge function on a graph G = (V,E) and π is a partial
assignment to E then let χ ⊕ π denote the new charge function χ′ on V given by
χ′(v) = χ(v)⊕

⊕
v∈e∈dom(π) π(e).

The following formalizes how restrictions affect Tseitin formulas.

Proposition 3.5. If τ(G,χ) is a Tseitin formula and ρ is a restriction on the edges of
G, then τ(G,χ)|ρ is τ(G|ρ, χ⊕ ρ), and the parity of χ and χ⊕ ρ are the same.

3.3 Resolution refutations of Tseitin formulas
For the graphs we will consider, some generic resolution refutations of odd charged
Tseitin formulas follow from bounds on their cut width. We give two such refutations.
One uses large space and implies that our lower bound results yield tradeoffs of the form
that restricting the space does increase the minimum proof length required. The other
uses a very small amount of space (indeed, exponentially less) and shows that there is a
quasi-polynomial upper limit on the kind of tradeoff one can prove for the formulas we
consider.
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Definition 3.6. The cut width of a graph G is the smallest W such that there is a linear
ordering of the vertices v1, . . . , vn such that, for every 1 ≤ t ≤ n, there are no more
than W edges crossing the cut ({v1, . . . , vt}, {vt+1, . . . , vn}).

Lemma 3.7. Let G be a graph with n vertices, maximum degree d, and cut width W .
Then there is a regular resolution refutation of a Tseitin tautology on G using ≤ n · 2d ·
2(W−1) resolution steps, and space ≤ 2 · 2(W−1) + d, plus space for the initial axioms.

Note that the number of resolution steps is within a constant factor of the proof size.
This refutation described by this lemma works by maintaining clauses correspond-

ing to parities of the edges in the cuts and slowly moving those cuts from one end to
the other end of the graph. It mirrors a refutation for similar formulas given in [38]. A
detailed proof is given in the appendix.

The following lemma shows that for the graphs we consider here, even radically
restricted space can only increase the size required for Tseitin tautologies with small
cut width by an O(log n) power.

Lemma 3.8. Under the same conditions as Lemma 3.7, the Tseitin tautology on τ(G)
has a tree-like Resolution refutation using space W dlog ne and 2W dlogne resolution
steps.

The refutation in this case involves simulating a binary search for a charge violation
over the vertex ordering that achieves the cut width. At each cut in the search, the proof
maintains all the clauses in the parities of the edges crossing that cut. A detailed proof
is given in the appendix.

Though the graphs we consider all have small cutwidth, there are versions of both
these upper bounds that can be expressed in terms of a smaller and more precise param-
eter, carving width. Moreover, some of these refutations can also be found algorithmi-
cally with similar complexity. Details are in the appendix.

3.3.1 A measure of complexity of clauses

First we need some preliminary definitions.

Definition 3.9. Consider assignments to the variables of a Tseitin formula τ . A critical
assignment is a total assignment that violates exactly one clause of τ . The vertex asso-
ciated with that constraint is said to be its bad vertex. For any partial assignment π, we
denote by Crit(π) the set of critical assignments extending π.

Definition 3.10. Given a partial assignment π to a Tseitin formula τ over graph G, we
say that a vertex v is a critical vertex for π iff v is bad for some critical assignment to
the edges of G consistent with π. We define critτ (π) to be the set of critical vertices
for π. We drop the subscript τ when it is understood from the context. We also define
critical vertices for clauses by letting crit(C) be the set of critical vertices of the partial
assignment associated with ¬C.

Fortunately, for Tseitin tautologies, the set crit(π) has a nice, well-known charac-
terization:

Proposition 3.11. crit(π) is non-empty if and only if G|π has exactly one component
of odd charge, in which case crit(π) is equal to that component.
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Let S be a subset of nodes. We write δ(S) for the edges on the boundary of set S.

Corollary 3.12. If π is a partial assignment with crit(π) = S, then every edge on the
boundary of S is assigned by π.

Finally, we note how partial assignments impact critical sets.

Proposition 3.13. Let τ(G,χ) be a Tseitin formula and ρ be a restriction (partial as-
signment) on the edges of G. Then for any partial assignment π compatible with ρ,
critτ(G,χ)ρ(π) = critτ(G,χ)(π ∪ ρ).

Proof. This follows immediately from the fact that the set of critical assignments for
τ(G,χ) that are consistent with ρ is precisely the set of critical assignments for τ(G,χ)ρ

with assignment ρ appended.

We use |crit(C)| as a measure of the complexity of clause C.

Proposition 3.14. Fix any odd-charged Tseitin formula τ over a connected graph G.

(a) |critτ (⊥)| = |V (G)| where ⊥ is the empty clause.

(b) For any clause C of τ , |critτ (C)| = 1.

(c) If clauseC follows from clausesC1, C2 by resolution then |critτ (C)| ≤ |critτ (C1)|+
|critτ (C2)|.

Proof. Part (a) and (b) follow immediately from Proposition 3.11. Part (c) follows from
the soundness of resolution since any critical assignment that falsifies C must falsify
either C1 or C2, hence Crit(C) ⊆ Crit(C1) ∪ Crit(C2).

Subadditivity of |crit(C)| from Proposition 3.14(c), immediately implies the fol-
lowing.

Corollary 3.15. For any t, any resolution derivation of a clause D with |crit(D)| > 2t
from a collection of clauses C having |crit(C)| ≤ t, must contain a clause C ′ such that
t < |crit(C ′)| ≤ 2t.

Proof. If not, then at the first point where such a D is derived, it must be derived from
two clauses with complexity ≤ t, contradicting subadditivity.

3.4 Time-Space Tradeoff for
General Resolution

To show lower bounds in General Resolution, we consider Tseitin tautologies on a graph
G = (V,E) that is a path of length ` of complete bipartite graphs Kn,n, where the left
side of one is the right side of the next. Equivalently, this is the tensor product of the
complete graph Kn with the path graph P`. For c > 0 an absolute constant, our results
hold for any 2cn > ` > n4, but are most impressive for larger `. We picture the vertices
of this graph as lying in an n×` grid, with each column corresponding to a vertex of P`.
We let Vi denote the set of vertices in the i-th column, and Ei denote the edges between
the i-th column and the (i+ 1)-st column.

Proposition 3.16. Any Tseitin tautology over G = Kn ⊗ P` has (regular) resolution
size at most O(2n

2+2nn`).
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Proof. It is easy to see that G has cut width n2 so this is immediate from Lemma 3.7.

The main result of this section is the following time-space tradeoff lower bound for
general resolution.

Theorem 3.17. If n is sufficiently large and 2n4 ≤ ` < (4n)−1
(

9
8

)n for any resolution
refutation of a Tseitin tautology on the graph G = Kn ⊗ P` of size T and space S

T ≥

(
20.58n2

S

) log2 L
log2 log2 L

where L = log2(`/(2n3)).

Corollary 3.18. There is a c > 0 such that for sufficiently large N and any S satisfying
N ≤ S ≤ N

1
9

log2N , there is a CNF formula of size N that has a resolution refutation
of size at most TUB ≤ N · S and space at most S such that any resolution refutation
using space S1/2 requires size TLB ≥ T

c log2 log2 N/ log2 log2 log2N
UB .

Proof. Choose the largest n such that 2n
2 ≤ S. SinceN ≤ S ≤ N

1
9

log2N , we must have
23n ≤ N ≤ 2n

2 and hence log2 log2N is Θ(log n). Set ` = 2n/8 < (9/8)n/(4n). With
this value of `, L is at least n/9 for N sufficiently large and hence log2 L/ log2 log2 L
is Θ(log logN/ log log logN). Since the Tseitin formula for Kn ⊗ P` has size at most
`n22n < N . We can pad this formula by dummy clauses until it has N clauses. Apply-
ing the above theorem to this formula with space S1/2 instead of S yields the claimed
lower bound.

We use the “progress argument” sketched in the introduction, together with a bot-
tleneck counting based on random restrictions. One subtle point is that, although our
argument is applied recursively, we only apply the random restriction once, not after
each step of the recursion.

We use the complexity measure on clauses defined in the previous section, which
is 1 for the input clauses, is |V (G)| for the final contradiction ⊥, and grows slowly
throughout a resolution proof (possibly not monotonically). We define many different
medium complexity levels of clauses.

Definition 3.19. Let t0 = n4. Define Li = {C ∈ Π : 2it0 < |crit(C)| ≤ 2i+1t0} for
0 ≤ i < log2(`n/t0)− 1. Each Li represents a different complexity level. We say that a
clause of Π has medium complexity if it is in one of the Li.

We will use the fact that the restriction of a proof of a Tseitin tautology is itself a
proof of a Tseitin tautology on a subgraph of the original graph; hence the proof for a
graph G contains proofs of Tseitin tautologies for all of the subgraphs of G. We choose
such a restriction randomly from a suitable distribution that is overwhelmingly likely to
keep the complexity of the final contradiction high.

Following standard notation, let R1/3 be the probability distribution on restrictions
ρ : E → {0, 1, ∗} such that for each e independently, Prρ∼R1/3

[ρ(e) = 0] = Prρ∼R1/3
[ρ(e) =

1] = Prρ∼R1/3
[ρ(e) = ∗] = 1/3.

After we apply a random ρ ∼ R1/3 to a refutation of τ(G,χ), we get a refutation
of the Tseitin formula on the smaller graph G|ρ with properties as in Proposition 3.5.
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We will measure the progress of the proof using the medium complexity levels of its
clauses. We therefore will compute bounds on the probability that a clause becomes
a medium complexity clause for the Tseitin tautology on the graph G|ρ after such a
restriction; we will do the same for the probability that a set of clauses have different
medium complexity levels after restriction.

The graph G|ρ and the charge χ ⊕ ρ that results from applying the restriction ρ to
τ(G,χ) is not fixed. Therefore, it is easier to analyze the critical sets and complexity of
the restricted clauses using Proposition 3.13 which says that for any partial assignment
π compatible with ρ, critτ(G,χ)ρ(π) = critτ(G,χ)(π ∪ ρ). For any clause C over G, this
means that

critτ(G,χ)ρ(C|ρ) = critτ(G,χ)(C ∨ ρ)

where ρ is the clause that is falsified precisely on those assignments consistent with ρ.
This allows us simply to work with clauses C ∨ ρ defined over the original graph G, so
for the remainder of this section we write crit for critτ(G,χ).

Now, we view a refutation of total size T and space S as ordered into epochs and
sub-epochs as follows: Let L be the number of different medium complexity levels,
L = log2((n`)/(2t0)) ≥ log2 n. Let k = blog2 Lc − 1 and h = blog2 L/ log2 log2 Lc <
(k + 2)/ log2 k. With these values we have (k + 1)kh−1 < L. Now choose

m ≤

⌊
(3/2)n

2
`−1L−12−4n

S

⌋1−3/ log2 k

.

One can easily verify that m ≥ max(8, 20.58n2
/S) for sufficiently large n.

The theorem follows immediately if T ≥ mh so assume, by contradiction, that
T < mh. An epoch at the leaf level is an interval of m consecutive clauses in the proof,
beginning at a time step that is a multiple of m. We consider all clauses in the leaf
level epoch to be frontier clauses. An epoch at level 2 ≤ i ≤ k is an interval of mi

consecutive clauses in the proof, beginning at a time step that is a multiple of mi. Its
sub-epochs are the epochs of level i − 1 within the epoch, and the frontier clauses for
the epoch are the ones that are active at the end of any of its sub-epochs. Thus, leaf
level epochs have m frontier clauses and higher level epochs have at most mS frontier
clauses, since at most S clauses are active at each of the m times when a sub-epoch
ends.

Lemma 3.20. For any refutation of a Tseitin tautology on a connected graph with n`
nodes, at least one epoch has k frontier clauses of distinct medium complexity levels.

Proof. Assume that no such epoch exists, at any level of epochs. We will inductively
find an epoch Ej at level k − j and medium complexity levels imin and imax ≥ imin +
L/kj so that all active clauses at the start of E have complexity at most that of medium
complexity level imin and some clause at the end of E has complexity at least that of
complexity level imax.

At the start, we can choose E0 to be the entire proof, since at the beginning, we
have only clauses of complexity 1 (input clauses) and at the end, we have only the
empty clause, ⊥, of complexity n`.

Assume that we have Ej , imin and imax as above. Consider the partition of Ej into
m sub-epochs at level k − j − 1. Because there are at most k − 1 distinct complexities
among Ej’s frontier clauses, there must be a sub-interval i′min to i′max of length at least
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(imax − imin)/k ≥ L/kj+1 where no frontier clause is of medium complexity level
between i′min and i′max. Consider the first sub-epoch of Ej that ends with an active
clause of medium complexity level at least i′max; since Ej ends with a clause of medium
complexity level imax ≥ i′max, such a sub-epoch must exist. Since no clause of medium
complexity level at least i′max was active at the start of this sub-epoch, and no clause of
medium complexity level between i′min and i′max is active at the start of any sub-epoch,
we can choose this first sub-epoch as Ej+1.

Inductively, we get a leaf-level epoch Eh−1 and an interval imin to imax of length at
least L/kh−1 ≥ k + 1 so that all active clauses at its start have complexity at most that
of medium complexity level imin and at least one clause has medium complexity level
imax or greater at the end. Then clauses of all k medium complexity levels between imin
and imax appear in the leaf-level epoch. Since all lines in a leaf-level epoch are frontier
clauses, this is a contradiction.

To use the above to get a contradiction, we show that, for G = Kn ⊗ P`s, the graph
is very likely to stay connected after a random restriction, and any small set of clauses
is very unlikely to contain many different medium complexity levels of clauses after the
restriction. We then apply the above lemma to the restricted proof.

The following lemmas, proved in the next section, summarize our bounds on these
probabilities.

Definition 3.21. LetCONN(ρ) denote the event that each bipartite graph (Vi, Vi+1, Ei\
dom(ρ)) is connected.

Proposition 3.22. Prρ[¬CONN(ρ)] ≤ ` · 2(n− 1)(8/9)n.

Lemma 3.23. For k ≤ 1/3L, any k clauses C1 . . . Ck, and any k medium complexity
levels `1, . . . , `k with `i+1 ≥ `i + 3 for 1 ≤ i ≤ k − 1,

Pr
ρ∼R1/3

[CONN(ρ) ∧ ∀i, (Ci ∨ ρ) ∈ L`i ] ≤
(
` · 24n · (2/3)n

2
)k

Corollary 3.24. Let C be a collection of≤M clauses. The probability that C|ρ contains

k clauses of distinct medium complexity levels is at most
(
ML(2/3)n

2
`24n

)dk/3e
.

Proof. If there are k distinct medium complexity levels, a subset of dk/3e of them are
mutually separated by 3. There are at most Ldk/3e choices for this subset of medimum
complexity levels `1, .., `dk/3e, and for each element of the subset, at most M choices
for a clause Ci ∈ C to become this complexity. Since the complexity of Ci|ρ is the
same as that of Ci ∨ ρ we can apply the previous lemma with a union bound to get the
probability bound in the corollary.

of Theorem 3.17. Assume that m, k, and h are defined as above and that there is a refu-
tation of the Tseitin tautology on Kn ⊗ P` of space S and size T < mh. Under any
restriction ρ, either G|ρ is disconnected, or after the restriction ρ some epoch in the
proof contains frontier clauses of k distinct medium complexity levels. By proposi-
tion 3.22, the first probability is < 1/2. There are fewer than 2mh−1 epochs in all, and
each has a frontier set of size at most M = mS. Thus, from the above corollary, the
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probability that there is an epoch that has k distinct medium complexity levels among
the restriction of its frontier clauses is at most

2mh−1
(
mSL(2/3)n

2

`24n
)dk/3e

<
1

2

(
m1+3/ log2 kSL(2/3)n

2

`24n
)dk/3e

since m ≥ 8 and h < (k + 2)/ log2 k

≤ 1

2

((3/2)n
2
`−1L−12−4n

S

)1−9/ log2
2 k

SL(2/3)n
2

`24n

dk/3e

≤ 1

2
.

This is a contradiction to Lemma 3.20 and the theorem follows.

3.4.1 Medium complexity clauses and random restrictions

In this section, we prove the lemmas about the effect of random restrictions on Tseitin
tautology clauses. We begin with the proof of Proposition 3.22 that the graph remains
connected after a random restriction is applied.

of Proposition 3.22. We apply a union bound over the columns and compute an explicit
bound for the well-known connectivity properties of random bipartite graphsG(n, n, 1

3
).

Consider the left side ofG(n, n, 1/3). For any two vertices here, the probability that
they are not connected with a two-step path inG(n, n, 1/3) is at most (8/9)n, since there
are n possible disjoint two-step paths. By a union bound, the left side and right side are
both connected to themselves except with probability 2(n−1)(8/9)n. Since these imply
that an edge exists, the G(n, n, 1/3) is connected except with this probability.

Note that the condition ` < (4n)−1 (9/8)n implies that Prρ[¬CONN(ρ)] < 1/2.

Lemma 3.25. For every clause C and every fixed set of edges E ′ ⊆ E, the probability
over ρ ∼ R1/3 that C ∨ ρ is non-trivial and E ′ ⊆ Vars(C ∨ ρ) is at most (2/3)|E

′|.

Proof. For C ∨ ρ to be non-trivial, ρ must not set any edge to falsify C. In particular,
this applies to each edge inE ′ that appears in Vars(C). In order forE ′ ⊆ Vars(C ∨ ρ),
each edge in E ′ not in Vars(C) must be set by ρ. For each edge in E ′, these successes
happen with probability 2/3 and the probabilities are independent, so the total proba-
bility that E ′ ⊆ δ(crit(C ∨ ρ)) is at most (2/3)|E

′|.

To prove a non-trivial tradeoff lower bound using our outline above, we need a
stronger lower bound than the upper bound for unrestricted space of roughly 2n

2 given
in Proposition 3.16. Therefore, we need to be able to argue that after such a restriction
the probability that a clause will become a medium complexity clause is exponentially
small in n2.

Intuitively, a set of vertices S of size at least n2 and less than `n/2 will have a
boundary of size at least n2 for the following reasons. If it has as many as n “partial
columns” in which it contains some, but not all, of the vertices, then each such column
will contribute at least n boundary edges. If it has fewer than n partial columns, it
must contain a full column and an empty column, and its not hard to see that deleting
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the elements in the partial columns cannot decrease the size of the boundary, so this
configuration has a boundary of at least n2 as well.

By Corollary 3.12, for every clause C, crit(C ∨ ρ) = S ⊂ V only if δ(S) ⊆
Vars(C ∨ ρ). Therefore, by Lemma 3.25, Prρ∼R1/3

[crit(C ∨ ρ) = S] ≤ (2/3)n
2 for

any C and any S of size between n2 and `n/2. Though the bound for a single S is
of the form we want, the number of such S is huge, so a simple union bound over all
choices of S is insufficient to derive the bound we need. Nonetheless, we can show a
bound very close to this one for the probability that crit(C ∨ ρ) is any medium sized
set. We also generalize it to show bounds on the probability that, after applying ρ, k
clauses appear from k different Li
Definition 3.26. Let S denote a connected subset of the vertices V . Define Si := S∩Vi
and si := |Si|/|Vi|. We say that

• i is a full column of S if si = 1, an empty column if si = 0, and a partial column
otherwise;

• i is a transition point of S if i − 1, i, i + 1, i + 2 ∈ {1, . . . , `} are columns, and
either both si ≥ 1/2 and si+1 ≤ 1/2, or both si ≤ 1/2 and si+1 ≥ 1/2;

• S has a transition point with signature (i, A0, A1, A2, A3) if i is a transition point
of S, Si−1 = A0, Si = A1, Si+1 = A2, and Si+2 = A3.

The transition point concept is useful because of the following lemma which says
that the existence of a transition point for a set S implies that S has a large boundary.

Lemma 3.27 (Transition Point Lemma). If i is a transition point of S, then |δ(S)| ≥
n2. Moreover, for any signature (i, A0, A1, A2, A3), there exists a set of at least n2

edges, E∗ ⊆ Ei−1∪Ei∪Ei+1, depending only on (i, A0, A1, A2, A3), such that if S has
a transition point with signature (i, A0, A1, A2, A3) then E∗ ⊆ δ(S).

There are only ` · 2O(n) possible signatures, but, by this lemma, the probability that
crit(C ∨ ρ) has a transition point with a specific signature is at most 2−Ω(n2) for any
particular C, so this will allow us to obtain a very strong upper bound on the probability
that C has any transition point at all.

of Transition Point Lemma. Let S be a connected set of vertices and have a transition
point with signature (i, A,B,C,D). We would like to find, from this information only,
a set of E∗ edges on the boundary of S. We write a = |A|/n, b = |B|/n, c = |C|/n
and d = |D|/n. Without loss of generality we can assume that b ≥ 1/2, c ≤ 1/2.

We will find a set of n2 edges in the columns Ei−1, Ei, Ei+1 on the boundary of
any S with this signature. Since the signature determines exactly which edges in these
columns are boundary edges, and the graph between each pair of layers is the complete
bipartite graph, only the numbers (a, b, c, d) matter. The number of boundary edges
may be computed exactly as

n2(a(1− b) + b(1− a) + b(1− c) + c(1− b) + c(1− d) + d(1− c)) .

However,

a(1− b) + b(1− a) = a(1− 2b) + b

= 1− b+ (2b− 1)(1− a)

≥ 1− b since b ≥ 1/2
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and

c(1− d) + d(1− c) = c+ d(1− 2c)

≥ c since c ≤ 1/2.

So, the expression above is at least

n2(1− b+ b(1− c) + c(1− b) + c) = n2(1 + 2c− 2bc)

= n2 + n22c(1− b)
≥ n2

as claimed.

In the informal argument that medium sized sets of vertices have at least n2 edges on
their boundaries, we identified two cases to handle – those with many partial columns
and those with few. If the set is in the right size range and has few partial columns, it can
be shown to have both a full column and an empty column, and it is easy to see that such
sets must have a transition point somewhere between the full and empty column. We
handle the other case, with many partial columns, by showing that it holds conditioned
on the graph being connected.

Lemma 3.28. For any clause C and restriction ρ, if CONN(ρ) holds then |C| is at
least the number of partial columns in crit(C ∨ ρ).

Proof. Let S = crit(C ∨ ρ). If i is a partial column of S, then both Si ∪ Si+1 and
its complement in Vi ∪ Vi+1 are nonempty. If CONN(ρ) holds, then these two sets of
vertices are adjacent, and in fact there is an edge between them that is not assigned by
ρ. By Corollary 3.12, all edges on the boundary of the critical set must be assigned,
so C must assign some edge in Ei. Thus C contains at least one edge for each partial
column of S.

Now we will show our bound for the probability that multiple clauses come to oc-
cupy many separated medium complexity levels. We will use the separation in com-
plexity levels to argue that there must be many transition points for these clauses rather
than just one. This will be based on bounding the number of distinct endpoints of sets
of intervals of increasing size on a line or circle for which we will use the following
lemma proved in Section 3.5.

Lemma 3.29. Suppose that we have k points of the n point circle ai ∈ Zn, and k
natural numbers di ≤ n/2, determining k intervals on the circle (ai, bi = ai + di) each
of length di. Let U denote the set of endpoints of these intervals; i.e., U :=

⋃
i{ai, bi}.

It follows that

1. if ∀i, di+1 ≥ 2di, and 1 ≤ d1, dk ≤ n/2 then |U | ≥ k + 1.

2. Further, if for some a, k · a < d1, then there exists a subset U ′ of U such that
|U ′| ≥ k + 1 and any two points of U ′ are at distance greater than a from each
other.

The same argument we give can also be used to prove a more general statement, but
we limit ourselves to the following for simplicity.
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of Lemma 3.23. If any Ci is as large as kn2, it has probability at most (2/3)kn
2 to

survive the restriction and we are done, so suppose that this is not the case. Using
Lemma 3.28, we can restrict attention to candidate critical sets Si that have fewer than
kn2 ≤ n3/3 partial columns, containing fewer than n4/3 vertices. Because t0 = n4, for
each Si there must be many full columns. There are also many empty columns since
the largest critical sets in medium complexity levels have size at most `n/2.

So, we can already see that each Si has a transition point. What we would like to
see is that there must be at least k transition points among all of them, and that these
transition points are all far apart from each other. We use Lemma 3.29 for this.

For each Si, let ai denote the first column from the left so that |Siai | ≥ n/2, and let bi
similarly denote the first such column from the right. So long as bi is not one of {1, 2, `−
1, `}, it is a transition point, and the same is true for ai − 1. So, it suffices to prove that
|
⋃
i{ai − 1, bi} \ {1, 2, `− 1, `}| ≥ k. In fact it suffices to meet the requirements for

the strong form of Lemma 3.29 with a ≥ 3, since then at most one point of U ′ is in the
set {1, 2, `− 1, `}.

Let di denote the difference bi − (ai − 1). Since Ci has medium complexity level
`i, di is at least the number of full columns, i.e., di ≥ 2`it0/n − n3/3. We can also
upper bound the total number of full and partial columns as 2`i+1t0/n+ n3/3, which is
an upper bound on di, since Si is connected. Since `i+1 ≥ ` + 3 and t0 ≥ n3, we have
2`i+1 ≥ 4 · 2`i+1 and

di+1

di
≥

4− 1
3

1 + 1
3

> 2 .

Further, dk ≤ `n/4 + n3/3 < `n/2, as required, and d1 ≥ 2
3
n3, while k < n/3 implies

3k + 1 < n+ 1 << d1. Therefore, Lemma 3.29 may be applied to say that there are k
distinct transition points that are far apart.

If we fix a particular sequence of signatures for these transition points then the
Transition Point Lemma implies that there is a fixed setE ′ of kn2 edges, which depends
only on the signatures, contained in

⋃k
i=1 δ(Ci ∨ ρ), consisting of the union of the k

disjoint sets of edges for each transition point. As in the proof of Lemma 3.25, any
such edge must either be set by ρ, or appear in some Ci and hence cannot be set by ρ to
violate that Ci. Each such event occurs with probability at most 2/3 and therefore, by
the independence over edges, the total probability is at most (2/3)kn

2 . The number of
sequences of k signatures is at most (` · 24n)k and the bound follows.

3.5 Endpoints of Intervals
This section is devoted to the proof of Lemma 3.29.

Suppose that we have a collection of k intervals on the line. How many distinct
endpoints are there? If nothing else is known about the intervals, there can be as few
as O(

√
k) endpoints. However, if each interval is at least twice as long as the interval

before it, then intuitively the intervals cannot be packed together so nicely; we will see
that under this assumption there are at least k + 1 distinct endpoints.

Although we only care about the line, in Lemma 3.29 it is more convenient to ana-
lyze the case of the circle.

of Lemma 3.29. Suppose that we have k points of the n point circle ai ∈ Zn, and k
natural numbers di ≤ n/2, determining k intervals on the circle (ai, bi = ai + di) each
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of length di. Let U denote the set of endpoints

U :=
⋃
i

{ai, bi} .

Suppose that di+1 ≥ 2di for all i and 1 ≤ d1, dk ≤ n/2. Let us define a graph G on
vertex set is U , and for each i, an edge from ai to bi. Thus there are k total edges. For
the first claim, the strategy is to show that this graph is a forest, and hence has at least
k + 1 vertices. To show the second claim, we will show a process which constructs an
acceptable set of k + 1 vertices.

We will still use the terms “distance” and “displacement” to refer to distances in the
circle.

Consider any walk in G which does not use any edges more than once. (Note that
this is not the same as a path, as it may include cycles.) The total displacement as we
move along from vertex to vertex can be written∑

i∈S

±di

where S is the set of indices corresponding to edges appearing on the walk.
By induction on |S|, we see that for any nonempty S∑

i∈S,i<maxS

di ≤ dmaxS − d1.

The base case is trivial, and if the claim holds for S, we may add dmaxS to both sides,
and we can apply the assumption 2dmaxS ≤ dmaxS+1 ≤ ds′ for any s′ > maxS, and so
deduce the claim for S ∪ {s′}, thus the inductive hypothesis also holds.

Suppose S is nonempty. By the triangle inequality,

d1 ≤

∣∣∣∣∣∑
i∈S

±di

∣∣∣∣∣ ≤ 2dmaxS − d1 ≤ n− d1 ,

using the dk ≤ n/2 assumption.
Now we can deduce the first claim. Suppose the graph contains a cycle. Then

there is a walk in G as before which starts and ends at the same vertex, thus the total
displacement is 0 mod n. But since the 1 ≤ d1, the above inequality contradicts this.
Thus G contains no cycles and hence is a forest with k edges – this implies there are at
least k + 1 vertices, or |U | ≥ k + 1 as desired.

To see the second claim, we will show a greedy algorithm to find U ′.

1. Begin with U ′ := ∅. We will process the components of the graph in some order.
The first one we can just add entirely to U ′.

2. While a component we have not yet processed contains some vertex v within a of
anything in U ′, choose such a v and add every other vertex in that component Cv
to U ′.

3. If all of the remaining components have every vertex at distance greater than a
from U ′, call the algorithm recursively on the remaining unprocessed compo-
nents.
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Our first observation is that the algorithm omits at most one vertex from any com-
ponent from U ′, and for at least one component omits none. Since a forest on k
edges and c components has at least k + c vertices, U ′ will always contain at least
k + c− (c− 1) = k + 1 vertices at the end.

It suffices to show the algorithm never adds any two vertices at distance less than a
to U ′. Call such a pair of vertices an “unsafe pair”. The idea is that when d1 > k · a,
the argument before that G is cycle-free will hold even if we add as many as k unsafe
pairs as edges to the graph G, since these new edges can only change the sum above
by at most k · a, and d1 is large enough that we can tolerate that. Our strategy is to
view the (k − 1) unsafe pairs identified in step 2 as edges which we add to G. For any
vertices of U ′ which become connected by this, we will argue that the path connecting
them contains at least one original edge of G and so the previous calculation shows
their distance is at least a. For any vertices which were not connected by this, we will
see that they could not have formed an unsafe pair – this can only happen when step 3
occurs, and we will handle this scenario as follows.

It suffices to assume that step (3) never happens. When step 3 happens, there are no
unsafe pairs between the remaining components and the U ′ obtained from the compo-
nents processed already. If the algorithm didn’t add any unsafe pairs when run just on
the first group of components, and also doesn’t add any unsafe pairs when just run on
the second group of components, it will succeed when run on all of the components, so
we may break up the current instance of the problem into two subinstances and restrict
attention to these subinstances. Appealing to this argument sufficiently many times, it
suffices to show correctness in cases where step (3) never occurs. (To make this com-
pletely precise, one could remove the arbitrary choice in the definition of the algorithm
by assigning a priority to each component, and specify that the algorithm determin-
istically chooses to process the highest priority component with an unsafe pair to U ′.
Then, when we split an instance on which step (3) occurs into two subinstances, the
subinstances inherit a priority ordering, and the U ′ returned by the algorithm on the
initial instance will be exactly the union of the U ′’s returned by the algorithm on the
two subinstances, so correctness indeed follows from correctness of the runs on the two
subinstances.)

Therefore without loss, step 1 occurs once and then step 2 occurs k − 1 times.
When step 2 occurs, by definition there is some vertex u ∈ U ′ and some vertex v
which is chosen so that uv is an unsafe pair, and component Cv is the next processed
component. Let G′ be the graph G, plus an edge for each such uv. The edge uv
connects the component Cv to the previously processed components. When we start, G
is a forest, and at the end, every component has been processed, so G′ is a tree.

Now consider a walk in G′ which does not use any edge more than once. As long
as it contains at least one edge of G, by the triangle inequality the total displacement is
between d1 − (k − 1) · a and n − (d1 − (k − 1) · a), so since d1 > k · a, the start and
end point of such a walk do not form an unsafe pair.

The tree G′ contains a path connecting every u, u′ ∈ U ′, so it suffices to see that
this path contains at least one edge of G. What vertices are connected using only the
edges of G′ that don’t appear in G? By construction this set of edges forms a collection
of stars with vertices of U ′ at the centers, since for each unsafe pair found in step 2, the
vertex v corresponds to a distinct component, and v may not be chosen as u at some
later step since it is not added to U ′. Thus for no two distinct points of U ′ does the
unique path in G′ consist only of unsafe pair edges – each such pair has a path in G′
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with at least one edge of G, so they do not form an unsafe pair.

3.6 Time-Space Tradeoff for Regular Resolution
For regular resolution, it is possible to use a fairly different argument to get super-
polynomial size lower bounds for space that is polynomially large for Tseitin formulas
on a family of constant-degree graphs (and hence constant clause size) in contrast to
the large degree of the graphs we used in the general case. Though not qualitatively
different, the tradeoffs themselves are slightly sharper than in the general case and also
apply in the case of substantially larger space bounds (up to sub-exponential space
rather than up to quasipolynomial space).

To achieve this, the random restriction argument from the case of general resolution
is replaced with a random adversary argument and the analysis now takes a top-down
flavor. This gives much more freedom in the choice of hard graphs since we no require
connectivity under random restrictions that we needed in the general resolution case.
We still must use graphs that are “long and skinny” as before. For simplicity and for
applicability to a wider range of space bounds than for the graphs we used previously,
we will choose the n× ` grid graph, Gn,` of n rows and ` columns.

We first note that the Tseitin tautologies over grid graphs have short regular resolu-
tion refutations.

Proposition 3.30. Any Tseitin tautology over Gn,` has a regular resolution refutation
size at most 32`n ·2n and space at most 2n+1 +5+ |{axioms}|, and |{axioms}| ≤ 8`n.

Proof. Gn,` has cut width n+1 and maximum degree 4 so this follows from Lemma 3.7.
The number of axioms is easily counted as ≤ 2d−1|V |.

By contrast, the main result that we will prove in this section is that if the space
allowed is reduced significantly below 2n, and ` is not too large then such a formula
requires regular resolution refutations of superpolynomial size.

Theorem 3.31. For any ` such that n3 ≤ ` < 2n, any size T and space S regular
resolution refutation of the Tseitin tautology on a n by ` grid must satisfy

T ≥
(

2(1−o(1))n

S

) log2 L
2 log2 log2 L

where L = log2(`/(4n2)).

To prove Theorem 3.31, we will begin with a regular resolution refutation Π, and
repeatedly subdivide Π into polynomially many epochs, at each point choosing an epoch
in which enough “progress” happens that we may continue subdividing the epoch. The
process peters out after O

(
logL

log logL

)
subdivisions.

In the next three subsections we develop the main technical tools that allow us to
derive this lower bound. In section 3.6.1 we modify the complexity measure for clauses
from general resolution to a complexity measure specific to regular resolution. This
measure has the advantage of growing monotonically with the inferences in the proof,
which makes it a much more precise tool. We use this measure to define the com-
plexity levels that are the indicators for progress through the proof. In section 3.6.2
we describe a probabilistic adversary that follows the inferences in the proof. One can
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think of this adversary as observing the progress of the proof. We show that the prob-
ability that adversary reaches a clause (or set of clauses) can be analyzed in terms of
a potential function Φ applied to a set of edges associated with that clause (or set of
clauses). Φ turns out to be the rank function of a certain matroid and we characterize
several properties of Φ that we need in the overall argument. In section 3.6.3, we give
fairly straightforward proofs that the potential Φ will be large for sets that correspond
to clauses of many different medium complexity levels.

In section 3.6.4, we put the pieces together and give the inductive argument that
yields Theorem 3.31. The base case shows simply that any sub-epoch in the proof in
which the adversary has a reasonable probability of visiting clauses of many different
complexity levels must have length exponential in the width n of the grid graph. The
inductive step shows that if one divides an epoch of the proof through which the adver-
sary passes into sub-epochs then either the adversary visits clauses of many different
complexity levels at the boundaries between sub-epochs or the adversary sees a large
fraction of the overall progress in complexity levels within a single sub-epoch. If the
space is small then the first case is very unlikely; if the second case holds then we can
subdivide that sub-epoch and apply the argument recursively.

3.6.1 Read-once branching programs and common information

It is well known (cf. [73]) that a resolution refutation yields a branching program for
the “clause search problem” and this branching program is read-once if and only if the
resolution refutation is regular. In this construction, we start with the proof DAG and
labeled the edges by the following rule: If C ∨ D is derived by resolving C ∨ x with
D∨¬x, then the node for clause C∨D is also labeled by a query to x, the edge directed
from C ∨D to C ∨ x is labeled x = 0, and the edge from C ∨D to D ∨ ¬x is labeled
x = 1. Like the proof DAG, the single-source, or root, of the branching program is
the contradiction ⊥ and the sinks, or leaves, are the input clauses or axioms. Note that
paths p in this branching program correspond to partial assignments. We identify a
regular resolution proof with both its DAG and its associated branching program. The
following is immediate from the definition.

Proposition 3.32. Every node reached by an assignment starting at the root of the
branching program for any regular resolution proof Π is labeled by a clause that is
falsified by that assignment.

For purposes of a top-down analysis, more relevant than the literals appearing in a
clause (node) in a proof is a closely related concept we call its common information. A
similar definition has appeared previously, e.g. in [91].

Definition 3.33. For C a clause in a regular resolution refutation Π, define the (com-
mon) information at C in Π to be a partial assignment IC,Π in terms of the proof Π as
follows:

If every directed path in Π from the contradiction ⊥ to C contains the label x = 1,
then IC,Π assigns x = 1; if every such path contains the label x = 0, then IC,Π assigns
x = 0; Otherwise IC,Π does not assign x.

Note that, by definition, IC,Π assignsC to false since every literal inC must be made
false on any path between C and ⊥. The regularity assumption permits us to prove the
following crucial consistency lemma.
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Lemma 3.34. Let τ be a Tseitin tautology on graphG with regular resolution refutation
Π. If a clause C is reachable from the root ⊥ by a path p in Π consistent with a critical
assignment, then critτ (IC,Π) = critτ (p), and p and IC,Π assign all edges incident to
this critical set identically.

Proof. Let p be such a path from ⊥ to C, consistent with a critical assignment σ with
bad vertex b. Let e be any edge incident to b, and p′ be any other path in Π from ⊥ to
C. Then we claim that p, p′ assign e identically.

The assignment σ corresponds to a root-to-leaf path in Π extending p. Let q denote
the portion of this path which occurs after it reaches C, so that pq is the entire root-to-
leaf path. By the regularity assumption, p′q is also consistent with some assignment,
and by correctness of the proof, p′q violates the axiom labeling the leaf that p′q and pq
both reach, which is also violated by pq. e is a variable of this axiom, so p′q(e) = pq(e),
and both do assign e. If p assigns e, then q does not assign e, so p′ must assign e, and
in the same way as p does. If p does not assign e, then q must, so p′ cannot, by the
regularity assumption.

By definition of IC,Π, we conclude that IC,Π and p assign all edges incident to
critτ (p) identically, and so critτ (IC,Π) ⊆ critτ (p) since IC,Π and p assign the boundary
of critτ (p) in the same way and with the same parity. But since p also extends IC,Π then
critτ (p) ⊆ critτ (IC,Π), and so they are equal.

For the rest of this section we will drop the subscript τ because there will be one
fixed τ for our arguments. For regular resolution, our measure of complexity for a
clause C will be |crit(IΠ,C)|.

Definition 3.35. Let L∗i = {C ∈ Π : 2in3 < |crit(IΠ,C)| ≤ 2i+1n3} for 0 ≤ i ≤
log2(`/(4n2)) − 1. Each L∗i represents a different complexity level. We say that a
clause of Π has medium complexity if it is in one of the L∗i .

The following is a key property that makes regular resolution refutations much each
easier for us to analyze than general resolution ones, namely that the complexity of
clauses decreases monotonically throughout the proof, insofar as the critical assign-
ments are concerned.

Lemma 3.36. Let Π be a regular resolution refutation of a Tseitin tautology. If there is
a path consistent with a critical assignment from the root to clause C to D in Π then
crit(ID,Π) ⊆ crit(IC,Π)

Proof. By Lemma 3.34, crit(IC,Π) = crit(p) for any path p from the root to C con-
sistent with a critical assignment. Let q be any path from C to D in Π. Again,
crit(ID,Π) = crit(pq), and the result follows immediately from the fact that by def-
inition crit is monotonically decreasing over partial assignments and that pq extends
p.

3.6.2 A probabilistic adversary

For this section we fix a connected graph G = (V,E), a Tseitin tautology τ over G,
and a regular resolution refutation Π of τ . Rather than fix a distribution over partial
assignments or total assignments depending only on G as we did for general resolution,
for regular resolution we can use a probabilistic adversary which navigates Π to define
a distribution on assignments that depends on Π itself.
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Definition 3.37. The probabilistic adversary AΠ responds to the queries in the proof
Π in the following way. Let σ be the assignment that the adversary has given to the
queries already asked, and suppose that Π queries edge e at the proof node reached by
following the path labeled σ,

• If e is not a cut edge of G|σ, then the adversary responds randomly.

• If e is a cut edge of G|σ, then the adversary responds so as to maximize the size
of the critical vertex set, breaking ties arbitrarily. More precisely, letting σ0 and
σ1 denote the extensions of σ that assign 0 or 1 to e, respectively, the adversary
answers according to the larger of |crit(σ0)| and |crit(σ1)|.

It is notable that our adversary strategy is very similar to one used in studying
Prover-Delayer games and lower bounds for tree-like resolution as in [20, 94, 93].

The sizes of the critical sets associated with the clauses visited by the adversary sat-
isfy some basic properties analogous to ones shown in Proposition 3.14 and Lemma 3.15
for general resolution, as well as an extra monotonicity property.

Proposition 3.38. Let p be any root-leaf path in Π in the support of the distribution
induced by AΠ and let C0 = ⊥, C1, . . . , Cr be the clauses labeling the nodes of p in
order.

1. crit(I⊥,Π) = V .

2. |crit(ICr,Π)| = 1.

3. |crit(ICi+1,Π)| ≤ |crit(ICi,Π)| for every i with 0 ≤ i < r.

4. |crit(ICi+1,Π)| ≥ |crit(ICi,Π)|/2 > 0 for every i with 0 ≤ i < r.

Proof. Let pi be the partial assignment given by the length i prefix of path p. Observe
that crit(ICi,Π) = crit(pi). The first two are immediate, the third follows immediately
because by definition crit is monotone decreasing over partial assignments and the
fourth follows from sub-additivity of crit and the maximizing choice of the adversary.

Corollary 3.39. For any t with 1 ≤ t ≤ |V |/2, the path taken by adversary Aπ must
pass through a clause C with t < |crit(IC,Π)| ≤ 2t. In particular, the path taken by Aπ
must pass through a clause from every L∗i .

To make use of the probability distribution given by the adversary, we will need to
understand the probability that the adversary reaches a given in Π, as well as the con-
ditional probability of reaching a clause given that the adversary has already followed
some partial path Π. The following measure will allow us to bound these probabilities.

Definition 3.40. Let #(H) denote the number of connected components of a subgraph
H of G. Define a function Φ on (pairs of) subsets of the edges E of G by

• Φ(A|B) = |A\B| −#(G|(A ∪B)) + #(G|B), for A, B ⊆ E, and

• Φ(A) = Φ(A|∅) for A ⊆ E.

For ρ, σ, both partial assignments to the edges ofG, we write Φ(ρ|σ) for Φ(dom(ρ)| dom(σ)).
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The following gives some simple intuition about Φ.

Proposition 3.41. Let A ⊆ E. For any edge set A and edge e 6∈ A,

Φ(A ∪ {e})− Φ(A) =

{
0 if e cuts G|A
1 if not.

Proof. By definition,

Φ(A ∪ {e})− Φ(A)

= |A ∪ {e}| − |A| −#(G|A ∪ {e}) + #(G|A)

= 1−#(G|A ∪ {e}) + #(G|A).

and the result follows immediately.

Definition 3.42. We call a set of edges in G independent if and only if their removal
from G does not increase the number of connected components of G.

Corollary 3.43. Φ(A) is the maximum size of an independent set A′ ⊆ A.

Proof. Apply the Proposition 3.41 inductively starting with Φ(∅) and adding the edges
in A one at a time beginning with the edges in A′.

Remark 3.44. Φ(A) is the rank of edge set A in the cut matroid (also known as on the
bond matroid) of the graph G. This is the dual of the more well-known cycle matroid of
G. The independent sets of the cut matroid are those sets of edges that do not separate
any component of the graph, as in our definition. The rank of a set of edges A in the cut
matroid is the the cardinality of the largest independent A′ ⊆ A. In the literature, Φ(·|·)
is called the conditional rank of the cut matroid.

Our reason for using this definition is the following lemma, which is the key to
understanding the distribution on assignments given by our probabilistic adversary ar-
guments. Though the formulation looks fairly different from the arguments based on
the sizes of boundaries of critical sets that we used in the case of general resolution, it
deals with a similar property. In particular, in the case of a connected set of vertices S
(such as a critical set) whose complement also happens to be connected, it is easy to
check that Φ(δ(S)) = |δ(S)| − 1.

Lemma 3.45. [Main Adversary Lemma] Let Π be a regular resolution refutation of a
Tseitin tautology. For any clause C in Π of with information IC,Π = ρ, the probability
that adversary AΠ reaches C conditioned on following a path labeled σ is at most
2−Φ(ρ|σ). In particular, the probability that the adversary AΠ reaches a clause C with
information IC,Π = ρ is at most 2−Φ(ρ).

Proof. For a fixed ρ, we prove the bound by induction on the length of σ, with large σ
as the base case.

If the assignment given by σ contains ρ, the result holds trivially, since the bounding
expression is 1. Similarly, for σ not consistent with ρ the probability of the event is 0,
so the bound holds.

Suppose inductively that the result is true for every assignment strictly larger than
σ. If the adversary has followed the path labeled σ in Π, at which point edge e is
resolved on, then, by the induction hypothesis, the bound holds for σ0 = σ ∪ {e = 0}
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and σ1 = σ ∪ {e = 1}. We always have Φ(ρ|σ0) = Φ(ρ|σ1) since σ0 and σ1 make
assignments to the same set of edges.

Suppose that Φ(ρ|σ) ≤ Φ(ρ|σ0). Since σ is not as large as ρ, the probability
that the adversary reaches C after following σ is a weighted average of the proba-
bilities that the adversary reaches C after following σ0 and σ1, respectively. Therefore,
by induction, the conditional probability of reaching C after following σ is at most
2−Φ(ρ|σ0) ≤ 2−Φ(ρ|σ) as required.

Suppose now that Φ(ρ|σ0) < Φ(ρ|σ). There are two subcases, depending on
whether e is assigned by ρ. Consider first the subcase that e is assigned by ρ. Then
dom(ρ)∪ dom(σ) = dom(ρ)∪ dom(σ0). Therefore, since Φ(ρ|σ0) < Φ(ρ|σ), we have

0 < Φ(ρ|σ)− Φ(ρ|σ0)

= | dom(ρ)\ dom(σ)| − | dom(ρ)\ dom(σ0)|
−[#(G|(ρ ∪ σ))−#(G|(ρ ∪ σ0))]

+#(G|σ)−#(G|σ0)

= 1 + #(G|σ)−#(G|σ0). (3.1)

Hence #(G|σ)−#(G|σ0) > −1. Therefore, since #(G|σ) ≤ #(G|σ0) we must have
#(G|σ) = #(G|σ0), which means that e is not a cut edge of G|σ. Moreover, (3.1)
implies that Φ(ρ|σ0) = Φ(ρ|σ) − 1. By the definition of the adversary, the value the
adversary assigns to e is chosen randomly in this case. However, one of σ0 and σ1 is
inconsistent with ρ because ρ assigns some particular value to e. So, without loss of
generality,

Pr
adv

[ρ|σ] =
1

2
Pr
adv

[ρ|σ0] ≤ 2−Φ(ρ|σ) ,

as desired. Now consider the subcase that e is not assigned by ρ. In this case we
follow the definitions of Φ(ρ|σ0) and Φ(ρ|σ) and observe that | dom(ρ)\ dom(σ0)| =
| dom(ρ)\ dom(σ)|. Since Φ(ρ|σ0) < Φ(ρ|σ) we must have

0 < Φ(ρ|σ)− Φ(ρ|σ0)

= −[#(G|(ρ ∪ σ))−#(G|(ρ ∪ σ0))] + #(G|σ)−#(G|σ0) (3.2)

and hence
#(G|(ρ ∪ σ0))−#(G|(ρ ∪ σ)) > #(G|σ0)−#(G|σ).

The left hand side is equal to 1 or 0 indicating whether e cuts G|(ρ ∪ σ), and the right
hand side indicates whether e cuts G|σ. The inequality implies the former is one and
the latter is zero, hence e is not a cut edge of G|σ but it is a cut edge of G|(ρ ∪ σ).
Plugging these facts back in (3.2), we see that the potential drop is exactly one; that is,
Φ(ρ|σ0) = Φ(ρ|σ)−1. Again, by the definition of the adversary, e is assigned randomly
here.

Claim 3.46. Only one of σ0, σ1 can permit the adversary to reach ρ.

Suppose to the contrary that π0 and π1 extend σ0 and σ1 respectively, each corre-
sponding to paths that can be travelled by the adversary and that meet at the target clause
C with information ρ. Then, crit(π0) = crit(π1) 6= ∅, by Lemma 3.34 and Proposi-
tion 3.38 (4). But, by the definition of common information, π0 and π1 extend σ0 ∪ ρ
and σ1 ∪ ρ respectively, and by Proposition 3.11 these two assignments have disjoint
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critical sets since e cutsG|(ρ∪σ). Since by definition crit is monotone decreasing over
partial assignments, crit(π0) and crit(π1) are also disjoint, a contradiction.

The claim now implies the bound we need exactly as before, and thus completes the
proof.

If C is a clause and p is a path from the root of Π, it is most convenient to abbreviate
the conclusion of the lemma as

Pr
adv

[C|p] ≤ 2−Φ(IC,Π|p) .

For our superpolynomial bounds we need to use the following properties of Φ, all of
which are consequences of Φ being a matroid rank function. While these can be proved
easily using matroid theory, we sketch simple proofs for our specific case without rely-
ing on matroids.

Proposition 3.47. For all non-empty sets of edges A, B, and C in G,

(a) Φ(·) is non-negative and monotone increasing.

(b) Φ(A|B) = Φ(A ∪B)− Φ(B).

(c) (Non-negativity and Monotonicity) Φ(·|·) is non-negative, increasing in its first ar-
gument, and decreasing in its second argument.

(d) (Chain Rule) Φ(A) ≤ Φ(A|B) + Φ(B). More generally, Φ(A|C) ≤ Φ(A|B) +
Φ(B|C) when B ⊇ C.

(e) (Subadditivity) Φ(A ∪B|C) ≤ Φ(A|C) + Φ(B|C).

Proof. Part (a) is immediate from Corollary 3.43. By definition,

Φ(A ∪B)− Φ(B)

= |A ∪B| − |B| −#(G|(A ∪B)) + #(G|B)

= |A\B| −#(G|(A ∪B)) + #(G|B)

so part (b) follows. The nonnegativity and monotonicity in the first argument given in
(c) follow from (b) and the monotonicity from (a). The monotonicity in the second
argument given in (c) follows from (b), Proposition 3.41, and the fact that if e is not
a cut edge with respect to B ⊇ B′ then e is not a cut edge with respect to B′ either.
For part (d), since C ⊆ B, we have B ∪ C = B and Φ(A ∪ C) ≤ Φ(A ∪ B) by the
monotonicity of Φ. Therefore by (b),

Φ(A|C) = Φ(A ∪ C)− Φ(C)

≤ Φ(A ∪B)− Φ(B) + Φ(B ∪ C)− Φ(C)

= Φ(A|B) + Φ(B|C)

which yields the chain rule. By the chain rule,

Φ(A ∪B|C) ≤ Φ(A ∪B|B ∪ C) + Φ(B ∪ C|C) ,

but by definition Φ(B ∪ C|C) = Φ(B|C), and also Φ(A ∪ B|B ∪ C) = Φ(A|B ∪
C) which, by monotonicity, is bounded above by Φ(A|C). Hence subadditivity (e)
follows.
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We will also need this fact, specific to cut matroids.

Lemma 3.48. [Matroid Cut Argument] Suppose that S is a set of vertices of G, and
that δ(S) ⊆ B. Then for any A,

Φ(A|B) = Φ(A u S|B u S) + Φ(A u S|B u S) ,

where E ′ u V ′ := {e ∈ E ′ : e is incident to V ′}, for E ′ a set of edges and V ′ a set of
vertices.

Proof. We can easily prove this by induction on |A|. Suppose that e 6∈ A. We would
like to show that when e is added to A, the equality still holds. If e ∈ B, then none of
Φ(A|B), Φ(AuS|BuS), or Φ(AuS|BuS) can change; so, without loss of generality
e 6∈ B. This implies that e 6∈ δ(S) as well. Without loss of generality, e is adjacent to
S but not S, so the only terms that can change are Φ(A|B) and Φ(A u S|B u S). It is
enough to show that these terms must change in the same way when e is added; so, in
fact, it is enough to see that Φ(A ∪ B) changes the same way as Φ((A ∪ B) u S) does
when e is added. In light of Proposition 3.41, this holds because an edge e is a cut edge
in a graph G if and only if it is a cut edge in the component containing it.

3.6.3 Isoperimetric inequality for grid graphs

In light of Lemma 3.45, for regular resolution we replace the “isoperimetric inequal-
ity” used for general resolution which showed that medium sized sets S have have
many edges on their boundaries (large δ(S)) by one showing that such sets have large
Φ(δ(S)), i.e. large independent subsets in δ(S).

For every medium size set of vertices S of Gn,`, we will show that δ(S) has large
rank (Φ(δ(S)) is large) rather than large cardinality. Moreover, we show that for several
medium-sized sets of vertices S1 . . . Sk of sufficiently separated cardinalities, the rank
of
⋃
i δ(Si) grows linearly with k. We will be able to prove a tight lower bound on

these ranks without much more difficulty, and without giving up much compared to
cardinality.

The following is an analog of the properties we proved in the case of general reso-
lution using transition points and Lemma 3.5 about endpoints of intervals of increasing
sizes. The proof here uses the same lemma on intervals but directly uses common in-
formation rather than transition points.

Lemma 3.49. Let S1 . . . Sk be sets of vertices in Gn,`. If 2kn2 ≤ |S1|, for each i ∈
[k − 1], 4|Si| ≤ |Si+1|, and |Sk| ≤ n`/4, then Φ(

⋃
i δ(Si)) ≥ k(n− 1).

Proof. If any Si contains k(n− 1) partial columns, then each such column contributes
a vertical edge to

⋃
i δ(Si), and these vertical edges together form an independent set of

the necessary size, so we are done.
If no Si contains k(n− 1) partial columns, then by the size bounds on Si, each con-

tains a full column, and an empty column. In particular, each Si contains a horizontal
edge in every row. We will show that each row contains at least k edges of

⋃
i δ(Si).

Choosing any n − 1 rows and the k edges from each such row give an independent set
of size k(n− 1), so this will finish the proof.

Fix a row r. Let ai be the column number of the leftmost vertex in Si and in the r-th
row, let bi be the column number of the rightmost such vertex. Then Si has boundary
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edges with left endpoints in columns ai − 1 and bi, provided that these are not 0 or `.
Thus all we need to show is that∣∣∣∣∣⋃

i

{ai − 1, bi} \ {0, `}

∣∣∣∣∣ ≥ k .

Since 0 and ` are the same modulo `, it suffices to show that these intervals meet the
conditions for the first part of Lemma 3.29.

Since Si has fewer then k(n−1) partial columns, bi− (ai−1) > |Si|/n−k(n−1).
On the other hand, the number of full columns in Si is at most |Si|/n, so bi− (ai−1) <
|Si|/n+ k(n− 1). Thus the ratio of successive differences is at least

bi+1 − (ai+1 − 1)

bi − (ai − 1)
>
|Si+1| − kn(n− 1)

|Si|+ kn(n− 1)

≥ 4|Si| − kn(n− 1)

|Si|+ kn(n− 1)
.

Since |Si| ≥ |S1| ≥ 2kn2, the ratio is at least 7
3
> 2 and we can apply Lemma 3.29 as

desired.

It is convenient to have a lower bound on |S1| that does not depend on k. To do this
we need to upper bound `.

Corollary 3.50. Suppose that ` ≤ 2n. Let S1 . . . Sk be sets of vertices in Gn,`. If
n3 ≤ |S1|, 4|Si| ≤ |Si+1| for each i, and |Sk| ≤ n`/4, then Φ(

⋃
i δ(Si)) ≥ k(n− 1).

Proof. Since ` ≤ 2n, and |S1| ≥ n3, we have k ≤ 1+log4(|Sk|/|S1|) ≤ log2 n/2 ≤ n/2
and Lemma 3.49 applies.

3.6.4 Regular resolution time-space tradeoff for grid graphs

To prove Theorem 3.31, we will begin with a regular resolution refutation Π, and re-
peatedly subdivide Π into polynomially many epochs, at each point choosing an epoch
in which enough progress happens that we may continue subdividing it. The process
peters out after O

(
logL

log logL

)
steps.

By Corollary 3.39, the adversary path will pass through clauses of every medium
complexity level. In this analysis, an epoch in the refutation is viewed as represent-
ing a lot of progress if there is a path p to a clause appearing in that epoch such that,
conditioned on having followed p, the adversary probably reaches a much smaller com-
plexity clause by the end of that epoch than it began with. The major technical step is to
show how to divide an epoch that represents a significant amount of progress into much
smaller epochs, one of which does a comparable amount of work.

Lemma 3.51. Let 0 < ε < 1 and Π be a regular resolution refutation of a Tseitin
tautology on the grid graph Gn,` for ` ≤ 2n. Suppose that p is a path in Π from the root
to some clause C. Let 0 ≤ `1 < · · · < `k satisfy `i+1 ≥ `i + 3 for each i ∈ [k]. If
for each i ∈ [k] there is some Ci ∈ L∗`j appearing in Π with Pradv[Ci|p] ≥ 2−(1−ε)(n−1)

then Φ(IC,Π) ≥ kε(n− 1).
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Proof. Fix the choices of `i and the associated clauses Ci. In order to make it relatively
likely to reach each of the Ci from C as in the hypothesis, we show that the extra
information at Ci over that at C cannot be too large. On the other hand we can show,
using the isoperimetric properties of the grid graph, that the clauses Ci in total have a
large amount of information and hence C must also. We start with the latter.

Let Si = crit(ICi,Π) for i = 1, . . . , k and S = crit(p). Since `i+1 ≥ `i + 3 we have
|crit(ICi+1,Π)| ≥ 4|crit(ICi,Π)| and Corollary 3.50 implies that

Φ(
⋃
i

δ(Si)) ≥ k(n− 1) (3.3)

On the other hand, by Lemma 3.45, the hypothesis that Pradv[Ci|p] ≥ 2−(1−ε)(n−1)

implies that Φ(ICi,Π|p) ≤ (1− ε)(n− 1) where, as usual, we have identified p with the
partial assignment labeling it. Moreover, since Pradv[Ci|p] > 0, there is some path qi
from C to Ci in Π. Therefore,

Si = crit(ICi,Π) = crit(pqi) ⊆ crit(p) = S,

where the third equality follows from Lemma 3.34 and the containment follows since by
definition crit is monotone decreasing over partial assignments. Note that Lemma 3.34
also implies that p u S = IC,Π u S and Corollary 3.12 implies that δ(S) ⊆ dom(p).
Therefore, we may apply Proposition 3.48 with B = dom(p) to obtain

Φ(ICi,Π|p) ≥ Φ(δ(Si)|p) by monotonicity
= Φ(δ(Si) u S|p u S) + Φ(δ(Si) u S|p u S)

by Lemma 3.48
≥ Φ(δ(Si) u S|p u S) by nonnegativity
= Φ(δ(Si)|p u S) since Si ⊆ S

= Φ(δ(Si)|IC,Π u S) by Lemma 3.34
≥ Φ(δ(Si)|IC,Π) by monotonicity.

It follows that Φ(δ(Si)|IC,Π) ≤ (1− ε)(n− 1) for each i ∈ [k]. Hence, by the subaddi-
tivity of Φ given in Proposition 3.47 we have

Φ(
⋃
i

δ(Si)|IC,Π) ≤ (1− ε)k(n− 1).

On the other hand, by the chain rule of Proposition 3.47 and (3.3) above, we have

Φ(IC,Π) ≥ Φ(
⋃
i

δ(Si))− Φ(
⋃
i

δ(Si)|IC,Π)

≥ k(n− 1)− (1− ε)k(n− 1) = εk(n− 1)

which is what we needed to prove.

The real value of Lemma 3.51 is in its contrapositive. If the proof is small, then by
Lemma 3.45, the vast majority of the time the adversary path will only reach clauses C
with Φ(IC,Π) small. Moreover, there can only be a few medium complexity levels of
clauses that the adversary is now relatively likely to visit. For most of the levels, the
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adversary on visiting C has essentially no greater chance to reach any clauses of that
complexity level than the chance when the adversary began at the ⊥ clause.

With this lemma in hand we can now try to implement the overall plan for the proof
of Theorem 3.31. Based on some parameters that we will set later, we first specify a
property of clauses, which, by Lemma 3.45 and a union bound, are rarely encountered
by an adversary in any refutation that is not too large.

Definition 3.52. Let 0 < ε < 1 and m be parameters, which we will fix later. We say
that a clause C has high potential if Φ(IC) ≥ εm(n− 1).

Recall that a refutation is a sequence of clauses ending in ⊥, and that the adversary
walks down the proof DAG starting at ⊥, which involves moving backwards through
this sequence, possibly jumping over intermediate clauses. The ordering on the se-
quence of clauses gives a sequence of time steps. Write time(C) for the time step in
the proof sequence in which clause C appears. Recall that every arc in the proof DAG
that crosses from one time step to an earlier one corresponds to a clause that must be in
memory during all intervening time steps. Moreover, by Corollary 3.39, the adversary
path must pass through clauses in every L∗i starting from large values of i and ending
with i = 0. For a medium complexity clause C we write level(C) to denote the i such
that C ∈ L∗i . These properties motivate us to define a way to measure the progress of a
portion of the proof.

Definition 3.53. Let C be a medium complexity clause in Π. Say that a path p in Π
from the root to clause C is a (T, gap, δ)-path in Π if, conditioned on following p, with
probability at least 1− δ, the adversary AΠ

• does not reach any high potential clauses, and

• reaches a clause C ′ with level(C ′) ≤ level(C) − gap such that time(C ′) ≥
time(C)− T .

Lemma 3.54 (Inductive Step). Let Π be a space S regular resolution refutation of a
Tseitin tautology on Gn,` for n3 ≤ ` ≤ 2n. Suppose that p is a (T, gap, δ)-path in Π,
gap ≥ 1, and B is any natural number. Then there exists a (T ′, gap′, δ′)-path p′ in Π
extending p such that

• T ′ = dT/Be,

• gap′ = bgap
3m
c, and

• δ′ = δ +B · S · 2−(1−ε)(n−1).

Proof. If δ ≥ 1 then the claim is vacuous, so assume that δ < 1. Let C be the clause
reached by p. By hypothesis, level(C) ≥ gap and C must not have high potential.

Therefore, by the contrapositive of Lemma 3.51 with k = m, there do not exist
m complexity levels `1 < . . . < `m with `i+1 ≥ `i + 3 such that there is a clause
Di ∈ L∗`i with Pradv[Ci|p] ≥ 2−(1−ε)(n−1). In particular, this means that there do not
exist 3m distinct complexity levels of clauses L∗j such that there is a clause D ∈ L∗j
with Pradv[D|p] ≥ 2−(1−ε)(n−1).

It follows that there exists a sequence of at least gap′ = bgap
3m
c consecutive com-

plexity levels between level(C) and level(C) − gap, such that for any D in one of
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these levels, Pr[D|p] ≤ 2−(1−ε)(n−1). Let i′ be the largest level in this sequence, and
i′ − gap′ + 1 be the smallest.

Divide the T time steps between time(C) and time(C)−T , intoB epochs of length
at most T ′ = dT/Be, and letM denote the union over theB breakpoints between these
epochs (including the start of the first epoch), of the sets of clauses in memory that are
of complexity level between i′ and i′ − gap′ + 1. By a union bound,

Pr[adversary reaches some C ′′ ∈M] ≤ B · S · 2−(1−ε)(n−1).

Thus, except with probability at most δ′, the adversary AΠ, conditioned on following p,

1. does not hit any high potential clauses,

2. reaches a clause C ′ with level(C ′) ≤ level(C)−gap and time(C ′) ≥ time(C)−
T , and

3. does not hit any clause inM.

By averaging, there must exist a path p′ extending p and reaching a clause C ′ ∈ L∗i′
such that this also holds, except with probability at most δ′.

Then, we claim that p′ is a (T ′, gap′, δ′)-path. Let C ′ denote the clause reached
by p′. C ′ falls in some epoch of length at most T ′. If no clause inM is reached and
the adversary has followed p′, then by the beginning of the epoch containing C ′, the
complexity level of the clause reached by the adversary must be less than or equal to
i′ − gap′. Thus, by construction, p′ is indeed a (T ′, gap′,∆′)-path in Π.

Additionally, whenever we have a (T, gap, δ)-path p in Π with nontrivial gap and δ
parameters, we can show that T is nontrivial.

Lemma 3.55 (Base Case). Let Π be a regular resolution refutation of a Tseitin tau-
tology on Gn,` for n3 ≤ ` ≤ 2n. If p is a (T, gap, δ)-path in Π with gap > 3m, then
T ≥ (1− δ)2(1−ε)(n−1).

Proof. If δ ≥ 1, the claim is trivial. Suppose that δ < 1. Let C be the clause reached by
p and consider the clauses in the epoch between time steps time(C)− T and time(C)
in Π.

By Lemma 3.51, there exists some complexity level L∗i with i > level(C) − gap
such that, conditioned on following p, the adversary AΠ

• reaches a clause C ′ ∈ L∗i , with time(C ′) ≥ step(C)−T with probability at least
(1− δ), and

• does not reach any fixed clauseD inL∗i , except with probability at most 2−(1−ε)(n−1).

By a union bound over the clauses in this epoch, we conclude that T ≥ (1−δ)2(1−ε)(n−1).

We now have the ingredients needed to complete the proof of our time-space trade-
off for regular resolution.

of Theorem 3.31. We begin with a regular resolution proof Π of length T that uses space
S and refutes a Tseitin tautology onGn,`. There are L = log2(`/(4n2)) distinct medium
complexity levels of clauses with respect to T . By Corollary 3.39, the path followed by
adversary AΠ must pass through clauses with each of these complexity levels.

The outline of the remainder of the proof is as follows:
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• First we show, via a union bound over the number of steps in the proof, that
there is a (T, L, δ0)-path in Π for some suitably small δ0. This step only involves
calculating the probability that the adversary passes through some high potential
clause. This calculation will require that ε ·m not be small compared to log2 T

log2 n
.

• Next we choose an appropriate value for B and continually apply the inductive
step from Lemma 3.54, until either the accumulated error δ becomes too large, or
the gap becomes too small. (We use the same value of B at each step.)

• Finally, some number r of rounds, just before gap has become too small after r
rounds, we apply the base case Lemma 3.55 to deduce that the T ′ at the last step
is reasonably large, and that T ≥ Br · T ′.

Let r denote the number of rounds that we will apply the inductive step and let
gapi denote the value of gap after each round and δi denote the value of δ after each
round. We will set gap0 = L = log2(`/(4n2)). By Lemma 3.45, the probability that
AΠ reaches a high potential clause is at most 2−εm(n−1). Therefore if

T · 2−εm(n−1) ≤ δ0 (3.4)

the adversary must reach some clause of complexity L. Fix any path to such a clause.
We obtain that this path is a (T, L, δ0)-path,

We will choose B so that gap, rather than the error δ, is the limiting resource, so we
take

r =
log2 L

log2(3m)
− 1 (3.5)

Observe that by Lemma 3.54, δr = δ0 +r ·B ·S ·2−(1−ε)(n−1). and applying Lemma 3.55
after the r-th round point yields T ′ ≥ (1− δr)2(1−ε)(n−1). By choosing

δ0 =
1

3
and B =

1

3
· 2(1−ε)(n−1)

S · r
,

we obtain that δr = 2/3 and hence

T ≥ 1

3
2(1−ε)(n−1) ·

(
2(1−ε)(n−1)

3 · S · r

)r
. (3.6)

Together with the n3 ≤ ` ≤ 2n and the values of δ0, L, and r, inequalities (3.4) and
(3.6) provide the only constraints on our parameters. It remains to choose m and ε to
optimize them and derive a convenient tradeoff lower bound. It is convenient to choose
m = log2 L so that r = log2 L/ log2(3m) − 1 is between 1

2
log2 L/ log2 log2 L and

log2 L/ log2 log2 L. For convenience we also choose ε to be 2/ log2m = 2/ log2 log2 L.

With these choices, the constraint (3.4) is satisfied whenever T is at most 1
3
2

2 log2 L
log2 log2 L

(n−1)

and this upper bound is strictly larger than the lower bound from (3.6). On the other
hand, since r ≤ log2 L/ log2 log2 L and L ≤ n, the 3r+1rr in the denominator of the
expression in (3.6) is at most 2(1−ε)(n−1). Hence

T ≥

(
2

(1− 2
log2 log2 L

)(n−1)

S

) log2 L
2 log2 log2 L

.

Since L is grows at least logarithmically with n, the statement of the theorem follows.
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3.7 Conclusion
We have shown superpolynomial size-space tradeoff lower bounds for resolution proofs
which are the first to apply for superlinear space. The two different methods for deriving
these bounds are based on a similar recursive decomposition of proofs into epochs.
Our results suggest a number of open questions: Can this decomposition framework be
applied to show size-space tradeoffs for stronger proof systems? With very small space,
resolution size upper bounds for the Tseitin formulas we consider are log2 n powers of
their size for unlimited space. Is this tight? Can we increase the exponent in our lower
bound from Θ(log log n/ log log log n) to Θ(log n)? More generally, is it true that for
every k and every formula of size n with a proof of size nk, there exists a proof in space
O(n) with size nO(logn)? with size 2n

ε for any ε > 0? Finally, our tradeoff lower bound
can be viewed as a separation between two search paradigms: dynamic programming
vs. divide and conquer. Can we find other settings in which these paradigms may be
separated?

3.8 Some Upper Bounds
For the graphs we will consider, some generic upper bounds follow from bounds on
their cut width. The first will form the high space upper bound in our time space trade-
off result, and the second is a low space upper bound we use to argue about the tightness
of the lower bound we get for low space.

Definition 3.56. The cut width of a graph G is the smallest W such that there is a linear
ordering of the vertices v1, . . . , vn such that, for every 1 ≤ t ≤ n, there are no more
than W edges crossing the cut ({v1, . . . , vt}, {vt+1, . . . , vn}).

Throughout this section we will use the following well-known fact which we prove
for completeness:

The rank of a resolution proof is the height of its proof DAG.

Observation 3.57. Any tree-like proof of rank r has size at most 2r+1 and clause space
at most r + 1.

Proof. The first is an elementary fact about binary trees of height r. The second, we
prove by induction. In the base case, suppose that a proof has rank 1. Then the proof
consists of one step and so we need 2 units of space to hold both resolvents. Now
suppose the inductive hypothesis holds for rank r, and that we have a proof of rank
r + 1. Suppose C is the last clause of the proof, and A,B are its children. Then
the derivations leading up to A,B are rank r. We then derive C as follows – run the
derivation of A using r clause space, then A is the only remaining active clause by the
tree-like assumption, so clear all of this space and store only A. Then, derive B using r
clause space. When we have B, resolve it with A to finish the derivation of C. We only
needed r + 1 space in total, as desired.

Lemma 3.58 (Lemma 3.7). Let G be a graph with n vertices, maximum degree d, and
cut width W . Then there is a resolution refutation of a Tseitin tautology on G using
≤ n ·2d+W resolution steps, and space≤ ·2W +d+ 1, plus space for the initial axioms.

Proof. We will specify a sequence of n+ 1 collections Ci of clauses, such that
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1. C1 is a subset of the axioms .

2. |Ci| ≤ 2W−1 for all i .

3. Cn = {⊥} .

4. Given a configuration with Ci and the axioms in memory, we derive any clause in
Ci+1 using at most 2d+1 proof steps and d+ 1 extra work cells.

This construction mirrors a construction in [38]. For each 1 ≤ i < n, let Ei be the
collection of at mostW edges crossing the cut ({v1 . . . vi}, {vi+1, . . . , vn}) as described
in the assumption. Let Ci be the collection of 2|Ei|−1 clauses whose conjunction is
semantically equivalent to the parity constraint

⊕
e∈Ei xe ≡

⊕
1≤j≤i χ(j).

We’ve defined everything so that (1), (2) and (3) hold immediately. Now we will
show that item (4) holds for i < n− 1.

The symmetric difference of Ei and Ei+1 is, by definition, the edges incident tohas
vi+1. Let Ai+1 denote the axioms associated with vertex vi+1. By definition Ai+1 is
logically equivalent to the constraint

⊕
e∼vi+1

xe ≡ χ(i + 1). If we think of parity
constraints as GF(2)-linear equations, and we add the two equations associated with
Ai+1 and Ci, we obtain the equation associated with Ci+1, so we conclude that

Ai+1, Ci |= Ci+1 .

This move from Ci to Ci+1 thus corresponds to adding two linear equations together and
deleting one of them from memory.

Since resolution is implicationally complete, it is clear that it is possible to complete
this move. We would like to now say that with at most 2d+1 size and d+1 space, we can
derive any particular clause of Ci+1, so that we can complete the move using |Ci+1| ·2d+1

size and d + 1 work space in addition to the space needed just to hold Ci, Ci+1 and the
axioms.

Let C be an arbitrary clause in Ci+1. It is well known that we may convert any
derivation

Ai+1|¬C , Ci|¬C ` ⊥

into a derivation
Ai+1, Ci ` C ,

using exactly the same proof DAG and possibly with some weakening steps added. It
should be clear that weakening steps can be eliminated at the end of our construction
without increasing the space or size used.

Since Ci+1 is logically equivalent to a parity constraint, everyC ∈ Ci+1 assigns every
variable Ei+1. Thus the only variables remaining in any of the Ci after the restriction
¬C is applied correspond to edges incident to vi+1. Thus there are at most d variables in
any such derivation, and this derivation may be carried out trivially in a tree-like fashion
using only 2d+1 size and d+ 1 space.

So, by completing a sequence of 2W−1 derivations each of length 2d+1, reusing the
d+ 1 space for each, we may fill 2W−1 new cells with the clauses in Ci+1. We may then
safely delete the cells used to hold Ci, so that we never need more than 2 · 2W−1 + d+ 1
space, plus the space for the axioms.

Finally we will see (4) holds for i = n, that is, from Cn−1 and the axioms, we may
derive a contradiction using 2d+1 size and d+ 1 space.
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SinceEn−1 is just the set of neighbors of vn, Cn−1 is logically equivalent to
⊕

e∼vn xe ≡⊕
1≤j≤n−1 χ(j). ButAn is logically equivalent to

⊕
e∼vn xe ≡ χ(n), which by assump-

tion that χ is odd-charged, is of different parity. So Cn−1 and An are contradictory sets
of clauses, and on at most d variables. Thus a contradiction can be derived in tree-like
fashion as claimed.

In total we carried out n phases, each with 2W−12d+1 = 2d+W steps, and each using
2 · 2W−1 + d + 1 workspace in addition to the axioms. If we include the axioms in the
space budget we will need additional space for n2d−1 clauses.

A little thought shows that this proof may be carried out in regular resolution, since
within each phase, the derivation is tree-like, and the phases can be seen to operate on
disjoint sets of variables.

We will appeal to this lemma to establish upper bounds for large space, against
which we will prove size-space trade-offs. The following lemma shows that for Tseitin
graphs satisfying the conditions of Lemma 3.7, which include the ones that we consider
here, even radically restricted space can only increase the size required by a O(log n)
power.

Lemma 3.59 (Lemma 3.8). Under the same conditions as Lemma 3.7, the Tseitin tau-
tology on τ(G) has a tree-like Resolution refutation using space W dlog ne + 1 and
≤ 2W dlogne+1 resolution steps.

Proof. We prove that when n is a power of two, τ(G) has a tree-like refutation of rank
W log n, which implies the claim. Suppose that G is such a graph of size n. Suppose
inductively that the claim holds on graphs of size n/2. As before let En/2 denote the
edges crossing the cut

({v1, . . . , vn/2}, {vn/2+1, . . . , vn}) .

LetC be any clause containing every variable inEn/2. Then τ(G)|¬C can be written as a
pair of disjoint Tseitin formulae, one from each side of the cut, one of which is odd and
therefore unsatisfiable. The induced subgraphs on either side of have cut width at most
W , therefore τ(G)|¬C has a tree-like resolution refutation of rank at mostW (log n−1),
which can be lifted to a tree-like derivation ofC from the axioms τ(G) in the same rank.

It is easy to see that there is a tree-like refutation of rank |En/2| ≤ W using the set
of all such C as axioms. By replacing the appearances of these axioms in that refutation
with their W (log n − 1) rank tree-like refutations from the τ(G) axioms, we obtain a
W log n rank tree-like refutation of τ(G).

Generalizations

These ideas can be generalized to the stronger notion of carving width, yielding both a
high space version and a low space version for any graph. For the high space version,
we essentially just restate part of the main result of Aleknovich and Razborov [3]:

Definition 3.60. A carving of a graph G is a rooted binary tree T whose leaves are
in bijection with the vertices of G. For t a node of T , we let v(t) denote the vertices
corresponding to leaves which are under t, andCut(t) denote the edges on the boundary
of v(t). The size of the largest Cut(t) is the width of a particular carving, and the
carving width of a graph G is the width of the narrowest carving of G.
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Observation 3.61. The carving width is always less than the cut width – given any lin-
ear ordering of the vertices yielding cut width W , we can obtain a carving of width W
by taking a maximally unbalanced binary tree, and assigning vertices to leaves as dic-
tated by the linear ordering. The cuts corresponding to internal nodes then correspond
exactly to the cuts occurring in the definition of cut width.

Corollary 3.62. [3] For every n vertex graphG of carving widthW , the corresponding
Tseitin tautology has a regular resolution refutation of size poly(n) · 2O(W ), and uses
comparable space.

Sketch: There is a natural way to convert a carving into a refutation – for each node t,
we will have an associated set of clauses on the variables Cut(t):

For t a leaf corresponding to vertex v, we will simply take all the axioms associated
to vertex v.

For t an internal node, we will take the clauses associated to its children t1, t2, which
are on variables Cut(t1) or Cut(t2), and make all derivations possible which yield
clauses onCut(t) and only which resolve on variables fromCut(t1)∪Cut(t2)\Cut(t).

To analyze this, we observe there are at most 3|Cut(t)| clauses derived for any node,
and each one can be derived from clauses at the children by resolving on at most 2W
variables, hence in 22W time. There are only 2n nodes in total since there are n leaves,
and so there is poly(n) · exp(O(W )) total work, and at most poly(n) · exp(O(W ))
active clauses at any point. We omit the proof that this actually does result in deriving a
contradiction at the end – Aleknovich and Razborov refer to (Krajicek 1992, Theorem
4.2.1). It is straightforward to see this when considering only Tseitin tautologies, since
then the clauses associated to t will always correspond to a parity constraint on the
variables Cut(t), and the derivation of t from t1, t2 corresponds to addition of linear
equations; Aleknovich and Razborov in fact establish this claim for any tautology.

Lemma 3.63. For every graph G on n nodes with carving width W , the corresponding
Tseitin tautology has a tree-like refutation of rank at most W log 3

2
n. In particular, it

has a refutation with size nW log 3
2 , using at most W log 3

2
n+ 1 clause space.

Proof. Given an optimal carving T of G, we use the classic 1
3
, 2

3
lemma for binary trees

to find an edge which represents a balanced cut in T . Suppose that t is the lower vertex
of this edge. (More explicitly: observe that if we define a function f on nodes of the
tree s.t. f(t) = |v(t)|, then f is a subadditive function on the tree, that is f(t) ≤
f(t1) + f(t2), where t1, t2 are the children of t. f of each leaf is 1, and f of the root is
n, therefore there exists t such that n

3
≤ f(t) ≤ 2n

3
.)

First observe that the induced subgraph on v(t), and the induced subgraph on V \
v(t), both have carving width at mostW , and at most 2

3
n vertices by assumption. There-

fore by induction hypothesis, Tseitin tautologies on these graphs have refutations of
rank at most W (log 3

2
n− 1). This implies that every clause containing exactly the vari-

ables of Cut(t) has a tree-like derivation of rank at most W (log 3
2
n−1), since any such

clause falsifies at least one component of G \ Cut(t).
If we may start with all clauses on exactlyCut(t), it is easy to see that there is a tree-

like refutation of rank |Cut(t)| ≤ W , by branching on each variable of Cut(t) in suc-
cession. By replacing the leaves in this refutation with corresponding small rank tree-
like derivations of these clauses, we get a tree-like refutation of rank at most W log 3

2
n

as desired.
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It is worth pointing out that while this lemma shows that small space proofs exist,
it generally does not yield a small space method for finding them. The results of [3]
show that it is possible to find a good carving or branch decomposition in small space;
however, they left open the question of how to exploit this to solve small width SAT
instances efficiently in small space. Important progress has been made by [11], [8].

Some algorithmic upper bounds from the literature

While we have described two different resolution proofs for Tseitin tautologies, it re-
mains to be seen whether these upper bounds really correspond to the executions of
actual algorithms. There has been a series of SAT algorithms [3, 11, 8] based on branch
width or tree width that achieve this.

Claim 3.64. The branch-width based algorithm of Aleknovich and Razborov [3] gives
an efficient implementation of Lemma 3.7, matching the space and time usage up to
constants in the exponent. A recent algorithm of [8] achieves this as well.

Claim 3.65. The small space variation of [8] achieves a runtime matching the size of
the proof in Lemma 3.8, up to constants in the exponent, and achieving memory usage
which is polynomial in n = |G|. The branch width-based algorithm [11] achieves
memory usage which is near linear in |G|, after a near optimal branch decomposition
has been computed. Both results essentially appeal to the branch decomposition routine
of [3] to achieve their results.

A further contribution of [8] is to provide a smooth interpolation between the high
space parameters and the low space parameters. Their results are phrased in terms of
tree-width parameterized SAT, and they show that time T and space S are feasible when

α (log T/TW (φ) log |φ|) + β logS ≥ TW (φ) + γ log |φ|,

for appropriate constants α, β, and γ. They conjecture that this essentially cannot be
improved. Specifically, they conjecture that any SAT algorithm that runs in time T with
log T = o(TW (φ) log(|φ|)) requires space exponential in TW (φ).

We note that one way to prove that this is true, at least for backtracking algorithms,
would be to improve the lower bound result given in Lemma 3.17 for Tseitin tautologies,
by improving the exponent to match the small space upper bounds.
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4 Time Space Tradeoffs in Polynomial Calculus

4.1 Introduction
The satisfiability problem is of paramount importance to theoretical computer science.
Despite a strong belief in the theory community that the problem is intractable in the
worst case, in practice there are many important and successful approaches to solving it.
Applied SAT solving has matured significantly in the last 10–15 years, and SAT solvers
are now routinely used to solve real-world instances with hundreds of thousands, or
even millions, of variables. Today, practitioners often think of SAT as an easy problem
to reduce to, rather than a hard problem to reduce from.

Because the SAT algorithms used in practice depend crucially on complex heuris-
tics, essentially the only known way to analyze their worst-case performance is by
means of proof complexity. In this approach, the detailed heuristics are abstracted away,
and instead the focus is on the proofs which these algorithms generate. Such proofs can
be thought of as summarizing the transcripts of the computations, containing only the
reasoning which took place. Despite this apparently significant loss of information,
proof complexity nevertheless has managed to give tight exponential lower bounds on
the worst-case running time on approaches for SAT used in practice by lower-bounding
proof size. Note that there are many other results in other areas of a similar flavour—
rather than directly trying to give lower bounds against, e.g., Turing machines and cir-
cuit families, one considers models which contain a canonical algorithm as well as
all “nearby” algorithms in some sense. Instead of finding a concrete “bad example”
against one algorithm, which might potentially be fixed or avoided, lower bounds in
this style show that the whole approach has inherent limitations. For comparison, see,
e.g., other work on linear programming hierarchies [42], semidefinite programming hi-
erarchies [105], and algorithmic paradigms [1].

One important recent direction in proof complexity concerns size-space trade-offs.
This research is partly driven by concerns about time and memory usage of SAT solvers—
in practice, space consumption can be almost as much of a bottleneck as running time—
but is also motivated by the fundamental importance of time and space complexity in
computation. Time-space trade-offs have historically been one of the most produc-
tive directions in computational complexity, and there have been many results in both
Boolean and algebraic settings. Typically, the strongest such results show that in a vari-
ety of models, the product of time and space in any computation of some function is at
least nearly quadratic in the input length, giving lower bounds against sublinear space.
However, in many applications one has much more than just linear space available, and
it is natural to ask whether one can show that there are problems that are solvable in
polynomial time but for which any polynomial-time computation must require a large
polynomial amount of space. The trade-off results presented in the current paper are
the first in an algebraic setting which obtain superpolynomial time blow-up even in the
superlinear space regime and also exponential blow-up for sublinear (but polynomial)
space, and which still take place in a model which captures practical algorithms.

Our focus in this paper is on the proof systems polynomial calculus and resolution.
Resolution is arguably the most well-studied proof system in proof complexity, and
is directly connected with modern SAT solvers based on DPLL [55, 54] with clause
learning, also known as conflict-driven clause-learning (CDCL) solvers [12, 76]. These
algorithms use heuristic-driven backtracking search combined with a dynamic program-
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ming technique, and so far have clearly been the most successful approach to solving
SAT in practice. Polynomial calculus instead takes an algebraic view of SAT. In this
proof system, the disjunctive clauses of a CNF formula are translated into polynomi-
als, and computations in the ideal generated by these polynomials show whether they
have a common root or not, corresponding to a satisfying assignment for the formula.
It was shown in [46] that such an algebraic approach might be significantly better than
resolution-based approaches on some instances, and would never be much worse, so it
might ultimately lead to a more “well-rounded” SAT solver. Phrased in the language of
proof complexity, the extra expressive power of polynomials can lead to significantly
more efficient proofs in terms of size, and perhaps also space. It was suggested in [46]
that if our understanding of suitable heuristics could be improved, these algebraic tech-
niques could become competitive with resolution and provide a way around some of the
bottlenecks encountered for CDCL solvers.

Intriguingly, however, despite significant progress on algebraic SAT solvers such
as PolyBori[35], the gains of the polynomial approach anticipated by [46] have largely
failed to materialize. Our research sheds light on one aspect of this, in that it investigates
deeper the question of how much the expressive power of polynomials could reasonably
be expected to translate into computational efficiency. We show that essentially all time-
space trade-offs known for resolution also extend to polynomial calculus, and even to
the stronger proof system polynomial calculus resolution (PCR) that unifies polynomial
calculus and resolution, thus casting doubt on hopes of a generic improvement obtained
by using polynomials. Based on what we know now, there seems not to exist any generic
transformation of PCR proofs which improves time, improves space, or trades time and
space in a way which outperforms what is possible in resolution.

We remark that the issue of time-space trade-offs for SAT is also connected to re-
cent work of the third author on width-parameterized SAT [7], and our improved lower
bounds help to strengthen the support contributed by [14] to their thesis.

For more information about proof complexity in general two good references are
[13, 107], while the upcoming survey [85] by the second author focuses specifically
on time-space trade-offs. A recent and very comprehensive reference on SAT solving
is [32].

4.1.1 Previous Work

The resolution proof system appeared in [33] and began to be investigated in connec-
tion with automated theorem proving in the 1960s [54, 55, 103]. Despite the apparent
simplicity of this proof system, the first superpolynomial lower bounds on proof size
were obtained only in 1985 by Haken [64] after decades of study. Truly exponential
size lower bounds were later proven by Urquhart [113] and Chvatál and Szemerédi
[43]. The repertoire of size lower bound techniques remains fairly limited, however, in-
cluding random restrictions [16, 64], the size-width method [31], and the pseudowidth
technique first employed by Raz [98] and further developed by Razborov [102].

Polynomial calculus was defined by Clegg, Edmonds and Impagliazzo [46]. In a
technical break-through, Razborov [101] obtained degree lower bounds. This result
was simplified by Impagliazzo et al. [72], who also showed that degree lower bounds
imply proof size lower bounds in polynomial calculus.

The study of space in resolution was initiated by Esteban and Torán [57] and was
later extended to a more general setting including other proof systems by Alekhnovich
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et al. [4]. Intuitively, the (clause) space of a resolution proof is the maximal number
of clauses one needs to keep in memory while verifying the proof. Perhaps somewhat
surprisingly, it turns out that linear space is enough to refute any unsatisfiable CNF
formula, and a sequence of papers [4, 26, 57] have proven matching lower bounds.

Regarding trade-offs between size and space, some results in restricted settings were
obtained in [25, 82] and strong trade-offs for full, unrestricted resolution were reported
in the paper [30] involving the second author. These trade-offs only apply for space
smaller than the linear worst-case upper bound, however. The recent work [14] by the
first author with co-authors presented trade-off results that extend even to superlinear
space.

Turning to polynomial calculus and PCR, the space measure (measuring the number
of monomials, which is the natural generalization of clause space in resolution) has been
quite poorly understood until very recently. While nontrivial space lower bounds were
established already in [4], these bounds crucially work only for formulas of unbounded
width, and it was only in [58] that space lower bounds for k-CNF formulas were shown.
In a very recent paper [34] building on and developing the techniques in [4, 58], optimal
linear lower bounds on PCR space were finally obtained (for random k-CNF formulas
and pigeonhole-style formulas over bipartite expanders), but many intriguing questions
about this measure remain open.

As to trade-offs between size and space, we are not aware of any such results for
PC or PCR except the recent paper [69] involving the second author. An important
distinction here, however, is that in order to speak about a “true” trade-off we want to
find formulas which have proofs in small size and also in small space, but for which any
proof optimizing one of the measures provably has to pay a stiff penalty with respect
to the other measure. While [69] exhibits formulas for which any proofs in small space
must have very large size, no such small-space proofs are known to exist. (In fact, it
would seem more likely that there are no small-space proofs for these formulas and that
the small-size proofs are also optimal with respect to space—this is known to be the
case in resolution for very similar formulas.)

As noted above, degree is an important auxiliary measure in PC and PCR, playing
a role similar to that of width in resolution. However, whereas the relationship between
size and degree in PC/PCR is known to be analogous to that between length and width
in resolution, it is open whether monomial space and degree behave with respect to each
other as clause space and width do in resolution.

4.1.2 Our Results

In this paper, we extend the trade-offs in [25, 30, 14], i.e., essentially all known trade-
offs for resolution,5 to polynomial calculus and PCR. Our first result is that there is a
strong trade-off between degree and monomial space in polynomial calculus and PCR,
completely analogous to the trade-off between width and clause space in resolution.
(We refer to Sections 4.3 and 4.3.6 for precise definitions of terminology and notation
used below.)

Theorem 4.1. There is a family of explicitly constructible 3-CNF formulas Fn of size
Θ(n) that can be refuted in polynomial calculus in degree DegPC(Fn `⊥) = O(1) and

5It also seems likely that the trade-offs in [82] would carry over to PC/PCR, but since these results
are clearly more artificial we have not looked into this.
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also in monomial space SpPC(Fn ` ⊥) = O(1), but such that for any PCR refutation
πn : Fn `⊥ it holds that Sp(πn) · Deg(πn) = Ω(n/ log n).

What this theorem says is that although the formulas Fn can be refuted in essentially
minimal degree and essentially minimal space even in PC, when we optimize one of
these measures the other has to blow up to almost worst possible in PCR (the worst-
case upper bound for both measures is linear in n). This result follows by studying the
same so-called pebbling formulas as in [25] and doing a careful analysis of the proofs
in [30], which yields a very useful generalization of the techniques there.

Our first set of time-space trade-off results follow by applying the same general-
ization of [30] to other pebbling formulas. Combining this with random restrictions,
we obtain trade-offs where the upper bounds hold for PC (and resolution) while the
lower bounds apply for the stronger PCR proof system. There is a slight loss in the pa-
rameters as compared to the results for resolution in [30], however, which is due to the
random restriction argument, and in particular we do not get tightly matching upper and
lower bounds. The trade-offs obtained are still fairly dramatic, though, and a nice extra
feature is that they also hold even if we allow the PCR refutations to use exponentially
stronger semantic rules where anything that follows semantically from what is currently
in memory can be derived in one single step instead of by a sequence of syntactic steps.

As in [30], we get a whole collection of trade-offs, and we only give two concrete
examples here. The first example is that for arbitrarily small but growing space com-
plexity, there can be superpolynomial size-space trade-offs for PC and PCR.

Theorem 4.2. Let g(n) = ω(1) be any arbitrarily slowly growing function6 and fix any
ε > 0. Then there are explicitly constructible 6-CNF formulas {Fn}∞n=1 of size Θ(n)
such that the following holds:

• The formulasFn are refutable in polynomial calculus in total space TotSpPC(Fn `
⊥) = O(g(n)).

• There are PC refutations πn of Fn in simultaneous size S (πn) = O(n) and total
space TotSp(πn) = O

((
n/g(n)2

)1/3
)

.

• Any PCR refutation of Fn in monomial space O
((
n/(g(n)3 log n)

)1/3−ε
)

must
have superpolynomial size.

Note that this trade-off is quite robust in the sense that for the whole range of space
from ω(1) up to almost n1/3 the proof size required is superpolynomial. Note also that
the trade-off result is nearly tight in the sense that the superpolynomial lower bound on
size in terms of space reaches up to very close to where the linear upper bound kicks in.

As a second example, we state a trade-off where the proof size blows up exponen-
tially when space is optimized.

Theorem 4.3. There is a family of explicitly constructible 6-CNF formulas {Fn}∞n=1 of
size Θ(n) such that the following holds:

1. The formulas Fn are refutable in PC in total space TotSpPC(Fn `⊥) = O
(
n1/11

)
.

6Technically speaking, we also need g(n) = O
(
n1/7

)
here, i.e., that g(n) does not grow too quickly.

This restriction is inconsequential since for faster-growing functions other results presented in this paper
yield stronger trade-offs anyway.
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2. There are PC refutations πn ofFn in size S (πn) = O(n) and total space TotSp(πn) =
O
(
n3/11

)
.

3. Any PCR refutation of Fn in monomial space at most n2/11/(10 log n) must have
size at least

(
n1/11

)
! .

As in [30], the fact that we are working with pebbling formulas means that we can
only get time-space trade-offs in the sublinear space regime using these techniques,
however. For our second set of time-space trade-off results, we instead study so-called
Tseitin formulas and lift the trade-offs in [14] from resolution to PCR. In resolution,
these are the only known trade-off lower bounds which hold for superlinear space.
Quantitatively, what they show is that if the space is reduced below a polynomial fac-
tor of the size of the smallest known proofs, the size must grow as a super-constant
power of the optimal size. Besides strengthening this result to PCR, we modify the
construction and simplify the technical analysis significantly, which allows us to obtain
our trade-offs for 8-CNF formulas, and not just for CNF formulas of unbounded width
as in [14].

Theorem 4.4. Let F be a field of odd characteristic. There is an explicitly constructible
family of 8-CNF formulas {Fn,w}, with 1 ≤ w ≤ n1/4, which are of size Θ(n) and have
the following properties:

1. The formulas Fn have resolution refutations πn in (short) length L(πn) ≤ nO(1)2w

and clause space Sp(πn) ≤ 2w + nO(1).

2. They also have resolution refutations π′n in (small) clause space Sp(π′n) = O
(
w log n

)
and length L(π′n) ≤ 2O(w logn).

3. For any PCR refutation πn of Fn over F, the proof size is bounded by S (πn) =(
2Ω(w)

Sp(πn)

)Ω( log logn
log log logn)

.

In fact, the parameter w in Fn,w is the tree-width of the formula, and this is the
reason for the connection with [7] discussed above. In this paper, it was shown that
the resolution upper bounds in Theorem 4.4 can in fact be obtained by a tree-width
based algorithm with little overhead, and furthermore that a smooth trade-off upper
bound exists between the two ranges. It was conjectured in [7] that this algorithm
cannot be improved, which if true would have significant computational complexity
consequences.

The lower bounds in Theorem 4.4 can be interpreted as evidence supporting at least
a weak form of the conjecture—it places hard limits on how much a restricted class of
algorithms could concievably improve over the algorithm in [7]. While an important
open question in this regard is improving the exponent obtained in the lower bound
argument, it is also interesting from the standpoint of the conjecture to generalize the
lower bound to stronger proof systems, since this will cover a broader class of algo-
rithms.

4.2 Outline of This Chapter
The rest of this chapter is organized as follows. In Section 4.3, we give a detailed
overview of our results and describe the main technical ingredients in the proofs. For-
mal proof complexity preliminaries are given in Section 4.3.6. In Section 4.3.7, we
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do a careful study of the techniques in [30], and our generalization immediately al-
lows us to derive space-degree trade-offs for polynomial calculus in Section 4.4. In
Section 4.5, we prove time-space trade-offs for polynomial calculus in the sublinear
regime. In Section 4.6, we show an isoperimetric inequality for a certain kind of graphs
which is instrumental for obtaining CNF formulas with strong trade-off properties, and
in Section 4.7 we extend the time-space trade-offs for superlinear space in [14] from
resolution to PCR. Finally, Section 4.8 contains concluding remarks including a discus-
sion of some of the many fascinating problems in this area that remain open.

4.3 Overview of Results and High-Level Proofs
Generally speaking, time-space trade-off results are usually established by some varia-
tion of the following plan:

1. Formalize a notion of work or progress specific to the model and the problem.

2. Divide the time period of a hypothetical computation into a large number of
equal-sized epochs.

3. Prove the following claims:

(a) If the epochs are small, then no single epoch makes very much progress.

(b) If the space is small, then not much progress can be carried over from one
epoch to the next.

(c) To solve the problem, the computation needs to make substantial progress
summed over all epochs.

4. Conclude that if the computation is too short and uses too little space, then this
leads to a contradiction.

This approach has been implemented in a wide variety of models, including graph peb-
bling, straight line programs, branching programs, et cetera. To obtain quantitatively
strong trade-offs, i.e., trade-offs exhibiting superpolynomial blow-up, in addition it can
be necessary to subdivide into epochs recursively. Frequently, this kind of refined strat-
egy can only be carried out directly in more limited models. One contribution of our
work is that we manage to realize such a strategy in a model which is significantly more
general than what has previously been possible. To achieve this, we make careful use
of restriction and reduction arguments.

In our first set of trade-offs, which extends the results of [30], we combine random
restrictions with a space-faithful projection technique, showing that if there existed PCR
refutations which were very efficient with respect to time and space on a certain kind
of pebbling formulas, then there would be pebbling strategies for the underlying graphs
which would be very efficient as well. Thus we are able to lift graph pebbling lower
bounds to PCR.

In fact, our result is more general in that we obtain a kind of generic “hardness
amplification” result for CNF formulas. We show that if a formula has a mild form
of trade-off in resolution, then by making appropriate syntactic substitutions we obtain
another formula which has strong trade-off properties in the stronger proof system PCR.
Pebbling then comes into the picture simply because pebbling formulas have exactly the
form of weak trade-offs in resolution that we need.
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The main technical problem which we overcome is how to reduce PCR refuta-
tions of the substituted formulas to resolution refutations of the original formulas in
a way that preserves space. In resolution, it is possible to construct space-preserving
reductions without using restrictions. Unfortunately, these reductions provably fail for
stronger proof systems such as cutting planes and PCR (and even PC), but it turns out
that by using random restrictions we can salvage enough of this approach to get strong
trade-offs for PCR.

In our second set of trade-offs, which extends the results of [14], we make two
contributions. Firstly, we simplify and strengthen the main result in [14] by studying
a slightly different formula family with appropriately chosen random restrictions. As
a result of this, we can prove trade-offs for k-CNF formulas rather than formulas of
asymptotically growing width. Secondly, and more substantially, we manage to imple-
ment the overall strategy of [14] in the context of PCR.

This part of our work is different from the generalization of [30] in that it does
not obtain a trade-off by reducing to another model of computation—instead, we carry
out the plan outlined above directly in the proof system. In [14], this is achieved by
using a semantic measure of complexity of clauses as a progress measure. One of
the crucial technical steps is to prove an inequality showing that not only are clauses
representing different progress levels within a certain range all wide, but that they are
also “pairwise wide” in that for any pair of such clauses each clause contains many
variables not occurring in the other clause. In the context of polynomial calculus, we
would need to prove an analogous result using degree instead of width, but sadly such
a claim simply is not true.

We circumvent this obstacle by examining the binomial technique of [39] for degree
lower bounds in polynomial calculus. This technique is based on the observation that
PC refutations of binomial systems—i.e., where each initial polynomial is a sum of two
monomials—have a special form. Binomial systems are never hard with respect to size
or space, but can be hard with respect to degree. The paper [39] obtains degree lower
bounds by constructing an explicit pseudoideal, and also gives low-degree reductions
from other non-binomial systems to binomial systems. In this way, it is possible to get
degree lower bounds for non-binomial systems, which can in turn be used to obtain size
lower bounds.

For our purposes, however, we need much more than just degree lower bounds. We
therefore refine the technique of [39] by combining the ideas behind the low-degree
reduction and the pseudoideal construction. For any PCR refutation of a Tseitin con-
tradiction, we construct a simulation of it by a restricted form of PC which refutes a
“Fourier transformed” version of the formula. This simulation does not preserve size or
space, but it allows us to obtain a suitable measure of progress for size-space trade-off
results. This is because in this restricted setting, the semantic measure is much better
behaved, and thanks to this we can prove an analogue of the lemma in [14] discussed
above. However, due to the change of variables which occurs it is not true that the sim-
ulation commutes with restriction; it is not possible to, e.g., kill the monomials of the
“shadow proof” obtained from the simulation with restrictions and argue that the result-
ing proof simulates the restriction of the original proof. Instead, we use restrictions to
eliminate monomials in the original proof, and use key properties of the simulation to
show that they cannot reappear in the shadow proof, thus limiting the progress which
can be made during its epochs. We can then carry out the progress measurement argu-
ment in the shadow proof to obtain a contradiction, given that the original proof was
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too short and used too little space.
Thus, by carrying out different parts of the argument of [14] in different contexts

and mediating between them with this simulation, we are able to establish quantitatively
equivalent lower bounds in full PCR. The only other techniques known for degree lower
bounds are from [6, 101]; as far as we are aware none of these techniques yield sim-
ulations, nor can they be used to obtain time-space trade-offs in the manner described
here.

In the rest of this section, we give precise definitions of the formulas we study as
well as a more detailed overview of the proof techniques. The intention is to provide a
“roadmap” for the formal proofs that will follow in later sections. However, the reader
that wants to get to the detailed proofs right away can safely skip this section and start
reading instead in Section 4.3.6 onwards, and we also refer to Section 4.3.6 for any
definitions or notation missing below.

4.3.1 Substitution Formulas

Let F be a CNF formula over variables x, y, z, . . . and let f : {0, 1}d → {0, 1} be a
Boolean function over d variables. Then we can obtain a new CNF formula by sub-
stituting f(x1, . . . , xd) for every variable x (where we assume that x1, . . . , xd are new
variables that do not appear anywhere else) and then expand to conjunctive normal form.
We will write F [f] to denote the resulting substitution formula. For example, for the
disjunctive clause C = x∨ y and the binary exclusive or function f(x1, x2) = x1⊕2 x2

we have

C[⊕2] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2) .
(4.1)

One important observation is that if we hit F [⊕2] with a random restriction ρ that sets
one of x1 and x2 to a random value for every x and leaves the other variable unset,
then F [⊕2]�ρ will be the formula F except possibly for sign flips of the literals. It is
well known that restrictions preserve resolution and PCR refutations, and so for any
refutation π : F [⊕2]`⊥ we have that π�ρ is a refutation of F (modulo sign flips). It is
not hard to show that if in addition π has small length/size, then it is likely that π�ρ does
not have any wide clauses (in resolution) or high-degree monomials (in PCR). This will
be useful in what follows.

4.3.2 Pebbling Contradictions

Pebbling is a tool for studying time-space relationships by means of a game played on
directed acyclic graphs (DAGs). Pebble games were originally devised for studying
programming languages and compiler construction, but found a broad range of applica-
tions in computational complexity, during the 70s and 80s, which has expanded further
during the last decade to cover also proof complexity. An excellent survey of pebbling
up to ca. 1980 is [90], and some more recent developments are covered in the second
author’s upcoming survey [83].

The way pebbling results have been used in proof complexity has mainly been by
studying so-called pebbling contradictions. These are CNF formulas encoding the peb-
ble game played on a DAG G by postulating the sources to be true and the sink to be
false, and specifying that truth propagates through the graph according to the rules of
the pebble game.
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u v w

(a) Pyramid graph Π2 of height 2.

u

∧ v
∧ w
∧ (u ∨ v ∨ x)

∧ (v ∨ w ∨ y)

∧ (x ∨ y ∨ z)

∧ z
(b) Pebbling contradiction PebΠ2

.

Figure 1: Example pebbling contradiction.

Definition 4.5 (Pebbling contradiction [31]). Let G be a DAG with source vertices S
and a unique sink vertex z. Identify every vertex v ∈ V (G) with a propositional logic
variable v. The pebbling contradiction over G, denoted PebG, is the conjunction of the
following clauses:

• for all s ∈ S, a unit clause s (source axioms),

• For all non-source vertices v with immediate predecessors pred(v), the clause∨
u∈pred(v) u ∨ v (pebbling axioms),

• for the sink z, the unit clause z (sink axiom).

For an example of a pebbling contradiction, see the CNF formula in Figure 1(b)
defined in terms of the graph in Figure 1(a). If G has n vertices and maximal indegree
`, the formula PebG is an unsatisfiable (1+`)-CNF formula with n + 1 clauses over
n variables.

To make the connection back to Section 4.3.1, two examples of substituted version
of the pebbling formula in Figure 1(b) are the substitution with logical or in Figure 2(a)
and with exclusive or in Figure 2(b).

4.3.3 Substitution Theorem and Trade-offs Based on Pebbling

A paradigm that has turned out to be fruitful in many contexts in proof complexity is to
take a CNF formula family {Fn}∞n=1 with interesting properties, tweak it by substituting
some function f(x1, . . . , xd) for each variable x as described in Section 4.3.1, and then
use this new formula family to prove the desired result. In particular, the time-space
trade-offs in [30] are obtained in this way. The techniques in [30] were developed
specifically for resolution and the more general k-DNF resolution proof system, but a
careful analysis of the proofs reveals that most of the approach can be carried over to
other proof systems in a more general setting. We present this general setting below
in the hope that it can be useful as an approach for proving space lower bounds and
time-space trade-offs for proof systems such as PCR and cutting planes analogous to
those for resolution and k-DNF resolution in [30]. And indeed, as we shall see soon, a
simple special case of this approach combined with random restrictions already yields
nontrivial trade-offs for PCR, albeit with some loss in the parameters as compared to
the resolution trade-offs in [30].
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(u1 ∨ u2) ∧ (v2 ∨ w1 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v2 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (x1 ∨ y1 ∨ z1 ∨ z2)

∧ (u1 ∨ v1 ∨ x1 ∨ x2) ∧ (x1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ v2 ∨ x1 ∨ x2) ∧ (x2 ∨ y1 ∨ z1 ∨ z2)

∧ (u2 ∨ v1 ∨ x1 ∨ x2) ∧ (x2 ∨ y2 ∨ z1 ∨ z2)

∧ (u2 ∨ v2 ∨ x1 ∨ x2) ∧ z1

∧ (v1 ∨ w1 ∨ y1 ∨ y2) ∧ z2

∧ (v1 ∨ w2 ∨ y1 ∨ y2)

(a) Substitution pebbling contradiction PebΠ2
[∨2] with respect to binary logical or.

(u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

(b) Substitution pebbling contradiction PebΠ2
[⊕2] with respect to binary exclusive or.

Figure 2: Examples of substitution pebbling formulas for the pyramid graph Π2.
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The idea is as follows: Start with a CNF formula F which has a (weak) trade-off
in resolution between length and variable space (i.e., the number of variables that any
refutation must mention simultaneously at some point). Consider some proof system P
and study the substitution formula F [f], where f is chosen to have the right properties
with respect to P . Let πf be any P-refutation of F [f]. Intuitively, we want to argue that
whatever πf looks like, we can extract from this πf a resolution refutation π of F with
related properties. Our way of doing this is to look at the P-configurations (i.e., snap-
shots of the blackboard in P-refutations), define projections of these P-configurations
to clauses over Vars(F ), and then to show that such projections translate P-refutations
to resolution refutations. Roughly, our intuition for projections is that if, for instance, a
P-configuration D implies f(x1, . . . , xd) ∨ ¬f(y1, . . . , yd), then this should project the
clause x ∨ y. It will be convenient for us, however, to relax this requirement a bit and
allow other definitions of projections as well, as long as they are “in the same spirit.”
Generalizing [30], we show that any function satisfying the following properties will
make this approach work.

Definition 4.6 (Projection). Let f : {0, 1}d → {0, 1} be a fixed Boolean function. Let
P be a sequential implicational7 proof system with space measure Sp(·), and let D be
anyP-configuration over Vars

(
F [f]

)
. Then a function projf mappingP-configurations

D to sets of clauses C over Vars(F ) is an f-projection if it is:

Complete: If D � C[f] then the clause C either is in projf(D) or is derivable from
projf(D) by weakening.

Nontrivial: If D = ∅, then projf(D) = ∅.

Monotone: If D′ � D and C ∈ projf(D), then C is in or is derivable from projf(D′) by
weakening.

Incrementally sound: Let A be a clause over Vars(F ) and let LA be the encoding of
some clause in A[f] as a Boolean function of the type prescribed by P . Then if
C ∈ projf(D ∪ {LA}), it holds for all literals a ∈ Lit(A)\Lit(C) that the clause
a ∨ C either is in projf(D) or can be derived from projf(D) by weakening.

In order for a projection to be of use, it should also somehow preserve space when
going from the proof system P to resolution. This is captured by the next definition.

Definition 4.7 (Space-faithful projection). We say that projf is space-faithful of de-
gree K with respect to P if there is a degree-K polynomial Q such that Q(Sp(D)) ≥∣∣Vars(projf(D))

∣∣ holds for any P-configuration D over Vars
(
F [f]

)
. we say that projf

is exactly space-faithful.

As we will show in Section 4.3.7, if we can define a space-faithful projection for
a proof system P with respect to some space measure in P , then resolution trade-offs
between length and variable space in resolution for F are amplified to time-space trade-
offs for F [f] in P . Viewed from this angle, the main technical contribution in [30]
can be described as proving that certain projections are space-faithful for resolution and

7Briefly, we say that P is sequential implicational if a P-refutation π is a sequence of lines π =
{L1, . . . , Lτ} where each line is semantically implied by previous lines. Note that, e.g., extended Frege
does not satisfy this property, since introducing a new extension variable as a shorthand for a formula
declares an equivalence that is not the consequence of this formula, but cutting planes, PC and PCR do.
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k-DNF resolution. Also, this means that in order to prove time-space trade-offs for,
say, PCR or cutting planes, it would be sufficient to design space-faithful projections as
defined above. The trade-offs would then follow by applying the projection machinery
in an entirely black-box fashion. Although we do not use the full generality of this
machinery in the current paper, we nevertheless believe that the development of this
black box is an important technical contribution.

Unfortunately, for both PCR and cutting planes it seems very challenging to come
up with space-faithful projections with respect to the most interesting space measures
in these systems. However, there is a particular measure for which we are able to obtain
space-faithful projections for a wide range of proof systemsP (once our refined analysis
of [30] reveals that this is what we should be aiming for), namely if we consider variable
space not only as the “target measure” in resolution but also in P . Furthermore, for this
measure we can pick the “substitution function” f to be the identity.

Lemma 4.8. Let P be any sequential implicational proof system and fix f to be the
identity function. Then there are exactly space-faithful projections from P to resolution
with respect to variable space for any CNF formula F without making substitutions.

This simple but powerful lemma (which we prove in Section 4.3.7) turns out to be
sufficient to lift the resolution trade-offs between width and clause space in [25] to the
PCR trade-offs between degree and monomial space in Theorem 4.1 (as explained in
Section 4.4).

The next step is to combine Lemma 4.8 with substitution using exclusive or (over
two or more variables). If π is a PCR refutation of F [⊕], then after hitting π with a
restriction ρ as described above we get a PCR refutation of the original formula F that
is very likely not to contain high-degree monomials. But if all monomials are of small
degree, then small monomial space implies small variable space, and this means that
we can prove a slightly weaker analogue for PCR of the substitution space theorem in
[30] for resolution, as stated next.

Theorem 4.9 (Substitution space theorem for PCR). Suppose that F is a CNF for-
mula for which any syntactic resolution refutation in variable space at most s must
make more than T axiom downloads.8 Then any semantic PCR refutation of F [⊕] in
monomial space at most s/ log4/3 T must have size larger than T .

Proof. Let π : F `⊥ be a PCR refutation of F [⊕] in size T and monomial space s′. If
we apply a random restriction ρ to F [⊕] as described above, then π�ρ is a PCR refutation
of F . Consider some fixed monomial m in π. By Lemma 4.28, m�ρ has degree at most
K except with probability (3/4)K . Thus, by a union bound we can pick ρ so that π�ρ
is a PCR refutation of F in size at most T , monomial space at most s′, and degree at
most log4/3 T . This means that the variable space of this refutation is upper-bounded by
s′ log4/3 T . Applying the projection in Lemma 4.8, this results in a resolution refutation
doing at most T downloads and never exceeding variable space s′ log4/3 T . This is
impossible if s′ ≤ s/ log4/3 T , and the theorem follows.

8It would have been nice to be able to use bounds on refutation length here rather than bounds on
the number of axiom downloads. This is clearly not possible, however. The reason for this is that the
proof refuting F [⊕] is allowed to use any arbitrarily strong semantic inference rules, and this can lead
to exponential savings compared to syntactic resolution. But, happily, the bound in terms of axiom
downloads turns out to be exactly what we need for our applications.
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(a) Labelled triangle graph.

(x ∨ y)

∧ (x ∨ y)

∧ (x ∨ z)

∧ (x ∨ z)

∧ (y ∨ z)

∧ (y ∨ z)

(b) Corresponding Tseitin contradiction.

Figure 3: Example Tseitin contradiction.

The time-space trade-offs for PCR in sublinear space reported in Theorems 4.2
and 4.3, as well as several other trade-off results, now follow by applying Theorem 4.9
to pebbling formulas substituted with exclusive or. These formulas are all refutable in
linear length and constant width simultaneously in resolution, which means that polyno-
mial calculus can simulate these refutations in linear size. In this way, we get trade-off
results where the upper bounds hold for syntactic versions of the weaker proof systems
resolution and polynomial calculus, whereas the lower bounds hold for the stronger
proof system PCR, even when this system is made stronger still by allowing semantic
derivation steps.

4.3.4 Tseitin Contradictions

Tseitin contradictions [111] encode the principle that every undirected graph has even
total degree.

Definition 4.10. Let G = (V,E) be an undirected graph and χ : V → {0, 1} a function
such that

⊕
v∈V χ(v) is odd. Identify each edge e ∈ E with a variable xe, and for a

vertex v ∈ V and value b ∈ {0, 1} let

PARITY v,b =
∧{∨

e3vx
a(e)
e

∣∣ ⊕
e(a(e)⊕ 1) 6= b

}
be the CNF representation of the constraint

⊕
e3v xe = b. Then the Tseitin contradic-

tion on (G,χ) is
Ts(G,χ) =

∧
v∈V PARITY v,χ(v) .

Since each edge is counted twice in Ts(G,χ), the parity constraints cannot all be
satisfied if the overall parity of χ is odd. We will frequently suppress the reference
to χ above, since when G is connected any two odd-parity functions yield equivalent
formulas for all practical purposes.

When the degree of the graph is bounded by d, each local parity constraint for a
vertex can be written as a CNF formula with at most 2d−1 clauses of width d, and
hence Ts(G) has at most 2d−1|V | clauses in total. Figure 3(b) gives an example Tseitin
contradiction generated from the graph in Figure 3(a).
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4.3.5 Time-Space Trade-offs Based on Tseitin Contradictions

A useful tool when proving lower bounds in resolution are semantic measures of clause
complexity as introduced by Ben-Sasson and Wigderson [31], i.e., measures of the form

µA(C) = min{|S| : S ⊆ A, S |= C} , (4.2)

where C is a clause and A is a collection of axioms (or sets of axioms). In the context
of Tseitin contradictions Ts(G), the semantic measure of a clause is defined to be the
size of a smallest subset of the vertices of G such that the parity constraints over these
vertices semantically imply the clause. Tseitin contradictions cannot be refuted without
using parity constraint clauses for all vertices, so in the course of the proof information
from all vertices must be aggregated. If the graph G has a large isoperimetric number—
i.e., if every medium-sized set of vertices have many edges leaving the set—then the
formula Ts(G) will be hard to refute.

In [14] it was shown how to use the semantic measure as a progress measure to
get not only size lower bounds but also size-space trade-offs for Tseitin contradictions
in resolution. Intuitively, clauses which are very wide cannot help with this much,
because they rule out only a small fraction of assignments; we can think of them as
“bottlenecks” which carry very little information and so cannot help with this aggrega-
tion process very much. The “bottleneck counting” strategy is to show a lower bound
by showing that there must be many such bottlenecks in any proof. A simple way to
do this counting was discovered by [16]: First, hit a formula and a hypothetical proof
with a random restriction which kills wide clauses with high probability. Second, show
that every proof of any (or most) of the restricted formulas must contain at least one
wide clause. This works quite well for Tseitin contradictions, because any restriction
gives a Tseitin formula on a smaller graph. This is where we make use of the semantic
measure. It is easy to show that any proof must have a clause of intermediate semantic
measure, and the key property of the Tseitin construction is that if the graph satisfies an
isoperimetric inequality then this clause is wide. [14] developed this idea significantly
to get time-space trade-offs for Tseitin contradictions in resolution. This strategy con-
siders multiple ranges of intermediate complexity values for clauses, and requires quite
specific and strong isoperimetric properties. The argument works for graphs that not
only have a certain extended isoperimetry property, but also maintain this property after
having a constant fraction of randomly chosen edges removed (corresponding to the
formula being hit by a random restriction). This creates significant complications at a
fairly low level of the argument, and necessitates the use of rather dense graphs, so that
the trade-off can only be shown to hold for CNF formulas of unbounded width. We get
a cleaner and simpler proof by instead considering multigraphs and using appropriate
restrictions operating on them. This makes the argument more transparent and enables
us to prove trade-offs for CNF formulas of constant width (which, as noted in, e.g., [4],
is the preferred setting when studying space in proof complexity).

As in [14], our construction requires graphs with an extended isoperimetry property,
which is formalized as follows.

Definition 4.11. Let G = (V,E) be an undirected graph and (W, t0, r) be associated
parameters. Call a vertex set S ⊆ V of size t0 ≤ |S| ≤ |V |/2 medium-sized. The
boundary of S is δ(S) = {(u, v) ∈ E | u ∈ S, v ∈ V \ S}, i.e., the set of edges with
exactly one endpoint in S.
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We say that G has the extended isoperimetry property with parameters (W, t0, r) if
any sequence of medium-sized sets of vertices S1, . . . , Sk ⊆ V such that |Si+1| ≥ r ·|Si|
for all i satisfies the inequality

∣∣⋃
i δ(Si)

∣∣ ≥ k ·W .

So-called grid graphs (with vertices indexed by integer coordinates (i, j) and edges
to adjacent coordinates (i, j ± 1), (i± 1, j)) can be shown to have this property.

Lemma 4.12. A w × ` grid graph, where 4w2 ≤ ` ≤ 2w, satisfies the extended
isoperimetry property with parameters (w, 4w3, 2 + ε) for any ε > 0 and any large
enough w.

For Tseitin contradictions, vertex set boundaries are related to the semantic com-
plexity measure µ as follows.

Lemma 4.13 ([31]). Let S be a minimal vertex set witnessing the complexity µ(C) of a
clause C derived from Ts(G) in resolution. Then δ(S) ⊆ Vars(C).

We now formalize the idea that the semantic measure µ can be used as a tool to
obtain time-space trade-offs. The following lemma is straightforward to prove by in-
duction.

Lemma 4.14. Fix any unsatisfiable CNF formula F with associated semantic complex-
ity measure µF and any sequential implicational proof system. Let µ∗(·) = blog2 µF (·)c
and let N = µ∗(⊥). If a refutation of F is divided into consecutive subderivations, or
epochs, and further subdivided recursively into subepochs to a recursive depth of h,
then for any integer k at least one of the following cases apply:

1. There exists an epoch corresponding to a leaf in the recursive tree which contains
formulas with at least N · k−h distinct complexity values under µ∗.

2. There exists an epoch such that the formulas in memory during the breakpoints
between the epochs in its immediate children contain formulas with at least k dis-
tinct complexity values under µ∗.

To apply this lemma, consider Tseitin formulas over grid graphsG, do⊕2-substitution
in Ts(G) (which yields the formula Ts(G′′) over the multigraph G′′ with two copies
of each edge in G), and hit any resolution refutation of Ts(G)[⊕2] = Ts(G′′) with a
random restriction as described in Section 4.3.1. Since G satisifies extended isoperime-
try, the clauses in Lemma 4.14 are collectively wide. For this very reason, however,
a random restriction would have been very likely to kill at least one of these clauses.
Trading off parameters appropriately, we obtain strong time-space trade-offs.

This strategy breaks down in polynomial calculus; while naively one would hope
to use the width/degree analogy and just carry out the plan above, unfortunately the
existing degree lower bound machinery seems not to yield measures of progress with
the properties we need for Lemma 4.14, despite some good candidates to fill the role.

One useful technique for showing degree lower bounds has been to do a linear trans-
formation of the variables. In particular, in the context of PCR over a field of odd
characterstic, consider rewriting the Tseitin parity constraints so that the variables take
values in {+1,−1} rather than {0, 1}. It is not hard to see that the degree needed to
refute this “Fourier-transformed” {±1}-Tseitin formula is the same as for the origi-
nal {0, 1}-Tseitin formula, and [39] gave tight upper and lower degree bounds for the
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former exploiting the fact that its polynomials have a simple binomial form. Their ap-
proach to the lower bound constructs a “pseudoideal”—in other words, an obstruction
to a low degree refutation—when the base graph has good expansion properties. How-
ever, while this machinery can easily establish that any refutation must contain many
monomials corresponding to boundaries for vertex sets of many different sizes, by itself
this does not suffice for time-space trade-offs. We must also be able to show how these
monomials are related to one another, so that we can track the progress that a refutation
makes.

We resolve the issue by modifying the plan. It turns out that a suitable progress
measure does exist in the subsystem of binomial polynomial calculus. We adapt the
ideas in [39] to construct a simulation of PCR refutations of a Tseitin formula by bino-
mial polynomial calculus refutations of the Fourier-transformed formula, the simulation
having the following key property.

Lemma 4.15. The simulation of PCR on Ts(G) (in variables {xe}) by binomial PC on
the {±1}-Tseitin formula (in variables {ye}) is conservative with respect to monomials:

• If for some configuration of the simulated refutation no monomial appears which
contains the set of variables {xe | e ∈ E ′} for someE ′ ⊆ E, then the correspond-
ing configuration of the simulating refutation does not contain any monomials
containing all of {ye : e ∈ E ′}.

• If for some time period in the simulated refutation no monomial contains the set
of variables {xe | e ∈ E ′} for some E ′ ⊆ E, then the corresponding time period
of the simulating refutation does not contain any monomials containing all of
{ye : e ∈ E ′}.

Since the simulation is not efficient with respect to size and space, the images of
epochs under the simulation have wildly differing sizes in general. However, for the
binomials we can recover a degree-analogue of the width lower bound in resolution
without losing much, as stated next.

Lemma 4.16. Suppose that G = (V,E) has the extended isoperimetry property with
parameters (w, t0, r), and as before let µ∗(·) = blog2 µ(·)c. Then for any binomials
b1, . . . , bk with distinct complexities between t0 and µ∗(⊥) it holds that∣∣∣⋃Vars(bi)

∣∣∣ ≥ Ω(k · w) . (4.3)

Using the semantic measure in binomial PC together with the division of the refu-
tation into epochs in Lemma 4.14, we can obtain many monomials of collectively high
complexity either within a single epoch or at a collection of breakpoints in the simu-
lating refutation. Then we can apply Lemma 4.15 to lift these monomials back to the
simulated refutation where they are unlikely to survive a restriction. This allows us to
prove PCR time-space trade-offs.

sketch for Theorem 4.4. Let G be a grid graph satisfying Lemma 4.16 and let π be any
PCR refutation of Ts(G)[⊕2] in size S (π) = T and space Sp(π) = S. Divide π into
epochs with each epoch split into m equal subepochs to a recursive depth of h, with
m and h to be determined later. Say that the critical set of monomials associated to
an internal epoch consists of any monomial appearing at the breakpoints between its
children, and that for a leaf epoch the critical set contains all monomials in the epoch.
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Applying the random restriction ρ in Section 4.3.1, we get that π�ρ is a refuta-
tion of Ts(G)[⊕]�ρ = Ts(G) (up to sign flips). Let π∗ be the induced refutation of
the {±1}-Tseitin formula on G with corresponding induced recursive subdivision into
epochs. Choose k such that (µ∗(⊥)− t0)k−h = k. Combining the properties of µ∗ with
Lemma 4.14 implies that the critical set of some induced epoch of π∗ contains at least k
binomials of distinct complexity values. Thus, by Lemma 4.16 this critical set contains
2k monomials which collectively contain at least Ω(k · w) variables. By Lemma 4.15,
this holds for π∗ also.

However, for any small set of monomials M , the probability that M�ρ contains
2k monomials which collectively contain many variables is small. For any monomial
m, the semantically equivalent clause is killed by ρ if and only if m is. Therefore by
(the proof of) Lemma 4.28, the probability that any fixed 2k-tuple of monomials all
survive and have collective width W is at most exp(−Ω(W )). By a union bound over
all 2k-tuples of M , the probability that any 2k of the monomials in M have collectively
Ω(k · w) variables after the restriction is at most |M |2k exp(−Ω(k · w)).

Choose the parameter m so that mh = (T/S) and let K = mS = Tm−h+1. For
this choice of m the sizes of all critical sets of monomials are bounded by K. The
probability for any critical set of any induced epoch to contain k distinct complexities
with respect to µ∗ after the restriction is at most K2k exp(−k ·w), and there are at most
mh epochs. Set h = k. By a union bound, the probability that any epoch contains
k complexities is at most (mK2 exp(−Ω(w)))k. On the other hand, by Lemmas 4.14
and 4.15, this probability is 1. We conclude that T ≥ (exp(Ω(w))/S)Ω(h). Since since
h and k may be set as large as logL/ log logL, and L may be set as large as Ω(log |G|),
ultimately gives T ≥ (exp(Ω(w))/S)Ω(log logn/ log log logn).

We thus manage to carry out the plan of [14] by establishing a nonlocal measure of
progress for PCR, as it is clear that the semantic complexity of the underlying binomials
of a polynomial cannot be determined simply by looking at the polynomial, but in
general depends on the derivation we used to obtain the polynomial. This method of
constructing progress measures could be useful in other contexts as well.

4.3.6 Preliminaries

For x a Boolean variable, a literal over x is either the variable x itself, called a posi-
tive literal over x, or its negation, denoted ¬x or x and called a negative literal over
x. Sometimes the notation x1 and x0 will be handy for positive and negative literals,
respectively, where xb is true if x = b. A clause C = a1 ∨ · · · ∨ ak is a disjunction of
literals, and a term T = a1 ∧ · · · ∧ ak is a conjunction of literals. Below we will think
of clauses and terms as sets, so that the ordering of the literals is inconsequential and
that, in particular, no literals are repeated. A clause (term) containing at most k literals
is called a k-clause (k-term). A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of
clauses, and a DNF formula is a disjunction of terms. We will think of CNF and DNF
formulas as sets of clauses and terms, respectively. A k-CNF formula is a CNF formula
consisting of k-clauses, and a k-DNF formula consists of k-terms.

The variable set of a clause C, denoted Vars(C), is the set of Boolean variables
over which there are literals in C, and we write Lit(C) to denote the set of literals
in C. The variable and literal sets of a term are similarly defined and these definitions
are extended to CNF and DNF formulas by taking unions. If V is a set of Boolean
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variables and Vars(C) ⊆ V we say C is a clause over V and similarly define terms,
CNF formulas, and DNF formulas over V .

We write α, β to denote truth value assignments. Truth value assignments are func-
tions to {0, 1}, where we identify 0 with false and 1 with true. We have the usual
semantics that a clause is true under α, or satisfied by α, if at least one literal in it is
true, and a term is true if all literals evaluate to true. We write ⊥ to denote the empty
clause without literals that is false under all truth value assignments. A CNF formula
is satisfied if all clauses in it are satisfied, and for a DNF formula we require that some
term should be satisfied. In general, we will not distinguish between a formula and the
Boolean function computed by it.

If C is a set of Boolean functions we say that an assignment satisfies C if and only
if it satisfies every function in C. For D,C two sets of Boolean functions over a set of
variables V , we say that D implies C, denoted D � C, if and only if every assignment
α : V → {0, 1} that satisfies D also satisfies C. In particular, D � ⊥ if and only if D is
unsatisfiable or contradictory, i.e., if no assignment satisfies D. If a CNF formula F is
unsatisfiable but for any clause C ∈ F it holds that the clause set F \ {C} is satisfiable,
we say that F is minimally unsatisfiable.

Definition 4.17 (Sequential implicational proof system). Let us say that P is a se-
quential implicational proof system if any P-derivation π is a sequence of lines π =
{L1, . . . , Lτ} where any derived line follows semantically from the lines used to derive
it.

We remark that resolution, PC, PCR, cutting planes, Frege and most other proof
systems usually studied are “implicational” in the sense of Definition 4.17, whereas, for
instance, extended Frege is not.

Following the exposition in [57], we view a proof as similar to a non-deterministic
Turing machine computation, with a special read-only input tape from which the clauses
of the CNF formula F being refuted (the axioms) can be downloaded and a working
memory where all derivation steps are made. Then the length of a proof is essentially
the time of the computation and space measures memory consumption. The following
definition is a straightforward generalization of [4].

Definition 4.18 (Refutation). For a sequential proof system P , a P-configuration D is
a set of lines L of the syntactic form prescribed by P . A sequence of configurations
{D0, . . . ,Dτ} is a P-derivation from a CNF formula F if D = ∅ and for all t ∈ [τ ], the
set Dt is obtained from Dt−1 by one of the following derivation steps:

Axiom Download Dt = Dt−1 ∪ {LC}, where LC is the encoding of a clause C ∈ F in
the syntactic form prescribed by the proof system (an axiom).

Inference Dt = Dt−1 ∪ {L} for some L inferred by one of the inference rules for P
from a set of assumptions L1, . . . , Lm ∈ Dt−1.

Erasure Dt = Dt−1 \ {L} for some L ∈ Dt−1.

A P-refutation π : F `⊥ of a CNF formula F is a derivation π = {D0, . . . ,Dτ} such
that D0 = ∅ and ⊥ ∈ Dτ , where ⊥ is the representation of contradiction (e.g. for
resolution andR(k)-systems the empty clause without literals).

If every line L in a derivation is used at most once before being erased (though it
can possibly be rederived later), we say that the derivation is tree-like. This corresponds
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to changing the inference rule so that L1, . . . , Ld must all be erased after they have been
used to derive L.

To every refutation π we can associate a DAG Gπ, with the lines in π labelling the
vertices and with edges from the assumptions to the consequence for each application
of an inference rule. There might be several different derivations of a line L during
the course of the refutation π, but if so we can label each occurrence of L with a time-
stamp when it was derived and keep track of which copy of L is used where. Using this
representation, a refutation π can be seen to be tree-like if Gπ is a tree.

Definition 4.19 (Refutation size, length and space). Given a size measure S (L) for
lines L in P-derivations (which we usually think of as the number of symbols in L,
but other definitions can also be appropriate depending on the context), the size of a
P-derivation π is the sum of the sizes of all lines in a derivation, where lines that appear
multiple times are counted with repetitions (once for every vertex in Gπ). The length of
a P-derivation π is the number of axiom downloads and inference steps in it, i.e., the
number of vertices in Gπ.9 For a space measure SpP(D) defined for P-configurations,
the space of a derivation π is defined as the maximal space of a configuration in π.

If π is a refutation of a formula F in size S and space s, then we say that F can be
refuted in size S and space s simultaneously. Similarly, F can be refuted in length L
and space s simultaneously if there is a P-refutation P with L(π) = L and Sp(π) = s.

We define the P-refutation size of a formula F , denoted SP(F ` ⊥), to be the
minimum size of any P-refutation of it. The P-refutation length LP(F ` ⊥) and P-
refutation space SpP(F `⊥) of F are analogously defined by taking the minimum with
respect to length or space, respectively, over all P-refutations of F .

When the proof system in question is clear from context, we will drop the subindex
in the proof complexity measures. Let us next give formal definitions in the framework
of Definition 4.18 of the proof systems that will be of interest in this paper. Below, the
notation G1 · · · Gm

H
means that if G1, . . . , Gm have been derived previously

in the proof (and are currently in memory), then we can infer H . We will sometimes
use notation G1, . . . , Gm ` H for this as well, for convenience.

Definition 4.20 (k-DNF resolution). The k-DNF resolution proof systems are a fam-
ily of sequential proof systems R(k) parameterized by k ∈ N+. Lines in a k-DNF-
resolution refutation are k-DNF formulas and we have the following inference rules
(where G,H denote k-DNF formulas, T, T ′ denote k-terms, and a1, . . . , ak denote lit-
erals):

k-cut (a1 ∧ · · · ∧ ak′) ∨ G a1 ∨ · · · ∨ ak′ ∨ H

G ∨ H
, where k′ ≤ k.

∧-introduction G ∨ T G ∨ T ′

G ∨ (T ∧ T ′) , as long as |T ∪ T ′| ≤ k.

∧-elimination G ∨ T
G ∨ T ′

for any T ′ ⊆ T.

Weakening G
G ∨ H

for any k-DNF formula H .
9The reader who so prefers can instead define the length of a derivation π = {D0, . . . ,Dτ} as the

number of steps τ in it, since the difference is at most a factor of 2. We have chosen the definition above
for consistency with previous papers defining length as the number of lines in a listing of the derivation.
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For standard resolution, i.e.,R(1), the k-cut rule simplifies to the resolution rule

B ∨ x C ∨ x
B ∨ C (4.4)

for clauses B and C. We refer to (4.4) as resolution on the variable x and to B ∨ C as
the resolvent of B ∨ x and C ∨ x on x. Clearly, in resolution the ∧-introduction and
∧-elimination rules do not apply. It can also be shown that the weakening rule never
needs to be used in resolution refutations, but it can be convenient to allow it to simplify
some technical arguments in proofs.

ForR(k)-systems, the length measure is as defined in Definition 4.19, and for space
we get the two measures formula space and total space depending on whether we con-
sider the number of k-DNF formulas in a configuration or all literals in it, counted with
repetitions. For standard resolution there are two more space-related measures that will
be relevant, namely width and variable space. For clarity, let us give an explicit defini-
tion of all space-related measures for resolution that will be of interest.

Definition 4.21 (Width and space in resolution). The width W(C) of a clause C is
the number of literals in it, and the width of a CNF formula or clause configuration
is the size of a widest clause in it. The clause space (as the formula space measure
is known in resolution) Sp(C) of a clause configuration C is |C|, i.e., the number of
clauses in C, the variable space10 VarSp(C) is |Vars(C)|, i.e., the number of distinct
variables mentioned in C, and the total space TotSp(C) is

∑
C∈C|C|, i.e., the total

number of literals in C counted with repetitions.
The width or space of a resolution refutation π is the maximum that the corre-

sponding measures attain over any clause configuration C ∈ π, and taking the min-
imum over all resolution refutations of a CNF formula F , we can define the width
WR(F `⊥) = minπ:F `⊥{W(π)} of refuting F in resolution, and analogously the
clause space SpR(F `⊥) = minπ:F `⊥{Sp(π)}, variable space VarSpR(F `⊥) =
minπ:F `⊥{VarSp(π)}, and total space TotSpR(F `⊥) = minπ:F `⊥{TotSp(π)} of
refuting F .

Remark 4.22. When studying and comparing the complexity measures for resolution
in Definition 4.21, as was noted in [4] it is preferable to prove the results for k-CNF
formulas, i.e., formulas where all clauses have width upper-bounded by some constant.
This is so since the width and space measures can “misbehave” rather artificially for
formula families of unbounded width (see [82, Section 5] for a discussion of this).
Since every CNF formula can be rewritten as an equivalent formula of bounded width
by using auxiliary variables, it therefore seems natural to insist that the formulas under
study should have width bounded by some constant.

Polynomial calculus (PC), was introduced in [46], though that paper used the name
“Gröbner proof system.” In a PC refutation, clauses are interpreted as multilinear poly-
nomials. For instance, the requirement that the clause x∨ y ∨ z should be satisfied gets
translated to the equation (1−x)(1− y)z = 0 or xyz−xz− yz+ z = 0, and we derive
contradiction by showing that there is no common root for the polynomial equations
corresponding to all the clauses.

10It should be noted that there is some terminological confusion in the literature here. The term “vari-
able space” has also been used previously to refer to what is here called “total space.” The terminology
adopted in this paper is due to Alex Hertel and Alasdair Urquhart (see [65]), and we feel that their naming
convention is the most natural one.
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Definition 4.23 (Polynomial calculus (PC)). Lines in a polynomial calculus proof are
multivariate polynomial equations p = 0, where p ∈ F[x, y, z, . . .] for some (fixed)
field F. It is customary to omit “= 0” and only write p. The derivation rules are as
follows, where α, β ∈ F, p, q ∈ F[x, y, z, . . .], and x is any variable:

Linear combination
p q

αp+ βq

Multiplication p
xp

A PC refutation ends when 1 has been derived (i.e., 1 = 0).
In the context of SAT solving and also in most proof complexity scenarios, PC also

makes use of the following axioms:

Boolean axioms
x2 − x (forcing 0/1-solutions).

The size of a PC refutation is defined as the total number of monomials in the refuta-
tion (counted with repetitions), the length of a refutation is the number of polynomial
equations, and the (monomial) space is the maximal number of monomials in any con-
figuration (counted with repetitions). Another important measure is the degree of a
refutation, which is the maximal (total) degree of any monomial.

The representation of a clause
∨n
i=1 xi as a PC polynomial is

∏n
i=1(1 − xi), which

means that the number of monomials is exponential in the clause width. This problem
arises only for positive literals, however—a large clause with only negative literals is
translated to a single monomial. This rather artificial space blow-up is a weakness of
monomial space in polynomial calculus when compared to clause space in resolution.
In order to obtain a cleaner, more symmetric treatment of proof space, in [4] the proof
system polynomial calculus resolution (PCR) was introduced as a common extension
of polynomial calculus and resolution. The idea is to add an extra set of parallell formal
variables x′, y′, z′, . . . so that positive and negative literals can both be represented in a
space-efficient fashion.

Definition 4.24 (Polynomial calculus resolution (PCR)). Lines in a PCR-proof are
polynomials over the ring F[x, x′, y, y′, z, z′, . . .], where as before F is some field. We
have all the axioms and rules of PC plus the following axioms:

Complementarity
x+ x′ − 1

for all pairs of variables (x, x′).

Size, length, and degree are defined as for polynomial calculus, and the (monomial)
space of a PCR-refutation is again the maximal number of monomials in any configu-
ration counted with repetitions.11

The point of the complementarity rule is to force x and x′ to have opposite values
in {0, 1}, so that they encode complementary literals. This means one can potentially
avoid an exponential blow-up in size measured in the number of monomials (and thus
also for space). Our running example clause x ∨ y ∨ z is rendered as x′y′z in PCR.
In PCR, monomial space is a natural generalization of clause space since every clause
translates into a monomial as just explained.

It will be convenient for us to define the following subsystem of PC.
11We remark that in [4] space was defined as the number of distinct monomials in a configuration (i.e.,

not counted with repetitions), but we find this restriction to be somewhat arbitrary.
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Definition 4.25 (Binomial PC). A binomial is a sum of two monomials, one or both of
which may be zero. A system of equations will be called a binomial system if all of the
polynomial constraints p = 0 are binomials. A binomial PC derivation is one in which
for every proof line p = 0, p is a binomial.

Because of the quite restrictive constraint that all axioms be binomials, binomial
PC is studied without the Boolean axioms; as discussed in [39], binomial PC with
Boolean axioms can be simulated efficiently by resolution. Thus, binomial PC should
not be thought of as directly useful to SAT solving model, but more typically as a proof
system to reduce to; if a good change of variables permits one to rephrase a formula as a
binomial system it may be profitable to study it via binomial PC. It is also worth pointing
out that there really can be no binomial PCR, since the extension axioms xi = 1 + xi
are not binomials.

Definition 4.26. A restriction is a mapping ρ from some set of Boolean variables to
constants and other variables. The restriction of a formula F , denoted by F�ρ, is the
formula obtained by replacing the variables with their images under the restriction and
performing local simplifications. The restriction of a set of formulas is defined as the
collection of restricted formulas. The restriction of a polynomial p, denoted by p�ρ is
defined similarly. Notice that allowing a variable being mapped to another variable is a
bit non-standard. Nevertheless, this non-standardness does not affect a fact that is well
known for restrictions allowing mapping only to constants (a.k.a. partial assignments):
proofs may also be restricted – if π is a proof of F , and ρ is a restriction, then there is
an induced proof π�ρ of F�ρ, obtained again by performing local simplifications to the
formulas of the proof and to the proof structure.

Note that the definition above is slightly non-standard in that a restriction is not a
partial assignment, but a combination of an assignment and a substitution (since vari-
ables can be “assigned” to other variables). It is straightforward to verify that this kind
of “enhanced” restriction preserves derivations just as well as do standard restrictions.

For any formula F , there is a generic distribution of random restrictions to the vari-
ables F [⊕] which is often useful.

Definition 4.27. Let F be any formula. Define a random restriction ρ which maps vari-
ables of F [⊕] (as defined in Section 4.3.1) to constants and variables of F by indepen-
dently for each variable x of F , choosing one of x1 and x2 with equal probability to set
to {0, 1} with equal probability, and the other to either x or x so that ρ(x1)⊕ρ(x2) ≡ x.

This restriction sets a variable to a constant with constant probability, so it is a fairly
dense restriction which can be used to kill very wide clauses. On the other hand it is
very clean and always gives us back essentially the same formula. Note that it always
holds that F [⊕]�ρ = F .

We will use this next lemma throughout the paper, and throughout the paper ρ will
refer to a random restriction chosen in this way.

Lemma 4.28. Let C be any clause in the variables of F [⊕]. Then,

Pr
ρ

[∣∣Vars(C�ρ)
∣∣ ≥ K

]
≤
(

3

4

)K
.
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Proof. Suppose
∣∣{x : x1, x2 ∈ Vars(C�ρ)}

∣∣ < K. Then the probability of the event is
zero. Suppose not. Then there are at least K vars of C which ρ assigns independently,
to 0 with probability at least 1/4 and to 1 with probability at least 1/4. Since for each
such variable, there is a specific value which if chosen by ρ will result in C�ρ = > and
Vars(C�ρ) = ∅. Therefore by independence, the probability that Vars(C�ρ) 6= ∅ is at
most

(
3
4

)K , as desired.

Note that while in some specific applications better results can be achieved with
specially crafted random restrictions, if we do not care about constants in the exponent
this kind of argument can often yield optimal results with a very simple proof. This
technique has the advantage that often we will not need to think about F [⊕] directly
and can instead focus on F .

In general, the admissible inferences in a proof system according to Definition 4.18
are defined by a set of syntactic inference rules. In what follows, we will also be inter-
ested in a strengthened version of this concept, which was made explicit in [4].

Definition 4.29 (Syntactic and semantic derivations). We refer to derivations accord-
ing to Definition 4.18, where each new line L has to be inferred by one of the inference
rules for P , as syntactic derivations. If instead any line L that is semantically implied
by the current configuration can be derived in one atomic step, we talk about a semantic
derivation.

Clearly, semantic derivations are at least as strong as syntactic ones, and they are
easily seen to be superpolynomially stronger with respect to length for any proof sys-
tem where superpolynomial lower bounds are known. This is so since a semantic proof
system can download all axioms in the formula one by one, and then deduce contradic-
tion in one step since the formula is unsatisfiable. Therefore, semantic versions of proof
systems are mainly interesting when we want to reason about space or the relationship
between space and length. But if we can prove lower bounds not just for syntactic
but even semantic versions of proof systems, this of course makes these bounds much
stronger.

Let us finally remark that although the measure of total space, considering the total
number of symbols in memory, is perhaps a priori the most natural one, most papers
on proof space have focused on space measured as the number of lines in memory
(e.g., clauses, k-DNF formulas, or inequalities). However, as observed in [4], for strong
enough proof systems, this “line space” measure is no longer interesting since just one
unit of memory can contain a big AND of all formulas derived so far. The “line space”
measure makes perfect sense for resolution and k-DNF resolution, and seems to do so
also for cutting planes. For PC/PCR, however, measuring just the number of polynomial
equations is not very meaningful, since every equation can be of exponential size and
encode very much information. Instead, the natural generalization of clause space is
monomial space.

4.3.7 Substituted Formulas, Projections, and Trade-offs

Let us start by recalling some key definitions from Section 4.3.3.

Definition 4.6 (restated). Let f : {0, 1}d → {0, 1} be a fixed Boolean function. Let
P be a sequential proof system, and let D denote an arbitrary P-configuration over
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Vars
(
F [f]

)
. Let C denote arbitrary sets of disjunctive clauses over Vars(F ). Then the

function projf mapping P-configurations D to clauses C is an f-projection if it is:

Complete: If D � C[f] then the clause C either is in projf(D) or is derivable from
projf(D) by weakening.

Nontrivial: If D = ∅, then projf(D) = ∅.

Monotone: If D′ � D and C ∈ projf(D), then either C ∈ projf(D′) or C is derivable
from projf(D′) by weakening.

Incrementally sound: Let A be a clause over Vars(F ) and let LA be the encoding of
some clause in A[f] as a Boolean function of the type prescribed by P . Then if
C ∈ projf(D ∪ {LA}), it holds for all literals a ∈ Lit(A)\Lit(C) that the clause
a ∨ C either is in projf(D) or can be derived from projf(D) by weakening.

Definition 4.7 (restated). Consider a sequential proof systemP with space measure Sp(·).
Suppose that f : {0, 1}d → {0, 1} is a fixed Boolean function, and that projf is an f-pro-
jection. Then we say that projf is space-faithful of degree K with respect to P if there
is a polynomial Q of degree at most K such that Q(Sp(D)) ≥

∣∣Vars(projf(D))
∣∣ holds

for any P-configuration D over Vars
(
F [f]

)
. We say that projf is linearly space-faithful

if Q has degree 1, and that projf is exactly space-faithful if we can choose Q(n) = n.

A special kind of projections are those that look not only on all of D “globally,” but
measure the semantic content of D more precisely.

Definition 4.30 (Local projection). If projf is an f-projection, then its localized ver-
sion projLf is defined to be projLf (D) =

⋃
D′⊆D projf(D′). If projf = projLf , we say that

projf is a local projection.

It is easily verified that the localized version of a projection is indeed itself a projec-
tion in the sense of Definition 4.6.

4.3.8 Using Projections to Obtain Time-Space Trade-offs

We now show that if we can design a projection in accordance with Definition 4.6,
then this projection can be used to extract resolution refutations from P-refutations.
Furthermore, if our projection is space-faithful, this extraction operation will preserve
length-space trade-off (with some loss in parameters depending on how high the degree
K is).

Lemma 4.31. LetP be an implicational sequential proof system and let f : {0, 1}d → {0, 1}
be a Boolean function, and suppose that projf is an f-projection. Then for any CNF for-
mula F it holds that if πf = {D0,D1, . . . ,Dτ} is a semanticP-refutation of the substitu-
tion formulaF [f], the sequence of sets of projected clauses

{
projf(D0), projf(D1), . . . , projf(Dτ )

}
forms the “backbone” of a resolution refutation π of F in the following sense:

1. projf(D0) = ∅.

2. ⊥ ∈ projf(Dτ ).
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3. All transitions from projf(Dt−1) to projf(Dt) for t ∈ [τ ] can be accomplished in
syntactic resolution in such a fashion that VarSp(π) = O

(
maxD∈πf{VarSp(projf(D))}

)
,

or, if projf is a local projection, so that VarSp(π) ≤ maxD∈πf{VarSp(projf(D))}.

4. The length of π is upper-bounded by πf in the sense that the only time π performs
a download of an axiom C ∈ F is when πf downloads some axiom D ∈ C[f]
from F [f].

On one hand, Lemma 4.31 is very strong in the sense that even semanticP-refutations
can be translated to syntactic resolution refutations. On the other hand, it would have
been nice if the bound in part 4 of Lemma 4.31 could have been made into a true upper
bound in terms of the length of πf , but it is easy to see that this is not possible. The rea-
son for this is precisely that the P-proof refuting F [f] is allowed to use any arbitrarily
strong semantic inference rules, and this can lead to exponential savings compared to
syntactic resolution. For a concrete example, just let F be an encoding of the pigeon-
hole principle and let πf be the refutation that downloads all axioms of F [f] and then
derives contradiction in one step.

Before proving Lemma 4.31 let us see how it can be used to prove trade-offs pro-
vided that we can construct space-faithful projections.

Theorem 4.32. Let P be an implicational sequential proof system with space mea-
sure Sp(·). Suppose f : {0, 1}d → {0, 1} is a Boolean function such that there exists
an f-projection which is space-faithful of degree K with respect to P . Then if F is
any unsatisfiable CNF formula and πf is any semantic P-refutation of the substitution
formula F [f], there is a resolution refutation π of F such that:

• The length of π is upper-bounded by πf in the sense that π makes at most as many
axiom downloads as πf .

• The space of π is upper-bounded by πf in the sense that VarSp(π) = O
(
Sp(πf)

K
)
.

In particular, if there is no syntactic resolution refutation ofF in simultaneous length O(L)
and variable space O(s), then there is no semantic P-refutation of F [f] in simultaneous
length O(L) and P-space O

(
K
√
s
)
.

Proof of Theorem 4.32. Let πf be a semanticP-refutation of F [f], and let π be the reso-
lution refutation we obtain by applying the the projection projf on πf as in Lemma 4.31.
By part 4 of Lemma 4.31 we know that π makes at most as many axiom downloads as
πf . By part 3 of the lemma we have VarSp(π) = O

(
maxD∈πf{VarSp(projf(D))}

)
. Fix

some P-configuration D maximizing the right-hand side of this expression. For this D
we have VarSp(projf(D)) = O

(
Sp(D)K

)
= O

(
Sp(πf)

K
)

according to Definition 4.7.
The theorem follows.

Clearly, the key to the proof of Theorem 4.32 is the claim that projections translate
P-refutations to resolution refutations. Let us substantiate this claim.

Proof of Lemma 4.31. Fix any sequential proof system P , any f-projection projf , and
any CNF formula F . Recall that we want to show that if πf = {D0,D1, . . . ,Dτ} is a
semantic P-refutation of the substitution formula F [f], then the sequence of projected
clause sets

{
projf(D0), projf(D1), . . . , projf(Dτ )

}
is essentially a resolution refutation

π except for some details that we might have to fill in when going from projf(Dt−1) to
projf(Dt) in the derivation.
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Parts 1 and 2 of Lemma 4.31 are immediate from Definition 4.6, since we have
projf(D0) = projf(∅) = ∅ by nontriviality and ⊥ ∈ projf(Dτ ) by completeness (note
that Dτ � ⊥ =

∨
xb∈⊥ f

b(~x) and the empty clause clearly cannot be derived by weak-
ening).

We want to show that a resolution refutation of F can get from projf(Dt−1) to
projf(Dt) as claimed in part 3 of the lemma. For brevity, let us write Ci = projf(Di)
for all i, and consider the possible derivation steps at time t.

Inference Suppose Dt = Dt−1 ∪ {Lt} for some Lt inferred from Dt−1. Since P
is an implicational proof system, it holds that Dt−1 � Dt, and since the projection is
monotone by definition we can conclude that all clauses in Ct \Ct−1 are derivable from
Ct−1 by weakening. We go from Ct−1 to Ct in three steps. First, we erase all clauses
C ∈ Ct−1 for which there are no clauses C ′ ∈ Ct such that C ⊆ C ′. Then, we derive
all clauses in Ct \ Ct−1 by weakening, noting that all clauses needed for weakening
steps are still in the configuration. Finally, we erase the rest of Ct \ Ct−1. At all times
during this transition from Ct−1 to Ct−1, the variable space of the intermediate clause
configurations is upper-bounded by max{VarSp(Ct−1),VarSp(Ct)}.

Erasure Suppose Dt = Dt−1 \ {Lt−1} for some Lt−1 ∈ Dt−1. Again we have that
Dt−1 � Dt, and we can appeal to the monotonicity of the projection and proceed exactly
as in the case of an inference above.

Axiom download So far, the only derivation rules used in the resolution refutation π
that we are constructing are weakening and erasure, which clearly does not help π to
make much progress towards proving a contradiction. Also, the only properties of the
f-projection that we have used are completeness, nontriviality, and monotonicity. Note,
however, that a “projection” that sends ∅ to ∅ and all other configurations to {⊥} also
satisfies these conditions. Hence, the axiom downloads are where we must expect the
action to take place, and we can also expect that we will have to make crucial use of the
incremental soundness of the projection.

Assume that Dt = Dt−1 ∪ {LA} for a function LA encoding some clause from the
substitution clause set A[f] corresponding to an axiom A ∈ F . We want to show that
all clauses in Ct \ Ct−1 can be derived in π by downloading A, resolving (and possibly
weakening) clauses, and then perhaps erasing A, and that all this can be done without
the variable space exceeding VarSp(Ct−1 ∪ Ct) ≤ VarSp(Ct−1) + VarSp(Ct).

We already know how to derive clauses by weakening, so consider a clause C ∈
Ct\Ct−1 that cannot be derived by weakening from Ct−1. By the incremental soundness
of the projection, it holds for all literals a ∈ Lit(A) \ Lit(C) that the clauses a∨C can
be derived from Ct−1 by weakening. Once we have these clauses, we can resolve them
one by one with A to derive C.

Some care is needed, though, to argue that we can stay within the variable space
bound VarSp(Ct−1) + VarSp(Ct). Observe that what was just said implies that for all
a ∈ Lit(A) \ Lit(C) there are clauses a ∨ Ca ∈ Ct−1 with Ca ⊆ C. In particular, we
have a ∈ Lit(Ct−1) for all a ∈ Lit(A) \ Lit(C). This is so since by the incremental
soundness there must exist some clause C ′ ∈ Ct−1 such that a ∨ C is derivable by
weakening fromC ′, and if a /∈ Lit(C ′) we would have thatC is derivable by weakening
from C ′ as well, contrary to assumption. Note furthermore that if the projection is local,
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then a ∨ Ca ∈ Ct−1 implies that a ∨ Ca ∈ Ct as well, since no clauses can disappear
from the projection when enlarging Dt−1 to Dt. Thus, for local projections we have
VarSp(Ct−1 ∪ {A}) ⊆ VarSp(Ct).

If it happens that all clauses in Ct \Ct−1 can be derived by weakening, we act as in
the cases of inference and erasure above. Otherwise, to make the transition from Ct−1

to Ct in a space-efficient fashion we proceed as follows.

1. Erase all clauses in Ct−1 \ Ct not used in any of the steps below.

2. Infer all clauses in Ct \ Ct−1 that can be derived by weakening from Ct−1.

3. Erase all clauses in Ct−1 \Ct used in these weakening moves but not used in any
further steps below.

4. Download the axiom clause A, and derive any clauses C ∈ Ct \ Ct−1 such that
A ⊆ C by weakening.

5. For all remaining clauses C ∈ Ct \ Ct−1 that have not yet been derived, derive
a ∨ C for all literals a ∈ Lit(A) \ Lit(C) and resolve these clauses with A to
obtain C.

6. Erase all remaining clauses in the current configuration that are not present in Ct,
possibly including A.

Clearly, step 1 can only decrease the variable space, and steps 2 and 3 do not in-
crease it. Step 4 can increase the space, but as was argued above we have Vars(A) ⊆
Vars(C) ∪ Vars(Ct−1) for every new clause C derived with the help of A. Step 5 does
not change the variable space, and step 6 can only decrease it. It follows that the set of
variables mentioned during these intermediate steps is contained in Vars(Ct−1 ∪ Ct).
If in addition the projection is local, we have Ct−1 ⊆ Ct and also Vars(A) ⊆ Vars(Ct),
so in this case the variable space increases monotonically from Ct−1 to Ct.

Wrapping up the proof, we have shown that no matter what P-derivation step is
made in the transition Dt−1  Dt, we can perform the corresponding transition Ct−1  
Ct for our projected clause sets in resolution without the variable space going above
VarSp(Ct−1) +VarSp(Ct). Also, the only time we need to download an axiom A ∈ F
in our projected refutation π of F is when πf downloads some axiom from A[fd]. The
lemma follows.

4.3.9 Some Space-Faithful Projections

Let us pause and reflect on what Theorem 4.32 says. Suppose we have a family of
CNF formulas Fn with lower bounds for refutation variable space in resolution, or with
trade-offs between refutation length and refutation variable space (such as for instance
pebbling contradictions over suitable graphs). Then we can lift these lower bounds and
trade-offs to stronger measures in a potentially stronger proof system P , provided that
we can find a Boolean function f : {0, 1}d → {0, 1} and an f-projection projf that is
space-faithful with respect to P .

Thus, at this point we can in principle forget everything about proof complexity. If
we want to prove space lower bounds or time-space trade-offs for a proof system P , we
can focus on studying Boolean functions of the form used by P and trying to devise
space-faithful projections for such functions.
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Let us now briefly review how this is done in [30], and then prove Lemma 4.8. In
what follows, let us write Varsd(V ) = {x1, . . . , xd | x ∈ V } for the set of variables re-
sulting from substitution in a formula over variable set V . Also, we will abuse notation
mildly and identify a set of disjunctive clauses with the Boolean function computed by
these clauses.

Definition 4.33 (Precise implication [30]). Let f be a Boolean function of arity d, let D
be a set of Boolean functions over Varsd(V ), and let C be a disjunctive clause over V .
If

D � C[f] (4.5a)

but for all strict subclauses C ′ $ C it holds that

D 2 C ′[f] , (4.5b)

we say that the clause set D implies C[f] precisely and write

D B C[f] . (4.6)

Definition 4.34 (Resolution projection [30]). Let f denote a Boolean function of ar-
ity d and let D be any set of Boolean functions over Varsd(V ). Then we define

Rprojf(D) = {C | D B C[f]} (4.7)

to be the resolution projection of D. Also, we define Rproj∗f (D) =
⋃

D′⊆D Rprojf(D′)
to be the local resolution projection of D.

Lemma 4.35. The mapping Rprojf is an f-projection (for any sequential proof sys-
tem P).

Proof. Suppose D � C[f]. Then we can remove literals from C one by one until we
have some minimal clause C ′ ⊆ C such that no more literal can be removed if the
implication is to hold, and this clause C ′ is projected by D according to the definition.
This proves both completeness and monotonicity for Rprojf . Nontriviality is obvious.

For the incremental soundness, if C ∈ Rprojf(D ∪ {LA}) for an encoding LA of
some clause in A[f], then this means, in particular, that D ∪ {LA} � C[f]. Consider
any truth value assignment α such that α(D) = 1 but α

(
C[f]

)
= 0. By assumption,

α(LA) = 0. But this means that for all literals a ∈ Lit(A) we have α
(
a[f]
)

= 1. Since
this holds for any α, it follows for all a ∈ Lit(A) that D � (a ∨ C)[f], and we conclude
by the completeness of the projection that the clause a ∨ C is derivable by weakening
from Rprojf(D ∪ {LA}).

With this projection, and using Theorem 4.32, the main technical result in [30] can
now be rephrased as follows, where we also need the following key definition.

Definition 4.36 (Non-authoritarian function [30]). We say that a Boolean function
f(x1, . . . , xd) is k-non-authoritarian12 if no restriction to {x1, . . . , xd} of size k can fix
the value of f . In other words, for every restriction ρ to {x1, . . . , xd} with |ρ| ≤ k there
exist two assignments α0, α1 ⊃ ρ such that f(α0) = 0 and f(α1) = 1. If this does
not hold, f is k-authoritarian. A 1-(non-)authoritarian function is called just (non-
)authoritarian.

12Such functions have previously also been referred to as (k+1)-robust functions in [4].
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Theorem 4.37 ([30]). If f is a non-authoritarian Boolean function, then the projection
Rproj∗f is exactly space-faithful with respect to the resolution proof system.

We note in passing that [30] also proved a similar result, although with slightly
worse parameters, for the so-called k-DNF resolution proof systems (provided that the
substitution function is (k + 1)-non-authoritarian).

Lemma 4.38 (Detailed version of Lemma 4.8). If P is any implicational sequence
proof system, then the projections Rprojf and Rproj∗f are both exactly space-faithful
for variable space in P .

Proof. This is fairly straightforward. Consider first Rprojf . If Rprojf is not exactly
space-faithful, then there is a P-configuration D, a clause C, and a variable x such that
C ∈ Rprojf(D) and x ∈ Vars(C) \ Vars(D). Suppose without loss of generality that
C = C ′ ∨ x. By condition 4.5b in Definition 4.33 we have D 2 C ′, so there is a truth
value assignment α such that α(D) = 1 and α(C ′) = 0. But we can flip α on x without
affecting D, since this variable does not occur, obtaining α′ such that α′(D) = 1 and
α′(C) = 0. Contradiction.

For Rproj∗f , we just focus on the subset D′ ⊆ D that is responsible for projecting C
and then run the same argument.

4.3.10 Designing Space-Faithful Projections for Stronger Proof Systems?

It seems like a very tempting approach to try to extend this projection framework to
other proof systems than resolution and k-DNF resolution. In particular, it would be
very interesting to see if one could prove space lower bounds and time-space trade-offs
for cutting planes, polynomial calculus, or polynomial calculus resolution in this way.
However, to do so another projection in the formal sense of Definition 4.6 than the one
in Definition 4.34 would be needed. We conclude this section by explaining why the
same projection as we used for resolution above will not work for PC or PCR. Namely,
consider the following examples (where the original variables before substitution are
x[i] for i = 1, 2, . . .).

Example 4.39. Using substitutions with⊕2, for polynomial calculus we have the exam-
ple

− 1 +
k∏
i=1

x[i]1x[i]2 (4.8)

showing that just two monomials can project the arbitrarily large conjunction x[1] ∧
x[2] ∧ · · · ∧ x[k] if we use the projection in Definition 4.34.

Example 4.40. Let us also give a slightly more involved example for polynomial calcu-
lus resolution. For PCR, three monomials

− 1 +
k∏
i=1

x[i]1x[i]′2 +
k∏
i=1

x[i]′1x[i]2 (4.9)

can project the arbitrarily large conjunction x[1] ∧ x[2] ∧ · · · ∧ x[k].

There are also similiar counter-examples that show why this projection does not
work for cutting planes.
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Somehow, the reason for these counterexamples is that the projection in Defini-
tion 4.34 allows the Boolean functions in the implication to be far too strong. These
functions do not really imply just conjunctions of exclusive ors, but something much
stronger in that they actually fix the variable assignments (to some particular assign-
ment that happens to satisfy exclusive ors). Note that formulas F [⊕2] do not speak
about fixed variable assignments for, say, x1 or x2, but only about the value of x1 ⊕ x2.
Intuitively, therefore, the only way we can know something more about x1 and x2 than
the value of x1 ⊕ x2 is if the refutation has already derived contradiction and is now
deriving all kinds of other interesting consequences from this. But before this happens,
we would like to argue that any refutation must pass through a stage where all it can
know about x1 and x2 is the value of x1 ⊕ x2 and nothing more.

For this reason, we would like to find a more “fine-grained” definition of a projection
that can capture only these weaker implications and discard too strong implications.
It seems like a very interesting, though also quite challenging, question whether it is
possible to prove space lower bounds and/or trade-offs between proof length/size and
space for cutting planes, polynomial calculus, or polynomial calculus resolution by
designing smarter projections than in Definition 4.34 that are space-faithful for these
proof systems. And note that Definition 4.6 provides quite a lot of flexibility here—
what we have proven in this section is that any function satisfying the formal conditions
in Definition 4.6 will automatically project P-refutations to resolution refutations for
any (implications sequential) proof system P .

4.4 Trade-offs Between Space and Degree in PCR
In this short section, we show how Lemma 4.38 can be used to prove Theorem 4.1,
which we restate here for reference.

Theorem 4.1. There is a family of 3-CNF formulas Fn of size Θ(n) that can be refuted
in polynomial calculus in degree DegPC(Fn `⊥) = O(1) and also in monomial space
SpPC(Fn `⊥) = O(1), but such that for any PCR-refutation πn : Fn `⊥ it holds that
Sp(πn) · Deg(πn) = Ω(n/ log n).

We start by recalling some facts about the trade-off between clause space and width
in resolution, obtained by studying a particular kind of pebbling contradictions.

Theorem 4.41 ([25]). There is a family of k-CNF formulas Fn of size Θ(n) such that
Sp(Fn `⊥) = O(1) and W(Fn `⊥) = O(1) but VarSp(Fn `⊥) = Ω(n/ log n).

We need a bit more information about these formulas as stated next.

Observation 4.42 ([28]). There are resolution refutations πn : Fn `⊥ of the formulas
Fn in Theorem 4.41 with L(πn) = O(n) and W(πn) = O(1).

Lemma 4.43 ([25]). There are resolution refutations πn : Fn `⊥ of the formulas Fn in
Theorem 4.41 with L(πn) = O(n) and Sp(πn) = O(1), and all clauses in πn contain at
most one positive literal.

Since the resolution refutation in Observation 4.42 has constant width, polyno-
mial calculus can simulate it in constant total degree. The resolution refutation in
Lemma 4.43 is wide, which could be a problem for PC, but only if there are clauses
containing many positive literals (by our choice of encoding of true and false in PC).
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Since every clause in the refutation in Lemma 4.43 contains at most one positive literal,
PC can simulate this refutation as well with at most a (small) constant factor blow-up
in the monomial space as compared to the resolution clause space.

The following observation brings us to a point where we can conclude the proof.

Observation 4.44. For any PCR-refutation π of a formula F it holds that Sp(π) ·
Deg(π) ≥ VarSp(π) ≥ VarSpPCR(F `⊥).

Proof. The refutation π never has more that Sp(π) monomials in memory, and each
monomial has degree at most Deg(π). Thus the total number of distinct variables in
memory at any point during the course of the PCR-refutation π is at most Sp(π) ·
Deg(π).

And we clinch the argument by observing that the refutation variable space must be
the same in PCR as in resolution.

Observation 4.45. For any CNF formulaF it holds that VarSpPCR(F `⊥) ≥ VarSpR(F `
⊥).

Proof. Apply Lemma 4.38 on Rproj∗f and then appeal to part 3 of Lemma 4.31.

Putting all of this together, Theorem 4.1 follows.

4.5 Time-Space Trade-offs for PCR in the Sublinear Space Regime
Using the substitution theorem for PCR that we proved in Section 4.3.3, we can now
go over the time-space trade-off results for resolution in [30] and lift most of them to
PCR. The upper bounds will hold for total space syntactic resolution and polynomial
calculus, whereas the lower bounds hold for monomial space in semantic PCR, i.e., a
stronger space measure in a much stronger proof system. In contrast to [30], however,
the upper and lower bounds in the trade-offs are no longer as tight, since the random
restriction part of the argument leads to a loss of a logarithmic factor in the upper bound
on the proof size. Let us recall our substitution theorem here for reference.

Theorem 4.9 (restated). Suppose that F is a CNF formula for which any syntactic res-
olution refutation in variable space at most smust make more than T axiom downloads.
Then any semantic PCR-refutation of F [⊕] in monomial space at most s/ log4/3 T must
have size larger than T .

Given this theorem, there is a (literally) infinite supply of pebbling contradictions
that it could be applied to in order to yield PCR time-space trade-offs. As was done also
for the resolution trade-offs in [30], we try to simply state a few interesting examples
here.

Theorem 4.46 (Trade-offs for constant space). There are explicit 6-CNF formulas
{Fn}∞n=1 of size Θ(n) such that the following holds:

• The formulas Fn are refutable in syntactic resolution and polynomial calculus in
total space O(1).

• For any g(n) = O
(√

n
)

there are syntactic resolution and polynomial calculus
refutations πn of Fn in simultaneous length/size O

(
(n/g(n))2

)
and total space

O(g(n)).
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• For any semantic PCR-refutation πn : Fn `⊥ in monomial space Sp(πn) ≤ g(n)

it holds that S (πn) = Ω
((
n/(g(n) log n)

)2
)

.

Theorem 4.46 follows by combining Theorem 4.9 with the seminal work on peb-
bling trade-offs by Lengauer and Tarjan [74] and the structural results on simulations
of black-white pebblings by resolution in [84].

Our next result relies on a new pebbling time-space trade-off result in [84], building
on earlier work [40, 41], which yields the rather striking statement that for any arbitrar-
ily slowly growing non-constant function, there are explicit formulas of such (arbitrarily
small) space complexity that nevertheless exhibit superpolynomial length-space trade-
offs.

Theorem 4.47 (Trade-offs for growing space). Let g(n) = ω(1), g(n) = O
(
n1/7

)
,

be any arbitrarily slowly growing function and fix any ε > 0. Then there are explicit
6-CNF formulas {Fn}∞n=1 of size Θ(n) such that the following holds:

• The formulas Fn are refutable in syntactic resolution and PC in total space
O(g(n)).

• There are resolution and PC refutations of Fn in simultaneous length/size O(n)

and total space O
((
n/g(n)2

)1/3
)

.

• Any PCR-refutation of Fn in monomial space O
((
n/(g(n)3 log n)

)1/3−ε
)

must
have superpolynomial size.

All multiplicative constants hidden in the asymptotic notation depend only on ε.

The two theorems above focus on trade-offs for formulas of low space complex-
ity, and the lower bounds on length obtained in the trade-offs are somewhat weak—the
superpolynomial growth in Theorem 4.47 is something like ng(n). We next present a the-
orem that has both a stronger superpolynomial length lower bounds than Theorem 4.47
and an even more robust trade-off covering a wider (although non-overlapping) space
interval. This theorem again follows by applying our tools to the pebbling trade-offs
in [74].

Theorem 4.48 (Trade-off for medium-range space). There are explicit 6-CNF formu-
las {Fn}∞n=1 of size Θ(n) such that the following holds:

• The formulas Fn are refutable in syntactic resolution and PC in total space
O(log2 n).

• There are syntactic resolution and PC refutations of Fn in simultaneous length in
length O(n) and total space O(n/ log n).

• Any semantic PCR-refutation of Fn in monomial space o(n/ log3 n) must have
size nΩ(log logn).

Having presented trade-off results in the low-space and medium-space range, we
conclude by presenting a result at the other end of the space spectrum. Namely, appeal-
ing one more time to [84], we can show that there are formulas of polynomial (but still
sublinear) space complexity that exhibit not only superpolynomial but even exponential
trade-offs.
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Theorem 4.49 (Exponential trade-off). There is a family of explicit 6-CNF formulas
{Fn}∞n=1 of size Θ(n) such that the following holds:

1. The formulas Fn are refutable in syntactic resolution and PC in total space
O
(
n1/11

)
.

2. There are syntactic resolution and PC refutations πn ofFn in simultaneous length/size
O(n) and total space O

(
n3/11

)
.

3. Any semantic PCR-refutation of Fn in monomial space at most n2/11/(10 log n)
must have size at least

(
n1/11

)
! .

As the knowledgeable reader might have noticed, however, we have no analogues of
the strongest trade-offs in [30]. This is so because when the proof length in resolution
becomes exponential, the log factor loss in the restriction argument becomes so big that
it more or less cancels out the space lower bound.

4.6 Extended Isoperimetry
For any undirected graph G = (V,E), and S ⊆ V , let δ(S) denote the set of boundary
edges, δ(S) := {(v, v′) ∈ E : exactly one of v, v′ ∈ S}. An isoperimetric inequality in
graph theory refers to a lower bound on δ(S) as above which holds for any subset of S
in G depending only on the cardinality of S. Classical work considered isoperimetric
inequalities in Euclidean space; Harper’s theorem gives a tight isoperimetric inequality
in the hamming cube. Isoperimetry in graphs is closely related to graph expansion, see
[68]. We require a variation on this idea, in which multiple sets of superincreasing sizes
are considered.

Definition 4.50. Let G = (V,E) be a undirected graph, and t0 an associated parameter.
A set of vertices of size between t0, |V |/2 is called medium sized.

We say G satisfies the extended isoperimetry condition with parameters (W, t0, r)
if for any sequence of medium sized sets of vertices S1, . . . , Sk ⊆ V , where ∀i ≥ 2,
|Si+1| ≥ r|Si|, it holds that |

⋃
i δ(Si)| ≥ k ·W .

We will now show that the grid has this property for appropriate parameters. In fact,
W will be close to the width of the grid, so that there are sets of every medium size with
only O(W ) boundary edges, and this implies that the lower bound we obtain above is
tight.

As a starting point, we first show that all path graphs have the property. It is easiest
to start with the infinite path graph. Let GZ denote the graph defined by V [G] := Z,
E[G] := {(i, i + 1) : i ∈ Z}, that is, the undirected cayley graph on the integers with
generator 1.

Lemma 4.51. Let S1, . . . , Sk be a nonempty sequence of finite nonempty subsets of the
integers such that |S1|, . . . , |Sk| is a superincreasing sequence. (That is, each successive
value is at least twice as large as the previous.) Then, |

⋃
i δ(Si)| ≥ k + c, where

boundary refers to the graph GZ and c is the number of connected components of the
subgraph induced by

⋃
i Si in GZ .

Proof. Let Hk,c denote the proposition for specific values of k, c. We prove that Hk,c

holds for all values by induction on k and c. The case that k = 1, c = 1 is trivial.
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Suppose inductively that Hk,c holds. We prove it for Hk,c+1. For any sets S1, . . . , Sk
such that Hk,c+1 applies

⋃
i Si has at least two connected components, so there exists a

point z not in any set which is between two components and such that z− 1 is in one of
the sets. Consider the function f : Z → Z defined by

f(x) :=

{
x x < z
x− 1 x ≥ z

.

That is, f contracts the points z, z + 1 to one point. If z + 1 is not in any of the sets
Si, then f clearly preserves the size of every set, the number of boundary edges, and
the number of connected components. So in this case, Hk,c+1 holds for S1 . . . Sk if and
only if it holds for f(S1), . . . , f(Sk). Since there is a point in one of the Si which is
above z, after a finite number of applications of this we obtain an instance such that
z+ 1 is in one of the sets. Now we handle this case. Since z is not a point in any set, we
still have |f(Si)| = |Si| for every set. Since there is a component of

⋃
i Si containing

z − 1 and component containing z + 1, the images of these two components are one
component afterwards, and no other collisions could have occurred so the number of
components is reduced by exactly one. Further, there is at least one less edge in the⋃
i δ(f(Si)) compared with

⋃
i δ(Si) since the edges (z − 1, z) and (z, z + 1), which

were boundary edges, collided after application of f , and no other edges collided or
disappeared. By hypothesis that Hk,c holds, we conclude that |

⋃
i δ(f(Si))| ≤ k + c,

so k + c+ 1 ≤ |
⋃
i δ(Si)|, so Hk,c+1 holds for this instance as desired.

Suppose inductively that Hk,c holds for all c. We prove Hk+1,1. For any sets
S1, . . . , Sk+1 such that Hk,1 applies, let c′ denote the number of connected components
of
⋃k
i=1 Si. If c′ > 1, then by Hk,c′ , |

⋃k
i=1 δ(Si)| > k + 1, so |

⋃k+1
i=1 δ(Si)| is at least

as large and Hk+1,1 is satisfied. Suppose c′ = 1. Then, the least and greatest points of⋃k
i=1 Si are at most

∑k
i=1 |Si| < |Sk+1| apart, so one of either the maximum or mini-

mum point of Sk+1 is an extreme point of
⋃k+1
i=1 Si which is not in

⋃k
i=1 Si. Its boundary

edge in the extreme direction is thus a boundary edge of Sk+1 which is not a bound-
ary edge of

⋃k
i=1 Si, which implies |

⋃k+1
i=1 δ(Si)| > |

⋃k
i=1 δ(Si)| ≥ k + 1, so Hk+1,1

holds.

Lemma 4.52. For any ε > 0, for large enough n, the n× ` grid, where 4n2 ≤ ` ≤ 2n,
satisfies the extended isoperimetry condition with parameters (W = n, t0 = 4n3, r =
2 + ε).

Proof. For a set of vertices S, we call a column of the grid full if all its n vertices are
included in S, empty if none of its vertices is included, and partial otherwise. If for
some Si, there are more than kn partial columns, each of which introduces at least one
vertical boundary edge, thus the lemma holds. Therefore without loss of generality, the
number of partial columns for every Si is less than kn < n2 (note that k < n).

It suffices to show that in each row we obtain at least k horizontal boundary edges,
since an edge is a horizontal edge in at most one row and there are n rows. Fix any row,
and for each Si let S ′i denote the index number of columns which contain a vertex of S ′i
from this row. If we can show that all ratios |S ′i|/|S ′i−1| are at least 2, then the previous
lemma implies that |

⋃
δGZ (S ′i)| ≥ k + c, where c is the number of components of⋃

S ′i in GZ . For every edge of this union except the edges (0, 1) and (`, ` + 1) there is
a corresponding horizontal edge of δ(Si) in this row. If |

⋃
δGZ (S ′i)| contains at most

one of these two, then since c ≥ 1 we obtain at least k horizontal edges as desired. If
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|
⋃
δGZ (S ′i)| contains both of (0, 1), (`, `+ 1), then c ≥ 2. For suppose c = 1, then 1, `

are in the same connected component of
⋃
S ′i, yet |

⋃
S ′i| is strictly less than `, since

the seuence is superincreasing and hence
∑

i |S ′i| is upper bounded by 2|S ′k|. Thus in
this case as well, there are at least k horizontal edges as desired.

Now we bound the ratios |S ′i|/|S ′i−1|. |S ′i| ≥ |Si|/n − n2, since |S ′i| is at least
the number of full columns in Si; and also |S ′i| ≤ |Si|/n + n2, since there are at most
|Si|/n+n2 columns which are full or partial. By assumption, |Si+1| ≥ r|Si|. Therefore,
∀i : 1 ≤ i ≤ k′ − 1

|S ′i+1|/|S ′i| ≥
|Si+1|/n− n2

|Si|/n+ n2
≥ r(1− n2/t0)2 = r(1− o(1))

here using that t0 = 4n3 is a lower bound on |Si|.
Thus for any ε > 0, for large enough n, r(1 − o(1)) will exceed two as required.

This completes the proof.

4.7 Trade-offs For Tseitin Tautologies
4.7.1 Overview

A long line of work [46, 72, 31] has resulted in several techniques in resolution for prov-
ing a size lower bound for proofs of a tautology from a width lower bound for proofs of
that tautology – here, width refers to the maximum over all clauses in the proof of the
number of variables in the clause. Proving lower bounds on proof width is significantly
simpler, and many techniques exist which we will discuss later. These techniques take
several forms – in the very well known work of Ben-Sasson & Wigderson [31], a very
strong width lower bound for a formula is shown to immediately imply a very strong
size lower bound for that formula. However, more relevant to us is in an older work
of Beame & Pitassi [16], showing that if a formula has a nice distribution of random
restrictions associated to it such that the restricted formula satisfies a width lower bound
of any kind, then that formula obtains a corresponding size lower bound. This argument
often yields essentially tight size lower bounds at many different ranges of hardness, in
contrast to the technique of Ben-Sasson & Wigderson. In [25], a generic technique was
given for taking a formula F and obtaining a formula F ′ which has such a nice distri-
bution of restrictions, all of which yield F . This technique is ⊕-substitution which we
defined earlier. In the case of Tseitin Tautologies which we study, this technique gives
essentially optimal size lower bounds – that is, the easy and tight width lower bound for
F coupled with this argument gives a size lower bound for F [⊕] which is tight up to a
constant in the exponent.

In the next section, we will show that the results of [14] can be cast in the following
terms: If F satisfies an extended width lower bound property, then F [⊕] obeys a time-
space trade-off lower bound, which in the high space regime agrees with (and thus
extends) the size lower bound just described. In the case of Tseitin on the grid, the
size lower bound is optimal up to constant factors, so this yields a true time-space
trade-off result. To establish the extended width lower bound for Tseitin formulas on
a grid, it is sufficient to augment existing techniques for width lower bounds with the
extended isoperimetric property of the grid described in Section 4.6. Our arguments
will show that any graph with extended isoperimetry would do here. Additionally, this
improves over the results of [14] by permitting us to carry out the argument on k-CNFs
for k = O(1) rather than growing with the size of the formula.
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In the subsequent section, we will discuss how to extend this paradigm to give lower
bounds in PCR. In PCR a roughly analogous size vs. width paradigm exists, where
degree is substituted for width. In [39], a beautiful technique for this was to take linear
substitutions for the variables of a formula, and show a degree lower bound for proofs
of the substituted formula. For Tseitin Tautologies, the most natural map to take is the
Fourier Transform, and a series of other technical insights related to binomial PC results
in a very intuitive degree lower bound result for Fourier Transformed Tseitin and hence
standard Tseitin. In many ways this result is a natural extension of the corresponding
results for Resolution. We revisit these techniques and show that with additional careful
analysis, they can be married with the ideas of Section 4.7.5 to give essentially the same
results for PCR as we obtained for Resolution in Section 4.7.3.

4.7.2 Resolution Refutations of Tseitin Formulas

A standard technique described by [31] to show width lower bounds is to take advantage
of the following measure of progress of any proof, which is definable in any proof
system. Let A be a set of contradictory formulas. For φ a proof line in a refutation of
A, let

µA(φ) := min
S ⊆ A
S |= φ

|S| .

That is, we ignore issues of whether φ can be feasibly proven from A and just consider
how many of the axioms in A we need to semantically imply φ to judge roughly how
valuable it is in the proof.

This simple measure enjoys nice properties. We always have µA(a) = 1 for a ∈ A,
and µ is always subadditive: If φ1, φ2 ` φ3 is a step of any proof in a sound proof
system, then µA(φ1) + µA(φ2) ≥ µA(φ3). This is because if the derivation is sound,
then the union of the minimium sets of axioms for φ1, φ2 will semantically imply both
φ1 and φ2, and thus φ3. So for instance, if π is any refutation ofA, there will always exist
a “medium complexity” formula φ ∈ π such that µA(⊥)/3 ≤ µ(φ) < 2µA(⊥)/3. For
suppose there was not – then the first time a formula of complexity exceeding 2µA(⊥)/3
was derived in the refutation, it was derived from two formulas of complexity less than
µA(⊥)/3, contradicting subadditivity.

An important technical insight concerning such measures [31] is that if A is well
chosen and the lines of the proof system we consider have restricted expressive power,
then such a “medium complexity” φ will necessarily be complicated as a Boolean for-
mula. In the case of resolution, φ will be a clause with many variables, and so in this
way we obtain a width lower bound for refutations of A. Generally, it is sensible to
choose A to be minimally contradictory, since this gives us µA(⊥) = |A|, and for any
contradictory A we can usually think of an interesting minimally contradictory subset.
In the sequel we’ll restrict attention to this case.

Several authors [96, 14] observed that in fact this argument shows much more; there
is also a φ′ with µA(φ′)

µA(⊥)
∈ [1/6, 1/3), a φ′′ with µA(φ′)

µA(⊥)
∈ [1/12, 1/6), etc. While the exis-

tence of several collectively wide clauses can be useful for some applications, to obtain
time-space trade-offs we need to use more than this. For the sequel, it is convenient to
transition to the following definition.
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Definition 4.53. A function µ′ mapping formulas of a proof system to N is strongly
bounded if, whenever φ1, φ2 ` φ3 follows in one proof step, then µ′(φ3) ≤ 1 +
max(µ′(φ1), µ′(φ2)).

Such a µ′ is a strongly bounded complexity measure for A if it is strongly bounded
and µ′(a) = 0 for all a ∈ A.

Of course, it is easy to see that if µA is a subadditive complexity measure as defined
before, then µ′A := blog2 µAc is a strongly bounded complexity measure for A. µ′

corresponds to the “complexity levels” as appeared in [14].
The following simple observation appears implictly in previous work, and gives a

generic way in which such a measure can give rise to a notion of “progress” occurring
in different epochs (time periods) of a proof.

Definition 4.54. Let π be a proof in a sequential proof system which is divided recur-
sively into epochs. For E an epoch, say that its critical set of proof lines is

• IfE is an internal epoch, the set of proof lines appearing in memory at breakpoints
between sons of E

• If E is a leaf epoch, the set of all proof lines appearing in E.

Lemma 4.55 (Subdivision argument). Let A be a set of formulas from a sequential
proof system P such that there is a strongly bounded complexity measure µ′ for A, and
µ′(⊥) = L. If a refutation of A is divided recursively into epochs to a recursive depth
of h, then one of the following holds.

1. There exists a leaf epoch containing L · k−h formulas with distinct values under
µ′.

2. There exists an internal epoch such that the critical set of proof lines contains at
least k formulas with distinct values under µ′.

Proof. Say that an internal epoch represents a “progress gap” of g if for some `, h,
g = h− ` every formula φ in the initial configuration has complexity at most `, but the
final configuration contains a formula of complexity at least h. By definition, the entire
proof represents a progress gap of at least L.

Suppose that the second condition fails. Then for any internal epoch representing
a gap of g, one of its children represents a gap of at least g/k; since only k complex-
ities appear at breakpoints between children of this epoch, there exist by averaging a
successive pair of these values `′, h′ with h′ − `′ > g/k, and so the first time a value
of complexity ≥ h′ appears at such a breakpoint, the epoch immediately preceeding it
begins with only formulas of complexity ≤ `′ and so this epoch respresents a progress
gap of g/k.

By induction, we conclude that some leaf epoch represents a progress gap of at least
L · k−h; let `, h be according to the definition. At the beginning of the epoch we have
only formulas of complexty at most `, but at the end we have a formula of complexity
at least h, so by strong boundedness, there is also a formula in this epoch of complexity
h−1. Consider the first such formula. Again by strong boundedness, there is a formula
of this epoch of complexity h− 2, and so on, repeating the argument until a formula of
complexity ` + 1 is found. Thus this leaf epoch contains formulas of at least L · k−h
complexities. This completes the proof.
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For the class of Tseitin formulas, the Ben-Sasson Wigderson style complexity mea-
sure described is very well studied. A well known application is that if a graph has no
balanced cut of size less than W , where balanced means between 1/3 and 2/3 of the
vertices on either side, then the corresponding Tseitin formula has a clause of width
at least W in any refutation. Follow-up work [27, 5] has shown that this is generally
tight. The idea is to show that if C is a clause then every variable on the boundary of
SC appears in C. To carry out the [14] strategy we need to prove this or something
similar. We will also need a stronger version for when we ultimately handle polynomial
calculus, so we will state this lemma in slightly greater generality, which we can do
without complicating the proof.

Lemma 4.56. Let φ be a disjunction of F2-linear equations in the variables xe of
a Tseitin formula on graph G. Let S be a minimal subset of the vertices such that
{PARITY v}v∈S |= φ. Then, Vars(φ) ⊇ {xe : e ∈ δ(S)}.

Proof. The assumptions imply that S is a minimal subset such that {PARITY v}v∈S ∧
¬φ |= ⊥. Since φ is a disjunction of F2 equations, ¬φ is a conjunction of F2 equations,
and our assumption is that {PARITY v}v∈S ∧ ¬φ is an inconsistent system of equa-
tions. Without loss of generality, we may assume that ¬φ is satisfiable, since if not then
minimality of S implies that S is empty and the claim is vacuous.

By basic linear algebra this implies that it is possible to derive 0 = 1 from the
system via F2-linear combinations. Suppose that in this linear combination, one of
the equations PARITY v has a coefficient of 0. Then, when we remove that equation,
the linear combination would still derive 0 = 1 from the subsystem, so that subsys-
tem is inconsistent, contradicting minimality of S. Therefore each PARITY v equa-
tion has a coefficient of 1 in this linear combination, or in otherwords, the sum of the
PARITY v equations are inconsistent with ¬φ. If there is a variable of this sum which
does not appear in ¬φ, then clearly the sum and ¬φ are satisfiable if ¬φ is. So we must
have Vars(

∑
v∈S PARITY v) ⊆ Vars(¬φ). Now we use the structure of the Tseitin

equations. Every variable xe occurs in exactly two equations PARITY v, and so if
e ∈ δ(S), then xe occurs in exactly one of the summands in

∑
v∈S PARITY v. There-

fore it does not cancel in the sum and is a variable of
∑

v∈S PARITY v. This completes
the proof.

The previous lemma gives a connection between isoperimetry in a graph and the
following standard complexity measure [31] for Tseitin.

Definition 4.57 (Complexity Measure). Let C be a clause in the variables of a Tseitin
formula on a connected graph G. Then define the measure µ by

µ(C) := min
S ⊆ V

{PARITY v}v∈S |= C

|S| .

Further, let Sφ denote any fixed set S achieving the minimum above for φ.

Observation 4.58. The following statements are true,

1. For a any axiom in any representation of Tseitin, µ(a) = 1.

2. µ(⊥) = |V |.
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3. µ is subadditive.

4. {xe : e ∈ δ(SC)} ⊆ Vars(C).

Proof. The first three follow directly from the discussion. To see the fourth, observe
that a clause can be thought of as a disjunction of F2-linear equations, so Lemma 4.56
applies.

4.7.3 Time-Space Trade-off for Resolution

Now we are ready to show that extended isoperimetry implies a time-space trade-off.

Proposition 4.59. If a graph G = (V,E) satisfies extended isoperimetry with parame-
ters W, t0, and µ′ is the strongly bounded complexity measure defined from the previous
complexity measure µ via

µ′(C) =


0 µ(C) < t0
L µ(C) > |V |/2
log2(µ(C)/t0) otherwise

then for any k clauses C1, . . . Ck with distinct values under µ′ between 0 and L,∣∣∣⋃Vars(Ci)
∣∣∣ ≥ Ω(kW ) . (4.10)

Proof. Order the Ci by value of µ′. If the Ci have distinct values under µ′, then
µ′(Ci+3) ≥ µ′(Ci) + 3, and by definition of µ′, µ(Ci+3) ≥ 4 · µCi . This implies
|SCi+3

| ≥ 4 · SCi , and extended isoperimetry implies |
⋃
i δ(SC3i+1

)| ≥ kW/3. By
Observation 4.58, this implies |

⋃
iVars(Ci)| ≥ kW/3 as desired.

Theorem 4.60. If F is any CNF with a strongly bounded complexity measure µ for F
satisfying Equation 4.10, and µ(⊥) = L, then F [⊕] satisfies (2Ω(W )/S)Ω( log logL

log log logL).

Proof. Let π be any proof of F [⊕]. Divide π into epochs recursively to a recursive
depth of h, dividing each epoch into m equal subepochs, h,m to be determined later.
Now consider the random restriction ρ. Since F [⊕]�ρ = F , π�ρ is a refutation of F .
Choose k such that Lk−h = k. Since µ′ is a strongly bounded complexity measure,
Lemma 4.55 implies that the critical set of some epoch of π�ρ contains at least k clauses
of distinct complexity values, with probability one.

However, for M any small set of clauses, the probability that M�ρ contains k dis-
tinct complexities is seen to be small. If a collection of clause each is not restricted
to a constant by ρ, then their disjunct is not restricted to a constant either. Therefore
by Lemma 4.28, the probability that any fixed k-tuple of clauses all survive and have
collective width ≥ X is at most exponentially small in X . In our case, the collective
width is at least Ω((k − 2) · W ), by Proposition 4.59. By a union bound over all k-
tuples of M , the probability that any k of them have distinct complexity values is at
most |M |k2−Ω((k−2)W ).

Choose the parameter m so that mS = T/mh−1, so that all critical sets of epochs
have the same size. Choose h so that h = k and kh = L. The probability that
any critical set of any epoch contains k complexities after the restriction is at most
(mS exp(−Ω(W )))k, and there are at most mh epochs. By a union bound, the prob-
ability that any critical set of any epoch contains k complexities after the restriction
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is at most (m2S exp(−Ω(W )))
k. Since we know this must happen with certainty, we

conclude m2 ≥ 2Ω(W )/S, or T ≥
(
2Ω(W )/S

)Ω(k). Here k is such that kk = L, so in
terms of our L our exponent exceeds logL/ log logL, as desired.

In Section 4.6 we gave a simple proof that the n×` grid satisfies extended isoperime-
try with parameters (W = n, t0 = 4n3, r = 2 + ε), so this theorem yields lower bounds

of the form
(
2Ω(n)/S

)Ω( log logn
log log logn). For a discussion of the relevant upper bounds on

these formulas, see Section 4.3.5.

4.7.4 PCR Refutations of Tseitin Formulas

Our main result shows that actually, the trade-off lower bounds we just prove hold in
PCR for these formulas. In the prevailing philosophy, resolution size lower bounds via
width lower bounds are analogous to PCR size lower bounds via degree lower bounds,
as we discussed. Thus, one would expect that an “extended degree lower bound” anal-
ogous to Equation 4.10 would imply time-space trade-offs via the subdivision and re-
striction argument we just saw. However, degree lower bounds for PCR are significantly
more challenging to prove in general, and many of the techniques that have been de-
veloped (e.g. [6]) appear ill-suited for obtaining an extended degree lower bound. We
illustrate one elegant solution which builds on the techniques of [39] for degree lower
bounds. The crux of the argument is a pair of simulations, which while in general
not “efficient” as measured by most standard proof complexity measures, are efficient
with respect to degree. We revisit these simulations and give a refined analysis. The
simulations convert a PCR refutation to a binomial PC refutation. Using a standard
Ben-Sasson Wigderson style complexity measure, we are able to extend degree lower
bounds in this setting directly from Lemma 4.28 and extended isoperimetry. The flavor
of the final proof changes slightly from what we saw in resolution – ultimately we do
not establish a strongly bounded complexity measure for PCR with the extended de-
gree lower bound, but we do establish such a measure for binomial PC, and modulo the
simulations, this is enough for the subdivide-and-restrict approach to work.

4.7.5 PCR Simulations: Fourier-Transformed Tseitin

Essential to our argument is a pair of simulations connecting PCR refutations of stan-
dard Tseitin to refutations of a “fourier transformed” version of Tseitin. These simula-
tions were exploited by [39] for proving degree lower bounds, and are also essential for
our time-space trade-off lower bounds.

First, we introduce an alternate formulation of Tseitin as a system of binomials over
a field of odd characteristic.

The previous CNF will be called {0, 1}-Tseitin (suppressingG,χ for now). Follow-
ing [39], we define an alternate instance {+1,−1}-Tseitin, formed by defining fourier
transformed variables ye := 1− 2xe, that is, xe = 0 ⇐⇒ ye = 1, xe = 1 ⇐⇒ ye =
−1, and expressing the parity constraints in this new basis. Now, the value of a linear
equation

⊕
xe corresponds to the value of

∏
ye under this correspondence, due to the

fourier transform.

Definition 4.61. Given G,χ, the PCR instance of {+1,−1}-Tseitin is defined by vari-
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ables

Variables: ∀e ∈ E ye

{+1,-1}-Constraints: ∀e ∈ E y2
e − 1 = 0

Parity Constraints: ∀v ∈ V,
∏
e∼Gv

ye = (−1)χ(v)

The primary reason why {+1,−1}-Tseitin is preferable is that every axiom above
is a binomial, which was not the case for {0, 1}-Tseitin, and binomial systems are much
simpler.

4.7.6 PCR Simluations: Reductions

Definition 4.62. Let π be a PCR refutation of {0, 1}-Tseitin. We define an induced /
simulated PC refutation π′ of {−1, 1}-Tseitin in the straightforward way, maintaining
the invariant that whenever π has a configuration P , we will have a corresponding
configuration with polynomials in the variables ye which are semantically equivalent
modulo ye = 1− 2xe.

• When π downloads an axiom, π′ downloads a semantically equivalent axiom in
the new basis, by downloading one of the {−1, 1} axioms and weakening it.

• When π performs a weakening step, we perform a weakening and a linear com-
bination step, and an erasure step. (when p ` xi · p is inferred, we must simulate
this with p′ ` yi · p′ followed by p′, yi · p′ ` (1− 2yi) · p′ to obtain a semantically
equivalent polynomial)

• When π performs a linear combination step, we do the same to the corresponding
polynomials.

• When π erases an polynomial, we erase the analogous polynomial.

The correctness of this simulation should be clear, and it should all be clear that
when π is in fact a refutation, π′ will also be a refutation.

For [39] the crucial property of this simulation was that it did not increase the degree
– since the “fourier transform” represents a linear substitution of the variables, if there
was no monomial of large degree before the substitution will not introduce one. For
us, the crucial property of this simulation is that it is “conservative with respect to
monomials”.

Claim 4.63. The simulation of PCR on {0, 1}-Tseitin by PC on {+1,−1}-Tseitin is
conservative with respect to monomials;

• If for some configuration of the simulated proof no active monomial contains the
set of variables {xe : e ∈ E ′} for some E ′ ⊆ E, then the corresponding configu-
ration of the simulating proof does not contain any active monomials containing
all of {ye : e ∈ E ′}.
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• If for some time period in the simulated proof no active monomial contains the
set of variables {xe : e ∈ E ′} for some E ′ ⊆ E, then the corresponding time
period of the simulating proof does not contain any active monomials containing
all of {ye : e ∈ E ′}.

Proof. The only steps which introduce new monomials are download and weakening
steps. The only steps which cause monomials to dissappear from the original proof are
erasure steps. It is trivial to see that none of these will cause of violation of conserva-
tivity.

Our second simulation is more sophisticated; it requires a clever algebraic argument
which will allow us to work with polynomials of a simple form. This lemma is an
adaptation of the main technical lemma of [39].

Lemma 4.64. Suppose B is a set of binomials with coefficients in a field. Suppose p
is a polynomial which can be written as a linear combination of elements of B. Then
by repeatedly taking linear combinations of binomials of B which each time yield a
binomial and adding them to B, it is possible to obtain a larger B′ such that p is a
no-cancellation linear combination of elements of B′, i.e. for some coefficients α, p =∑

b∈B′ αb · b and in this sum every monomial which appears in a summand appears in
p.

Proof. The proof is by induction on the number of cancelling monomials. We show
that if p can be written as a sum with k cancelling monomials, then some number of
steps can be performed for B to obtain B′ such that p is now expressable as a sum with
only k − 1 cancelling monomials.

Let m denote some monomial which cancels. Consider the subsum of the sum
yielding p above obtained by selecting only the binomials which contain m. Because
we are working over a field, this subsum may be expressed

T∑
k=1

βk(m− tk) ,

where βk are nonzero field coefficients and tk is some term, by factoring out the co-
efficient on m from each binomial in the subsum. Since m cancels in this sum by
assumption,

∑
βb = 0. Now, we claim that the subsum can be rewritten

T∑
k=2

βk(t1 − tk) .

92



This is because

T∑
k=2

βk(t1 − tk) =

(
T∑
k=2

βk

)
t1 −

T∑
k=2

βktk

= −β1t1 −
T∑
k=2

βktk

= −
T∑
k=1

βktk

=

(
T∑
k=1

βkm

)
−

T∑
k=1

βktk

=
T∑
k=1

βk(m− tk)

Clearly, t1 − tk is a linear combination of β1(m − t1) and βk(m − tk). Thus, if we
derive t1 − tk for each 2 ≤ k ≤ T and add it to B, the subsum we considered can
also be derived as a linear combination of the additional binomials, without containing
the monomial m in any summand. Now, in the original sum for p, replace the subsum
we considered with this new sum. We obtain a new sum that yields p, but which never
mentions m, and we could not have introduced any new monomials since all we did
was take linear combinations of the old summands. Thus p is a linear combination with
one fewer noncancelling monomial. This completes the proof.

Definition 4.65 (BGIP simulation). Let π′ be a PC refutation of {−1, 1}-Tseitin. We
define an induced / simulated binomial PC refutation π′′ following the ideas of [39].

The simulation invariant is that whenever π′ has a configuration P , we will have a
corresponding configuration in which every polynomial p ∈ P will be a no-cancellation
linear combination of currently active binomials. That is, every polynomial p will be a
linear combination of binomials from the simulating configuration, and no monomials
will cancel in this sum. In the following, we will assume inductively that this is the
case and fix such a linear combination for each p, and for each p the binomials in its
linear combination will be termed the binomials underlying p. Note that this simulation
is efficient, broadly speaking, but again this won’t actually be important for our proof.

• When π′ downloads an axiom, π′′ downloads the same axiom, which is a bino-
mial.

• When π′ performs a weakening step on p to obtain result r, we perform the same
weakening step for each underlying binomial. In the next configuration, these
binomials underly r.

• When π′ performs a linear combination step p, q ` αp + βq to obtain result r,
we observe that r is now a linear combination of the binomials underlying p and
q, with cancellation. By Lemma 4.64, r is also a linear combination without
cancellation of binomials which may be inferred by linear combinations from
the set of binomials underlying p, q, so π′′ performs these linear combination
inferences, and in the next configuration, these binomials underly r.
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• When π′ performs an erasure step, π′′ erases any binomials which no longer un-
derly any polynomial.

Observation 4.66. If π′ is a refutation, π′′ is also a refutation.

Proof. Suppose a configuration P of π′ contains the contradition 1 = 0. Then the
corresponding binomial configuration contains c = 0 for some nonzero field element
c – for suppose not, then there cannot be a no-cancellation linear combination of its
binomials yielding 1.

Claim 4.67. The BGIP simulation of PC on {+1,−1}-Tseitin by binomial PC is con-
servative with respect to monomials;

• If for some configuration of the simulated proof no active monomial contains the
set of variables {ye : e ∈ E ′} for some E ′ ⊆ E, then the corresponding configu-
ration of the simulating proof does not contain any active monomials containing
all of {ye : e ∈ E ′}.

• If for some time period in the simulated proof no active monomial contains the
set of variables {ye : e ∈ E ′} for some E ′ ⊆ E, then the corresponding time
period of the simulating proof does not contain any active monomials containing
all of {ye : e ∈ E ′}.

Proof. Download steps will obviously never pose a problem. A single weakening step
for the PC proof may correspond to many weakening steps for the binomial proof, but
no other varieties of steps occur, so it is straightforward to see that conservativity will
hold here. Similarly, a single linear combination step for the PC proof introduces no
new monomials, and is simulated by a series of linear combination steps in the binomial
proof, with no other varieties of steps occuring. So inference steps will not pose a
problem.

Finally consider erasure steps. If after an erasure step in the simulated proof there
is a monomial in some binomial of the simulating proof which does not appear in the
simulated proof, then this binomial cannot be underlying any polynomial of the simu-
lated proof, since in any no-cancellation sum this monomial would remain. Thus by the
end of the simulating erasures, every monomial in the simulating proof appears in the
simulated proof, so conservativity holds.

4.7.7 Time-Space Trade-off for PCR

As discussed in the overview, binomial PC is simple enough that we can obtain a
strongly bounded complexity measure with the extended degree lower bound by gener-
alizing the standard complexity measure (definition above).

Definition 4.68. Let b = 0 be a binomial PC proof line in the variables of {+1,−1}-
Tseitin on graph G = (V,E). Define the binomial complexity measure

µ(b = 0) := min
S ⊆ V

∀e ∈ E, (xe = 0 ∧ ye = 1)
∨(xe = 1 ∧ ye = −1)},
{PARITY v}v∈S |= b = 0

|S| .

Further, let Sb denote any fixed set S achieving the minimum above.
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The first three parts of Observation 4.58 follow easily in this setting as well.

Observation 4.69. µ is a subadditive complexity measure in the sense of Ben-Sasson
& Wigderson [31]. That is,

1. For any axiom b = 0 of {+1,−1}-Tseitin, µ(b = 0) = 1.

2. µ(⊥) = |V |.

3. µ is subadditive.

To obtain the last, we appeal to Lemma 4.56.

Corollary 4.70. For any b = 0 binomial PC proof line in the variables of {+1,−1}-
Tseitin,

Vars(b = 0) ⊇ δ(Sb) .

Proof. Suppose the two terms of the binomial b are t1, t2. Modulo the {+1,−1} con-
straints for the ye variables, t1 + t2 = 0 is logically equivalent to t1t2 = c, for some
field constant c, because these constraints imply that the square of any variable is one,
so we may move all variables from t2 to t1 or vice versa by multiplying. If both terms
are nonzero c will be nonzero, but if one of the terms is zero then c will be zero. How-
ever, the case that c = 0 is trivial, because already it implies that b = 0 contradicts the
{+1,−1} constraints. So in this case µ(b = 0) = 0 and the claim is vacuous. In fact,
this argument shows that c = ±1. Additionally, we can reduce all terms modulo the
squared powers, so that without loss b = 0 is of the form m− c = 0 for m a monomial
with all variables of degree 1 and c = ±1.

We would like to rephrase the condition extension constraints ye = 1−2xe, {PARITY v}v∈S |=
m − c = 0 so that we can apply Lemma 4.56 and be done. To do this, we reverse our
“fourier transform” dictionary. As we saw before, products such as m correspond to
sums under this transform, so modulo the extension variable constraints, m = ±c is
the same as ⊕e:ye∈Vars(m)xe = c′ for c′ corresponding to c. We then drop the exten-
sion constraints since no other formulas remain in the ye so the logical consequence
follows without them, and so we have a system over F2 as desired. By Lemma 4.56,
the transformed image of m contains the variables corresponding to the boundary, so
by the definition of the transform, Vars(m) ⊇ {ye : e ∈ δ(Sb)}, as desired.

The proof of the “extended degree” property is now exactly the same as the proof
of the extended width property, Proposition 4.59.

Corollary 4.71. If a graph G = (V,E) satisfies extended isoperimetry with parameters
W, t0, and µ′ is the strongly bounded complexity measure defined from the binomial
complexity measure via

µ′(C) =


0 µ(C) < t0
L µ(C) > |V |/2
log2(µ(C)/t0) otherwise

then for any k clauses C1, . . . Ck with distinct values under µ′ between 0 and L,∣∣∣⋃Vars(Ci)
∣∣∣ ≥ Ω(kW ) . (4.12)
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Now we can prove the main result.

Proof of Theorem 4.4. Let π be any proof of τG[⊕], in size T = S (π) and monomial
space S = MSp(π).

Divide π into epochs recursively to a recursive depth of h, dividing each epoch into
m equal subepochs, h,m to be determined later. Now consider the random restriction
ρ. Since τG[⊕]�ρ = τG (up to replacing variables with their negations), π�ρ is a refu-
tation of τG. Let π′ be the induced refutation of {+1,−1}-Tseitin on G, with induced
recursive subdivision into epochs. Choose k such that Lk−h = k. Since µ′ is a strongly
bounded complexity measure, Lemma 4.55 implies that the critical set of some induced
epoch of π′ contains at least k binomials of distinct complexity values, with probability
one. Thus, by Corollary 4.71 this critical set contains 2k monomials which collectively
contain at least Ω((k − 2)W ) variables. By conservativity of the simulations, the criti-
cal set of the inducing epoch in π�ρ contains at least 2k monomials which collectively
contain at least Ω((k − 2)W ) variables.

However, for M any small set of monomials, the probability that M�ρ contains 2k
monomials of which collectively contain many variables is seen to be small. For any
monomial m, the semantically equivalent clause is killed (restricted to a constant) by
ρ if and only if m is. Consider now a set of 2k monomials. They all survive ρ if and
only if the disjunct of their corresponding clauses does, and this disjunct contains every
variable that any one of themc ontains. Therefore by Lemma 4.28, the probability that
any fixed 2k-tuple of monomials all survive and have collectively more thanX variables
is at most exponenitally small in X . By a union bound over all 2k-tuples of M , the
probability that any 2k of M ’s monomials have them have collectively Ω((k − 2)W )
variables after the restriction is at most |M |2k2−Ω((k−2)W ).

Choose the parameter m so that mS = T/mh−1, so that all critical sets of epochs
have the same size. Choose h so that h = k and kh = L. The probability that
any critical set of any epoch contains k complexities after the restriction is thus at
most

(
(mS)22−Ω(W )

)k, and there are at most mh = mk epochs. By a union bound,
the probability that any critical set of any epoch contains k complexities is at most(
m3S22−Ω(W )

)k. Since we know this must happen with certainty, this probability is at

least one. We conclude m ≥
(
2Ω(W )/S

)
, or T ≥

(
2Ω(W )/S

)Ω(k). Here k is such that
kk = L, so in terms of our L our exponent exceeds logL/ log logL, as desired.

4.8 Concluding Remarks
In this paper, we report the first trade-off results for polynomial calculus and PCR which
rule out simultaneous optimization of different proof complexity measures, in particular
proof size and proof space. Loosely speaking, what our results say is that in the worst
case, it is impossible to do any meaningful simultaneous optimization of size and space
in polynomial calculus. PC and PCR are still not very well understood proof systems,
however, and there remain several interesting open problems.

One such problem, which has seen exciting developments lately, is proving uncon-
ditional lower bounds on space in PC and PCR. It is only very recently that [34, 58]
obtained lower bounds for k-CNF formulas, and these bounds all require k ≥ 4. In-
triguingly, there are still no nontrivial lower bounds for any family of 3-CNF formulas.
Also, the space complexity of, for instance, Tseitin contraditions is open.
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Another question is how far the analogies go between size, (monomial) space and
degree in PC/PCR on the one hand and length, (clause) space and width in resolution on
the other. In resolution, we know that clause space is an upper bound on width [10], that
small width does not say anything about space complexity [29], and that there can be
very strong trade-offs between these two measures [25]. In this paper, we have shown
that exactly the same kind of trade-off holds between degree and monomial space in PC
and PCR, but we do not know whether monomial space is an upper bound on degree or
whether small degree says anything about the space complexity.

For our time-space trade-off results in sublinear space based on pebbling formulas,
it would be very satisfying to remove the loss in the parameters resulting from having
to take the logarithm of the proof size. This loss is inherent in the restriction argument,
but for resolution it is known how to avoid restrictions completely and instead use the
projection machinery in Section 4.3.7 together with the right kind of substitutions in the
formulas to get tight trade-offs. It would be very interesting if something similar could
be made to work for PC and PCR, since this would give tight trade-offs (for sublinear
space) for these two proof systems and also yield new unconditional lower bounds on
space similar to what is currently known for resolution.

Looking beyond polynomial calculus, another proof system that would be very in-
teresting to understand is cutting planes. Here the open questions abound. Perhaps most
obviously, it would be desirable to prove size lower bounds by some other technique
than the interpolation used in [92], for instance, for Tsetin formulas or random k-CNF
formulas.

As far as we are aware, there are no space lower bounds or “true” time-space trade-
offs known for cutting planes. However, the recent results in [69] could be interpreted to
suggest that pebbling formulas of the right flavour should inherit time-space trade-offs
properties from the graphs in terms of which they are defined not only for the resolution
proof system but also extending to cutting planes. If true, this would mean that the
so-called black-white pebble game in [49] could be used to obtain strong trade-offs not
only for resolution, k-DNF resolution and PC/PCR, but also for cutting planes.

Finally, it is known that PCR and cutting planes are both strictly stronger than res-
olution with respect to proof size, and it would seem natural to expect that PCR and
cutting planes should both be stronger than resolution with respect to space as well. As
far as we are aware, though, this is open. It would be nice to separate PCR from reso-
lution with respect to space by finding a k-CNF formula that has low monomial space
complexity in PCR but large clause space complexity in resolution, and similarly for
cutting planes with respect to resolution.
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5 Strong ETH holds in Regular Resolution
We obtain asymptotically sharper lower bounds on resolution complexity for k-CNF’s
than was known previously. We show that for any large enough k there are k-CNF’s
which require resolution width (1 − O(k−1/4))n, regular resolution size 2(1−O(k−1/4))n,
and
general resolution size (3/2)(1−Õ(k−1/4))n.

The SAT problem is a canonical NP-complete problem. Non-trivial algorithms for
SAT have ramifications both for the theory of computation and in applications such as
hardware and protocol verification and planning. Despite a huge amount of attention
from both theoretical and empirical perspectives, the exact difficulty of SAT remains
somewhat mysterious. While quantitative improvements in SAT algorithms continue to
be made, in many ways a wide variety of different algorithmic techniques have yielded
similiar time bounds in a qualitative sense. The Exponential Time Hypothesis (ETH)
and Strong Exponential Time Hypothesis (SETH) were introduced to give a precise
meaning to the question of whether further improvements will be only quantitative, or
substantially different [70]. These hypotheses have beeen shown to have other signif-
icant consequences in complexity, such as limits on the k-SUM problem from com-
putational geometry, exponential algorithms for other NP-complete problems, limits to
improving algorithms in parameterized complexity, and so on. Formally, ETH is the
statement that, for k ≥ 3, k-CNF SAT does not have algorithms running in time 2o(n).
Closely related is the strong ETH – that the savings possible for k-SAT goes to 0 as k
goes to infinity, or, equivalently, that k(n)-SAT does not have deterministic algorithms
in time 2(1−o(1))n for any function k(n) = ω(1). That is, it is not even possible to get a
constant polynomial advantage over brute force search that is indendent of k.

Both forms of the conjecture have a natural appeal, although there is admittedly
little formal evidence for either. However, there are an increasing variety of interesting
and non-trivial algorithms for SAT that seem to use unrelated algorithmic techniques
([88, 87, 67, 106, 71]), but all have roughly the same savings over exhaustive search :
Θ(1/k) fractional savings over exhaustive search for k-SAT.

Empirically, it has also been observed that even tuned SAT solvers that solve 3-
SAT formulas with millions of variables have difficulty with even small random k-SAT
formulas for moderate k, such as 5 or 6 [104]. So SETH seems at least to be true for
commonly used algorithms. Since we do not know how to show that problems in NP
require even super-polynomial worst-case complexity, it seems that we are incredibly
distant from any possible proof of ETH or SETH.

The challenge of lower bounds is to reason about arbitrary algorithms, including
ones that are counter-intuitive. We might be able to confirm these hypotheses for at
least some categories of algorithms that work in an intuitive fashion and are similar
to those in use. Propositional proof complexity offers a general technique to do this.
Many algorithmic techniques, when run on an unsatisfiable instance, implicitly define a
“proof” that no solution exists, that can be formalized in a corresponding proof system.
Then size lower bounds on the minimum proofs for a tautology in the proof system
provide a lower bound on the time required by any algorithm in the family on the
negation of the tautology. Using this method, ETH has been established for any al-
gorithm that can be formalized within the resolution system, which includes many of
the most successful empirical SAT-solving techniques. More precisely, lower bounds
of the form 2Ω(n) are known for many natural proof systems like Resolution and Poly-
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nomial Calculus [113, 72]. which correspond naturally to important families of SAT
algorithms.(Weakly exponential lower bounds 2n

ε are also known for more exotic proof
systems.) So we at least know that to negate ETH, we need to go beyond some of the
standard algorithm design methods.

This raises the question of whether we can also get results establishing Strong ETH
for similar classes of algorithms. A first result along these lines was by Pudlák and
Impagliazzo [95], who showed that tree-like resolution requires size 2(1−ε)n for any ε,
for k-CNFs of size cn where c, k are functions of ε. Here, we get a similar lower bound
for regular resolution, a sub-system of resolution that is strictly more powerful than
tree-like resolution that formalizes algorithms using the Davis-Putnam procedure [53].
Specifically, we show that there are k-CNF formulas which require regular resolution
proofs of size 2(1−O(k−1/4))n. In particular, we get a somewhat improved and simplified
version of the Pudlák-Impagliazzo lower bound. While we have not been able to show
the same for general resolution, we do get a substantially improved exponential lower
bound for general resolution, which approaches (3/2)n as k grows. An interesting
interpretation is that this class of algorithms are now provably slower than Grover’s
quantum SAT algorithm [61].

The exact complexity of SAT has taken on an even greater significance in theoretical
computer science due to the recent results of Williams [114], that show that even minute
savings for circuit SAT can be used to prove circuit lower bounds. While this holds for
general circuit SAT rather than k-SAT, we can often relate SAT problems for different
classes of circuits. For example, if the AC0 SAT algorithm of Impagliazzo, Matthews
and Paturi [71] were to be substantially improved, it can be proved using Williams’
results that NEXP 6⊆ NC1.

5.1 Techniques
Resolution has been intensively studied at least since the work of Davis and Putnam [53]
in the early sixties. Despite its apparent simplicity, no exponential lower bounds were
known until Haken’s result [62] in 1985. Today there remain only a small number
of techniques to give lower bounds in Resolution – Random Restrictions [62, 18], the
Size-Width Tradeoffs [24], and the Pseudowidth technique which originally appeared
in work of Raz [97] and was further developed by Razborov [99, 100].

One of the fundamental building blocks of previous lower bounds research has been
resolution width lower bounds for systems of F2-linear equations; whether studied in the
form of Tseitin tautologies, or random k-XOR CSPs, this result as appears in [24, 36]
is essential to a great deal of subsequent work, in polynomial calculus [19], Lasserre
hierarchy lower bounds [105, 60], and other results. Generally speaking, expanding
systems of F2 linear equations require resolution width Ω(n). However, the width to
refute these is not (1 − ε)n as one might hope (for proving lower bounds), but rather
there is always an upper bound of n/2 + o(n). Ben-Sasson and Impagliazzo [19] gave
a probabilistic construction of a width n/2, size 2n/2 refutation of such a system, based
on adding the F2 equations in a random order to obtain 1 = 0 and simulating the linear
algebra proof in resolution. They showed that with high probability, no intermediate
equation has more than n/2 + o(n) variables, due to random cancellations in the sum,
thus the simulation results in a resolution proof of the claimed parameters.

Impagliazzo and Pudlák’s result is also for a family of F2 linear equations, so to
obtain size lower bounds of 2(1−ε)n they had to do significant work to overcome the
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fact that the width lower bounds are only n/2. They analyzed proof size via a Prover
Adversary game which they introduced, and their technique works by considering not
just the widest clause in the proof, but also for a series of subsequent smaller clauses
which occur in the proof. They are able to show that the total combined width of all
such clauses encountered approaches n, and their technique crucially exploits to obtain
their lower bound.

In this paper, we consider equations over Fp rather than F2. When we add random
linear combinations of equations over Fp, a variable cancels with probability only 1/p
rather than 1/2, so the argument which gives width upper bound of n/2 for F2 in this
case can only yield (1 − 1/p)n. Thus it is natural to guess that as p gets large the true
width will approach n. One apparent drawback of this is that encoding Fp equations
as boolean CSPs can result in significant complications, and it seems inevitable that
one will have to think hard about partially constrained Fp linear systems and technical
results from additive combinatorics. By a judicious choice of encoding scheme, we
manage to avoid this and obtain an unexpectedly simple proof.

The width lower bound (1−ε)n which we thus obtain immediately implies the tree-
like size lower bounds which we desire. To extend this to DAG-like proof systems, a
natural idea is to employ a generalization of the Impagliazzo Pudlák prover adversary
game [95] which was developed in [14], there with the goal of sharp time space tradeoffs
in Regular Resolution. In this argument, a probabilistic adversary interacts with the
proof, inducing a distribution of random paths through the proof DAG. A counting
argument based on this can be used to obtain size lower bounds, in a manner similar
to the bottleneck counting argument first introduced by Haken [62]. In the full result
of [14], this adversary is replaced with a random restriction argument in order to obtain
results for General Resolution. In this work, we succeeded in adapting the techniques
there to obtain sharp size lower bounds in regular resolution, but also we managed to
dramatically simplify it in this context.

Finally, we introduce new random restriction techniques which are useful to get
stronger lower bounds in general resolution. Rather than adhering to the usual paradigm
of using random restrictions to kill wide clauses, we examine the width lower bound
more carefully to give a tighter analysis.

In the next section we define the relevant proof systems and the preliminaries which
we will need. In section (3), we prove the width lower bound, which implies the tree-
like size bound. In section (4), we give an overview of the techniques for the main
result, and together with a lemma from section (3) deduce the size lower bound for
resolution.

5.2 Preliminaries
5.2.1 Basic Definitions

We consider Boolean formulas over a set of variables
{x1, . . . , xn}. As usual, a literal is a Boolean variable or its negation, a clause is a
disjunction of literals, and a CNF is a conjunction of clauses. We think of clauses as
being specified by their sets of literals, and CNFs as specified by their sets of clauses.
For a clause C, we write Vars(C) to be the set of variables appearing in C. The width
w(C) of a clause C is |Vars(C)| and the width of a set or sequence of clauses F , is the
maximum width of clauses in F . The size of a CNF formula F is the total number of
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literal occurrences in the formula, i.e.,
∑

C∈F w(C).
One of the simplest and most widely studied propositional proof systems is reso-

lution which operates with clauses and has one rule of inference, the resolution rule:
A∨x B∨ x

A∨B . We say that the variable x is resolved in this instance of the resolution
rule. A resolution refutation of a CNF formula (a set of clauses) is a sequence of clauses
ending in the unsatisfiable empty clause ⊥, each of which is either a clause of from the
formula (an “axiom”) or follows from two previous clauses via the resolution rule. (The
term resolution proof is used more generally to refer to any inference of this sort that
may not necessarily result in ⊥.) Every resolution proof naturally corresponds to a di-
rected acyclic graph (DAG), known as the proof DAG, in which every clause derived
via the resolution inference rule has a directed edge between a derived clause and each
of its antecedents, oriented to show dependence. (Note that, formally, a resolution proof
corresponds to one of possibly many topological sorts of its proof DAG.)

The size or length of a resolution proof is the total number of clauses in the proof.
A resolution proof is tree-like if its proof DAG has the structure of a tree. A reso-

lution proof is regular if along each path in the proof DAG, each variable is resolved at
most once. The unrestricted model is often called general resolution for contrast with
regular and tree-like resolution.

It is easy to see that a tree-like proof of minimum size is regular without loss of
generality.

Clauses are permitted to appear multiple times in a resolution proof; in general
resolution this is unnecessary when only proof size is a concern, but in restricted forms
this becomes important.

Resolution is sound and complete in that every CNF formula is unsatisfiable if and
only if it has a (tree-like) resolution refutation.

A restriction is a partial assignment of truth values to variables of a formula, re-
sulting in some simplification. Formally a restriction is a mapping ρ : X → {0, 1, ?}.
Restrictions on X can be identified with partial assignments on X by viewing unas-
signed inputs as being mapped to ? and vice versa.

The restriction of a clause C by ρ, denoted by C|ρ is the clause obtained from C
by setting the value of each x ∈ ρ−1({0, 1}) to ρ(x), and leaving each x ∈ ρ−1(?) as
a variable. The restriction of a set of clauses is defined by restricting each one. The
restriction of a resolution refutation of a CNF is a refutation of its restriction.

5.3 Finite Field Expanding Matrices
We will need the following variation on the concept of edge expansion, isoperimetry,
etc.

Definition 5.1. Say that a matrix A over a field Fp is an Fp expander with parameters
(r1, r2, c) if, for every column vector v of support size r1 ≤ |v| ≤ r2, the support of Av
satisfies c ≤ |Av|.

When A is the incidence matrix of a graph, thought of over F2, and v is the char-
acteristic vector of a set of vertices, it is easy to see that Av indicates the boundary
edges, so Fp expansion generalizes the familiar notion from graph theory. On the other
hand, whereas for graphs with m vertices and n edges, we can only reasonably hope
that balanced cuts will contain say half of the edges, from Fp expanders we can hope
for more.
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In particular for a random sparse n× n Fp-matrix, and a small constant δ, we could
reasonably expect to obtain a (δn, 2δn, (1 − 1/p)n)-expander. As a rough heuristic
in support of this, the function computed by this matrix will look like a random map,
at least on input vectors of relatively large hamming weight. At the same time, there
are relatively few vectors in F n

p of hamming weight between δn and 2δn. Instead, the
typical vectors have weight (1 − 1/p)n. Thus the chance that every vector of weight
between δn, 2δn maps to such a vector is high.

For our purposes it is not important to get a deterministic construction of Fp ex-
panders, so we prove only existence by a probabilistic argument.

Lemma 5.2. Fix any integers d, p, d > 100, p at least a suitably large multiple of
√
d.

For any large enough n, let γ = n/
√
d. There is an n+ 1× n matrix over Fp such that

• Each row is supported on exactly d entries.

• The matrix is an (γn, 3γn, (1− 4/p)(1− 1/
√
d)n)-Fp expander.

• No linear combination of fewer than 3γn rows is the zero vector.

Proof. Let B denote a random {0, 1}-valued matrix of dimensions n+ 1× n, in which
rows are independently chosen from the uniform distribution on vectors of support d,
and let A denote the random Fp matrix in which nonzero Fp values are substituted for
the ones of B independently.

First we show that with high probability over B, any set S of rows of size n/
√
d has

ones in at least (1−O(1/
√
d))n columns. For any column, the chance that it is missed

is at most (1 − d/n)|S| ≤ exp(−d|S|/n). The chance that any set of δn columns are
missed is therefore at most exp(−dδ|S| + H(δ)n), so for δ = 1√

d
, the chance that any

set S does not expand so much is� 2−n. We conclude that with high probability every
set of at least n/

√
d rows has ones in at least (1− 1/

√
d)n columns.

Now we show that with high probability overA, the result is (γn, 3γn, (1−4/p)(1−
1/
√
d)n)-Fp expanding. There are at most (3ed1/2)n/

√
d · (p− 1)3n/

√
d vectors v which

we must be concerned about. For each one, there are at least (1 − 1√
d
)n independent

coordinates of Av which take nonzero values with probability at least 1 − 1
p−1

. The

probability that any 4/p fraction of these takes value zero is at most
(

1
p−1

)(4/p)(1− 1√
d

)n

·

(ed1/2)n/
√
d · (p− 1)3n/

√
d.

Since p was chosen to be at least a large enough multiple of
√
d, we conclude that

with high probability A is Fp expanding as desired.
By a relatively standard calculation it can be shown that sets of rows of size≤ n/

√
d

expand by a factor Ω(
√
d) at least in B, and that in this case, the probability over A that

any vector supported on such a small set does not have image equal to zero is very
small, using arguments similar to the above. If vectors supported on fewer than n/

√
d

positions don’t have image zero, and Fp expansion holds between that value and 3n/
√
d,

then no vector of support ≤ 3n/
√
d has image zero, so no subset of 3γn rows has the

zero vector as a nontrivial linear combination.

5.4 Width Bound
We will be interested in defining unsatisfiable linear systems usin Fp expanders.

102



To obtain width lower bounds, we will give an analysis based on the semantic mea-
sure of proof lines, following the technique standardized by Ben-Sasson and Wigder-
son [24].

Definition 5.3. The semantic measure of a proposition P with respect to a (refutation
of) a conjunction

∧m
i=1Ai is

µ(P ) := min
S⊆[m]:

∧
i∈S Ai|=P

|S| ,

that is, the size of the minimal subset of the axioms Ai which semantically implies S.

Observation 5.4. (Ben-Sasson Wigderson ’01)

• For any axiom clause C of φ, µ(C) = 1.

• For any inference C1, C2 ` C3, µ(C1) + µ(C2) ≥ µ(C3).

• For any minimally unsatisfiable conjunction
∧m
i=1Ai, µ(⊥) = m.

As an immediate corollary of these observations, in any refutation, in any proof
system, of any minimally unsatisfiable set of m constraints, there must exist a proof
line C such that µ(C) ∈ [m/3, 2m/3].

It is easy to see that for any matrix A as in the corollary, we can choose a vector
~b such that A~y = ~b is not satisfiable. Such a system will be close to minimally unsat-
isfiable, since if any subset S of the equations is contradictory, there must be a linear
combination of them which produces 0 = 1, and we argued before that this does not
happen when |S| ≤ 3γn.

Claim 5.5. There are unsatisfiable linear systems A~y = ~b consisting of n + 1 Fp-
equations on n variables, each containingO(p2) variables, in whichA is an (γn, 3γn, (1−
4/p)n)-Fp expander, and no subset of ≤ 3γn equations is contradictory, where γ =
Θ(1/p).

To express an Fp expanding system as a CNF, we encode variables as follows. For
each Fp variable yi we will have p2 boolean variables xij , thought of as taking values
{0, 1}, with the intended meaning that yi =

∑
j xij mod p. Thus, yi does not deter-

mine the xij , and if a partial assignment π to the xij assigns only p2 − p variables, yi is
still completely unconstrained.

Definition 5.6. For A~y = ~b an Fp linear system over variables y1, . . . , yn, let CNF φ
denote the following conjunction in variables xij, 1 ≤ i ≤ n, 1 ≤ j ≤ p2:

m∧
k=1

{∑
i

Ak,i
∑
j

xij = bk (mod p)

}
.

Naturally we replace each equation above with its trivial CNF representation, which, if
each equation in the linear system has fanin ` has only `p2 variables.

Theorem 5.7. Let φ be a CNF corresponding to a linear system as in Claim 5.5 via
Definition 5.6. Then any resolution refutation of φ requires width (1− 5/p)np2, and φ
is an O(p4)-CNF.
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Proof. Let C be any clause containing fewer than (1− 5/p) of the variables. We show
that ifC has semantic complexity between 3γ/2n and 3γn, we contradict Fp-expansion.

By a markov argument, there are at least 4/p of the yi variables such that at least
1/p of their xi,j are unassigned. Let ρ denote the restriction corresponding to ¬C.

Say that a yi variable is free if at least p of its xi,j variables are unassigned by ρ, and
let ρ∗ denote any extension of ρ whose domain is the domain of ρ, as well as all xi,j
variables for non-free yi’s.

Then in terms of the yi variables, ρ∗ corresponds semantically to a restriction which
assigns all non-free variables, and leaves the free variables unset.

Thus, a subset {Ai}i∈S of the equations semantically implies C if and only if for
every such ρ∗, {Ai|ρ∗}i∈S implies a contradiction, and it minimally implies C if and
only if every Ai is needed for some ρ∗.

An F-linear system is unsatisfiable if and only if there is an F-linear combination
in the equations which gives 1 = 0. If for some equation E|ρ∗ = (1 = 0), then E
only contains the variables assigned by ρ∗. That is, for each ρ∗, there exists a linear
combination of the axioms {Ai}i∈S supported only on the non-free variables of ρ, and
for every i ∈ S, by minimality, some ρ∗’s combination has a nonzero coefficient for Ai.

Therefore, take a random linear combination of the equations corresponding to each
ρ∗. Then the resulting equation is supported again on only the non-free variables of
ρ. We show that this equation is a nontrivial linear combination of many of the Ai,
contradicting Fp-expansion. Each Ai occurs in some equation, thus, in the resulting
random linear combination, its coefficient is distributed uniformly over Fp. By aver-
aging, there exists such a combination which results in at least (1 − 1/p) of the Ai
having nonzero coefficients. Thus there is a linear combination supported on between
(1 − 1/p)3/2γn ≥ γn and 3γn equations of A with fewer than (1 − 4/p) of the yi
variables, contradicting Fp expansion as desired.

Since width is at most the base two log of Tree-like Size [24], this immediately
implies 2(1−o(1))n lower bounds for tree-like resolution, as mentioned previously.

5.5 Regular Resolution
To obtain size lower bounds for Regular Resolution, we adapt and simplify the prob-
abilistic adversary technique introduced in [14]. At a high level, this is a variation on
the bottleneck counting argument introduced by Haken [62]. In this argument, a rule
is given which maps assignments to particular clauses in the proof, at which signifi-
cant “work” is done thinking about this assignment. The task is to show that we can
map a large number of assignments in such a way that only a small number map to
any particular clause, which implies that there are many clauses. In Haken’s work this
map is described explicitly – in the more modern form of the argument, due to Beame
and Pitassi, a random restriction argument is used to hide these details. The bottleneck
counting argument is of fundamental importance in computational complexity theory;
besides underlying much of modern proof complexity, the bottleneck counting approach
was also employed by Cook and Haken for monotone circuit lower bounds [63], and
a report of Simon and Tsai [108] illustrated how closely related it is with the method
of approximations used in other contexts. The high level plan is executed in part using
ideas from [95].

104



Theorem 5.8. Any regular resolution refutation of φ as defined in Theorem 5.7 has size
at least 2(1−5/p)np2

.

Proof. We define a probabilistic process, which one may think of as an adversary in the
sense of [95], which interacts with the proof, and which we think of as taking place at
a particular clause in the proof at every step. The process begins at the final clause, ⊥,
and in each step moves to one of the two parents of the current clause, until at some
point it stops, at some clause somewhere in the middle of the proof. The path which
is followed by the process depends on what the current and parent clauses look like,
what the history of the process is, and some random coins. We will show that over the
random coins of the process, the probability that it stops at any particular clause of the
proof is extremely small – from this we will deduce that there are many clauses.

We will think of the process as building up a truth assignment by assigning one
variable at a time – in the step corresponding to a clause C, if C is deduced by resolving
on variable x, the process will either assign x = 0 and move to the clause containing
the literal x, or assign x = 1 and move to the caluse containing the literal x. Thus if π
denotes the partial assignment corresponding to all previous assignments made by the
process, it always maintains the invariant that π falsifies the current clause. Crucially,
by regularity, the variable x is always unassigned by π.

The rule by which we will assign variable x at each step is as follows:

• If variable x corresponds to a free Fp variable of φ (at least p + 1 of its boolean
variables are unset by π), then x is assigned randomly

• Otherwise, we choose x so as to maximize the semantic complexity of the clause
for the next round.

The crucial claim regarding this process is that in each step, the semantic complexity
of the occupied clause cannot decrease by more than a factor of two. Let us prove this.
In the second case above, this is easy to see, because it is a standard application of
subadditivity of the semantic measure. In the first case, we claim that the semantic
measure cannot decrease at all – this is because if x corresponds to a free variable, then
the two parent clauses each semantically entail one of C ∪ {x = 0}, C ∪ {x = 1},
but these clauses are semantically implied by a set S of equations if and only if the
corresponding restrictions of S are unsatisfiable, and since x is a free variable, the
corresponding restriction in terms of the Fp variables is the same for C,C ∪ {x = 0},
and C ∪ {x = 1}. Thus all three of these clauses are of the same semantic complexity,
and the two parent clauses are each of at least this complexity.

Since at the beginning, the contradiction clause ⊥ at which the process begins has
semantic complexity≥ 3γn, at the end of any path, any axiom has semantic complexity
1, and in any step the measure at most halves, at some point in the process we must
walk to a clause of semantic complexity between 2γn and γn. The first time that this
happens, the process is defined to stop at this clause.

What is the probability that the process stops at any particular clause C? Since π
must falsify C by the time we walk to C, the process can only walk to C if it assigns all
the variables which appear in C consistently with ¬C. By Fp expansion and the width
argument from before, C can only have semantic complexity between γn and 2γn if
at least (1 − 4/p)n of the Fp variables are non-free according to C – thus C assigns at
least (1 − 1/p) of the bits corresponding to these variables to particular values. All of
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these bits must be queried along any path which reaches C, and for each Fp variable,
for the first (1− 1/p) of these bits, the process will respond randomly. In the event that
it assigns some bit incorrectly, it can never reach C, and for each such queried bit, this
happens with probability 1/2 at least.

Claim 5.9. For any path from the root σ, and any clause C, say that the number of
freedoms of a Fp variable with respect to σ,C is the number of bits corresponding to
this variable which appear in C and not domσ, minus p, and is zero if this value is less
than zero. The probability that the adversary, having followed σ, reaches C is at most
two the minus to the total number of freedoms for all Fp variables.

Proof. By induction on σ. The base case is that σ is large and has zero freedoms, in
which case the probability bound is trivial. Let σ be any path in the proof, leading to a
clause which is deduced by resolving on variable x. In case that assigning x does not
reduce the number of freedoms, by inductive hypothesis applied to the paths σ∪{x = 0}
and σ∪{x = 1} the probability bound we want holds at both of these, and by averaging
it holds for σ. In case that assigning x does reduce the number of freedoms, the bound
obtained inductively is only a factor two worse than what we claim at σ. Since assigning
x does reduce the number of freedoms, its Fp variable is still free so x is assigned
randomly by the adversary. If the adversary assigns x to satisfy C, then he can never
reach C, so for one of σ ∪ {x = 0}, σ ∪ {x = 1} the probability to reach C is zero. We
conclude that the probability that the adversary reaches C from σ is two the minus the
total number of freedoms as claimed.

Now apply the claim in case that σ is the empty path which starts and ends at ⊥,
and with C any possible stopping point. Since the total number of freedoms initially
is at least (1 − 4/p)(1 − 1/p) ≥ (1 − 5/p), by our bound on the total number of
freedoms, there is at most a 2−(1−5/p)np2 probability that the adversary stops at any
particular clause C. Since the process always stops at some clause, this implies that
there are at least 2(1−5/p)np2 clauses in any refutation of the tautology φ, which is on np2

variables.

5.6 General Resolution
In this section, we give size lower bounds in General Resolution, using the analysis
of the width lower bound in the first section, together with a quantitatively improved
random restriction argument.

We can abstract the argument as follows.

Definition 5.10. For C a set of constraints in n boolean variables x1, . . . , xn, and f :
{0, 1}m → {0, 1}n a boolean function f : ~y 7→ ~x, we define the f -substituted set of
constraints C[f ] in variables y1, . . . , ym as the set {C(f(~y)) : C ∈ C}.

When f is n parallel copies of the parity function on ` bits, we denote this more
succinctly by C[⊕`].

The idea of ⊕-substitution has been used in many contexts. Intuitively, this kind
of indirection makes things harder for resolution in part because parity constraints are
hard to express efficiently in CNF.
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Definition 5.11. Let C be a clause in the variables y1, . . . , ym of C[f ]. Let C =
∨
Ci

where Ci is the part of Ci in the variables corresponding to xi. Define the projection C ′i
of Ci by

C ′i :=


xi Ci |= (f(~y))i = 1
xi Ci |= (f(~y))i = 0
1 otherwise

.

Define the projection C ′ of C by
∨
C ′i.

Our next observation explains how to determine the semantic complexity of clauses
in substituted formulas in terms of the original formula.

Observation 5.12. The semantic complexity of C with respect to C[⊕`] is the same as
the semantic complexity of C ′ with respect to C.

Proof. It is easy to see that for any assignment to y1, . . . , ym satisfying C, its image
under f satisfies C ′. By the definition of projection, it is also true that any assignment
to x1, . . . , xn which satisfies C ′ may be lifted to an assignment satisfying C.

Our next lemma uses this to bound the probability that the projection of a restricted
clause is wide.

Lemma 5.13. Fix any ` ≥ 2, and CNF φ in variables x1, . . . , xn. Let ρ denote an iid
random restriction which sets the variables of φ[⊕`] to 0, 1, ? with equal probability,
conditioned on never setting all y variables associated to any xi to a constant. For
any clause C in the y variables, the probability that the projection C|′ρ has width at

least (1 − ε)n is at most
(

2
3

)(1−ε)n`−O((2/3)`)n−O(H(ε))n, where H is the binary entropy
function.

Proof. Fix an arbitrary clause C and consider the width of the projection of the re-
stricted clause, (C|ρ)′. We first show that this is small with high probability. We can
analyze this by considering each variable one at a time. Let (C|ρ)′i denote the portion
of C|ρ associated to xi, as in the definition of projection.

(C|ρ)′ =
∨
i

(C|ρ)′i .

Traditionally, restrictions are only thought to kill clauses by setting variables of the
clause to true. Thanks to the definition of projection, we can also think of killing vari-
ables of a clause by setting its non-variables to ?, since in this case the projection of
that portion of the restricted clause will be trivial.

Claim 5.14. For any C,

Pr
ρ

[(C|ρ)′i 6= 1] ≤ (2/3)` · (1− (2/3)`)−1 .

Proof. For each variable in Ci, if ρ sets it oppossite to its value in Ci, then Ci|ρ = 1,
and (C|ρ)′i = 1. For each variable yj associated to xi but not appearing in Ci, if it
set to ?, then any satisfying assignment to Ci|ρ may be flipped on this variable, still
satisfying Ci|ρ but having opposite parity, thus Ci|ρ 6|= ⊕yj = 1, Ci|ρ 6|= ⊕yj = 0,
hence (C|ρ)′i = 1. Thus if we ignore the conditioning, the probability that (C|ρ)′i 6= 1
is at most (2/3)`. The event which we condition away has probability at most (2/3)`,
hence doing so can only increase probabilities by a fraction (1− (2/3)`).
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The width of C|′ρ is the sum of the widths of (C|ρ)′i, and ρ acts independently on
each Ci, so by a union bound over all subsets of (1− ε)n of the variables x1, . . . , xn,

Pr
ρ

[Vars
(
C|′ρ
)
≥ (1− ε)n] ≤

(
n

(1− ε)n

)(
(2/3)`(1− (2/3)`)−1

)(1−ε)n
.

Using the identity − ln(1− x) ≤ x+ x2 for x < 1/2,

≤ (2/3)(1−ε)n`−O((2/3)`)n−O(H(ε))n ,

where H is the binary entropy function. This completes the proof of Lemma 5.13.

This can be used to obtain size lower bounds. If φ is such that any clause of inter-
mediate semantic complexity is wide, then the above shows that it is very unlikely that
a restriction of a clause in a proof of φ[⊕`] has intermediate semantic complexity.

Corollary 5.15. For any small enough ε > 0, there exist O
(

1
ε4

log 1
ε

)
-CNF formulas on

n variables which have resolution complexity at least
(

3
2

)(1−ε)n.

Proof. First we choose ` to simplify the bound above. Take ` = O(log 1
ε
), and using

the fact that limε→0
H(ε)

ε log 1
ε

= O(1), observe that with this choice of `, for small enough

ε, ε + 1
`

(
(2/3)` +O(H(ε))

)
= O(ε), so the above lemma implies a probability bound

of
(

2
3

)(1−O(ε))n.
Let k = O(1/ε4), and apply the lemma above when φ is any k-CNF such that

clauses of intermediate semantic complexity have width at least (1−O(k−1/4))n = (1−
ε)n, as we obtained from Theorem 5.7. Then φ[⊕`] is a k`-CNF, which we will show
has resolution complexity

(
3
2

)(1−ε)n Consider any hypothetical resolution refutation of
size less than this, and apply random restriction ρ. By a union bound, for some such ρ
every clause of the restricted proof has a projection of width less than (1 − ε)n, which
implies none of the projections have intermediate semantic complexity.

Since ρ is conditioned never to set all variables to constants, it is always true that
φ[⊕`]|ρ is a substitution of φ. By (the proof of) Observation 5.12, this implies the
restricted proof of φ[⊕`]|ρ thus obtained has no clause of semantic complexity interme-
diate between γn and 2γn, contradicting subadditivity of the semantic measure. Since
k` = O

(
1
ε4

log 1
ε

)
this shows φ[⊕`] satisfies the claim.

5.7 Concluding Remarks
We have demonstrated that there exist tautologies on n variables which require res-
olution width (1 − ε)n and regular resolution proofs of size 2(1−ε)n, for any ε > 0.
Moreover, these tautologies may be taken to be k-CNF’s for k = O(1

ε
)2. In general

resolution we obtain lower bounds of (3/2)(1−ε)n for k = O( 1
ε4

log 1
ε
).

A good question is how closely this can be made to match the performance of k-
SAT algorithms like PPSZ. Can we get results for general resolution matching those we
obtained in regular resolution? Can we find k-CNF’s which require resolution width
(1−O(1/k))n?
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