
Lower Bounds for Error-Correcting

Codes with Local Recovery

GUANGDA HU

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Advisor: Zeev Dvir

January 2017



c© Copyright by Guangda Hu, 2017. All rights reserved.



Abstract

Error-correcting codes (ECCs) are ubiquitous in computer science. A common prop-
erty of ECCs is local recovery, which demands that given a corrupted codeword, a
single lost code symbol can be recovered by reading only a small part of the code-
word. An intriguing problem is to find the most “efficient” ECCs (e.g., codes with
short length, codes over a small alphabet) with certain types of local recovery. Both
constructions and lower bounds have been proven in the literature. However, the
problem is still largely open. In this thesis, we prove three lower bound results on
different types of ECCs with local recovery:

Firstly, we propose an approximate version of locally decodable codes (LDCs) and
prove lower bounds that are similar to the known ones for traditional LDCs. The
concerned approximate LDCs are over real numbers and they support recoveries by
querying constant number of codeword symbols. The 2-query case (the bulk of our
work) is partially related to the lower bound of constant query LDCs, which is a
major open problem.

Secondly, we generalize the Sylvester-Gallai (SG) theorem to a subspace version.
Generally speaking, the setting of the SG theorem is equivalent to 2-query locally
correctable codes (LCCs), and our generalization corresponds to the block version of
2-query LCCs.

Thirdly, we consider a realistic storage model that is a unification of several fami-
lies of codes studied in the literature. We prove negative results for codes that attain
the maximal recovering capability under this model. Our lower bound rules out the
possibility of constructions of efficient codes for most parameter settings. We will
also explore some results in the construction direction in the appendix.
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Chapter 1

Introduction

Error-correcting codes (ECCs) are very widely used in all kinds of applications and
theoretical studies. They encode a message into a codeword in such a way that
certain errors in the codeword can be corrected. Most known families of ECCs are
linear, which means that the codeword is obtained by a linear transformation on the
message. In a linear ECC, all data symbols are elements of some field F, which we
call the alphabet, and the message and the codeword are therefore vectors consisting
of elements of F. Let m and c denote the message vector and the codeword vector
respectively (for consistency we will only use column vectors throughout this thesis).
Then there is

cT = mT ·G,

where G is the matrix that defines the code and is known as the generator matrix. In
other words, every symbol of the codeword is a linear combination of the symbols of
the message. Note that the range of c is some vector space (the span of the rows of
G). One also uses the parity check matrix H to define the space of all codewords:{

c : H · c = 0
}
,

where the rows of H are coefficients of the linear constraints (known as parity check
equations) on codeword coordinates. Typically, the length of the codeword is greater
than that of the message, which means there is redundant information so that errors in
the codeword can possibly be corrected. See for example [MS77] for a comprehensive
introduction on linear ECCs. One simple example of a linear ECC is as following:
Let the alphabet be F2. For a message m, we calculate the sum of all entries (bits)
of m (which is known as a parity), and let the codeword c be the concatenation of
m and this parity. In this code, if one symbol (bit) of the codeword is lost, it can be
easily recovered from the remaining part. However, this code cannot handle errors
on two or more symbols.

Given a corrupted codeword, in order to recover one (recoverable) symbol in the
original message or the original codeword, we might need to query many symbols in
the corrupted codeword, which could be inefficient. We follow the convention in the
literature to use the word “local” to describe the recovery if the number of queries

1



needed is always small. In this thesis, we are interested in two classes of linear ECCs
in which certain errors can be corrected locally, namely locally decodable/correctable
codes and maximally recoverable codes, and we will give impossibility results on the
constructions of some types of these codes.

1.1 Locally decodable and correctable codes

Locally decodable codes (LDCs) are ECCs that every individual symbol of the original
message can be retrieved with high probability by querying a small number of random
codeword coordinates, where the codeword may contain up to a constant fraction of
erroneous symbols at unknown locations. The notion of LDCs was formally defined
in [KT00] (and implicitly in prior works such as [Lip90, BF90, BFLS91, GLR+91,
FF93, BK95]). Many well-known ECCs are LDCs (with different parameters), e.g.,
Hadamard codes, Reed-Solomon codes. Obvious applications of LDCs include effi-
cient reliable data transmissions and storage systems. LDCs are also used in areas
of theoretical computer science, e.g., average-case complexity [Lev87]. And one other
problem closely related to LDCs is private information retrieval (PIR) schemes, which
are data retrieval protocols that hide the user’s request from each individual database
server [CGKS98]. Linear LDCs over infinite fields (R or C) are studied as well as those
over finite fields. They found applications in compressed sensing [Don06, CRT06], and
are considered in relevant topics that are for arbitrary fields, e.g., [DS07] considered
LDCs over any field in the context of polynomial identity testing for arithmetic cir-
cuits.

Let d denote the length of the message (which is also the dimension of the space
of all codewords), n denote the length of the codeword, and q denote the maximum
number of queries allowed to retrieve each symbol. A major question in the area of
LDCs is to find out the minimum value of the code length n needed (as a function
of d) for given values of q (other parameters such as the fraction of errors in the
codeword are usually constants). We briefly summarize the known results as follows:

1. For q = dε, where ε > 0, there are LDCs known as multiplicity codes with n
close to d [KSY14].

2. For q = (log d)t, where t > 1, traditional Reed-Muller codes yield q-query LDCs
with lengths n ≈ d1+1/(t−1).

3. For the case that q ≥ 3 is a constant independent of d, the length n had
been conjectured to be at least exponential of d until a series of surprising
works [Yek08, Rag07, KY09, Efr12, IS10, CFL+13, DGY11, BET10] constructed
matching-vector codes with sub-exponential (still super-polynomial) lengths n ≈
exp exp

(
(log d)1/ log q

)
. The best known lower bound, however, is only n =

Ω̃
(
d1+1/(dq/2e−1)

)
[KdW04, Woo07] and n = Ω(d2) for the special case of 3-query

linear LDCs [Woo12].

4. For q = 2, it is known that the length n = exp
(
Ω(d)

)
[GKST06, KdW04, DS07],

and Hadamard codes are 2-query LDCs that attain this lower bound.
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5. For q = 1, it was shown in [KT00] that no 1-query LDCs exist over finite
fields, and it is also easy to see that 1-query linear LDCs do not exist over
characteristic-zero.

See also the survey [Yek12] for the mentioned LDCs. For the regime of constant num-
ber of queries, we see that the minimum value of the code length n is well understood
only for the cases q = 1 and 2. For q ≥ 3, there is a huge gap between the lower
bounds (at most quadratic) and the best constructions (super-polynomial). It is a
difficult and intriguing open problem to make any progress on closing this gap. For
the lower bound side, several different techniques yield n = Ω̃(d2) but there is no way
to go beyond this.

Locally correctable codes (LCCs) are similar to LDCs except that we want to
retrieve a symbol of the codeword instead of the message. Precisely, LCCs are ECCs
that every individual symbol of the original codeword can be retrieved with high
probability by querying a small number of random codeword coordinates, where the
codeword may contain up to a constant fraction of erroneous symbols at unknown
locations. For any LCC, we can obtain an LDC from it by fixing d coordinates
of the codeword to be the same as the message. This can be easily done through
a linear transformation that changes a submatrix of the generator G to the d × d
identify, and such an operation does not break the properties of LCCs since it does
not change the space of codewords. Thus, LCCs are considered as a stronger version of
LDCs, and lower bounds on LCCs might be an easier problem to start with if lower
bounds on LDCs are difficult. Many known LDCs are also LCCs, e.g., Hadamard
codes over F2, Reed-Muller codes and multiplicity codes over finite fields. Besides
the aforementioned applications of LDCs, LCCs (and LDCs) are also closely related
to rigid matrices which in turn imply results on circuit complexity [Dvi11] and some
combinatorial geometry problems that will be discussed later.

The known results for the minimum lengths of LCCs are similar to those of LDCs.
In particular, for constants q ≥ 3, there seems to be a lot of room to improve the
lower bounds on n. For characteristic-zero fields R and C, some noticeable differences
between LCCs and LDCs are as follows: (1) 2-query LCCs do not exist over R or
C [BDWY11] whereas Hadamard codes are 2-query LDCs over any field; (2) No
construction of LCCs is known over R or C. (For finite fields, the known constructions
are also weaker. LDCs with sub-exponential lengths, i.e., matching vector codes, do
not seem to generalize to LCCs); (3) For 3-query linear LCCs over R, a lower bound of
the form n = Ω(d2+ε) for some ε > 0 was proved in [DSW14a], whereas the quadratic
barrier of LDC lower bounds is still not broken (over any field).

For linear LDCs and LCCs with constant number of queries, we now state an
equivalent and convenient version of their definitions that will be used in all our discus-
sions. Let v1,v2, . . . ,vn be the columns of the generator matrix G and {e1, e2, . . . , ed}
be the standard basis of the message space. From the results of [KT00], the code de-
fined by G is a q-query linear LDC if and only if for every i ∈ [d], there are Ω(n)
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disjoint q-element subsets {j1, j2, . . . , jq} ⊆ [n] such that

ei ∈ span
{
vj1 ,vj2 , . . . ,vjq

}
.

Correspondingly, the code is a q-query linear LCC if and only if for every vj, where
j ∈ [n], there are Ω(n) disjoint q-element subsets {j1, j2, . . . , jq} ⊆ [n] such that

vj ∈ span
{
vj1 ,vj2 , . . . ,vjq

}
.

We see that LDCs and LCCs can be equivalently considered as arrangements of
vectors v1,v2, . . . ,vn with many linearly dependent tuples.

Given a q-query LDC (or LCC) as defined above, the decoding procedure is as
following: To retrieve the ith symbol of the message (or the jth symbol of the code-
word), one simply pick a random q-element subset {j1, j2, . . . , jq} ⊆ [n] such that
vj1 ,vj2 , . . . ,vjq span ei (or vj), and then a linear combination of the codeword co-
ordinates at j1, j2, . . . , jq will yield the required symbol, provided that there are no
errors on these coordinates, which happens with high probability if the fraction of
errors in the codeword is below some small constant.

1.1.1 Approximate locally decodable codes

We consider linear LDCs over real numbers. Given the above convenient form,
one natural generalization is an “approximate” version of LDCs, where the vec-
tors vj1 ,vj2 , . . . ,vjq span ei only “approximately”. Precisely, we define approximate
LDCs as ECCs that for every i ∈ [d], there are Ω(n) disjoint q-element subsets
{j1, j2, . . . , jq} ⊆ [n] each with a nonzero vector

u ∈ span{vj1 ,vj2 , . . . ,vjq}

such that that angle between u and ei is smaller than some fixed θmax > 0. We see
that approximate LDCs are a relaxed version of LDCs.

Contribution 1: In Chapter 2 (based on [BDHS14]), we prove lower bounds on
the lengths of approximate LDCs. Specifically, for any 2-query approximate LDCs,
there is n = exp

(
Ω(
√
d)
)
, and this can be improved to n = exp

(
Ω(d)

)
for the “almost

exact” case (i.e., the angle bound θmax is smaller than some absolute constant); for
any q-query approximate LDC, where q ≥ 3 is a constant, there is n = Ω

(
d1+1/(q−1)

)
.

Although our lower bounds are a bit weaker than the known ones for LDCs, we
are not aware of any constructions of approximate LDCs that are shorter than LDCs.
It remains an open problem to either improve these lower bounds to match those
for LDCs, or give constructions with shorter lengths that take advantage of being
approximate.

Our motivation for studying this problem comes from several directions:
Firstly, one could hope to use approximate LDCs in practice. As long as the mes-

sage vector is bounded and θmax is sufficiently small, we can retrieve an approximation
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of every individual symbol of the message by making q queries to the codeword. Ap-
proximate LDCs might be more efficient than LDCs in some applications if there
existed a construction with sufficient good parameters.

Secondly, approximate LDCs are related to the problem of LDC/LCC lower
bounds. As we have mentioned, the first super-quadratic lower bound for LDCs/LCCs
with three or more queries was given in [DSW14a], on 3-query LCCs over real num-
bers. Some cases of 3-query LCCs can actually be reduced to 2-query approximate
LDCs (although a different simpler proof was used in [DSW14a]). This raises the pos-
sibility that, in the future, perhaps approximate LDCs will find more applications.

Thirdly, there are connections to topics in combinatorial geometry. Recall that
LDCs and LCCs are arrangements of vectors with lots of linear dependencies. Ap-
proximate LDCs can be naturally considered as a relaxed version of this geometry
problem. A related work is [ADSW14], where the Sylvester-Gallai theorem (which is
also on arrangements with many dependent tuples and will be discussed later) and
LCCs are generalized to a (different) approximate version.

1.1.2 Sylvester-Gallai for subspaces

The Sylvester-Gallai theorem and a series of its generalizations (in for example [Kel86,
BDWY13, DSW14b]) consider arrangements of vectors v1,v2, . . . ,vn (over R or C)
which are in different directions, and satisfy that for every vj1 there are Ω(n) choices
of another vector vj2 such that there is a third vector vj3 ∈ span{vj1 ,vj2}. This
is similar to the setting of 2-query linear LCCs, where for every vector vj there are
Ω(n) disjoint pairs {j1, j2} ⊆ [n] with vj ∈ span{vj1 ,vj2} (an important difference is
that vectors in the same direction are allowed in LCCs). The Sylvester-Gallai theorem
gives an upper bound on the dimension of the arrangement (which is a constant when
n grows). Correspondingly, a lower bound on the length n of an LCC (expressed using
d) can also be considered as an upper bound on the dimension d (expressed using
n). Thus, the Sylvester-Gallai theorem and lower bounds for 2-query linear LCCs
are closely related notions. Their equivalence (with loss in parameters and special
handling of some cases) has been observed in [BDWY11, DSW14b].

Contribution 2: In Chapter 3 (based on [DH16]), we prove a generalization of the
above Sylvester-Gallai theorem where the vectors v1,v2, . . . ,vn are replaced with k-
dimensional vector subspaces V1, V2, . . . , Vn (over C) for any positive integer k. Under
the assumption Vj ∩ Vj′ = {0} for all j 6= j′ (otherwise a counter-example exists), we
show that V1, V2, . . . , Vn are contained in a space of dimension at most poly(k), which
is independent of n.

The setting of our generalized Sylvester-Gallai corresponds to 2-query block LCCs,
where the coordinates of the codeword are partitioned into blocks of the same size, and
every block of codeword symbols can be retrieved by querying two random blocks of
codeword symbols. Let k be the block size, n be the number of blocks in the codeword
(then the length of the codeword is kn), and V1, V2, . . . , Vn be the subspaces spanned
by every k consecutive columns of the generator G. The code defined by G is a 2-
query block linear LCC if and only if for every j ∈ [n], there are Ω(n) disjoint pairs
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{j1, j2} ⊆ [n] such that
Vj ⊆ Vj1 + Vj2 ,

where Vj1 + Vj2 denotes the set {v+ v′ : v ∈ Vj1 ,v′ ∈ Vj2}, i.e., the space spanned by
all vectors in Vj1 ∪ Vj2 . If Vj ∩ Vj′ = {0} is satisfied for all j 6= j′ and every Vj has
dimension exactly k, one can see that 2-query block linear LCCs are just a special
case of our Sylvester-Gallai theorem for subspaces.

Our motivation for studying block LCCs comes from block LDCs, where the coor-
dinates of the codeword are partitioned into blocks of the same size like in the above
block LCCs, and every individual symbol of the message can be retrieved by querying
a small number of random blocks of codeword symbols. Block LDCs are used in afore-
mentioned private information retrieval (PIR) schemes. Suppose we have a q-query
block LDC that all blocks are queried with equal probability, in the procedure of re-
trieving any message symbol. Then the following database retrieval protocol between
one user and q servers is a PIR scheme: Let the message of the block LDC be the
entire database, and let every server store a copy of the corresponding codeword. To
retrieve a symbol of the database, the user simply asks the q servers respectively for
the q random blocks needed to query. In this protocol, every individual server sees a
uniform distribution of a random block query, and learns no information about the
database symbol that the user is interested in. On the other hand, if we have a one-
round q-server database retrieval protocol that in order to retrieve a database symbol,
the user sends to every server a random string with a distribution independent of the
symbol being retrieved, and each server responds with a string of k symbols, then we
can obtain a block LDC by defining the codeword as the concatenation of all possible
responses of the q servers. Therefore block LDCs and PIR schemes are equivalent.
See also for example [KT00, GKST06] for their connections. Block LCCs are the
corresponding LCC version of block LDCs.

1.2 Maximally recoverable codes

In a real distributed storage system, the setting is often different from that of the
LDCs/LCCs discussed in the previous section:

1. In LDCs/LCCs corruptions are at unknown locations, whereas in a storage
system we usually know which hard disks or sectors are bad. Thus it suffices to
handle erasures at known locations. Moreover, the corrupted locations may be
correlated (e.g., in one failed hard disk all sectors are bad) rather than being
completely arbitrary.

2. We would like a deterministic recovering algorithm that always gives the correct
result instead of a randomized one. And knowing the erroneous locations makes
this possible.

3. The topology of the code is often predetermined. A topology includes the number
of code symbols, the number of parities, and the sets of symbols that each parity
depends on. One can think of a topology as a specification of the nonzero
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locations of the parity check matrix. A predetermined topology simplifies the
design and can handle errors at correlated locations better.

For example, in a storage system one may use several hard disks to store the
original data, and then add a redundant hard disk in which every byte is a
linear combination of the corresponding bytes of the previous hard disks. In
this case, the topology is fixed and we can only change the coefficients of the
linear combination.

4. The resources are limited. In the LDCs/LCCs problem a lower bound or con-
struction over any field will be interesting, whereas in a storage system we would
only prefer small finite fields for computational efficiency. See also [PGM13] for
the importance of using a small finite field as the alphabet.

If the topology is fixed, the length of the code will be fixed. Thus, our goal is to
minimize the alphabet size instead of the code length (under certain reliability
requirements).

For a fixed topology, there can be many codes instantiating this topology (i.e.,
specifications of the nonzero entries of the parity check matrix) with different levels
of reliabilities. We say that a set of code coordinates E is a recoverable pattern for
a given topology T , if there exists a code instantiating T such that the symbols in
E can be recovered if they are all erased. And a maximally recoverable (MR) code
instantiating T is a code that can recover all recoverable patterns for T . MR code
exists for any topology if the underlying field is sufficiently large [GHJY14]. One
can consider MR codes as ECCs with the maximal recovering capability for a given
topology. The notion of MR codes were first considered in [HCL07, CHL07] for the
restricted setting that there are only “parities of data symbols” and no “parities of
parities”. MR codes for more general cases and various topologies have since been
studied in [BHH13, Bla13, GHJY14, CSYS15, BPSY16].

In this thesis, we are interested in the following topology denoted by Tm×n(a, b, h):
The code symbols are arranged as an m × n matrix, where there are a parity check
equations per column, b parity check equations per row, and h additional parity
check equations that can depend on all code symbols. Generally speaking, one can
equivalently consider a code instantiating Tm×n(a, b, h) as having (m− a)(n− b)− h
data symbols with h parities, which form an (m−a)×(n−b) matrix, plus a additional
local parities in every column and b additional local parities in every row. (One can
see that there are a× b local parities that are for both columns and rows.)

Like LDCs/LCCs, this model of codes also supports a type of “local” recovery.
If there are at most a erasures in a column or at most b erasures in a row (which
is often the case in practice), the lost data can be recovered using the local parities.
(The other h parities provide additional “non-local” reliabilities for more complicated
erasure patterns.) In fact, the case a = 1, b = 0 is a common model of codes studied
in the context of locally recoverable codes (LRCs), which are defined as ECCs that
every symbol can be recovered locally if it is erased [GHSY12].

The topology Tm×n(a, b, h) can be considered as a unification of several common
topologies in the literature:
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1. The topology Tm×n(1, 0, h) has received a considerable amount of attention es-
pecially in the recent work on LRCs [BHH13, GHSY12, GHJY14, BK15, LL15,
BPSY16]. One can see that in this topology, the original data and h parities are
partitioned into n groups (columns), and a local parity is added to each group.

Another topology studied in the context of LRCs (e.g., [GHSY12]) is to par-
tition just the original data into n groups where each is added a local parity,
and after that add another h parities that depend on both the data and the
local parities. MR codes instantiating this topology are equivalent to those
instantiating Tm×n(1, 0, h) [GHJY14].

It is also worth mentioning that instead of maximal reliability, another related
(but weaker) reliability requirement for LRCs in the literature is to maximize
the hamming distance between codewords under certain locality conditions
[GHSY12, PKLK12, PD14, TB14, CM15].

2. Maximum distance separable (MDS) codes, which are defined as ECCs maximiz-
ing the hamming distances between codewords for given values of message length
and codeword length, can be viewed as MR codes instantiating the topology
T1×n(0, 0, h), where n is the codeword length and n − h is the message length.
MDS codes are very widely used in all kinds of applications. One common
family of MDS codes are Reed-Solomon codes.

3. The topology Tm×n(a, b, 0) can be considered as a tensor product of two codes.
Tensor product codes are common in storage systems (see for example [RR72]).
A code instantiating T3×14(1, 4, 0) is used by Facebook’s f4 storage system
[MLR+14]. The code is the tensor product of a Reed-Solomon code within
data centers with a parity check code across data centers.

4. An MR code instantiating a topology closely related to T2×7(0, 1, 2) is used by
Microsoft’s Azure storage [HSX+12].

Contribution 3: In Chapter 4 (based on parts of [GHK+17]), we prove a super-
polynomial (consider a, b, h as constants and m,n as growing variables) lower bound
on the field size of MR codes instantiating Tm×n(a, b, h) for all a, b, h ≥ 1.

Prior to our result, the only known lower bound is linear Ω(mn) for h ≥ 2 [Bal12,
GHJY14]. Our result shows that MR codes with polynomial field size might exist
only when one of a, b, h is zero. After accounting for symmetries, there are two cases:

1. Tensor product of codes Tm×n(a, b, 0). MR codes instantiating this topology
are poorly understood. We know neither explicit constructions nor non-trivial
lower bounds. In fact, even the recoverable patterns are not well understood.
In [GHK+17], a characterization of the recoverable patterns for Tm×n(a, b, 0)
was conjectured, and was proved for the case a = 1. MR codes instantiating
Tm×n(a, b, 0) might exist over small fields.

2. Generalized LRCs Tm×n(a, 0, h). In LRCs, one typically considers the case
a = 1. The generalization to arbitrary a was also studied in the literature
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[PKLK12, BHH13, BPSY16]. The only known field size lower bound for MR
codes instantiating the topology Tm×n(a, 0, h) is the aforementioned Ω(mn) for
h ≥ 2, and the best construction for the case a = 1 and general h has field
size roughly O

(
min

{
2mnh−1, (mn)(n+h)/2

})
(see [GHJY14] and Theorem A.5).

It remains an intriguing open problem to close the gap.

Finally, we consider the construction direction for the topology Tm×n(1, 0, h). As
we have mentioned, this topology is a common type of codes considered in the liter-
ature, especially topics on LRCs.

Contribution 4: In Appendix A (based on parts of [GHK+17] and [HY16]), we
give two new explicit families of MR codes (which are alternative to some previously
known constructions) for the cases h = 2 and general h respectively.
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Chapter 2

Lower Bounds for Approximate
LDCs

In this chapter, we study lower bounds on the encoding length of an approximate ver-
sion of LDCs. Most of this chapter will be devoted to the 2-query case. In Section 2.1,
we define the model of codes formally and state our results. Then in Section 2.2, we
reduce 2-query approximate LDCs to a convenient notion about graphs. Based on
this, in Section 2.3 we prove a general lower bound for 2-query approximate LDCs
and a stronger (tight) one for 2-query “almost exact” LDCs. Finally, in Section 2.4
we consider q-query approximate LDCs for q > 2 and prove a simple lower bound
similar to the known ones for “exact” LDCs. The results in this chapter are also
included in [BDHS14].

2.1 Generalization of LDCs and results

We begin by introducing some notations. Throughout this chapter, we consider linear
codes that encodes a messagem ∈ Rd into a codeword c ∈ Rn, where d, n ∈ Z+ are the
dimension (or message length) and the code length respectively. Let {e1, e2, . . . , ed}
denote the standard basis of Rd. For a nonzero vector u ∈ Rd and an index i ∈ [d],
we define

weighti(u) =
|〈u, ei〉|
‖u‖2

.

Clearly, weighti(u) ≤ 1 and the equality holds if and only if u = ei. For an integer
q ≥ 2, we define a q-matching as a family of disjoint q-element subsets of [n]. We
will use q-tuples, or pairs for q = 2, to refer to the subsets contained in a q-matching.

Recall that every linear code that encodes a message m ∈ Rd into a codeword
c = (c1, c2, . . . , cn) ∈ Rn can be defined as

cj = 〈m,vj〉 ∀j ∈ [n],

where v1,v2, . . . ,vn ∈ Rd are the columns of the generator matrix. For any constant
q ≥ 2, it is well known that the code is a q-query LDC if and only if for every i ∈ [d],
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there exists a q-matching Mi of size Ω(n) such that

ei ∈ span
{
vj1 ,vj2 , . . . ,vjq

}
(2.1)

for every q-tuple {j1, j2, . . . , jq} ∈ Mi [KT00]. Thus, we may equate the notion of
q-query LDCs and pairs (V ,M), where V is a list of vectors v1,v2, . . . ,vn ∈ Rd and
M is a list of q-matchings M1,M2, . . . ,Md, such that the above requirements are
satisfied. Based on this observation, we define approximate LDCs as a generalization
of LDCs, where the “span” in Equation (2.1) is replaced with an “approximate span”:

Definition 2.1 (approximate LDC). For q ≥ 2 and α, δ ∈ (0, 1], we define a q-query
(α, δ)-approximate LDC as a pair (V ,M), where V = (v1,v2, . . . ,vn) is a list of
vectors in Rd, and M = (M1,M2, . . . ,Md) is a list of q-matchings, such that the
follows are satisfied:

1. For every i ∈ [d] and every q-tuple {j1, j2, . . . , jq} ∈ Mi, there exists a vector
u ∈ span{vj1 ,vj2 , . . . ,vjq} with weighti(u) ≥ α;

2. |M1|+ |M2|+ · · ·+ |Md| ≥ δdn.

We note that the first item in the above definition is a generalization of Equa-
tion (2.1), and the original “exact” LDCs correspond to the case α = 1. The second
item |M1| + |M2| + · · · + |Md| ≥ δdn is also more general than the requirement for
“exact” LDCs that demands |Mi| = Ω(n) for all i ∈ [d], and this makes our (negative)
results stronger.

For “exact” LDCs, there have been exponential lower bounds n = exp
(
Ω(d)

)
for

the 2-query case [GKST06, KdW04, DS07]. In this chapter, we will study lower
bounds for 2-query approximate LDCs. An observation in Section 2.2 will show that
it suffices to consider simple 2-query approximate LDCs defined as following:

Definition 2.2 (simplicity). Let (V ,M) be a 2-query (α, δ)-approximate LDC. We
say that (V ,M) is simple if for every i ∈ [d] and every pair {j1, j2} ∈Mi, there is

weighti(vj2 − vj1) ≥ α.

Equivalently, we can define a simple 2-query approximate LDC as an arrangement
of points v1,v2, . . . ,vn such that for every i ∈ [d], there are δn (on average) disjoint
pairs {j1, j2} that the line passing through vj1 ,vj2 is in a direction that has projection
as least α onto ei. An example of such an arrangement is the vertices of the Boolean
hypercube {0, 1}d (i.e., the arrangement corresponding to the Hadamard code), which
satisfies Definition 2.2 for α = 1, δ = 1/2 if we choose Mi to be the family of all the
n/2 vertex pairs that differ only at the ith coordinate.

Intuitively, we may consider the arrangement as a graph, where the vertices are
the points v1,v2, . . . ,vn, and the edges are the pairs in M1,M2, . . . ,Md. Also in
Section 2.2, by generalizing a simple lemma used in [GKST06], we will show that if
there exists a small cut in every induced subgraph, then the number of edges (at least
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δdn) can be bounded from above using the number of vertices (which is n). From this
we can derive a lower bound on n expressed using d. Thus the problem is transformed
to showing the existence of small cuts in the arrangement of points.

Based on the above reduction and using a probabilistic argument, we are able
prove our first result as stated below:

Theorem 2.3. For any 2-query (α, δ)-approximate LDC of dimension d and length
n, we have

n = exp
(
Ω(αδ

√
d)
)
,

where Ω(·) hides an absolute constant independent of α, δ or d.

We note that this bound gets worse as α approaches 1/
√
d, at which point we

cannot expect any non-trivial lower bounds, since every single vector vj can have

weighti(vj) ≥ 1/
√
d for all i ∈ [d] and so, an arbitrary list of 2-matchings satisfies

Definition 2.1. However, we conjecture that Theorem 2.3 is not tight, and probably
a lower bound of the form n = exp

(
Ω(α2δd)

)
should hold, where on the exponent we

have d instead of
√
d just as in the aforementioned lower bounds or 2-query “exact”

LDCs. Currently, we are only able to prove this when α is close to 1. The idea is to
round the points in the arrangement to the vertices of a grid, where a cut orthogonal
to a standard direction will be small. The rounding is found using a beautiful result
on space tiling in [KORW12]. Our second result is as following:

Theorem 2.4. Let α0 denote the constant
√

1− 1/(4π2) = 0.98725 · · · . For any
constant α > α0 and any 2-query (α, δ)-approximate LDC of dimension d and length
n, we have

n = exp
(
Ω(δd)

)
,

where Ω(·) hides a constant that is directly proportional to (α− α0)2.5.

The above two theorems will be proved in Section 2.3. Theorem 2.4 is tight because
of the Hadamard code, where α = 1, δ = 1/2 and n = 2d. It is worth mentioning
that we are not aware of any approximate LDCs with shorter lengths than “exact”
LDCs, and it is an open problem to give such constructions.

For q-query “exact” LDCs, where q > 2, the best known lower bounds on the
code length are only super-linear or quadratic of the code dimension [KT00, KdW04,
Woo07, Woo12], and it is a very difficult open problem to prove better results. For
q-query approximate LDCs, where q is a general integer, we will show in Section 2.4
a super-linear lower bound as stated below. The proof is a simple modification of the
existing techniques in [KT00] that have given a similar super-linear lower bound for
“exact” LDCs.

Theorem 2.5. Let q ≥ 2 be a constant. For any q-query (α, δ)-approximate LDC of
dimension d and length n, we have

n = Ω
(
δ

q+1
q−1 (α2d)

q
q−1
)
,

where Ω(·) hides a constant that only depends on q.
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2.2 Reduction to arrangements of points

We first prove the following lemma, which shows that any 2-query approximate LDC
can be transformed into a simple one (Definition 2.2) with similar parameters:

Lemma 2.6. If there exists a 2-query (α, δ)-approximate LDC of dimension d and
length n, then for any α′ ∈ (0, α) such that

δ′ = δ − 1

(α2 − α′2)d
> 0,

there exists a simple 2-query (α′, δ′)-approximate LDC of dimension d and length 2n.

Proof. Let (V ,M) be a 2-query (α, δ)-approximate LDC, where V = (v1,v2, . . . ,vn)
and M = (M1,M2, . . . ,Md). We will construct a code with the desired properties
based on (V ,M).

For every j ∈ [n] such that vj 6= 0, we replace vj with the unit vector v′j =
vj/‖vj‖2. Let V ′ = (v′1,v

′
2, . . . ,v

′
n) denote the resulting list of vectors.

Then for all j ∈ [n], i ∈ [d] such that v′j 6= 0 and weighti(v
′
j) ≥

√
α2 − α′2, we

remove any pair in Mi that contains j (there is at most one such pair since the pairs
in Mi are disjoint). Let M′ = (M ′

1,M
′
2, . . . ,M

′
d), M

′
i ⊆ Mi, denote the resulting list

of 2-matchings. We see that (V ′,M′) is a 2-query (α, δ′)-approximate LDC from the
following claim:

Claim 2.7. |M ′
1|+ |M ′

2|+ · · ·+ |M ′
d| ≥ δdn− n/(α2 − α′2) = δ′dn.

Proof. For every j ∈ [n] such that v′j 6= 0, there are at most 1/(α2 − α′2) values of

i ∈ [d] with weighti(v
′
j) ≥

√
α2 − α′2, and so there were at most 1/(α2 − α′2) pairs

containing j removed from M1,M2, . . . ,Md. The claim follows immediately. �

Next, we fix an i ∈ [d] and a pair {j1, j2} ∈M ′
i , and study the vectors v′j1 , v

′
j2

.

Claim 2.8. The vectors v′j1 and v′j2 are linearly independent, i.e., v′j1 6= v′j2, v′j1 6=
−v′j2 and neither of them is 0.

Proof. We assume the opposite and derive a contradiction. By Definition 2.1, there
exists u ∈ span{v′j1 ,v

′
j2
} with weighti(u) ≥ α > 0. Hence at least one of v′j1 and

v′j2 is nonzero. Suppose v′j1 6= 0. Then u is a multiple of v′j1 , and it follows that

weighti(v
′
j1

) ≥ α >
√
α2 − α′2. This contradicts the definition of M ′

i as {j1, j2} should
have been removed. �

By Claim 2.8, there is a unique plane passing through the origin (i.e., a two-
dimensional vector space) that contains v′j1 and v′j2 . We set up Cartesian axes on
this plane. Let the y-axis be in the direction of the projection of ei onto this plane,
and let the x-axis be in either of the two possible directions. We use τ ∈ [0, π/2] to
denote that angle between ei and the plane spanned by v′j1 , v

′
j2

(see Figure 2.1a).
Since {j1, j2} ∈M ′

i ⊆Mi, there is

cos τ ≥ α. (2.2)
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τ

ei
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x
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v′j1

v′j2

θ1

θ2
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x

(b)

θ0

2π − θ0

π − θ0

π + θ0

v′j1

v′j2

w

y

x

(c)

Figure 2.1: (a) The angle between ei and the plane spanned by v′j1 , v
′
j2

; (b) The
angles from the x-axis to v′j1 and v′j2 ; (c) The range of θ1, θ2 and the middle point w.

Let θ1, θ2 ∈ [0, 2π) be the angles from the x-axis to vj1 and vj2 respectively
(see Figure 2.1b). Then vj1 and vj2 are the points (cos θ1, sin θ1) and (cos θ2, sin θ2)

on the plane. By the construction of M ′
i , we have weighti(v

′
j1

) <
√
α2 − α′2 and

weighti(v
′
j2

) <
√
α2 − α′2, or equivalently,

| sin θ1| · cos τ <
√
α2 − α′2 and | sin θ2| · cos τ <

√
α2 − α′2.

Define θ0 = arcsin
(√

α2 − α′2/ cos τ
)
. By Inequality (2.2), there is cos τ >

√
α2 − α′2.

Hence θ0 is well defined. We see that θ1 and θ2 fall into the following two regions
(gray areas in Figure 2.1c):

A = (2π − θ0, 2π] ∪ [0, θ0) and B = (π − θ0, π + θ0).

Claim 2.9. If θ1 and θ2 are in the same region (A or B), there is weighti(v
′
j2
−v′j1) ≥

α′. If θ1 and θ2 are in different regions, there is weighti(v
′
j2

+ v′j1) ≥ α′.

Proof. We first consider the case that θ1 and θ2 are in the same region. Let w =
(cos θ3, sin θ3) denote the middle point of the arc between v′j1 and v′j2 on the unit
circle (see Figure 2.1c). Then θ3 is also in one of the two regions A and B (the one
that θ1 and θ2 fall in), which implies

| cos θ3| ≥ cos θ0 =

√
1− α2 − α′2

(cos τ)2
.

Noting that v′j2 − v
′
j1

is parallel to the tangent line to the unit circle at w,

weighti(v
′
j2
− v′j1) = | cos θ3| · cos τ ≥

√
1− α2 − α′2

(cos τ)2
· cos τ ≥ α′.
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In the last step we used cos τ ≥ α (Inequality (2.2)).
For the case that θ1 and θ2 are in different regions, one can change v′j1 to −v′j1 and

θ1 to 2π−θ1 in the proof of the previous case and show weighti
(
v′j2−(−v′j1)

)
≥ α′. �

Now we construct a code that satisfies the requirements of Lemma 2.6. We define
V ′′ = (v′′1,v

′′
2, . . . ,v

′′
2n), where v′′j = v′j and v′′j+n = −v′j for all j ∈ [n]. Then by

Claim 2.9, for every i ∈ [d] and every pair {j1, j2} ∈M ′
i , at least one of the following

two cases holds:

1. weighti(v
′′
j2
− v′′j1) ≥ α′ and weighti(v

′′
j2+n − v′′j1+n) ≥ α′;

2. weighti(v
′′
j2
− v′′j1+n) ≥ α′ and weighti(v

′′
j2+n − v′′j1) ≥ α′.

For the first case, we add the pair {j1 + n, j2 + n} to M ′
i . For the second case,

we replace the pair {j1, j2} with two pairs {j1 + n, j2} and {j1, j2 + n}. Let M′′ =
(M ′′

1 ,M
′′
2 , . . . ,M

′′
d ) denote the resulting list of 2-matchings. Clearly, the code (V ′′,M′′)

has dimension d and length 2n. By Claim 2.7, there is

|M ′′
1 |+ |M ′′

2 |+ · · ·+ |M ′′
d | = 2

(
|M ′

1|+ |M ′
2|+ · · ·+ |M ′

d|
)
≥ 2δ′dn = δ′d(2n).

We see that (V ′′,M′′) is a simple 2-query (α′, δ′)-approximate LDC.

By setting α′ = α/2 in Lemma 2.6, we have the following convenient corollary:

Corollary 2.10. Suppose d ≥ 8/(3α2δ). If there exists a 2-query (α, δ)-approximate
LDC of dimension d and length n, then there exists a simple 2-query (α/2, δ/2)-
approximate LDC of dimension d and length 2n.

From now on we restrict our attention to simple 2-query (α, δ)-approximate LDCs.
For such a code (V ,M), we consider the undirected graph where v1,v2, . . . ,vn are the
vertices and the pairs in M1,M2, . . . ,Md are the edges. Note that we allow parallel
edges as one pair {j1, j2} can appear in multiple 2-matchings. We introduce some
notations. For every i ∈ [d] and every pair {j1, j2} ∈Mi, let(

{j1, j2}; i
)

denote the edge corresponding to this pair. With abuse of notation, letM also denote
the set of all edges of the graph:

M =
{(
{j1, j2}; i

)
: ∀i ∈ [d], {j1, j2} ∈Mi

}
.

And we will use the pair (V ,M) to refer to the graph as well as the code. For a
general graph G = (V,E) and S1, S2 ⊆ V , we use Edge(S1, S2) to denote the set
of edges between the vertices in S1 and the vertices in S2. We define Edge(S) as a
shorthand for Edge(S, S).

Next, we give the following simple lemma that relates the number of edges in a
graph with the sizes of cuts. A variant of this lemma (where the graph is a hypercube)
was proved in [Bol86, Section 16] and [GKST06]. Our lemma can be proved using
the same proof as in [GKST06]. For completeness, we include the proof here.
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Lemma 2.11. Let G = (V,E) be an undirected graph that parallel edges are permitted
and c be a positive real number. Suppose that for every S ⊆ V with |S| ≥ 2, there
exist disjoint nonempty subsets S1, S2 ⊆ S with S1 ∪ S2 = S such that

|Edge(S1, S2)| ≤ c ·min
{
|S1|, |S2|

}
.

Then
|E| ≤ c

2
· |V | log2 |V |. (2.3)

Proof. We show by an induction on |S| that for every nonempty S ⊆ V , there is

|Edge(S)| ≤ c

2
· |S| log2 |S|. (2.4)

Then the lemme is proved by setting S = V in this inequality.
For |S| = 1, Inequality (2.4) is trivial. Assume that we have proved Inequal-

ity (2.4) for all nonempty S ⊆ V of size |S| < k, and now we consider the case that
|S| = k, where k ≥ 2. Let S1, S2 ⊆ S be disjoint nonempty sets with S1 ∪ S2 = S
such that

|Edge(S1, S2)| ≤ c ·min
{
|S1|, |S2|

}
.

Then using the induction hypothesis,

|Edge(S)| = |Edge(S1, S2)|+ |Edge(S1)|+ |Edge(S2)|

≤ c ·min
{
|S1|, |S2|

}
+
c

2
· |S1| log2 |S1|+

c

2
· |S2| log2 |S2|.

In order to prove Inequality (2.4), it suffices to show

c ·min
{
|S1|, |S2|

}
+
c

2
· |S1| log2 |S1|+

c

2
· |S2| log2 |S2| ≤

c

2
· |S| log2 |S|. (2.5)

Without loss of generality, we assume |S1| ≤ |S2|. Let x = |S1|/|S|, where x ∈ (0, 1/2].
Then |S1| = x|S| and |S2| = (1− x)|S|. Inequality (2.5) is equivalent to

x+
1

2
· x log2

(
x|S|

)
+

1

2
· (1− x) log2

(
(1− x)|S|

)
≤ 1

2
· log2 |S|

⇐⇒ 2x+ x log2 x+ (1− x) log2(1− x) ≤ 0.

Let f(x) denote the left side of the above inequality. One can verify lim
x→0

f(x) = 0

and f(1/2) = 0. By f ′′(x) =
(
1/x+ 1/(1− x)

)
/ ln 2 > 0 for x ∈ (0, 1/2], we see that

f(x) is a convex function. Therefore f(x) ≤ 0 for all x ∈ (0, 1/2].

Recall that in the graph G = (V ,M), the number of edges is at least δdn and the
number of vertices is n. Plugging these into Inequality (2.3), we have the following
corollary:

Corollary 2.12. Let (V ,M) be a simple 2-query (α, δ)-approximate LDC of dimen-
sion d and length n. Consider the graph G = (V ,M). Suppose that for every S ⊆ V
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with |S| ≥ 2, there exist disjoint nonempty subsets S1, S2 ⊆ S with S1 ∪ S2 = S such
that

|Edge(S1, S2)| ≤ c ·min
{
|S1|, |S2|

}
.

Then
n ≥ 4δd/c.

2.3 Lower bounds for 2-query approximate LDCs

With the reduction provided in the previous section, we now proceed to prove lower
bounds for 2-query approximate LDCs.

2.3.1 Proof of Theorem 2.3

By Corollary 2.10 and Corollary 2.12, Theorem 2.3 follows immediately from the
following lemma:

Lemma 2.13. Let (V ,M) be a simple 2-query (α, δ)-approximate LDC of dimension
d and length n. Consider the graph G = (V ,M). For every S ⊆ V with |S| ≥ 2,
there exist disjoint nonempty subsets S1, S2 ⊆ S with S1 ∪ S2 = S such that

|Edge(S1, S2)| ≤ 2
√
d

α
·min

{
|S1|, |S2|

}
. (2.6)

Proof. If there are no edges in the subgraph induced by S, an arbitrary choice of
S1 and S2 satisfies Inequality (2.6). We assume that there is at least one edge in
Edge(S).

Let L ∈ R+ and b1, b2, . . . , bd ∈ R be such that all points v1,v2, . . . ,vn are con-
tained inside the hypercube

[b1, b1 + L]× [b2, b2 + L]× · · · × [bd, bd + L].

We pick an integer r ∈ [d] and a real number t ∈ [0, L] uniformly at random, and
define

S1 =
{
vj ∈ S : the rth coordinate of vj ≤ br + t

}
,

S2 =
{
vj ∈ S : the rth coordinate of vj > br + t

}
.

Next, we analyze the random sets S1 and S2. We first consider a fixed edge(
{j1, j2}; i0

)
∈ Edge(S). Suppose that the vector vj2 − vj1 is (u1, u2, . . . , ud), where

ui ∈ R. Then there is

|ui0| ≥ α‖vj2 − vj1‖2 = α

√√√√ d∑
i=1

u2
i ≥

α√
d

d∑
i=1

|ui|. (2.7)
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By the construction of S1 and S2, for every i ∈ [d] we have

Pr
[
r = i and

(
{j1, j2}; i0

)
∈ Edge(S1, S2)

]
=

1

d
· |ui|
L
. (2.8)

Using Inequality (2.7) and Equation (2.8),

Pr
[(
{j1, j2}; i0

)
∈ Edge(S1, S2)

]
=

d∑
i=1

(
1

d
· |ui|
L

)
≤ 1

dL
·
√
d

α
|ui0|

=

√
d

α
· Pr
[
r = i0 and

(
{j1, j2}; i0

)
∈ Edge(S1, S2)

]
.

Consider this inequality for all edges
(
{j1, j2}; i0

)
∈ Edge(S). Define Edger(S1, S2) ⊆

Edge(S1, S2) as the subset of the edges of the form
(
{j1, j2}; r

)
, where {j1, j2} ∈Mr.

Then

1

2
· E
[
|Edge(S1, S2)|

]
< E

[
|Edge(S1, S2)|

]
≤
√
d

α
· E
[
|Edger(S1, S2)|

]
.

In the first inequality, we used our assumption Edge(S) 6= ∅, which implies that the
expected value of |Edge(S1, S2)| is strictly positive. By the linearity of expectation,
we have

E
[√d
α
|Edger(S1, S2)| − 1

2
|Edge(S1, S2)|

]
> 0.

Therefore there exist an integer r ∈ [d] and a real number t ∈ [0, L] such that

√
d

α
|Edger(S1, S2)| − 1

2
|Edge(S1, S2)| > 0.

From this inequality we see that |Edger(S1, S2)| is strictly positive. Hence S1 and
S2 are nonempty. Since the pairs in Mr are disjoint, we have |Edger(S1, S2)| ≤
min

{
|S1|, |S2|

}
. It follows that

|Edge(S1, S2)| ≤ 2
√
d

α
min

{
|S1|, |S2|

}
.

2.3.2 Proof of Theorem 2.4

By Corollary 2.10, it suffices to consider simple 2-query approximate LDCs. We
observe that, if the vector vj2 − vj1 was in the standard direction ei or −ei for all
i ∈ [d] and {j1, j2} ∈Mi, then for every S ⊆ V with |S| ≥ 2, a hyperplane orthogonal
to an arbitrary standard direction would “cut” S into two parts S1 and S2 such that

Edge(S1, S2) ≤ min
{
|S1|, |S2|

}
,

with which one could derive an exponential lower bound by Corollary 2.12. (In this
case, the code would be an “exact” LDC for which an exponential lower bound is
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known. However, we will need the cut in our actual proof.) Based on this, a simple
idea is to round v1,v2, . . . ,vn to the vertices of a grid (with an appropriate grid
distance) so that the vectors vj2 − vj1 will become “upright”. See Figure 2.2 for an
illustration.

Figure 2.2: The center of every dashed circle is a grid point. We wish to round all
points to their corresponding circle centers.

One easy way to do the rounding is to tile the space Rd with hypercubes, and
move every vi to the center of the hypercube that contains it. However, this does not
work because the distances between the vertices of a hypercube can differ greatly (as
large as a multiplicative factor

√
d), and it is impossible to find an appropriate grid

distance that all (or many) points are rounded to their ideal positions.
It would be helpful if there was a way to tile the space Rd with “balls”, so that

during the rounding the points were moved by similar distances regardless of their
directions. In [KORW12], the authors gave a randomized algorithm outputting a
“spherical cube” such that by moving it along every integral vector s ∈ Zd, one can
exactly tile (completely cover without overlap) the space Rd. With a simple scaling,
this result also works for all positive grid distances other than 1. Let

Gg =
{
gz : z ∈ Zd

}
denote the vertices of the grid with grid distance g, where g > 0. We restate the
result of [KORW12] in terms of rounding:

Theorem 2.14 ([KORW12]). For every g > 0, there exists a randomized algorithm
that produces a mapping R : Rd → Gg with following properties:

1. R(x+ s) = R(x) + s for all x ∈ Rd and s ∈ Gg;

2. Pr
[
R(x) 6= R(y)

]
≤ (2π/g) · ‖x− y‖2 for all x,y ∈ Rd.

In the following proof of Theorem 2.4, we will use the grid points R(vj) without
actually moving the points vj to R(vj). In fact, we will need multiple grids simulta-
neously with various grid distances, and different grids are used for different subsets
S ⊆ V .
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Proof of Theorem 2.4. Suppose that (V ,M) is a simple 2-query (α, δ)-approximate
LDC of dimension d and length n. By Corollary 2.10, it suffices to prove

n = exp
(
Ω(αδ

√
d)
)
.

For an edge
(
{j1, j2}; i

)
∈ M and a subset of real numbers I ⊆ R, we say that

the edge is contained in I if
‖vj2 − vj1‖2 ∈ I.

We define constants ε =
√
α− α0 ∈ (0, 1) and t = d(α − α0)−1.5e ∈ Z+. Partition

positive real numbers into disjoint intervals:

R+ =
⋃
`∈Z

[
(1 + ε)`, (1 + ε)`+1

)
.

Let Ij (j = 0, 1, . . . , t− 1) denote the union of the intervals with ` ≡ j (mod t), i.e.,

Ij =
⋃
k∈Z

[
(1 + ε)kt+j, (1 + ε)kt+j+1

)
.

Then we have R+ = I0 ∪ I1 ∪ · · · ∪ It−1. Without loss of generality, we assume that I0

is the one among I0, I1, . . . , It−1 that contains the most number of edges. (Otherwise,
scale the arrangement by (1 + ε)j for some j ∈ [t− 1].) Let M′ = (M ′

1,M
′
2, . . . ,M

′
d),

M ′
i ⊆Mi, denote the list of 2-matchings obtained by removing all edges not contained

in I0. We see that (V ,M′) is a simple 2-query (α, δ/t)-approximate LDC. Next, we
will restrict our attention to the code (V ,M′).

For an edge
(
{j1, j2}; i

)
∈ M′, since the edge is contained in I0, there must exist

k ∈ Z such that
‖vj2 − vj1‖2 ∈

[
(1 + ε)kt, (1 + ε)kt+1

)
.

We call the integer k the level of
(
{j1, j2}; i

)
, and denote it by level

(
{j1, j2}; i

)
.

Let kmin and kmax denote the minimum and maximum levels of the edges in M′.
For every integer k ∈ [kmin, kmax], we define

gk =
(1 + ε)kt + (1 + ε)kt+1

2α
=

(2 + ε)(1 + ε)kt

2α
,

and let Rk : Rd → Ggk be the random mapping satisfying the properties of Theo-
rem 2.14 for the grid Ggk . Note that for different values of k, the corresponding
mappings Rk are generated independently.

We say that an edge
(
{j1, j2}; i

)
∈ M′ is good if the following properties are

satisfied:

1. For every k > level
(
{j1, j2}; i

)
, there is Rk(vj1) = Rk(vj2), i.e., vj1 and vj2 are

mapped to the same grid point by Rk.
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2. Let k0 = level
(
{j1, j2}; i

)
. Then either Rk0(vj2) = Rk0(vj1)+gk0ei or Rk0(vj2) =

Rk0(vj1)−gk0ei holds, i.e., vj1 and vj2 are mapped to adjacent grid points along
the direction ei by Rk0 .

Claim 2.15. Every edge
(
{j1, j2}; i

)
∈M′ is good with probability at least 21(α−α0).

Proof. We use k0 to denote level
(
{j1, j2}; i

)
. There is

‖vj2 − vj1‖2

gk0
∈
[ 2α

2 + ε
,
2α(1 + ε)

2 + ε

)
=
[
α− αε

2 + ε
, α +

αε

2 + ε

)
⊆
[
α− ε

2
, α +

ε

2

)
.

We consider the two requirements of an good edge one by one, and calculate the
probabilities that each of them is violated:

1. For every k > k0, we have

Pr
[
Rk(vj1) 6= Rk(vj2)

]
≤ 2π

gk
· ‖vj2 − vj1‖2

≤ 2π ·
(
α +

ε

2

)
· gk0
gk

≤ 4π · 1

(1 + ε)(k−k0)t
.

The probability that the first requirement is violated is at most

4π ·
∑

k≥k0+1

1

(1 + ε)(k−k0)t
= 4π · 1

(1 + ε)t − 1
≤ 4π

εt
.

2. Without loss of generality, we assume 〈vj2−vj1 , ei〉 > 0. (Otherwise interchange
j1 and j2.) Then 〈vj2−vj1 , ei〉 ≥ α‖vj2−vj1‖2. The probability that the second
requirement is violated is at most

Pr
[
Rk(vj2) 6= Rk(vj1) + gkei

]
= Pr

[
Rk(vj2) 6= Rk(vj1 + gkei)

]
≤ 2π

gk
· ‖vj2 − vj1 − gkei‖2

=
2π

gk
·
√
‖vj2 − vj1‖2

2 + g2
k − 2gk · 〈vj2 − vj1 , ei〉

≤ 2π

gk
·
√
‖vj2 − vj1‖2

2 + g2
k − 2gk · α‖vj2 − vj1‖2

= 2π

√(
‖vj2 − vj1‖2

gk
− α

)2

+ 1− α2

≤ 2π

√
1− α2 +

ε2

4
.
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Recall that α0 =
√

1− 1/(4π2), ε =
√
α− α0 and t = d(α − α0)−1.5e ≥ ε−3. Using

the union bound, the probability that
(
{j1, j2}; i

)
is a good edge is at least

1− 4π

εt
− 2π

√
1− α2 +

ε2

4
≥ 1− 4πε2 − 2π

√
1−

(
α0 + ε2

)2

+
ε2

4

≥ 1− 4πε2 − 2π

√
1− α2

0 − 2α0ε2 +
ε2

4

= 1−
√

1− 4π
√

4π2 − 1 · ε2 + π2ε2 − 4πε2

≥ 2π
√

4π2 − 1 · ε2 − π2ε2

2
− 4πε2

≥ 21ε2 = 21(α− α0). �

By a standard expected value argument, there exist mappings Rk : Rd → Ggk for
every integer k ∈ [kmin, kmax] such that at least 21(α − α0) fraction of the edges are
good. We fix such mappings. Let M′′ = (M ′′

1 ,M
′′
2 , . . . ,M

′′
d ), M ′′

i ⊆ M ′
i , be the list

of 2-matchings obtained by removing all edges that are not good. Then (V ,M′′) is a
simple 2-query (α, δ′)-approximate LDC, where

δ′ ≥ (δ/t) · 21(α− α0) =
21(α− α0)

d(α− α0)−1.5e
· δ ≥ 20(α− α0)2.5 · δ.

In the last step, we used (α−α0)−1.5 ≥ (1−α0)−1.5 > 600. Now we consider the code
(V ,M′′).

Claim 2.16. Consider the graph G = (V ,M′′). For every S ⊆ V with |S| ≥ 2, there
exist disjoint nonempty S1, S2 ⊆ S with S1 ∪ S2 = S such that

|Edge(S1, S2)| ≤ min
{
|S1|, |S2|

}
. (2.9)

Proof. If there are no edges in the subgraph induced by S, an arbitrary choice of S1

and S2 satisfies Inequality (2.9). We only consider the case that Edge(S) is nonempty.
Suppose that

(
{j∗1 , j∗2}; i∗

)
∈ Edge(S) is the edge with the maximum level and let

k0 = level
(
{j∗1 , j∗2}; i∗

)
. We will find S1 and S2 using the mapping Rk0 . Without loss

of generality, assume Rk0(vj∗2 ) = Rk0(vj∗1 ) + gk0ei∗ . (If this does not hold, there must
be Rk0(vj∗2 ) = Rk0(vj∗1 ) − gk0ei∗ and we interchange j∗1 , j∗2 .) Partition S into S1 and
S2 according to the i∗th coordinates of Rk0(vj):

S1 =
{
vj ∈ S : 〈Rk0(vj), ei∗〉 ≤ 〈Rk0(vj∗1 ), ei∗〉

}
,

S2 =
{
vj ∈ S : 〈Rk0(vj), ei∗〉 ≥ 〈Rk0(vj∗2 ), ei∗〉

}
.

Clearly, S1, S2 are nonempty and S1 ∪ S2 = S. It remains to prove Inequality (2.9).
We consider an edge

(
{j1, j2}; i

)
∈ Edge(S). By the definition of good edges and

k0 ≥ level
(
{j1, j2}; i

)
, we see that there are two cases:
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1. If k0 > level
(
{j1, j2}; i

)
, there is Rk0(vj1) = Rk0(vj2) and vj1 , vj2 must be in

the same one of S1, S2. Hence
(
{j1, j2}; i

)
/∈ Edge(S1, S2).

2. If k0 = level
(
{j1, j2}; i

)
, Rk0(vj1) and Rk0(vj2) differ only at the ith coordinate.

In this case,
(
{j1, j2}; i

)
∈ Edge(S1, S2) only if i = i∗.

We have that for all edges
(
{j1, j2}; i

)
∈ Edge(S1, S2) there is i = i∗. Since the pairs

{j1, j2} in Mi∗ are disjoint, Inequality (2.9) follows immediately. �

Using Claim 2.16 and Corollary 2.12, we have

n ≥ 4δ
′d ≥ 420(α−α0)2.5δd.

Therefore Theorem 2.4 is proved.

2.4 A lower bound for general approximate LDCs

In this section we prove Theorem 2.5. Our idea is based on a result of [KT00] that
gives a super-linear lower bound for q-query “exact” LDCs. We briefly sketch the
proof in [KT00] (with our notations and assuming δ is a constant) as the following
three steps:

1. Sample a random list of indices S = (j1, j2, . . . , jt) ∈ [n]t, where t = Θ
(
n

q−1
q
)
;

2. Show that with high probability such an S contains q-tuples from Ω(d) different
q-matchings Mi;

3. Since each of the above Ω(d) q-tuples is a set of codeword coordinates that
determines a different entry of the original message, there must be t = Ω(d) by

an information theoretic argument, which yields a lower bound n = Ω
(
d

q
q−1
)
.

For approximate LDCs, noting that a q-tuple of codeword coordinates does not deter-
mine an entry of the original message, we will replace the third step with a spectral
argument that shows the rank of the vectors vj1 ,vj2 , . . . ,vjt is Ω(d) (which also im-
plies t = Ω(d)).

We need the following variant of a well-known lemma (see for example [Alo09,
BDWY13, DSW14b]) that gives a lower bound on the rank of diagonal dominating
matrices:

Lemma 2.17. Let D be any square matrix with positive real numbers on the diagonal.
We have

rank(D) ≥ tr(D)2

‖D‖2
F

,

where ‖ · ‖F denotes the Frobenius norm.
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Proof. Let r denote rank(D). We take a singular value decomposition of D:

D = PΣQ∗,

where Σ is the diagonal matrix consists of singular values of D, and P,Q∗ are unitary
matrices. Say the positive singular values of D are σ1, σ2, . . . , σr. The lemma follows
immediately from

tr(D)2 = tr
(
PΣQ∗

)2
= tr

(
Σ(Q∗P )

)2 ≤

(
r∑
i=1

σi

)2

≤ r
r∑
i=1

σ2
i = r‖D‖2

F .

We will also use [KT00, Lemma 5], which is restated below:

Lemma 2.18 ([KT00]). Let q ≥ 2 be a constant and M be a q-matching consists of

γn disjoint q-tuples of [n], where γ < 1/q. There exists an integer t = Θ
(
γ−

1
qn

q−1
q
)

such that if we sample a list S = (j1, j2, . . . , jt) ∈ [n]t uniformly at random,

Pr
[
S contains a q-tuple in M

]
>

3

4
.

We now give the complete proof of Theorem 2.5:

Proof of Theorem 2.5. We first show that there are at least qδd/2 values of i ∈ [d]
such that |Mi| ≥ δn/2. Assume the opposite. Then, since |Mi| ≤ n/q for every
i ∈ [d], there is

δdn ≤ |M1|+ |M2|+ · · ·+ |Md| ≤
qδd

2
· n
q

+

(
d− qδd

2

)
· δn

2
= δdn− qδ2dn

4
.

We arrived at a contradiction. Therefore we can find at least qδd/2 q-matchings
among M1,M2, . . . ,Md such that each of them has size at least δn/2.

Set γ = δ/2 in Lemma 2.18. Using a standard expected value argument, we
can see that there exists a list S = (j1, j2, . . . , jt) ∈ [n]t containing q-tuples from

at least (3/4) · (qδd/2) = Ω(δd) different q-matchings, where t = Θ
(
δ−

1
qn

q−1
q
)
. Let

Mi1 ,Mi2 , . . . ,Mid′
be these q-matchings, where d′ = Ω(δd) and i1, i2, . . . , id′ ∈ [d].

Next, we show t ≥ α2d′, which will immediately imply Theorem 2.5:

t = Θ
(
δ−

1
qn

q−1
q
)
≥ α2d′ = Ω

(
α2δd

)
=⇒ n = Ω

(
δ

q+1
q−1 (α2d)

q
q−1
)
.

For every i ∈ {i1, i2, . . . , id′}, we can find a q-tuple
{
j

(i)
1 , j

(i)
2 , . . . , j

(i)
q

}
⊆ S that is in

Mi. By Definition 2.1, there is a vector

ui ∈ span
{
v
j
(i)
1
,v

j
(i)
2
, . . . ,v

j
(i)
q

}
⊆ span

j∈S

{
vj
}

with weighti(ui) ≥ α. Without loss of generality, we assume that ui is a unit vector
and the ith coordinate of ui is at least α. (Otherwise the ith coordinate must be at
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most −α, and we replace ui with −ui.) We define u′i ∈ Rd′ as the subvector of ui
consists of the coordinates with indices i1, i2, . . . , id′ . Let D ∈ Rd′×d′ be the matrix
consists of columns u′i1 ,u

′
i2
, . . . ,u′id′ . Clearly, every entry on the diagonal of D is at

least α, and every column of D has norm ‖u′i‖2 ≤ 1. Using Lemma 2.17,

t ≥ rank
j∈S

{
vj
}
≥ rank

{
ui1 ,ui2 , . . . ,uid′

}
≥ rank

{
u′i1 ,u

′
i2
, . . . ,u′id′

}
= rank(D) ≥ (αd′)2

d′
= α2d′.

Thus the proof is finished.
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Chapter 3

Sylvester-Gallai for Arrangements
of Subspaces

In this chapter, we prove the subspace version of the Sylvester-Gallai theorem. We
first state our result in Section 3.1. Then we reduce our version of the Sylvester-
Gallai theorem to a more convenient notion called (α, δ)-system in Section 3.2. Next,
in Section 3.3 we prove the subspace version of a theorem of Barthe [Bar98], which
is a key technique used in our proof. Finally, we prove our main theorem for (α, δ)-
systems in Section 3.4, which implies the subspace version of the Sylvester-Gallai
theorem. The results in this chapter are also included in [DH16].

3.1 Generalization of the Sylvester-Gallai

theorem

The Sylvester-Gallai theorem states that for n points v1,v2, . . . ,vn ∈ R`, if for every
pair of points vi1 ,vi2 there is a third point vi3 on the line passing through vi1 ,vi2 ,
then all points must lie on a single line. This was first posed by Sylvester [Syl93],
and was solved by Melchior [Mel40]. It was also conjectured independently by Erdös
[Erd43] and proved shortly after by Gallai. We refer the reader to the survey [BM90]
for more information about the history and various generalizations of this theorem.
The complex version of this theorem was proved by Kelly [Kel86] (see also [EPS06,
DSW14b] for alternative proofs) and states that if v1,v2, . . . ,vn ∈ C` and for every
pair vi1 ,vi2 there is a third vi3 on the same complex line, then all points are contained
in some complex plane (there are planar examples and so this theorem is tight).

In [DSW14b] (based on earlier work in [BDWY13]), the following quantitative
variant of the Sylvester-Gallai theorem was proved:

Theorem 3.1 ([DSW14b]). Given n points v1,v2, . . . ,vn ∈ C`. Suppose that for
every point vi1 (i1 ∈ [n]) there are at least δ(n− 1) other points vi2 (i2 ∈ [n] \ {i1})
such that there is a third point vi3 (i3 ∈ [n] \ {i1, i2}) on the the line passing through
vi1 ,vi2. Then v1,v2, . . . ,vn are contained in an affine subspace of dimension at most
12/δ.
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The dependence on δ in the above theorem is asymptotically tight as one can
place the n points on 1/δ lines so that the dimension of the arrangement is Ω(1/δ).

From here on, we will work with homogeneous subspaces (passing through zero)
instead of affine subspaces (lines, planes, etc.). The difference is not crucial to our
results and the affine version can always be derived by intersecting the homogeneous
version with a generic hyperplane. In this setting, the above theorem will be stated
for n one-dimensional subspaces (spanned by v1,v2, . . . ,vn respectively, where no two
vi’s are multiples of each other) and collinearity of vi1 ,vi2 ,vi3 is replaced with the
three vectors being linearly dependent (i.e., contained in a two-dimensional subspace).

One natural high-dimensional variant of the Sylvester-Gallai theorem, studied
in [Han65, BDWY13], replaces three-wise dependencies with t-wise dependencies
for general values of t. We now raise another natural high-dimensional variant in
which the points themselves are replaced with k-dimensional subspaces. We consider
an arrangement of subspaces with many three-wise dependencies (defined appropri-
ately) and prove that the entire arrangement lies in some low-dimensional space. Let
V1, V2, . . . , Vn ⊆ C` be k-dimensional subspaces such that every pair {Vi1 , Vi2} sat-
isfies Vi1 ∩ Vi2 = {0}. A dependency can then be defined as a triple {Vi1 , Vi2 , Vi3}
contained in a single 2k-dimensional subspace. The pairwise zero intersections guar-
antee that every pair of subspaces defines a unique 2k-dimensional space (i.e., their
span) and so, this definition of dependency behaves in a similar way to collinearity.
For example, we have that if Vi1 , Vi2 , Vi3 are dependent and Vi2 , Vi3 , Vi4 are dependent
then also Vi1 , Vi2 , Vi4 are dependent. This would not hold if there were pairs with
nonzero intersections. In fact, if nonzero intersections were allowed, we can construct
an arrangement of two-dimensional subspaces with many dependent triples and with
dimension as large as

√
n (see below). We now state our main theorem, generalizing

Theorem 3.1 (with slightly worse parameters) to the case k > 1:

Theorem 3.2. Let V1, V2, . . . , Vn ⊆ C` be k-dimensional subspaces such that Vi∩Vi′ =
{0} for all i 6= i′ ∈ [n]. Suppose that for every i1 ∈ [n] there exists at least δn values
of i2 ∈ [n] \ {i1} such that Vi1 + Vi2 contains some Vi3 with i3 ∈ [n] \ {i1, i2}. Then

dim(V1 + V2 + · · ·+ Vn) = O(k4/δ2)1,

where O(·) hides an absolute constant independent of δ, k or n.

In the statement of this theorem, we use the standard V + U notation to denote
the subspace spanned by all vectors in V ∪ U , and for a set S ⊆ C` we denote by
dim(S) the smallest d such that S is contained in a d-dimensional subspace of C`.

Theorem 3.2 can be considered as a result for 2-query linear block LCCs over C.
See Section 1.1.2 for the connections. The condition Vi ∩ Vi′ = {0} is needed due to
the following example: Set k = 2 and n = `(` − 1)/2, and define the n subspaces to
be Vij = span{ei, ej}, where {e1, e2, . . . , e`} is the standard basis of R`. Then for

1In a recent work [DGOS16], the upper bound was improved to O(k/δ). This is optimal since
one can always construct an arrangement with dimension 2k/δ by partitioning the subspaces into
1/δ groups, where each group is contained in a 2k-dimensional space.
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each (i, j) 6= (i′, j′), the sum Vij + Vi′j′ contains a third subspace (since the size of
{i, j, i′, j′} is at least three). However, this arrangement has dimension ` >

√
n.

3.1.1 Overview of the proof

A preliminary observation is that it suffices to prove the theorem over R. This is
because an arrangement of k-dimensional complex subspaces can be translated into
an arrangement of 2k-dimensional real subspaces (this will be proved at the end of
Section 3.2). Hence, we will now focus on real arrangements.

The proof of the theorem is considerably simpler when the arrangement of sub-
spaces V1, V2, . . . , Vn satisfies an extra “robustness” condition, namely that every two
subspaces in a dependent triple have an angle bounded away from zero. More for-
mally, for every two unit vectors v1 ∈ Vi1 and v2 ∈ Vi2 we have |〈v1,v2〉| ≤ 1− τ for
some absolute constant τ > 0. This condition implies that, when we have a depen-
dency of the form Vi3 ⊆ Vi1 + Vi2 , every unit vector in Vi3 can be obtained as a linear
combination with bounded coefficients (in absolute value) of unit vectors from Vi1 ,
Vi2 . Fixing an orthonormal basis for every subspace, we are able to construct many
local linear dependencies among the basis vectors, as there are many three-wise de-
pendencies among the subspaces. We then show (using the bound on the coefficients
in the linear combinations) that the space of linear dependencies between all basis
vectors, considered as a subspace of Rkn, contains the rows of a kn× kn matrix that
has large entries on the diagonal and small entries off the diagonal. Since matrices
of this form have high rank (by a simple spectral argument), we conclude that the
original set of basis vectors must have small dimension.

To handle the general case, by generalizing a theorem of Barthe [Bar98], we show
that unless there exists some low-dimensional subspace W intersecting many of the
subspaces Vi in the arrangement, we can find a change of basis that makes the angles
between the subspaces large on average (in which case the previous argument works).
This gives us the overall strategy of the proof: If such a W exists, we project W to
zero and continue by induction. The loss in the overall dimension is bounded by the
dimension of W , which can be chosen to be small enough. Otherwise (if such W does
not exist) we apply the change of basis and use it to bound the dimension.

3.2 Reduction to (α, δ)-systems

We introduce the notion of (α, δ)-system, which is used to “organize” the dependent
triples in an arrangement of subspaces in a more convenient form. In an (α, δ)-system,
every subspace appears in many triples and every pair of subspaces appears together
only in a few triples.

Definition 3.3 ((α, δ)-system). Given a list of subspaces V = (V1, V2, . . . , Vn), Vi ⊆
R`, we call a list of index sets S = (S1, S2, . . . , Sw), Sj ⊆ [n], an (α, δ)-system (α ∈
Z+, δ > 0) of V if

1. |Sj| = 2 or 3 for every j ∈ [w];
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2. If |Sj| = 2, say Sj = {i1, i2}, we have Vi1 = Vi2 ;

If |Sj| = 3, say Sj = {i1, i2, i3}, we have Vi1 ⊆ Vi2 + Vi3 , Vi2 ⊆ Vi1 + Vi3 and
Vi3 ⊆ Vi1 + Vi2 ;

3. Every i ∈ [n] is contained in at least δn sets of S;

4. Every pair {i1, i2} ⊆ [n] (i1 6= i2) appears together in at most α sets of S.

We note the following differences in the setting of (α, δ)-systems and that of the
Sylvester-Gallai theorem for subspaces: (1) We allow dependent pairs as well as
triples in (α, δ)-systems, as pairs might arise when we apply a linear map on the
arrangement; (2) We allow δ > 1 in (α, δ)-systems, whereas in the statement of the
Sylvester-Gallai theorem we have δ ∈ [0, 1]; (3) We only consider subspaces over real
numbers in (α, δ)-systems, and we will show that the Sylvester-Gallai theorem for
complex subspaces can be reduced to an (α, δ)-system for real subspaces.

We now state a few simple observations.

Lemma 3.4. Let V = (V1, V2, . . . , Vn), Vi ⊆ R`, be a list of subspaces that has an
(α, δ)-system S = (S1, S2, . . . , Sw), Sj ⊆ [n]. Then δn2/3 ≤ w ≤ αn2/2 and δ/α ≤
3/2.

Proof. We consider the sum
∑

j∈[w] |Sj|. By the definition of (α, δ)-systems,

n · δn ≤
∑
j∈[w]

|Sj| ≤ 3w =⇒ δn2/3 ≤ w.

Then we consider the number of pairs
∑

j∈[w]

(|Sj |
2

)
,

w ≤
∑
j∈[w]

(
|Sj|
2

)
≤ α

(
n

2

)
≤ αn2/2.

It follows that δ/α ≤ 3/2.

Lemma 3.5. Given a list of subspaces V = (V1, V2, . . . , Vn), Vi ⊆ R`, and a list of
index sets S = (S1, S2, . . . , Sw), Sj ⊆ [n]. If w ≥ δn2 and S satisfies the first, second
and fourth requirements in Definition 3.3, there must exist a sublist V ′ of V and a
sublist S ′ of S such that |V ′| ≥ δn/(2α) and S ′ is an (α, δ/2)-system of V ′.

Proof. We iteratively remove every Vi such that i appears in less than δn/2 index
sets, and remove the index sets in which i appears. There were n subspaces in
total, so eventually we remove at most n · δn/2 index sets, and we have at least
δn2 − δn2/2 ≥ δn2/2 > 0 remaining index sets. Since there are remaining index sets,
there are also remaining subspaces. Let Vi1 be a remaining subspace. Because i1
appears in at least δn/2 index sets and each pair {i1, i2} (i2 ∈ [n] \ {i1}) appears in
at most α index sets, there are at least δn/(2α) remaining subspaces. Let V ′ be the
list of these subspaces and S ′ be the list of the remaining index sets. Changing the
indices to 1, 2, . . . , |V ′|, we see that S ′ is an (α, δ/2)-system of V ′.
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Lemma 3.6. Let V = (V1, V2, . . . , Vn), Vi ⊆ R`, be a list of subspaces that has an
(α, δ)-system S = (S1, S2, . . . , Sw), Sj ⊆ [n]. Then for any linear map P : R` → R`,
S is also an (α, δ)-system of V ′ = (V ′1 , V

′
2 , . . . , V

′
n), where V ′i = P (Vi).

Proof. This is trivial since if Vi1 ⊆ Vi2 + Vi3 ,

V ′i1 = P (Vi1) ⊆ P (Vi2 + Vi3) = P (Vi2) + P (Vi3) = V ′i2 + V ′i3 .

Lemma 3.7. Let V = (V1, V2, . . . , Vn), Vi ⊆ R`, be a list of subspaces that has an
(α, δ)-system, P : R` → R` be any linear map, and V ′ = (V ′1 , V

′
2 , . . . , V

′
n′) be the

list of nonzero (not {0}) subspaces among P (V1), P (V2), . . . , P (Vn). Suppose V ′ is
nonempty. Then V ′ has an (α, δ′)-system, where δ′ = δn/n′.

Proof. By Lemma 3.6, we can find an (α, δ)-system S = (S1, S2, . . . , Sw), Sj ⊆ [n],
of the list (P (V1), P (V2), . . . , P (Vn)). For every i ∈ [n] with P (Vi) = {0}, we remove
i from all Sj’s that contain i. And let S ′1, S

′
2, . . . , S

′
w denote the index sets after this

procedure. We claim that for every j ∈ [w], |S ′j| = 0, 2 or 3 and for |S ′j| > 0, S ′j
satisfies the second requirement in Definition 3.3.

We first show that |S ′j| 6= 1. Assume there is some j ∈ [w] with |S ′j| = 1, and
say S ′j = {i}. Then we have P (Vi) ⊆ {0} + {0} (if the original Sj contains three
elements) or P (Vi) = {0} (if the original Sj contains two elements). In both cases
we have P (Vi) = {0} and i should have been removed from S ′j, which leads to a
contradiction.

Next, if |S ′j| = |Sj|, S ′j satisfies the second requirement in Definition 3.3 since
S ′j = Sj. It remains to consider the case that |S ′j| = 2 and |Sj| = 3. Say Sj =
{i1, i2, i3} and S ′j = {i1, i2} (i.e., P (Vi3) = {0}). We have P (Vi1) ⊆ P (Vi2) + {0} and
P (Vi2) ⊆ P (Vi1) + {0}. It follows immediately that P (Vi1) = P (Vi2). Therefore S ′j
satisfies the second requirement in Definition 3.3.

Note that for every i ∈ [n] with P (Vi) 6= {0}, i appears in δn = δ′n′ sets S ′j. We
remove empty sets from S ′1, S

′
2, . . . , S

′
w. One can see that the remaining list of sets

(with indices in them changed to 1, 2, . . . , n′) is an (α, δ′)-system of V ′.

Theorem 3.2 (the Sylvester-Gallai theorem for subspaces) will be derived from the
following Theorem 3.8, which gives an dimension upper bound for (α, δ)-systems. We
defer the proof of Theorem 3.8 to Section 3.4.

Theorem 3.8. Suppose that V = (V1, V2, . . . , Vn), Vi ⊆ R`, is a list of subspaces that
has an (α, δ)-system, and k ≥ dim(Vi) for every i ∈ [n]. Then

dim(V1 + V2 + · · ·+ Vn) = O(α2k4/δ2),

where O(·) hides an absolute constant independent of α, δ, k and n.

Proof of Theorem 3.2 using Theorem 3.8. In this proof, we use spanR to denote the
span using real coefficients, and spanC to denote the span using complex coefficients.
For every j ∈ [n], let {vj1,vj2, . . . ,vjk} be a basis of Vj and define

V̂j = spanR

{
Re(vj1),Re(vj2), . . . ,Re(vjk), Im(vj1), Im(vj2), . . . , Im(vjk)

}
.
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Claim 3.9. V̂j = {Re(v) : v ∈ Vj} for every j ∈ [n].

Proof. For every v̂ ∈ V̂j, there exist λ1, λ2, . . . , λk, µ1, µ2, . . . , µk ∈ R such that

v̂ =
k∑
s=1

(
λs Re(vjs) + µs Im(vjs)

)
=

k∑
s=1

(
λs Re(vjs) + µs Re(−ivjs)

)
= Re

( k∑
s=1

(λs − iµs)vjs
)
.

Since λs − iµs (s ∈ [k]) can take all values in C, the claim is proved. �

We need the following claim from [BDWY13, Lemma 6] based on [Hil73, Theo-
rem 4]:

Claim 3.10 ([BDWY13]). Given a set A of r ≥ 3 elements, we can construct a
family of r2−r triples of elements in A with the following properties: (1) Every triple
contains three distinct elements; (2) Every element of A appears in exactly 3(r − 1)
triples; (3) Every pair of two distinct elements in A is contained together in at most
6 triples.

We say a 2k-dimensional vector space U ⊆ C` is special if U contains at least
three of V1, V2, . . . , Vn. We define the size of a special space as the number of Vj’s
contained in it. For a special space U with size r ≥ 3, we consider the indices of
the r subspaces in U , and pick r2 − r triples of these indies with the properties in
Claim 3.10. Let S be the family of the triples picked for all special spaces.

Claim 3.11. S is a (6, 3δ)-system of V = (V̂1, V̂2, . . . , V̂n).

Proof. For every triple {j1, j2, j3} ∈ S, we can see that Vj1 , Vj2 , Vj3 are contained in
the same 2k-dimensional special space. And by Vj1 ∩ Vj2 = {0}, the space must be
Vj1 + Vj2 and hence Vj3 ⊆ Vj1 + Vj2 . By Claim 3.9,

V̂j3 =
{

Re(v) : v ∈ Vj3
}
⊆
{

Re(u) + Re(w) : u ∈ Vj1 ,w ∈ Vj2
}

= V̂j1 + V̂j2 .

Similarly, V̂j1 ⊆ V̂j2 + V̂j3 and V̂j2 ⊆ V̂j1 + V̂j3 .
Next, since for every j1 ∈ [n], there are at least δn values of j2 ∈ [n] \ {j1} such

that there is a special space containing Vj1 and Vj2 , the number of triples in S that
contains j1 is∑

special space U
s.t. Vj1⊆U

3
(
size(U)− 1

)
= 3

∑
special space U

s.t. Vj1⊆U

∣∣∣{j2 6= j1 : Vj2 ⊆ U}
∣∣∣ ≥ 3δn.

Finally, every pair {j1, j2} ⊆ [n] appears in at most 6 triples because Vj1 , Vj2 are
contained in at most one special space and {j1, j2} appears at most 6 times in the
triples constructed from this special space. �
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By Theorem 3.8, there is dim
(
V̂1 + V̂2 + · · ·+ V̂n

)
= O(62(2k)4/(3δ)2) = O(k4/δ2).

Then noting

V1 + V2 + · · ·+ Vn ⊆ spanC
j∈[n],s∈[k]

{
Re(vjs), Im(vjs)

}
,

V̂1 + V̂2 + · · ·+ V̂n = spanR
j∈[n],s∈[k]

{
Re(vjs), Im(vjs)

}
,

we have dim(V1 + V2 + · · ·+ Vn) ≤ dim(V̂1 + V̂2 + · · ·+ V̂n) = O(k4/δ2).

3.3 Barthe’s theorem for subspaces

In this section, we generalize a theorem of Barthe [Bar98] from the one-dimensional
version (points) to higher dimension (subspaces)2. Using this theorem, we can find
a change of basis that brings a set of subspaces to “well-separated” positions (i.e.,
every two subspaces in a dependent triple have large angles), which a key step in our
proof of Theorem 3.8 (see Section 3.1.1 for an overview of the entire proof). The
one-dimensional version of Barthe’s theorem was also proved in [DSW14a], which
gives the first super-quadratic lower bound for 3-query LCCs. To state the subspace
version of the theorem, we need the following definition:

Definition 3.12 (admissible basis set and vector). Let V = (V1, V2, . . . , Vn), Vi ⊆ R`

be a list of subspaces. An index set H ⊆ [n] is called a V-admissible basis set if

dim
(∑
i∈H

Vi

)
=
∑
i∈H

dim(Vi) = dim
(∑
i∈[n]

Vi

)
,

i.e., the subspaces with indices in H span the entire
∑

i∈[n] Vi, and every subspace

with index in H has intersection {0} with the span of the other subspaces with indices
in H.

A V-admissible basis vector is the indicator vector 1H ∈ {0, 1}n of some V-
admissible basis set H.

The subspace version of Barthe’s theorem is as following:

Theorem 3.13. Given a list of subspaces V = (V1, V2, . . . , Vn), Vi ⊆ R`, with V1 +
V2 + · · · + Vn = R` and a vector p = (p1, p2, . . . , pn) ∈ Rn in the convex hull of all
V-admissible basis vectors. Then there exists an invertible linear map M : R` → R`

such that
n∑
i=1

pi ProjM(Vi)
= I`×`,

where M(Vi) is the subspace obtained by applying M on Vi, and ProjM(Vi)
denotes the

orthogonal projection matrix onto M(Vi).

2Following the initial publication of this work in an earlier version of [DH16], it was brought to
our attention that Bennet et al. [BCCT08] already proved a high-dimensional version of Barthe’s
result and, in fact, our generalization could also be derived (with some work) from their results.
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The proof of the one-dimensional case in [Bar98] proceeds by defining a strictly
convex function f(t1, . . . , tm) on Rm and shows that the function is bounded. This
means that there must exist a maximum point at which all partial derivatives of f
vanish. Solving the resulting equations gives the required invertible map. We follow
a similar strategy, defining an appropriate bounded function f(t1, . . . , tm, R1, . . . , Rn)
with more variables, where the extra variables R1, . . . , Rn represent the action of the
orthogonal group O(k) on each of the subspaces. However, in our case, we cannot
show that f is strictly convex and so a maximum might not exist. Instead we show
that there exists a point at which all partial derivatives are very small (smaller than
any ε > 0), which is sufficient for our purposes.

We introduce the function f(t1, . . . , tm, R1, . . . , Rn) in Section 3.3.1, and show that
there is a point with very small partial derivatives in Section 3.3.2. Then we prove
Theorem 3.13 (the subspace version of Barthe’s theorem) in Section 3.3.3. Lastly, in
Section 3.3.4 we state a convenient variant of the theorem that will be used later in
the proof of our main result Theorem 3.8.

3.3.1 The function and basic properties

We use the notations V = (V1, V2, . . . , Vn) and p = (p1, p2, . . . , pn) that are introduced
in the statement of Theorem 3.13. Let k1, k2, . . . , kn be the dimensions of V1, V2, . . . , Vn
respectively and m = k1 + k2 + · · · + kn. For every i ∈ [n], we fix {vi1,vi2, . . . ,viki}
to be some basis of Vi (not necessarily orthonormal). A set I ⊆ [m] is called a good
basis set if

I =
⋃
i∈H

{
(i, 1), (i, 2), . . . , (i, ki)

}
for some V-admissible basis set H. We can see that for any good basis set I, the set
{vij : (i, j) ∈ I} is a basis of R`. Throughout our proof, we identify [m] with pairs
(i, j), where i ∈ [n], j ∈ [ki], and for a vector a ∈ Rm we use aij to denote the entry
at position

∑
i′<i ki′ + j. Let γ ∈ Rm be the vector with

γij = pi ∀i ∈ [n], j ∈ [ki]. (3.1)

For a list of vectors a1,a2, . . . ,aq, we use [a1,a2, . . . ,aq] to denote the matrix con-
sisting of columns a1,a2, . . . ,aq. Let O(s) be the group of s× s orthogonal matrices.
Define X : Rm×O(k1)×· · ·×O(kn)→ R`×` as the following matrix valued function:

X(t, R1, . . . , Rn) =
∑

i∈[n],j∈[ki]

etijxijxij
T, (3.2)

where for every i ∈ [n] the vectors xij are given by

[xi1,xi2, . . . ,xiki ] = [vi1,vi2, . . . ,viki ] ·Ri. (3.3)
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We note that for i ∈ [n], j ∈ [ki], xij is a function of Ri and {xi1,xi2, . . . ,xiki} is also
a basis of Vi. Define f : Rm ×O(k1)× · · · ×O(kn)→ R as

f(t, R1, . . . , Rn) = 〈γ, t〉 − ln det(X).

The next lemma shows that the function f is bounded from above over its domain.
The proof is similar to [Bar98, Proposition 3].

Lemma 3.14. There exists a constant C ∈ R such that f(t, R1, . . . , Rn) ≤ C for all
values of t, R1, . . . , Rn.

Proof. In this proof, we use F =
(

[m]
`

)
to denote the family of all `-element subsets

of [m]. For I ⊆ [m], we use 1I ∈ {0, 1}m to denote the indicator vector of I. Since
p is in the convex hull of all V-admissible basis vectors, we can write γ (defined in
Equation (3.1)) as a convex combination of indicator vectors of good basis sets:

γ =
∑
I∈F

µI1I , (3.4)

where µI ∈ [0, 1],
∑
µI = 1 and µI 6= 0 only if I is a good basis set.

In the proof, we will use the Cauchy-Binet formula (see [BW89, Section 4.6])
which states that for an `×m matrix A and an m× ` matrix B,

det(AB) =
∑
I∈F

det(AI) det(BI), (3.5)

where AI denotes the ` × ` submatrix of A consisting of columns with indices in I,
and BI denotes the `× ` submatrix of B consisting of rows with indices in I.

For I ∈ F , we use LI to denote the ` × ` matrix consists of columns xij for all
(i, j) ∈ I. By Equation (3.5),

det(X) = det

( ∑
i∈[n],j∈[ki]

etijxijxij
T

)

= det
(

[x11, . . . , . . . ,xnkn ] · [et11x11, . . . , . . . , e
tnknxnkn ]T

)
=
∑
I∈F

(
det(LI) · det(LI

T)
∏

(i,j)∈I

etij
)

=
∑
I∈F

e〈t,1I〉 det(LI)
2.

Then by the weighted AM-GM inequality,

det(X) ≥
∑
I⊆F :
µI 6=0

µI ·
e〈t,1I〉

µI
det(LI)

2 ≥
∏
I⊆F :
µI 6=0

(
e〈t,1I〉 det(LI)

2

µI

)µI
.
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Using Equation (3.4),

det(X) ≥ e〈γ,t〉 ·
∏
I∈F :
µI 6=0

(
det(LI)

2

µI

)µI
.

Take the logarithm of both sides, and we are able to cancel the variable t in f :

f(t, R1, . . . , Rn) = 〈γ, t〉 − ln det(X) ≤
∑
I∈F :
µI 6=0

µI ln

(
µI

det(LI)2

)
. (3.6)

Since I is a good basis set for µI 6= 0, the matrices LI in the denominators have
full rank. Recall that the columns xij in LI are functions of the orthogonal matrices
R1, . . . , Rn (see Equation (3.3)). We can see that the right side of Equation (3.6) is a
well-defined continuous function over the compact set O(k1)×· · ·×O(kn). Therefore
there exists a finite upper bound for f .

3.3.2 Finding a point with small derivatives

The matrix X as defined in Equation (3.2) is always positive definite, since for any
w 6= 0,

wTXw =
∑

i∈[n],j∈[ki]

etij〈xij,w〉2 > 0,

provided that x11, . . . , . . . ,xnkn span the entire space R` (guaranteed by V1 + V2 +
· · · + Vn = R`). Let M : Rm ×O(k1)× · · · ×O(kn) → R`×` be any invertible matrix
satisfying

MTM = X−1.

In a later part of the proof, we will show that the linear map defined by M “almost”
satisfies the requirement of Theorem 3.13 when t, R1, . . . , Rn take appropriate values,
and based on this, we can show the existence of the required linear map.

We first find a value of (R1, . . . , Rn) for every t ∈ Rm with some specific properties,
and then find an appropriate value of t.

Lemma 3.15. For every t ∈ Rm, there exists R∗1(t) ∈ O(k1), . . . , R∗n(t) ∈ O(kn)
satisfying

1. f
(
t, R∗1(t), . . . , R∗n(t)

)
= max

R1,...,Rn

{
f(t, R1, . . . , Rn)

}
;

2. For every i ∈ [n], if tij = tij′ for some j 6= j′ ∈ [ki], then

〈Mxij,Mxij′〉 = 0,

where xij, xij′ and M denotes their values at
(
t, R∗1(t), . . . , R∗n(t)

)
.
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Proof. The first condition can be satisfied because of the compactness of O(k1) ×
· · · ×O(kn). We will show how to change

(
R∗1(t), . . . , R∗n(t)

)
, which already satisfies

the first condition, so that it also satisfies the second condition.
Fix an i ∈ [n]. We partition the indices of ti1, ti2, . . . , tiki into equivalence classes

J1, . . . , Jb ⊆ [ki] such that tij = tij′ for j, j′ in the same class and tij 6= tij′ for j, j′ in
different classes. We use tJr to denote the value of tij for j ∈ Jr, and LJr to denote
the matrix consisting of all columns xij with j ∈ Jr.

The terms in X that depend on Ri are

∑
r∈[b]

(
etJr

∑
j∈Jr

xijxij
T

)
=
∑
r∈[b]

(
etJr · LJrLJrT

)
=
∑
r∈[b]

(
etJr · LJrQrQr

TLJr
T
)
,

where Qr can take any |Jr| × |Jr| orthogonal matrix. Hence if we change the variable
R∗i (t) to R∗i (t)·diag(Q1, . . . , Qb), or equivalently, change LJr to LJrQr for every r ∈ [b],
the matrix X will not change, which means M and f will not change. Next, we find
appropriate Q1, . . . , Qb and apply the change.

For every r ∈ [b], we claim that there exists an orthogonal matrix Qr such that
the columns of MLJrQr are orthogonal. In fact, take a singular value decomposition
of MLJr :

MLJr = PΣQT,

where P is an `× ` orthogonal matrix, Σ is `× |Jr| matrix with nonzero entries only
on the diagonal, and Q is an |Jr|× |Jr| orthogonal matrix. It suffices to take Qr = Q.

We find such Q1, . . . , Qb and change R∗i (t) to R∗i (t) · diag(Q1, . . . , Qb). One can
see that the second condition of Lemma 3.15 is satisfied while the matrix M and the
value of f (which is still the maximum) are preserved. Doing this for every i ∈ [n],
we obtain the required

(
R∗1(t), . . . , R∗n(t)

)
.

Next, we show that there is a t∗ ∈ Rm at which all partial derivatives are small:

Lemma 3.16. For any ε > 0, there exists t∗ ∈ Rm such that for all i ∈ [n], j ∈ [ki],∣∣∣∣ ∂f∂tij (t∗, R∗1(t∗), . . . , R∗n(t∗)
)∣∣∣∣ ≤ ε,

where for every t ∈ Rm,
(
R∗1(t), . . . , R∗n(t)

)
denote an arbitrary choice of orthogonal

matrices that satisfy the requirements of Lemma 3.15.

This lemma follows immediately from the following more general lemma, as we
have shown that f(t, R1, . . . , Rn) is bounded from above in Lemma 3.14.

Lemma 3.17. Let A ⊆ Rh (h ∈ Z+) be a compact set. Suppose f : Rm×A → R and
y∗ : Rm → A are functions satisfying the following properties:

1. f is bounded from above and continuous on Rm ×A;

2. For every x ∈ Rm, f
(
x, y∗(x)

)
= max

y∈A

{
f(x, y)

}
;
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3. For every fixed y ∈ A, f(x, y) as a function of x is differentiable on Rm.

Then, for every ε > 0, there exists an x∗ ∈ Rm such that for every i ∈ [m],∣∣∣∣ ∂f∂xi (x∗, y∗(x∗))
∣∣∣∣ ≤ ε.

Proof. We use f ∗(x) to denote f(x, y∗(x)) in this proof. For the sake of contradiction,
assume that for any x ∈ Rm, there is an index i ∈ [m] such that∣∣∣∣ ∂f∂xi (x, y∗(x)

)∣∣∣∣ > ε.

It follows that there exists x′ 6= x with

f ∗(x′)− f ∗(x) ≥ f
(
x′, y∗(x)

)
− f

(
x, y∗(x)

)
≥ 0.9ε · ‖x′ − x‖2.

We consider the following nonempty set for x ∈ Rm:

G(x) =
{
x′ ∈ Rm : f ∗(x′)− f ∗(x) ≥ 0.9ε · ‖x′ − x‖2 > 0

}
.

Claim 3.18. For any x0 ∈ Rm, x1 ∈ G(x0) and x2 ∈ G(x1), we have x2 ∈ G(x0).

Proof. By the definitions of G(x0) and G(x1),

f ∗(x2)− f ∗(x0) =
(
f ∗(x2)− f ∗(x1)

)
+
(
f ∗(x1)− f ∗(x0)

)
≥ 0.9ε · ‖x2 − x1‖2 + 0.9ε · ‖x1 − x0‖2

≥ 0.9ε · ‖x2 − x0‖2.

We conclude the proof by noting x2 6= x0, which follows from f ∗(x2) > f ∗(x1) >
f ∗(x0). �

Claim 3.19. For any x0 ∈ Rm, there exists some x1 ∈ G(x0) with the following
properties: (1) ‖x1 − x0‖2 ≥ ‖x − x0‖2 for any x ∈ G(x0); (2) f ∗(x1) ≥ f ∗(x) for
any x ∈ Rm with ‖x− x0‖2 = ‖x1 − x0‖2.

Proof. Fix x0 ∈ Rm. We define

g(x, y) = f(x, y)− f ∗(x0)− 0.9ε · ‖x− x0‖2,

and
G̃ =

{
(x, y) ∈ Rm ×A : g(x, y) ≥ 0

}
= g−1

(
[0,+∞)

)
.

Clearly, G̃ 6= ∅. We show that G̃ is compact. Since f(x, y) is bounded from above,

we have g(x, y) < 0 for any (x, y) with sufficiently large ‖x − x0‖2. Hence G̃ is
bounded. The function g(x, y) is continuous since f(x, y) is continuous. Hence
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G̃ = g−1
(
[0,+∞)

)
is closed. Therefore G̃ is compact, and there exists

Z = max
(x,y)∈G̃

{
‖x− x0‖2

}
.

We have Z > 0, because for any x ∈ G(x0), there is
(
x, y∗(x)

)
∈ G̃ and ‖x−x0‖2 > 0.

We consider the compact set

B =
{
x ∈ Rm : ‖x− x0‖2 = Z

}
×A,

and let
(
x1, y

∗(x1)
)
∈ B be any point where f is maximized over B. To prove the

claim, it suffices to show x1 ∈ G(x0). In fact, pick any (x, y) ∈ G̃ with ‖x−x0‖2 = Z
and there is

f ∗(x1)− f ∗(x0) ≥ f(x, y)− f ∗(x0) ≥ 0.9ε · ‖x− x0‖2 = 0.9ε · ‖x1 − x0‖2 > 0. �

We fix x0,x1,x2 ∈ Rm such that x1 ∈ G(x0), x2 ∈ G(x1) and x1 satisfies the
properties in Claim 3.19. By Claim 3.18, we have x2 ∈ G(x0). Since x2 ∈ G(x1), we
have f ∗(x2) > f ∗(x1). Combining x2 ∈ G(x0), f ∗(x2) > f ∗(x1) with Claim 3.19, we
can see ‖x2 − x0‖2 < ‖x1 − x0‖2. We consider the the compact set

C =
{
x ∈ Rm : ‖x− x0‖2 ≤ ‖x1 − x0‖2

}
×A,

and let
(
x∗, y∗(x∗)

)
∈ C be any point where f is maximized over C. We have f ∗(x∗) ≥

f ∗(x2) > f ∗(x1). Hence ‖x∗ − x0‖2 < ‖x1 − x0‖2 by Claim 3.19. This means that
x = x∗ is a local maximum of f(x, y∗(x∗)) with y = y∗(x∗) fixed. Therefore

∂f

∂xi

(
x∗, y∗(x∗)

)
= 0 ∀i ∈ [m].

3.3.3 Proof of Theorem 3.13

Before the proof, we need the following lemma:

Lemma 3.20. Given any ε > 0. Suppose t∗, R∗1(t∗), . . . , R∗n(t∗) satisfy the require-
ments of Lemma 3.15 and Lemma 3.16. Let M and xij (i ∈ [n], j ∈ [ki]) denote their
values at

(
t∗, R∗1(t∗), . . . , R∗n(t∗)

)
. Then we have 〈Mxij,Mxij′〉 = 0 for all i ∈ [n]

and j 6= j′ ∈ [ki].

Proof. In the proof we also use X to denote its value at
(
t∗, R∗1(t∗), . . . , R∗n(t∗)

)
. We

fix i ∈ [n], j 6= j′ ∈ [ki], and prove 〈Mxij,Mxij′〉 = 0. If t∗ij = t∗ij′ , this is guaranteed
by Lemma 3.15. We only consider the case t∗ij 6= t∗ij′ .

Our idea is to replace the fixed vectors xij and xij′ with a pair of variables (which
are linear combinations of xij and xij′), and analyze the value of f . Formally, let
θ ∈ R be a parameter, and define the matrix Q(θ) as the ki × ki orthogonal matrix
obtained by replacing the 2× 2 submatrix of entries (j, j), (j, j′), (j′, j), (j′, j′) in the
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identify matrix Iki×ki with [
cos θ sin θ
− sin θ cos θ

]
,

where sin θ is the entry (j, j′) and − sin θ is the entry (j′, j). Let [x̃i1, x̃i2, . . . , x̃iki ] =
[xi1,xi2, . . . ,xiki ] ·Q(θ). We have

x̃ij = cos θ · xij − sin θ · xij′ , (3.7)

x̃ij′ = sin θ · xij + cos θ · xij′ . (3.8)

Define R̃(θ) = R∗i (t) ·Q(θ), and let X̃(θ) be the matrix that X would be if R∗i (t) was

replaced with R̃(θ). We consider the function f̃ : R→ R as defined below:

f̃(θ) = f
(
t∗, R∗1(t∗), . . . , R∗i−1(t∗), R̃(θ), R∗i+1(t∗), . . . , R∗n(t∗)

)
= 〈γ, t∗〉 − ln det

(
X̃(θ)

)
.

By Lemma 3.15, f̃(θ) has a maximum at θ = 0 since R̃(0) = R∗i (t). Next, we

calculate the derivative of f̃ at θ = 0. We will use the following formula (see [Lax07,
Chapter 9]) for an invertible matrix A and variable s:

d

ds

(
ln det(A)

)
= tr

(
A−1 d

ds
A
)
. (3.9)

Note that the only terms in X̃(θ) (according to Equation (3.2)) that depend on θ are

et
∗
ij x̃ijx̃ij

T and e
t∗
ij′ x̃ij′x̃ij′

T.

Using Equation (3.9), we have

df̃

dθ
(0) = − tr

(
X−1

(
et
∗
ij · d

dθ

∣∣∣∣
θ=0

x̃ijx̃ij
T + e

t∗
ij′ · d

dθ

∣∣∣∣
θ=0

x̃ij′x̃ij′
T
))

. (3.10)

By Equation (3.7),

d

dθ

∣∣∣∣
θ=0

x̃ijx̃ij
T =

d

dθ

∣∣∣∣
θ=0

(cos θ · xij − sin θ · xij′)(cos θ · xij − sin θ · xij′)T

=
d

dθ

∣∣∣∣
θ=0

(
(cos θ)2 · xijxijT + (sin θ)2 · xij′xij′T

− sin θ cos θ ·
(
xijxij′

T + xij′xij
T
))

= −
(
xijxij′

T + xij′xij
T
)
.
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Hence

− tr

(
X−1 · et∗ij · d

dθ

∣∣∣∣
θ=0

x̃ijx̃ij
T

)
= et

∗
ij · tr

(
MTM ·

(
xijxij′

T + xij′xij
T
))

= et
∗
ij · tr

(
M ·

(
xijxij′

T + xij′xij
T
)
·MT

)
= 2et

∗
ij · 〈Mxij,Mxij′〉.

Similarly,

− tr

(
X−1 · et∗ij · d

dθ

∣∣∣∣
θ=0

x̃ij′x̃ij′
T

)
= −2e

t∗
ij′ · 〈Mxij,Mxij′〉.

Plugging these into Equation (3.10), we have

df̃

dθ
(0) = 2

(
et
∗
ij − et

∗
ij′
)
· 〈Mxij,Mxij′〉.

Since θ = 0 is a maximum for f̃(θ), the above derivative must be 0. Thus we have
proved 〈Mxij,Mxij′〉 = 0 for the case t∗ij 6= t∗ij′ .

Finally we are able to prove Theorem 3.13:

Proof of Theorem 3.13. Our proof consists of two steps. With slight abuse of nota-
tion, we will use a matrix to denote the linear map represented by this matrix.

Step 1: Fix some ε > 0. We obtain t∗, R∗1(t∗), . . . , R∗n(t∗) according to Lemma 3.15
and Lemma 3.16. In this step, we use X, M and xij (i ∈ [n], j ∈ [ki]) to
denote their values at

(
t∗, R∗1(t∗), . . . , R∗n(t∗)

)
. We will show that M satisfies

the requirement of Theorem 3.13 “approximately”.

For i ∈ [n], j ∈ [ki], we define

uij =
Mxij
‖Mxij‖2

and

εij =
∂f

∂tij

(
t∗, R∗1(t∗), . . . , R∗n(t∗)

)
.

By Lemma 3.20, {ui1,ui2, . . . ,uiki} is an orthonormal basis of M(Vi). And by
the choice of t∗, we have εij ∈ [−ε, ε]. Using Equation (3.9),

εij = pi − tr
(
X−1 · et∗ijxijxijT

)
= pi − et

∗
ij · tr

(
M · xijxijT ·MT

)
= pi − et

∗
ij · ‖Mxij‖2

2.
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Hence∑
i∈[n],j∈[ki]

(pi − εij) · uijuijT =
∑

i∈[n],j∈[ki]

et
∗
ij · ‖Mxij‖2

2 ·
(

Mxij
‖Mxij‖2

)(
Mxij
‖Mxij‖2

)T

=
∑

i∈[n],j∈[ki]

et
∗
ij ·MxijxijTMT

= MXMT

= I`×`,

where we used the fact X = M−1(MT)−1, which follows from MTM = X−1.
Since {ui1,ui2, . . . ,uiki} is an orthonormal basis of M(Vi),∥∥∥∥( n∑

i=1

pi ProjM(Vi)

)
− I`×`

∥∥∥∥
2

=

∥∥∥∥( n∑
i=1

pi

ki∑
j=1

uijuij
T
)
− I`×`

∥∥∥∥
2

=

∥∥∥∥ ∑
i∈[n],j∈[ki]

εij · uijuijT
∥∥∥∥

2

≤ ε
∑

i∈[n],j∈[ki]

‖uijuijT‖2

≤ εm,

where ‖ · ‖2 denotes the spectral norm.

Step 2: Let ε→ 0. Note that if we replace M with M/‖M‖2 (which has spectral
norm 1), the subspaces M(Vi) are not changed. Our previous arguments in this
section have shown the following: For any ε > 0, there is an invertible matrix
M with ‖M‖2 = 1 that satisfies∥∥∥∥( n∑

i=1

pi ProjM(Vi)

)
− I`×`

∥∥∥∥
2

≤ εm, (3.11)

and for every i ∈ [n], M(Vi) has an orthonormal basis {ui1,ui2, . . . ,uiki} with
uij = Mxij/‖Mxij‖2 (j ∈ [ki]), where [xi1,xi2, . . . ,xki ] = [vi1,vi2, . . . ,vki ] ·Ri

for some Ri ∈ O(ki).

We define a constant

C = min
i∈[n],j∈[ki]

{
1√

ki · ‖vij‖2

}
.

One can verify that 1/‖Mxij‖2 ≥ C for all i ∈ [n], j ∈ [ki], Ri ∈ O(ki)
and ‖M‖2 = 1. We see that the matrix [u11, . . . , . . . ,unkn ] is contained in the
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following two sets:

A =

{
[u′11, . . . , . . . ,u

′
nkn ] ∈ R`×m

: ‖u′ij‖2 = 1, 〈u′ij,u′ij′〉 = 0,∀i ∈ [n], j ∈ [ki], j
′ ∈ [ki] \ {j}

}
and

B =

{
M ′ · [v11, . . . , . . . ,vnkn ] · diag

(
R1, . . . , Rn

)
· diag(C11, . . . , . . . , Cnkn)

: M ′ ∈ R`×`, ‖M ′‖2 = 1, Ri ∈ O(ki), Cij ∈ [C,+∞),∀i ∈ [n], j ∈ [ki]

}
.

Note that we do not require M ′ in the definition of B to be invertible. Since A
is bounded and both A, B are closed, the intersection A∩B must be compact.
Hence there exists

[u∗11, . . . , . . . ,u
∗
nkn ] ∈ A ∩ B

such that for any ε > 0, there is [u11, . . . , . . . ,unkn ] satisfying all above require-
ments and ∥∥∥[u11, . . . , . . . ,unkn ]− [u∗11, . . . , . . . ,u

∗
nkn ]
∥∥∥

2
< ε.

By the definition of set B, there are M ′ ∈ R`×` with ‖M ′‖2 = 1 and Ri ∈ O(ki),
Cij ∈ [C,+∞) (i ∈ [n], j ∈ [ki]) such that

[u∗11, . . . , . . . ,u
∗
nkn ] = M ′ · [v11, . . . , . . . ,vnkn ]

· diag(R1, . . . , Rn) · diag(C11, . . . , . . . , Cnkn).

Then by the definition of set A, we see that [u∗i1,u
∗
i2, . . . ,u

∗
iki

] is an orthonormal
basis of M ′(Vi) for every i ∈ [n]. Using Inequality (3.11), we have

n∑
i=1

pi ProjM ′(Vi) =
n∑
i=1

pi

ki∑
j=1

u∗iju
∗
ij
T = lim

ε→0

(
n∑
i=1

pi

ki∑
j=1

uijuij
T

)
= I`×`, (3.12)

where we used the fact that uuT is a continuous function of vector u. To show
that M ′ satisfies the requirement of Theorem 3.13, it remains to show that M ′

is invertible. Assume the opposite, i.e., there exists a nonzero vector w ∈ R`

with wTM ′ = 0T. Then there is wTu∗ij = 0 for all i ∈ [n], j ∈ [ki], which
contradicts Equation (3.12). Thus Theorem 3.13 is proved.

3.3.4 A convenient form of Theorem 3.13

We give Theorem 3.22 below which is implied by Theorem 3.13 and is the form that
will be used in our proof of Theorem 3.8. Before stating the theorem, we need to
define admissible sets and admissible vectors, which have weaker requirements than
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admissible basis sets and admissible basis vectors (Definition 3.12) as they are not
required to span the entire arrangement.

Definition 3.21 (admissible set and vector). Let V = (V1, V2, . . . , Vn), Vi ⊆ R`, be a
list of subspaces. An index set H ⊆ [n] is called a V-admissible set if

dim
(∑
i∈H

Vi

)
=
∑
i∈H

dim(Vi),

i.e., every subspace with index in H has intersection {0} with the span of the other
subspaces with indices in H.

A V-admissible vector is the indicator vector 1H ∈ {0, 1}n of some V-admissible
set H.

Theorem 3.22. Given a list of subspaces V = (V1, V2, . . . , Vn), Vi ⊆ R`, and a vector
p ∈ Rn in the convex hull of all V-admissible vectors. Then there exists an invertible
linear map M : R` → R` such that for any unit vector w ∈ R`,

n∑
i=1

pi‖ProjM(Vi)
(w)‖2

2 ≤ 1,

where M(Vi) is the subspace obtained by applying M on Vi, and ProjM(Vi)
(w) is the

projection of w onto M(Vi).

Note that with a slight abuse of notation we use ProjM(Vi)
to denote both the

projection matrix and the projection map.

Proof. We construct a list of subspaces V ′ and a vector p′ = (p′1, p
′
2, . . . , p

′
|V ′|) that

satisfy the conditions of Theorem 3.13.
Let V = V1 +V2 +· · ·+Vn, d = dim(V ), {b1, b2, . . . , bd} be some orthonormal basis

of V , {e1, e2, . . . , ed} be the standard basis of Rd, and P : V → Rd be the linear map
such that P (bi) = ei for every i ∈ [d]. We use P (V) to denote the list of subspaces
(P (V1), P (V2), . . . , P (V2)). Appending the one-dimensional spaces span{ei} (i ∈ [d])
to P (V), we define

V ′ =
(
P (V1), P (V2), . . . , P (Vn), span{e1}, span{e2}, . . . , span{ed}

)
.

For a V-admissible set H ⊆ [n], we can see that it is also P (V)-admissible and V ′-
admissible. Moreover, there exists some G ⊆ {n + 1, n + 2, . . . , n + d} such that
H ′ = H ∪G is a V ′-admissible basis set. Assume

p =
∑

V-admissible H

µH1H ,

where µH ∈ [0, 1] and
∑
µH = 1. We define

p′ =
∑

V-admissible H

µH1H′ ,
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where H ′ is the V ′-admissible basis set extended from H as defined above. We have
p′ ∈ Rn+d and p′i = pi for all i ∈ [n].

Apply Theorem 3.13 on V ′ and p′. There exists an invertible linear map M ′ : Rd →
Rd such that

n∑
i=1

pi ProjM ′(P (Vi))
+

d∑
i=1

p′n+i ProjM ′(span{ei}) = Id×d.

For every unit vector w′ ∈ Rd, we have

1 = w′
T · Id×d ·w′

= w′
T ·

(
n∑
i=1

pi ProjM ′(P (Vi))
+

d∑
i=1

p′n+i ProjM ′(span{ei})

)
·w′

=
n∑
i=1

pi
∥∥ProjM ′(P (Vi))

(w′)
∥∥2

2
+

d∑
i=1

p′n+i

∥∥ProjM ′(span{ei})(w
′)
∥∥2

2

≥
n∑
i=1

pi
∥∥ProjM ′(P (Vi))

(w′)
∥∥2

2
.

For every unit vector w ∈ V , since P (w) is a unit vector in Rd,

n∑
i=1

pi
∥∥ProjP−1(M ′(P (Vi)))

(w)
∥∥2

2
=

n∑
i=1

pi
∥∥ProjM ′(P (Vi))

(P (w))
∥∥2

2
≤ 1,

where P−1 : Rd → V is the inverse of P with P−1(ei) = bi for every i ∈ [d]. Noting
that P−1(M ′(P (Vi))) ⊆ V for every i ∈ [n], the above inequality also holds for unit
vectorsw /∈ V , as their projections onto P−1(M ′(P (Vi))) are even shorter. We extend
the V → V invertible linear map P−1 ◦M ′ ◦ P to an R` → R` invertible linear map
M , and the theorem is proved.

3.4 Proof of the main theorem

We derive Theorem 3.8 from the following Theorem 3.23 with a recursive argument,
and then prove Theorem 3.23.

Theorem 3.23. Suppose that V = (V1, V2, . . . , Vn), Vi ⊆ R`, is a list of subspaces that
has an (α, δ)-system. Let k ≥ dim(Vi) for every i ∈ [n] and d = dim(V1+V2+· · ·+Vn).
Then for any β ∈ (0, 1), at least one of the following two cases holds:

1. d ≤ 120αk3/(βδ);

2. There are q ≥ δn/(10α) subspaces Vi1 , Vi2 , . . . , Viq and nonzero vectors z1 ∈
Vi1 , z2 ∈ Vi2 , . . . ,zq ∈ Viq such that rank{z1, z2, . . . ,zq} ≤ βd.
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Proof of Theorem 3.8 using Theorem 3.23. Initially, let n0 = n, δ0 = δ, d0 = d,
V

(0)
i = Vi for i ∈ [n0] and V(0) =

(
V

(0)
1 , V

(0)
2 , . . . , V

(0)
n0

)
= V . We repeatedly ap-

ply Theorem 3.23 with parameters nt, δt, dt and V(t) =
(
V

(t)
1 , V

(t)
2 , . . . , V

(t)
nt

)
for t ∈ N

(α, k and β are fixed).

Suppose that we are at the tth step, V(t) =
(
V

(t)
1 , V

(t)
2 , . . . , V

(t)
nt

)
is a list of

subspaces that has an (α, δt)-system, dim
(
V

(t)
i

)
≤ k for all i ∈ [nt], and dt =

dim
(
V

(t)
1 + V

(t)
2 + · · ·+ V

(t)
nt

)
. By Theorem 3.23, there are two cases:

1. dt ≤ 120αk3/(βδt). In this case, we do nothing and terminate.

2. There are q ≥ δtnt/(10α) nonzero vectors z1, z2, . . . ,zq from different subspaces
with rank{z1, z2, . . . ,zq} ≤ βdt.

In this case, we find a linear map P : R` → R` with kernel span{z1, z2, . . . ,zq},
and define V(t+1) =

(
V

(1)
1 , V

(2)
2 , . . . , V

(t+1)
nt+1

)
as the list of nonzero (not {0})

subspaces among P
(
V

(t)
1

)
, P
(
V

(t)
2

)
, . . . , P

(
V

(t)
nt

)
. We note that

dt+1 = dim
(
V

(t+1)
1 + V

(t+1)
2 + · · ·+ V (t+1)

nt+1

)
= dt − rank{z1, z2, . . . ,zq} ≥ (1− β)dt > 0. (3.13)

Hence the list V(t+1) is nonempty. By Lemma 3.7, V(t+1) has an (α, δt+1)-system
for δt+1 = δtnt/nt+1. Repeat the arguments for t+ 1.

Now we analyze the above procedure. By δn = δ0n0 = δ1n1 = δ2n2 = · · · ,
the number of subspaces with a vector zi (i ∈ [q]) mapped to {0} at each step is
q ≥ δn/(10α). Hence for every t ∈ N we have

nt∑
i=1

dim
(
V

(t)
i

)
≤

n∑
i=1

dim(Vi)− t ·
δn

10α
≤ kn− δtn

10α
.

Since the left side is at least nt > 0, we have

t ≤ kn

δn/(10α)
=

10αk

δ
.

Therefore the procedure terminates in 10αk/δ steps. Suppose t∗ ≤ 10αk/δ is the last
step, i.e., the case dt∗ ≤ 120αk3/(βδt∗) holds for t∗. By Inequality (3.13),

120αk3

βδt∗
≥ dt∗ ≥ (1− β)t

∗
d =⇒ d ≤ 1

(1− β)10αk/δ
· 120αk3

βδ
, (3.14)

where we used the fact δt∗ ≥ δ, which follows from δt∗nt∗ = δn and nt∗ ≤ n.
In Inequality (3.14), we set

β = min

{
1

2
,
δ

αk

}
. (3.15)
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One can see

(1− β)αk/δ ≥ 1

4

by considering the following two cases:

1. If δ/(αk) < 1/2, we have β = δ/(αk) and (1−β)αk/δ =
(
1− δ/(αk)

)αk/δ ≥ 1/4.

The last step is seen by noting that (1− x)1/x is a decreasing function.

2. If δ/(αk) ≥ 1/2, we have β = 1/2 and (1− β)αk/δ ≥ (1/2)αk/δ ≥ 1/4.

Therefore

d ≤ 410 · 120αk3

βδ
= O(α2k4/δ2),

where we used the fact 1/β = O(αk/δ), which follows from δ/α ≤ 3/2 (Lemma 3.4)
and Equation (3.15).

3.4.1 Proof of Theorem 3.23 – a special case

In this subsection, we consider the case that the subspaces V1, V2, . . . , Vn are “well-
separated”. Formally, we give the following definition:

Definition 3.24 (τ -separated spaces). We say two subspaces V, V ′ ⊆ R` are τ -
separated (0 < τ ≤ 1) if there is |〈u,u′〉| ≤ 1− τ for any two unit vectors u ∈ V and
u′ ∈ V ′.

We state two simple lemmas about τ -separated spaces:

Lemma 3.25. Given two τ -separated subspaces V, V ′ ⊆ R`. Let {u1,u2, . . . ,uk1}
and {u′1,u′2, . . . ,u′k2} be any orthonormal bases of V and V ′ respectively. For any
unit vector u ∈ V + V ′, if we write u as a linear combination of the bases vectors:

u = λ1u1 + λ2u2 + · · ·+ λk1uk1 + µ1u
′
1 + µ2u

′
2 + · · ·+ µk2u

′
k2
,

where λ1, λ2, . . . , λk1 , µ1, µ2, . . . , µk2 ∈ R, then we have

λ2
1 + λ2

2 + · · ·+ λ2
k1

+ µ2
1 + µ2

2 + · · ·+ µ2
k2
≤ 1

τ
.

Proof. Let v = λ1u1+λ2u2+· · ·+λk1uk1 ∈ V andw = µ1u
′
1+µ2u

′
2+· · ·+µk2u′k2 ∈ V

′.
Since V and V ′ are τ -separated,

〈v,w〉 ≥ −(1− τ) · ‖v‖2 · ‖w‖2 ≥ −
1− τ

2
· (‖v‖2

2 + ‖w‖2
2).

It follows that

1 = ‖u‖2
2 = ‖v +w‖2

2 = ‖v‖2
2 + ‖w‖2

2 + 2〈v,w〉 ≥ τ · (‖v‖2
2 + ‖w‖2

2).

The lemma is proved by noting ‖v‖2
2 = λ2

1 + λ2
2 + · · · + λ2

k1
and ‖w‖2

2 = µ2
1 + µ2

2 +
· · ·+ µ2

k2
.
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Lemma 3.26. Given two subspaces V, V ′ ⊆ R` that are not τ -separated. For any
orthonormal basis {u1,u2, . . . ,uk1} of V , there exists j ∈ [k1] with

‖ProjV ′(uj)‖2
2 ≥

(1− τ)2

k1

,

where ProjV ′(uj) is the projection of uj onto V ′.

Proof. Let u ∈ V , u′ ∈ V ′ be unit vectors such that |〈u,u′〉| > 1 − τ . Then
‖ProjV ′(u)‖2 ≥ |〈u,u′〉| > 1 − τ . Suppose u = λ1u1 + λ2u2 + · · · + λk1uk1 , where
λ2

1 + λ2
2 + · · ·+ λ2

k1
= 1. By the Cauchy-Schwarz inequality,

(1− τ)2 < ‖ProjV ′(u)‖2
2 ≤

( k1∑
j=1

|λj| · ‖ProjV ′(uj)‖2

)2

≤
( k1∑
j=1

λ2
j

)( k1∑
j=1

‖ProjV ′(uj)‖2
2

)
=

k1∑
j=1

‖ProjV ′(uj)‖2
2.

Therefore there exists j ∈ [k1] with ‖ProjV ′(uj)‖2
2 ≥ (1− τ)2/k1.

The following theorem handles the “well-separated” case of Theorem 3.23.

Theorem 3.27. Suppose V = (V1, V2, . . . , Vn), Vi ∈ R`, is a list of subspaces that has
an (α, δ)-system S = (S1, S2, . . . , Sw), Sj ⊆ [n]. Let k ≥ dim(Vi) for every i ∈ [n]
and d = dim(V1 + V2 + · · ·+ Vn). If for every j ∈ [w] and {i1, i2} ⊆ Sj, the subspaces
Vi1 and Vi2 are τ -separated, then d ≤ αk/(τδ).

Proof. Let k1, k2, . . . , kn be the dimensions of V1, V2, . . . , Vn respectively and m =
k1 + k2 + · · · + kn. For every i ∈ [n], we fix Bi = {ui1,ui2, . . . ,uiki} to be some
orthonormal basis of Vi. We use L to denote the ` ×m matrix consists of columns
u11, . . . , . . . ,unkn . For s ∈ [m], we use ψ(s) ∈ [n] to denote the integer satisfying

k1 + k2 + · · ·+ kψ(s)−1 < s ≤ k1 + k2 + · · ·+ kψ(s)−1 + kψ(s).

In other words, the sth column of L is a vector in Bψ(s). We will prove an upper bound
for d = rank(L) by constructing a high rank m×m matrix Y such that LY = 0.

Claim 3.28. For s ∈ [m] and an index set Sj (j ∈ [w]) that contains ψ(s), there
exists a vector c ∈ Rm such that Lc = 0, cs = 1,

∑
t6=s c

2
t ≤ 1/τ , and for t ∈ [m]\{s},

ct 6= 0 only if ψ(t) ∈ Sj \ {ψ(s)}.

Proof. Let u denote the sth column of L. There are two cases as follows:
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Case 1: |Sj| = 2. Say Sj = {ψ(s), i}. We have Vψ(s) = Vi. Hence there exist coeffi-
cients λ1, λ2, . . . , λki ∈ R with λ2

1 + λ2
2 + · · ·+ λ2

ki
= 1 such that

u− λ1ui1 − λ2ui2 − · · · − λkiuiki = 0.

We can obtain from this equation a vector c ∈ Rm such that Lc = 0, cs = 1,
ct 6= 0 only if t = s or ψ(t) = i, and

∑
t6=s c

2
t = λ2

1 + λ2
2 + · · ·+ λ2

k2
= 1 ≤ 1/τ .

Case 2: |Sj| = 3. Say Sj = {ψ(s), i, i′}. We have Vψ(s) ⊆ Vi + Vi′ . Hence there exist
coefficients λ1, λ2, . . . , λki , µ1, µ2, . . . , µki′ ∈ R such that

u− λ1ui1 − λ2ui2 − · · · − λkiuiki − µ1ui′1 − µ2ui′2 − · · · − µki′ui′ki′ = 0.

We can obtain from this equation a vector c ∈ Rm such that Lc = 0, cs = 1,
ct 6= 0 only if t = s or ψ(t) ∈ {i, i′}, and by Lemma 3.25,

∑
t6=s c

2
t = λ2

1 + λ2
2 +

· · ·+ λ2
ki

+ µ2
1 + µ2

2 + · · ·+ µ2
ki′
≤ 1/τ . �

Claim 3.29. For every s ∈ [m], there exists a vector y ∈ Rm satisfying Ly = 0,
ys = dδne, and

∑
t6=s y

2
t ≤ αdδne/τ .

Proof. There are at least δn index sets Sj that contain ψ(s). Let J ⊆ [w], |J | = dδne,
be such that ψ(s) ∈ Sj and for every j ∈ J . Using Claim 3.28, we find a vector
cj = (cj1, cj2 , . . . , cjm)T ∈ Rm for each j ∈ J . Let

y =
∑
j∈J

cj.

Clearly, we have Ly = 0 and ys = dδne. It remains to consider
∑

t6=s y
2
t . For

t ∈ [m] \ {s} with ψ(t) = ψ(s), we have cjt = 0 for every j ∈ J . For t ∈ [m]
with ψ(t) 6= ψ(s), since there are at most α index sets that contain {ψ(s), ψ(t)}, the
number of nonzero elements in {cjt}j∈J is at most α. Hence∑

t6=s

y2
t =

∑
t6=s

(∑
j∈J

cjt

)2

≤
∑
t6=s

(
α ·
∑
j∈J

c2
jt

)
= α

∑
j∈J

(∑
t6=s

c2
jt

)
≤ αdδne

τ
. �

Using Claim 3.29, we find vectors ys ∈ Rm for every s ∈ [m]. Define Y to be the
matrix consists of columns y1,y2, . . . ,ym. Clearly, we have LY = 0. By Lemma 2.17,

rank(Y ) ≥ tr(Y )2

‖Y ‖2
F

≥ (m · dδne)2

m · dδne2 +m · αdδne/τ
=

m

1 + α/(τdδne)
≥ m− αm

τdδne
.

Noting that m ≤ kn, we have

d = rank(L) ≤ αm

τdδne
≤ αk

τδ
.
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3.4.2 Proof of Theorem 3.23 – general case

In this subsection we prove Theorem 3.23 for all cases.

Lemma 3.30. Suppose V = (V1, V2, . . . , Vn), Vi ⊆ R`, is a list of subspaces that has
an (α, δ)-system. Let k ≥ dim(Vi) for every i ∈ [n] and d = dim(V1 + V2 + · · ·+ Vn).

Assume β ∈ (0, 1) is such that the second case of Theorem 3.23 does not hold.
That is, for any q ≥ δn/(10α) subspaces Vi1 , Vi2 , . . . , Viq and nonzero vectors z1 ∈
Vi1 , z2 ∈ Vi2 , . . . ,zq ∈ Viq , there is rank{z1, z2, . . . ,zq} > βd.

Then there exists p = (p1, p2, . . . , pn) in the convex hull of all V-admissible vectors
and an index set I ⊆ [n] of size |I| ≥ (1 − δ/(10α))n such that pi ≥ βd/(kn) for all
i ∈ I.

Note that since δ/(10α) < 1 by δ/α ≤ 3/2 (Lemma 3.4), the requirement on |I|
in the lemma is non-trivial.

Proof. We show the following claim first:

Claim 3.31. For any E ⊆ [n] with |E| ≥ δn/(10α), we can find a V-admissible set
H ⊆ E with |H| ≥ βd/k.

Proof. We construct H in the following way: Initially let H = ∅. Then repeatedly
find an i0 ∈ E \H with Vi0 ∩

(∑
i∈H Vi

)
= {0} and add i0 to H, until such an i0 does

not exist.
We claim that |H| ≥ βd/k. Note that when the above procedure ends, for every

i0 ∈ E \ H, there exists a nonzero vector zi0 in both Vi0 and
∑

i∈H Vi. We use the
condition of Lemma 3.30 for the |E| ≥ δn/(10α) subspaces that have indices in E.
Pick an arbitrary vector from each Vi0 with i0 ∈ H, and pick zi0 from each Vi0 with
i0 ∈ E\H. Then these vectors have rank at least βd. On the other hand, these vectors
are contained in the space

∑
i∈H Vi, which has dimension at most k|H|. Therefore

k|H| ≥ βd and |H| ≥ βd/k. �

Using Claim 3.31 repeatedly, we find V-admissible sets H1 ∈ [n] with |H1| ≥ βd/k,
H2 ∈ [n] \H1 with |H2| ≥ βd/k, H3 ∈ [n] \ (H1 ∪H2) with |H3| ≥ βd/k, and so on.
We do this until there are less than δn/(10α) indices left. Let t be the total number
of V-admissible sets in this list. We have

t ≤ n

βd/k
=
nk

βd
.

Define I = H1 ∪H2 ∪ · · · ∪Ht. There is

|I| ≥ n− δn

10α
=

(
1− δ

10α

)
n.

Define

p =
1

t
·

t∑
i=1

1Hi
,
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where 1Hi
∈ {0, 1}n is the indicator vector of Hi. Clearly, p is in the convex hull of

V-admissible vectors, and for every i ∈ I,

pi ≥
1

t
≥ βd

nk
.

Finally, we are able to prove Theorem 3.23:

Proof. For the sake of contradiction, we assume that neither case of Theorem 3.23
holds.

By Lemma 3.30, there is a vector p = (p1, p2, . . . , pn) in the convex hull of all
V-admissible vectors and an index set I ⊆ [n] of size |I| ≥ (1− δ/(10α))n such that
pi ≥ βd/(kn) for all i ∈ I. We apply Theorem 3.22 with p = (p1, p2, . . . , pn), and
obtain an invertible linear map M : R` → R` such that for any unit vector w ∈ R`,

n∑
i=1

pi‖ProjV ′i (w)‖2
2 ≤ 1,

where V ′i denotes M(Vi). Since pi ≥ βd/(kn) for every i ∈ I, we have∑
i∈I

‖ProjV ′i (w)‖2
2 ≤

kn

βd
. (3.16)

We will reduce the problem to the “well-separated” case discussed in the previous
subsection. We say a pair {i1, i2} ⊆ [n] is bad if V ′i1 , V

′
i2

are not (1/2)-separated.
Let S = (S1, S2, . . . , Sw) be the (α, δ)-system of V . By Lemma 3.6, S is also an
(α, δ)-system of V ′ = (V ′1 , V

′
2 , . . . , V

′
n). Next, we estimate the number of sets among

S1, S2, . . . , Sw that contain a bad pair.

Claim 3.32. For every i0 ∈ I, there are at most δn/(30α) values of i ∈ I such that
the pair {i0, i} is bad.

Proof. Let k0 be the dimension of V ′i0 and {u1,u2, . . . ,uk0} be an orthonormal basis
of V ′i0 . For any i ∈ I such that V ′i0 and V ′i are not (1/2)-separated, by Lemma 3.26,
there must be j ∈ [k0] with

‖ProjV ′i (uj)‖2
2 ≥

1

4k0

≥ 1

4k
. (3.17)

Set w = uj in Inequality (3.16). We have∑
i∈I

‖ProjV ′i (uj)‖2
2 ≤

kn

βd
.

Hence there are at most
kn

βd

/
1

4k
=

4k2n

βd
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values of i ∈ I satisfying Inequality (3.17) for every fixed j ∈ [k0]. It follows that the
number of bad pairs {i0, i} with i ∈ I is

k0 ·
4k2n

βd
≤ 4k3n

βd
≤ δn

30α
.

In the last step, we used the assumption d > 120αk3/(βδ). �

Using this claim, the total number of bad pairs in [n]× [n] is at most

∣∣([n] \ I)× [n]
∣∣+ |I| · δn

30α
≤ δn2

10α
+
δn2

30α
=

2δn2

15α
.

We remove every Sj ∈ S that contains a bad pair, and use S ′ to denote the list of the
remaining sets. Since each pair appears at most α times, we have removed at most
2δn2/15 sets. Noting that originally we have |S| ≥ δn2/3 by Lemma 3.4,

|S ′| ≥ δn2

3
− 2δn2

15
≥ δn2

5
.

By Lemma 3.5, there is a sublist V ′′ = (V ′′1 , V
′′

2 , . . . , V
′′
n′) = (V ′i1 , V

′
i2
, . . . , V ′in′ ) of V ′

and a sublist S ′′ of S ′ such that n′ ≥ δn/(10α) and S ′′ is an (α, δ/10)-system of V ′′.
Now we Theorem 3.27 (the “well-separated” case) on V ′′ and S ′′,

dim
(
V ′i1 + V ′i2 + · · ·+ V ′in′

)
≤ αk

(1/2) · δ/10
=

20αk

δ
≤ βd.

In the last step, we used the assumption d > 120αk3/(βδ). Since the linear map M
is invertible, there is dim(Vi1 + Vi2 + · · · + Vin′ ) = dim(V ′i1 + V ′i2 + · · · + V ′in′ ) ≤ βd.
Recall n′ ≥ δn/(10α). We see that the second case of Theorem 3.23 holds, which
contradicts our assumption. Thus Theorem 3.23 is proved.
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Chapter 4

Field Size Lower Bounds for
Maximally Recoverable Codes

In this chapter, we prove a super-polynomial lower bound on the alphabet size of
maximally recoverable codes. We first define the model formally and state our results
in Section 4.1. Our proof will be in the next two sections. We reduce the lower bound
problem to a graph labeling problem in Section 4.2. And finally we solve the graph
problem in Section 4.3. The results in this chapter are also included in [GHK+17].

4.1 Topologies and maximally recoverable codes

Many storage systems in practice (e.g., [HSX+12, MLR+14]) have the following rect-
angular layout: Data are stored as an m × n matrix such that every entry of the
matrix is one symbol of the data. For every column, the last a (0 ≤ a < m) sym-
bols are parities (linear combinations) of the previous m− a symbols in the column.
Parities in different columns are calculated in the same way, i.e., all columns are
codewords of the same code. Similarly, the last b (0 ≤ b < n) symbols of every row
are parities of that row. In addition to these row and column parities, there are also
h (0 ≤ h < (m − a)(n − b)) global parities that depend on all data symbols. See
Figure 4.1 for an example.

To ease the proofs, we will define the model formally in Definition 4.1 using parity
check equations instead of specifying the numbers and locations of the parities. We
will show that this will not make a difference as we can treat an arbitrary set of
the symbols as the parities, provided that the code has the desired property (being
maximally recoverable) and h is within a reasonable range.

With abuse of notation, in this chapter we will use a code to denote the vector
space of all its codewords, and vice versa. For convenience, we will also treat m× n
matrices as vectors of length mn. For a vector v and a subset of its coordinates S,
v restricted to S (denoted by v|S) is the subvector of v with only coordinates in S.
For a linear code C and a subset of the coordinates S, C restricted to S (denoted by
C|S) is the code {v|S : v ∈ C}.
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Figure 4.1: Illustration of a code with the described rectangular layout using a 4× 5
grid, where the parameters are m = 4, n = 5, a = 1, b = 2, h = 1. The hatched cells
correspond to the row and column parities. There are two cells at the bottom right
corner that are both row and column parities. The gray cell correspond to the global
parity.

Definition 4.1 (topology, row code, column code). Let m,n ∈ Z+, 0 ≤ a < m,
0 ≤ b < n, and 0 ≤ h < (m − a)(n − b) be integers. We use the term topology
Tm×n(a, b, h) to refer to the type of codes with m×n symbols, a parity check equations
per column, b parity check equations per row, and h global parity check equations
that depend on all symbols.

For a finite field F and a linear code C ⊆ Fm×n, We say that C instantiates the
topology Tm×n(a, b, h) if there exist vectors α(k) =

{
α

(k)
i

}
i∈[m]

∈ Fm for every k ∈ [a],

β(k) =
{
β

(k)
j

}
j∈[n]
∈ Fn for every k ∈ [b], and γ(k) =

{
γ

(k)
i,j

}
i∈[m],j∈[n]

∈ Fm×n for every

k ∈ [h] such that C is the linear space defined by the linear constraints below: For
v ∈ Fm×n, v ∈ C if and only if

1. For every column c of v and every k ∈ [a], 〈c,α(k)〉 = 0;

2. For every row r of v and every k ∈ [b], 〈r,β(k)〉 = 0;

3. For every k ∈ [h], 〈v,γ(k)〉 = 0.

For the above code C, we define its column code as
{
v ∈ Fm : 〈v,α(k)〉 = 0,∀k ∈ [a]

}
,

and define its row code as
{
v ∈ Fn : 〈v,β(k)〉 = 0,∀k ∈ [b]

}
.

In the above definition, every column is a codeword of the column code, and every
row is a codeword of the row code. We note that the definition does not involve the
parities mentioned in the rectangular layout model. In fact, it is possible that the
last a entries of α(k) are all zeros, in which case one can no longer consider the last
a symbols in a column as parities. The same applies to β(k) and γ(k).

Next, we define recoverable patterns and maximally recoverable codes. Intuitively,
a recoverable pattern for a topology is a subset of all data symbols that can be recov-
ered from erasure in some (not necessarily every) code that instantiates the topology.
And maximally recoverable codes for a topology are codes that allow recoveries of all
recoverable patterns.
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Definition 4.2 (recoverable pattern). Let C be a code that instantiates Tm×n(a, b, h)
and E ⊆ [m]× [n]. We say that E is a recoverable pattern for the code C if for vector
v ∈ C, the variables v|E are uniquely determined by v|([m]×[n])\E (i.e., v|E can be
represented as a linear transformation of v([m]×[n])\E by solving the linear constraints
in Definition 4.1).

We say that E is a recoverable pattern for the topology Tm×n(a, b, h), if there exists
a code C instantiating Tm×n(a, b, h) such that E is a recoverable pattern for C.

Definition 4.3 (maximally recoverable code). A code C that instantiates the topol-
ogy Tm×n(a, b, h) is maximally recoverable (MR), if for every E ⊆ [m]× [n] that is a
recoverable pattern for the topology Tm×n(a, b, n), E is a recoverable pattern for the
code C.

We note that MR codes exist for all values of m,n, a, b, h, if the field size is
sufficiently large [GHJY14]. (In fact, [GHJY14] has shown MR codes exist for models
more general than the rectangular topologies that we are considering.)

Recall that maximum distance separable (MDS) codes are linear codes that attain
the maximum distance length− dimension + 1. It is well known that a linear code of
dimension d is MDS if and only if every set of d coordinates is an information set,
which is a set of coordinates that can take any values and any assignment of these
coordinates uniquely determines the entire codeword [MS77].

Lemma 4.4. For an MR code C that instantiates Tm×n(a, b, h), we have

1. For any U ⊆ [m] of size |U | = m−a, V ⊆ [n] of size |V | = n−b, and H ⊆ U×V
of size |H| = h, (U × V ) \H is an information set of the code C.

2. Assume
h ≤ (m− a)(n− b)−max{m− a, n− b}.

Then the column code of C is an MDS code of length m and dimension m− a,
and the row code is an MDS code of length n and dimension n− b.

Proof. We proceed item by item.

1. Let I denote (U×V )\H. We first show that ([m]×[n])\I is a recoverable pattern
for C. Since C is maximally recoverable, it suffices to construct a code C ′ also
instantiating Tm×n(a, b, h) such that ([m]× [n]) \ I is a recoverable pattern for
C ′. To define C ′, we pick F, α(k), β(k) and γ(k) in Definition 4.1 in such a way
that the column code of C ′ is an MDS code of length m and dimension m− a,
the row code of C ′ is an MDS code of length n and dimension n−b, and C ′|U×V
is an MDS code of length (m−a)(n−b) and dimension (m−a)(n−b)−h = |I|.
It is easy to see that the values in I uniquely determine the rest of the codeword.
Hence ([m]× [n]) \ I is a recoverable pattern for C ′, and it is also a recoverable
pattern for C.

It remains to show that the dimension of C is at least |I| = (m− a)(n− b)− h.
We count the total number of parity check constraints for C. Let S ⊆ [m]
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(|S| ≥ m − a) be an information set of the column code. We see that it is
sufficient to count m−|S| linear constraints for the column code. (If a > m−|S|,
there must be redundancies among α(1),α(1), . . . ,α(a) and we do not need a
constraints.) We then consider the row code constraints. It is easy to see that
the rows with indices in [m] \ S are automatically codewords of the row code if
the rows with indices in S are. So we count the row code linear constraints for
only |S| rows. In this way, the total number of constraints is

(m− |S|) · n+ b · |S|+ h = mn− |S| · (n− b) + h

≤ mn− (m− a)(n− b) + h. (4.1)

Hence the dimension of C is at least (m − a)(n − b) − h. Combining with the
previous paragraph, we see that the dimension must be exactly (m−a)(n−b)−h
and I is an information set.

2. We only prove the claim for the column code. From the proof of the previous
item, equality must hold in Inequality (4.1), and the dimension of the column
code must be |S| = m− a. Assume that there is a U ⊆ [m] of size |U | = m− a
that is not an information set of the column code. There must exist a linear
dependency between the entries in U . Pick an arbitrary V ⊆ [n] of size |V | =
n− b and H ⊆ U ×V of size |H| = h such that (U ×V )\H contains a complete
column of U × V . On one hand (U × V ) \ H cannot be an information set
of C as the entries of the column are linearly dependent. On the other hand
(U × V ) \H is an information set of C by the previous item. We arrived at a
contradiction. Therefore the column code must be MDS.

By this lemma, we can see that under the mild assumption h ≤ (m− a)(n− b)−
max{m − a, n − b}, the model in Definition 4.1 is equivalent to the storage model
with the parities described at the beginning of this section. In fact, by Lemma 4.4
we can assume that the last a symbols of every column are the column parities, the
last b symbols of every row are the row parities, and we can pick an arbitrary set of
other h symbols as the global parities.

In this chapter, we consider lower bounds on the field sizes of MR codes. Intu-
itively, it might be easier to prove lower bounds for simple topologies with small a
and b. And the following lemma provides a reduction to these simple topologies:

Lemma 4.5. Suppose C ⊆ Fm×n is an MR code that instantiates the topology
Tm×n(a, b, h), and the condition

h ≤ (m− a)(n− b)−max{m− a, n− b}

in Lemma 4.4 is satisfied. Then for any 0 ≤ a′ ≤ a and 0 ≤ b′ ≤ b, there exists
an MR code C ′ ⊆ Fm′×n′ that instantiates the topology Tm′×n′(a

′, b′, h) over the same
field, where m′ = m− a+ a′ and n′ = n− b+ b′.

Proof. By Lemma 4.4, we can consider an arbitrary set I of (m − a)(n − b) − h
coordinates in [m−a]× [n−b] as the original data symbols, and the other coordinates
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in [m]× [n] as the parities. Define C ′ as

C ′ = C|[m′]×[n′],

i.e., the code obtained by restricting C to the coordinates [m′]× [n′]. We can see that
C ′ instantiates the topology Tm′×n′(a

′, b′, h), as [m′]× [n′] contains I and the entries
in ([m′]× [n′]) \ I are parities of the entries in I.

It remains to show that C ′ is MR. Suppose that E ′ ⊆ [m′]× [n′] is an recoverable

pattern for Tm′×n′(a
′, b′, h), i.e., E ′ is recoverable for some code C̃ ′ that instantiates

Tm′×n′(a
′, b′, h). We define E ⊆ [m]× [n] as the set of coordinates obtained by adding

the last m −m′ = a − a′ rows and n − n′ = b − b′ columns of [m] × [n] to E ′, and

define C̃ as a code that instantiates Tm×n(a, b, h) obtained from C̃ ′ by adding a− a′
parities to the column code and b− b′ parities to the row code, where the parities are
arbitrary linear combinations of the existing entries in the column or row. Since E ′ is
recoverable for C̃ ′, we see that E is recoverable for C̃, as one can first recover all entries
in E ′ ⊆ [m′]× [n′] and then calculate the newly added parities ([m]× [n])\([m′]× [n′]).
Recall that the code C is MR. E must also be recoverable for C. It follows that E ′

is recoverable for C ′ since ([m] × [n]) \ E and ([m′] × [n′]) \ E ′ are the same set of
coordinates which uniquely determines a codeword for C and C ′. Therefore C ′ is an
MR code.

4.1.1 Our results

We restrict out attention to characteristic-two fields, as these are the type of fields
that are most widely considered in applications and research. Our main result in this
chapter is a super-polynomial (of code length) lower bound on the field sizes of all
MR codes instantiating Tm×n(a, b, h), where a, b, h ≥ 1. Previously, there was not
even a super-linear lower bound known for any topology (see [Bal12, GHJY14] for a
simple linear lower bound for h ≥ 2).

The following theorem is for the case a = b = 1:

Theorem 4.6. Suppose C ⊆ Fm×nq is a maximally recoverable code that instantiates
the topology Tm×n(1, 1, h), where h ≥ 1 and q = 2t for some positive integer t. Then

t = Ω
((

log
min{m,n}

h

)2
)
,

where Ω(·) hides an absolute constant independent of h,m, n.

Following this theorem and using Lemma 4.5 with a′ = b′ = 1, one can easily
derive a lower bound for general a, b ≥ 1 as below. (We assume that the required
condition on h in Lemma 4.5 is satisfied since otherwise the lower bound will become
trivial.)

Corollary 4.7. Suppose C ⊆ Fm×nq is a maximally recoverable code that instantiates
the topology Tm×n(a, b, h), where a, b, h ≥ 1 and q = 2t for some positive integer t.

56



Then

t = Ω
((

log
min{m− a+ 1, n− b+ 1}

h

)2
)
,

where Ω(·) hides an absolute constant independent of a, b, h,m, n.

This lower bound shows that MR codes with polynomial field sizes can only exist
if one of a, b, h is 0. And it remains an open problem to prove non-trivial lower
bounds for these cases. Among them, the topology Tm×n(1, 0, h) is well studied in the
literature and widely used in practice (see also Appendix A for discussions about this
topology), and it is of vital interest to prove super-linear lower bounds for general h.

Another open problem is to improve our existing lower bounds. For example, it
not known if one can improve Theorem 4.6 to t = Ω

(
log(m/h) · log(n/h)

)
for the

case m 6= n. And for the simple topology Tn×n(1, 1, 1) (for which our result gives the
“best” lower bound), there is a huge gap between our lower bound t = Ω

(
(log n)2

)
and the best known constructions with t = Θ(n log n).

A key step in proving Theorem 4.6 is the following lemma on graph edge labeling,
which might be of independent interest:

Lemma 4.8. Consider the complete bipartite graph Kw,w and identify the edges with
[w] × [w]. Let ` : [w] × [w] → Fq be a labeling of the edges such that for any simple
cycle C ⊆ [w]× [w], ∑

e∈C

`(e) 6= 0,

where q = 2t for some positive integer t. Then t = Ω
(
(logw)2

)
.

This can be viewed as an instance of the critical problem posed by Crapo and Rota
in 1970 [CR70], where the goal is to find the largest dimension of a linear subspace
of FN2 that does not intersect a given set of vectors. Let N = w2 and identify [N ]
with the edges of Kw,w. Consider the labels as vectors in Ft2. We denote the vector
consists of the ith bits of the labels of all edges by ui ∈ FN2 (i ∈ [t]), and let V
be the orthogonal complement of span{u1,u2, . . . ,ut}. We can see that V consists
of indicators of all S ⊆ [N ] such that

∑
e∈S `(e) = 0. And finding a labeling that

satisfies the condition in Lemma 4.8 is equivalent to finding a subspace V ⊆ FN2 that
does not intersect the set of indicators of all simple cycles.

A similar edge labeling problem was also studied in a recent work [FGT16] in the
context of derandomizing parallel algorithms for perfect matchings. The authors also
considered an edge labeling problem where simple cycles carry nonzero sums. Some
of the key differences from our setting are: Our techniques work for a special type of
graphs (e.g., the complete bipartite graph) while [FGT16] considers general bipartite
graphs; We need a single assignment while [FGT16] may have multiple assignments;
We work over characteristic-two fields while [FGT16] work over characteristic-zero.

In the next section, we will reduce the MR code lower bound Theorem 4.6 to
the graph labeling problem Lemma 4.8. After that, we will prove Lemma 4.8 in
Section 4.3.
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4.2 Reduction to the graph labeling problem

In this section, we will consider a code that instantiates the the topology Tm×n(1, 1, h),
where h ≥ 1, and prove the lower bound as stated in Theorem 4.6 using the lower
bound for graph labeling in Lemma 4.8. We assume that the condition in Lemma 4.4

h ≤ (m− 1)(n− 1)−max{m− 1, n− 1}

is satisfied, because otherwise the lower bound in Theorem 4.6 will become trivial.
Recall that to specify a code that instantiates the topology Tm×n(1, 1, h), one needs
to specify the follows: the underlying field Fq (where q is a power of 2), the vector

α(1) ∈ Fmq , the vector β(1) ∈ Fnq , and the vectors γ(k) ∈ Fm×nq (k ∈ h). If a code is

MR, by Lemma 4.4, its column and row codes are MDS. Hence the entries in α(1)

and β(1) are nonzero. If we replace γ
(k)
i,j with γ

(k)
i,j /
(
α

(1)
i β

(1)
j

)
for all i ∈ [m], j ∈ [n]

and replace α(1), β(1) with the all-ones vector, the code is still MR. Without loss of
generality, we assume that α(1), β(1) are the all-ones vector in this section. Under
this assumption, a code that instantiates Tm×n(1, 1, h) is uniquely determined by the
field Fq and the vectors γ(1),γ(2), . . . ,γ(h).

We identify the code coordinates [m]× [n] with the edges of the complete bipar-
tite graph Km,n in the natural way. That is, every vertex on the left side of Km,n

corresponds to a row, every vertex on the right side of Km,n corresponds to a column,
and every edge of Km,n corresponds to a code coordinate.

For a vertex v of Km,n, we use Γ(v) ⊆ [m]× [n] to denote the set of edges incident
to v (Γ(v) contains either m or n edges). Let H denote the parity check matrix
that defines the code. The columns of H correspond to the coordinates of the code,
which have been identified with the edges of Km,n. For the rows of H, we see the
matrix H as two parts: (1) The top part consists of m+ n rows corresponding to the
vertices of Km,n. And for each vertex v, the corresponding row is the indicator vector
1Γ(v) ∈ {0, 1}mn of the edges incident to v; (2) The bottom part, which consists of h
rows γ(1),γ(2), . . . ,γ(h), is for the global constraints of the code.

For a set of code coordinates E ⊆ [m] × [n], we consider E as a subset of the
edges of Km,n, and use GE = (LE, RE, E) to denote the subgraph of Km,n that only
contains the edges in E and the vertices incident to E, where LE and RE denote
the sets of vertices on the left side and right side respectively. We note that for
E ′ ⊆ E ⊆ [m]× [n], with slight abuse of notation, in the remaining proofs we will use
1E′ to denote the indicator of E ′ that has length either mn or |E|, depending on the
concerned ground set is [m]× [n] or E.

Next, we characterize all recoverable patterns for Tm×n(1, 1, h). For every E ∈
[m]×[n], one can see that E is recoverable if and only if the submatrix of H consisting
of the columns corresponding to E has rank |E|. We will use H|E to denote this
submatrix.

Lemma 4.9. For every E ⊆ [m] × [n], E is a recoverable pattern for the topology
Tm×n(1, 1, h) if and only if

|E| ≤ |LE|+ |RE| − c+ h,

58



where c denotes the number of connected components in GE. Moreover, if the equality
|E| = |LE|+ |RE| − c+ h holds and E is a recoverable pattern for the code defined by
the field Fq and the vectors γ(1),γ(2), . . . ,γ(h), then the bottom part of H|E has rank
h, i.e.,

rank
{
γ(1)|E,γ(2)|E, . . . ,γ(h)|E

}
= h.

Proof. We prove by calculating rank(H|E). We first show the following claim:

Claim 4.10. For any E ′ ⊆ [m]× [n] such that the graph GE′ is connected, the rank
of the top part of H|E′ is exactly |LE′|+ |RE′| − 1.

Proof. In the top part of H|E′ , every column corresponds to an edge e ∈ E ′, and
every nonzero row is the indicator vector 1Γ(v)∩E′ ∈ {0, 1}|E

′| of the edges incident to
some vertex v ∈ LE′ ∪ RE′ . For any e ∈ E ′ and its two incident vertices v1 ∈ LE′ ,
v2 ∈ RE′ , we see that there are exactly two 1’s in column corresponding to e, and
they are at the rows corresponding to v1 and v2 respectively. It follows that the rows
of the top part of H|E′ sum to zero, i.e.,∑

v∈LE′

1Γ(v)∩E′ +
∑
v∈RE′

1Γ(v)∩E′ = 0. (4.2)

Hence the rank of the top part of H|E′ (which contains |LE′|+ |RE′ | nonzero rows) is
at most |LE′ | + |RE′| − 1. To finish the proof, we need to show that Equation (4.2)
is the only way (up to a multiplicative factor in Fq) to linearly combine the nonzero
rows in the top part of H|E′ and get zero. In fact, in any linear combination of
these rows that equals zero, if we take the row 1Γ(v)∩E′ corresponding to a vertex
v ∈ LE′ ∪ RE′ with some nonzero coefficient, we must also take the row 1Γ(v′)∩E′

for any neighbor v′ of v with the same coefficient in order to cancel the two 1’s in
the column corresponding to the edge between v and v′. Since GE′ is connected, we
end up taking all nonzero rows with the same coefficient and getting the same linear
combination as Equation (4.2). �

Using this claim, we can see that the rank of the top part of H|E is exactly
|LE|+ |RE|−c. This is because in the top part of H|E, the submatrices corresponding
to the c connected components have disjoint columns and rows, and the rank of the
top part is the sum of the ranks of these submatrices.

It is easy to see that there exists a field Fq and vectors γ(1),γ(2), . . . ,γ(h) such that
the bottom part of H|E has rank h and the h rows of the bottom part are linearly
independent of the rows of the top part. Therefore the maximum rank of H|E is
|LE|+|RE|−c+h, and E is a recoverable pattern if and only if |E| ≤ |LE|+|RE|−c+h.
And if |E| = |LE|+|RE|−c+h, E is recoverable if and only ifH|E attains its maximum
value, which happens only when the bottom part of H|E has rank h.

Now we prove Theorem 4.6:

Proof of Theorem 4.6 using Lemma 4.8. Suppose that the code defined by the field
Fq (q = 2t) and vectors γ(1),γ(2), . . . ,γ(h) is maximally recoverable, and without loss
of generality we assume m ≥ n. We will prove t = Ω

(
(log(n/h))2

)
.
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We partition [n] into h disjoint sets P1, P2, . . . , Ph such that |Pk| ≥ bn/hc for every
k ∈ [h]. We consider the subgraphs of Km,n on P1 × P1, P2 × P2, . . . , Ph × Ph, and

label their edges using the vector γ(1), i.e., the label of the edge e ∈ [m]× [n] is γ
(1)
e .

If one of these subgraphs satisfies the condition of Lemma 4.8, i.e., the label sum
over every simple cycle is nonzero, then Theorem 4.6 is proved immediately. Next,
we assume the opposite and derive a contradiction. Suppose C1, C2, . . . , Ch ⊆ [m]× [n]
are simple cycles from each of these subgraphs such that∑

e∈Ck

γ(1)
e = 0 ∀k ∈ [h]. (4.3)

We define E = C1 ∪ C2 ∪ · · · ∪ Ch. Then the graph GE contains h connected
components. Since simple cycles contain the same number of vertices and edges, we
have

|E| = |LE|+ |RE| = |LE|+ |RE| − h+ h.

By Lemma 4.9, E is a recoverable pattern, and in order to recover E there must be

rank
{
γ(1)|E,γ(2)|E, . . . ,γ(h)|E

}
= h.

Recall that the matrix H|E has rank |E| for a recoverable pattern E. We can extend{
γ(1)|E,γ(2)|E, . . . ,γ(h)|E

}
to a basis of F|E|q by adding rows in the top part of H|E.

Say the basis is {
γ(1)|E,γ(2)|E, . . . ,γ(h)|E

}
∪
{
1Γ(v)∩E

}
v∈S,

where S ⊆ LE ∪ RE has size |E| − h and 1Γ(v)∩E ∈ {0, 1}|E| denotes the indicator
vector of the edges in E that are incident to v. Note that for the indicator vector
1Ck ∈ {0, 1}|E| of every cycle Ck (k ∈ [h]), there is

〈1Γ(v)∩E,1Ck〉 =
∑

Γ(v)∩Ck

1 = 0 ∀v ∈ LE ∪RE,

and by Equation (4.3) there is also

〈γ(1)|E,1Ck〉 = 0.

Thus we have found h linearly independent vectors 1C1 ,1C2 , . . . ,1Ch orthogonal to

|S|+ 1 = |E| − h+ 1

different basis vectors of F|E|q . We arrive at a contradiction.

4.3 Proof of the graph labeling lemma

In this section, we prove Lemma 4.8. We first define some notations for a general
graph G = (V,E). For distinct vertices v1, v2 ∈ V , we use P (v1, v2) to denote the set
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of simple paths from v1 to v2. For k ∈ Z+ and distinct v1, v2 ∈ V , we use Pk(v1, v2)
to denote the set of simple paths from v1 to v2 that have length exactly k. For a path
in Pk(v1, v2), we say that v1 is first vertex, v2 is the (k + 1)th vertex, and the other
(k−1) vertices on the path are the second through the kth vertices according to their
positions. For an edge labeling ` : E → Σ over some alphabet Σ and a path P ⊆ E,
we use `(P) to denote the label sum over P , i.e.,

`(P) =
∑
e∈P

`(e).

The key step of our proof is the following lemma:

Lemma 4.11. Let G = (V,E) be a graph with maximum degree d, and ` : E → Σ be
a labeling of the edges, where the alphabet Σ is some abelian additive group. Suppose
that for any pair of vertices v1 6= v2 ∈ V and any two vertex-disjoint simple paths
P1,P2 ∈ P (v1, v2), there is

`(P1) 6= `(P2).

Then for arbitrary v1 6= v2 ∈ V , positive integer k ≤
√
d and `0 ∈ Σ, the set

S =
{
P ∈ Pk(v1, v2) : `(P) = `0

}
has cardinality at most klog2 k+1dk−log2 k−1.

Before starting the formal proof, we first give some high-level ideas. Let’s only
consider the simple case that k is a small constant. Then the goal of the lemma
would be showing |S| . dk−log2 k−1. The total number of paths in |S| would be dk−1

if all the intermediate k − 1 vertices of a path could be chosen “freely”. The lemma
is basically saying that there are log2 k vertices that are not “free”. In the proof, we
will show that there is a large subset R ⊆ S such that all paths in R share the same
ith vertex for some i ∈ [2, k]. In other words, many paths in S are fixed at the ith
vertex, and the choice of this ith vertex is not “free”. Then we fix the prefix before
(or the suffix after) the ith vertex, and the possible choices of remaining half of the
path can be considered as elements of a new set S ′ which also has fixed endpoints,
length and label sum. We recursively apply the argument to that half of the path
and S ′. Intuitively, we can do this for log2 k rounds (since each time we halve the
length of the paths) and find log2 k vertices that are not “free”.

We now prove Lemma 4.11 formally by an induction on the length k.

Proof. Define
f(k) = klog2 k+1dk−log2 k−1

and we will need to show |S| ≤ f(k).
For k = 1, we have

|S| ≤ 1 = klog2 k+1dk−log2 k−1 = f(k).
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Assume that we have proved the lemma for lengths up to k− 1, and we now consider
the case of k, where 2 ≤ k ≤

√
d.

If S = ∅, the lemma is trivial. We only consider the case that S 6= ∅. Pick an
arbitrary path P0 ∈ S. Then for any other path P ∈ S, P must intersect P0 at
some vertex other than v1, v2, because of `(P) = `(P0) = `0 and the condition in
Lemma 4.11. That is, there exists i, j ∈ [k − 1] such that the (i + 1)th vertex of P
is the same as the (j + 1)th vertex of P0. Let Rij denote the set of all these paths,
formally

Rij =
{
P ∈ S : the (i+ 1)th vertex of P is the (j + 1)th vertex of P0

}
.

We note that P0 ∈ Rii for every i ∈ [k− 1] and
⋃
i,j∈[k−1]Rij = S. By the Pigeonhole

principle, there must exist i0, j0 ∈ [k − 1] such that

|Ri0j0| ≥
|S|

(k − 1)2
. (4.4)

We consider the paths in Ri0j0 . These paths share the same (i0 + 1)th vertex. We
denote this vertex by v3. See Figure 4.2.

v1 v3 v2

Figure 4.2: Paths in Ri0j0 are fixed at three vertices v1, v3, v2.

Every path P ∈ Ri0j0 can be considered as two parts: the head Phead from v1 to
v3 (with length i0) and the tail Ptail from v3 to v2 (with length k − i0). We assume
that the head is not shorter than the tail, i.e.,

i0 ≥ k/2.

If this condition does not hold, we can interchange the definitions of head and tail.
The number of possible tails is at most the number of simple paths from v3 to v2,

which is bounded by dk−i0−1. We count the paths in Ri0j0 according to their tails.
For every choice of Ptail, no matter what Phead is, the label sum of Phead is a fixed
value:

`(Phead) = `(P)− `(Ptail) = `0 − `(Ptail).

Hence by induction hypothesis, the number of possibilities of Phead for every fixed
Ptail is bounded by f(i0) = i0

log2 i0+1di0−log2 i0−1. It follows that

|Ri0j0 | ≤ dk−i0−1 · i0log2 i0+1di0−log2 i0−1

= i0
log2 i0+1dk−log2 i0−2.

62



Then by Inequality (4.4),

|S| ≤ (k − 1)2 · |Ri0j0 | ≤ k2i0
log2 i0+1dk−log2 i0−2.

It remains to show that the right side is at most f(k) = klog2 k+1dk−log2 k−1. We finish
the proof by considering the ratio:

k2i0
log2 i0+1dk−log2 i0−2

klog2 k+1dk−log2 k−1
=

i0
log2 i0+1

klog2 k−1dlog2 i0−log2 k+1

=
i0

log2 i0+1

klog2 k−1dlog2 i0−log2 k+1
· i0− log2 k · klog2 i0

= (ki0/d)log2 i0−log2 k+1

= (ki0/d)log2(2i0/k)

≤ 1.

In the last step, we used i0 ≤ k ≤
√
d and our assumption i0 ≥ k/2.

We proceed to the proof of Lemma 4.8.

Proof of Lemma 4.8. We first claim that Kw,w and labeling ` : [w]× [w]→ Fq (q = 2t)
satisfy the condition of Lemma 4.11. For two different vertices v1, v2 of Kw,w and
vertex-disjoint simple paths P1,P2 from v1 to v2, P1 and P2 form a simple cycle.
Hence `(P1) + `(P2) 6= 0 by the condition in Lemma 4.8. Since the alphabet of the
labeling has characteristic two, we have `(P1) 6= `(P2).

Let s = b(
√
w − 1)/2c and k = 2s + 1. Clearly, k ≤

√
w. Pick an arbitrary pair

of vertices v1 and v2 from the two sides of Kw,w. Then the number of simple paths
from v1 to v2 with length k is

(w − 1)(w − 1)(w − 2)(w − 2) · · · (w − s)(w − s) ≥ (w − s)2s = (w − s)k−1.

Apply Lemma 4.11 with d = w. Then for every `0 ∈ Fq, the number of paths from
v1 to v2 with length k and label sum `0 is at most

klog2 k+1wk−log2 k−1.

Note that there are q = 2t choices of `0. We have

2t ≥ (w − s)k−1

klog2 k+1wk−log2 k−1
=

wlog2 k

klog2 k+1
·
(
w − s
w

)k−1

=
wlog2 k

klog2 k+1
·Θ(1) = wΩ(logw),

where we used the facts s = Θ(
√
w) and k = 2s+1 = Θ(

√
w). It follows immediately

that
t = Ω

(
(logw)2

)
.
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Appendix A

Constructions of Maximally
Recoverable Codes

In this appendix, we present two new explicit constructions of MR codes for the
topology Tm×n(1, 0, h). We first explore some properties of this type of MR codes in
Section A.1. Then we review known constructions and state our results in Section A.2.
The details of our two constructions will be given in Section A.3 and Section A.4
respectively. The results in this appendix are also included in [GHK+17] and [HY16].

A.1 The topology Tm×n(1, 0, h)

We have discussed rectangular topologies Tm×n(a, b, h) of storage systems in Sec-
tion 4.1. Among them, the case Tm×n(1, 0, h) is very widely used and has received
a considerable amount of attention in the context of locally recoverable codes (see
Section 1.2). According to Definition 4.1, to construct an MR code that instantiates
Tm×n(1, 0, h), we need to specify the field F and the vectors α(1) ∈ Fm, γ(k) ∈ Fm×n
(k ∈ [h]). In this appendix, we will give constructions with α(1) being the all-ones
vector. In fact, as long as all entries of α(1) are nonzero (which must be true for all
reasonable h by Lemma 4.4), one can always obtain an MR code with an arbitrary

α(1) from any existing MR code, by multiplying
{
α

(1)
i , γ

(k)
i,j

}
j∈[n],k∈[h]

with a nonzero

factor that depends on i ∈ [m].
The parity check matrix of any concerned code is of the following form:

H =



1 · · · 1
1 · · · 1

. . .

1 · · · 1

γ
(1)
1,1 · · · γ

(1)
m,1 γ

(1)
1,2 · · · γ

(1)
m,2 · · · · · · · · · γ

(1)
1,n · · · γ

(1)
m,n

γ
(2)
1,1 · · · γ

(2)
m,1 γ

(2)
1,2 · · · γ

(2)
m,2 · · · · · · · · · γ

(2)
1,n · · · γ

(2)
m,n

...
...

...
...

γ
(h)
1,1 · · · γ

(h)
m,1 γ

(h)
1,2 · · · γ

(h)
m,2 · · · · · · · · · γ

(h)
1,n · · · γ

(h)
m,n


. (A.1)
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The matrix H contains n+h rows and mn columns. The columns can be partitioned
into n column groups, which correspond to the n columns of a codeword. A column
group contains m columns, each corresponds to a symbol in a codeword. Precisely,
The codeword symbol at location (i, j) ∈ [m]× [n] corresponds to the ith column of
the jth column group. The top part of H contains n rows that are the column code
linear constraints. Since we have assumed that α(1) is the all-ones vector, the top n
rows of H are of the form shown in Equation (A.1). The bottom part contains h rows
that are the global linear constraints. To construct an MR code, the major task is to
construct the bottom part of H.

The recoverable patterns for Tm×n(1, 0, h) are fully characterized in [BHH13,
GHJY14], as shown in the following lemma:

Lemma A.1 ([GHJY14]). E ⊆ [m] × [n] is a recoverable pattern for the topology
Tm×n(1, 0, h) if and only if E can be obtained by picking at most one entry in each
column of [m]× [n] and up to h other entries at arbitrary locations.

By the definitions of recoverable patterns (Definition 4.2) and MR codes (Defini-
tion 4.3), we immediately have the following standard lemma:

Lemma A.2 ([GHJY14]). A code C that instantiates Tm×n(1, 0, h) defined by a parity
check matrix H as in Equation (A.1) is maximally recoverable, if and only if any set
of n+h columns of H that is obtained by picking one column from each column group
and h additional columns has full rank.

In Lemma A.2, let S be a submatrix ofH that consists of n+h columns obtained by
picking one column from each column group and h additional columns. We consider
the rows and columns of S. For a column group that has only one column included
in S, without changing the rank of S we can eliminate this column from S, and also
eliminate the row in the top part of S at which this column has a 1 (which is the
only 1 in the entire row).

Let M be the remaining submatrix of S after the eliminations, g ≤ min{h, n} be
the number of remaining column groups that have a column in M , and r1, r2, . . . , rg ≥
2 be the sizes of the parts of these column groups included in M . Since M is a square
matrix and has g + h rows (g rows in the top part and h rows in the bottom part),
we can see that r1 + r2 + · · ·+ rg, which is the number of columns of M , is equal to
g + h.

On the other hand, for any submatrix M of H with parameters g ≤ min{h, n}
and r1, r2, . . . , rg ≥ 2 such that r1 + r2 + · · · + rg = g + h, we can find a possible
original S by adding one column from each of the other n − g column groups in H
and the row at which the column has a 1.

From the above procedure, we obtain our main tool to prove a construction is
MR, which is formally stated below:

Lemma A.3 ([GHJY14]). A code C that instantiates Tm×n(1, 0, h) defined by a parity
check matrix H as in Equation (A.1) is maximally recoverable, if and only if for any
integers g ≤ min{h, n}, r1, r2, . . . , rg ≥ 2 such that r1 + r2 + · · · + rg = g + h, any
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distinct g indices j1, j2, . . . , jg ∈ [n], and any distinct rk indices ik1, ik2, . . . , ikrk ∈ [m]
for each k ∈ [g], the following matrix has full rank:

M =



1 · · · 1
1 · · · 1

. . .

1 · · · 1

γ
(1)
i11,j1

· · · γ
(1)
i1r1 ,j1

γ
(1)
i21,j2

· · · γ
(1)
i2r2 ,j2

· · · · · · · · · γ
(1)
ig1,jg

· · · γ
(1)
igrg ,jg

γ
(2)
i11,j1

· · · γ
(2)
i1r1 ,j1

γ
(2)
i21,j2

· · · γ
(2)
i2r2 ,j2

· · · · · · · · · γ
(2)
ig1,jg

· · · γ
(2)
igrg ,jg

...
...

...
...

γ
(h)
i11,j1

· · · γ
(h)
i1r1 ,j1

γ
(h)
i21,j2

· · · γ
(h)
i2r2 ,j2

· · · · · · · · · γ
(h)
ig1,jg

· · · γ
(h)
igrg ,jg


.

A.2 Known constructions and our contributions

We consider constructions of MR codes that instantiate the topology Tm×n(1, 0, h).
For h = 0, the problem is trivial since the code is fixed. For h = 1, explicit MR codes
exist over a field of size O(m) [BHH13], which is sub-linear of the code length mn.

To see this, using Lemma A.3 it suffices to ensure that γ
(1)
1,j , γ

(1)
2,j , . . . , γ

(1)
m,j are distinct

for each j ∈ [n].
For h ≥ 2 there is a linear lower bound Ω(mn) on the field size [Bal12, GHJY14],

and this bound was known to be tight for the case h = 2 (see constructions in
[Bla13, BPSY16]). We will give another construction in Section A.3 that also matches
this lower bound, which is formally stated as the following theorem:

Theorem A.4. Suppose that positive integers m,n satisfy (m− 1)n > 2 (so that the
topology Tm×n(1, 0, 2) is well defined). Then there is an explicit construction of MR
codes instantiating Tm×n(1, 0, 2) over a characteristic-two field of size O(mn).

We note that when m and n are powers of 2, our construction has field size exactly
mn, which is about half of the field size of the previous constructions.

For general h, the first explicit construction was given in [GHJY14] over a field
of size roughly O

(
2mn(h−1)(1−2−m)

)
. For small n and growing m, a better estimate on

the field size of this construction is O
(
(mn)b(n+h)/2c), which is formally stated below:

Theorem A.5 ([GHJY14]). Suppose that m,n are powers of 2 and (m − 1)n > h.
There is an explicit construction of MR codes instantiating the topology Tm×n(1, 0, h)
over a field Fq of size q = (mn)(n+h)/2 when n + h is even, or q = 2(mn)(n+h−1)/2

when n+ h is odd.

Proof sketch. Since m,n are powers of 2, the field Fq has characteristic two. Set

γ
(k)
i,j = x2k−1

i,j in the parity check matrix H as shown in Equation (A.1) for all i ∈ [m],
j ∈ [n], k ∈ [h], where {xi,j} are Fq elements to be determined. By a standard linear
algebra argument (e.g., [LN97, Lemma 3.51]), the matrix M in Lemma A.3 has full
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rank if the elements {xi,j} are (n+h)-wise independent, i.e., any subset of {xi,j} with
n+ h or fewer elements do not sum to zero. We construct {xi,j} as follows: If n+ h
is even, set xi,j to have the form z ◦ z3 · · · ◦ zn+h−1, and if n + h is odd, set xi,j to
have the form 1 ◦ z ◦ z3 · · · ◦ zn+h−2, where z runs through the subfield Fmn ⊆ Fq and
◦ denotes concatenation of binary strings. One can verify that {xi,j} are (n+h)-wise
independent.

In Section A.4, we will give another construction for general h. Our construction
can beat the above Theorem A.5 in a narrow case. The more interesting part of
the construction is probably that it uses a completely new technique, which will be
discussed later. The field size of our construction is stated as the following theorem:

Theorem A.6. Let p be a prime. Suppose that m,n ≥ 2 are powers of p and
2 ≤ h < (m − 1)n. Then there is an explicit construction of MR codes instantiating
the topology Tm×n(1, 0, h) over a field of size (mn)n+h−dh/ne−1.

Under some additional conditions, the above result can be improved slightly:

Theorem A.7. Let p be a prime. Suppose (1) m,n are powers of p and 3 ≤ h ≤
(m − 1)n; (2) h 6≡ 1 (mod n); and (3) dh/ne 6≡ p − 1 (mod p). Then there is an
explicit construction of MR codes instantiating the topology Tm×n(1, 0, h) over a field
of size (mn)n+h−dh/ne−2.

Setting n = p = 2 in Theorem A.7, we have the following corollary:

Corollary A.8. Suppose that m is a power of 2, n = 2, h ≡ 0 (mod 4) and 3 ≤
h < (m − 1)n. Then there is an explicit construction of MR codes instantiating the
topology Tm×n(1, 0, h) over a field of size (mn)h/2.

This corollary improves the result (mn)h/2+1 in Theorem A.5 to a clean (mn)h/2

for the case n = 2 and h ≡ 0 (mod 4). Perhaps more importantly, unlike most
previously known constructions that work for all h, our code family is “Vander-
monde type” rather than “linearized”. (An exception is [TPD13], which implic-
itly yields a family of MR codes over field size (mn)O(mn).) Our constructions for

γ
(1)
i,j , γ

(2)
i,j , γ

(3)
i,j , γ

(4)
i,j , . . . in the parity check matrix are based on powers with consecutive

exponents, i.e., xi,j, x
2
i,j, x

3
i,j, x

4
i,j . . ., rather than linear functions xi,j, x

2
i,j, x

4
i,j, x

8
i,j . . .

(over characteristic-two). Because of the technique used, our construction does not
depend on characteristic-two fields and works for arbitrary finite fields. One can show
that no “linearized” construction can beat O

(
(mn)h/2

)
for the field size. This can

be seen by considering the case n = 2. Roughly speaking, if the field size was much
smaller than (mn)h/2 ≈ mh/2, we would be able to find ∼h/2 columns from each
column group such that these two column sets have the same sum of bottom parts.
And this will leads to a singular matrix M in Lemma A.3. Therefore new techniques
are of vital interest.
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A.3 New construction for Tm×n(1, 0, 2)

In this section, we prove Theorem A.4 by giving a construction of MR codes that
instantiate the topology Tm×n(1, 0, 2) over a field of size O(mn).

Construction A.1. Given integers m,n, we construct γ
(k)
i,j for all i ∈ [m], j ∈ [n]

and k ∈ {1, 2}. Let m′ ∈ [m, 2m) and n′ ∈ [n, 2n) be powers of 2. Pick an additive
subgroup G = {s1, s2, . . . , sm′} ⊆ Fm′n′ and elements d1, d2, . . . , dn′ ∈ Fm′n′ such that
dj1 − dj2 /∈ G for all j1 6= j2, i.e., d1, d2, . . . , dn′ belong to different cosets of Fm′n′
modulo the subgroup G. For i ∈ [m] and j ∈ [n], we set

γ
(1)
ij = si,

γ
(2)
ij = s2

i + dj · si.

Proof of Theorem A.4. We show that Construction A.1 satisfies the requirement. We
prove the code is MR using Lemma A.3 with h = 2. For integers g, r1, r2, . . . , rg
satisfying the conditions g ≤ min{h, n} ≤ 2, r1, r2, . . . , rg ≥ 2 and r1 + r2 + · · ·+ rg =
g + h, there are only two possibilities:

Case 1: g = 1 and r1 = 3. In this case, the matrix M in Lemma A.3 is

M =

 1 1 1
si11 si12 si13

s2
i11

+ dj1 · si11 s2
i12

+ dj1 · si12 s2
i13

+ dj1 · si13

,
where j1 ∈ [n] and distinct i11, i12, i13 ∈ [m]. If we multiple the second row by
−dj1 and add it to the third row, M will become a Vandermonde matrix, which
has full rank:

det(M) = det

 1 1 1
si11 si12 si13
s2
i11

s2
i12

s2
i13

 6= 0.

Case 2: g = 2 and r1 = r2 = 2. In this case, the matrix M in Lemma A.3 is

M =


1 1 0 0
0 0 1 1
si11 si12 si21 si22

s2
i11

+ dj1 · si11 s2
i12

+ dj1 · si12 s2
i21

+ dj2 · si21 s2
i22

+ dj2 · si22

,
where j1 6= j2 are from [n], i11 6= i12 and i21 6= i22 are from [m]. Note that we
are working over a characteristic-two field. If we add the first column to the
second column, and the third column to the fourth column, the first two entries
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of the second and fourth columns will become zeros. It is easy to see

det(M) = det

[
si11 + si12 si21 + si22

s2
i11

+ s2
i12

+ dj1(si11 + si12) s2
i21

+ s2
i22

+ dj2(si21 + si22)

]
= det

[
si11 + si12 si21 + si22

(si11 + si12)
2 + dj1(si11 + si12) (si21 + si22)

2 + dj2(si21 + si22)

]
= (si11 + si12)(si21 + si22) det

[
1 1

si11 + si12 + dj1 si21 + si22 + dj2

]
6= 0.

In the last step, we used the fact si11 +si12 +dj1 6= si21 +si22 +dj2 , which follows
from si11 , si12 , si21 , si22 ∈ G and dj1 − dj2 /∈ G.

A.4 New construction for general Tm×n(1, 0, h)

We now present our Vandermonde-type construction of MR codes that instantiate
the topology Tm×n(1, 0, h) for general h.

Construction A.2. Let p be a prime, m and n be powers of p, h ≥ 2 be an integer,
and t ∈ [2, h] be an arbitrary parameter. This construction will be over the finite
field Fq of size q = (mn)n+h−t.

Note that Fmn is a subfield of Fq. There exists some ϕ ∈ Fq such that every
element of Fq can be uniquely represented as

λ0 + λ1ϕ+ · · ·+ λn+h−t−1ϕ
n+h−t−1 (λ0, λ1, . . . , λn+h−t−1 ∈ Fmn).

Let Φ ∈ F(n−1)×(n+h−t)
q denote the matrix

{
ϕ(j−1)(mn)i−1}

i∈[n−1],j∈[n+h−t], i.e.,

Φ =


1 ϕ · · · ϕn+h−t−1

1 ϕmn · · · ϕ(n+h−t−1)(mn)

...

1 ϕ(mn)n−2 · · · ϕ(n+h−t−1)(mn)n−2

.
We find (n+h−t)−(n−1) = h−t+1 linearly independent vectors u1,u2, . . . ,uh−t+1 ∈
Fn+h−t
q that are orthogonal to all rows of Φ, i.e.,

Φ · uk = 0 ∀k ∈ [h− t+ 1]. (A.2)

Pick an additive subgroup G = {s1, s2, . . . , sm} ⊆ Fmn and elements d1, d2, . . . , dn ∈
Fmn such that dj1 − dj2 /∈ G for j1 6= j2, i.e., d1, d2, . . . , dn belong to different cosets
of Fmn modulo the subgroup G. We use Gj = {x1,j, x2,j, . . . , xm,j} (j ∈ [n]) to denote
the coset G+dj =

{
si +dj : ∀i ∈ [m]

}
, where the order of the elements are arbitrary.
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For i ∈ [m], j ∈ [n] and k ∈ [h], we set γ
(k)
i,j in Equation (A.1) as follows:

γ
(k)
i,j =

{
xki,j k ≤ t− 1,

〈uk−t+1,w(xi,j)〉 k ≥ t,
(A.3)

where w : Fq → Fn+h−t
q is defined as w(x) = (xt, xt+1, . . . , xn+h−1)T.

We will prove that the above Construction A.2 satisfies the requirements in Theo-
rem A.6 and Theorem A.7. Our proofs will be based on Lemma A.3. Note that in the
construction, the order of column groups and the order of columns in each column
group are arbitrary. Without loss of generality, we assume the indices j1 = 1, j2 =
2, . . . , jg = g and ik1 = 1, ik2 = 2, . . . , ikrk = rk for every k ∈ [g] in the matrix M
defined in Lemma A.3. We add the first g − 1 rows of M to the gth row, and obtain
a matrix as following:

M ′ =



1 · · · 1
1 · · · 1

. . .

1 · · · 1 1 · · · 1 · · · · · · · · · 1 · · · 1

γ
(1)
1,1 · · · γ

(1)
r1,1

γ
(1)
1,2 · · · γ

(1)
r2,2

· · · · · · · · · γ
(1)
1,g · · · γ

(1)
rg ,g

γ
(2)
1,1 · · · γ

(2)
r1,1

γ
(2)
1,2 · · · γ

(2)
r2,2

· · · · · · · · · γ
(2)
1,g · · · γ

(2)
rg ,g

...
...

...
...

γ
(h)
1,1 · · · γ

(h)
r1,1

γ
(h)
1,2 · · · γ

(h)
r2,2

· · · · · · · · · γ
(h)
1,g · · · γ

(h)
rg ,g


. (A.4)

We need to set the parameter t in Construction A.2 and prove that the matrix
M ′ has full rank. A key step is the following lemma:

Lemma A.9. We use the variables defined in Construction A.2. Suppose the matrix
M ′ shown in Equation (A.4) does not have full rank. Then there exists a polynomial
f(x) with 1 ≤ deg(f) ≤ t − 1 and µ1, . . . , µg ∈ Fq such that f(xi,j) = µj for all
i ∈ [rj], j ∈ [g].

Proof. Suppose M ′ does not have full rank. We pick µ1, µ2, . . . , µg−1, ν0, ν1, . . . , νh ∈
Fq such that they are not all zeros and

(−µ1,−µ2, . . . ,−µg−1, ν0, ν1, . . . , νh) ·M ′ = 0T.

We define µg = 0. From the construction of γ
(k)
i,j (Equation (A.3)), we can see that

the following polynomial f(x) has degree at most n+ h− 1 and satisfies f(xi,j) = µj
for all i ∈ [rj], j ∈ [g]:

f(x) =
t−1∑
k=0

νkx
k +

h∑
k=t

νk〈uk−t+1,w(x)〉.
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It remains to show 1 ≤ deg(f) ≤ t − 1. Let ct, ct+1, . . . , cn+h−1 be the coefficients of
xt, xt+1, . . . , xn+h−1 in f(x), i.e.,

(ct, ct+1, . . . , cn+h−1)T = νtu1 + νt+1u2 + · · ·+ νhuh−t+1,

and

f(x) =
t−1∑
k=0

νkx
k +

n+h−1∑
k=t

ckx
k. (A.5)

By the definition of u1,u2, . . . ,uh−t+1 (Equation (A.2)), we have

Φ · (ct, ct+1, . . . , cn+h−1)T = 0. (A.6)

Claim A.10. f(x) is not a constant, i.e., deg(f) ≥ 1.

Proof of Claim A.10. Assume f(x) is a constant. By Equation (A.5), there must
be ν1 = ν2 = · · · = νt−1 = 0 and ct = ct+1 = · · · = cn+h−1 = 0. Since the
vector (ct, ct+1, . . . , cn+h−1)T is a linear combination of linearly independent vectors
u1,u2, . . . ,uh−t+1, the coefficients of the linear combination, which are νt, νt+1, . . . , νh,
must also be zeros. Now we have ν1 = ν2 = · · · = νh = 0. It follows that the first g
rows of M ′ are linearly dependent (with coefficients −µ1,−µ2, . . . ,−µg−1, ν0), which
is clearly false. �

In order to show deg(f) ≤ t− 1, we need the following claim first:

Claim A.11. The rank of {ν0, ν1, . . . , νt−1, ct, ct+1, . . . , cn+h−1} (i.e., the coefficients
of f(x)) over the subfield Fmn is at most n− 1.

Proof of Claim A.11. Using Lagrange interpolating polynomials, we can find a poly-
nomial f̃(x) that agrees with f(x) on g + h different values xi,j (i ∈ [rj], j ∈ [g]):

f̃(x) =

g∑
j=1

rj∑
i=1

µj

∏
(i′,j′) 6=(i,j)(x− xi′,j′)∏

(i′,j′)6=(i,j)(xi,j − xi′,j′)
. (A.7)

Recall that in Construction A.2, we defined {xi,j}i∈[m],j∈[n] as elements of Fmn. By

expanding Equation (A.7), we can see that the coefficients of f̃(x) are Fmn linear
combinations of µ1, µ2, . . . , µg−1. (Note that we defined µg = 0.) Therefore the rank

of the coefficients of f̃(x) over Fmn is at most g − 1. (For g = 1, f̃(x) ≡ 0.)

For the case g < n, since f(x) agrees with f̃(x) on g + h values xi,j (i ∈ [rj],
j ∈ [g]), there must exist a polynomial ψ(x) with degree at most

deg(f)− (g + h) ≤ (n+ h− 1)− (g + h) = n− g − 1

such that
f(x) ≡ f̃(x) + ψ(x) ·

∏
i∈[rj ],j∈[g]

(x− xi,j). (A.8)
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The rank of the coefficients of ψ(x) over Fmn is at most n− g since there are at most
n− g terms in ψ(x).

For the case g = n, there must be f(x) ≡ f̃(x) since deg(f), deg(f̃) < g+h = n+h.
In this case, Equation (A.8) also holds if we set ψ(x) ≡ 0, and the rank of the
coefficients of ψ(x) ≡ 0 is also at most n− g = 0.

By expanding Equation (A.8), the coefficients of f(x) are Fmn linear combinations

of the coefficients of f̃(x) and the coefficients of ψ(x). Therefore the rank of the
coefficients of f(x) over Fmn is at most g − 1 + n− g = n− 1. �

Claim A.12. ct = ct+1 = · · · = cn+h−1 = 0, i.e., deg(f) ≤ t− 1.

Proof of Claim A.12. Let r be the rank of {ct, ct+1, . . . , cn+h−1} over the subfield
Fmn. It suffices to show r = 0. For the sake of contradiction, assume r > 0. Let
{β1, β2, . . . , βr} ∈ Frq be a basis of {ct, ct+1, . . . , cn+h−1}, and Ξ = {ξi,j}i∈[n+h−t],j∈[r] be
the matrix over Fmn with rank(Ξ) = r such that

(ct, ct+1, . . . , cn+h−1)T = Ξ · (β1, β2, . . . , βr)
T.

By Equation (A.6), we have

Φ · Ξ · (β1, β2, . . . , βr)
T = 0. (A.9)

We will derive a contradiction by showing that the matrix Φ ·Ξ has full column rank.
For every j ∈ [r], let

τj = ξ1,j + ξ2,jϕ+ · · ·+ ξn+h−t,jϕ
n+h−t−1

be the jth entry of the first row of the matrix Φ ·Ξ. Since ξi,j ∈ Fmn, we have ξ
(mn)k

i,j =
ξi,j for all k ∈ N. Therefore the jth entry of the (k + 1)th row (j ∈ [r], k ∈ [n − 2])
of the matrix Φ · Ξ is

ξ1,j + ξ2,jϕ
(mn)k + · · ·+ ξn+h−t,jϕ

(n+h−t−1)(mn)k

=ξ
(mn)k

1,j + (ξ2,jϕ)(mn)k + · · ·+ (ξn+h−t,jϕ
n+h−t−1)(mn)k

=τ
(mn)k

j ,

where we used the fact that m,n are powers of p (the field characteristic). Thus

Φ · Ξ =


τ1 τ2 · · · τr
τmn1 τmn2 · · · τmnr

...

τ
(mn)n−2

1 τ
(mn)n−2

2 · · · τ
(mn)n−2

r

.
The r× r submatrix (note that r ≤ n− 1 by Claim A.11) at the top part of Φ ·Ξ has
full rank if and only if τ1, τ2, . . . , τr ∈ Fq are linearly independent over the subfield
Fmn (see [LN97, Lemma 3.51]). Recall that we picked ϕ ∈ Fq in Construction A.2 so
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that every element of Fq can be uniquely represented as

λ0 + λ1ϕ+ · · ·+ λn+h−t−1ϕ
n+h−t−1 (λ0, λ1, . . . , λn+h−t−1 ∈ Fmn).

Combining this with rank(Ξ) = r, we can see that τ1, τ2, . . . , τr are linearly indepen-
dent. Hence the matrix Φ · Ξ has rank r, contradicting Equation (A.9). �

By Claim A.10 and Claim A.12, we have 1 ≤ deg(f) ≤ t− 1. This concludes the
proof of Lemma A.9.

Using Lemma A.9, we are able to prove Theorem A.6 and Theorem A.7.

Proof of Theorem A.6. The average value of r1, r2, . . . , rg is

g + h

g
=
h

g
+ 1 ≥ h

n
+ 1.

We set t = dh/ne + 1 in Construction A.2 (one can verify t ∈ [2, h]) and pick some
j0 ∈ [g] with rj0 ≥ t. Assume that M ′ does not have full rank. By Lemma A.9, there
exists a polynomial f(x) with 1 ≤ deg(f) ≤ t − 1 satisfying f(x) = µj0 for some
µj0 ∈ Fq at rj0 ≥ t > deg(f) different values x = xi,j0 (i ∈ [rj0 ]). We arrive at a
contradiction. Therefore M ′ has full rank and Construction A.2 gives an MR code
construction over field size (mn)n+h−t = (mn)n+h−dh/ne−1.

Proof of Theorem A.7. We set t = dh/ne+2 in Construction A.2. One can verify that
t ∈ [2, h] holds unless h = 3 and n = 2, in which case the condition h 6≡ 1 (mod n) is
violated. For the sake of contradiction, we assume that M ′ does not have full rank.
If there exists j0 ∈ [g] with rj0 ≥ dh/ne + 2 = t, we can derive a contradiction with
Lemma A.9 along the lines of the proof of Theorem A.6. We only consider the case
that rj ≤ dh/ne+ 1 for all j ∈ [g].

The average value of r1, r2, . . . , rg is at least h/n + 1 as shown in the proof of
Theorem A.6. It follows that there exists some j0 ∈ [g] with rj0 = dh/ne + 1. We
claim that there must be a different j1 ∈ [g] \ {j0} with rj1 = dh/ne+ 1. If there was
not such a j1 we would have

g + h =
∑
j∈[g]

rj ≤
(⌈h

n

⌉
+ 1
)

+ (g − 1) ·
⌈
h

n

⌉
= g ·

⌈
h

n

⌉
+ 1.

By dh/ne ≥ 1 and g ≤ n,

n+ h ≤ n ·
⌈
h

n

⌉
+ 1.

It follows that

n− 1 ≤ n ·
(⌈h

n

⌉
− h

n

)
.

This inequality holds only if dh/ne−h/n attains its maximum value (n−1)/n, which
happens only when h ≡ 1 (mod n). Hence under the condition h 6≡ 1 (mod n), there
must exist distinct j0, j1 ∈ [g] with rj0 = rj1 = dh/ne+ 1 = t− 1.
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By Lemma A.9, there exists a polynomial f(x) with 1 ≤ deg(f) ≤ t− 1 such that
f(x) = µj0 for some µj0 ∈ Fq at rj0 = t − 1 different values x = xi,j0 (i ∈ [rj0 ]), and
f(x) = µj1 for some µj1 ∈ Fq at rj1 = t − 1 different values x = xi,j1 (i ∈ [rj1 ]). We
can see that f(x) can be written in two ways

f(x) ≡ λ0(x− x1,j0)(x− x2,j0) · · · (x− xt−1,j0) + µj0
≡ λ1(x− x1,j1)(x− x2,j1) · · · (x− xt−1,j1) + µj1 ,

where λ0, λ1 ∈ Fq are nonzero. Consider the xt−1 term in the expansions of these two
representations, and there must be λ0 = λ1. Then we consider the xt−2 term. The
coefficients of xt−2 in the two representations should be equal. Hence

t−1∑
i=1

(xi,j0 − xi,j1) =

(
t−1∑
i=1

xi,j0

)
−

(
t−1∑
i=1

xi,j1

)
= 0.

For every i ∈ [t − 1], xi,j0 − xi,j1 can be written as s + dj0 − dj1 for some s ∈ G,
i.e., xi,j0 − xi,j1 is in the coset G + dj0 − dj1 . The left side of the above equality
must be in the coset G + (t − 1) · (dj0 − dj1), where (t − 1) · (dj0 − dj1) denotes
summing dj0 − dj1 for t − 1 times. Since 0 is contained only in the coset G, there
must be (t − 1) · (dj0 − dj1) = 0. It follows that t − 1 ≡ 0 (mod p). However, this
contradicts the condition dh/ne = t − 2 6≡ p − 1 (mod p). This concludes the proof
of Theorem A.7.
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