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Abstract

Since Shannon’s “A Mathematical Theory of Communication” [Sha48], information theory

has found applicability in a wide range of scientific disciplines. Over the past two decades,

information theory has reemerged in theoretical computer science as a mathematical tool

with applications to streaming algorithms, data structures, communication complexity etc.

Properties of mutual information such as additivity and chain rule play an important role

in these applications. In this thesis, we apply information theoretic tools to study various

problems in complexity theory. These include the study of information complexity and com-

munication complexity [BGPW13a, BGPW13c, BG14], hardness amplification of 2-prover

games [BG15], applications of quantum information complexity to the study of quantum

communication complexity of disjointness [BGK+15] and the use of strong data process-

ing inequalities to analyze communication complexity of distributed statistical estimation

[GMN14, BGM+16]. Along the way, we also develop several information theoretic tools

such as correlated sampling theorems, subadditivity properties of information and quantum

information cost etc. which could be of independent interest.
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Organization and Main Results

We describe here the main results in this thesis and links to the chapters where they appear.

Background and Preliminaries

We start by describing some background and preliminaries about communication complexity,

information theory and information complexity (both classical and quantum) in Chapter 1.

Exact Communication Bounds for Disjointness

In Chapter 2, we develop a new local characterization of the zero-error information com-

plexity function for two party communication problems, and use it to compute the exact

internal and external information complexity of the 2−bit AND function: This leads to a

tight (upper and lower bound) characterization of the communication complexity of the set

intersection and set disjointness problems on subsets of {1, . . . , n}.

The information-optimal protocol we present has an infinite number of rounds. We show

this is necessary by proving that the rate of convergence of the r−round information com-

plexity of AND to IC(AND, 0) = C∧ behaves like Θ(1/r2), i.e. that the r-round information

complexity of AND is C∧ + Θ(1/r2).

Only preliminary results without proofs will be presented in this chapter. Full proofs can

be found in [BGPW13b].
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Information Lower Bounds via Self-reducibility

In Chapter 3, we use self-reduction methods to prove strong information lower bounds on two

of the most studied functions in the communication complexity literature: Gap Hamming

Distance (GHD) and Inner Product (IP). In our first result we affirm the conjecture that the

information cost of GHD is linear even under the uniform distribution, which strengthens the

Ω(n) bound recently shown by [KLL+12a], and answers an open problem from [CKW12]. In

our second result we prove that the information cost of IPn is arbitrarily close to the trivial

upper bound n as the permitted error tends to zero, again strengthening the Ω(n) lower

bound recently proved by [BW12].

Our proofs demonstrate that self-reducibility makes the connection between information

complexity and communication complexity lower bounds a two-way connection. Whereas

numerous results in the past [CSWY01, BYJKS04, BBCR10] used information complexity

techniques to derive new communication complexity lower bounds, we explore a generic

way in which communication complexity lower bounds imply information complexity lower

bounds in a black-box manner.

Public vs Private Coins in Information Complexity

In Chapter 4, we precisely characterize the role of private randomness in the ability of Alice

to send a message to Bob while minimizing the amount of information revealed to him. We

show that if using private randomness a message can be transmitted while revealing I bits of

information, the transmission can be simulated without private coins using I + log I +O(1)

bits of information. Moreover, we give an example where this bound is tight: at least

I + log I − O(1) bits are necessary in some cases. Our example also shows that the one-

round compression construction of Harsha et al. [HJMR07] cannot be improved.
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Small Value Parallel Repetition

In Chapter 5, we prove a parallel repetition theorem for general games with value tending

to 0. Previously Dinur and Steurer [DS14] proved such a theorem for the special case of

projection games. We use information theoretic techniques in our proof. Our proofs also

extend to the high value regime (value close to 1) and provide alternate proofs for the parallel

repetition theorems of Holenstein [Hol07] and Rao [Rao08] for general and projection games

respectively. We also extend the example of Feige and Verbitsky [FV02] to show that the

small-value parallel repetition bound we obtain is tight. Our techniques are elementary

in that we only need to employ basic information theory and discrete probability in the

small-value parallel repetition proof.

Bounded-round Quantum Communication Complexity

Lower Bounds for Disjointness

In Chapter 6, we prove a near optimal round-communication tradeoff for the two-party

quantum communication complexity of disjointness. For protocols with r rounds, we prove

a lower bound of Ω̃(n/r + r) on the communication required for computing disjointness of

input size n, which is optimal up to logarithmic factors. The previous best lower bound

was Ω(n/r2 + r) due to Jain, Radhakrishnan and Sen [JRS03]. Along the way, we develop

several tools for quantum information complexity, one of which is a lower bound for quantum

information complexity in terms of the generalized discrepancy method. As a corollary,

we get that the quantum communication complexity of any boolean function f is at most

2O(QIC(f)), where QIC(f) is the prior-free quantum information complexity of f (with error

1/3).
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Communication Complexity Lower Bounds for Statisti-

cal Estimation

In Chapter 7, we study the tradeoff between the statistical error and communication cost

of distributed statistical estimation problems in high dimensions. In the distributed sparse

Gaussian mean estimation problem, each of the m machines receives n data points from

a d-dimensional Gaussian distribution with unknown mean θ which is promised to be k-

sparse. The machines communicate by message passing and aim to estimate the mean θ.

We provide a tight (up to logarithmic factors) tradeoff between the estimation error and the

number of bits communicated between the machines. This directly leads to a lower bound

for the distributed sparse linear regression problem: to achieve the statistical minimax error,

the total communication is at least Ω(min{n, d}m), where n is the number of observations

that each machine receives and d is the ambient dimension. These lower results improve

upon [Sha14, SD15] by allowing multi-round iterative communication model. We also give

the first optimal simultaneous protocol in the dense case for mean estimation.

As our main technique, we prove a distributed strong data processing inequality, as a

generalization of strong data processing inequalities, which might be of independent interest

and useful for other problems.
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Chapter 1

Background and Preliminaries

1.1 Communication Complexity

The two-party communication model was introduced by Yao [Yao79] in 1979. Communi-

cation complexity [Yao79] can be viewed as the generalization of transmission problems to

general tasks performed by two (or more) parties over a communication channel. Communi-

cation complexity is much more general than one-way transmission, but unlike circuit com-

plexity, it is still amenable to lower bounds proofs by a broad range of techniques [KN97].

Furthermore, communication complexity lower bounds have found many applications, for

example in obtaining tight bounds on streaming algorithms and data structures. In addi-

tion, some of the most promising approaches for strong circuit lower bounds that appear

viable, such as Karchmer-Wigderson games and ACC lower bounds [KRW95, BT91] involve

communication complexity lower bounds. Thus, at the moment, developing tools in com-

munication complexity is one of the most promising approaches for making progress within

computational complexity. In this model, two parties, traditionally called Alice and Bob, are

trying to collaboratively compute a known boolean function f : X ×Y → {0, 1}. Each party

is computationally unbounded; however, Alice is only given input x ∈ X and Bob is only
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given y ∈ Y . In order to compute f(x, y), Alice and Bob communicate in accordance with

an agreed-upon communication protocol π. Protocol π specifies as a function of transmitted

bits only whether the communication is over and, if not, who sends the next bit. Moreover,

π specifies as a function of the transmitted bits and x the value of the next bit to be sent by

Alice and similarly for Bob. The communication is over when both parties know the value of

f(x, y). The cost of the protocol π is the number of bits exchanged on the worst input. The

transcript of a protocol is a concatenation of all the bits exchanged during the execution of

the protocol.

There are several ways in which the deterministic communication model can be extended

to include randomization. In the public-coin model, Alice and Bob have access to a shared

random string r chosen according to some probability distribution. The only difference in

the definition of a protocol is that now the protocol π specifies the next bit to be sent by

Alice as a function of x, the already transmitted bits, and a random string r. Similarly for

Bob. This process can also be viewed as the two players having an agreed-upon distribution

on deterministic protocols. Then the players jointly sample a protocol from this distribution.

In the private-coin model, Alice has access to a random string rA hidden from Bob, and Bob

has access to a random string rB hidden from Alice. Public coins are considered to be part

of the transcript of the protocol while private coins are not part of the transcript.

Definition 1.1.1 (Randomized Communication Complexity). For a function f : X×Y → Z

and a parameter ε > 0, Rε(f) denotes the cost of the best randomized public coin protocol

for computing f with error at most ε on every input. Sometimes, we will denote by Rpriv
ε (f)

and Rpub
ε (f), the randomized private-coin and public-coin communication complexities of f ,

respectively.

Definition 1.1.2 (Distributional Communication Complexity). The distributional commu-

nication complexity of f : X × Y → Z with respect to a distribution µ on X × Y and

2



error tolerance ε > 0 is the least cost of a deterministic protocol computing f with error

probability at most ε when the inputs are sampled according to µ. It is denoted by Dµ(f, ε).

Observe that for the purpose of the communication complexity, once we allow public

randomness, it makes no difference whether we permit the players to have private random

strings or not. This is because the private random strings can be simulated by parts of the

public random string. Thus for a protocol π we use Π(x, y) to denote the concatenation of

the transcript of π and the public randomness when the protocol runs on inputs (x, y). The

worst-case number of bits transmitted in π is denoted by CC(π). For i ∈ [CC(π)] we write

Πi(x, y) to denote the ith bit transmitted in Π on input (x, y) if it exists.

For the pre-1997 results on communication complexity see the excellent book by Kushile-

vitz and Nisan [KN97].

1.2 Information Theory

Information theory as the primary mathematical tool for analyzing communication was first

discovered by Shannon in the late 1940’s [Sha48]. In particular, Shannon introduced his en-

tropy function H(X) to measure the amount of information contained in a random variable

X. Shannon’s “source coding theorem” also known as the “noiseless coding theorem” pos-

tulates that in the limit the per-message cost of transmitting a stream of messages x1, x2, . . .

independently distributed according to X is exactly H(X).

In this section we briefly provide the essential information-theoretic concepts used through-

out this thesis. For a thorough introduction to the area of information theory, the reader

should consult a wonderful book by Cover and Thomas [CT91]. Unless stated otherwise, all

logarithms will be base-2.

Definition 1.2.1. Let µ be a (discrete) probability distribution on sample space Ω. Shannon

3



entropy (or just entropy) of µ, denoted by H(µ), is defined as

H(µ) :=
∑

ω∈Ω:µ(ω)>0

µ(ω) log
1

µ(ω)

For a random variable A we shall write H(A) to denote the entropy of the induced

distribution on the range of A. The same also holds for other information-theoretic quantities

appearing later in this section.

We will denote H(Bp) by just H(p), where Bp is the Bernoulli distribution with success

probability p.

Definition 1.2.2. Conditional entropy of a random variable A conditioned on B is defined

as

H(A|B) = H(A,B)−H(B).

Conditional entropy measures the amount of uncertainty in the random variable A from the

point of view of an observer who already knows B.

Fact 1.2.3. H(A|B) = Eb∼PBH(A|B = b).

Here PB denotes the distribution of the random variable B.

Definition 1.2.4. The mutual information between two random variable A and B, denoted

by I(A;B) is defined as

I(A;B) := H(A)−H(A|B) = H(B)−H(B|A).

The conditional mutual information between A and B given C, denoted by I(A;B|C), is

defined as

I(A;B|C) := H(A|C)−H(A|BC) = H(B|C)−H(B|AC).

4



The mutual information term I(A;B) measures the amount of information the random vari-

able A carries about B (or vice versa). The conditional mutual information term I(A;B|C)

measure the amount of additional information that A carries about B for an observer who

already knows C.

Fact 1.2.5. I(A;B|C) = Ec∼PCI(A;B|C = c).

One of the most important and useful properties of mutual information is the chain rule. It

says that the amount of information two random variables A1 and A2 carry about B (from

the point of view of C) can be broken into two parts: the amount of information A1 has

about B (from the point of view of C) + the additional information that A2 carries about

B (from the point of view of A1 and C).

Fact 1.2.6 (Chain Rule). Let A1, A2, B, C be random variables. Then

I(A1A2;B|C) = I(A1;B|C) + I(A2;B|A1C).

Definition 1.2.7. Given two probability distributions µ1 and µ2 on the same sample space

Ω such that (∀ω ∈ Ω)(µ2(ω) = 0⇒ µ1(ω) = 0), the Kullback-Leibler Divergence between is

defined as

D(µ1||µ2) =
∑
ω∈Ω

µ1(ω) log
µ1(ω)

µ2(ω)
.

The connection between the mutual information and the Kullback-Leibler divergence is

provided by the following fact.

Fact 1.2.8. For random variables A,B, and C we have

I(A;B|C) = Eb,c∼PB,CD(PA|B=b,C=c||PA|C=c).

Definition 1.2.9. Let µ1 and µ2 be two probability distributions on the same sample space

5



Ω. Total variation distance (or statistical distance) is defined as

‖µ1 − µ2‖ :=
1

2

∑
ω∈Ω

|µ1(ω)− µ2(ω)|.

Observe that ‖µ1 − µ2‖ = maxS⊆Ω |µ1(S)− µ2(S)| .

Fact 1.2.10 (Data Processing Inequality). Let A,B,C be random variables on the same

sample space, and let D be a probabilistic function of B only. Then we have

I(A;D|C) ≤ I(A;B|C).

Fact 1.2.11. Let X, Y be two random variables whose joint distribution is PX,Y . Then for

any distribution µ, we have

Ex∼PX [D(PY |X=x||PY )] ≤ Ex∼X [D(PY |X=x||µ)]

Proof.

Ex∼X [D(PY |X=x||µ)]− Ex∼PX [D(PY |X=x||PY )] = Ex∼PX

[∑
y

PY |X=x(y) log

(
PY (y)

µ(y)

)]

= D(PY ||µ)

≥ 0

Fact 1.2.12. Let A,B,C,D be four random variables such that I(D;B|AC) = 0. Then

I(A;B|C) ≥ I(A;B|CD)

Proof. Expand I(A,D;B|C) via chain rule in two ways.
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Fact 1.2.13. Let A,B,C,D be four random variables such that I(A;C|BD) = 0. Then

I(A;B|D) ≥ I(A;C|D)

Proof. Expand I(A;B,C|D) via chain rule in two ways.

Fact 1.2.14. Let A,B,C,D be random variables s.t. I(A;D|C) = 0. Then

I(A;B|C,D) ≥ I(A;B|C)

Proof. Expand I(A;B,D|C) via chain rule in two ways.

Fact 1.2.15. Let A,B,C,D,E be random variables.If C,D determine E and D → CE →

AB is Markov chain, then

I(A;B|CE) = I(A;B|CD)

Proof. I(A;B|CD) = I(A;B|CDE), since C,D determine E. Now consider I(A;BD|CE)

I(A;BD|CE) = I(A;B|CE) + I(A;D|BCE) = I(A;B|CE)

Also

I(A;BD|CE) = I(A;D|CE) + I(A;B|CDE) = I(A;B|CDE)

which completes the proof.

Fact 1.2.16 (Chain Rule for relative entropy). Let PV1,V2 and PU1,U2 be two bivariate distri-

butions. Then

D (PV1,V2||PU1,U2) = D (PV1||PU1) + Ev1∼PV1D
(
PV2|V1=v1||PU2|U1=v1

)
Fact 1.2.17 (Convexity of relative entropy). Let P1, P2, Q1, Q2 be distributions and λ ∈ [0, 1]
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be a number. Then

D (λP1 + (1− λ)P2||λQ1 + (1− λ)Q2) ≤ λD (P1||Q1) + (1− λ)D (P2||Q2)

Fact 1.2.18 (Pinsker’s inequality). Let P,Q be two distributions. Then

D(P ||Q) ≥ ||P −Q||
2
1

2 ln 2

Here ||P −Q||1 is the l1 distance between the distributions P and Q.

The following lemma is well known and is used often in proofs of parallel repetition theorems.

Lemma 1.2.19. Let PV1,...,Vn and PU1,...,Un be two distributions over some space Un. Also

suppose that PU1,...,Un is a product distribution i.e. PU1,...,Un(u1, . . . , un) = PU1(u1) · · ·PUn(un).

Then
n∑
i=1

D (PVi ||PUi) ≤ D (PV1,...,Vn||PU1,...,Un)

Proof. By the chain rule for relative entropy, we get that:

D (PV1,...,Vn||PU1,...,Un) =
n∑
i=1

Ev1,...,vi−1∼PV1,...,Vi−1
D
(
PVi|V1=v1,...,Vi−1=vi−1

||PUi|U1=v1,...,Ui−1=vi−1

)
=

n∑
i=1

Ev1,...,vi−1∼PV1,...,Vi−1
D
(
PVi|V1=v1,...,Vi−1=vi−1

||PUi
)

≥
n∑
i=1

D (PVi ||PUi)

The second equality is because PU1,...,Un is a product distribution. The inequality follows by

convexity of relative entropy.

Fact 1.2.20. Let PU be the distribution of some random variable U and let W be an arbitrary

event. Then

D
(
PU |W ||PU

)
≤ log(1/Pr[W ])
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Proof.

D
(
PU |W ||PU

)
=
∑
u

PU |W (u) log(PU |W (u)/PU(u))

≤
∑
u

PU |W (u) log(1/Pr[W ]) = log(1/Pr[W ])

The following lemma is taken from [BRWY13b].

Fact 1.2.21 ([BRWY13b], Lemma 19). Suppose A,B,C are random variables s.t. I(A;B|C) =

0 and W be an arbitrary event. Then

I(A;B|C,W ) ≤ log(1/Pr[W ])

Proof.

I(A;B|C,W ) = Eb,c∼PB,C|WD(PA|B=b,C=c,W ||PA|C=c,W )

≤ Eb,c∼PB,C|WD(PA|B=b,C=c,W ||PA|C=c)

= Eb,c∼PB,C|WD(PA|B=b,C=c,W ||PA|B=b,C=c)

≤ log(1/Pr[W ])

First inequality is by Fact 1.2.11. Second equality is because of I(A;B|C) = 0. Second

inequality is by Fact 1.2.20.

The following lemma is used in a lot of information complexity papers.

Lemma 1.2.22. Let P and Q be distributions over a universe U . Let B = {u : P (u)
Q(u)
≥ 2t}.

Then

P (B) ≤ D (P ||Q) + 1

t
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Proof.

D (P ||Q) =
∑
u∈B

P (u) · log(P (u)/Q(u)) +
∑
u/∈B

P (u) · log(P (u)/Q(u))

≥ P (B) · t+
∑
u/∈B

P (u) · log(P (u)/Q(u)) (1.1)

Denote the complement of B by B̄. Then

∑
u/∈B

P (u) · log(P (u)/Q(u)) ≥ P (B̄) log(P (B̄)/Q(B̄))

≥ P (B̄) log(P (B̄))

> −1 (1.2)

The first inequality follows from log-sum inequality. The second inequality is true because

Q(B̄) ≤ 1. The third inequality follows from the fact that x log(x) > −1 for all x ≥ 0. Now

combining equations (1.1) and (1.2) completes the proof of the lemma.

Fact 1.2.23. Let P and Q be distributions over a universe U . Suppose V ⊆ U is such that

P (V) = 1. Then Q(V) ≥ 2−D(P ||Q).

Proof. It directly follows from the log-sum inequality. Denote the complement of V by V̄ .

D (P ||Q) =
∑
u∈U

P (u) · log(P (u)/Q(u)) ≥ P (V) · log(P (V)/Q(V)) + P (V̄) · log(P (V̄)/Q(V̄))

= log(1/Q(V))

Lemma 1.2.24. Let P and Q are two distributions s.t. P ≤ c · Q. Let PY |X be a channel.
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Let PX,Y = PXPY |X and QX,Y = QXPY |X be two bivariate distributions. Then

I(X;Y )P ≤ c · I(X;Y )Q

Proof.

I(X;Y )P = Ex∼PXD(PY |X=x||PY )

≤ Ex∼PXD(PY |X=x||QY )

≤ c · Ex∼QXD(PY |X=x||QY )

= c · I(X;Y )Q

First inequality is by Fact 1.2.11. Second inequality is because of P ≤ c ·Q.

Lemma 1.2.25. Let A,B1, . . . , Bn be random variables s.t. B1, . . . , Bn are independent.

Then

I(A;B1, . . . , Bn) ≥
n∑
i=1

I(A;Bi)

Proof.

I(A;B1, . . . , Bn) =
n∑
i=1

I(A;Bi|B1, . . . , Bi−1)

≥
n∑
i=1

I(A;Bi)

The inequality follows from the independence of B1, . . . , Bn and Fact 1.2.14.

1.3 Information Complexity

One of the first applications of information theory to 2-party communication complexity

appear in [Abl93] and [CSWY01]. Since then, the theory of information complexity has
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been developed, which is a continuous relaxation of communication complexity and is more

nicely behaved than communication complexity (e.g. information complexity is additive

over computing multiple copies of a function). Information complexity has led to progress in

several important problems in (randomized) communication complexity, such as the direct

sum [BR11, BBCR10] and direct product questions [BRWY13b].

Despite information theory being so successful in reasoning about one-way communica-

tion, it took a while until information theory has been adopted into the communication com-

plexity toolbox. Indeed, the first applications of information in communication complexity

[Abl93, CSWY01] were in the context of one-way and simultaneous message communication

complexity, which is most directly related to the classical transmission setting. It was not

until the work of Bar-Yossef et al. [BYJKS04] that these techniques were extended to the

two-way setting. Further developments [BBCR10, BR11, Bra12] showed that information-

theoretic notions generalize nicely, at least to two-party communication complexity. One can

define the information complexity of a task as the two-party analogue of Shannon’s entropy.

Shannon’s entropy of a random variable X captures the amount of information contained

in one sample – the least amount of information that needs to be conveyed to transmit an

x ∼ X. The information complexity of an interactive task T is the least amount of informa-

tion about their inputs that Alice and Bob need to disclose to each other in order to perform

T . Information complexity is similar to Shannon’s entropy in that it captures exactly the

amortized communication complexity of computing n independent copies of T over a noise-

less binary channel as n→∞ [BR11]. Also, like Shannon’s entropy, information complexity

satisfies the direct sum property, i.e. it is additive: the information complexity of performing

two independent tasks (T1, T2) is equal to the sum of the information complexities of T1 and

T2 [BR11, Bra12].

Definition 1.3.1. The internal information cost of a protocol π with respect to a distribu-
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tion µ on inputs from X × Y is defined as

ICµ(π) := I(Π(X, Y );X|Y ) + I(Π(X, Y );Y |X).

Here (X, Y ) ∼ µ and Π(X, Y ) denotes the random variable for the transcript of the

protocol π when run on inputs X and Y . While public randomness is part of the transcript Π,

private randomness of Alice and Bob doesn’t appear explicitly in the definition of information

cost, it implicitly governs the conditional distribution of Π(X, Y )|X, Y . One can also write

an expression where the private random strings RA and RB appear explicitly and that in

fact is equal to the above expression.

Fact 1.3.2.

ICµ(π) := I(Π(X, Y );X|Y,RB) + I(Π(X, Y );Y |X,RA).

The external information cost of a protocol measures the amount of information that an

external observer learns about the parties inputs from the protocol transcript.

Definition 1.3.3. The external information cost of π with respect to µ is

ICext
µ (π) := I(Π(X, Y );XY ).

It is essential to allow the players to have private randomness (as it can be used to hide

information). Public randomness on the other hand can be easily simulated by private

randomness without changing the information cost (one party can sample the public random

string from his/her private randomness and send it across).

Lemma 1.3.4 ([BR11]). For any distribution µ, ICµ(π) ≤ CC(π).

The information complexity of f with respect to µ is

ICµ(f, ε) := inf
π

ICµ(π),
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where the infimum ranges over all (randomized) protocols π solving f with error at most ε

when inputs are sampled according to µ. Note that we cannot replace the above quantifier

with a min, since the information complexity of a function may not be achievable by any

fixed (finite-round) protocol1.

Similarly, the external information complexity of f with respect to µ is defined as

ICext
µ (f, ε) := inf

π
ICext

µ (π).

Braverman and Rao [BR11] gave an operational meaning to information complexity via

their “information equals amortized communication” theorem. Let Dµn

ε (fn) denote the dis-

tributional communication complexity (under µn) of computing n copies of the function f ,

where the marginal error on each copy should be at most ε. Then the following holds:

Theorem 1.3.5 ([BR11]). For all ε > 0,

lim
n→∞

Dµn

ε (fn)

n
= ICµ(f, ε)

1.4 Quantum Information Theory

We use the following notation for quantum theory; see [Wat13, Wil13] for more details. We

associate a quantum register A with a corresponding vector space, also denoted by A. We

only consider finite-dimensional vector spaces. A state of quantum register A is represented

by a density operator ρ ∈ D(A), with D(A) the set of all unit trace, positive semi-definite

linear operators mapping A into itself. We say that a state ρ is pure if it is a projection

operator, i.e. (ρA)2 = ρA. For a pure state ρ, we might use the pure state formalism, and

represent ρ by the vector |ρ〉 it projects upon, i.e. ρ = |ρ〉〈ρ|; this is well-defined up to an

1In fact, we shall see that this is the case for the AND function whose information complexity will be
analyzed in Chapter 2
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irrelevant phase factor.

A quantum channel from quantum register A into quantum register B is represented

by an operator NA→B ∈ C(A,B), with C(A,B) the set of all completely positive, trace-

preserving linear operators from D(A) into D(B). If A = B, we might simply write NA,

and when systems are clear from context, we might drop the superscripts. For channels

N1 ∈ C(A,B),N2 ∈ C(B,C), we denote their composition as N2 ◦ N1 ∈ C(A,C), with

action (N2 ◦ N1)(ρ) = N2(N1(ρ)) on any state ρ ∈ D(A). We might drop the ◦ symbol

if the composition is clear from context. For A and B isomorphic, we denote the identity

mapping as IA→B, with some implicit choice for the change of basis. For NA1→B1⊗ IA2→B2 ∈

C(A1 ⊗ A2, B1 ⊗ B2), we might abbreviate this as N and leave the identity channel implicit

when the meaning is clear from context.

An important subset of C(A,B) when A and B are isomorphic spaces is the set of unitary

channels U(A,B), the set of all maps U ∈ C(A,B) with an adjoint map U † ∈ C(B,A) such

that U † ◦ U = IA and U ◦ U † = IB. More generally, if dim(B) ≥ dim(A), we denote by

U(A,B) the set of isometric channels, i.e. the set of all maps V ∈ C(A,B) with an adjoint

map V † ∈ C(B,A) such that V † ◦ V = IA. Another important example of channel that we

use is the partial trace TrB(·) ∈ C(A ⊗ B,A) which effectively gets rid of the B subsystem

to obtain the marginal state on subsystem A. Fixing an orthonormal basis {|b〉} for B, we

can write the action of TrB on any ρAB ∈ D(A ⊗ B) as TrB(ρAB) =
∑

b 〈b | ρAB |b〉. Note

that the action of TrB is independent of the choice of basis chosen to represent it, so we

unambiguously write ρA = TrB(ρAB). We also use the notation Tr¬A = TrB to express that

we want to keep only the A register.

Fixing a basis also allows us to talk about classical states and joint states: ρ ∈ D(B) is

classical (with respect to this basis) if it is diagonal in basis {|b〉}, i.e.

ρ =
∑
b

pB(b) · |b〉〈b|
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for some probability distribution pB. More generally, subsystem B of ρAB is said to be

classical if we can write

ρAB =
∑
b

pB(b) · |b〉〈b|B ⊗ ρAb

for some ρAb ∈ D(A). An important example of a channel mapping a quantum system to a

classical one is the measurement channel ∆B, defined as

∆B(ρ) =
∑
b

〈b | ρ |b〉 ·|b〉〈b|B

for any ρ ∈ D(B). Note that for any state ρ ∈ D(B1 ⊗B2 ⊗ C ⊗R) of the form

|ρ〉B1B2CR =
∑
b

√
pB(b) · |b〉B1 |b〉B2 |ρb〉CR,

we have

TrB2(ρ
B1B2CR) =

∑
b

pB(b) · |b〉〈b|B1 ⊗ ρCRb

and

TrB2R(ρB1B2CR) =
∑
b

pB(b) · |b〉〈b|B1 ⊗ ρCb

with the state on B1 classical in both cases. Often, A,B,C, · · · will be used to discuss general

systems, while X, Y, Z, · · · will be reserved for classical systems, or quantum systems like B1

and B2 above that are classical once one of them is traced out, and can be thought of as

containing a quantum copy of the classical content of one another.

For a state ρA ∈ D(A), a purification is a pure state ρAR ∈ D(A ⊗ R) satisfying

TrR(ρAR) = ρA. If R has dimension at least that of A, then such a purification always

exists. For a given R, all purifications are equivalent up to a unitary on R, and more gen-

erally, if dim(R′) ≥ dim(R) and ρAR1 , ρAR
′

2 are two purifications of ρA, then there exists an

isometry V R→R′
ρ such that ρAR

′
2 = Vρ(ρ

AR
1 ). For a channel N ∈ C(A,B), an isometric exten-
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sion is a unitary UN ∈ U(A,A′⊗B) with TrA′(UN(ρA)) = N(ρA) for all ρA. Such an extension

always exists provided A′ is of dimension at least dim(A)2. For the measurement channel

∆B, an isometric extension is given by U∆ =
∑

b |b〉
B′ |b〉B 〈b |B.

The notion of distance we use is the trace distance, defined for two states ρ1, ρ2 ∈ D(A)

as the sum of the absolute values of the eigenvalues of their difference:

‖ρ1 − ρ2‖A = Tr(|ρ1 − ρ2|).

It has an operational interpretation as four times the best bias possible in a state discrimi-

nation test between ρ1 and ρ2. The subscript tells on which subsystems the trace distance

is evaluated, and remaining subsystems might need to be traced out. We use the following

results about trace distance. For proofs of these and other standard results in quantum

information theory that we use, see [Wil13]. The trace distance is monotone under noisy

channels: for any ρ1, ρ2 ∈ D(A) and N ∈ C(A,B),

‖N(ρ1)− N(ρ2)‖B ≤ ‖ρ1 − ρ2‖A. (1.3)

For isometries, the inequality becomes an equality, a property called isometric invariance of

the trace distance. Hence, for any ρ1, ρ2 ∈ D(A) and any U ∈ U(A,B), we have

‖U(ρ1)− U(ρ2)‖B = ‖ρ1 − ρ2‖A. (1.4)

Also, the trace distance cannot be increased by adjoining an uncorrelated system: for any

ρ1, ρ2 ∈ D(A), σ ∈ D(B)

‖ρ1 ⊗ σ − ρ2 ⊗ σ‖AB = ‖ρ1 − ρ2‖A. (1.5)
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The trace distance obeys a property that we call joint linearity: for a classical system X and

two states ρXA1 = pX(x) · |x〉〈x|X ⊗ ρA1,x and ρXA2 = pX(x) · |x〉〈x|X ⊗ ρA2,x,

‖ρ1 − ρ2‖XA =
∑
x

pX(x)‖ρ1,x − ρ2,x‖A. (1.6)

The measure of information that we use is the von Neumann entropy, defined for any

state ρ ∈ D(A) as

H(A)ρ = −Tr(ρ log ρ),

in which we take the convention that 0 log 0 = 0, justified by a continuity argument. The

logarithm log is taken in base 2. Note that H is invariant under isometries applied on ρ. If

the state to be evaluated is clear from context, we might drop the subscript. von Neumann

entropy of state ρ measures how much uncertainty there is in a system A whose state is

ρ. Asymptotically, von Neumann entropy measures the amount of quantum communication

needed to send the system A across a noiseless quantum channel. This was proven by

Schumacher [Sch95].

Conditional entropy of state A conditioned on B for a state ρAB ∈ D(A ⊗ B) is then

defined as

H(A|B)ρ = H(A,B)ρ −H(B)ρ.

While for classical random variables, conditional entropy is always non-negative, for quantum

states, conditional entropy could be negative. This happens, for example, when ρAB is a pure

entangled state. Then H(A,B) = 0 but H(A) = H(B) > 0. It thus appears that it would

be hard to make sense of conditional entropy. However, an operational interpretation of

conditional entropy has been given in [HOW07] in terms of a task called “quantum state
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merging”. Asymptotically, conditional entropy measures the entanglement cost of Alice

transmitting the system A to Bob (Alice holds system A, Bob holds B and the joint state

is ρ). If conditional entropy is negative, then that means this state merging can be achieved

by classical communication from Alice to Bob alone and −H(A|B) ebits are produced on

the side (so entanglement is gained and not lost in the process).

Mutual information between systems A and B in a joint state ρAB ∈ D(A⊗B) is defined

as

I(A;B)ρ = H(A)ρ −H(A|B)ρ.

Intuitively, mutual information measures how much correlation is there between systems A

and B. Mutual information appears in the characterization of entanglement assisted classical

capacity of a noisy quantum channel [BSST99]. Mutual information between systems A and

B can also be interpreted as the amount of work required to destroy the correlations between

A and B [GPW05]. Furthermore, quantum mutual information (between a purifying register

R and A) also measures the amount of classical communication required in quantum state

merging [HOW07].

Conditional mutual information between systems A and B from the point of a system C

(when the joint state is ρABC ∈ D(A⊗B ⊗ C)) is defined as

I(A;B|C)ρ = I(A;B,C)ρ − I(A;C)ρ

In the classical case, conditional mutual information can also be written as an expectation

(over C) of mutual information terms. This does not exist in the quantum case. While con-

ditional entropy could be negative, conditional mutual information is always non-negative.

This was proven in [LR73] via a deep theorem in operator analysis, called Lieb’s concavity

theorem. Since then, several proofs (many operational) have been given for this fundamental
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fact. For example, [HOW07] gives one such proof. The only operational interpretation for

conditional mutual information that exists right now is via a task called “quantum state

redistribution”. In this there is a pure state |ψ〉 on four systems R,A,B,C. Systems A,C

are with Alice, B is with Bob and R is a purifying system which no one has excess to. Alice

wants to send system C to Bob while maintaining the correlations with R (and A and B as

well). It was proven in [YD09] that the amount of entanglement-assisted classical communi-

cation required for this task is I(R;C|B)ψ. Intuitively, the amount of correlations Bob has

with R before is I(R;B) and after is I(R;C,B), so their difference I(R;C|B) is the amount

of communication that needs to be sent from Alice to Bob. The “quantum state redistribu-

tion” task played an important role in the definition of quantum information complexity, as

we will see later.

Now we list some simple facts about quantum information theoretic quantities, which

will be useful later. Note that mutual information and conditional mutual information are

symmetric in interchange of A,B, and invariant under a local isometry applied to A,B or C.

For any pure bipartite state ρAB ∈ D(A⊗B), the entropy on each subsystem is the same:

H(A) = H(B). (1.7)

Since all purifications are equivalent up to an isometry on the purification registers, we get

that for any two pure states |φ〉ABCR
′

and |ψ〉ABCR such that φABC = ψABC ,

I(C;R′|B)φ = I(C;R|B)ψ. (1.8)

For isomorphic A,A′, a maximally entangled state ψ ∈ D(A⊗A′) is a pure state satisfying

H(A) = H(A′) = log dim(A) = log dim(A′). For a system A of dimension dim(A) and any
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ρ ∈ D(A⊗B ⊗ C), we have the bounds

0 ≤ H(A) ≤ log dim(A), (1.9)

−H(A) ≤ H(A|B) ≤ H(A), (1.10)

0 ≤ I(A;B) ≤ 2H(A), (1.11)

0 ≤ I(A;B|C) ≤ 2H(A). (1.12)

If A or B is a classical system, we get the tighter bounds

0 ≤ H(A|B), (1.13)

I(A;B) ≤ H(A), (1.14)

I(A;B|C) ≤ H(A). (1.15)

The conditional mutual information satisfies a chain rule: for any ρ ∈ D(A⊗B ⊗ C ⊗D),

I(AB;C|D) = I(A;C|D) + I(B;C|AD). (1.16)

For product states ρA1B1C1A2B2C2 = ρA1B1C1
1 ⊗ ρA2B2C2

2 , entropy is additive,

H(A1A2) = H(A1) +H(A2), (1.17)

and so there is no conditional mutual information between product system,

I(A1;A2|B1B2) = 0, (1.18)
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and conditioning on a product system is useless,

I(A1;B1|C1A2) = I(A1;B1|C1). (1.19)

More generally,

I(A1A2;B1B2|C1C2) = I(A1;B1|C1) + I(A2;B2|C2). (1.20)

Two important properties of the conditional mutual information are non-negativity, equiva-

lent to strong subadditivity, and the data processing inequality. For any ρ ∈ D(A⊗B ⊗C)

and N ∈ C(B,B′), with σ = N(ρ),

I(A;B|C)ρ ≥ 0, (1.21)

I(A;B|C)ρ ≥ I(A;B′|C)σ. (1.22)

For classical systems, conditioning is equivalent to taking an average: for any ρABCX =∑
x pX(x) · |x〉〈x|X⊗ρABCx , for a classical system X and some appropriate ρx ∈ D(A⊗B⊗C),

H(A|BX)ρ =
∑
x

pX(x) ·H(A|B)ρx , (1.23)

I(A;B|CX)ρ =
∑
x

pX(x) · I(A;B|C)ρx . (1.24)

1.5 Quantum Communication Complexity

Quantum communication complexity, introduced by Yao [Yao93], studies the amount of

quantum communication that two parties, Alice and Bob, need to exchange in order to com-

pute a function (usually boolean) of their private inputs. It is the natural quantum extension

of classical communication complexity [Yao79]. While the inputs are classical and the end
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result is classical, the players are allowed to use quantum resources while communicating.

The model for quantum communication that we consider is the following. For a given bi-

partite relation T ⊂ X × Y × ZA × ZB and input distribution µ on X × Y , Alice and Bob

are given input registers Ain, Bin containing their classical input x ∈ X, y ∈ Y at the outset

of the protocol, respectively, and they output registers Aout, Bout containing their classical

output zA ∈ ZA, zB ∈ ZB at the end of the protocol, respectively, which should satisfy the

relation T . We generally allow for some small error ε in the output, which will be formalized

below. In this distributional communication complexity setting, the input is a classical state

ρ =
∑

x∈X,y∈Y

µ(x, y) · |x〉〈x|Ain ⊗ |y〉〈y|Bin

Similarly, the output

Π(ρ) =
∑

zA∈ZA,zB∈ZB

pZAZB(zA, zB) · |zA〉〈zA|Aout ⊗ |zB〉〈zB|Bout

of the protocol Π implementing the relation, and the error parameter corresponds to the

average probability of failure
∑

x,y µ(x, y) · [(x, y,Π(x, y)) 6∈ R] ≤ ε.

A r-round protocol Π for implementing relation T on input ρAinBin is defined by a sequence

of isometries U1, · · · , Ur+1 along with a pure state ψ ∈ D(TA⊗TB) shared between Alice and

Bob, for arbitrary finite dimensional registers TA, TB. For appropriate finite dimensional

memory registers A1, A3, · · ·Ar−1, A
′ held by Alice, B2, B4, · · ·Br−2, B

′ held by Bob, and

communication registers C1, C2, C3, · · ·Cr exchanged by Alice and Bob, we have U1 ∈ U(Ain⊗

TA, A1⊗C1), U2 ∈ U(Bin⊗TB⊗C1, B2⊗C2), U3 ∈ U(A1⊗C2, A3⊗C3), U4 ∈ U(B2⊗C3, B4⊗

C4), · · · , Ur ∈ U(Br−2⊗Cr−1, Bout⊗B′⊗Cr), Ur+1 ∈ U(Ar−1⊗Cr, Aout⊗A′). We adopt the

convention that, in the first round, B1 = B0 = Bin ⊗ TB, in even rounds Bi = Bi−1, and in

odd rounds Ai = Ai−1. In this way, in round i, after application of Ui, Alice holds register
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Ai, Bob holds register Bi and the communication register is Ci. We slightly abuse notation

and also write Π to denote the channel implemented by the protocol, i.e.

Π(ρ) = TrA′B′(Ur+1Ur · · ·U2U1(ρ⊗ ψ)). (1.25)

To formally define the error, we introduce a purification register R. For a classical input

ρAinBin =
∑

x∈X,y∈Y

µ(x, y) · |x〉〈x|Ain ⊗ |y〉〈y|Bin

like we consider here, we can always take this purification to be of the form

|ρ〉AinBinR =
∑

x∈X,y∈Y

√
µ(x, y) |x〉Ain |y〉Bin |xy〉R1 |xy〉R2

for an appropriately chosen partition of R into R1, R2. Note that if we trace out the the

R2 register, then we are left with a classical state such that R1 contains a copy of the joint

input. Then we say that a protocol Π for implementing relation T on input ρAinBin , with

purification ρAinBinR, has average error ε ∈ [0, 1] if P µ
e =Prµ,Π[Π(ρAinBinR1) 6∈ T ] ≤ ε. We

denote the set of all such protocols as T (T, µ, ε). If we want to restrict this set to bounded

round protocols with r rounds, we write T r(T, µ, ε). The worst case error of a protocol is

Pw
e = maxµ P

µ
e , in which it is sufficient to optimize over all atomic distributions µ. We

denote by T (T, ε) the set of all protocols implementing relation T with worst case error at

most ε, and by T r(T, ε) if we restrict this set to r-round protocols.

Let us formally define the different quantities that we work with.

Definition 1.5.1. For a protocol Π as defined above, we define the quantum communication
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cost of Π as

QCC(Π) =
∑
i

log dim(Ci).

Note that we do not require that dim(Ci) = 2k for some k ∈ N, as is usually done.

This will not affect our definition on information cost and complexity, but might affect the

quantum communication complexity by at most a factor of two, without affecting the round

complexity. The corresponding notions of quantum communication complexity of a relation

are:

Definition 1.5.2. For a relation T ⊂ X × Y ×ZA ×ZB, an input distribution µ on X × Y

and an error parameter ε ∈ [0, 1], we define the ε-error quantum communication complexity

of T on input µ as

QCC(T, µ, ε) = min
Π∈T (T,µ,ε)

QCC(Π),

and the worst-case ε-error quantum communication complexity of T as

QCC(T, ε) = min
Π∈T (T,ε)

QCC(Π),

Remark 1.5.3. For any T, µ, 0 ≤ ε1 ≤ ε2 ≤ 1, the following holds:

QCC(T, µ, ε2) ≤ QCC(T, µ, ε1),

QCC(T, ε2) ≤ QCC(T, ε1).

We have the following definitions for bounded round quantum communication complexity,

and a similar remark holds.

Definition 1.5.4. For a relation T ⊂ X × Y ×ZA×ZB, an input distribution µ on X × Y ,
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an error parameter ε ∈ [0, 1] and a bound r ∈ N on the number of rounds, we define the

r-round, ε-error quantum communication complexity of T on input µ as

QCCr(T, µ, ε) = min
Π∈T r(T,µ,ε)

QCC(Π),

and r-round, worst-case ε-error quantum communication complexity of T as

QCCr(T, ε) = min
Π∈T r(T,ε)

QCC(Π),

1.5.1 Generalized Discrepancy Method

Generalized discrepancy method, also known as smooth discrepancy method, is one of the

strongest methods for proving lower bounds for quantum communication.

Definition 1.5.5. Let f : X × Y → {0, 1} be a boolean function. The δ-generalized

discrepancy bound of f , denoted by GDMδ(f), is defined as:

GDMδ(f) = max{GDMµ
δ (f): µ a distribution over X × Y}

GDMµ
δ (f) = max{log

(
1

discµ(g)

)
, g : X × Y → {0, 1}, Pr

(x,y)∼µ
[f(x, y) 6= g(x, y)] ≤ δ}

discµ(g) = max

| ∑
(x,y)∈R

(−1)g(x,y) · µ(x, y)| : R ∈ R


Here R is the set of combinatorial rectangles A×B, A ⊆ X ,B ⊆ Y . We state two results on

the generalized discrepancy method, both due to Sherstov [She07, She12], which we will use

to lower bound the quantum information complexity of disjointness. The first is a threshold

direct product result that will be useful to prove that the generalized discrepancy method is

a lower bound on the quantum information complexity of boolean functions, and the second

is a lower bound on the generalized discrepancy for the disjointness function.
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Theorem 1.5.6 ([She12]). Let εsh > 0 be a small enough absolute constant. Then for any

boolean function f , the following communication problem requires Ω(nGDM1/5(f)) qubits

of communication (with arbitrary entanglement): Solving with probability 2−εshn, at least

(1− εsh)n among n instances of f .

The disjointness function is defined as follows: for x, y ∈ {0, 1}n×{0, 1}n, DISJn(x, y) =

1 if for all i ∈ [n], xi ∧ yi = 0, and 0 otherwise. We will need the following theorem.

Theorem 1.5.7 ([She07]). GDM1/5(DISJn) ≥ Ω(
√
n)

1.6 Quantum Information Complexity

We use the notion of quantum information complexity as defined in [Tou15]. The register R

is the purification register, invariant throughout the protocol since we consider local isometric

processing. Note that, as noted before when considering a R1R2 partition for R, for classical

input distributions, the purification register can be thought of as containing a (quantum)

copy of the classical input. The definition is however invariant under the choice of R and

corresponding purification.

Definition 1.6.1. For a protocol Π and a state ρ with purification held in system R, we

define the quantum information cost of Π on input ρ as

QIC(Π, ρ) =
∑

i>0,odd

1

2
I(Ci;R|Bi) +

∑
i>0,even

1

2
I(Ci;R|Ai).

Note that the above definition is obtained by summing the asymptotic quantum commu-

nication costs of the “quantum state redistribution” tasks in various steps of the protocol

Π. The above definition has a very nice interpretation as sums of information learnt and

forgotten in various rounds of the protocol [TL].
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Proposition 1.6.2 ([TL]).

QIC(Π, ρ) =
∑

i>0,odd

1

2
· Information-forgotten-by-Alice in round i

+
∑

i>0,odd

1

2
· Information-learnt-by-Bob in round i

+
∑

i>0,even

1

2
· Information-forgotten-by-Bob in round i

+
∑

i>0,even

1

2
· Information-learnt-by-Alice in round i

Here

Information-forgotten-by-Alice in round i = I(Y ;Ci|X,Ai)ρ

Information-learnt-by-Bob in round i = I(X;Ci|Y,Bi)ρ

Information-forgotten-by-Bob in round i = I(X;Ci|Y,Bi)ρ

Information-learnt-by-Alice in round i = I(Y ;Ci|X,Ai)ρ

Definition 1.6.3. For a relation T ⊂ X×Y ×ZA×ZB, an input distribution µ on X×Y , an

error parameter ε ∈ [0, 1] and a number of round r, we define the ε-error quantum information

complexity of T on input µ as

QIC(T, µ, ε) = inf
Π∈T (T,µ,ε)

QIC(Π, µ),

and the r-round, ε-error quantum information complexity of T on input µ as

QICr(T, µ, ε) = inf
Π∈T r(T,µ,ε)

QIC(Π, µ),

The following properties of quantum information cost and complexity were proved in
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Ref. [Tou15].

Lemma 1.6.4. For any protocol Π and input distribution µ, the following holds:

0 ≤ QIC(Π, µ) ≤ QCC(Π).

Lemma 1.6.5. For a relation T ⊂ X × Y × ZA × ZB, an input distribution µ on X × Y ,

an error parameter ε ∈ [0, 1] and a number of round r, the following holds:

0 ≤ QIC(T, µ, ε) ≤ QCC(T, µ, ε),

0 ≤ QICr(T, µ, ε) ≤ QCCr(T, µ, ε).

Lemma 1.6.6. For any two protocols Π1 and Π2 with r1 and r2 rounds, respectively, there

exists a r-round protocol Π2, satisfying Π2 = Π1⊗Π2, r = max(r1, r2), such that the following

holds for any corresponding input states ρ1, ρ2:

QIC(Π2, ρ
1 ⊗ ρ2) = QIC(Π1, ρ1) +QIC(Π2, ρ2).

Lemma 1.6.7. For any r-round protocol Π2 and any input states ρ1 ∈ D(A1
in ⊗ B1

in), ρ2 ∈

D(A2
in ⊗B2

in), there exist r-round protocols Π1,Π2 satisfying Π1(·) = TrA2
outB

2
out
◦Π2(· ⊗ ρ2) ,

Π2(·) = TrA1
outB

1
out
◦Π2(ρ1 ⊗ ·), and the following holds:

QIC(Π1, ρ1) +QIC(Π2, ρ2) = QIC(Π2, ρ
1 ⊗ ρ2).

Lemma 1.6.8. For any p ∈ [0, 1], any two protocols Π1,Π2 with r1, r2 rounds, respectively,

there exists a r-round protocol Π satisfying Π = pΠ1 + (1− p)Π2, r = max(r1, r2), such that
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the following holds for any state ρ:

QIC(Π, ρ) = pQIC(Π1, ρ) + (1− p)QIC(Π2, ρ).

Corollary 1.6.9. For any p ∈ [0, 1], T and ε, ε1, ε2 ∈ [0, 1] satisfying ε = pε1 + (1− p)ε2, for

any bound r = max(r1, r2), r1, r2 ∈ N on the number of rounds and for any input distribution

µ on X × Y , the following holds:

QIC(T, µ, ε) ≤ pQIC(T, µ, ε1) + (1− p)QIC(T, µ, ε2),

QICr(T, µ, ε) ≤ pQICr1(T, µ, ε1) + (1− p)QICr2(T, µ, ε2).

Lemma 1.6.10. Let ν be a distribution over input states ρ and denote ρ := Eρ∼νρ. Then

for any protocol π,

Eρ∼ν [QIC(π, ρ)] ≤ QIC(π, ρ)

Lemma 1.6.11. For any r-round protocol Π, any input distribution µ with copies of x, y

in R1, and any ε ∈ (0, 2], δ > 0, there exists a large enough n0(Π, ρ, ε, δ) such that for any

n ≥ n0, there exists a r-round protocol Πn satisfying

‖Πn((ρAinBinR1)⊗n)− Π⊗n((ρAinBinR1)⊗n)‖(AoutBoutR1)⊗n ≤ ε,

1

n
QCC(Πn) ≤ QIC(Π, ρ) + δ.
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Chapter 2

Exact Communication Bounds for

Disjointness

The results in this chapter are based on joint work with Mark Braverman, Denis Pankratov

and Omri Weinstein [BGPW13a]. Only preliminary results will be presented in this chapter.

All the results and full proofs can be found in the full version of the paper [BGPW13b].

2.1 Introduction

The set disjointness problem is one of the oldest and most studied problems in communication

complexity [KN97]. In the two party setting, Alice and Bob are given subsets X, Y ⊂ [n],

respectively, and need to output 1 if X ∩ Y = ∅, and 0 otherwise. Thus the disjointness

function Disjn can be written as

Disjn(X, Y ) =
n∧
i=1

(¬Xi ∨ ¬Yi)

In the deterministic communication complexity model, it is easy to show that Disjn has

communication complexity n + 1. In the randomized communication complexity model –
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which is the focus of this paper – an Ω(n) lower bound was first proven by Kalyanasundaram

and Schnitger [KS92]. The proof was combinatorial in nature. A much simpler combinatorial

proof was given by Razborov a few years later [Raz92]. In terms of upper bounds on the

communication complexity of disjointness, an n + 1 bound is trivial. No better bound was

known prior to this work, although by examining the problem, one can directly convince

oneself that there is a randomized protocol for Disjn, with tiny error, that uses only (1−ε)n

communication for some small ε > 0 – so that the deterministic algorithm is suboptimal.

Another set of techniques which were successfully applied to versions of disjointness, espe-

cially in the quantum and multiparty settings [Raz02, CA08, She14] are analytic techniques.

Analytic techniques such as the pattern matrix method [She07], allow one to further extend

the reach of combinatorial techniques.

The first information-theoretic proof of the lower bound for disjointness was given by

Bar-Yossef et al. [BYJKS04]. The information-theoretic approach was extended to the

multi-party number-in-hand setting [CKS03, Gro09, Jay09a] with applications to tight lower

bounds on streaming algorithms. At the core of the proof is a direct-sum reduction of proving

an Ω(n) bound on Disjn to proving an Ω(1) bound on the information complexity of AND.

The direct sum in this and other proofs follows from an application of the chain rule for

mutual information – one of the primary information-theoretic tools. More recently, an

information complexity view of disjointness lead to tight bounds on the ability of extended

formulations by linear programs to approximate the CLIQUE problem [BM13]. This suggests

that information complexity and a better understanding of the disjointness problem may have

other interesting implications within computational complexity.

A problem related to disjointness is Set Intersection Intn: now Alice and Bob do not

want to just determine whether X and Y intersect, but both want to learn the intersection

set X ∩ Y . For this problem, even in the randomized setting, a lower bound of n bits on

the communication is trivial: by fixing X = [n] we see that in this special case the problem
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will amount to Bob sending his input to Alice – which clearly requires ≥ n bits. Thus the

randomized communication complexity of this problems lies somewhere between n and 2n

– the trivial upper and lower bounds. Note that the intersection problem is nothing but n

copies of the two-bit AND function. Therefore, determining the communication complexity

of Intn is equivalent to determining the information complexity of the two-bit AND function

by the “information equals amortized communication” connection.

Essentially independently of the communication complexity line of work described above,

a study of the AND/intersection problem has recently originated in the information theory

community. A series of papers by Ma and Ishwar [MI08, MI11] develops techniques which

allow one to calculate tight bounds on the communication complexity of Intn and other

amortized functions on the condition that one only considers protocols restricted to r rounds

of communication. These techniques allow one to numerically (and sometimes analytically)

compute the information complexity of the two-bit AND function – although the numerical

computation is not provably correct for the most general unbounded round case since the rate

of convergence of r-round information complexity down to the true information complexity

is unknown. Furthermore, their results are non-constructive in the sense that they do not

exhibit a protocol achieving their bounds. Nonetheless, numerical calculations produced

by Ma and Ishwar do point at convergence to 1.4923 bits for the AND function [MI]. As

discussed below, our tight upper and lower bounds are consistent with this evidence.

The main result of this chapter is giving tight bounds on the information and communica-

tion complexity of the AND, Intn, and Disjn functions. We give a (provably) information-

theoretic optimal protocol for the two-bit AND function. Combined with prior results –

and new additional technical work – this optimality immediately gives a tight optimal ran-

domized protocol for Intn that uses C∧ · n ± o(n) bits of communication and fails with a

vanishing probability. Here C∧ ≈ 1.4923 is an explicit constant given as a maximum of a

concave analytic function. We then apply the same optimal result to obtain the optimal
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protocol for set disjointness, showing that the best vanishing error randomized protocol for

Disjn will take CDISJ · n ± o(n) bits of communication, where CDISJ ≈ 0.4827 is another

explicit constant (which we found to be surprisingly low). The fact that we need the bounds

to be exact throughout requires us to develop some new technical tools for dealing with

information complexity in this context. For example, we show that the randomized ε-error

information complexity converges to the 0-error information complexity as ε→ 0.

Applying what we’ve learned about the AND function to the sparse sets regime, we are

able to determine the precise communication complexity of disjointness Disjkn where the

sets are restricted to be of size at most k. H̊astad and Wigderson [HW07] showed that the

randomized communication complexity of this problem is Θ(k). We sharpen this result by

showing that for vanishing error the communication complexity of Disjkn is 2
ln 2
k ± o(k) ≈

2.885k ± o(k).

Interestingly the optimal protocol we obtain for AND is not an actual protocol in the

strict sense of the definition of a communication protocol. One way to visualize it is as a

game show where Alice and Bob both have access to a “buzzer” and the game stops when

one of them “buzzes in”. The exact time of the “buzz in” matters. If we wanted to simulate

this process with a conventional protocol, we’d need the time to be infinitely quantized, with

Alice and Bob exchanging messages of the form “no buzz in yet”, until the buzz in finally

happens. Thus the optimal information complexity of AND is obtained by an infimum of a

sequence of conventional protocols rather than by a single protocol.

It turns out that the unlimited number of rounds is necessary, both for the AND function

and for DISJn. Our understanding of information complexity in the context of the AND

function allows us to calculate the asymptotics of the amount of communication needed

if we restrict the number of rounds of interaction between players to r. R(Disjn, 0
+, r)

= (CDISJ + Θ(1/r2)) · n. In particular, any constant bound on the number of rounds means

a linear loss in communication complexity. There are well-known examples in communication
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complexity where adding even a single round causes an exponential reduction in the amount

of communication needed [NW93a]. There are also examples of very simple transmission

problems where it can be shown that two rounds are much better than one, and more than

two are better yet [Orl90, Orl91]. However, to our knowledge, this is the first example of a

“natural” function where an arbitrary number of additional rounds is provably helpful.

2.2 Main Results

Let π be a communication protocol attempting to solve some two-party function f(x, y) with

zero error where inputs are sampled according to a joint distribution µ. Our first contribution

is a characterization of the zero-error information cost function ICµ(f, 0) in terms of certain

local concavity constrains. A related – but more abstract – characterization was given in

the information theory literature by Ma and Ishwar [MI08]. Let ∆(X ×Y) denote the set of

distributions over X × Y .

Lemma 2.2.1. For any function f : X ×Y → Z there exists a family C(f) of functions C :

∆(X ×Y)→ R≥0 satisfying certain local concavity constraints, such that for any distribution

µ, and any protocol π solving f with zero error under µ, it holds that

∀ C ∈ C(f) C(µ) ≤ ICµ(π).

Furthermore, ICµ(f, 0) is the point-wise maximum of C(f).

This lemma gives a very general technique for proving information-complexity lower

bounds, and plays a central role in one of our main results: the exact information complexity

of the 2-bit AND function f(x, y) = x ∧ y. Since the inputs of the parties consist of only 2

bits, the information complexity of this function is trivially bounded by 2. By fixing x = 1,

it is also easy to see that 1 is a lower bound on the information complexity. We present a
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zero-error “clocked” protocol which has an infinite number of rounds and computes the AND

function, under any input distribution µ, with information cost at most C∧ ≈ 1.4923. The

maximum external information cost of our protocol is log2 3 ≈ 1.58496. While the analysis

itself is nontrivial, the main bulk of effort is proving this protocol is in fact optimal, both in

the internal and external sense:

Theorem 2.2.2.

IC(AND, 0) = C∧ ≈ 1.4923

Theorem 2.2.3.

ICext(AND, 0) = log2 3 ≈ 1.58496

We also analyze the rate of convergence to the optimal information cost, as the number r

of permitted rounds increases. Recently, the authors in [BS16] obtained a rate of convergence

analysis (not tight) for arbitrary functions, thus proving that information complexity is

computable.

Theorem 2.2.4. For all µ ∈ ∆({0, 1} × {0, 1}) with full support we have

ICr
µ(AND, 0) = ICµ(AND, 0) + Θµ

(
1

r2

)
.

In the second part of our work we show how tight information bounds may lead to exact

communication bounds.

We leverage our in-depth information analysis of AND to prove the exact randomized

communication complexity of the Disjn function, with error tending to zero. For the general

disjointness function we get:

Theorem 2.2.5. For all ε > 0, there exists δ = δ(ε) > 0 such that δ → 0 as ε→ 0 and

(CDISJ − δ) · n ≤ Rε(DISJn) ≤ CDISJ · n+ o(n).
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where CDISJ ≈ 0.4827 bits.

For the case of disjointness DISJkn of sets of size ≤ k we get

Theorem 2.2.6. Let n, k be such that k = ω(1) and n/k = ω(1). Then for all constant

ε > 0, (
2

ln 2
−O(

√
ε)

)
· k − o(k) ≤ Rε(DISJ

k
n) ≤ 2

ln 2
· k + o(k).

We also observe that Theorem 2.2.2 leads to the exact (randomized) communication

complexity of the Set Intersection problem, which turns out to be C∧ · n ≈ 1.492 · n.

Our results rely on new insights for understanding communication protocols from an

informational point of view, as functionals on the space of distributions. This requires

further development of new properties of the information cost function. One such property

is the continuity of the information complexity function at ε = 0:

Theorem 2.2.7. For all f : X × Y → Z and µ ∈ ∆(X × Y) we have

lim
ε→0

ICµ(f, ε) = ICµ(f, 0), (2.1)

lim
ε→0

ICext
µ (f, ε) = ICext

µ (f, 0). (2.2)

2.3 Preliminaries

2.3.1 Notation

Capital letters are reserved for random variables (e. g., A, B, C), calligraphic letters for sets

(e. g., X ,Y ,Z, . . .), and small letters for elements of sets (e. g., a, b, c, . . .). For typographical

purposes we shall write A1A2 · · ·An to denote the random variable (A1, A2, . . . , An) and not

the random variable that is the product of the Ai, unless otherwise specified. We use [n] to

denote the set {1, . . . , n}.
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For random variables A and Bi (i ∈ [n]) and elements bi ∈ rangeBi (i ∈ [n]) we write Ab1b2···bn

to denote the random variable A conditioned on the event “B1 = b1, B2 = b2, . . . , Bn = bn”.

Whenever convenient we shall view a probability distribution µ on a sample space X ×Y as

a |X | × |Y| matrix, where the rows are indexed by elements of X and columns are indexed

by elements of Y in some standard order (e. g., lexicographic order when X and Y are sets

of binary strings). For example, we shall often write distribution µ on {0, 1} × {0, 1} as

µ =
α β

γ δ
meaning that µ(0, 0) = α, µ(0, 1) = β, µ(0, 1) = γ, and µ(1, 1) = δ. We use

∆(X ) to denote the family of all probability distributions on X . For a particular distribution

µ on X ×Y we use µT to denote the probability distribution on Y ×X that is given by the

transpose of the matrix representation of µ.

2.3.2 Information Complexity

We refer the reader to Section 1.3 for definitions of ICµ(π): information cost of a protocol

π w.r.t. the distribution µ and ICext
µ (π): external information cost of a protocol π w.r.t. the

distribution µ. We repeat here some definitions of the information complexity of a function

f .

The information complexity of f with respect to µ is

ICµ(f, ε) := inf
π

ICµ(π),

where the infimum ranges over all (randomized) protocols π solving f with error at most ε

when inputs are sampled according to µ. Note that we cannot replace the above quantifier

with a min, since the information cost of a function may not be achievable by any fixed

(finite-round) protocol1.

1In fact, we shall see that this is the case for the AND function whose information complexity is analyzed
in this chapter.
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We also define an absolute 0-error information complexity of f w.r.t µ

ICµ(f, 0) := inf
π

ICµ(π),

where the infimum ranges over all (randomized) protocols π solving f correctly on all inputs.

Similarly, the external information complexity of f with respect to µ is defined as

ICext
µ (f, ε) := inf

π
ICext

µ (π).

The prior-free information complexity of a function f (or simply, the information cost of

f) with error ε is defined as

IC(f, ε) := inf
π

max
µ∈∆(X×Y)

ICµ(π).

where the infimum is over protocols that work correctly for each input, except with proba-

bility ε. The external prior-free information cost is defined analogously.

The special case IC(f, 0) is referred to as the zero error information complexity of f , and

will be of primary interest in this paper. It turns out that for this special case (ε = 0), we

may reverse the order of quantifiers:

Theorem 2.3.1 ([Bra12]).

IC(f, 0) = max
µ

inf
π correct on support of µ

ICµ(π),

i.e, we can choose the protocol dependent on the distribution and yet the information cost

doesn’t decrease.
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For r ∈ N, the r-round information complexity of a function f is defined as

ICr
µ(f, ε) := inf

π
ICµ(π),

where the infimum ranges over all r-round protocols π solving f with error at most ε when

inputs are sampled according to µ. The r-round external information cost is defined analo-

gously.

2.4 Optimal Information-Theoretic Protocol for AND

The information complexity of a function is the infimum over protocols of the information

cost of the protocol. Therefore the information complexity may not be achieved by any

single protocol. This is indeed the case for the AND function, as we will see in Section 2.7.

Nevertheless if we allow slightly more powerful protocols we can find a single optimal protocol

for the AND function. In this section we present a “protocol with a clock” (see Protocol 1)

whose information cost is exactly equal to the information complexity of the AND function.

The inputs (X, Y ) to AND are distributed according to a prior µ =
α β

γ δ
.

Protocol 1 consists of two parts. In the first part (steps 1 and 2), Alice and Bob check

to see if their prior is symmetric, and if it is not they communicate “a bit” to make it

symmetric. During this communication one of the players may reveal that his or her input

is 0, in which case the protocol terminates, as the answer to AND can be deduced by both

players. In the second part (steps 3− 6), Alice and Bob privately generate random numbers

NA ∈ [0, 1] and NB ∈ [0, 1] and observe the clock as it increases from 0 to 1. When some

player’s private number is reached by the clock, the player immediately notifies the other

player. The rules for picking a private number ensure that the number is less than 1 if and

only if the owner of the number has 0 as input. Therefore once one of the players speaks in
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1. If β < γ then Bob sends bit B as follows

B =


1 if y = 1
0 with probability 1− β/γ if y = 0
1 with probability β/γ if y = 0

If B = 0 the protocol terminates and players output 0.

2. If β > γ then Alice sends bit B as follows

B =


1 if x = 1
0 with probability 1− γ/β if x = 0
1 with probability γ/β if x = 0

If B = 0 the protocol terminates and players output 0.

3. If x = 0 then Alice samples NA ∈R [0, 1) uniformly at random. If x = 1 then Alice
sets NA = 1.

4. If y = 0 then Bob samples NB ∈R [0, 1) uniformly at random. If y = 1 then Bob sets
NB = 1.

5. Alice and Bob monitor the clock C, which starts at value 0.

6. The clock continuously increases to 1. If min(NA, NB) < 1, when the clock reaches
min(NA, NB) the corresponding player sends 0 to the other player, the protocol ends,
the players output 0. If min(NA, NB) = 1, once the clock reaches 1, Alice sends 1 to
Bob, the protocol ends, and the players output 1.

Protocol 1: Protocol π for the AND-function

the second part, both players can deduce the answer to AND, so the protocol terminates.

From the description of Protocol 1, it is clear that it correctly solves AND on all inputs.

The proof of the optimality of the information cost of this protocol proceeds in two steps.

The first step is to analyze the information cost of Protocol 1. The result of this analysis

is a precise and simple formula for I(µ) := ICµ(π) in terms of α, β, γ, δ. In addition, we

conclude that I(µ) ≥ ICµ(AND, 0). For the second step, we need a new technique to prove

exact information lower bounds. This technique relies on the new characterization of the

information cost presented in Section 2.5. In that section we show that any function satisfying

certain local concavity constraints is a lower bound on the information cost. To complete
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the proof that I(µ) = ICµ(AND, 0) we simply check that I(µ) satisfies those local concavity

constraints, and indeed it does.

We attempt to demystify the steps of this protocol by presenting the intuition behind

optimality of its information cost. To this end, we may view any protocol as a random walk

on the space of distributions on X ×Y . We observe that for the AND function the space of

distributions µ on {0, 1}2 may be divided into three regions:

Alice’s region consists of all distributions µ with β > γ, i. e., those distributions µ, for

which Alice has greater probability of having 0 than Bob.

Bob’s region consists of all distributions µ with β < γ, i. e., those distributions µ, for

which Bob has greater probability of having 0 than Alice.

Diagonal region consists of symmetric distributions µ, i. e., β = γ and both players are

equally likely to have 0 as input.

We note that a protocol in which Alice talks in Bob’s region and then the players play

optimally, reveals more information about the inputs than a protocol in which Bob talks

in Bob’s region and then players play optimally ( and Similarly for Alice’s region). A

formalization of this argument can be found in the full version of the paper. Therefore

in an optimal protocol, each player should speak only in his own region. The interesting

scenario is when the protocol finds itself in the diagonal region. Suppose that players want

to convince each other that they are more likely to have 1 as input. If Bob makes a random

step, he will step into Alice’s region with some probability revealing suboptimal amount

of information. The same goes for Alice. What we’d like them to do is to walk “along

the diagonal region”. This can be accomplished without revealing suboptimal amount of

information only if we allow the players to take infinitesimal steps. This is precisely what

the clock from our protocol achieves. As the clock increases from 0 to 1, the distribution

stays symmetric, but gets modified simultaneously by increasing its mass on (1, 1)-entry.
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Remark 2.4.1. It turns out that Protocol 1 achieves both internal and external information

costs. The analysis reveals that the internal and external information costs are different for

the AND function.

We refer an interested reader to the full version of the paper for the details on how

to make the above intuition precise, and for a careful analysis of the information cost of

Protocol 1. In the rest of this section we present a summary of results (omitting the proofs)

that we were able to achieve using the above techniques.

Observe that since AND is a symmetric function ICµ(AND, 0) = ICµT (AND, 0), therefore

it suffices to compute the information cost for the AND function only for distributions with

β ≤ γ.

Theorem 2.4.2. For a symmetric distribution ν =
α β

β δ
we have

ICν(AND, 0) =
β

ln 2
+ 2δ log

β + δ

δ
+ 2β log

β + δ

β
+
β2

α
log

β

β + α
+ α log

α + β

α
(2.3)

For a distribution µ =
α β

γ δ
, where β < γ, we have

ICµ(AND, 0) = I(Y ;B|X) + t ICν̃(π)

where t = δ + 2β + αβ
γ

, ν̃ =

βα
γt

β
t

β
t

δ
t

and

I(Y ;B|X) = (α + β)H

(
β

γ
· α + γ

α + β

)
+ (γ + δ)H

(
δ + β

γ + δ

)
− (α + γ)H

(
β

γ

)
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Theorem 2.4.3. (Theorem 2.2.2 restated)

IC(AND, 0) = C∧ = 1.49238 . . .

The distribution that achieves this maximum is

µ =
0.0808931 . . . 0.264381 . . .

0.264381 . . . 0.390346 . . .
.

Remark 2.4.4. Observe that the maximum of IC(AND, 0) is achieved for a symmetric

distribution. This is not a coincidence. Let f be a symmetric function and µ be an arbitrary

distribution on the inputs of f . Then ICµ(f, 0) = ICµT (f, 0) and it is easy to see that the

information complexity is a concave function in µ. Thus for µ′ = µ/2 + µT/2, which is

symmetric, we have ICµ′(f, 0) ≥ ICµ(f, 0)/2 + ICµT (f, 0)/2 = ICµ(f, 0).

Theorem 2.4.5. (Theorem 2.2.3 restated)

ICext(AND, 0) = log 3 = 1.58396 . . .

The distribution that achieves this maximum is

µ =
0 1/3

1/3 1/3
.

In Section 2.5 on communication complexity results, distributions µ that place 0 mass

on (1, 1) entry play a crucial role. Note that for such distributions we still insist that the

protocol solving AND has 0 error on all inputs.
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Theorem 2.4.6. For symmetric distributions µ =
α β

β 0
we have

ICµ(AND, 0) =
β

ln 2
+
β2

α
log

β

α + β
+ α log

α + β

α
.

Theorem 2.4.7. For distributions µ =
α β

γ 0
we have

ICµ(AND, 0) = (α + β)H

(
β

γ

α + γ

α + β

)
− αH

(
β

γ

)
+

+ tICν(AND, 0),

where t = 2β + αβ
γ

and ν =

βα
γt

β
t

β
t

0
.

Theorem 2.4.8.

max
µ:µ(1,1)=0

ICµ(AND, 0) = 0.482702 . . . .

The distribution that achieves this maximum is

µ =
0.36532 . . . 0.31734 . . .

0.31734 . . . 0
.

2.5 Characterization of Information Cost

In this section we prove Lemma 2.2.1, a local characterization of the zero-error information

complexity function. More precisely, for an arbitrary function f : X ×Y → Z we shall define

a family C(f) of functions ∆(X × Y) → Z satisfying certain local concavity constraints.

Then we show that each member of C(f) is a lower bound on the zero-error information
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cost function I(µ) := ICµ(f, 0) of f . It will be evident that I(µ) itself satisfies the local

concavity constraints, i. e., I(µ) ∈ C(f). Thus the zero-error information cost of a function

f is a point-wise maximum over all functions in the family C(f). This technique is used to

prove that the information cost of Protocol 1 is exactly ICµ(AND, 0).

It turns out that the number of local concavity constraints that are used to define C(f)

can be greatly reduced if we assume that every bit sent in a protocol π, nearly achieving the

information cost of f , is uniformly distributed from an external observer point of view. In

other words, for each node u in a protocol π we have

P (owner of u sends 0|Π reaches u) = 1/2.

We say that such a protocol is in normal form. The proof that the normal form assumption

can be made without loss of generality is straightforward and can be found in the full version

of the paper. Now we proceed to define the family C(f).

Definition 2.5.1. Let f : X × Y → Z be a given function. Define a family C(f) of all

functions C : ∆(X × Y)→ R≥0 satisfying the following constraints:

• (∀µ ∈ ∆(X × Y))(f |supp(µ) is constant⇒ C(µ) = 0),

• ∀µ, µA0 , µA1 ∈ ∆(X ×Y) if Alice can send bit B (that is a randomized function of Alice’s

input x) from µ s. t. P (B = 0) = P (B = 1) = 1/2 and µAi (x, y) = P (X = x, Y =

y|B = i) for i ∈ {0, 1} then

C(µ) ≤ C(µA0 )/2 + C(µA1 )/2 + I(X;B|Y ),

Here (X, Y ) ∼ µ.

• ∀µ, µB0 , µB1 ∈ ∆(X ×Y) if Bob can send bit B (that is a randomized function of Bob’s

input y) from µ s. t. P (B = 0) = P (B = 1) = 1/2 and µBi (x, y) = P (X = x, Y =
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y|B = i) for i ∈ {0, 1} then

C(µ) ≤ C(µB0 )/2 + C(µB1 )/2 + I(Y ;B|X),

Remark 2.5.2. The notation f |supp(µ) ≡ Constant means that both parties can determine

the function’s output under µ by looking at their own input - We do not consider the player’s

output as part of the protocol transcript, so the latter condition need not imply that the

function is determined under µ from an external point of view. The example f(0, 0) = 0,

f(1, 1) = 1, µ(0, 0) = µ(1, 1) = 1/2 illustrates this point.

Lemma 2.5.3. Let f : X × Y → Z be a given function. Let π be a protocol that solves f

correctly on all inputs. Then for all C ∈ C(f) and all µ ∈ ∆(X ×Y) we have C(µ) ≤ ICµ(π).

Proof by induction on c := CC(π). When c = 0 the claim is clearly true, since then f |supp(µ)

is constant and hence C(µ) = 0. Also ICµ(π) = 0.

Assume the claim holds for all c-bit protocols where c ≥ 0. Consider a c+1-bit protocol π.

As discussed prior to the proof, we may assume that π is in normal form. Assume that Alice

sends the first bit B. If this bit is 0 then Alice and Bob end up with a new distribution on

the inputs µA0 , otherwise they end up with distribution µA1 . After the first bit, the protocol π

reduces to a c-bit protocol π0 if 0 was sent and π1 if 1 was sent. Since Alice’s bit is uniformly

distributed we have

I(π;X|Y ) = I(π1;X|Y ) + I(π≥2;X|Y π1)

= I(B;X|Y ) + I(π0;X|Y )/2 + I(π1;Y |X)/2.
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Similarly for I(π;Y |X). Thus we obtain

ICµ(π) = ICµA0
(π0)/2 + ICµA1

(π1)/2 + I(X;B|Y )

≥ C(µA0 )/2 + C(µA1 )/2 + I(X;B|Y ) (by induction)

≥ C(µ) (by properties of C)

Corollary 2.5.4. For all f : X × Y → Z we have

1. ICµ(f, 0) ∈ C(f),

2. for all µ ∈ ∆(X × Y) and for all C ∈ C(f) we have ICµ(f, 0) ≥ C(µ).

3. for all µ ∈ ∆(X × Y) we have ICµ(f, 0) = maxC∈C(f) C(µ).

2.6 Applications: Exact Communication Bounds

In this section we leverage our in-depth analysis of the information complexity of the AND

function to compute the exact randomized communication complexity of three well-studied

problems in the communication complexity literature: Set-Intersection (Intn(X, Y ) = {i :

Xi∧Yi = 1}), Disjointness (Disjn(X, Y ) = ¬
∨n
i=1(Xi∧Yi)) and k-Disjointness (Disjkn(X, Y )

= ¬
∨n
i=1(Xi ∧ Yi) where |X| = |Y | = k).

While the AND function “embeds” to all three communication problems, they differ

in their difficulty. It turns out that solving each of the three problems above is equivalent

to solving n independent copies of the AND function, albeit under a different subset of

distributions on {0, 1}2.
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The Set-Intersection problem corresponds to solving n independent copies of AND under

the “worst” possible distribution µ =
α β

γ δ
because of “information equals amortized

communication” ([BR11, Bra12]), Thus Theorem 2.2.2 (along with continuity of information

cost at error = 0) implies that

Corollary 2.6.1. For all ε > 0, there exists δ = δ(ε) > 0 such that δ → 0 as ε→ 0 and

(C∧ − δ) · n ≤ Rε(Intn) ≤ C∧ · n+ o(n),

where C∧ ≈ 1.492.

For the Set Disjointness problem, we show that solving Disjn(X, Y ) is equivalent to

solving n independent copies of AND under the “worst” distribution µ on {0, 1}2 satisfying

µ(1, 1) = 0. This distribution therfore has the form:

µ =
α β

γ 0
.

The intuition as to why the above quantity captures the communication required to

solve Disjn is as follows: since solving Disjointness is equivalent to solving
∨n
i=1(Xi ∧ Yi),

then if the (marginal) distribution of a coordinate µi(Xi, Yi) satisfies µi(1, 1) ≥ ω(1/n),

the parties can simply exchange a small (sublinear) number of random coordinates, and

finish the job with very small communication (since with very high probability they will find

an overlapping coordinate). Thus, the above set of distributions captures the hardness of

this task. In fact, our result for the Set Disjointness problem follows from a more general

theorem we prove, which characterizes the exact randomized communication complexity

of “
∨

”-type functions with error tending to zero, in terms of the informational quantity

IC0(f, 0), which informally measures the information complexity of f under the “worst”
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distribution supported on f−1(0)2:

Theorem 2.6.2. For any Boolean function f : {0, 1}k × {0, 1}k → {0, 1}, let g(x̄, ȳ) :=

∨ni=1f(xi, yi), where x̄ = {xi}ni=1, ȳ = {yi}ni=1 and xi, yi ∈ {0, 1}k. Then for all ε > 0, there

exists δ = δ(f, ε) > 0 such that δ → 0 as ε→ 0 and

(IC0(f, 0)− δ) · n ≤ Rε(gn) ≤ IC0(f, 0) · n+ o(n · k),

where IC0(f, 0) := maxµ:µ(1,1)=0 ICµ(f, 0).3

The formal proof can be found in the full version of the paper. Here we only present the

main ideas. The high-level idea for the upper bound is to produce a low information protocol

for computing gn and then use the fact that “information equals amortized communication”

to obtain a low communication protocol. To this end, we exploit the self-reducible structure

of
∨

-type functions. For the lower bound, we show that a low-error protocol for gn which

uses < IC0(f, 0) · n communication, can be used to produce a low-error protocol for a single

copy of f , whose information under any distribution supported on f−1(0) is < IC0(f, 0). Now

by using continuity of information cost at error = 0 (Theorem 2.2.7), we get a contradiction.

Theorem 2.2.5 now follows from Theorem 2.6.2. For convenience, we restate it below

Corollary 2.6.3 (Theorem 2.2.5 restated). For all ε > 0, there exists δ = δ(ε) > 0 such

that δ → 0 as ε→ 0 and

(CDISJ − δ) · n ≤ Rε(Disjn) ≤ CDISJ · n+ o(n).

where CDISJ ≈ 0.4827 bits.

2An analogous result holds for “
∧

”-type functions.
3Note that this quantity is not zero, since our definition of ICµ(f, 0) ranges only over protocols which

solve f for all inputs.
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Proof. Since randomized communication complexity is closed under complementation,

Rε(Disjn) = Rε(
∨n
i=1(Xi ∧ Yi)), and thus Theorem 2.6.2 (with f = AND and k = 1)

implies that

(IC0(AND, 0)− δ) · n ≤ Rε(Disjn) ≤ IC0(AND, 0) · n+ o(n).

But Theorem 2.4.8 asserts that maxµ:µ(1,1)=0 ICµ(AND, 0) = 0.4827 . . ., which completes the

proof.

The communication complexity of the k-Disjointness problem is known to be Θ(k)

[HW07]. We are able to determine the exact constant in this regime as well.

Theorem 2.6.4. (Theorem 2.2.6 restated) Let n, k be such that k = ω(1) and n/k = ω(1).

Then for all constant ε > 0,

(
2

ln 2
−O(

√
ε)

)
· k − o(k) ≤ Rε(DISJ

k
n) ≤ 2

ln 2
· k + o(k).

To this end, we consider the set of distributions taking the form:

µk =
1− 2k/n− o(k/n) k/n

k/n o(k/n)
.

The formula in Theorem 2.4.2 implies that ICµk(AND, 0) = 2
ln 2

k
n
± o( k

n
). The proof

of Theorem 2.6.4 follows the ideas of Theorem 2.6.2, but is considerably more complicated,

mainly due to the fact that ICµk(AND, 0) is now tiny. We need to use a more nuanced

approach to get similar bounds, and in particular strengthen the rate of convergence of

continuity of the information complexity of AND at ε = 0, using a recursive application of

our optimal protocol from section 2.4. For a formal proof see the full version of the paper.
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2.7 Rate of Convergence

In this section we consider the rate at which ICr
µ(AND, 0) converges to ICµ(AND, 0) is

Θ(1/r2). We also present implications that this result has in communication complexity.

The empirical evidence that the rate of convergence is Θ(1/r2) has appeared in the infor-

mation theory literature prior to our work. In [MI09], Ishwar and Ma consider the task f

of computing AND when only Bob is required to learn the answer. They derive an explicit

formula for ICµ(f) for product distributions µ and design an algorithm that computes ICr
µ(f)

to within a desired accuracy.

Our proof of the rate of convergence consists of two parts: (1) the lower bound Ω(1/r2)

on the rate of convergence and (2) a matching upper bound O(1/r2).

Theorem 2.7.1. For all µ =
α β

γ δ
with α, β, γ > 0 we have

ICr
µ(AND, 0) = ICµ(AND, 0) + Ωµ

(
1

r2

)
.

We present the high-level idea of the proof of Theorem 2.7.1. Let π be an r-round protocol

that solves AND with 0-error on all inputs. We may view π as a random walk on ∆({0, 1}2).

Each round is a random step made by either Alice or Bob. Suppose that the statistical

distance traveled by a player in the wrong region during ith message (see Section 2.4 for the

definition of Alice’s, Bob’s and diagonal regions) is εi. Then the first observation is that such

a step wastes Ω(ε3i ) information as compared to an optimal protocol. The second observation

is that any feasible protocol must travel a total distance of Ω(1) in the wrong region, thus∑r
i=1 εi = Ω(1). Then the overall wastage Ω(

∑r
i=1 ε

3
i ) is minimized for εi = 1/r, and hence

the total extra information leaked is Ω(1/r2).
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Theorem 2.7.2.

ICr
µ(AND, 0) = ICµ(AND, 0) +Oµ

(
1

r2

)
.

The upper bound on the rate of convergence is obtained by analyzing a family (πr)
∞
r=1 of

2r-round protocols. Protocol πr is a discretization of our infeasible Protocol 1, where Alice

and Bob are allowed to generate their random numbers NA and NB only from a finite set{
0
r
, 1
r
, · · · , r−1

r

}
. The most natural way to discretize our continuous AND protocol would be

to sample numbers NA and NB uniformly at random from the set {0
r
, . . . , r−1

r
} when the

corresponding player(s) have 0 as input. While analyzing this option, we discovered that

this discretization wastes increasing amounts of information in later rounds as the counter

C approaches r. This leads to a total information wasted ≈ 1
r2

∑r
i=1

1
i

= Θ
(

log r
r2

)
. A natural

remedy is to select numbers NA and NB non-uniformly, assigning less probability mass to

the later rounds. Indeed, our discretized protocol πr assigns probability 2r−2i−1
r2

to the ith

value of NA and NB leading to the correct O( 1
r2

) bound on the total information wasted.

Theorem 2.7.2 follows from a careful analysis and calculation of round-by-round information

cost difference between the discretized and continuous protocols.

The full proofs of the above theorems can be found in the full version of the paper.

From the Ω(1/r2)-bound on the rate of convergence of r-round information cost of AND

function together with results from Section 2.5 we can derive conclusions about the utility of

rounds in the communication complexity problems discussed earlier. The rate of convergence

result implies that both for set intersection and for set disjointness an r-round protocol will

we suboptimal by atleast Ω(n/r2) bits. Thus for both problems a protocol that is optimal

up to lower-order terms will need to use ω(1) rounds of communication.
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Chapter 3

Information Lower Bounds via

Self-reducibility

The results in this chapter are based on joint work with Mark Braverman, Denis Pankratov

and Omri Weinstein [BGPW13c].

3.1 Introduction

In this chapter we develop a new self-reducibility technique for deriving information complex-

ity lower bounds from communication complexity lower bounds. The technique works for

functions that have a “self-reducible structure”. Informally speaking f has a self-reducible

structure, if for large enough inputs, solving fnk essentially amounts to solving fkn (fnk de-

notes the function f under inputs of length nk, while fkn denotes k independent copies of

f under inputs of size n). Our starting point is a communication complexity lower bound

for fnk (that may be obtained by any means). Assuming self-reducibility, the same bound

applies to fkn , which through the connection between information complexity and amortized

communication complexity [BR11], implies a lower bound on the information complexity of
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fn. In this chapter we develop tools to make this reasoning go through.

Ideas of self-reducibility are central in applications of information complexity to commu-

nication complexity lower bounds, starting with the work of Bar-Yossef et al. [BYJKS04].

These arguments start with an information complexity lower bound for a (usually very sim-

ple) problem, and derive a communication complexity bound on many copies of the problem.

The logic in this chapter is reversed: we start with a communication complexity lower bound,

which we use as a black-box, and use self-reducibility to derive an amortized communication

complexity bound, which translates into an information complexity lower bound.

3.1.1 Results

We use the self-reducibility technique to prove results about the information complexity of

the Gap Hamming Distance and Inner Product problems. We prove that the information

complexity of the Gap Hamming Distance problem with respect to the uniform distribution

is linear. This was explicitly stated as an open problem by Chakrabarti et al. [CKW12].

Formally, let ICµ(GHDn,t,g, ε) denote the information cost of the Gap Hamming promise

problem, where inputs x, y are n-bit strings distributed according to µ, and the players need

to determine whether the Hamming distance between x and y is at least t + g, or at most

t− g, with probability of error at most ε under µ. We prove

Theorem 3.1.1. There exists an absolute constant ε > 0 for which

ICU(GHDn,n/2,
√
n, ε) = Ω(n)

where U is the uniform distribution.

For the Inner Product, we prove a stronger bound on its information complexity. Formally
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Theorem 3.1.2. For every constant δ > 0, there exists a constant ε > 0, and n0 such that

∀ n ≥ n0, ICU(IPn, ε) ≥ (1− δ)n. Here U is the uniform distribution over {0, 1}n×{0, 1}n.

Note that ICU(IPn, ε) ≤ (1−2ε)(n+1), since the parties can always give a random output

with probability 2ε, and with probability 1− 2ε, have one of the parties send its entire input

and the other party send back the output. Also it is known that ICU(IPn, ε) ≥ Ω(n), for

all ε ∈ [0, 1/2) [BW12]. We prove that the information complexity of IPn can be arbitrarily

close to the trivial upper bound n as we keep decreasing the error (though keeping it a

constant).

3.1.2 Discussion and open problems

Although in complexity theory we often don’t care about the constants (and often it is not

necessary), proving theorems with the right constants can often lead to deeper insights into

the mathematical structure of the problem [BGPW13a, BM13]. There are few techniques

that allow us to find the right constants and there are fewer problems for which we can.

We believe that answering the following problem will lead to development of new techniques

and also reveal interesting insights into the problem of computing the XOR of n copies of a

function.

Open Problem 3.1.3. Is it true that for small constants ε and sufficiently large n,

ICU(IPn, ε) ≥ (1− 2ε− o(ε))n

As before U is the uniform distribution. If this is false, is there a different constant α > 2

such that as ε→ 0 we get ICUn(IPn, ε) ≥ (1− α · ε)n?

Solving this problem may require shedding new light on the rate of convergence of the

ICµ(•, ε) to ICµ(•, 0) as ε→ 0, and better understanding the role error plays in information
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complexity.

It is somewhat difficult to define the exact meaning of the “right” constant for the Gap

Hamming Distance problem, since it is a promise problem defined by two parameters (gap

and error). Nonetheless, there is a very natural regime in which understanding the exact

information complexity of GHDn is a natural and interesting problem. Namely:

Open Problem 3.1.4. Is it true that for all ε > 0, there is a ε > 0 and a distribution µ

such that ICµ(GHDn,n/2,ε
√
n, ε) > (1− ε)n?

In other words, does the information complexity of GHDn tend to the trivial upper

bound as we tighten the gap and error parameters? This is related to the same (but weaker)

question one can ask about the communication complexity of GHDn in this regime.

3.2 Information complexity of Gap Hamming Distance

Given two strings x, y ∈ {0, 1}n, the hamming distance x and y is defined to be HAM(x, y) =

|{i |xi 6= yi}|. In the Gap Hamming Distance (GHD) problem, Alice gets a string x ∈ {0, 1}n

and Bob gets a string y ∈ {0, 1}n. They are promised that either HAM(x, y) ≥ n/2 +
√
n

or HAM(x, y) ≤ n/2 −
√
n, and they have to find which is the case. We can define a

general version GHDn,t,g, where Alice and Bob have to determine if HAM(x, y) ≥ t + g

or HAM(x, y) ≤ t − g, but the parameters t = n/2 and g =
√
n are the most natural as

discussed in [CR11]. In a technical tour-de-force, it was proven in [CR11] that the randomized

communication complexity of the Gap Hamming Distance problem is linear. Formally,

Theorem 3.2.1. For all constants γ > 0, and ε ∈ [0, 1/2), Rε(GHDn,n/2,γ
√
n) ≥ Ω(n).

One can extend the formulation of GHD beyond the promise-problem setting. This

particularly makes sense in a distributional-complexity setting. In this setting, we allow f

to take the value ?, which means that we don’t care about the output. The error in this
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model is aggregated only over points on which the value of f is not ?. Chakrabarti and

Regev [CR11] also prove a distributional version of the linear lower bound over the uniform

distribution U . Specifically, they prove

Theorem 3.2.2 ([CR11]). There exists an absolute constant ε > 0 for which

DU(GHDn,n/2,
√
n, ε) = Ω(n).

Kerenidis et al. [KLL+12a] proved that the information complexity of Gap Hamming

Distance is also linear, at least with respect to some distribution. The proof of Kerenidis et

al. relies on a reduction that shows that a large class of communication complexity lower

bound techniques also translate into information complexity lower bounds – including the

lower bound for GHD:

Theorem 3.2.3 ([KLL+12a]). There exists a distribution µ on {0, 1}n × {0, 1}n and an

absolute constant ε > 0 such that

ICµ(GHDn,n/2,
√
n, ε) = Ω(n).

Interestingly, while this approach yields an analogue of Theorem 3.2.1 for information

complexity, it does not seem to yield an analogue of the stronger Theorem 3.2.2, i.e. a lower

bound on information complexity under the uniform distribution.

We give an alternate proof of the linear information complexity lower bound for GHD

using the self-reducibility technique. Unlike the proof in [KLL+12a] we do not need to dive

into the details of the proof of the communication complexity lower bound for GHD. Rather,

our starting point is Theorem 3.2.2, which we use as a black-box.

In fact, we will prove a slightly weaker lemma, with Theorem 3.1.1 following by a reduc-

tion. The reduction is conceptually very simple, but the details are somewhat tedious.
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Lemma 3.2.4. There exists absolute constants ε > 0 and γ > 0 for which

ICU(GHDn,n/2,γ
√
n, ε) = Ω(n).

3.3 Proof of Theorem 3.1.1

3.3.1 Proof Idea

We use the self-reducibility argument. Assume that for some ε > 0, ICU(GHDn, ε) = o(n).

Then using “information equals amortized communication”, we can get a protocol τ that

solves N copies of GHDn with o(nN) communication. The heart of the argument is to use

this to solve GHDnN with o(nN) communication, which is a contradiction. Say that Alice

and Bob are given x, y ∈ {0, 1}nN respectively. They sample c · nN random coordinates (for

some constant c) and then divide these into cN blocks and run GHDn on them all in parallel

using o(nN) communication. If HAM(x, y) = nN/2 +
√
nN , then the expected hamming

distance of each block is n/2 +
√
n/N . Although the gain over n/2 is small, the hamming

distance is still biased towards being > n/2. We will see that on each instance the protocol

for GHDn must gain an advantage of Ω(1/
√
N) over random guessing. This in turn implies

that cN copies suffice to get the correct answer with high probability.

3.3.2 Formal Proof of Lemma 3.2.4

Assume that for some ρ sufficiently small (to be specified later), ICU(GHDn,n/2,
√
n, ρ) = o(n).

Thus ∀ α > 0, and for sufficiently large n, ICU(GHDn,n/2,
√
n, ρ) ≤ αn. We will need the

following theorem from [Bra12, BR11]:

Theorem 3.3.1 ([Bra12, BR11]). Let f : X × Y → {0, 1} be a (possibly partial) function,

let µ be any distribution on X × Y , and let I = ICµ(f, ρ), then for each δ1, δ2 > 0, there
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is an N = N(f, ρ, µ, δ1, δ2) such that for each n ≥ N , there is a protocol πn for computing

n instances of f with the following properties: let µn be any distribution over Xn × Y n

s.t. the marginal on each coordinate is µ. The protocol πn has expected communication

cost < n(1 + δ1)I w.r.t. µn. Moreover, if we let π be any protocol for computing f with

information cost ≤ (1 + δ1/3)I w.r.t. µ, then we can design πn so that for each set of

inputs, the statistical distance between the output of πn and πn is < δ2, where πn denotes n

independent executions of π.

In other words, Theorem 3.3.1 allows us to take a low-information protocol for f and

turn it into a low-communication protocol for (sufficiently) many copies of f .

Step 1: From GHD to a tiny advantage.

In the first step we show that a protocol for GHD over the uniform distribution has a

small but detectable advantage in distinguishing inputs from two distributions that are very

close to each other. Denote by µη the distribution where X ∈ {0, 1}n is chosen uniformly,

and Y is chosen so that Xi ⊕ Yi ∼ B1/2+η are i.i.d. Bernoulli random variables with bias η.

Note that in this language the GHD problem is essentially about distinguishing µ−1/
√
n from

µ1/
√
n.

Lemma 3.3.2. There exists absolute constants τ > 0, γ > 0 and ρ > 0 with the following

property. Suppose that for all n large enough there is a protocol πn that solves GHDn,n/2,γ
√
n

with error ρ w.r.t the uniform distribution. Then for all n large enough for all ε < 1/n2 we

have

Pr(x,y)∼µε [πn(x, y) = 1]− Pr(x,y)∼µ0 [πn(x, y) = 1] > τ · ε ·
√
n, (3.1)

and

Pr(x,y)∼µ−ε [πn(x, y) = 0]− Pr(x,y)∼µ0 [πn(x, y) = 0] > τ · ε ·
√
n. (3.2)

Proof. Note that we can assume that the protocol πn is symmetric w.r.t the hamming dis-

tance, i.e. its behavior depends just on the hamming distance between x and y. This is
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because Alice and Bob can start with applying a random permutation and a random XOR

on their inputs i.e. they sample (using public randomness) a permutation π ∈ Sn and

r ∈ {0, 1}n and change their inputs to π(x⊕ r) and π(y⊕ r). Note that the information cost

of the protocol remains the same.

We will establish (3.1), with (3.2) established identically. We first focus on the region

where HAM(x, y) ≥ n/2 and show that its contribution to (3.1) is at least Ω(ε
√
n). We

break the region into two further regions: (I) (x, y) with n/2 < H(x, y) < n/2 + γ
√
n; (II)

(x, y) with n/2 + γ
√
n ≤ H(x, y) for appropriately chosen γ. We show that the contribution

of region (II) is Ω(ε
√
n), while the fact that the contribution of region (I) is positive is easy

to see.

Denote by pi the probability that πn returns 1 on an input of hamming distance n/2 + i.

The contribution of the region where H(x, y) = n/2 + i is equal to

pi · (Prµε [H(x, y) = n/2 + i]− Prµ0 [H(x, y) = n/2 + i]) =

pi · Prµ0 [H(x, y) = n/2 + i] ·
(
(1− 4ε2)n/2−i(1 + 2ε)2i − 1

)
Now (1− 4ε2)n/2−i ≥ 1− 2ε/n and (1 + 2ε)2i ≤ e2 (since ε < 1/n2). Thus

n/2∑
i=0

pi · Prµ0 [H(x, y) = n/2 + i] · (2ε/n) · (1 + 2ε)2i = O(ε/n)
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and therefore

n/2∑
i=0

pi · Prµ0 [H(x, y) = n/2 + i] ·
(
(1− 4ε2)n/2−i(1 + 2ε)2i − 1

)
≥

n/2∑
i=0

pi · Prµ0 [H(x, y) = n/2 + i] ·
(
(1− 4ε2)n/2−i(1 + 2ε)2i − 1

)
−

n/2∑
i=0

pi · Prµ0 [H(x, y) = n/2 + i] ·
(
(1 + 2ε)2i − 1

)
≥ −O(ε/n)

Thus the contribution from region (I) is ≥ −O(ε/n).

This leaves us with region (II), where we need to show that we actually get a non-negligible

advantage. Let T be an appropriately chosen constant, so that Prµ0 [γ
√
n ≤ H(x, y)−n/2 ≤

T
√
n] = Ω(1). The advantage

n/2∑
i=γ
√
n

pi · Prµ0 [H(x, y) = n/2 + i] ·
(
(1 + 2ε)2i − 1

)
≥

T
√
n∑

i=γ
√
n

pi · Prµ0 [H(x, y) = n/2 + i] · 4iε

=

T
√
n∑

i=γ
√
n

Prµ0 [H(x, y) = n/2 + i] · 4iε−
T
√
n∑

i=γ
√
n

(1− pi) · Prµ0 [H(x, y) = n/2 + i] · 4iε

≥ Θ(ε
√
n)− ρ× 4Tε

√
n

since (1− pi) is the probability that the protocol errs when the hamming distance is n/2 + i

and average error is guaranteed to be ≤ ρ. By making ρ small enough we can get noticeable

advantage Θ(ε
√
n) in this region.

We now consider the region HAM(x, y) ≤ n/2 and show that the absolute value of the

contribution of this region can be made arbitrarily small w.r.t. ε
√
n by appropriate choices of

ρ, γ and T which will complete the proof. Let us break this region into three further regions :
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(I) (x, y) with n/2−γ
√
n < HAM(x, y) ≤ n/2; (II) (x, y) with n/2−T

√
n ≤ HAM(x, y) <

n/2 − γ
√
n; (III) (x, y) with HAM(x, y) < n/2 − T

√
n for appropriately chosen T and γ.

Denote by qi the probability that πn returns 1 on an input of hamming distance n/2 − i.

The absolute value of the contribution of the region where HAM(x, y) = n/2− i is equal to

qi · (Prµ0 [HAM(x, y) = n/2− i]− Prµε [HAM(x, y) = n/2− i]) =

qi · Prµ0 [HAM(x, y) = n/2− i] · (1− (1− 4ε2)n/2−i(1− 2ε)2i)

As before, (1−4ε2)n/2−i ≥ 1−2ε/n. Thus in region (I) the negative contribution is bounded

in absolute terms by:

(
1− 2ε

n

)
·
(

1− (1− 2ε)2γ
√
n
)
<

2ε

n
+ 4γε

√
n

In region (III) the contribution is again bounded by

n/2∑
i=T
√
n

Prµ0 [HAM(x, y) = n/2−i]·(1−(1−2ε)2i) <

n/2∑
i=T
√
n

Prµ0 [HAM(x, y) = n/2−i]·4iε

By a standard Chernoff bound1, the probability Prµ0 [HAM(x, y) = n/2 − i] is dominated

by e−Ω(i2/n), and thus the sum can be made into an arbitrarily small multiple of ε
√
n by

1See e,g [AS92].
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choosing T large enough. For region (II) the advantage

T
√
n∑

i=γ
√
n

qi · Prµ0 [HAM(x, y) = n/2− i] · (1− (1− 2ε)2i)

≤
T
√
n∑

i=γ
√
n

qi · Prµ0 [HAM(x, y) = n/2− i] · 4iε

≤ 4Tε
√
n

T
√
n∑

i=γ
√
n

qi · Prµ0 [HAM(x, y) = n/2− i]

≤ 4Tρε
√
n.

By making ρ small enough we can make the absolute contribution of this region small relative

to ε
√
n. This completes the proof.

Step 2: From tiny advantage to low-communication GHD.

We can now apply Lemma 3.3.2 together with Theorem 3.3.1 to show that a low-

information solution to GHDn,n/2,γ
√
n with respect to the uniform distribution contradicts

the communication complexity lower bound of Theorem 3.2.2.

Proof. (of Lemma 3.2.4). Assume for the sake of contradiction that for each α there are

infinitely many n and a protocol πn (different for each n) with ICU(πn) < αn and which

solves GHDn,n/2,γ
√
n with error ρ, where the parameters γ and ρ are from Lemma 3.3.2. Let

N > max(n7, N(GHDn,n/2,γ
√
n, ρ,U , δ1, δ2)), where δ1 = 1 and δ2 = ε/2, where ε is the error

parameter in Theorem 3.2.2. Denote the protocol obtained from Theorem 3.3.1 (for solving

cN copies of GHDn,n/2,γ
√
n, ρ,U , δ1, δ2)) as π′cN .

Let t = Pr(x,y)∼U [πn(x, y) = 1]. W.l.o.g. we assume t = 1/2 (otherwise we can use a

thresholdtcN instead of majority in the protocol). Consider the protocol depicted in Figure 2.

Let us first analyze the success probability of the protocol ΠnN . We will do this in three

steps:
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Input: A pair x, y ∈ {0, 1}nN .
Output: GHDn·N,n·N/2,

√
n·N .

1. Create cN instances of GHDn by sampling n random coordinates each time (with
replacement): (x1, y1), . . . , (xcN , ycN) ∈ {0, 1}n × {0, 1}n.

2. Run π′cN on (x1, y1), . . . , (xcN , ycN) for 10αcNn
ε

steps, otherwise abort. (c and α are
constants to be chosen later). π′cN outputs answers b1, . . . , bcN , one for each coordinate.

3. Return MAJORITY (b1, . . . , bcN).

Protocol 2: The protocol ΠnN(x, y)

1. First let us analyze the success probability of ΠnN if we use πcNn in the second step i.e.

πn run independently on each coordinate. Suppose that the hamming distance between

x and y is nN/2+`
√
nN , where ` > 1. Note that ` < n except with probability e−Ω(n2)

(over the uniform distribution). The samples (xi, yi) are drawn iid according to the

distribution µ
`·
√

1/(nN)
. Since N > n7 we have ` ·

√
1/nN < 1/n2. By Lemma 3.3.2,

the output of πn on each copy is thus τ · `/
√
N -biased towards 1. By Chernoff bounds,

the probability that the protocol ΠnN outputs 1 is at least 1− e−2τ2`2c.

2. Now let us analyze the success probability of ΠnN if we didn’t abort in the second step.

For each set of inputs, the statistical distance between the output of π′cN and πcNn is

at most ε/2, therefore, for (x, y) such that the hamming distance between x and y is

nN/2+`
√
nN , 1 < ` < n, ΠnN with no abort outputs 1 w.p. at least 1−e−2τ2`2c−ε/2.

The case when the hamming distance between x and y is nN/2−`
√
nN can be handled

similarly.

3. Now let us analyze the success probability of ΠnN . Note that for each coordinate i,

(xi, yi) is distributed according to the uniform distribution. Therefore the expected

communication cost of π′cN is less than 2αcNn. Therefore the probability that it

exceeds 10αcNn
ε

is at most ε/5. Therefore the overall error of ΠnN is at most e−2τ2`2c +
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ε/2 + ε/5 + 2e−Ω(n2) which is less than ε for c and n large enough.

Now for α small enough, the communication cost of ΠnN can be made arbitrarily small

w.r.t. nN which contradicts Theorem 3.2.2 since ΠnN solves GHDn·N,n·N/2,
√
n·N with error

≤ ε w.r.t. the uniform distribution. Note that we got a randomized protocol for solving

GHDn·N,n·N/2,
√
n·N but we can fix the randomness to get a deterministic protocol.

3.3.3 The reduction from a small-gap instance to a large-gap in-

stance

Now we complete the proof of Theorem 3.1.1 by providing the details of the reduction. We

will start by proving a few technical lemmas.

Lemma 3.3.3. Let α > 1 be an integer. Let Un be the uniform distribution over {0, 1}n ×

{0, 1}n. Let X, Y ∼ Un. Define a distribution µ over {0, 1}αn × {0, 1}αn by picking αn

random coordinates of X, Y (with replacement) and then taking an XOR with a random

string r ∈R {0, 1}αn (let U ′, V ′ be the strings obtained by sampling αn random coordinates

of X, Y . Then U = U ′⊕ r, V = V ′⊕ r are the final strings sampled). Then for all ε > 0 and

n large enough, there exists a constant Mε and a distribution µε such that

1. |µ− µε| ≤ ε

2. µε ≤Mε · Uαn

Proof. It is easy to see that the distribution µ is symmetric w.r.t the hamming distance

i.e. if x, y ∈ {0, 1}αn × {0, 1}αn, and x′, y′ ∈ {0, 1}αn × {0, 1}αn such that HAM(x, y) =

HAM(x′, y′), then µ(x, y) = µ(x′, y′). This is because µ is invariant under the application of

a random permutation and a random XOR i.e. if π ∈R Sn and r′ ∈R {0, 1}n, then µ(x, y) =

µ(π(x⊕r′), π(y⊕r′)). With a slight abuse of notation let µ(d) denote the probability mass on
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strings of hamming distance d, and let Uαn(d) denote the probability mass w.r.t the uniform

distribution. Let N = αn.

For ε > 0, let µε be the truncations of the distribution µ to the interval [N/2 −

Cε
√
N,N/2 + Cε

√
N ] for a Cε to be chosen later. Note that |µ − µε| = |1 − µ([N/2 −

Cε
√
N,N/2+Cε

√
N ])|. So we will choose Cε such that |1−µ([N/2−Cε

√
N,N/2+Cε

√
N ])| ≤

ε. By Chernoff bounds Pr[HAM(X, Y ) /∈ [n/2 − β
√
n, n/2 + β

√
n]] ≤ 2e−2β2

. Now if we

pick N random coordinates distributed according to B 1
2

+p, where |p| ≤ β/
√
n, then the

expected number of 1’s ∈ [N/2 − β
√
α
√
N,N/2 + β

√
α
√
N ]. Thus by another applica-

tion of Chernoff bounds, we get that Pr[HAM(U, V ) /∈ [N/2 − Cε
√
N,N/2 + Cε

√
N ]] ≤

2e−2β2
+2e−2(Cε−β

√
α)2 . Now β = 1

2
ln(4/ε) and Cε = 1

2
ln(4/ε)(1+

√
α) suffices to ensure that

Pr[HAM(U, V ) /∈ [N/2− Cε
√
N,N/2 + Cε

√
N ]] ≤ ε.

We will show that there exists a constant Mε such that µε ≤Mε · Uαn. Note that by the

symmetry properties of µ, it suffices to prove that for all d, µε(d) ≤Mε · Uαn(d). Now

µε(d)/Uαn(d) =
1

µ([N/2− Cε
√
N,N/2 + Cε

√
N ])

µ(d)/Uαn(d)

≤ 2µ(d)/Uαn(d)

= 2

∑n
k=0

(
n
k

)
· 2−n ·

(
αn
d

)
·
(
k
n

)d · (n−k
n

)N−d(
αn
d

)
2−αn

= 2 ·
n∑
k=0

(
n

k

)
· 2−n ·

(
2k

n

)d
·
(

2(n− k)

n

)N−d

Let d = N/2 +T , where |T | ≤ Cε
√
N . Also we will just concentrate on the sum for k ≥ n/2.

The lower half is analogous. Also it is easy to see that the sum from k = 3n/4 to k = n is
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small. So we consider

3n/4∑
k=n/2

(
n

k

)
· 2−n ·

(
2k

n

)d
·
(

2(n− k)

n

)N−d

=

3n/4∑
k=n/2

(
n

k

)
· 2−n ·

(
2k

n

)T
·
(

2(n− k)

n

)−T
·
(

4k(n− k)

n2

)N/2

≤
3n/4∑
k=n/2

(
n

k

)
· 2−n ·

(
k

n− k

)T

If T < 0, then we are done. So assume T > 0. For n/2 ≤ k ≤ 3n/4, k
n−k = 1 + 2k−n

n−k ≤

1 + 8(k−n/2)
n

. For k ≤ n/2 + T , the sum is small as k
n−k is small. Otherwise (1 + 8(k−n/2)

n
)T .

(1 + 8T
n

)k−n/2. Then the sum

≤ 2−n
3n/4∑

k=n/2+T

(
n

k

)
·
(

1 +
8T

n

)k−n/2

≤ 2−n
3n/4∑

k=n/2+T

(
n

k

)
·
(

1 +
8T

n

)k−n/2(
1− 8T

n

)n/2−k

≤ 2−n
3n/4∑

k=n/2+T

(
n

k

)
·
(

1 +
8T

n

)k (
1− 8T

n

)n−k (
1 +

8T

n

)−n/2(
1− 8T

n

)n/2

Now
∑3n/4

k=n/2+T

(
n
k

)
·
(
1 + 8T

n

)k (
1− 8T

n

)n−k ≤ 2n by binomial theorem, and

(
1 +

8T

n

)−n/2(
1− 8T

n

)n/2
=

(
1− 64T 2

n2

)−n/2

is a constant, since T ≤ Cε
√
N . This completes the proof.

The next lemma relates the information cost of a protocol w.r.t two distributions that

are close in statistical distance. We haven’t seen the lemma in this specific form elsewhere.
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Nevertheless it is not hard to prove.

Lemma 3.3.4. Let ε < 1/2. Let µ1 and µ2 be distributions on {0, 1}N × {0, 1}N such that

|µ1 − µ2| ≤ ε, and fix a protocol π. Then |IC(π, µ1) − IC(π, µ2)| ≤ 4Nε + 2H(2ε). If

ε is a constant and N large enough, then |IC(π, µ1) − IC(π, µ2)| ≤ 5Nε. In general for

distributions over X × Y, we get |IC(π, µ1)− IC(π, µ2)| ≤ 2ε log(|X | · |Y|) + 2H(2ε).

Proof. We will design random variables X, Y,E such that X, Y ∈ {0, 1}N and E ∈ {0, 1, 2},

X, Y |E ∈ {0, 1} ∼ µ1, X, Y |E ∈ {0, 2} ∼ µ2 and Pr[E = 1] = Pr[E = 2] ≤ ε. First let

us see how this helps. Let Π denote the random variable for the transcript of the protocol

when the inputs are X, Y . Let X1Y1 ∼ µ1 and X2Y2 ∼ µ2. Also let Π1 and Π2 denote the

random variables for the transcript in these cases respectively.

I(Π;X|Y E)

= Pr[E = 0] · I(Π;X|Y,E = 0) + Pr[E = 1] · I(Π;X|Y,E = 1)

+ Pr[E = 2] · I(Π;X|Y,E = 2)

= Pr[E ∈ {0, 1}] · I(Π;X|Y,E{0,1}) + Pr[E = 2] · I(Π;X|Y,E = 2)

Here conditioning on E{0,1} means that E ∈ {0, 1} and that both Alice and Bob know the

value of E i.e. I(Π;X|Y,E{0,1}) = I(Π;X|Y,E,E ∈ {0, 1}). Now I(Π;X|Y,E ∈ {0, 1}) ≤

I(Π;X|Y,E{0,1}) + H(E|E ∈ {0, 1}) = I(Π;X|Y,E{0,1}) + C1, where C1 ≤ H(ε/(1 − ε)) ≤

H(2ε). Also I(Π;X|Y,E = 2) ≤ N and I(Π;X|Y,E ∈ {0, 1}) = I(Π1;X1|Y1). Thus

I(Π;X|Y E) = (1− Pr[E = 2]) · (I(Π1;X1|Y1) + C1) + Pr[E = 2] · C2

where C1 ≤ 1 and C2 ≤ N . Similarly

I(Π;X|Y E) = (1− Pr[E = 1]) · (I(Π2;X2|Y2) + C3) + Pr[E = 1] · C4
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where C3 ≤ H(2ε) and C4 ≤ N . Equating the two we get that

(1− Pr[E = 1]) · (I(Π1;X1|Y1)− I(Π2;X2|Y2)) =

Pr[E = 1] · (C4 − C3) + (1− Pr[E = 1]) · (C2 − C1)

Since Pr[E = 1] ≤ ε ≤ 1/2, we get that

|I(Π1;X1|Y1)− I(Π2;X2|Y2)| ≤ 2Nε+H(2ε)

and hence |IC(π, µ1)− IC(π, µ2)| ≤ 4Nε+ 2H(2ε).

Now let us see how to design random variables X, Y,E satisfying the given conditions. Let

U, V, P denote the random variables obtained by sampling uniformly from {0, 1}N×{0, 1}N×

[0, 1]. Let G denote the event that P < max(µ1(U, V ), µ2(U, V )). Let X, Y = U, V |G. Also

define a random variable F ∈ {0, 1, 2} as follows :

• F = 0, if P < min(µ1(U, V ), µ2(U, V ))

• F = 1, if µ2(U, V ) ≤ P < µ1(U, V )

• F = 2, if µ1(U, V ) ≤ P < µ2(U, V )

Now define E = F |G. Let us verify that X, Y,E satisfy the conditions.

Pr[X = x, Y = y|E ∈ {0, 1}] =
Pr[U = x, V = y, F ∈ {0, 1}, G]

Pr[F ∈ {0, 1}, G]

=
1

22N
µ1(x, y)∑

x,y
1

22N
µ1(x, y)

= µ1(x, y)
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Thus X, Y |E ∈ {0, 1} ∼ µ1. Similarly X, Y |E ∈ {0, 2} ∼ µ2. Also

Pr[E = 1] = Pr[F = 1|G]

=
∑
x,y

Pr[U = x, V = y|G]Pr[F = 1|G,U = x, V = y]

=
∑

x,y s.t. µ1(x,y)>µ2(x,y)

1
22N

max(µ1(x, y), µ2(x, y))
1

22N

∑
x,y max(µ1(x, y), µ2(x, y))

· µ1(x, y)− µ2(x, y)

max(µ1(x, y), µ2(x, y))

=

∑
x,y s.t. µ1(x,y)>µ2(x,y)(µ1(x, y)− µ2(x, y))∑

x,y max(µ1(x, y), µ2(x, y))

Thus

Pr[E = 1] =
|µ1 − µ2|∑

x,y max(µ1(x, y), µ2(x, y))
≤ |µ1 − µ2| ≤ ε

Similarly

Pr[E = 2] =
|µ1 − µ2|∑

x,y max(µ1(x, y), µ2(x, y))

Hence Pr[E = 1] = Pr[E = 2] ≤ ε. This completes the proof. The general form can be

proved in a similar manner.

We also need a lemma which relates the information cost of distributions which are not

very skewed w.r.t to each other. Formally

Lemma 3.3.5. Let µ1 and µ2 be distributions over {0, 1}N × {0, 1}N such that µ1 ≤M · µ2

for some constant M . Let f be a function (possibly partial) with domain {0, 1}N × {0, 1}N

and let π be a protocol for solving it. Then IC(π, µ1) ≤M · IC(π, µ2).

Proof. Let X1, Y1 ∼ µ1 and Π1 denote the random variable for the transcript when inputs

are X1, Y1. Let X2, Y2 ∼ µ2 and define Π2 similarly. Now

I(Π1;X1|Y1) = Ex,y∼µ1D[Π1|x,y||Π1|y] = Ey(ExD[Π1|x,y||Π1|y])
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By Fact 1.2.11, ExD[Π1|x,y||Π1|y] ≤ ExD[Π1|x,y||Π2|y]. Also Π1|x,y = Π2|x,y. Thus

I(Π1;X1|Y1) ≤ Ex,y∼µ1D[Π2|x,y||Π2|y] ≤M · Ex,y∼µ2D[Π2|x,y||Π2|y]

= M · I(Π2;X2|Y2)

Hence IC(π, µ1) ≤M · IC(π, µ2).

The next lemma says that if the information cost w.r.t the distribution µ from Lemma

3.3.3 is high, then the information cost w.r.t the uniform distribution is high as well.

Lemma 3.3.6. Let f : {0, 1}N × {0, 1}N → {0, 1} be a function (possibly partial). Let µ be

a distribution over {0, 1}N ×{0, 1}N , as defined in Lemma 3.3.3. If IC(f, µ, δ) ≥ Ω(N), for

some δ > 0, then IC(f,UN , η) ≥ Ω(N), for some η > 0.

Proof. Let π be a protocol for computing f with error η w.r.t. the distribution UN , and

information cost IC(π,UN) = I. Let ε > 0. Then by Lemma 3.3.3, for N large enough,

there exists a distribution µε over {0, 1}N×{0, 1}N such that |µ−µε| ≤ ε and µε ≤Mε ·UN for

some constant Mε. Then error of the protocol π w.r.t. µ is ≤Mεη+ ε. Also the information

cost of π w.r.t. µ is ≤MεI + 5Nε (using Lemmas 3.3.4 and 3.3.5). Now if Mεη+ ε ≤ δ, then

MεI + 5Nε ≥ c ·N , for some constant c. Take ε = min(δ/2, c/10) and η = (δ− ε)/Mε. Then

I ≥ cN/2Mε. Thus IC(f,UN , η) ≥ Ω(N).

Proof. (of Theorem 3.1.1) Note that because of Lemma 3.3.6, we just need to prove that

IC(GHDN,N/2,
√
N , µ, ε) = Ω(N) for some ε > 0 for the distribution µ in Lemma 3.3.3.

Assume that for all ε > 0, IC(GHDN,N/2,
√
N , µ, ε) = o(N). That is for all β, ε, and for N

sufficiently large, IC(GHDN,N/2,
√
N , µ, ε) ≤ β · N . By Lemma 3.2.4, there exist constants

ε′ > 0, γ > 0 and c > 0 such that IC(GHDn,n/2,γ
√
n,U , ε′) ≥ c · n.

Let α be a large integer to be determined later. Set N = α · n. Let πN be a protocol

that solves GHDN,N/2,
√
N with error ≤ ε w.r.t µ, and let the information cost of πN w.r.t

72



µ be ≤ β · N . Consider the following protocol πn(x, y) for GHDn,n/2,γ
√
n : Pick N random

coordinates of x, y, call them u′, v′. Now pick a random string r ∈R {0, 1}N and set u = u′⊕r

and v = v′ ⊕ r. Run πN on u, v. Let X, Y ∼ Un be the inputs for πn. Let U, V denote the

random variables denoting the sampled coordinates. Note that U, V ∼ µ. Let Π denote the

random variable for the transcript of running πN on U, V . Then the transcript of running

πn on X, Y is ΠR, where R denotes the public randomness involved in sampling u, v from

x, y. Now

I(ΠR;X|Y ) = I(R;X|Y ) + I(Π;X|Y R) = I(Π;X|Y R) = I(Π;X|V Y R)

The last equality follows from the fact that V is a deterministic function of Y R. Now Π is a

probabilistic function of U, V , and the internal randomness of the protocol πN is independent

of X, Y and R. Thus I(Π;XY R|UV ) = 0, as

I(Π;XY R|UV ) = I(Π;Y R|UV ) + I(Π;X|UV Y R)

and I(Π;Y R|UV ) = 0, I(Π;X|UV Y R) = 0. Applying Fact 1.2.13, with A = Π, B = U ,

C = X and D = V Y R, we get that I(Π;X|V Y R) ≤ I(Π;U |V Y R). Also I(Π;Y R|UV ) = 0.

Applying Fact 1.2.12 with A = U , B = Π, C = V and D = Y R, we get I(Π;U |V ) ≥

I(Π;U |V Y R). This implies that I(ΠR;X|Y ) ≤ I(Π;U |V ). A similar argument shows that

I(ΠR;Y |X) ≤ I(Π;V |U) and hence IC(πn,Un) ≤ IC(πN , µ).

Now let us calculate the error of the protocol πn. If HAM(x, y) ≥ n/2 + γ
√
n, then for a

random coordinate I, Pr[xI⊕yI = 1] ≥ 1/2+γ/
√
n. Then the expected hamming distance of

N random coordinates is N/2 + γ
√
α
√
N . Hence the probability that the hamming distance

is ≤ N/2 + γ
√
α

2

√
N is bounded by e−

αγ2

2 . The same holds for the probability that the
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hamming distance is ≥ N/2− γ
√
α

2

√
N . Choose α so that γ

√
α ≥ 2 and e−

αγ2

2 ≤ ε′/2. Then

error(πn) =
∑

x,y s.t.HAM(x,y)≥n/2+γ
√
n

Un(x, y) · Pr[πn outputs 0 on input x, y]

+
∑

x,y s.t.HAM(x,y)≤n/2−γ
√
n

Un(x, y) · Pr[πn outputs 1 on input x, y]

Now

Pr[πn outputs 0 on input x, y] =
∑
u,v

µ(u, v|x, y) · Pr[πN outputs 0 on input u, v]

where µ(u, v|x, y) the probability of getting u, v when coordinates are sampled from x, y.

For x, y s.t. HAM(x, y) ≥ n/2 + γ
√
n,

∑
u,v

µ(u, v|x, y) · Pr[πN outputs 0 on input u, v] ≤

∑
u, v s.t. HAM(u, v) ≥ N/2 +

√
N

µ(u, v|x, y) · Pr[πN outputs 0 on input u, v] + ε′/2

Doing a similar exercise for the other half, we get that

error(πn) ≤
∑

u, v s.t. HAM(u, v) ≥ N/2 +
√
N

µ(u, v) · Pr[πN outputs 0 on input u, v]+

∑
u, v s.t. HAM(u, v) ≤ N/2−

√
N

µ(u, v) · Pr[πN outputs 1 on input u, v] + ε′/2

= error(πN) + ε′/2

Choosing ε = ε′/2, and β = c/2α, we get a protocol πn with error ≤ ε′ and information cost

≤ βαn ≤ cn/2, which is a contradiction.
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3.4 Information Complexity of Inner Product

The inner product function IPn : {0, 1}n × {0, 1}n → {0, 1} is defined as follows:

IPn(x, y) =
n∑
i=0

xiyi (mod 2)

The proof exploits the self-reducible structure of the inner-product function. But since,

IPn is such a sensitive function, we will first prove a statement about the 0-error information

cost, and then use continuity of information cost to argue about non-zero errors.

We will need the following lemma from [BR11]. It is essentially the same as Theorem

3.3.1, only when dealing with 0 error, we cannot ensure that error on each copy is 0. We

just have an overall error which is the error introduced if compression fails.

Lemma 3.4.1. Let f : X × Y → {0, 1} be a function, and let µ be a distribution over the

inputs. Let π be a protocol computing f with error 0 w.r.t µ, and internal information cost

ICµ(π) = I. Then for all δ > 0, ε > 0, there is a protocol πn for computing fn with error ε

w.r.t µn, with worst case communication cost

= n(I + δ/4) +O(
√
CC(π) · n · (I + δ/4)) +O(log(1/ε)) +O(CC(π))

≤ n(I + δ) (for n sufficiently large)

The following lemma from [BBCR10] relates the information cost of computing XOR of

n copies of a function f to the information cost of a single copy.

Lemma 3.4.2. Let f be a function, and let µ be a distribution over the inputs. Then

ICµn(⊕nf, ε) ≥ n(ICµ(f, ε)− 2).

The next lemma says that there is no 0-error protocol for IPn which conveys slightly less

information than the trivial protocol.
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Lemma 3.4.3. For all n, ICUn(IPn, 0) ≥ n, where Un is the uniform distribution over

{0, 1}n × {0, 1}n.

Proof. It is known that DUnε (IPn) ≥ n−cε, for all constant ε ∈ (0, 1/2), where cε is a constant

depending just on ε [KN97, CG88]. Assume that for some n, ICUn(IPn, 0) ≤ n − c . Then

using, Lemma 6.4.2 with δ = c/2 and ε = 1/3, we can get a protocol π for solving N copies

of IPn with overall error 1/3 w.r.t UNn , and CC(π) ≤ N(n−c+c/2). This gives us a protocol

π′ for solving IPNn with error 1/3 w.r.t the uniform distribution, and CC(π′) ≤ Nn−Nc/2

(divide the inputs into N chunks, solve the N chunks using π and XOR the answers). But

CC(π′) ≥ Nn− c1/3, a contradiction.

Proof. (of Theorem 3.1.2) We use the continuity of (internal) information cost in the error

parameter at ε = 0:

Theorem 3.4.4 ([BGPW13a]). For all f : X × Y → Z and µ ∈ ∆(X × Y) we have

lim
ε→0

ICµ(f, ε) = ICµ(f, 0). (3.3)

Given δ > 0, let l = d3
δ
e. Then

ICUl(IPl, 0) ≥ l ≥ (1− δ)l + 3.

Since limε→0 ICUl(IPl, ε) = ICUl(IPl, 0), there exists ε(l, δ) = ε(δ) s.t.

ICUl(IPl, ε) ≥ (1− δ)l + 2.

Now using Lemma 3.4.2, we get that ICUNl (⊕NIPl, ε) ≥ (1 − δ)Nl. Thus

ICUNl(IPNl, ε) ≥ (1− δ)Nl. Thus for sufficiently large n, ICUn(IPn, ε) ≥ (1− δ)n.
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Chapter 4

Public vs Private Coins in

Information Complexity

The results in this chapter are based on joint work with Mark Braverman [BG14].

4.1 Introduction

In this chapter we investigate the role of private randomness in the ability of two parties

to communicate while revealing as little information as possible to each other – i.e. to

communicate at low information cost. More specifically, Alice and Bob are given possibly

correlated inputs X and Y and need to perform a task T by means of a communication

protocol π. Alice and Bob share a public random string R; in addition they have access to

private random strings RA and RB, respectively. The information cost of π with respect to

a distribution (X, Y ) ∼ µ is the quantity (it is not hard to see that this the same as the

definition of ICµ(π) in Section 1.3

ICµ(π) := I(Π;Y |X,R,RA) + I(Π;X|Y,R,RB),
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where Π = Π(X, Y,R,RA, RB) is the random variable representing the transcript of the

protocol.

It is not hard to see that if the goal is to solve a task T while minimizing the information

cost of the protocol, we can always avoid using the public randomness string R: to simulate

public randomness, before the beginning of the protocol’s execution, Alice can send a portion

of RA, which will be used as R for the remainder of the protocol. This modification increases

the communication cost of the protocol, but it is not hard to see that it does not change its

information cost. Therefore, in the context of information complexity, private randomness

is at least as good as public randomness. Is the converse true? In other words, can any

protocol π that uses private randomness be simulated by a protocol π′ which uses only

public randomness so that ICµ(π′) ≤ ICµ(π)? The näıve “solution” to this problem would

be to simulate π by using the public randomness to simulate private randomness. The

following simple example shows why this approach fails. Consider the protocol π in which

X ∈ {0, 1}n. Alice samples a uniformly random string RA ∈U {0, 1}n, and sends the bitwise

XOR M := X⊕RA to Bob. This protocol conveys 0 information to Bob about X. However,

if the public randomness R were to be used to produce RA, then Bob would also know RA,

and thus the message M reveals X = M⊕RA to Bob – drastically increasing the information

cost of the protocol. This, of course, does not mean that a more sophisticated simulation

scheme cannot work.

It is instructive to compare this question to the public-vs-private randomness question

in randomized communication complexity. In the context of communication complexity the

situation is somewhat reversed: it is obvious that public randomness can be used to simu-

late private randomness: the parties can always designate part of their public randomness

as “private randomness”. This will not affect the communication cost of the protocol (al-

though, as seen above, it may affect its information cost). In the reverse direction, Newman

[New91] showed that Rpriv
ε+δ (f) ≤ Rpub

ε (f) + O(log(n
δ
)). Thus, up to an additive log n, pri-
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vate randomness replaces public randomness in communication complexity. Does a “reverse

Newman theorem” hold for information complexity? Can private randomness be replaced

with public randomness at a small cost?

This question has been considered by Brody et al. in [BBK+13], which showed a version

of the private-by-public simulation for one-round protocols. In the one-round setting, Alice

wishes to send Bob her message – a random variable M = M(X,RA). Obviously, the infor-

mation cost of this task is just I(M ;X|Y ). If Bob receives no input, then it is just I(M ;X).

In this chapter we prove tight bounds on the one round private-by-public simulation. Specif-

ically, we show that the cost of simulating a message M of information cost I without the

use of private randomness is between I and I + log I ±O(1), and that the upper bound is in

fact tight in some cases. Previously, [BBK+13] showed a weaker translation to information

cost of at most I + O(log n), where n = max(log |X |, log |Y|) – the log of the sizes of the

domains of X and Y . Note that it is always the case that I ≤ H(X) ≤ log |X | ≤ n, and

therefore log I ≤ log n. Our lower bound example shows that even if dependence on n is

allowed, one cannot do with less than log n additive overhead.

It is interesting to consider the connection between the problem of simulating a protocol

without private randomness, and the problem of compressing communication protocols. The

general protocol compression problem [BBCR10, Bra12] is the problem of simulating a proto-

col π with communication cost C and information cost I with a protocol π′ of communication

cost C ′ that is as close to I as possible. The problem of compressing interactive commu-

nication is essentially equivalent to the direct sum problem for randomized communication

complexity [BR11]. The best known general compression results gives C ′ = Õ(
√
I · C), and

despite the recent breakthrough results of [GKR14a, GKR15], it is still wide open whether

C ′ = O(I · (logC)O(1)) is possible. It has been shown in [BBK+13] (and independently in

[Pan12]) that if a protocol π does not use private randomness, then it can be compressed

to O(I · (logC)O(1)). Thus a way to replace private randomness with public randomness for
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unbounded-round protocols would imply a substantial improvement in the state-of-the-art

on protocol compression.

Another interesting connection between removing private randomness and compression

is in the context of one-message protocols. In the setting where Bob has no input Y , the

information cost of sending a message M is just I := I(M ;X). Harsha et al. [HJMR07]

showed how to simulate such a transmission using I +O(log I) bits of (expected) communi-

cation (with access to public randomness). Their work left open the interesting question of

whether the additive O(log I) is necessary. As noted above, a communication protocol with

communication C can always be simulated by a protocol with same communication and only

public randomness. As information cost is bounded from above by communication cost, a

compression scheme is in particular a private-by-public scheme. Thus our lower bound gives

an example showing that the O(log I) additive overhead in [HJMR07] is necessary.

Results and techniques

Our main result gives an upper and lower bound on simulating private randomness by public

randomness for one-message protocols.

Theorem 4.1.1. Let X, Y be inputs to Alice and Bob respectively distributed according to a

distribution µ. Alice and Bob have access to public randomness R′, and Alice has access to

private randomness RA. Let π be a protocol where Alice sends a message M = M(X,R′, RA)

to Bob, so that the information cost of π is I := I(X;M |Y R′). Then

1. π can be simulated by a one-message public-coin protocol π′ such that ICµ(π′) ≤ I +

log I +O(1).

2. for each I, there is an example with no Y (i.e. Bob has no “private” knowledge),

and no R′, such that if I := I(X;M), then any public-coin protocol π′ simulating the

transmission of M must have information cost of at least I + log I −O(1).
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Thus, up to an additive constant, our bounds are tight. Note that while the upper bound

holds under the most general conditions, for the lower bound it is sufficient to consider

protocols without Y (this is the type of protocols considered, for example, in [HJMR07]).

Both the upper and lower bound require some careful analysis. For the upper bound, a

natural variant of the one-round compression scheme of Braverman and Rao [BR11] is used.

The main challenge is in analyzing the information cost of the resulting public randomness

protocol: we need to prove that Bob does not learn too much about X from Alice’s message.

Suppose that given X and the public randomness R of the simulating protocol, Alice’s

message in the simulating protocol is S = S(X,R). Observe that in this case

I(S;X|Y R) = H(S|Y R)−H(S|XY R) = H(S|Y R).

To establish an upper bound on H(S|Y R) , we show how, someone knowing X, Y and R,

can describe S to Bob using a message M ′ (i.e. H(S|M ′Y R) = 0) such that

H(M ′) ≤ I + log(I) +O(1)

Noting that this expression is an upper bound for H(S|Y R), completes the proof.

To prove the lower bound, we give a family of specific examples whose information cost

necessarily increases by log I − O(1) when private randomness is replaced with public ran-

domness. Details of the construction are given in Section 4.3, here we only give the high

level idea for why the information cost increases in lieu of private randomness. Consider

the following example: Alice knows a secret random string PASS of 128 bits (which we can

think of as her password). She wants to send Bob a message M such that M = PASS with

probability 1/2 and M = RANDOM with probability 1/2 – that is, half of the time she

sends her password and half the time she sends a random 128-bit string. The message M re-

veals approximately 63 bits of information about PASS. To see this, note that given M the
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posterior distribution of PASS puts mass 1/2 on M and mass 1/2 on the remaining 2128−1

strings. The entropy of this distribution is ≈ 1
2
·1+ 1

2
·129 = 65, down from the prior entropy

of 128. Thus I(M ;PASS) ≈ 128 − 65 = 63 bits. One might have expected this number

to be 64 bits. Indeed, if Alice had told Bob which of the two cases has occurred, M would

reveal 1
2
·128 + 1

2
·0 = 64 bits of information. However, not knowing whether Alice’s message

is the password or a random string “saves” one bit in information cost. Now suppose Alice

was not allowed to use private randomness. Then, intuitively, the public random string R

should reveal to Bob whether M = PASS or M = RANDOM . Therefore, the information

cost of a public-randomness protocol increases to 64 bits. Generalizing from this example,

we construct a situation where Alice sends a binary message M of length n and information

cost I ≈ n/2 − log n, so that any public randomness simulation of M requires information

cost of ≥ n/2−O(1) = I + log I −O(1) – demonstrating the desired gap.

Let us have a look at another example. Suppose that Alice gets a bit X ∼ B 1
2

and she

wants to transmit this bit to Bob with error 1
2
− ε. Consider a private-coin protocol in which

Alice samples a B 1
2

+ε bit R. She sends X if R = 1 and a ¬X if R = 0. Clearly the protocol

performs the task of transmitting the bit with error 1
2
− ε. Let Π denote the random variable

for Alice’s message. The information cost of this protocol is

I(Π;X) =
1

2
D(Π0||Π) +

1

2
D(Π1||Π) =

1

2
D(1/2− ε||1/2) +

1

2
D(1/2 + ε||1/2) =

2

ln 2
ε2± o(ε2)

However if we don’t allow private coins, then the information complexity of this task is

≥ 2ε. To see this consider a public-coin protocol that transmits X with error probability

≤ 1
2
− ε. It is basically a function f : {0, 1} × R → {0, 1} (in case Alice sends a longer

message and then Bob applies a deterministic function to that, f could be the composition

of those two functions) such that Er∼R[f(0, r)] = 1
2
− ε and Er∼R[f(1, r)] = 1

2
+ ε. Then
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Prr∼R[f(1, r) = 1, f(0, r) = 0] ≥ 2ε. Hence

I(f(X,R);X|R) = H(f(X,R)|R) = Er∼RH(f(X, r)) ≥ 2ε

since if f(1, r) = 1, f(0, r) = 0, then H(f(X, r)) = 1. This example, in some sense, highlights

the information-cost advantage one gains from having access to private randomness.

Open problems

Our lower bound example is really about the simulation of a protocol and not about solving

a boolean function. So it will be nice to get a 1-round gap for a boolean function. Also it

would be nice to get a bigger separation between r-round public-coin information complexity

and private-coin information complexity, where r is a constant. Note that using the 1-round

example, we can also construct a 2-round example by requiring both Alice and Bob to

perform the 1-round task. It is quite possible that the example in [GKR15] has an exponential

separation between private and public coin information complexities. The compression result

of [BMY15] implies this separation for the example in [GKR15] conditioned on some bound

on the communication cost of the public coin protocol. It would be nice to get the separation

unconditionally.

1. Does there exist a boolean function f for which 0-error private-coin information com-

plexity is I but 0-error public-coin information complexity is ≥ I + log(I) − O(1)

?

2. Does there exist a (family of) 3-round private-coin protocol(s) π such that information

cost of π is I but any 3-round public-coin protocol simulating π has information cost

≥ I + 3 log(I)−O(1)?

3. Get an exponential separation between private and public coin information complexi-
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ties of some boolean function (or even a relation).

4.2 Upper Bound

Definition 4.2.1. We will say that a (randomized) protocol φ simulates a protocol π if

there is a deterministic function g such that g(Φ(x, y, Rφ, Rφ
A, R

φ
B)) is equal in distribution

to Π(x, y, Rπ, Rπ
A, R

π
B), ∀x, y. Here Rφ, Rφ

A, R
φ
B are the public and private randomness of

protocol φ and Φ is the random variable for the transcript. Similarly for π.

Theorem 4.2.2. Let X, Y be inputs to Alice and Bob respectively distributed according to a

distribution µ. Alice and Bob have access to public randomness R′, and Alice has access to

private randomness RA. Let π be a protocol where Alice sends a message M = M(X,R′, RA)

to Bob, so that the information cost of π is I := I(X;M |Y R′). Then π can be simulated by

a one-message public-coin protocol π′ such that ICµ(π′) ≤ I + log I +O(1).

Proof. We can assume wlog that R′ is a part of M , since I(X;M |Y R′) = I(X;MR′|Y ). Let

U be the message space of the message M . Consider the protocol π′ defined in Figure 3.

1. Using public randomness, Alice and Bob get samples {(ui, pi)}i≥1, where (ui, pi) uni-
formly sampled from U × [0, 1].

2. Let P denote the distribution Mx = M |X=x and Q denote the distribution My =
M |Y=y. Alice sends Bob the index of the first sample, s, such that ps < P (us). Bob
decodes this message as being us

Protocol 3: Protocol π′

It is clear that Bob’s decoding of the Alice’s message on input x is distributed according to

P = Mx. What remains is to analyze the information cost of the protocol. Let R denote the

random variable for the public randomness and let S denote the random variable for Alice’s
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message (the index). Then

I(S;X|Y R) = H(S|Y R)−H(S|XY R) = H(S|Y R)

because S is determined by X and R. It seems difficult to get a handle on H(S|Y R), but we

can use the following trick : If someone (who knows X, Y,R) can describe to Bob S using a

message M ′ (i.e. S is fixed given M ′, Y and R), then H(S|Y R) ≤ H(M ′). This is because :

H(S|Y R) +H(M ′|SY R) = H(M ′S|Y R) = H(M ′|Y R) +H(S|M ′Y R) = H(M ′|Y R)

≤ H(M ′)

Note that since Alice doesn’t know Y , she won’t be able to compute M ′ and hence it does

not seem possible for Alice to send the message M using a low communication protocol.

To achieve low communication, interaction seems necessary, and this problem has been well

studied in [BR11] and [BRWY13a]. Now let us describe the message M ′. Let P denote

the distribution Mx and Q denote the distribution My. The message will consist of three

parts. The first part would be k = d S|U|e. The second part would consist of the ceiling of

the Q-height of the Sth sample i.e. t = d pS
Q(uS)

e. The third part would consist of the index

l of the sample Alice wants to send among indices {(k − 1) · |U| + 1, . . . , k · |U|} that have

Q-height between t− 1 and t.

Now let us look at E[|M ′||X = x, Y = y]. We’ll analyze the lengths of the three different

parts of M ′ separately.

1. For (u, p) randomly sampled from U × [0, 1],

Pr[p < P (u)] =
1

|U|
∑
u∈U

P (u) =
1

|U|

85



Thus Pr[S > r · |U|] =
(

1− 1
|U|

)r·|U|
≤ e−r. Thus Pr[k > r] ≤ e−r. Thus

E[k] =
∞∑
r=0

Pr[k > r] ≤ 1 +
1

e
+

1

e2
+ . . . = O(1)

Hence E[dlog(k)e] = O(1).

2. For the Sth sample, pS < P (uS). Thus E[dlog(t)e] ≤ E
[
log
(

p
Q(u)

+ 1
)
|p < P (u)

]
.

Since log(x+ 1)− log(x) ≤ log(e)
x

(by Lagrange’s Mean Value Theorem),

log

(
p

Q(u)
+ 1

)
≤ log

(
p

Q(u)

)
+O

(
Q(u)

p

)

Thus

E
[
log

(
p

Q(u)
+ 1

)
|p < P (u)

]
=
∑
u∈U

P (u) ·

(
1

P (u)

∫ P (u)

0

log

(
p

Q(u)
+ 1

)
du

)

≤
∑
u∈U

P (u) ·

(
1

P (u)

∫ P (u)

0

log

(
P (u)

Q(u)
+ 1

)
du

)

≤
∑
u∈U

P (u) ·

(
1

P (u)

∫ P (u)

0

log

(
P (u)

Q(u)

)
+O

(
Q(u)

P (u)

)
du

)

= D(P ||Q) +O(1)

Hence E[dlog(t)e] ≤ D(P ||Q) +O(1).
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3. For (u, p) randomly sampled from U × [0, 1],

Pr[(t− 1) ·Q(u) < p ≤ t ·Q(u)|p > P (u)]

≤ Pr[(t− 1) ·Q(u) < p ≤ t ·Q(u)]/Pr[p > P (u)]

= Pr[(t− 1) ·Q(u) < p ≤ t ·Q(u)]/(1− 1

|U|
)

≤ 2Pr[(t− 1) ·Q(u) < p ≤ t ·Q(u)]

=
2

|U|
∑
u∈U

Q(u) =
2

|U|

Thus among the indices {(k − 1) · |U| + 1, . . . , k · |U|}, in expectation, there are a

constant number that have Q-height between t− 1 and t. Thus E[dlog(l)e] = O(1).

Note that for the darts appearing before the dart S, the probability of appearing

in some region increases slightly, since they are conditioned on not falling under the

histogram of P but the probability increases at most by a factor of 2.

Hence E[|M ′||X = x, Y = y] ≤ D(Mx||My) +O(1). Now

E[|M ′|] = Ex,y [E[|M ′||X = x, Y = y]] ≤ Ex,y[D(Mx||My)] +O(1) = I(M ;X|Y ) +O(1)

Now we will use the following lemma to bound H(M ′).

Lemma 4.2.3. Let P be a distribution on the natural numbers such that
∑

n≥1 Pn·dlog(n)e =

I. Then H(P ) ≤ I + log(I) +O(1).

The lemma says that if the expected length of the numbers is bounded by I, then the entropy

is bounded by I+log(I)+O(1). A bound of I+2 log(I)+O(1) or of I+log(I)+2 log(log(I))+

O(1) is easy to get via prefix-free encoding of integers, but the fact that we can bound the

entropy by I + log(I) +O(1) is somewhat surprising.
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Using the lemma, we get that H(M ′) ≤ I(M ;X|Y ) + log(I(M ;X|Y )) + O(1), and thus

I(S;X|Y R) ≤ I(M ;X|Y ) + log(I(M ;X|Y )) +O(1). It remains to prove the lemma.

Proof. (Of Lemma 4.2.3) Let pi be the probability mass on the integers between 2i−1 and 2i

i.e. pi =
∑2i

n=2i−1+1 Pn. Then
∑∞

i=1 i · pi =
∑

n≥1 Pn · dlog(n)e = I.

H(P ) =
∑
n≥1

Pn log

(
1

Pn

)
≤ P1 log

(
1

P1

)
+
∑
i≥1

pi log

(
2i−1

pi

)
= I ±O(1) +H(p)

The inequality follows from log-sum inequality,

∑
k

ak log

(
ak
bk

)
≥

(∑
k

ak

)
log

(∑
k ak∑
k bk

)

Then,
∑2i

n=2i−1+1 Pn log(Pn) ≥ pi log(pi/2
i−1). Now let qj be the probability mass of pi from

2j−1 +1 to 2j i.e. qj =
∑2j

i=2j−1+1 pi. Then
∑

i≥1 i ·pi ≥
∑

j≥1 2j−1 ·qj. Thus
∑

j≥1 2j ·qj ≤ 2I.

Again by the log-sum inequality,

H(p) ≤ p1 log

(
1

p1

)
+
∑
j≥1

qj log

(
2j−1

qj

)
+O(1) =

∑
j≥1

j · qj +H(q)±O(1)

We can assume wlog that I is a power of 2. If j = log(2I) + k, for k ≥ 2, then qj ≤
1
2k

and hence qj log
(

1
qj

)
≤ k

2k
, since q log

(
1
q

)
is increasing in the interval (0, 1

e
]. Thus∑

j>log(2I) qj log
(

1
qj

)
= O(1). Let q =

∑
j>log(2I) qj. Since qlog(2I)+k ≤ 1

2k
,
∑

j>log(2I) j · qj ≤

q · log(2I) +O(1). So all that is needed is to prove that

∑
j≤log(2I)

j · qj +
∑

j≤log(2I)

qj log

(
1

qj

)
≤ (1− q) · log(2I) +O(1)

Let us look at j · qj + log(2I) · qlog(2I) + qj log
(

1
qj

)
+ qlog(2I) log

(
1

qlog(2I)

)
. If we decrease qj

and increase qlog(2I) by the same amount, the rate at which j · qj + log(2I) · qlog(2I) increases
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is log(2I) − j. Also
(
q log

(
1
q

))′
= log(e) ·

(
ln
(

1
q

)
− 1
)

. The difference in rates for qlog(2I)

and qj is log
(

1
qlog(2I)

)
− log

(
1
qj

)
. So as long as

log

(
1

qj

)
− log

(
1

qlog(2I)

)
≤ log(2I)− j

increasing qlog(2I) and decreasing qj (by the same amount) will increase
∑

j≤log(2I) j · qj

+
∑

j≤log(2I) qj log
(

1
qj

)
. Thus we can assume wlog that, qj ≤

qlog(2I)
2log(2I)−j

. Now for these val-

ues of qj, it is easy to check that
∑

j≤log(2I) qj log
(

1
qj

)
= O(1). Also

∑
j≤log(2I) j · qj ≤

(1 − q) · log(2I) is trivially true. This completes the proof. Note that it is not always

true that
∑

j≤log(2I) qj log
(

1
qj

)
= O(1) but for the distribution maximizing

∑
j≤log(2I) j · qj +∑

j≤log(2I) qj log
(

1
qj

)
, this is true.

We mention a few easy corollaries :

Corollary 4.2.4. Let X, Y be inputs to Alice and Bob respectively distributed according to

a distribution µ. Suppose that π is a private-coin r-round protocol with information cost

ICµ(π) = I. Then π can be simulated by a r-round public-coin protocol π′ with information

cost ICµ(π′) ≤ I + r log(I/r) +O(r).

Proof. It follows by applying Theorem 4.2.2 to the messages round by round. Denote the

protocol transcript by Π = Π1,Π2, . . . ,Πr. Assume Alice and Bob send alternate messages

with Alice sending Π1. Then

ICµ(π) = I(Π;X|Y R′RB) + I(Π;Y |XR′RA)

=
∑
i≤r

I(Πi;X|YΠ1Π2 . . .Πi−1R
′RB) +

∑
i≤r

I(Πi;Y |XΠ1Π2 . . .Πi−1R
′RA)

=
∑

i odd,i≤r

I(Πi;X|YΠ1Π2 . . .Πi−1R
′RB) +

∑
i even,i≤r

I(Πi;Y |XΠ1Π2 . . .Πi−1R
′RA)
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The second equality is chain rule for mutual information and the last equality follows from

the fact that for odd i, Πi is a function of Π1Π2 . . .Πi−1 and X and for even i, Πi is a function

of Π1Π2 . . .Πi−1 and Y . Now, after the messages Π1 = m1,Π2 = m2, . . . ,Πi−1 = mi−1 have

been sent (assume i odd), Alice can send Πi using public randomness via a message Π′i and

public randomness R such that (apply Theorem 4.2.2 to the inputs XY |Π1 = m1,Π2 =

m2 . . .Πi−1 = mi−1)

I(Π′i;X|Y,Π1 = m1,Π2 = m2, . . . ,Πi−1 = mi−1, R) ≤ I(Πi;X|YΠ1 = m1,Π2 = m2 . . .Πi−1

= mi−1R
′RB) + log(I(Πi;X|YΠ1 = m1,Π2 = m2, . . .Πi−1 = mi−1R

′RB)) +O(1)

This gives by taking expectations and by concavity of log

I(Π′i;X|YΠ1Π2 . . .Πi−1R) ≤

I(Πi;X|YΠ1Π2 . . .Πi−1R
′RB) + log(I(Πi;X|YΠ1Π2 . . .Πi−1R

′RB)) +O(1)

Also by Fact 1.2.15, I(Π′i;X|YΠ′1Π′2 . . .Π
′
i−1R) = I(Π′i;X|YΠ1Π2 . . .Πi−1R). This is because

Π′1, . . . ,Π
′
i−1, Y , R determine Π1,Π2, . . .Πi−1 and Π′1Π′2 . . .Π

′
i−1 → Y RΠ1Π2 . . .Πi−1 → Π′iX

is a Markov chain. Thus

ICµ(π′)

≤
∑

i≤r,i odd

I(Πi;X|YΠ1Π2 . . .Πi−1R
′RB) +

∑
i≤r,i odd

log(I(Πi;X|YΠ1Π2 . . .Πi−1R
′RB))+

∑
i≤r,i even

I(Πi;Y |XΠ1Π2 . . .Πi−1R
′RA) +

∑
i≤r,i odd

log(I(Πi;Y |XΠ1Π2 . . .Πi−1R
′RA)) +O(r)

≤ I + r log(I/r) +O(r)

The last inequality follows from concavity of log.
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Our upper bound also improves slightly the bound of Harsha et al. [HJMR07]. In their

setting, Alice wants to send a message M with I(M ;X) = I to Bob using low communication

and public-randomness is allowed. They give protocol with communication cost I+ log(I) +

log(log(I)) + . . .. We can get a bound of I + log(I) + O(1) which is tight (even in terms of

public-coin information) as shown by the lower bound in next section. The savings essentially

come from the surprising Lemma 4.2.3.

Corollary 4.2.5. Suppose Alice wants to help Bob to sample from the distribution M |X = x

and they have access to shared randomness. Let I(M ;X) = I. Then there exists a public-coin

protocol π with expected communication ≤ I + log(I) +O(1), which achieves this task.

Proof. Note that since Bob has no input, Alice actually knows the message M ′ in the proof

of Theorem 4.2.2 in this case. Huffman encoding of M ′ gives the desired protocol, since

H(M ′) ≤ I + log(I) +O(1).

4.3 Lower Bound

Now we give an example where Theorem 4.2.2 is tight. Alice is given a uniformly random

string x ∈R {0, 1}n. Let M(x, i) denote a message distributed according to

x1, . . . , xi−1, x̄i, bi+1, . . . , bn

where bj’s are random bits ∼ B1/2 and x̄i denotes the flip of bit xi.

Given x, Alice’s task, T, is to transmit a message distributed according to M(x, I), where

I ∈R {1, 2, . . . , n}. Note that Bob has no input in this task.

First let us bound the private-coin information complexity of this task. Given x, Alice can

privately sample I and send M ∼ M(x, I). Then the information cost of this protocol is
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I(M ;X) = H(M)−H(M |X). It is clear that H(M) = n.

H(M |X) = Ex[H(M |X = x)]

Denote M |X = x by M |x. For strings x, y ∈ {0, 1}n with x 6= y, let j(x, y) denote the first

index of disagreement between x and y i.e. index j s.t. xj 6= yj. Then

Pr[M |x = y] =
1

n
· 1

2n−j(x,y)

if x 6= y and 0 if x = y.

H(M |x) =
∑
y

Pr[M |x = y] log

(
1

Pr[M |x = y]

)

=
n∑
j=1

2n−j · 1

n
· 1

2n−j
log(n · 2n−j) + 0

= log(n) +
1

n

n∑
j=1

(n− j)

= n/2 + log(n)− 1/2

The second equality follows from the fact that there are 2n−j strings y with j(x, y) = j, when

j ∈ {1, . . . , n}. This gives

I(M ;X) = n/2− log(n) + 1/2

The following lemma lower bounds the information complexity of a public round protocol

for the task T. Note that the strategy of sampling I publicly would have an information cost

≈ n/2.

Lemma 4.3.1. Let Π be a one round public-coin protocol (using public randomness R) such
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that there is a deterministic function g such that g(Πx, R) is distributed according to M(x, I).

Then I(Π;X|R) ≥ n/2−O(1).

Proof. Since Π is a deterministic function of X and R,

I(Π;X|R) = H(Π|R)−H(Π|X,R) = H(Π|R)

Let J be a random variable that denotes the first index of disagreement between g(Π, R)

and X (Note that J is well defined because of the distribution of M). Fix a value of R = r.

Let pj = Pr[J = j|R = r]. Note that the probability is just over random X. Let µ denote

the distribution of Π|R = r and let µj be the distribution of Π|R = r, J = j. Then

µ =
n∑
j=1

pj · µj

Let us analyze the distribution µj. Let Sr(j) be the set of x’s which lead to J = j i.e.

Sr(j) = {x ∈ {0, 1}n : j(x, g(Π(x, r), r)) = j}

Note that |Sr(j)| = pj · 2n. Fixing Π = t and R = r fixes g(Π, R) = g(t, r). Then

Pr[Π = t|R = r, J = j] ≤ |{x ∈ Sr(j) : j(x, g(t, r) = j)}|
|Sr(j)|

≤ 2n−j

pj · 2n
=

1

pj · 2j

The first inequality is because if R = r, J = j are fixed, the event Π = t implies that

j(x, g(t, r)) = j. The second inequality follows from the fact that there are 2n−j x’s with

j(x, g(t, r)) = j.

Claim 4.3.2. H(µ) ≥
∑n

j=1 j · pj −O(1).
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Given the claim, we can bound H(Π|R) as follows :

H(Π|R) = Er∼R[H(Π|R = r)]

≥ Er∼R
n∑
j=1

j · pj −O(1)

=
n∑
j=1

j · 1

n
−O(1)

= n/2−O(1)

The inequality follows from the claim. The second equality follows from the fact that

Er∼RPr[J = j|R = r] = Pr[J = j] = 1
n
.

Proof. (Of Claim 4.3.2) Increasing a larger probability and decreasing a smaller probability

by the same amount always lowers the entropy of a distribution

(
p log

(
1

p

))′
−
(
q log

(
1

q

))′
= log

(
q

p

)
< 0 if q < p

We are given a µj where the mass of every entry µj(z) does not exceed 2−j/pj. Therefore, we

can replace µj with a uniform distribution on a set Lj of Lj entries, where Lj = max(1, bpj ·

2jc) (given any z1, z2 with 0 < µj(z1), µj(z2) < 1/Lj we can make sure that one of them

becomes 0 or that one of them becomes 1/Lj without increasing the entropy). Note that it

is always the case that Lj > pj · 2j−1.

Therefore, we can assume wlog that each µj is uniform on a set Lj of size Lj. Consider

the process of selecting an index K according to the distribution pj, and then Z ∼ µK . Our

goal is to show that H(Z) ≥
∑n

j=1 j · pj −O(1). We have

H(KZ) = H(K) +H(Z|K) =
n∑
j=1

pj log(Lj/pj) >
n∑
j=1

pj log(pj · 2j−1/pj) =
n∑
j=1

j · pj − 1,
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and H(Z) = H(KZ)−H(K|Z). Therefore, it suffices to show that H(K|Z) = O(1).

We define a subset S of j’s for which pj is “small”:

S := {j : pj < 2−j}.

Note that for j /∈ S we have pj ·2j ≥ 1, and therefore Lj = bpj ·2jc, and pj ·2j−1 < Lj ≤ pj ·2j.

Denote by χS the indicator random variable for the event K ∈ S. We have

H(K|Z) ≤ H(K,χS|Z) = H(χS|Z) +H(K|χSZ)

≤ 1 + Pr[K ∈ S]H(K|Z,K ∈ S) + Pr[K /∈ S]H(K|Z,K /∈ S)

The second inequality is because χS is a boolean random variable. We bound the two terms

separately. Assuming S 6= ∅, denote pS :=
∑

j∈S pj.

Pr[K ∈ S]H(K|Z,K ∈ S) ≤ Pr[K ∈ S]H(K|K ∈ S)

= pS ·
∑
j∈S

pj
pS

log
pS
pj

≤
∑
j∈S

pj log
1

pj

< 1 +
∑

j≥2,j∈S

pj log
1

pj

≤ 1 +
n∑
j=2

2−j log
1

2−j

= O(1)

The last inequality is because the function x log 1/x is monotone increasing on the interval

(0, 1/e), and we have 0 < pj < 2−j < 1/e for j ∈ S, j ≥ 2.

Finally, we need to show Pr[K /∈ S]H(K|Z,K /∈ S) = O(1). We will in fact show that
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H(K|Z,K /∈ S) = O(1). We have

H(K|Z,K /∈ S) = Ez∼Z|K/∈SH(K|Z = z,K /∈ S) (4.1)

Fix any value of z such that Pr[K /∈ S|Z = z] > 0. We can precisely describe the distribution

q of K|Z = z,K /∈ S. Denote Tz := {j : j /∈ S, z ∈ Lj}. Order the elements of Tz in

increasing order, and index them: Tz = {j1 < j2 < . . . < jk}. Then the distribution q puts

weight qr :=
pjr/Ljr

q
on jr, where q :=

∑k
r=1 pjr/Ljr . We have for each r:

qr ≤
pjr/Ljr
pj1/Lj1

<
pjr/(pjr · 2jr−1)

pj1/(pj1 · 2j1)
= 2j1−jr+1 ≤ 22−r

The second inequality follows from Ljr > pjr ·2jr−1 and Lj1 ≤ pj1 ·2j1(since j1 /∈ S) . qr ≤ 22−r

implies that H(q) = O(1). Therefore we have H(K|Z = z,K /∈ S) = O(1) for each z, and

by (4.1) this implies H(K|Z,K /∈ S) = O(1), and completes the proof.
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Chapter 5

Small Value Parallel Repetition

The results in this chapter are based on joint work with Mark Braverman [BG15].

5.1 Introduction

Parallel repetition theorem is one of the cornerstones of complexity theory. It studies hard-

ness amplification of 2-prover 1-round games. In a 2-prover 1-round game G, there are 2

provers, Alice and Bob, and a verifier. The verifier samples a challenge (x, y) from a joint

distribution and gives x to Alice and y to Bob. Alice and Bob answer based on x and y,

(a(x), b(y)), respectively, and they win the game if some predicate of x, y, a, b is satisfied.

The central notion of study is the value of game val(G), which is the maximum probability of

winning over all strategies of Alice and Bob. A natural question is what is the value of n in-

dependent parallel repetitions of the game, in other words, is it true that val(Gn) ≤ val(G)n?

The main difficulty in proving such a theorem arises from the ability of the players to cor-

relate their answers across different coordinates. The first bound on val(Gn) was proven by

Verbitsky [Ver94] who showed that the value must go to zero as n goes to infinity. Later,

Raz [Raz98] proved exponential convergence to zero with the convergence rate depending on
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the answer length of the game. Feige and Verbitsky [FV02] provided an example to show

that the dependence on answer length is necessary. Raz’s proof was subsequently simplified

and improved by Holenstein [Hol07]. Rao [Rao08] improved Holenstein’s proof for the spe-

cial class of projection games. The techniques of Raz, Holenstein and Rao were information

theoretic. Parallel repetition theorem is very useful for gap amplification of PCPs. Rao’s

theorem for projection games was useful for reducing the Unique Games Conjecture (UGC)

to a weaker version.

Parallel repetition for small value: The proofs of Raz, Holenstein and Rao worked

only when the value of the game is close to 1. It wasn’t known if a version of parallel rep-

etition could be true when val(G) is o(1). Dinur and Steurer [DS14] recently proved such

a theorem for the special case of projection games, introducing linear-algebraic techniques

for parallel repetition along the way. In this chapter, we give a proof for a tight parallel

repetition theorem in the general small-value case using information theoretic techniques.

In the process, we also give an alternative proof for the asymptotically tight bound in the

small value projection case, albeit with weaker constants than [DS14].

5.1.1 Proof overview, intuition, and discussion

We start with a somewhat informal proof outline1. Here we opt to gloss over some tech-

nical details to convey the main ideas of the proof. This brief exposition is followed by

a brief technical overview of the innovations in this proof compared to previous attempts,

aimed at those familiar with the previous line of work on parallel repetition. We hope that

this exposition will help elucidate our techniques and make them reusable in other related

settings.

1Note that while we formulate our proofs for the low-value case, as this is the case that had been open,
our proof easily extends to match existing proofs for val(G) close to 1.
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A high-level overview. All proofs of parallel repetition theorems, including the present

one, follow the same high-level strategy: we want to prove that if the value of Gn is too

high, then there is a “too-good-to-be-true” strategy for G. Note that if the optimal strategy

Sn for Gn were independent over the n coordinates then we would have had val(Gn) =

val(G)n, or val(G) = val(Gn)1/n. A more contrived equivalent way of saying this is that if Sn

were independent over the n coordinates, Alice and Bob could have dealt with a challenge

(x, y) by embedding (x, y) into a coordinate i of a challenge ((x1, . . . , xn), (y1, . . . , yn)) (by

jointly sampling the remaining pairs (x−i, y−i)); having Alice and Bob calculate the strategies

(a1, . . . , an) and (b1, . . . , bn) prescribed by Sn, respectively; and having Alice output ai and

Bob output bi as their response to the challenge (x, y)). Since Sn is a product strategy, this

clearly works.

The challenge is to make this embedding work even when Sn is a general strategy where

each ai depends on the entire vector (x1, . . . , xn). Note that as we know from counterexamples

that it can happen that val(Gn) � val(G)n, this is not a mere technicality. Still, while the

näıve embedding above breaks down, the general mold of the construction is a valid one: (1)

embedding (x, y) into the i-th coordinate for some i; (2) sampling some public information

R conditioned on (x, y); (3) having Alice and Bob play according to Sn conditioned on

(R, xi = x) and (R, yi = y), respectively; (4) arranging R so that we can prove that the

success probability of this strategy is sufficiently high.

Some previous parallel repetition proofs use the assumption that the success probability

on coordinate i given success on some other coordinates is high as their departure point, and

arrive at a contradiction. By proving that many of these conditional probabilities are low,

these proofs establish that the probability of winning all coordinates simultaneously is also

low by using the fact that

Pr[win on all coords] =
n∏
i=1

Pr[win on coord i|win on coords < i].
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Since our main tool is symmetrization, we instead opt to define the random variable 1W

representing whether the players win on all n coordinates, and condition everything on the

event W that they do win. Under the assumption that pW = Pr[W ] is not too small, we

hope (and eventually prove) that this conditioning does not distort individual coordinates

by too much: after sampling the “big” public variable R conditioned on W , Alice and Bob

will sample their respective strategies on xi and yi ignoring W altogether. This is achieved

by a careful choice of what to include in the variable R. This choice is made to balance the

parameters of the problem.

The most näıve strategy would have Alice and Bob sample (x−i, y−i) and then play

the strategy prescribed by Sn as they did in the special “product strategy” case above.

Unfortunately, this only leads to a success probability of pW , which is exponentially worse

than what we would hope for. We would like to somehow “zoom” on the strategies of Alice

and Bob conditioned on W . In other words, they would like to sample (ai, bi) conditioned on

(xi, yi), and W . The problem is that conditioned on W , ai is very far from being independent

from yi (or, for that matter from bi conditioned on xi). This makes such sampling impossible.

To address this issue, we will have Alice and Bob sample a public variable R such that

conditioned on R and xi = x, ai is (almost) independent of 1W and yi. Thus to sample ai

conditioned on xi, R and the event W , Alice can ignore W and the fact she doesn’t know

yi = y, and just sample her strategy conditioned on xi, R.

The remaining challenge is carefully selecting the variable R. Ignoring W for the moment,

we would like ai conditioned on xi, R to be independent from yi. Note that in general the

distribution of the answer ai in Sn depends on the distribution of all coordinates x−i and

not just on xi = x. We could have R empty, and thus have Alice and Bob sample x−i

and y−i on their own, but since xj and yj are not independent, this would lead to a wrong

distribution of inputs to Sn, and thus to a wrong distribution of outputs. Another extreme

solution would be to have R = {x−i, y−i} contain all coordinates except for the i-th one.
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This would solve the dependence problem, but create a new one: conditioned on W , there

could be a very high dependence (∼ log (1/Pr[W ]) bits of mutual information) between R

and e.g. xi, thus making it impossible for Alice and Bob (who each only have access to either

xi or yi but not both) to sample R. As an illustration, consider the following example. Let

M = 1/Pr[W ] be an integer, and imagine an n-coordinate game where Alice and Bob win

if and only if
∑n

j=1(xj + yj) = 0 mod M . Then sampling (x−i, y−i) correctly conditioned

on W requires the knowledge of xi + yi mod M , something neither Alice nor Bob possesses.

Our solution is similar to previous solutions, although its exact execution is inspired by

the latest developments of information complexity techniques, particularly in the context of

direct product theorems for communication complexity. R will contain a set xG of x’s and yH

of y’s such that each coordinate j 6= i is contained in G ∪H. Thus for each such j either xj

or yj is publicly sampled. Conditioning on R breaks the dependence between the remaining

x’s and y’s, which can then be sampled privately. Still, R “misses” enough coordinates that

the mutual information between R and yi conditioned on W is small, and thus R can be

simultaneously jointly sampled by Alice and Bob (at least with high enough probability).

Such dependence breaking appeared in previous parallel repetition proofs, as well as in

information complexity/communication complexity contexts [BYJKS04, BBCR10, BR11].

Here, however, the existence of the arbitrary random variable 1W on which we are condi-

tioning, creates technical difficulties that do not exist in previous context. We address those

by choosing G and H to have a Θ(n) overlap — a technical innovation that, to the best of

our knowledge, was only employed once before [BRWY13b], and the potential applications

of which are still not fully understood.

An additional complication that we need to address is that even if the mutual information

between yi and R given xi is “small” (and thus it should be possible for Alice to sample R

without knowing yi), and similarly for Bob, this mutual information will not be very small.

In particular, the best we can hope for is something of the form O((log (1/Pr[W ])) /n),
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which, in the small success probability regime, is still ω(1). In previous (high success prob-

ability) works, this mutual information was o(1), and thus the statistical distance between

R|xi, R|yi, and the variable R|(xi, yi) Alice and Bob really want to sample is also o(1) by

Pinsker’s inequality. In this case, an approximate sample from R|(xi, yi) is obtained using

a joint sampling technique employed by Holenstein and Rao [Hol07, Rao08] in their sim-

plified proofs of the parallel repetition theorem. In the low-success-probability case we end

up proving the following statement: if the mutual information I(Yi;R|Xi) and I(Xi;R|Yi)

are < log (1/δ), then R can be correctly jointly sampled with probability > poly(δ). Note

that this probability is o(1) when log (1/δ) = ω(1), but is still high enough for our purposes.

More precisely, we sample a distribution that doesn’t over-sample any value of R by more

than a factor of 2; it is noteworthy that such a sampling is sufficient for our purposes. The

sampling lemma we prove may find other applications in complexity theory.

With R having been sampled, Alice and Bob are able to independently sample ai and bi

conditioned on (R, xi = x) and (R, yi = y), respectively. There is one last concern: to win

the game, Alice and Bob need to sample (ai, bi) conditioned on R, their respective inputs,

and the event W . They are only able to sample these conditioned on R and their inputs.

Thus, as discussed above, our final goal is to limit the dependence between 1W and (ai, bi).

Here we employ a trick that has been used before, though our presentation perhaps shows it

in a slightly different light. To reduce the interaction between (ai, bi) and 1W conditioned on

R, we “hide” (ai, bi) among ∼ T other pairs of answers to challenges in G∩H. This reduces

the dependence between 1W and (ai, bi) to O((log (1/Pr[W ])) /T ) bits of information, which

becomes small as T increases. However, adding the answers to T creates and additional

dependence and adds to I(Yi;R|Xi,W ) and I(Xi;R|Yi,W ). The additional contribution is

on the order of T (log s)/n, where s is the size of the answer space (and thus O(T log s) is

the entropy of the publicly sampled answers). Finally, a T is chosen to balance the two

constraints.
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Discussion of techniques. At a technical level, we further develop the idea of symmetriz-

ing out a dependence through a careful choice of conditioning. Similar to the situation in

the study of direct sum and product questions in communication complexity, all we want is

to claim that there is a coordinate that is “average” in the effect conditioning on winning

has on it. The simplest tool available to us which allows us to make such claims in the

information-theoretic domain is the chain rule. Unfortunately, breaking the mutual infor-

mation of a family of variables using the chain rule produces a family of conditional mutual

information expressions, each of which has a different conditioning. The main challenge was

thus to select a distribution of conditioning terms consistent with the various chain rules

needed in the proof. In particular, as was the case in the proof of the direct product theorem

for randomized communication complexity [BRWY13c], we seem to need to condition on a

family of overlapping variables. Understanding why this is the case, and systematizing the

use of such conditioning remains an interesting challenge.

The second technical innovation is a joint sampling procedure for the high information-

discrepancy regime. Informally, it allows Alice and Bob who each have a distribution µA,

µB, respectively, such that D(µ||µA), D(µ||µB) ≤ k to jointly (approximately) sample from

µ with probability > 2−O(k). The proof of the lemma is similar to previous low-success

probability constructions in [BW12, KLL+12b], but its current formulation might be of use

elsewhere.

We should note that while the notation is somewhat intimidating, the new proof is

completely elementary. It only uses basic probability, repeated applications of the chain

rule, and some elementary calculus. In particular, it does not use more advanced tools e.g.

from linear algebra or spectral graph theory. Still, it is quite possible to draw parallels

between our proof and the algebraic proof of Dinur and Steurer for the projection case

[DS14]. This raises the tantalizing possibility of finding deeper connections between spectral

and information-theoretic tools, and exploiting tools from one to advance the other.
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One challenge involving the parallel repetition theorem this chapter does not address

is the gap that is present in the case of general games with value close to 1. Assuming

val(G) = 1 − ε, the best upper bound on val(Gn) is (1 − ε3)Ω(n/ log s) [Hol07], while the best

counterexample [Raz11] only gives a lower bound of (1− ε2)O(n). If indeed the lower bound

is the tight one (in terms of dependence on ε), it would be interesting to see whether our

techniques can be used to prove it.

5.1.2 Notation

We will use capital letters, e.g. A,B,X, Y to denote random variables. If X is a random

variable, we will use PX to denote its distribution. We will frequently use expectations

of mutual information, so we will have a compact notation for it. Suppose A1, . . . , An,

B1, . . . , Bn and C1, . . . , Cn are random variables. Let S,G,H be random subsets of [n].

Then we will use the notation:

EPS,G,HI(AS;BG|CH) := Es,g,h∼PS,G,HI(As;Bg|Ch)

Here As denotes (Ai)i∈s. Also we will use the notation:

EPC,DD(PA|C ||PB|D) := Ec,d∼PC,DD(PA|C=c||PB|D=d)

5.1.3 Games

Here we formally define a 2-player 1-round game. Such a game G consists of a verifier and

two provers Alice and Bob. The verifier draws (x, y) from some distribution µ on X ×Y , and

gives x to Alice and y to Bob. Alice and Bob answer a ∈ A and b ∈ B depending on x and

y i.e. there exists functions f : X → A and g : Y → B s.t. a = f(x) and b = g(y). They win

the game if some predicate of x, y, a, b is satisfied i.e. there exists a subset V ⊆ X×Y×A×B
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such that they win the game if (x, y, a, b) ∈ V . Here V and µ are part of the definition of the

game G, so that G = (X ,Y ,A,B, V, µ). Value of the game val(G) is defined as the maximum

probability of winning over all strategies of Alice and Bob. Formally

val(G) = max
f,g

Pr
(x,y)∼µ

[(x, y, f(x), g(y)) ∈ V ]

The game Gn is defined as follows: Alice gets x1, . . . , xn and Bob gets y1, . . . , yn, where

(x1, y1), . . . , (xn, yn) are distributed according to µn (n independent copies of µ). Alice out-

puts a1, . . . , an = F (x1, . . . , xn), where F : X n → An and Bob outputs b1, . . . , bn =

G(y1, . . . , yn), where G : Yn → Bn. They win the game if for all i, (xi, yi, ai, bi) ∈ V .

The value is defined similarly:

val(Gn) = max
F,G

Pr
(x1,y1),...,(xn,yn)∼µn

[
n∧
i=1

((xi, yi, F (x1, . . . , xn)i, G(y1, . . . , yn)i) ∈ V )

]

It is not hard to see that allowing shared randomness between Alice and Bob doesn’t change

the value of the game. But we’ll allow Alice and Bob to use shared randomness to facilitate

the proofs. We’ll denote the size of the answer set of the game, |A| · |B| by s.

There are two special cases of games which are interesting: unique and projection games.

A game is unique if its accepting predicate has the following property: for each x, y, a, there

exists a unique b s.t. (x, y, a, b) ∈ V . Also for each x, y, b, there exists a unique a s.t.

(x, y, a, b) ∈ V . A game is called a projection game if for each x, y, a, there exists a unique

b s.t. (x, y, a, b) ∈ V . Note that in a projection game, there might exist multiple accepting

answers of Alice corresponding to an answer of Bob, once we fix the questions.
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5.1.4 Previous work

Exponential decay in the value of the game was first proven by Raz [Raz98]. He proved the

following theorem:

Theorem 5.1.1 ([Raz98]). Let G be a game with val(G) = 1− ε and let log(s) be the answer

size of the game. Then val(Gn) ≤ (1− ε32/2)Ω(n/ log(s)).

This was improved by Holenstein [Hol07] who proved the following theorem:

Theorem 5.1.2 ([Hol07]). Let G be a game with val(G) = 1− ε and let log(s) be the answer

size of the game. Then val(Gn) ≤ (1− ε3/2)Ω(n/ log(s)).

Holenstein also proved parallel repetition for no-signaling strategies. Later Rao [Rao08]

improved the bound for projection games.

Theorem 5.1.3 ([Rao08]). Let G be a projection game with val(G) = 1− ε. Then val(Gn) ≤

(1− ε2/2)Ω(n).

Recently Dinur and Steurer proved parallel repetition for projection games in the small

value regime.

Theorem 5.1.4 ([DS14]). Let G be a projection game with val(G) = β. Then val(Gn) ≤

(4β)n/4.

There has been a substantial amount of other work on improved parallel repetition for

special classes of games, e.g. for free games [BRR+09], expanding games [RR12] and projec-

tion games with low threshold rank [TWZ14]. Derandomizing parallel repetition theorems

is an important question and there has been some work on it e.g. [Sha13], [DM11]. Recently

Moshkovitz [Mos14] has given an operation on projection games, called “fortification”, which

makes the value of the game to behave nicely under parallel repetition. This enables im-

provements in the state of the art projection PCP theorem, while bypassing some of the
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difficulty with general parallel repetition. There also has been a lot of work around parallel

repetition for games with entanglement [CSUU08, KV11, DSV14, JPY14, CS14].

5.2 Results

The main theorem of this chapter is the following:

Theorem 5.2.1. Let G be a 2-prover 1-round game. Let s be the size of answer set of

the game. If val(G) = β, where 1/s ≤ β. Then val(Gn) ≤ βΩ(n log(1/β)/ log(s)), where β is

sufficiently small and n sufficiently large.

The theorem is stated formally in theorem 5.3.12 below.

Remark 5.2.2. We assume in the theorem that β ≥ 1/s. Note that this is a very natural

assumption, since if for all x, y, there exist a, b s.t. the provers win on x, y, a, b, then provers

can just output random answers and they win w.p. ≥ 1/s. Even without the assumption,

a simple reduction can be used to handle the case β < 1/s. In this case, the bound of the

theorem is too strong, as the best we can hope for is a bound of the form βΩ(n). Let Gw be

the sub-game of G over question pairs (x, y) for which there exists some pair of answers that

wins the game. Also let p be the probability that we draw such an (x, y) from the distribution

for the game, i.e. p is the probability that game is winnable. Then val(G) = p · val(Gw) and

val(Gn) = pn · val(Gnw). Then if val(G) = β and val(Gw) = α, where β < 1/s. There are two

cases: (1) If log(1/α) < log(s)/2 ≤ log(1/β)/2, then val(G) ≤ pn = βn/αn ≤ βn/2. (2) If

log(1/α) ≥ log(s)/2, then we can apply theorem 5.2.1 to the game Gw:

val(Gn) ≤ pn · αc·n log(1/α)/ log(s) = pn · αΩ(n) ≤ (pα)Ω(n) = βΩ(n)

Remark 5.2.3. val(Gn) ≤ βΩ(n/ log(1/β)·log(s)) is what we’ll get if we apply the parallel repeti-

tion theorem of Raz [Raz98]. It is not clear how to get val(Gn) ≤ βΩ(n/ log(s)), however even
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in this bound, there is no “small-value behavior”, since βΩ(n/ log(s)) ≥ 2−Θ(n), if β ≥ 1/s.

However our bound has the “small-value behavior” and it says that we get strong parallel

repetition up to constants, if β and 1/s are polynomially related.

We also show that Feige and Verbitsky’s example [FV02] with tweaking of the parameters

proves tightness of theorem 5.2.1.

Theorem 5.2.4. There is a family of games Gk parametrized by k with val(Gk) = βk → 0

s.t. val(Gnk ) ≥ β
O(n log(1/βk)/ log(sk))
k , where log(sk) is the answer size of the game Gk with

log(1/βk)
log(sk)

→ 0.

Remark 5.2.5. Theorem 5.2.1 is clearly tight when log(1/β) = Θ(log(s)). However we give

an example where it is tight even when log(1/β) = o(log(s)).

Remark 5.2.6. Feige and Verbitsky’s example is not tight for games with constant value

(it has a slack of log log(s)). Our work shows that for games with sub-constant value, it is

exactly tight upto constant factors.

We also reprove Dinur and Steurer’s parallel repetition theorem for projection games in

the small value regime. However they get much better constants in their proof. Our proof

also extends to the high value regime and it provides an alternate proof for the theorems of

Holenstein and Rao.

5.3 Proof for general games

We will denote by X1, . . . , Xn and Y1, . . . , Yn inputs to Alice and Bob respectively in the n

copy game. If f, g is a strategy for the game, then we’ll denote by A1, . . . , An = f(X1, . . . , Xn)

and B1, . . . , Bn = g(Y1, . . . , Yn) the answers of Alice and Bob respectively. Let W be the

event that they win the game on all coordinates and let 1W be the indicator random variable
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for it.

Let S,G,H be random subsets of [n] distributed as follows: Let sh and sg be random

numbers from {3n/4 + 1, . . . , n}. Let σ : [n]→ [n] be a uniformly random permutation. Set

H = σ([sh]), G = σ({n−sg+1, . . . , n}). Let I be a uniformly random element of G∩H. Let

l be a random number from [T ], where T < n/2 is a parameter. Let S be a uniformly random

subset of G ∩H\{I} of size l. Let RS,G,H,I denote the random variable XG\{I}YH\{I}ASBS.

We will use s, g, h, i to denote instantiations of the random variables S,G,H, I respectively.

Lemma 5.3.1. EPS,G,H,II(AIBI ; 1W |XI , YI , RS,G,H,I) ≤ H(1W )/T .

Proof. Let |g ∩ h| = m, and let l1, l2, . . . , lm be the elements of g ∩ h. Then the distribution

PS,G,H,I can also be described as follows: G,H be distributed as in PS,G,H,I . Let κ be a

random permutation such that κ({l1, . . . , lm}) = {l1, . . . , lm}, and t ∈R [T ]. Set I = κ(lt)

and S = κ({lt+1, . . . , lT+1}). Then

EPS,G,H,II(AIBI ; 1W |XIYIRS,G,H,I)

= EPG,HEκEt∈R[T ]I(Aκ(lt)Bκ(lt); 1W |Aκ({lt+1,...,lT+1})Bκ({lt+1,...,lT+1})XGYH)

= EPG,HEκ
1

T

T∑
t=1

I(Aκ(lt)Bκ(lt); 1W |Aκ({lt+1,...,lT+1})Bκ({lt+1,...,lT+1})XGYH)

=
1

T
EPG,HEκI(Aκ({l1,...,lT })Bκ({l1,...,lT }); 1W |Aκ(lT+1)Bκ(lT+1)XGYH)

≤ H(1W )

T

Remark 5.3.2. The variable size of the set S (or the variable sizes of the sets G and H,

as we will see in the next lemma) is very important for the symmetrization trick to work (it

enables the chain rule via an alternate description of the distribution).
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Lemma 5.3.3. EPS,G,H,II(RS,G,H,I ;XI |YI ,W ) ≤ 4
n
H(1W )/Pr[W ] + 2(T+1)

n
· log(s).

Proof. Note that RS,G,H,I consists of two parts : XG\{I}YH\{I} and ASBS. We will prove

EPS,G,H,II(XG\{I}YH\{I};XI |YI ,W ) ≤ 4

n
H(1W )/Pr[W ] (5.1)

and

EPS,G,H,II(ASBS;XI |XG\{I}YH\{I}YI ,W ) ≤ 2(T + 1)

n
· log(s) (5.2)

which together will prove the lemma. To prove the first statement, we first prove the following

statement:

EPG,H,II(XI ; 1W |YI , XG\{I}YH\{I}) ≤ 4H(1W )/n

The distribution PG,H,I can be seen in the following way: let H be distributed as in PG,H,I .

Let κH be a random permutation that maps [|H|] to H. Choose a random number l ∈

{1, . . . , n/4}. Set I = κH(l) and G = κH({l, . . . , n}). Then

EPG,H,II(XI ; 1W |YI , XG\{I}YH\{I}) = EHEκHEl∈R[n/4]I(XκH(l); 1W |XκH({l+1,...,n})YH)

= EHEκH
4

n

n/4∑
l=1

I(XκH(l); 1W |XκH({l+1,...,n})YH)

=
4

n
EHEκHI(XκH({1,...,n/4}); 1W |XκH({n/4+1,...,n})YH)

≤ 4H(1W )/n

Now we relate I(Xi; 1W |Yi, Xg\{i}Yh\{i}) to I(Xg\{i}Yh\{i};Xi|Yi,W ). Consider the mutual
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information term I(Xi;Xg\{i}Yh\{i}1W |Yi).

I(Xi;Xg\{i}Yh\{i}1W |Yi)

= I(Xi;Xg\{i}Yh\{i}|Yi) + I(Xi; 1W |YiXg\{i}Yh\{i})

= I(Xi; 1W |YiXg\{i}Yh\{i}) (5.3)

Also writing it in another way, we get

I(Xi;Xg\{i}Yh\{i}1W |Yi)

= I(Xi; 1W |Yi) + I(Xi;Xg\{i}Yh\{i}|Yi1W )

≥ Pr[W ] · I(Xi;Xg\{i}Yh\{i}|Yi,W ) (5.4)

Combining (5.3) and (5.4), we get EPS,G,H,II(XI ;XG\{I}YH\{I}|YI ,W ) ≤ 4
n
H(1W )/Pr[W ].

To prove (5.2), notice that the distribution PS,G,H,I can also be described as follows: Let S,H

be distributed as in PS,G,H,I . Let κS,H be a random permutation conditioned on κS,H([|S|]) =

S and κS,H([|H|]) = H. Choose a random number l from {|S| + 1, . . . , |S| + n/4}. Set
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I = κS,H(l) and G = S ∪ κS,H({l, . . . , n}). Then

EPS,G,H,II(ASBS;XI |XG\{I}YH\{I}YI ,W )

= ES,HEκS,HEl∈R{|S|+1,...,|S|+n/4}I(ASBS;XκS,H(l)|XκS,H({l+1,...,n})XSYH ,W )

= ES,HEκS,H
4

n

|S|+n/4∑
l=|S|+1

I(ASBS;XκS,H(l)|XκS,H({l+1,...,n})XSYH ,W )

=
4

n
ES,HEκS,HI(ASBS;XκS,H({|S|+1,...,|S|+n/4})|XκS,H({|S|+n/4+1,...,n})XSYH ,W )

≤ 4

n
ESH(ASBS|W )

≤ 4

n
ES|S| · log(s)

=
2(T + 1)

n
· log(s)

Remark 5.3.4. Note that the similar statement

EPS,G,H,II(RS,G,H,I ;YI |XI ,W ) ≤ 4

n
H(1W )/Pr[W ] +

2(T + 1)

n
· log(s)

is also true since the distribution of G and H is symmetric.

The next lemma considers the following situation: Alice and Bob have rough estimates of a

distribution P and they want to jointly sample from it. This is very similar to the settings

in [BW12] and [KLL+12b].

Lemma 5.3.5. Suppose Alice knows a distribution P1 and Bob knows a distribution P2, and

they want to jointly sample from a distribution P (all three are distributions over U ). Also

D (P ||P1) ≤ log(1/η) and D (P ||P2) ≤ log(1/η), where η ≤ 1
2
. Then there is a sampling

procedure (using shared randomness) such that
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1. Suppose Alice outputs p1 and Bob outputs p2. There is an event E (which depends

just on the shared randomness of the sampling procedure) with Pr[E] ≥ η10, such that

Pr[p1 = p2|E] = 1.

2. The distribution of p1|E is multiplicatively bounded by P i.e. ∀u, Pr[p1 = u|E] ≤

2 · P (u).

Proof. Consider the sampling procedure described in Protocol 4. Let

A = {i s.t. qi < P1(ui)/η
8}

B = {i s.t. qi < P2(ui)/η
8}

C = {i s.t. qi < P (ui)}

Let E be the event: first index in A∪B lies in A∩B∩C. Let us first prove that Pr[E] ≥ η10.

Let (u, q) be a uniformly random element of U × [0, 1]. Then

Pr[E] =
Pr[q ≤ min(P1(u)/η8, P2(u)/η8, P (u))]

Pr[q ≤ max(P1(u)/η8, P2(u)/η8)]

≥ Pr[q ≤ min(P1(u)/η8, P2(u)/η8, P (u))]

Pr[q ≤ P1(u)/η8] + Pr[q ≤ P2(u)/η8]

≥ 1

2
· η8 · |U| · Pr[q ≤ min(P1(u)/η8, P2(u)/η8, P (u))]

Let U ′ = {u ∈ U|P (u) ≤ min(P1(u)/η8, P2(u)/η8)}. Then

Pr[q ≤ min(P1(u)/η8, P2(u)/η8, P (u))] ≥ 1

|U|
· P (U ′)

and hence

Pr[E] ≥ 1

2
· η8 · P (U ′)
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Since Prx∼P [P (x)/P1(x) ≥ 1/η8] ≤ (log(1/η) + 1)/(8 log(1/η)) ≤ 1/4 (by Lemma 1.2.22),

and Prx∼P [P (x)/P2(x) ≥ 1/η8] ≤ 1/4, we have that P (U ′) ≥ 1/2. Thus Pr[E] ≥ η10.

1. Using shared randomness, get many uniformly random samples from U× [0, 1]. Denote
these samples by (ui, qi)

∞
i=1.

2. Alice outputs the first ui s.t. qi < P1(ui)/η
8 and Bob outputs the first uj s.t. qj <

P2(uj)/η
8.

Protocol 4: Sampling strategy

Since a subevent of E is the event that first index in A∪B lies in A∩B, Pr[p1 = p2|E] = 1.

It remains to prove ∀u, Pr[p1 = u|E] ≤ 2 · P (u).

Pr[p1 = u|E] =
min(P1(u)/η8, P2(u)/η8, P (u))∑
u∈U min(P1(u)/η8, P2(u)/η8, P (u))

≤ P (u)∑
u∈U ′ min(P1(u)/η8, P2(u)/η8, P (u))

=
P (u)

P (U ′)
≤ 2 · P (u)

This completes the proof of the lemma.

Lemma 5.3.6. EPID
(
PXI ,YI |W ||PXIYI

)
≤ log(1/Pr[W ])

n
.

Proof.

EPID
(
PXI ,YI |W ||PXIYI

)
=

1

n

n∑
i=1

D
(
PXi,Yi|W ||PXiYi

)
≤ 1

n
D
(
PX1,Y1,...Xn,Yn|W ||PX1,Y1,...Xn,Yn

)
≤ log(1/Pr[W ])

n

The first equality is true because PI is uniform over [n]. First inequality follows from Lemma

1.2.19. The second inequality follows from the Fact 1.2.20.
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Lemma 5.3.7. Suppose 2−20 ≥ Pr[W ] ≥ δn log(1/δ)/ log(s), where δ ≥ 1/s1/4, and n ≥ 4 log(s)
log(1/δ)

.

Fix the parameter T in the definition of PS,G,H,I to be n log(1/δ)
2 log(s)

−1 (we needed T < n/2 which

is true). Then there exists a fixing of s, g, h, i such that:

1. Ex,y∼µiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
≤ 10 log(1/δ).

2. Ex,y∼µiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ 10 log(1/δ).

3. D
(
PXiYi|W ||PXiYi

)
≤ 10 log(1/δ).

4. EPRs,g,h,i,Xi,Yi|WD
(
PAiBi|Xi,Yi,Rs,g,h,i,W ||PAiBi|Xi,Yi,Rs,g,h,i

)
≤ 10 log(1/δ).

Here µi denotes the distribution PXi,Yi|W .

Proof. Lemma 5.3.3 proves that

EPS,G,H,II(RS,G,H,I ;XI |YI ,W ) ≤ 4

n
H(1W )/Pr[W ] +

2(T + 1)

n
· log(s)

Similarly one can prove that

EPS,G,H,II(RS,G,H,I ;YI |XI ,W ) ≤ 4

n
H(1W )/Pr[W ] +

2(T + 1)

n
· log(s)

Since Pr[W ] ≤ 2−20, we have

H(1W ) = Pr[W ] log(1/Pr[W ]) + (1− Pr[W ]) log(1/(1− Pr[W ))

≤ Pr[W ] log(1/Pr[W ]) + log(1 + 2 · Pr[W ])

≤ Pr[W ] log(1/Pr[W ]) + 4 · Pr[W ]

≤ 1.2 · Pr[W ] log(1/Pr[W ])

The first inequality follows from 1
1−x ≤ 1 + 2x, for all 0 ≤ x ≤ 1/2. The second inequality is

true since log(1 + 2x) ≤ 4x, for all x ≥ 0. The third inequality follows from Pr[W ] ≤ 2−20.
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Now we have T = n log(1/δ)
2 log(s)

− 1 and 2(T+1)
n
· log(s) = log(1/δ). Also

4

n
H(1W )/Pr[W ] ≤ 4 · 1.2 · log(1/Pr[W ])

n

≤ 4 · 1.2 · log(1/δ)2

log(s)

≤ 1.2 log(1/δ)

Thus

Es,g,h,i∼PS,G,H,IEx,y∼µiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
=

EPS,G,H,II(RS,G,H,I ;YI |XI ,W ) ≤ 2.2 log(1/δ) (5.5)

Similarly

Es,g,h,i∼PS,G,H,IEx,y∼µiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ 2.2 log(1/δ) (5.6)

By Lemma 5.3.6, we get that

Ei∼PID
(
PXiYi|W ||PXiYi

)
≤ log(1/δ)2/ log(s) ≤ log(1/δ)/4 (5.7)

Also, by Lemma 5.3.1

EPS,G,H,II(AIBI ; 1W |XI , YI , RS,G,H,I) ≤ H(1W )/T (5.8)
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Note that

I(AiBi; 1W |Xi, Yi, Rs,g,h,i) ≥

EPXi,Yi,Rs,g,h,i Pr[W |Xi, Yi, Rs,g,h,i] ·D
(
PAiBi|Xi,Yi,Rs,g,h,i,W ||PAiBi|Xi,Yi,Rs,g,h,i

)
(5.9)

Combining (5.8) and (5.9), we get

H(1W )

T · Pr[W ]
≥

EPS,G,H,IEPXI,YI ,RS,G,H,I

(
Pr[W |XI , YI , RS,G,H,I ]

Pr[W ]

)
·D
(
PAIBI |XI ,YI ,RS,G,H,I ,W ||PAIBI |XI ,YI ,RS,G,H,I

)
= EPS,G,H,IEPXI,YI ,RS,G,H,I |WD

(
PAIBI |XI ,YI ,RS,G,H,I ,W ||PAIBI |XI ,YI ,RS,G,H,I

)
Now

H(1W )

T · Pr[W ]
≤ 1.2 · log(1/Pr[W ])

T

≤ 1.2 · n log(1/δ)2

log(s)
· 1
n log(1/δ)

2 log(s)
− 1

= 2.4 · log(1/δ)

1− 2 log(s)
n log(1/δ)

≤ 4.8 log(1/δ) (since n ≥ 4 log(s)

log(1/δ)
)

This gives:

Es,g,h,i∼PS,G,H,IEPRs,g,h,i,Xi,Yi|WD
(
PAiBi|Xi,Yi,Rs,g,h,i,W ||PAiBi|Xi,Yi,Rs,g,h,i

)
≤ 4.8 log(1/δ) (5.10)

Applying a Markov argument to (5.5), (5.6), (5.7) and (5.10) completes the proof.

Lemma 5.3.8. Let i satisfy the condition in Lemma 5.3.7 i.e. D (µi||µ) ≤ 10 log(1/δ), where
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µi is the distribution PXi,Yi|W and µ is the distribution PXi,Yi. Also suppose δ120 ≤ 1/2. Then

there exists a distribution νi s.t. νi ≤ 2 · µi and µ ≥ δ380 · νi.

Proof. Let B = {(x, y)|µi(x, y) ≥ µ(x, y)/δ260}. Then

µi(B) ≤ (10 log(1/δ) + 1)/(260 log(1/δ)) ≤ 1/2

(by Lemma 1.2.22 and δ120 ≤ 1/2). Now define the distribution νi as follows:

νi(x, y) =

 0 : (x, y) ∈ B
µi(x,y)

1−µi(B)
: (x, y) /∈ B

It is clear from the definition of νi that νi ≤ 2 · µi. Now, if (x, y) ∈ B, then clearly

µ(x, y) ≥ νi(x, y) = 0. If (x, y) /∈ B, then νi(x, y) ≤ 2·µi(x, y) ≤ 2· 1
δ260
·µ(x, y) ≤ µ(x, y)/δ380.

This completes the proof.

The next lemma is about breaking dependencies between Alice and Bob, which will be very

crucial in the proof of main theorem.

Lemma 5.3.9. Let G be a 2-prover 1-round game. Suppose (X1, Y1), .., (Xn, Yn) are inputs

for Gn and let f , g be a strategy for Gn. Let A1, . . . , An = f(X1, . . . , Xn) and B1, . . . , Bn =

g(Y1, . . . , Yn). Suppose G,H, Sa, Sb ⊂ [n] and i ∈ [n] be such that G ∪H = [n]\{i}. Then

PAi,Bi|XG=x̄,YH=ȳ,ASa=ā,BSb=b̄,Xi=x,Yi=y =

PAi|XG=x̄,YH=ȳ,ASa=ā,Xi=x ⊗ PBi|XG=x̄,YH=ȳ,BSb=b̄,Yi=y

if Pr[XG = x̄, YH = ȳ, ASa = ā, BSb = b̄, Xi = x, Yi = y] > 0.
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Proof. Note that

PAi,Bi|XG=x̄,YH=ȳ,ASa=ā,BSb=b̄,Xi=x,Yi=y(a, b) =

PAi|XG=x̄,YH=ȳ,ASa=ā,BSb=b̄,Xi=x,Yi=y(a) · PBi|XG=x̄,YH=ȳ,ASa=ā,BSb=b̄,Xi=x,Yi=y,Ai=a(b)

Lets first prove

PAi|XG=x̄,YH=ȳ,ASa=ā,BSb=b̄,Xi=x,Yi=y(a) =

PAi|XG=x̄,YH=ȳ,ASa=ā,Xi=x(a)

The other part,

PBi|XG=x̄,YH=ȳ,ASa=ā,BSb=b̄,Xi=x,Yi=y,Ai=a(b) =

PBi|XG=x̄,YH=ȳ,BSb=b̄,Yi=y(b)

would follow similarly with the set Sa changed to Sa ∪ {i}.

Let X a be the set of x′1, . . . , x
′
n s.t. f(x′1, . . . , x

′
n) = a, (x′j)j∈G = x̄ and x′i = xi i.e. set of all

completions of x̄, xi which evaluate to a under the strategy f . Also let Q be the distribution

of X1, . . . , Xn conditioned on XG = x̄, YH = ȳ, ASa = ā, BSb = b̄, Xi = x, Yi = y. This is the

same as distribution of X1, . . . , Xn conditioned on XG = x̄, YH = ȳ, ASa = ā, Xi = x, since

[n]\(G ∪ {i}) ⊆ H. Denote this distribution by Q′. Then

PAi|XG=x̄,YH=ȳ,ASa=ā,BSb=b̄,Xi=x,Yi=y(a) = Q(X a)

= Q′(X a)

= PAi|XG=x̄,YH=ȳ,ASa=ā,Xi=x(a)
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Remark 5.3.10. A weaker statement is:

PAi,Bi|XG=x̄,YH=ȳ,ASa=ā,BSb=b̄,Xi=x,Yi=y =

PAi|XG=x̄,YH=ȳ,ASa=ā,BSb=b̄,Xi=x ⊗ PBi|XG=x̄,YH=ȳ,ASa=ā,BSb=b̄,Yi=y

which is all we will need for the proof of Lemma 5.3.11.

Lemma 5.3.11. If 2−20 ≥ Pr[W ] ≥ δn log(1/δ)/ log(s), where δ ≥ 1/s1/4, δ120 ≤ 1/2 and

n ≥ 4 log(s)
log(1/δ)

, then there exists a strategy for winning a single game w.p. > δ2000.

Proof. Consider the strategy described in Protocol 5 for a single copy of the game. We prove

that if Pr[W ] ≥ δn log(1/δ)/ log(s), then the strategy wins w.p. ≥ δ1940. Let Q(x, y) denote

the probability of winning when Alice and Bob get x and y, respectively. Note that the

probability of winning is Ex,y∼µQ(x, y). By Lemma 5.3.8, there exists a distribution νi s.t.

νi ≤ 2 · µi and µ ≥ δ380 · νi. We will prove that Ex,y∼νiQ(x, y) ≥ δ1560, which will imply that

Ex,y∼µQ(x, y) ≥ δ1940.

Inputs : Alice gets x, Bob get y, (x, y) ∼ µ.

1. Let s, g, h, i be as in Lemma 5.3.7.

2. Alice knows the distribution PRs,g,h,i|Xi=x,W and Bob knows the distribution
PRs,g,h,i|Yi=y,W . They use the sampling procedure in Lemma 5.3.5 to sample from
PRs,g,h,i|Xi=x,Yi=y,W . Suppose Alice samples r1 and Bob samples r2.

3. Alice outputs according to the distribution PAi|Xi=x,Rs,g,h,i=r1 and Bob outputs accord-
ing the distribution PBi|Yi=y,Rs,g,h,i=r2 .

Protocol 5: Strategy for a single game
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Lemma 5.3.7 together with νi ≤ 2 · µi implies that (the lemma applies since δ ≥ 1/s1/4):

Ex,y∼νiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
≤ 20 log(1/δ)

Ex,y∼νiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ 20 log(1/δ))

Ex,y∼νiEPRs,g,h,i|Xi=x,Yi=y|WD
(
PAiBi|Xi=x,Yi=y,Rs,g,h,i,W ||PAiBi|Xi=x,Yi=y,Rs,g,h,i

)
≤ 20 log(1/δ))

Let S ⊂ X × Y be the set of x, y s.t.

D
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
≤ 120 log(1/δ)

D
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ 120 log(1/δ)

EPRs,g,h,i|Xi=x,Yi=y|WD
(
PAiBi|Xi=x,Yi=y,Rs,g,h,i,W ||PAiBi|Xi=x,Yi=y,Rs,g,h,i

)
≤ 120 log(1/δ)

Note that νi(S) ≥ 1/2. Fix a pair x, y ∈ S. We will prove that Q(x, y) ≥ δ1440, which

will imply that Ex,y∼νiQ(x, y) ≥ δ1560 (since 1/2 ≥ δ120). Applying Lemma 5.3.5 with

η = δ120 (note that η ≤ 1/2), we get that there exists an event E with Pr[E] ≥ δ1200,

Pr[r1 = r2|E] = 1, and the distribution of r1|E is bounded by 2 · PRs,g,h,i|Xi=x,Yi=y,W . This

implies that:

Er∼r1|ED
(
PAiBi|Xi=x,Yi=y,Rs,g,h,i=r,W ||PAiBi|Xi=x,Yi=y,Rs,g,h,i=r

)
≤ 240 log(1/δ) (5.11)

Let Gx,y = {(a, b)|V (x, y, a, b) = 1}, that is the set of accepting answers when the questions

are x, y. Note that PAiBi|Xi=x,Yi=y,Rs,g,h,i=r,W (Gx,y) = 1. This implies (by Fact 1.2.23):

PAiBi|Xi=x,Yi=y,Rs,g,h,i=r(Gx,y) ≥ 2
−D

(
PAiBi|Xi=x,Yi=y,Rs,g,h,i=r,W ||PAiBi|Xi=x,Yi=y,Rs,g,h,i=r

)
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which along with (5.11) and convexity of the function 2−x implies that:

Er∼r1|EPAiBi|Xi=x,Yi=y,Rs,g,h,i=r(Gx,y) ≥ δ240

Let QE(x, y) be the probability of winning conditioned on event E. A very important

observation is that:

QE(x, y) = Er∼r1|EPAiBi|Xi=x,Yi=y,Rs,g,h,i=r(Gx,y)

This is true because PAiBi|Xi=x,Yi=y,Rs,g,h,i=r = PAi|Xi=x,Rs,g,h,i=r ⊗ PBi|Yi=Y,Rs,g,h,i=r (Lemma

5.3.9, it applies since Pr[Xi = x, Yi = y,Rs,g,h,i = r] > 0), and Pr[r1 = r2|E] = 1. Thus

QE(x, y) ≥ δ240, and hence Q(x, y) ≥ Pr[E] ·QE(x, y) ≥ δ1440. Note that

PAiBi|Xi=x,Yi=y,Rs,g,h,i=r = PAi|Xi=x,Rs,g,h,i=r ⊗ PBi|Yi=Y,Rs,g,h,i=r

is very crucial for us, otherwise the whole proof breaks down. It is crucial to break the

dependencies between Alice and Bob and all the weird conditionings were needed so that

this property is true.

Theorem 5.3.12. Let the probability of winning of single game be β, where β ≤ 1/220 and

β ≥ 1/s. Then probability of winning n copies of the game ≤ βn log(1/β)/(2000)2 log(s). Here

n ≥ 4 log(s)
log(1/δ)

.

Proof. Suppose that Pr[W ] ≥ βn log(1/β)/(2000)2 log(s). Then apply Lemma 5.3.11 with δ =

β1/2000. Since β ≤ 1/220, we get δ120 ≤ 1/2 and Pr[W ] ≤ β ≤ 2−20. Also since β ≥ 1/s,

we have δ ≥ 1/s1/4. Note that βn log(1/β)/(2000)2 log(s) = δn log(1/δ)/ log(s). Hence there exists a

strategy for winning a single game w.p. > δ2000 = β, a contradiction.
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5.4 Projection games

Theorem 5.4.1. Suppose G is a projection game and val(G) ≤ β, for β sufficiently small.

Then val(Gn) ≤ βΩ(n).

We recall the definition of a projection game. A game is called a projection game if for each

x, y, a, there exists a unique b s.t. (x, y, a, b) ∈ V i.e. the provers win on the tuple (x, y, a, b).

We will denote by X1, . . . , Xn and Y1, . . . , Yn inputs to Alice and Bob respectively in the n

copy game. If f, g is a strategy for the game, then we’ll denote by A1, . . . , An = f(X1, . . . , Xn)

and B1, . . . , Bn = g(Y1, . . . , Yn) the answers of Alice and Bob respectively. Let W be the

event that they win the game on all coordinates and let 1W be the indicator random variable

for it.

We will use a slightly different proof strategy. As before, let S,G,H be random subsets of

[n] distributed as follows: Let sh and sg be random numbers from {3n/4 + 1, . . . , n}. Let

σ : [n] → [n] be a uniformly random permutation. Set H = σ([sh]), G = σ({n − sg +

1, . . . , n}). Let I be a uniformly random element of G ∩ H. Let l be a random number

from [T ], where T = n/4. Let S be a uniformly random subset of G ∩H\{I} of size l. Let

LS,G,H,I denote the random variable XG\{I}YH\{I}BS. The upshot is that we can afford

a larger T (= n/4) here, whereas in the general games proof, we could only afford

T = Θ(n log(1/β)/ log(s)).

Lemma 5.4.2. EPS,G,H,II(AI ;YI |XI , LS,G,H,I ,W ) ≤ 4 · log(1/Pr[W ])
n

Proof. As in the proof of Lemma 5.3.3, the distribution PS,G,H,I can also be described as

follows: Let S,G be distributed as in PS,G,H,I . Let κS,G be a random permutation conditioned

on κS,G([|S|]) = S and κS,G([|G|]) = G. Choose a random number l from {|S|+ 1, . . . , |S|+
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n/4}. Set I = κS,G(l) and H = S ∪ κS,G({l, . . . , n}).

EPS,G,H,II(AI ;YI |XI , LS,G,H,I ,W )

= EPS,G,H,II(AI ;YI |XG, YH\{I}, BS,W )

≤ EPS,G,H,II(X[n]\G;YI |XG, YH\{I}, BS,W )

= ES,GEκS,GEl∈R{|S|+1,...,|S|+n/4}I(X[n]\G;YκS,G(l)|YκS,G({l+1,...,n}), YS, XG, BS,W )

=
4

n
· ES,GEκS,G

|S|+n/4∑
l=|S|+1

I(X[n]\G;YκS,G(l)|YκS,G({l+1,...,n}), YS, XG, BS,W )

=
4

n
· ES,GEκS,GI(X[n]\G;YκS,G({|S|+1,...,|S|+n/4})|YκS,G({|S|+n/4+1,...,n}), YS, XG, BS,W )

≤ 4 · log(1/Pr[W ])

n

The first inequality is true since X[n] determines Ai. The last inequality follows from Fact

1.2.21 and that I(X[n]\g;Yκs,g({|s|+1,...,|s|+n/4})|Yκs,g({|s|+n/4+1,...,n}), Ys, Xg, Bs) = 0. This is be-

cause |g| > 3n/4 > T +n/4 ≥ |s|+n/4, therefore κs,g({|s|+1, . . . , |s|+n/4}) ⊆ g and hence

([n]\g) ⊆ κs,g({|s| + n/4 + 1, . . . , n}). Note that conditioning on Bs creates dependencies

between Y1, . . . , Yn, however conditioned on Y[n]\g, there is no dependency between X[n]\g

and other Yj’s.

Lemma 5.4.3. EPS,G,H,II(LS,G,H,I ;YI |XI ,W ) ≤ 8 · log(1/Pr[W ])
n

Proof. LS,G,H,I consists of two parts: XG\{I}YH\{I} and BS. We know from the proof of

Lemma 5.3.3 that

EPS,G,H,II(YI ;XG\{I}YH\{I}|XI ,W ) ≤ 4

n
· log(1/Pr[W ]) (5.12)
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So we care about:

EPS,G,H,II(BS;YI |XG, YH\{I},W ) ≤ EPS,G,H,II(AS;YI |XG, YH\I ,W )

≤ EPS,G,H,II(X[n]\G;YI |XG, YH\I ,W ) (5.13)

The first inequality is extremely important and this is where we use the projection prop-

erty. The inequality holds because conditioned on W , Xs, Ys and As determine Bs. Note

that we use the fact that s ⊆ (g∩h)\{i}. The second inequality is true since X[n] determines

As. Now by an averaging argument similar to the proof of Lemma 5.4.2, we have that:

EPS,G,H,II(X[n]\G;YI |XG, YH\I ,W ) ≤ 4 · log(1/Pr[W ])

n
(5.14)

The only difference from the proof of Lemma 5.4.2 is that we will use

I(X[n]\g;Yκs,g({|s|+1,...,|s|+n/4})|Yκs,g({|s|+n/4+1,...,n}), Ys, Xg) = 0

instead of

I(X[n]\g;Yκs,g({|s|+1,...,|s|+n/4})|Yκs,g({|s|+n/4+1,...,n}), Ys, Xg, Bs) = 0.

Combining equations (5.12), (5.13) and (5.14) proves the lemma.

Lemma 5.4.4. EPS,G,H,II(LS,G,H,I ;XI |YI ,W ) ≤ 8 · log(1/Pr[W ])
n

Proof. The proof of Lemma 5.3.3 gives:

EPS,G,H,II(XG\{I}YH\{I};XI |YI ,W ) ≤ 4 · log(1/Pr[W ])

n
(5.15)
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Also

EPS,G,H,II(BS;XI |XG\I , YH ,W ) ≤ EPS,G,H,II(Y[n]\H ;XI |XG\I , YH ,W )

≤ 4 · log(1/Pr[W ])

n
(5.16)

The first inequality holds because Y[n] determines Bs. The second inequality is similar to the

proof of Lemma 5.4.3. Combining equations (5.15) and (5.16) proves the lemma.

Lemma 5.4.5. EPS,G,H,II(BI ; 1W |XI , YI , LS,G,H,I , AI) ≤ H(1W )/T = 4H(1W )
n

Proof. Since I(Bi;X[n]\g|Xi, Yi, Ls,g,h,i, Ai) = 0, we have by Fact 1.2.14 that:

I(Bi; 1W |Xi, Yi, Ls,g,h,i, Ai) ≤ I(Bi; 1W |Xi, Yi, Ls,g,h,i, Ai, X[n]\g)

≤ I(Bi; 1W |Xi, Yi, Ls,g,h,i, X[n]\g)

The second inequality follows from the fact that Ai is a deterministic function of X[n]. Also

Xi, Yi, Ls,g,h,i, X[n]\g = X[n], Yh, Bs

Hence

EPS,G,H,II(BI ; 1W |XI , YI , LS,G,H,I , AI) ≤ EPS,G,H,II(BI ; 1W |X[n], YH , BS) (5.17)

As in the proof of Lemma 5.3.1, the distribution PS,G,H,I can also be described as follows:

G,H be distributed as in PS,G,H,I . Let κ be a random permutation such that κ({l1, . . . , lm}) =

{l1, . . . , lm}, and t ∈R [T ]. Set I = κ(lt) and S = κ({lt+1, . . . , lT+1}). Here G ∩ H =
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{l1, . . . , lm}. Now

EPS,G,H,II(BI ; 1W |X[n], YH , BS) = EPG,HEκEt∈R[T ]I(Bκ(lt); 1W |X[n], YH , Bκ({lt+1,...,lT+1}))

=
1

T
· EPG,HEκ

T∑
t=1

I(Bκ(lt); 1W |X[n], YH , Bκ({lt+1,...,lT+1}))

=
1

T
· EPG,HEκI(Bκ({l1,...,lT }); 1W |X[n], YH , Bκ(lT+1))

≤ H(1W )

T
(5.18)

Combining (5.17) and (5.18) completes the proof of the lemma.

Lemma 5.4.6. Let G be a projection game. Suppose f, g is a strategy for Gn and let W be

the event of winning in all coordinates. If 2−20 ≥ Pr[W ] ≥ δn, then there exists a fixing of

s, g, h, i such that:

1. Ex,y∼PXi,Yi|WD
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Yi=y,W

)
≤ O(log(1/δ))

2. Ex,y∼PXi,Yi|WD
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Xi=x,W

)
≤ O(log(1/δ))

3. D(PXi,Yi|W ||PXi,Yi) ≤ O(log(1/δ))

4. Ex,y∼PXi,Yi|WEr∼Ls,g,h,i|Xi=x,Yi=y,WD
(
PAi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W

)
≤ O(log(1/δ))

5. Ex,y∼PXi,Yi|WEr∼Ls,g,h,i|Xi=x,Yi=y,W

D
(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r

)
≤ O(log(1/δ))

Proof. The proof is similar to the proof of Lemma 5.3.7. The proof is a Markov bound

applied to the expected versions (expectation over PS,G,H,I) of the statements. The expected

versions of 1 and 2 follow from Lemma 5.4.4 and 5.4.3 respectively, as in Lemma 5.3.7. The

expected version of 3 is Lemma 5.3.6. The expected version of 4 follows from Lemma 5.4.2.
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For the expected version of 5, note that:

Es,g,h,i∼PS,G,H,IEx,y∼PXi,Yi|WEr∼Ls,g,h,i|Xi=x,Yi=y,W

D
(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r

)
= Es,g,h,i∼PS,G,H,IEx,y∼PXi,Yi|WEr∼Ls,g,h,i|Xi=x,Yi=y,WD

(
PAi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W

)
+ Es,g,h,i∼PS,G,H,IEx,y∼PXi,Yi|WEr∼Ls,g,h,i|Xi=x,Yi=y,WEa∼PAi|Xi=x,Yi=y,Ls,g,h,i=r,W

D
(
PBi|Ai=a,Xi=x,Yi=y,Ls,g,h,i=r,W ||PBi|Yi=y,Ls,g,h,i=r

)
≤ O(log(1/δ)) +O(log(1/δ))

= O(log(1/δ))

The first inequality is expected version of 4. The second inequality we prove below, which

will complete the proof of the lemma. We want to prove that:

Es,g,h,i∼PS,G,H,IEPXi,Yi,Ls,g,h,i,Ai|WD
(
PBi|Xi,Yi,Ls,g,h,i,Ai,W ||PBi|Yi,Ls,g,h,i

)
≤ O(log(1/δ))

which is the same as

Es,g,h,i∼PS,G,H,IEPXi,Yi,Ls,g,h,i,Ai|WD
(
PBi|Xi,Yi,Ls,g,h,i,Ai,W ||PBi|Xi,Yi,Ls,g,h,i,Ai

)
≤ O(log(1/δ))

since by Lemma 5.3.9, PBi|Xi,Yi,Ls,g,h,i,Ai is the same as PBi|Yi,Ls,g,h,i . Now note that:

4H(1W )

nPr[W ]
≥ Es,g,h,i∼PS,G,H,I

I(Bi; 1W |Xi, Yi, Ls,g,h,i, Ai)

Pr[W ]
≥

Es,g,h,i∼PS,G,H,IEPXi,Yi,Ls,g,h,i,Ai
Pr[W |Xi, Yi, Ls,g,h,i, Ai]

Pr[W ]
·D
(
PBi|Xi,Yi,Ls,g,h,i,Ai,W ||PBi|Xi,Yi,Ls,g,h,i,Ai

)
= Es,g,h,i∼PS,G,H,IEPXi,Yi,Ls,g,h,i,Ai|WD

(
PBi|Xi,Yi,Ls,g,h,i,Ai,W ||PBi|Xi,Yi,Ls,g,h,i,Ai

)
(5.19)

The first inequality is Lemma 5.4.5. The second inequality follows by writing mutual infor-
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mation as an expected divergence. Now since Pr[W ] ≤ 2−20, 4H(1W )
nPr[W ]

≤ O
(

log(1/Pr[W ])
n

)
≤

O(log(1/δ)), which completes the proof.

Lemma 5.4.7. Let G be a projection game. Suppose val(Gn) ≥ δn, for δ sufficiently small,

then val(G) ≥ δO(1).

Proof. The proof is very similar to proof of Lemma 5.3.11. We use the strategy for Gn to

obtain a strategy for G. Suppose X1, . . . , Xn and Y1, . . . , Yn be inputs to Alice and Bob in Gn

and A1, . . . , An and B1, . . . , Bn be their answers. W be the event of winning on all copies.

Consider the strategy defined in Protocol 6. Let Q(x, y) denote the probability of winning

when Alice and Bob get x and y, respectively. The probability of winning is Ex,y∼µQ(x, y).

Let µi denote the distribution PXi,Yi|W . Since by Lemma 5.4.6, D(µi||µ) ≤ O(log(1/δ)), we

get by Lemma 5.3.8, there exists a distribution νi s.t. νi ≤ 2 · µi and µ ≥ δO(1) · νi. We’ll

prove that Ex,y∼νiQ(x, y) ≥ δO(1), which will imply that Ex,y∼µQ(x, y) ≥ δO(1).

Inputs : Alice gets x, Bob get y, (x, y) ∼ µ.

1. Let s, g, h, i be as in Lemma 5.4.6.

2. Alice knows the distribution PLs,g,h,i|Xi=x,W and Bob knows the distribution
PLs,g,h,i|Yi=y,W . They use the sampling procedure in Lemma 5.3.5 to sample from
PLs,g,h,i|Xi=x,Yi=y,W . Suppose Alice samples r1 and Bob samples r2.

3. Alice outputs according to the distribution PAi|Xi=x,Ls,g,h,i=r1,W and Bob outputs ac-
cording the distribution PBi|Yi=y,Ls,g,h,i=r2 .

Protocol 6: Strategy for a single game: Projection case

Lemma 5.4.6 together with νi ≤ 2 · µi implies that:

Ex,y∼νiD
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Yi=y,W

)
≤ O(log(1/δ))

Ex,y∼νiD
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Xi=x,W

)
≤ O(log(1/δ))

Ex,y∼νiEr∼Ls,g,h,i|Xi=x,Yi=y,WD
(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r

)
≤ O(log(1/δ))
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Let S ⊂ X × Y be the set of x, y s.t.

D
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Yi=y,W

)
≤ 6 ·O(log(1/δ)) = O(log(1/δ))

D
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Xi=x,W

)
≤ 6 ·O(log(1/δ)) = O(log(1/δ))

Er∼Ls,g,h,i|Xi=x,Yi=y,WD
(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r

)
≤ 6 ·O(log(1/δ)) = O(log(1/δ))

Then νi(S) ≥ 1/2. Fix a pair x, y ∈ S. We will prove that Q(x, y) ≥ δO(1), which will

imply that Ex,y∼νiQ(x, y) ≥ δO(1), for δ sufficiently small. Applying Lemma 5.3.5 with

η = δO(1) (note that η ≤ 1/2 for δ sufficiently small), we get that there exists an event

E with Pr[E] ≥ δO(1), Pr[r1 = r2|E] = 1, and the distribution of r1|E is bounded by

2 · PLs,g,h,i|Xi=x,Yi=y,W . This implies that:

Er∼r1|ED
(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r

)
≤ O(log(1/δ))

(5.20)

Let Gx,y = {(a, b)|V (x, y, a, b) = 1}, that is the set of accepting answers when the questions

are x, y. Note that PAiBi|Xi=x,Yi=y,Ls,g,h,i=r,W (Gx,y) = 1. This implies (by Fact 1.2.23):

PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r(Gx,y)

≥ 2
−D

(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W⊗PBi|Yi=y,Ls,g,h,i=r

)

which along with (5.20) and convexity of the function 2−x implies that:

Er∼r1|EPAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r(Gx,y) ≥ δO(1) (5.21)

LetQE(x, y) be the probability of winning conditioned on event E. Then by (5.21), QE(x, y) ≥
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δO(1), which implies Q(x, y) ≥ Pr[E] ·QE(x, y) ≥ δO(1).

Proof. (Of theorem 5.4.1) Follows from Lemma 5.4.7.

5.5 Unique games

For unique games, we can obtain a simpler proof for the following theorem:

Theorem 5.5.1. Let G be a unique game. Then if val(G) = β, then for β sufficiently small,

val(Gn) ≤ βΩ(n).

The idea is the same as in the proof of general games, but we can afford to sample

Ω(n) answers. Let S,G,H be random subsets of [n] distributed as follows: Let sh and sg

be random numbers from {3n/4 + 1, . . . , n}. Let σ : [n] → [n] be a uniformly random

permutation. Set H = σ([sh]), G = σ({n − sg + 1, . . . , n}). Let I be a uniformly random

element of G ∩H. Let l be a random number from [T ], where T < n/2 is a parameter. Let

S be a uniformly random subset of G ∩ H\{I} of size l. Let RS,G,H,I denote the random

variable XG\{I}YH\{I}ASBS. Here we will choose T = n/4. Lemma 5.3.1 gives us:

EPS,G,H,II(AIBI ; 1W |XIYIRS,G,H,I) ≤ H(1W )/T = O(Pr[W ] · log(1/β))

The other term we want to analyze is from Lemma 5.3.3: EPS,G,H,II(RS,G,H,I ;XI |YI ,W ).

Here the analysis slightly deviates from the proof of general games. We use the following

property of unique games: conditioned on W , Xi, Yi, Ai fixes Bi and similarly Xi, Yi, Bi

fixes Ai. This is the only place where we will use the unique game property. It affects the

analysis of the following term in the proof of Lemma 5.3.3 (rest of proof remains the same).
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EPS,G,H,II(ASBS;XI |XG\{I}YH\{I}YI ,W )

= EPS,G,H,II(BS;XI |XG\{I}YH\{I}YI ,W ) + EPS,G,H,II(AS;XI |XG\{I}YH\{I}YI , BS,W )

= EPS,G,H,II(BS;XI |XG\{I}YH\{I}YI ,W )

≤ EPS,G,H,II(Y[n]\H ;XI |XG\{I}YH\{I}YI ,W )

≤ O

(
log(1/Pr[W ])

n

)
≤ O(log(1/β))

The second inequality follows because S ⊂ G\{I} and S ⊂ H\{I}, hence

H(AS|XG\{I}YH\{I}YI , BS,W ) = 0

by the observation about unique games. The rest of the steps are similar to the proofs in

the projection games section. This gives us:

EPS,G,H,II(RS,G,H,I ;XI |YI ,W ) ≤ O(log(1/β))

and

EPS,G,H,II(RS,G,H,I ;YI |XI ,W ) ≤ O(log(1/β))

from where we can finish the proof similar to the one for general games.
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5.6 Tight lower bound

Theorem 5.6.1. There is a family of games Gk parametrized by k with val(Gk) = βk → 0

s.t. val(Gnk ) ≥ β
O(n log(1/βk)/ log(sk))
k , where log(sk) is the answer size of the game Gk with

log(1/βk)
log(sk)

→ 0.

We show that different parameters in Feige and Verbitsky’s counterexample [FV02] give

a tight lower matching theorem 5.2.1. We describe our example below (based on [FV02], we

just tweak the parameters):

• There is a parameter k and another parameter r = k1/3.

• There is a bipartite graph G where each side has kr vertices, the properties needed of

this bipartite graph will be described later.

• Alice and Bob get uniformly distributed (x, y) ∈R [k]× [k].

• Alice needs to output (sa, la) ∈ [k]r × [r] and Bob needs to output (sb, lb) ∈ [k]r × [r].

They win the game if la = lb, sa(la) = x, sb(lb) = y and there is an edge between sa and

sb in G. The answer length of the game log(s) = 2(r log(k) + log(r)) = Θ(k1/3 log(k)).

Lets call this game Gk.

• The properties we need from the graph G are the following: (1) It has at least k2r/2k1/5

edges. (2) Every k by k vertex induced subgraph of G has at most k2/k1/10 edges.

We’ll prove the existence of such a graph G later. First lets use it to obtain a tight lower

bound.

Lemma 5.6.2. val(Gnk ) ≥
(

1
2k1/5

)n/r
Proof. Divide the n copies into chunk of size r each. We’ll give a strategy which is inde-

pendent over different chunks and wins w.p. ≥ 1
2k1/5

in each chunk and this will prove the
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lemma. Suppose in a chunk Alice gets x̄ = x1, . . . , xr and Bob gets ȳ = y1, . . . , yr. Then

Alice outputs (x̄, 1), . . . , (x̄, r) and Bob outputs (ȳ, 1), . . . , (ȳ, r). The players win the all the

copies in the chunk if there is an edge between x̄ and ȳ in G which happens w.p. ≥ 1
2k1/5

,

since this is the fraction of edges in the graph G.

Lemma 5.6.3. val(Gk) ≤ 1/k1/20

Proof. Fix a strategy f, g for Gk. We define a k by k bipartite graph G′. There is an edge

between x and y if the players win under the strategy f, g on inputs x and y. Note that

val(Gk) = # of edges in G′

k2
. Suppose f(x) = (sa, la) and g(y) = (sb, lb). There is an edge between

x and y iff la = lb, sa(la) = x, sb(lb) = y and there is an edge between sa and sb in G. Now

look at a connected component of G′ and the answer (s, l) corresponding to a vertex v in the

connected component. l should be the same for all vertices in the component, and also it

should hold that s(l) = v for all vertices v. Because of this the answer strings corresponding

to vertices on Alice’s side in the component are all distinct and similarly for Bob’s side.

Also # of edges in the component ≤ k2/k1/10 because of the property of G. Thus G′ has

the property that every connected component has at most k2/k1/10 edges. Now using the

following claim, we get that val(Gk) = # of edges in G′

k2
≤ 1/k1/20

Claim 5.6.4. Let G′ be a k by k bipartite graph with the property that every connected

component has at most δ · k2 edges. Then G′ has at most
√
δ · k2 edges.

Proof. (Of claim) Let c1, . . . , ct be the number of vertices in the components. Then
∑t

i=1 ci =

2k. In each component, the number of edges ≤ min{c2
i /4, δ · k2}, since in a bipartite graph

with c vertices, number of edges ≤ c2/4. Then number of edges in the graph:

≤
t∑
i=1

min{c2
i /4, δ · k2} ≤

t∑
i=1

√
(c2
i /4) · δ · k2

=
√
δ ·

(
t∑
i=1

ci

)
· k/2 =

√
δ · k2
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If val(Gk) = β, lemma 5.6.2 and 5.6.3 give

val(Gnk ) ≥ βΘ(n/r) = βΘ(n log(k)/ log(s)) = βΘ(n log(1/β)/ log(s))

Now let us prove that a graph G with required properties exists. We want it to have at least

k2r/2k1/5 edges and every k by k induced subgraph to have at most k2/k1/10 edges. Pick a

random graph with each edge included w.p. 1/k1/5. Then it has at least k2r/2k1/5 edges w.p.

1− o(1). The probability that some k by k induced subgraph has at least k2/k1/10 edges is:

≤
(
kr

k

)2

·
(

k2

k2/k1/10

)
·
(

1

k1/5

)k19/10
≤ k2rk · 2H(1/k1/10)·k2

2k19/10 log(k)/5

≤ k2k4/3 · 2k19/10 log(k)/8

2k19/10 log(k)/5
= o(1)

The third inequality follows from the fact that for large enough k, H(1/k1/10) ≤ log(k)

8k1/10
. Since

both the bad events occur w.p. o(1), the required graph exists.

5.7 Games with value close to 1

We provide an alternate proof for the parallel repetition theorem of Holenstein [Hol07].

Theorem 5.7.1 ([Hol07]). Let G be a game with val(G) = 1− ε and let log(s) be the answer

size of the game. Then val(Gn) ≤ (1− ε3)Ω(n/ log(s)), if n ≥ log(s)/ε3 and ε <= 1/2.

The proof techniques for the small value regime readily extend to the case when val(G) =

1 − ε. The only difference is that we have to replace our sampling Lemma 5.3.5 with the
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correlated sampling lemma of Holenstein [Hol07]. The following variant of the lemma is

proven in [Rao08].

Lemma 5.7.2. Suppose Alice knows a distribution P1 and Bob knows a distribution P2 such

that ||P − P1||1 ≤ ε and ||P − P2||1 ≤ ε. Then there is a sampling procedure s.t.

1. Suppose Alice outputs p1 and Bob outputs p2. There exists an event E with Pr[E] ≥

1−O(ε) s.t. Pr[p1 = p2|E] = 1.

2. The distribution of p1|E is P .

Let us provide a rough sketch of our proof strategy for the high value case. Suppose W

be the event of winning in all coordinates. We want to show that Pr[W ] ≤ 2−Ω(ε3n/ log(s)).

Assume on the contrary. As in the proof of the small value case, let S,G,H be random subsets

of [n] distributed as follows: Let sh and sg be random numbers from {3n/4+1, . . . , n}. Let σ :

[n]→ [n] be a uniformly random permutation. Set H = σ([sh]), G = σ({n− sg + 1, . . . , n}).

Let I be a uniformly random element of G ∩H. Let l be a random number from [T ], where

T < n/2 is a parameter. Let S be a uniformly random subset of G ∩ H\{I} of size l. Let

RS,G,H,I denote the random variable XG\{I}YH\{I}ASBS. We’ll choose T = ε2n/ log(s) here.

Recall that the proof of Lemma 5.3.7 gives us:

EPS,G,H,IEPXI,YI ,RS,G,H,I |WD
(
PAIBI |XI ,YI ,RS,G,H,I ,W ||PAIBI |XI ,YI ,RS,G,H,I

)
≤ H(1W )

T · Pr[W ]

≤ O(ε) +
1− Pr[W ]

T · Pr[W ]
· log

(
1

1− Pr[W ]

)
≤ O(ε) +O(1/T )

≤ O(ε)

The last inequality is true for n ≥ log(s)/ε3. Similarly following other steps of Lemma 5.3.7,
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we will get the following analogue to it: there exists a fixing of s, g, h, i s.t.

Ex,y∼µiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
≤ O(ε2) (5.22)

Ex,y∼µiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ O(ε2) (5.23)

D
(
PXiYi|W ||PXiYi

)
≤ O(ε2) (5.24)

EPRs,g,h,i,Xi,Yi|WD
(
PAiBi|Xi,Yi,Rs,g,h,i,W ||PAiBi|Xi,Yi,Rs,g,h,i

)
≤ O(ε) (5.25)

Here µi denotes the distribution PXi,Yi|W . Then consider the strategy described in Protocol

7 for a single copy. We will prove that it wins w.p. 1−O(ε) w.r.t. the distribution µ, which

will lead to a contradiction (after scaling ε appropriately).

Inputs : Alice gets x, Bob get y, (x, y) ∼ µ.

1. Let s, g, h, i be as described above.

2. Alice knows the distribution PRs,g,h,i|Xi=x,W and Bob knows the distribution
PRs,g,h,i|Yi=y,W . They use the sampling procedure in Lemma 5.7.2 to sample from
PRs,g,h,i|Xi=x,Yi=y,W . Suppose Alice samples r1 and Bob samples r2.

3. Alice outputs according to the distribution PAi|Xi=x,Rs,g,h,i=r1 and Bob outputs accord-
ing the distribution PBi|Yi=y,Rs,g,h,i=r2 .

Protocol 7: Strategy for a single game: high value case

By equation (5.24) and Pinsker’s inequality, we have that: ||µi − µ||1 ≤ O(ε). Thus it is

enough to say that the strategy in Protocol 7 wins w.p. 1−O(ε) w.r.t. µi. Suppose

px,y := ||PRs,g,h,i|Xi=x,Yi=y,W − PRs,g,h,i|Xi=x,W ||1

lx,y := ||PRs,g,h,i|Xi=x,Yi=y,W − PRs,g,h,i|Yi=y,W ||1

Dx,y := EPRs,g,h,i|Xi=x,Yi=y,WD
(
PAiBi|Xi=x,Yi=y,Rs,g,h,i,W ||PAiBi|Xi=x,Yi=y,Rs,g,h,i

)
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By equation (5.22), Pinsker’s inequality and convexity of the function f(z) = z2, we get

Ex,y∼µipx,y ≤ O(ε). Similarly, Ex,y∼µilx,y ≤ O(ε). Also equation (5.25) gives us that

Ex,y∼µiDx,y ≤ O(ε). Now fix a particular x, y and look at the probability of winning Q(x, y).

The claim is that

Q(x, y) ≥ 1−O(lx,y + px,y +Dx,y) (5.26)

This is enough to prove that Ex,y∼µiQ(x, y) ≥ 1 − O(ε), which is what we need. So let

us prove (5.26). By Lemma 5.7.2, there exists an event Ex,y s.t. Pr[r1 = r2|Ex,y] = 1,

r1|E ∼ PRs,g,h,i|Xi=x,Yi=y,W and Pr[Ex,y] ≥ 1−O(lx,y + px,y). Let QE(x, y) be the probability

of winning conditioned on Ex,y. By Fact 1.2.23 and convexity of the function f(z) = 2−z,

we have that:

QE(x, y) ≥ 2−Dx,y ≥ 1−O(Dx,y)

Then

Q(x, y) ≥ Pr[Ex,y] ·QE(x, y) ≥ (1−O(lx,y + px,y)) · (1−O(Dx,y)) ≥ 1−O(lx,y + px,y +Dx,y)

This completes the proof sketch.

Remark 5.7.3. The proofs for unique and projection games for the small value case extend

similarly to the high value case.

Remark 5.7.4. A remarkable feature of our proof for the high value case (a property that

seems essential in the small value regime) is that we don’t need the players to sample

PRs,g,h,i|Xi=x,Yi=y,W conditioned on an event E of probability 1 − O(ε). It would have suf-

ficed for our purposes to samples from a distribution which is multiplicatively bounded by

PRs,g,h,i|Xi=x,Yi=y,W (say by a factor of 2) conditioned on E. However we don’t know yet how
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to exploit it and it would be interesting if this can lead to improvements for parallel repetition

for general and free games in the value-close-to-1 regime. Note that an improved proof has

to work around the tightness of the bound for unique and projection games implied by Raz’s

counterexample [Raz08].
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Chapter 6

Bounded-round Quantum

Communication Complexity Lower

Bounds for Disjointness

The results in this chapter are based on joint work with Mark Braverman, Young Kun Ko,

Jieming Mao and Dave Touchette [BGK+15].

6.1 Introduction

We prove near-optimal bounds on the bounded-round quantum communication complexity

of disjointness. Quantum communication complexity, introduced by Yao [Yao93], studies

the amount of quantum communication that two parties, Alice and Bob, need to exchange

in order to compute a function (usually boolean) of their private inputs. It is the natural

quantum extension of classical communication complexity [Yao79]. While the inputs are

classical and the end result is classical, the players are allowed to use quantum resources

while communicating. The motivation for the introduction of quantum communication was
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to study questions in quantum computation. For example, in [Yao93], Yao used it to prove

that the majority function does not have any linear size quantum formulas.

For disjointness with input size n, Grover’s search [Gro96, BBHT98] can be used to obtain

a quantum communication protocol (with probability of error 1/3) with communication cost

O(
√
n log n) [BCW98]. The bound was later improved to O(

√
n) in [AA03]. The protocols

attaining this upper bound are very interactive and require Θ(
√
n) rounds of interaction.

The O(
√
n) upper bound on the quantum communication complexity of disjointness has

been shown to be tight in [Raz02].

If we restrict the players to allow only r rounds of interaction, then it is not hard to

use the O(
√
n) protocol discussed above as a black-box to obtain an O(n/r) communication

protocol for n ≥ r2. The best known lower bound was Ω(n/r2) [JRS03]. We prove a lower

bound of Ω̃(n/r), which is optimal up to logarithmic factors:

Theorem A. (Theorem 6.6.3, rephrased) The r-round quantum communication complexity

of DISJn is Ω
(

n
r log8(r)

)
.

The analogous result for query complexity of quantum search, an Ω(n/r) lower bound

for the number of queries when r sets of nonadaptive queries are allowed, was known before

[Zal99]. Our lower bound does not give a new proof of the Ω(
√
n) bound on the quantum

communication complexity of disjointness [Raz02] since our proof uses that lower bound (in

fact we use something much stronger, a strengthening of the strong direct product theorem

for disjointness [KSDW04] due to [She12]).

There is a rich history of papers studying lower bounds on bounded-round communi-

cation complexity, for example for the pointer jumping problem [NW93b, PRV01, Kla98,

KNTSZ01], for sparse set disjointness [ST13], for equality [BCK14] and several other exam-

ples. Most of these lower bounds are proven via a round elimination strategy: show that an

r-round protocol can be converted into an (r− 1)-round protocol without too much increase

in communication cost and error; arrive at contradition by obtaining a too-good-to-be-true
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1-round or 0-round protocol. Even the result of [JRS03] can be viewed as round elimination

on quantum information complexity of the 2-bit AND. Despite substantial effort, obtaining

the optimal Ω(1/r) lower bound on the r-round quantum information complexity of AND

via round elimination has remained elusive. We prove:

Theorem B. (Corollary 6.6.2, rephrased) The r-round quantum information complexity of

AND with prior 1/3, 1/3, 1/3, 0 is Ω
(

1
r log8(r)

)
.

As discussed below, we obtain this result by using existing lower bounds for the com-

munication complexity of quantum disjointness. A direct proof of a quantum information

complexity lower bound for the 2-bit AND remains an intriguing open problem. In light of the

fact that disjointness has a sub-linear quantum communication complexity, it is not surpris-

ing that the quantum information complexity of AND vanishes with the number of rounds.

This phenomenon is closely related to the Elitzur-Vaidman bomb tester [EV93, KWHZ95],

which gives a sequence of quantum measurements that allows one to test whether a bomb is

loaded without detonating it. The loss of the protocol (i.e. the probability that the bomb

will explode — which loosely corresponds to the amount of information revealed about the

bomb) behaves like 1/r, where r is the number of measurements performed.

Our proof relies on the notion of quantum information complexity, defined recently in

[Tou15], where it is used to prove a direct sum theorem for constant round quantum com-

munication. It is harder to manipulate quantum information than in the classical case, and

tools that are standard in the classical setting are yet to be developed for the quantum case.

However, it could still be useful in proving partial direct sum and direct product theorems,

which we know in the classical world [BBCR10], [BRWY13b]. Moreover, a model similar

to that of quantum communication complexity is connected to proving SDP extension com-

plexity lower bounds [JSWZ13]. Although the recent breakthrough for SDP lower bounds

[LRS15] does not follow this direction, it is likely that a quantum information complexity

viewpoint will provide further insights as information complexity has provided in the classical
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case (LP extension complexity) [BM13, BP13]. Further development of tools for quantum

communication and information complexity is likely to further the SDP extension complexity

program.

We also prove that for all boolean functions, prior-free quantum information complexity

is lower bounded by the generalized discrepancy method:

Theorem C. (Theorem 6.4.7, rephrased) For any boolean function f and a sufficiently

small constant error η > 0, the prior-free quantum information complexity of f with error η

is lower bounded by the generalized discrepancy bound for f .

Previously no lower bounds were known on the quantum information complexity of gen-

eral boolean functions. Our proof relies on the strong direct product theorem for quantum

communication complexity in terms of the generalized discrepancy method [She12]. Note

that in the classical setting such a result can be proven directly using zero-communication

protocols [KLL+12b]. It remains to be seen whether such a direct proof can be obtained in

the quantum setting.

As a corollary we also get that the quantum communication complexity of any boolean

function is at most exponential in the prior-free quantum information complexity.

Theorem D. (Corollary 6.4.8, rephrased) For any boolean function f , quantum communi-

cation complexity of f with error 1/3 is at most 2O(QIC(f,1/3)+1), where QIC(f, 1/3) is the

prior-free quantum information complexity of f with error 1/3.

Note that the classical analogue of this is proven via a compression argument [Bra12],

but we prove this via an indirect argument. It would be interesting to prove this directly via

a quantum compression argument.
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6.2 Proof overview and discussion

High-level strategy. At a high-level, the proof builds on the connection between quantum

information complexity and quantum communication complexity of the disjointness function

DISJm with various values of m. There are two parts to the proof:

1. Suppose there is a r-round quantum protocol for disjointness of input size n ≥ r2 with

communication cost n
r·polylog(r)

. Then there exists a protocol for disjointness of input

size r2 with quantum information cost ≤ o(r).

2. Lower bound on quantum information complexity of disjointness: we prove that the

(prior-free) quantum information complexity of any boolean function is lower bounded

by the generalized discrepancy method, which by results in [She07] implies that quan-

tum information complexity of disjointness with input size r2 is Ω(r).

Note that these two steps imply a lower bound on the bounded round quantum communi-

cation complexity of disjointness. Also the above statements are about computation with

some constant error (say 1/3).

Both directions are proven via a connection between the information complexity of a

problem and its communication complexity. In one direction, a protocol for a large sized

disjointness can be converted into a low-information protocol for a smaller size disjointness.

Using the converse direction of the connection, a low-information protocol for DISJr2 leads

to a protocol for many copies of the problem that violate known direct product results. The

former connection has been at the heart of many classical lower bounds involving information
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complexity [BYJKS04, BGPW13a]. The latter connection (deriving information complexity

lower bound from known communication lower bound on an “amortized” version of the

problem) has been previously explored in the classical setting by [BGPW13c].

Let us start by giving a high level overview of the first step. If there is a r-round

quantum protocol for disjointness of input size n with communication cost n
r·polylog(r)

and

1/3 probability of error, then by a direct sum argument in [Tou15], there exists a r-round

quantum protocol π for AND with 1/3 probability of error (for a worst case input) and

quantum information cost ≤ 1
r·polylog(r)

w.r.t any distribution µ s.t. µ(1, 1) = 0. Now

we want to use π to obtain a low information protocol for disjointness of size r2. One can

imagine if we run π on each coordinate of the disjointness instance, we get an r-round protocol

τ of information cost ≤ r
polylog(r)

and also it solves disjointness with small error (assuming we

first amplify the error of π to 1/r3 losing a log factor in information cost). However, the issue

is that information cost of τ is low only w.r.t. distributions ν supported on disjoint

pairs of sets. The information cost of τ may increase dramatically when it is run on a pair

of sets with many intersections. To deal with this we use a trick used in [BGPW13a].

Note that if there are too many intersections in a disjointness instance, then the players

can just subsample some of the coordinates and check for an intersection in those coordinates.

Hence we can assume wlog that the intersection size in a typical input distributed according

to ν is small. This means that if we look at a typical coordinate i, the marginal distribution νi

has small mass on (1, 1). And in this case, we can run π on each coordinate. The only thing

left to understand is: how does the information cost of π change if we place a small mass,

say w, on (1, 1)? The answer to this turns out to be r ·H(w), where π has r-rounds. Note

that this is in contrast to the classical case, where the answer would be just H(w). Later we

will give an example of a quantum protocol for AND whose information cost does go up by

r · H(w). Also this is the only place where we use the fact that the protocol we

started with had only r rounds. Such a dependence is necessary here, since an Ω(n/r)
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lower bound for general (non-r-round) protocols would violate the O(
√
n) upper bound.

For the second step, we use compression along with a strong direct product theorem for

quantum communication complexity of f in terms of the generalized discrepancy lower bound

GDM1/5(f) due to Sherstov [She12]. It says that to compute k copies of a boolean function

f with success probability 2−Ω(k), it requires at least k ·GDM1/5(f) qubits of communication

(with arbitrary amount of entanglement). Note that a strong direct product theorem for

quantum communication complexity of disjointness was already known [KSDW04], but we

need a stronger version for our proof which shows that even computing a large fraction of

the copies is hard and Sherstov’s result also holds in this case1.

Suppose there is a protocol π for a function f with quantum information cost ≤ I w.r.t a

distribution µ and probability of error ≤ ε, then by quantum information equals amortized

communication [Tou15], we get a protocol πk for fk which computes at least (1 − 2ε)k

coordinates correctly with probability ≥ 0.99 (w.r.t. µk) and QCC(πk) ≤ k · I + o(k). To

apply Sherstov’s theorem, we need such a protocol which works for worst case inputs. We

show how to obtain such a worst case to average case reduction, whence applying Sherstov’s

result gives us the lower bound on information complexity.

Discussion and open problems

In its entirety our proof shows how from a r-round protocol for disjointness, one can obtain a

protocol for k copies of disjointness of size r2. But to achieve this reduction, we have to move

to information complexity, since the number of rounds r only comes up in an information

theoretic context in our proof.

Thus the reduction structure of the proof is communication→information→communication,

with the latter communication problem having a known lower bound. Lower bounds for

1We could probably base our result off the lower bound of [KSDW04], but the reduction would be
considerably more complicated.
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disjointness in the classical setting [BYJKS04, BGPW13a] only do a reduction of the form

communication→ information, with an information complexity lower bound on the resulting

problem proven directly.

Open Problem 6.2.1. Give a direct proof of a lower bound for the information complexity

of DISJr2.

One possible attack route would be along the lines of the proof for the classical case using

zero-communication protocols [KLL+12b]. In the past, techniques developed for two-party

quantum communication, e.g. the pattern matrix method [She07], turned out to be useful for

multiparty number-on-forehead communication [CA08, She14]. It could be that techniques

developed for quantum information also result in similar progress.

Another natural question is whether the lower bound on the information complexity of

AND can be proved using a direct argument:

Open Problem 6.2.2. Give a direct proof of Theorem B.

Even though efforts since [JRS03] to-date have been unsuccessful, it still could be possible

to directly obtain Theorem B via round elimination or other techniques and that would be

really interesting, since it would also yield a new proof of the lower bound for quantum

communication complexity of disjointness [Raz02, She07]. The recent breakthrough results

in lower bounding conditional quantum mutual information [FR14, BHOS14, BT15] should

be relevant.

Remark 6.2.3. Our proofs can be adapted to show that the (unbounded round) zero-error

quantum information complexity of AND w.r.t the prior (1 − ε)/3, (1 − ε)/3, (1 − ε)/3, ε is

Ω̃(
√
ε). It is another intriguing question whether it is possible to have a direct proof for this.

Note that this requires a global view of quantum information complexity, even though it is

defined round by round. By a continuity argument this would also resolve open problem 6.2.2.
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More generally, our understanding of the relationship between quantum information and

communication complexity is in its early stages of development. Questions of interactive

protocol compression occupy a central position in understanding the connection between

classical information and communication complexity [BBCR10, Bra12, GKR14b]. In partic-

ular, [BBCR10] shows that a protocol π with information cost I and communication cost

C can be compressed into a protocol with communication cost Õ(
√
I · C). It remains open

whether this (or an analogous) fact is true in the quantum setting:

Open Problem 6.2.4. Given a quantum protocol π over a distribution µ of inputs whose

communication cost is C and whose quantum information cost is I, can π be simulated (with

a small error) using a quantum protocol π′ whose communication cost is Õ(
√
I · C)?

We refer the reader to Sections 1.4, 1.5 and 1.6 for preliminaries on quantum information

theory, quantum communication and quantum information complexity.

6.3 Properties of Quantum Information Complexity

In this section, we prove general results about quantum information complexity that we use

to obtain the main results. These may be of independent interest.

6.3.1 Prior-free Quantum Information Complexity

We want to define a sensible notion of quantum information complexity for classical tasks.

Like in the classical setting [Bra12], there are two sensible orderings for the optimization over

inputs and protocols. We provide the two corresponding definitions and then investigate the

link between them. We denote by DXY the set of all distributions µ on input space X × Y .

Definition 6.3.1. The max-distributional quantum information complexity of a relation T
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with error ε ∈ [0, 1] is

QICD(T, ε) = max
µ∈DXY

QIC(T, µ, ε).

When restricting to r-round protocols, it is

QICr
D(T, ε) = max

µ∈DXY
QICr(T, µ, ε).

Definition 6.3.2. The quantum information complexity of a relation T with error ε ∈ [0, 1]

is

QIC(T, ε) = inf
Π∈T (T,ε)

max
µ∈DXY

QIC(Π, µ).

When restricting to r-round protocols, it is

QICr(T, ε) = inf
Π∈T r(T,ε)

max
µ∈DXY

QIC(Π, µ).

Lemma 6.3.3 (Information lower bounds communication). For any relation T , error pa-

rameter ε ∈ [0, 1], and number of rounds r ∈ N, the following holds:

QICr(T, ε) ≤ QCCr(T, ε),

QIC(T, ε) ≤ QCC(T, ε).

Proof. Let Π be a protocol computing T correctly except with probability ε on all input

and satisfying QCC(Π) = QCC(T, ε). We get the result by noting that QIC(T, ε) ≤

maxµQIC(Π, µ) ≤ QCC(Π).

Clearly, QICD(T, ε) ≤ QIC(T, ε), and QICr
D(T, ε) ≤ QICr(T, ε). We prove that we can
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almost reverse the quantifiers. The proof idea follows the lines of the proof of Theorem 3.5

in Ref. [Bra12], but special care must be taken for quantum protocols. The idea we use is to

take an ε-net over DXY , and then take a δ-optimal protocol for each distribution in the net.

To extend this result to the unbounded round quantum setting, we adapt a compactness

argument from Ref. [BGPW13a], itself adapted from Ref. [Ter72]. The following results will

be used.

Lemma 6.3.4 (Continuity in average error). Quantum information complexity is continuous

in the error. This holds uniformly in the input. That is, for all T, r and ε, δ > 0, there exists

ε′ ∈ (0, ε) such that for all ε′′ ∈ (ε′, ε) and for all µ,

|QIC(T, µ, ε− ε′′)−QIC(T, µ, ε)| ≤ δ,

|QICr(T, µ, ε− ε′′)−QICr(T, µ, ε)| ≤ δ.

Proof. Note that we can drop the absolute values and also work at ε′ since quantum infor-

mation complexity is non-increasing in the error, i.e. QIC(T, µ, ε) ≤ QIC(T, µ, ε − ε′′) ≤

QIC(T, µ, ε − ε′). Let 0 < p < 1
2

and use Corollary 1.6.9 with ε1 = 0, ε2 = ε, ε′ = pε for the

current ε. We get

QIC(T, µ, ε− ε′) ≤ pQIC(T, µ, 0) + (1− p)QIC(T, µ, ε)

≤ pQCC(T, 0) +QIC(T, µ, ε).

Rearranging terms, we get

|QIC(T, µ, ε− ε′)−QIC(T, µ, ε)| ≤ ε′

ε
QCC(T, 0).
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This bound is independent of µ, and goes to zero as p and ε′ do, so the result follows. The

bounded round result is proved in the same way, obtaining QCCr(T, 0) in the final bound

instead.

Lemma 6.3.5 (Convexity in error). For any p ∈ [0, 1], T and ε, ε1, ε2 ∈ [0, 1] satisfying

ε = pε1 + (1 − p)ε2 and for any bound r = max(r1, r2), r1, r2 ∈ N on the number of rounds,

the following holds:

QIC(T, ε) ≤ pQIC(T, ε1) + (1− p)QIC(T, ε2),

QICr(T, ε) ≤ pQICr1(T, ε1) + (1− p)QICr2(T, ε2).

Proof. The proof is similar to the one for the analogous result with fixed input. Given δ > 0,

let Π1 and Π2 be protocols satisfying, for all µ, for i ∈ {1, 2},Πi ∈ T (T, εi), QIC(Πi, µ) ≤

QIC(T, εi) + δ, and take the corresponding protocol Π of Lemma 1.6.8. First, it holds that

protocol Π successfully accomplish its task, i.e. it implements task T on all inputs with error

bounded by ε = pε1 + (1 − p)ε2. We must now verify that the quantum information cost

satisfies the convexity property:

QIC(T, ε) ≤ max
µ

QIC(Π, µ)

= max
µ

(
pQIC(Π1, µ) + (1− p)QIC(Π2, µ)

)
≤ pmax

µ
QIC(Π1, µ) + (1− p) max

µ
QIC(Π2, µ)

≤ pQIC(T, ε1) + (1− p)QIC(T, ε2) + 2δ.

Keeping track of rounds, we get the bounded round result.

Corollary 6.3.6 (Continuity in error). Quantum information complexity is continuous in
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the error. That is, for all T, r and ε, δ > 0, there exists ε′ ∈ (0, ε) such that for all ε′′ ∈ (ε′, ε)

|QIC(T, ε− ε′′)−QIC(T, ε)| ≤ δ,

|QICr(T, ε− ε′′)−QICr(T, ε)| ≤ δ.

Lemma 6.3.7 (Quasi-convexity in input). For any p ∈ [0, 1], define ρ = pρ1 + (1− p)ρ2 for

any two input states ρ1, ρ2. Then the following holds for any r-round protocol Π:

QIC(Π, ρ) ≥ pQIC(Π, ρ1) + (1− p)QIC(Π, ρ2)

QIC(Π, ρ) ≤ pQIC(Π, ρ1) + (1− p)QIC(Π, ρ2) + rH(p).

Proof. The first inequality is Lemma 1.6.10, and the second is obtained by keeping track

of the remainder terms discarded in its proof. Let R be a register holding a purification of

ρ1 and ρ2, then we can purify ρ with two copies S1, S2 of a selector reference register, such

that |ρ〉AinBinRS1S2 =
√
p |ρ1〉AinBinR |1〉S1 |1〉S2 +

√
1− p |ρ2〉AinBinR |2〉S1 |2〉S2 . We can then

expand each term as

I(Ci;RS1S2|Bi)ρ = I(Ci;S1|Bi)ρ + I(Ci;R|BiS1)ρ + I(Ci;S2|BiRS1)ρ,

and similarly for terms conditioning on Alice’s systems Ai. The result follows by summing

over all rounds since

I(Ci;R|BiS1)ρ = pI(Ci;R|Bi)ρ1 + (1− p) · I(Ci;R|Bi)ρ2 ,

and then H(S) = H(p) upper bounds the two remainder terms in each of the r rounds.

Lemma 6.3.8 (Continuity in input). Quantum information cost for r-round protocols is
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uniformly continuous in the input distribution. This holds uniformly over all r-round proto-

cols over input X ×Y . That is, for all r, |X|, |Y |, and ε > 0, there exists δ > 0 such that for

all µ1 and µ2 that are δ-close and all r-round protocols Π,

|QIC(Π, µ1)−QIC(Π, µ2)| ≤ ε.

Proof. Let δ > 0 and fix µ1 and µ2 that are δ-close. We can then write, for some common

part µ0 and remainder parts µ′1, µ
′
2,

µ1 = (1− δ)µ0 + δµ′1,

µ2 = (1− δ)µ0 + δµ′2,

µ0(x, y) =
min(µ1(x, y), µ2(x, y))∑

x′,y′ min(µ1(x′, y′), µ2(x′, y′))
.

Using the bounds in the lemma above once on each of µ1 and µ2, we get

QIC(Π, µ1) ≤ (1− δ)QIC(Π, µ0) + δQIC(Π, µ′1) + rH(δ)

≤ (1− δ)QIC(Π, µ0) + δQIC(Π, µ′2) + δQIC(Π, µ′1) + rH(δ)

≤ QIC(Π, µ2) + δ · r(log |X|+ log |Y |) + rH(δ).

Similarly, we get a bound on QIC(Π, µ2) in terms of QIC(Π, µ1), so the following holds:

|QIC(Π, µ1)−QIC(Π, µ2)| ≤ δ · r(log |X|+ log |Y |) + rH(δ).

This bound is independent of µ1, µ2, depends on Π only through r and |X|, |Y |, and goes to

zero as δ does, so the result follows.
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Corollary 6.3.9. Suppose we have a r-round protocol Π for AND. Then,

QIC(Π, µ) ≤ QIC(Π, µ0) +O(rH(w)) (6.1)

where w = µ(1, 1) ≤ 1/2, µ0(1, 1) = 0, and µ0(xi, yi) = 1
1−wµ(xi, yi) otherwise.

Proof. This just follows from the proof of lemma 6.3.8, since the input size is constant.

Theorem 6.3.10. For a relation T ⊂ X × Y × ZA × ZB, an error parameter ε ∈ (0, 1), a

number of rounds r and each value α ∈ (0, 1),

QICr(T,
ε

α
) ≤ QICr

D(T, ε)

1− α
.

Proof. Fix T, r, ε, α and denote I = QICr
D(T, ε). For any δ1 ∈ (0, 1), we want to prove

the existence of a protocol Π ∈ T r(T, ε
α
· (1 + 2δ1)) satisfying QIC(Π, µ) ≤ I·(1+2δ1)

1−α for all

µ ∈ DXY . This shows that QICr(T, ε
α
· (1 + 2δ1)) ≤ I

1−α · (1 + 2δ1), and then by continuity of

quantum information complexity in the error, we get the result by taking δ1 to 0. The proof

follows along the lines of the one for the analogous result for classical information complexity

[Bra12], using a minimax argument. We take extra care to account for the continuum of

quantum protocols, the round-by-round definition of quantum information cost, and the fact

that we do not have a bound on the size of the entanglement. Let δ2 ∈ (0, εδ1) satisfy the

following two properties for all µ1, µ2 that are δ2-close, and for all r-round protocols Π:

|QIC(Π, µ1)−QIC(Π, µ2)| ≤ I · δ1

10
, (6.2)

|QICr(T, µ1, ε− δ2)−QICr(T, µ1, ε)| ≤ I · δ1

10
. (6.3)

The first inequality is possible by Lemma 6.3.8, i.e. by the uniform continuity of quantum

information cost in the input, uniformly over all r-rounds protocols, and the second is possible
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by Lemma 6.3.4, i.e. the continuity of quantum information complexity in the error, uniformly

over all inputs. Fix a finite δ2-net for DXY , that we denote NXY . For each µ ∈ NXY , fix

a protocol Πµ ∈ T r(T, µ, ε − δ2) such that QIC(Πµ, µ) ≤ QICr(T, µ, ε − δ2) · (1 + δ1
10

) and

denote the set of all such protocols PN . We then have |PN | = |NXY | <∞, and we get using

(6.3) that

QIC(Πµ, µ) ≤ QICr(T, µ, ε− δ2) · (1 +
δ1

10
)

≤
(
QICr(T, µ, ε) + I · δ1

10

)
(1 +

δ1

10
)

≤ I(1 +
δ1

10
)2

≤ I(1 +
δ1

2
). (6.4)

We define the following two-player zero-sum game over these two sets. Player A comes up

with a quantum protocol Π ∈ PN . Player B comes up with a distribution µ ∈ NXY . Player

B’s payoff is given by

PB(Π, µ) = (1− α) · QIC(Π, µ)

I
+ α · Prµ[Π 6∈ T ]

ε
,

and then player A’s is given by PA(Π, µ) = −PB(Π, µ). We first show the following.

Claim 6.3.11. The value of the game for player B is bounded by 1 + δ1.

Proof. Let νB be a probability distribution over NXY representing a mixed strategy for

player B. To prove the claim, it suffices to show that there is a protocol Π ∈ PN such that

EνB [PB(Π, µ)] < 1 + δ1. Let µ̄ be the distribution corresponding to averaging over νB, that

is

µ̄(x, y) = EνBµ(x, y).
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Let µ′ ∈ NXY be a distribution that is δ2-close to µ̄, and Π′ ∈ PN the corresponding protocol.

We will show that Π′ is also good for µ̄. We first have

Prµ̄[Π′ 6∈ T ] ≤ Prµ′ [Π
′ 6∈ T ] + δ2

≤ ε− δ2 + δ2

= ε,

in which the first inequality follows from the fact that µ̄ and µ′ are δ2-close and the second

inequality from the fact that Π′ ∈ PN is the protocol corresponding to µ′ ∈ NXY , i.e. Π′ ∈

T r(T, µ′, ε− δ2). We also have

QIC(Π′, µ̄) ≤ QIC(Π′, µ′) + I · δ1

2

≤ I · (1 + δ1),

in which the first inequality follows from (6.2) and the second from the fact that Π′ ∈ PN is

the protocol corresponding to µ′ ∈ NXY along with (6.4). We obtain

EνB [PB(Π′, µ)] = EνB
[
(1− α) · QIC(Π′, µ)

I
+ α · Prµ[Π′ 6∈ T ]

ε

]
= (1− α) · EνB

[QIC(Π′, µ)

I

]
+ α · Prµ̄[Π′ 6∈ T ]

ε

≤ (1− α) ·
[QIC(Π′, µ̄)

I

]
+ α · Prµ̄[Π′ 6∈ T ]

ε

< (1− α) · (1 + δ1) + α

< 1 + δ1,

in which the first equality is by definition, the second by linearity of expectation, the first

inequality is by Lemma 1.6.10, i.e. concavity of quantum information cost in the input state,

and the second inequality is by the above results about Π′. This concludes the proof of the
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claim.

By the minimax theorem for zero-sum games, the above claim implies that there exists

a probability distribution νA over PN representing a mixed strategy for player A and such

that the value of the game for player B is at most 1 + δ1. That is, for all µ ∈ NXY ,

EνA(PB(Π, µ)) < 1 + δ1.

Let Π̄ = EνA(Π) be the r-round protocol obtained by publicly averaging over νA, as per

Lemma 1.6.8. This is the protocol we are looking for. The following claim holds.

Claim 6.3.12. For all µ ∈ DXY , (1− α) · QIC(Π̄,µ)
I

+ α · Prµ[Π̄ 6∈T ]

ε
< 1 + 2δ1.

Proof. Fix any µ ∈ DXY , and let µ′ ∈ NXY be a distribution that is δ2-close to µ. Then we

obtain

(1− α) · QIC(Π̄, µ)

I
+ α · Prµ[Π̄ 6∈ T ]

ε

≤ (1− α) · QIC(Π̄, µ′) + Iδ1

I
+ α · Prµ

′ [Π̄ 6∈ T ] + δ2

ε

= (1− α) · QIC(Π̄, µ′)

I
+ α · EνA

Prµ′ [Π 6∈ T ]

ε
+ (1− α) · δ1 + α · δ2

ε

≤ (1− α) · EνA
[QIC(Π, µ′)

I

]
+ α · EνA

[Prµ′ [Π 6∈ T ]

ε

]
+ δ1

= EνA [PB(Π, µ′)] + δ1

< 1 + 2δ1,

in which the first inequality follows from (6.2) and the fact that µ, µ′ are δ2-close, the first

equality is because we take expectation over a probability, the second inequality is because

δ2 ≤ ε · δ1 and by Lemma 1.6.8, i.e. by the convexity of quantum information cost in the

protocol, the second equality is by linearity of expectation and the definition of PB(Π, µ′),
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and the last inequality is because νA represents the mixed strategy obtained by the minimax

theorem. Since this holds for all µ ∈ DXY , this conclude the proof of the claim.

To conclude the proof of the theorem, we first note that the above claim implies that for

all µ ∈ DXY ,

QIC(Π̄, µ) ≤ I

1− α
(1 + 2δ1),

so Π̄ satisfies the quantum information cost property we are looking for. Is left to verify that

it also has low error on all inputs. The above claim also implies that for all µ,

Prµ[Π̄ 6∈ T ] ≤ ε

α
· (1 + 2δ1).

Letting µ run over all atomic distributions, we get the desired error property, and so

QICr(T,
ε

α
· (1 + 2δ1)) ≤ I

1− α
(1 + 2δ1),

as desired.

Theorem 6.3.13. For a relation T ⊂ X × Y ×ZA ×ZB, an error parameter ε ∈ (0, 1) and

each value α ∈ (0, 1),

QIC(T,
ε

α
) ≤ QICD(T, ε)

1− α
.

Proof. Let I = QICD(T, ε), and denote by P µ
e (Π) the average error of Π for computing T

on µ, and by PT the set of all protocols over the same input and output spaces as T . Then

for any Π, P µ
e (Π) is continuous in µ by properties of the statistical distance. Given δ > 0,
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define

A(Π) = {µ ∈ DXY : QIC(Π, µ) ≥ I + 2 · δ or P µ
e (Π) ≥ ε+ δ}.

By continuity of QIC(Π, µ) and P µ
e (Π) in µ, these sets are closed for all Π ∈ PT . Then,

by definition of I, for all µ there exists Πµ ∈ T (T, µ, ε) such that QIC(Πµ, µ) ≤ I + δ, and

so ∩Π∈PTA(Π) = ∅. Since DXY is compact and the sets A(Π) are closed, we get that there

exists a finite set Q ⊂ PT such that ∩Π∈QA(Π) = ∅. We get that for all µ, there exists

Πµ ∈ Q such that QIC(Πµ, µ) < I + 2δ and P µ
e (Πµ) < ε + δ. Let rM = max{r : there is

Π ∈ Q with r rounds }, then

I + 2δ ≥ max
µ

min
Π∈Q∩T (T,µ,ε+δ)

QIC(Π, µ)

≥ QICrM
D (T, ε+ δ)

≥ (1− α) ·QICrM (T,
ε

α
+
δ

α
)

≥ (1− α) ·QIC(T,
ε

α
+
δ

α
).

The result follows by continuity of QIC and by taking δ to zero.

6.3.2 Subadditivity

Lemma 6.3.14. For any two protocols Π1,Π2 with r1, r2 rounds, respectively, there exists a

r-round protocol Π2, satisfying Π2 = Π1 ⊗ Π2, r = max(r1, r2), such that the following holds

for any joint input state ρ12 ∈ D(A1
in ⊗B1

in ⊗ A2
in ⊗B2

in):

QIC(Π2, ρ12) ≤ QIC(Π1, ρ1) +QIC(Π2, ρ2),

with ρ1 = TrA2
inB

2
in

(ρ12) and ρ2 = TrA1
inB

1
in

(ρ12).
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Proof. Given protocols Π1 and Π2, we assume without loss of generality that r1 ≥ r2, and

we define the protocol Π2 in the following way.

1. Run protocols Π1,Π2 in parallel for r2 rounds, on corresponding input registers

A1
in, B

1
in, A

2
in, B

2
in until Π2 has finished.

2. Finish running protocol Π1

3. Take as output the output registers A1
out, B

1
out, A

2
out, B

2
out of both Π1 and Π2.

It is clear that the channel that Π2 implements is Π2 = Π1 ⊗ Π2, and the number of

rounds satisfies r = max(r1, r2), so is left to analyze its quantum information cost on input

ρ12. Let R12 be a purifying register such that ρ
A1
inB

1
inA

2
inB

2
inR12

12 is a pure state. Also, denote

the purified joint state in round i as (ρi12)A
1
iB

1
i C

1
i A

2
iB

2
i C

2
i R12 , and the local state for protocol

Π1 as

(ρi1)A
1
iB

1
i C

1
i = TrA2

iB
2
i C

2
i R12

((ρi12)A
1
iB

1
i C

1
i A

2
iB

2
i C

2
i R12), (6.5)

and similarly for that of protocol Π2. Notice that for all i, (ρi1)A
1
iB

1
i C

1
i is purified by

(ρi1)A
1
iB

1
i C

1
i A

2
inB

2
inR12 ⊗ φ

T 2
AT

2
B

2 , with A2
inB

2
inR12 the registers of state ρ12 before application

of the unitaries corresponding to Π1, and φ2 is the pure entangled state used in Π2. If we

denote, for i ≥ r2 + 1, A2
i = A2

out ⊗ (A′)2, B2
i = B2

out ⊗ (B′)2, then by the definition of QIC
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and application of chain rule,

2 ·QIC(Π2, ρ12) =

r2∑
i=1,i odd

I(C1
i C

2
i ;R12|B1

iB
2
i )ρ12 +

r2∑
i=1,i even

I(C1
i C

2
i ;R12|A1

iA
2
i )ρ12

+

r1∑
i=r2+1,i odd

I(C1
i ;R12|B1

iB
2
i )ρ12 +

r1∑
i=r2+1,i even

I(C1
i ;R12|A1

iA
2
i )ρ12

=

r2∑
i=1,i odd

I(C2
i ;R12|B1

iB
2
iC

1
i )ρ12 +

r2∑
i=1,i even

I(C2
i ;R12|A1

iA
2
iC

1
i )ρ12

+

r1∑
i=1,i odd

I(C1
i ;R12|B1

iB
2
i )ρ12 +

r1∑
i=1,i even

I(C1
i ;R12|A1

iA
2
i )ρ12 .

Now for protocol Π1, as noted above, the registers A2
inB

2
inR12T

2
AT

2
B purify (ρi1)A

1
iB

1
i C

1
i for

all i, so

2 ·QIC(Π1, ρ1) =

r1∑
i=1,i odd

I(C1
i ;A2

inB
2
inR12T

2
AT

2
B|B1

i )ρ1 +

r1∑
i=1,i even

I(C1
i ;A2

inB
2
inR12T

2
AT

2
B|A1

i )ρ1

=

r1∑
i=1,i odd

I(C1
i ;A2

iB
2
iC

2
i R12|B1

i )ρ12 +

r1∑
i=1,i even

I(C1
i ;A2

iB
2
iC

2
i R12|A1

i )ρ12

=

r1∑
i=1,i odd

I(C1
i ;B2

i |B1
i )ρ12 +

r1∑
i=1,i even

I(C1
i ;A2

i |A1
i )ρ12

+

r1∑
i=1,i odd

I(C1
i ;R12|B1

iB
2
i )ρ12 +

r1∑
i=1,i even

I(C1
i ;R12|A1

iA
2
i )ρ12

+

r1∑
i=1,i odd

I(C1
i ;A2

iC
2
i |B1

iB
2
iR12)ρ12 +

r1∑
i=1,i even

I(C1
i ;B2

iC
2
i |A1

iA
2
iR12)ρ12

≥
r1∑

i=1,i odd

I(C1
i ;R12|B1

iB
2
i )ρ12 +

r1∑
i=1,i even

I(C1
i ;R12|A1

iA
2
i )ρ12 ,

in which the first equality is by definition, the second is by isometric invariance of the

conditional quantum mutual information (CQMI), the third by the chain rule for CQMI,

and the inequality is by non-negativity of CQMI. Similarly for protocol Π2, with a slightly
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different application of the chain rule, we get

2 ·QIC(Π2, ρ2) =

r2∑
i=1,i odd

I(C2
i ;A1

inB
1
inR12T

1
AT

1
B|B2

i )ρ2 +

r2∑
i=1,i even

I(C2
i ;A1

inB
1
inR12T

1
AT

1
B|A2

i )ρ2

=

r2∑
i=1,i odd

I(C2
i ;A1

iB
1
iC

1
i R12|B2

i )ρ12 +

r2∑
i=1,i even

I(C2
i ;A1

iB
1
iC

1
i R12|A2

i )ρ12

=

r2∑
i=1,i odd

I(C2
i ;B1

iC
1
i |B2

i )ρ12 +

r2∑
i=1,i even

I(C2
i ;A1

iC
1
i |A2

i )ρ12

+

r2∑
i=1,i odd

I(C2
i ;R12|B1

iB
2
iC

1
i )ρ12 +

r2∑
i=1,i even

I(C2
i ;R12|A1

iA
2
iC

1
i )ρ12

+

r2∑
i=1,i odd

I(C2
i ;A1

i |B1
iB

2
iC

1
i R12)ρ12 +

r2∑
i=1,i even

I(C2
i ;B2

i |A1
iA

2
iC

1
i R12)ρ12

≥
r2∑

i=1,i odd

I(C2
i ;R12|B1

iB
2
iC

1
i )ρ12 +

r2∑
i=1,i even

I(C2
i ;R12|A1

iA
2
iC

1
i )ρ12 .

The result then follows by comparing terms.

6.3.3 Reducing the Error for Functions

Similarly to communication, it is possible to reduce the error when computing functions

without increasing too much the information.

Lemma 6.3.15. For any function f and error parameter ε > 0, the following holds:

QIC(f, ε) ≤ O
(

log 1/ε ·QIC(f, 1/3)
)
.

Proof. Given δ > 0, let Π be a protocol computing f correctly except with probability 1/3

on every input and satisfying QIC(Π, µ) ≤ QIC(f, 1/3) + δ for all µ. Let n ∈ O(log 1/ε)

be given by the Chernoff bound such that protocol Πn running Π n times in parallel as per

Lemma 6.3.14, with each input being a copy of the instance to f , and taking a majority vote

(with arbitrary tie-breaking) computes f correctly except with probability ε on every input.
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This n can be chosen independently of δ. We now argue on the quantum information cost

of Πn. Consider an arbitrary distribution µ for f , and let µn be the distribution once the n

copies have been made. If we denote the marginal for the i-th copy by µi, then µi = µ. By

Lemma 6.3.14 and an easy induction, we then get that

QIC(f, ε) ≤ QIC(Πn, µn)

≤ nQIC(Π, µ)

≤ n(QIC(f, 1/3) + δ).

The result follows by taking δ to 0.

6.3.4 Reduction from DISJ to AND

With the following definition, the above proof also establishes the following corollary.

Definition 6.3.16. For all r ∈ N, ε ∈ [0, 1],

QICr
0(AND, ε) = inf

Π∈T r(AND,ε)
max
µ0

QIC(Π, µ0),

in which the maximum ranges over all µ0 satisfying µ0(1, 1) = 0.

Corollary 6.3.17. For any ε > 0 and r ∈ N,

QICr
0(AND, ε) ≤ O

(
log 1/ε ·QICr

0(AND, 1/3)
)
.

We provide a slight variant of the argument of [Tou15] to obtain a low information

protocol for AND from a protocol for disjointness.
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Lemma 6.3.18. For any n, r, ε and µ0 such that µ0(1, 1) = 0,

inf
ΠA∈T r(AND,ε)

QIC(ΠA, µ0) ≤ inf
ΠD∈T r(DISJn,ε)

1

n
QIC(ΠD, µ

⊗n
0 ).

Proof. Let In = infΠD∈T r(DISJn,ε) QIC(ΠD, µ
⊗n
0 ). We prove the result by induction on n.

The base case is trivial since DISJ1 = ¬AND, and so a protocol to compute DISJ1 with

error ε can be used to compute AND with error ε and vice-versa. In particular, we get

I1 = infΠA∈T r(AND,ε) QIC(ΠA, µ0). For the induction, suppose the result holds for DISJn−1,

we will use Lemma 1.6.7 to go from DISJn to DISJ1 and DISJn−1. Indeed, given δ > 0

and ΠD computing DISJn with error ε and satisfying QIC(ΠD, µ
⊗n
0 ) ≤ In + δ, we can use

Lemma 1.6.7 with ρ1 = µ0, ρ2 = µ⊗n−1
0 and then it is clear that Π1 computes DISJ1 with

error ε and Π2 computes DISJn−1 with error ε. We get

In + δ ≥ QIC(ΠD, µ
⊗n
0 )

= QIC(Π1, µ0) +QIC(Π2, µ⊗n−1
0 )

≥ I1 + In−1

≥ nI1.

The following lemma is very similar to Theorem 6.3.10. The only difference is that the

distributions we consider are restricted and on the right hand side the error of the protocol

is measured in the worst case. Since the error is worst case, there is no loss in the error, and

the payoff function would be simply PB(Π, µ) = QIC(Π, µ)/I.

Lemma 6.3.19.

QICr
0(AND, ε) = max

µ0,µ0(1,1)=0
inf

Π∈T r(AND,ε)
QIC(Π, µ0)
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Lemma 6.3.20. For all r, n ∈ N,

QCCr(DISJn, 1/3) ≥ n ·QICr
0(AND, 1/3)

Proof. The result follows from the following chain of inequality:

QCCr(DISJn, 1/3) ≥ QICr(DISJn, 1/3)

≥ max
µ0

inf
ΠD∈T r(DISJn,1/3)

QIC(ΠD, µ
⊗n
0 )

≥ max
µ0

inf
ΠA∈T r(AND,1/3)

n ·QIC(ΠA, µ0)

≥ n ·QICr
0(AND, 1/3).

The first inequality is by Lemma 6.3.3, the second since, on the r.h.s., the maximization is

over a smaller set of product distributions with µ0(1, 1) = 0 and the minimization over a

larger set of protocols, the third is by Lemma 6.3.18, and the last is by Lemma 6.3.19.

6.4 Lower bound on QIC by generalized discrepancy

method

6.4.1 Compression

Definition 6.4.1. We say that QCC(fk, µk, η1k, η2) ≤ C if there exists a protocol π for fk

s.t. QCC(π) ≤ C and

Pr[π computes ≥ η1k coordinates correctly] ≥ 1− η2
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Here the probability is both over the distribution µk and the randomness of protocol (which

includes the randomness due to quantum measurements). We don’t require the protocol to

declare which coordinates were computed correctly.

Lemma 6.4.2. If there exists a protocol Π for f with error ≤ ε w.r.t µ s.t. QIC(Π, µ) = I,

then for all ε′, δ > 0, there exists k0(Π, µ, ε′, δ) such that for all k ≥ k0, QCC(fk, µk, (1 −

2ε)k, e−2ε2k + ε′) ≤ k(I + δ).

Proof. Suppose (E1, . . . , Ek) is the vector of indicator random variables of the errors in

various coordinates of Π⊗k i.e. Ei = 1 if error occurred on the ith coordinate. Also look at

Πk obtained from lemma 1.6.11 for large enough k with parameters 2ε′, δ and where ρ is µ.

Suppose (E
′
1, . . . , E

′

k) is the vector of errors for Πk. According to lemma 1.6.11, Πk satisfies

the following:

E((x1,...,xk),(y1,...,yk))∼µk ||Πk((x1, . . . , xk), (y1, . . . , yk))− Π⊗k((x1, . . . , xk), (y1, . . . , yk))||1 ≤ 2ε′

Hence it follows that

||(E1, . . . , Ek)− (E
′

1, . . . , E
′

k)||TV ≤ ε′

Here ||P−Q||TV is the total variation distance between the distributions P and Q (we are not

distinguishing between random variables and their distributions). Since Pr[
∑

iEi ≥ 2εk] ≤

e−2ε2k by Chernoff bounds, it follows that

Pr

[∑
i

E
′

i ≥ 2εk

]
≤ e−2ε2k + ε′

which implies the lemma along with the fact that QCC(Πk) ≤ (I + δ)k.
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6.4.2 Average case to worst case

In this section, we prove the following lemma which turns a protocol for average case input

to a protocol for worst case input.

Lemma 6.4.3. Suppose fn : {0, 1}n × {0, 1}n → {0, 1} is an arbitrary boolean function.

Let k ≥ 25n and ε > 10k−0.005. Assume for any product input distribution µk, there ex-

ists a protocol πµk with QCC
(
πµk
)
≤ l that computes at least (1− α) k coordinates of

fkn correctly with probability at least γ. Then there exists a protocol τ s.t. for any input

((x1, · · · , xk), (y1, · · · , yk)), for any integer c ≥ 3 and constant ε > 0, τ computes at least(
1− 2−c/2 − cα

)
k coordinates of fkn correctly with probability at least 1

2

((
γ

(1+ε)k

)c
− 2−22−2ck

)
.

Also QCC (τ) ≤ c · l + o (k).

Proof. In this lemma, we want to construct a protocol τ which works for an arbitrary input

based on protocols which work on product input distributions (product across coordinates).

The main idea of the proof is that corresponding to any input ((x1, ..., xk), (y1, ..., yk)) (xi

and yi are inputs of a fn instance and have n bits), we can associate a µ, which is the

empirical distribution:

µ (x, y) =
# of i, (xi, yi) = (x, y)

k
.

So it makes sense to construct τ from πµk . The players can simulate µk by sampling in-

dependent coordinates from their input (with replacement). However the issue is that the

players don’t know µ, so they have no idea what πµk is. So in the actual protocol Alice and

Bob will first sample some coordinates to get an estimate µ̃ of µ and then run protocol πµ̃k .

The protocol τ is described in Protocol 8.

Now let’s analyze this protocol. We first need the following two lemmas to show how to

get an estimate µ̃ of µ.

Lemma 6.4.4. After communicating O(k0.52 log k) bits, for some specific input (x, y), with
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Inputs: (x1, . . . , xk) and (y1, . . . , yk)

1. Get an estimate µ̃ of µ.

2. Alice and Bob use shared randomness to obtain random independent samples from
[k], j1, . . . , jck. Run the protocol πµ̃k c times. In the tth iteration, the protocol is run
on inputs (xj(t−1)k+1

, . . . , xjtk), (yj(t−1)k+1
, . . . , yjtk). In the process we obtain answers for

various coordinates (some of the coordinates will be sampled multiple times and we
will obtain multiple answers for them).

3. If a coordinate was sampled in the previous step, output the answer πµ̃k gave for it.
If they got multiple results on one coordinate, they will output the first one. If a
coordinate was not sampled, output 0 on that coordinate.

Protocol 8: Protocol τ

success probability at least 1− 1/k, Alice and Bob know µ(x, y) exactly if µ(x, y) · k < k0.02,

otherwise Alice and Bob know that µ(x, y) · k ≥ k0.02.

Proof. In [BCW98], they showed that to compute the disjointness between two inputs of

length k, the quantum communication complexity is O(
√
k log k). The corresponding pro-

tocol has constant error rate and will find one intersection place. We will use this protocol

to solve our problem by the following reduction. For each input (xi, yi), we set ai = 1xi=x

and bi = 1yi=y. Then finding (x, y) in the input is just like finding intersection between

a = (a1, ..., ak) and b = (b1, ..., bk). Protocol 9 shows how to finish the task described in the

lemma.

1. Set a and b as we just described. Set cnt = 0.

2. Do the following step c1 ·k0.02 times, c1 is some constant to be figured out in the proof:

3. Use protocol for DISJ in [BCW98] to find the intersection between a and b, let it be at
place j, Alice and Bob communicate 2 bits to check if aj = bj = 1. If it is true, then
set cnt = cnt+ 1, aj = 0, bj = 0.

Protocol 9: Protocol count

Let’s analyze this protocol. First its quantum communication cost is clear to be O(k0.52 log k)

as the DISJ protocol has quantum communication cost O(
√
k log k). Then for each repeat
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of step 3, if the DISJ protocol gives wrong answer, we will not do anything. And if the

DISJ protocol gives the correct intersection, the counter will be increased by one and the

intersection place will be removed and we can find other intersections. Thus we only have

to show with probability at least 1− 1/k, DISJ protocol gives a correct answer for at least

k0.02 times. Assume the DISJ protocol succeeds with some constant probability p. Let Cr

denote the random variable for the number of correct answers DISJ protocol gives. We know

E[Cr] = p · c1 · k0.02. By the additive Chernoff bound, the probability that DISJ protocol

give a correct answer for at least k0.02 times is

Pr[Cr ≥ k0.02] = 1− Pr[Cr < k0.02] ≥ 1− e−2(p·c1·k0.02−k0.02)2/(c1·k0.02).

By picking c1 properly, for example c1 = 2/p, we get Pr[Cr ≥ k0.02] ≥ 1− 1/k.

Lemma 6.4.5. Let ε > 10k−0.005 be some constant. After communicating

O (k0.99 · n+ 22n · k0.52 log k) bits, with probability at least 1/2, Alice and Bob agree on some

µ̃, such that for any (x, y), µ̃(x,y)
µ(x,y)

< 1 + ε.

Proof. We use the following protocol to estimate µ:

Inputs: (x1, . . . , xk) and (y1, . . . , yk)

1. Sample the coordinates randomly k0.99 times using public randomness (with re-
placement). Alice and Bob exchange their input for these coordinates. For each
(x, y) ∈ {0, 1}n × {0, 1}n, count the number of times it appears in these coordinates
and denote the count by c1(x, y).

2. For all (x, y), use Lemma 6.4.4 to count the number of times (x, y) appears in the input
and denote the count obtained by c2 (x, y).

3. We combine c1 and c2 as c3. For each (x, y), if c2 (x, y) ≥ k0.02, let c3 (x, y) = c1 (x, y) ·
k0.01 otherwise c3 (x, y) = c2 (x, y).

4. µ̃ (x, y) = c3(x,y)∑
x′,y′ c3(x′,y′)

.

Protocol 10: Estimate µ
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Let’s first analyze the communication cost of this part. It’s clear that the first step

needs at most O (k0.99n) communication. For second step, by Lemma 6.4.4, it needs at most

O (22n · k0.52 log k) communication. Sum them up, this protocol needs

O (k0.99 · n+ 22n · k0.52 log k) bits of communication.

Then let’s consider the following events:

1. For all (x, y) such that µ (x, y) · k ≥ k0.02, |c1 (x, y) · k0.01 − µ (x, y) · k| < ε
3
µ (x, y) · k.

2. For any (x, y), the protocol described in Lemma 6.4.4 does not fail.

If these two events happen, then we know that |c3 (x, y) − µ (x, y) · k| < ε
3
µ (x, y) · k,

therefore as desired,

µ̃ (x, y) =
c3 (x, y)∑

x′,y′ c3 (x′, y′)
≤
(
1 + ε

3

)
µ (x, y) · k(

1− ε
3

)
· k

< (1 + ε)µ (x, y) .

Finally, we only have to make sure that these two events happen with probability at least

1/2. For the first event, by the multiplicative Chernoff bound and union bound, it does not

happen with probability

22n · Pr[|c3 (x, y) /k0.99 − µ (x, y) | > ε

3
µ (x, y)] < 2ke−

(ε/3)2µ(x,y)k0.99

3 ≤ 2ke−ε
2k0.01/27 < 1/4.

For the second event, by Lemma 6.4.4 and the union bound, it does not happen with proba-

bility at most 22n · 1
k
< 1/4. Thus these two events happen with probability at least 1/2.

Let’s consider the communication cost of τ . For the first step, the cost is

O
(
k0.99 · n+ 22n · k0.52 log k

)
= o (k)

For the second step, the quantum communication complexity is at most c · l. For the third

step, the cost is 0. Therefore QCC (τ) ≤ c · l + o (k).
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Let’s say that the protocol τ succeeds when the following things happen:

1. For all (x, y), µ̃(x,y)
µ(x,y)

< 1 + ε.

2. The c runs of protocol πµ̃k in step 2 of protocol τ all compute at least (1− α) k

coordinates correctly.

3. Number of i ∈ [k] such that the coordinate i is not sampled in step 2 of protocol τ is

at most 2−c/2k.

If τ succeeds, then it computes at least
(
1− 2−c/2 − cα

)
k coordinates correctly. This is

because errors come from two possible ways:

1. Some coordinates are not sampled. When τ succeeds, the number of coordinates that

are not sampled is at most 2−c/2k.

2. Some coordinates’ results are wrong in step 2. When τ succeeds, the number of errors

from step 2 is at most αck.

Finally, let’s analyze the success probability of protocol τ . Let’s analyze step by step:

1. For step one, by Lemma 6.4.5, it is clear that we succeed with probability 1/2.

2. For step two, first we know that when running πµ̃k on distribution µ̃k, we succeed with

probability at least γ. And since we have for any (x, y), µ̃(x,y)
µ(x,y)

< 1 + ε, if we run πµ̃k

on distribution µk, the success probability will be at least γ

(1+ε)k
. When running this

protocol c times independently, the success probability will be at least
(

γ

(1+ε)k

)c
. Note

that when we sample coordinates independently at random, the distribution we induce

is µk.

3. It is only left to analyze the probability that number of coordinates not sampled in

step 2 of protocol τ is at least 2−c/2k. For each coordinate i, define si to be the random
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variable that indicates whether coordinate i is sampled or not (1 means not sampled

and 0 means sampled). Then we have E[si]=
(
1− 1

k

)ck
< 2−c. In order to show the

failure probability small by Chernoff bound, we will show that all the si’s are negatively

correlated. To show they are negatively correlated, we only have to show

∀I ⊆ [k],Pr

[∏
i∈I

si = 1

]
≤
∏
i∈I

Pr[si = 1].

Notice that Pr
[∏

i∈I si = 1
]

=
(

1− |I|
k

)kc
and Pr[si = 1] =

(
1− 1

k

)kc
. So we have,

∀I ⊆ [k],Pr

[∏
i∈I

si = 1

]
=

(
1− |I|

k

)kc
≤

((
1− 1

k

)|I|)kc

=
∏
i∈I

Pr[si = 1].

Since all the si’s are negatively correlated, by Chernoff bound for negatively correlated

random variables, for example see [DP], we have that the failure probability

Pr

[
k∑
i=1

si ≥ 2−c/2k

]
< e−2k(2−c/2−2−c)

2

< e−22−2ck < 2−22−2ck.

The second inequality holds for all c ≥ 3. Notice that the event that we err in the first step

is independent from the event that we err in the second step. So the success probability of

τ is at least 1
2

((
γ

(1+ε)k

)c
− 2−22−2ck

)
.

6.4.3 Lower bound on QIC

Definition 6.4.6. We say that QCC(fk, η1k, η2) ≤ C if there exists a protocol π for fk s.t.

QCC(π) ≤ C and

Pr[π computes ≥ η1k coordinates correctly] ≥ 1− η2

172



Here the probability is over randomness of protocol (which includes the randomness due to

quantum measurements). We don’t require the protocol to declare which coordinates were

computed correctly.

Theorem 6.4.7. There exists an absolute constant η > 0 s.t. for any boolean function f ,

QICD(f, η) ≥ Ω(GDM1/5(f)−O(1)).

Proof. Let η > 0 be a sufficiently small constant to be fixed later. Suppose maxµQIC(f, µ, η) =

I. We will show that for sufficiently large k, it holds that

QCC(fk, (1− εsh)k, 1− 2−εshk) ≤ O(k · (I + 2)) + o(k)

from which the theorem follows from Theorem 1.5.6.

By definition, for all µ, there exists a protocol Πµ for f s.t. QIC(Πµ, µ) ≤ I + 1 and

error ≤ η w.r.t µ. By lemma 6.4.2, for sufficiently large k, there exists a protocol Πk,µ,ε′ s.t.

QCC(Πk,µ,ε′) ≤ k(I + 2) and

Pr[Πk,µ,ε′ computes ≥ (1− 2η)k coordinates of fk correctly] ≥ 1− e−2η2k − ε′

Here the probability is over the distribution µk and the randomness of the protocol. Choose

k large enough and ε′ small enough so that 1− e−2η2k − ε′ ≥ 0.9. Then by lemma 6.4.3, for

any integer c > 0, any constant ε > 0, there exists a protocol τ s.t.

Pr[τ computes ≥ (1− 2−c/2 − 2cη)k coordinates correctly]

≥ 1

2

((
0.9

(1 + ε)k

)c
− 2−22−2ck

)

This holds for any input (x1, . . . , xk, y1, . . . , yk) and the probability is only over the random-
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ness of the protocol. Also QCC(τ) ≤ c · k · (I + 2) + o(k). Choose c = d2 log
(

2
εsh

)
e. Also

choose η = εsh
4c

. Then

1− 2−c/2 − 2cη ≥ 1− εsh

Since 22x ≥ 1 + x for all x > 0, it follows that

(
0.9

(1 + ε)k

)c
≥ 0.9c · 2−2·ε·c·k ≥ 2−(2εk+1)·c ≥ 2−4·ε·c·k

The last inequality is true for sufficiently large k. Now choose ε = ε4sh/100c. Then since

2−22−2ck ≤ 2−ε
4
shk/16

we get that

1

2

((
0.9

(1 + ε)k

)c
− 2−22−2ck

)
≥ 1

2

(
2−ε

4
shk/25 − 2−ε

4
shk/16

)
≥ 2−ε

4
shk/16

≥ 2−εshk

The second inequality holds for sufficiently large k. Hence QCC(τ) ≤ c · k · (I + 2) + o(k)

and

Pr[τ computes ≥ (1− εsh)k coordinates correctly (on any input (x1, . . . , xk, y1, . . . , yk))]

≥ 2−εshk

which implies that QCC(fk, (1− εsh)k, 1− 2−εshk) ≤ O(k · (I + 2)) + o(k).

Corollary 6.4.8. For all boolean functions f , QCC(f, 1/3) ≤ 2O(QIC(f,1/3)+1).

Proof. We will use the following folklore result:
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R(f, 1/3) ≤
(

1

disc(f)

)O(1)

where R(f, 1/3) is the (public-coin) randomized communication complexity of f with error

1/3 and disc(f) = minµ discµ(f). See, for example, exercise 3.32 in [KN97]. This implies

QCC(f, 1/3) ≤ R(f, 1/3) ≤
(

1

disc(f)

)O(1)

≤ 2O(GDM1/5(f)) (6.6)

Now, by theorem 6.4.7 and theorem 6.3.13, we get that QIC(f, η) ≥ Ω(GDM1/5(f) −

O(1)) for some small constant η. By lemma 6.3.15, we also get that QIC(f, 1/3) ≥

Ω(GDM1/5(f)−O(1)), which combined with equation (6.6) completes the proof.

6.5 From AND to DISJ

In this section, we show that a protocol with low quantum information cost for AND implies

a protocol with low quantum information cost for Disjointness

Lemma 6.5.1.

max
ν

QIC(DISJn, ν, 2/n) ≤ n ·QICr
0(AND, 1/n2) +O(r · log5(n)) + o(

√
n) (6.7)

Proof. Let QICr
0(AND, 1/n2) = I. Suppose π is a protocol for AND which has error ≤ 1/n2

for all inputs and s.t. maxµ s.t. µ(1, 1) = 0 QIC(π, µ) ≤ I + δ, for arbitrary small δ. Using π,

we will construct a protocol for DISJn. The protocol will have low information cost w.r.t.

any distribution ν. Suppose τk is a quantum protocol for DISJk that has worst case error

≤ 1/k10 and communication cost O(
√
k log(k)). For example, use the protocol from [AA03]
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and amplify the error to 1/k10. We’ll drop the subscript k when it is clear from the context.

Consider the protocol πn described as Protocol 11.

Inputs: (x, y) ∈ {0, 1}n × {0, 1}n, (x, y) ∼ ν
Goal: check if DISJn(x, y) = 1 or not.

1. Alice and Bob share a maximally entangled state φSASBS that will serve as shared
randomness in order to sample uniformly at random n/ log3(n) coordinates from [n]
(with replacement). Alice has the register SA and Bob has SB.

2. On the random coordinates, run τ . Suppose OA is the output register for Alice and OB

is the output register for Bob. Note that all this can be implemented using unitaries.
Also note either OA = OB = 1 or OA = OB = 0.

3. If OA = OB = 1, then run π on each coordinate. If π outputs 1 on any coordinate,
then output 0, otherwise output 1. If OA = OB = 0, Alice and Bob will keep running
a dummy protocol (for example keep exchanging a freshly prepared register |0〉 of
dimension same as to be sent in πn in the corresponding step). In the end they output
0.

Protocol 11: Subsampling Protocol πn

We’ll denote the protocol in which π is run independently on each coordinate by πn. First

lets analyze the error of the protocol πn. Suppose (x, y) were disjoint. Then probability that

we output 0 because of τ is at most log30(n)/n10 ≤ 1/n. And the probability that we output

0 because of πn is at most n/n2 = 1/n because of union bound. So error in this case ≤ 2/n.

If the sets were intersecting, even if we don’t output 0 because of τ , we will output 0 because

of πn w.p. at least 1− 1/n2 (because on the intersecting coordinate, 1/n2 is the probability

of failure). So in both cases, probability of error ≤ 2/n.

Now lets figure out the information cost of πn. For running τ , we just bound the informa-

tion cost by communication cost, which is at most
√
n/
√

log(n) = o(
√
n). The interesting

part is what happens after τ . Lets look at the state of Alice and Bob after τ is over. Al-

ice holds the registers Aτ , OA, SA, where Aτ is what is left behind with Alice after τ , OA

is Alice’s output register for τ and SA is the entanglement register which acts as shared

randomness. Similarly Bob holds Bτ , OB, SB. After running i steps of πn (just before the
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(i + 1)th message is transmitted), Alice and Bob hold registers Ai+1 and Bi+1 respectively,

with Ci+1 (the register to be sent next) with Alice if i even and with Bob if i odd. Note that

the number of rounds of π is r. Then the information cost of step 3 is:

1

2
·

r−1∑
i=0,i even

I(Ci+1;R|Bi+1, Bτ , OB, SB) +
1

2
·

r−1∑
i=0,i odd

I(Ci+1;R|Ai+1, Aτ , OA, SA)

≤ 1

2
·

r−1∑
i=0,i even

I(Ci+1;R,Bτ , OB, SB|Bi+1) +
1

2
·

r−1∑
i=0,i odd

I(Ci+1;R,Aτ , OA, SA|Ai+1)

≤ 1

2
·

r−1∑
i=0,i even

I(Ci+1;R,Bτ , OB, SB, Aτ , OA, SA|Bi+1)+

1

2
·

r−1∑
i=0,i odd

I(Ci+1;R,Bτ , OB, SB, Aτ , OA, SA|Ai+1)

=
1

2
·

r−1∑
i=0,i even

I(Ci+1;OA|Bi+1) +
1

2
·

r−1∑
i=0,i even

I(Ci+1;R,Bτ , SB, Aτ , SA|Bi+1, OA)+

1

2
·

r−1∑
i=0,i even

I(Ci+1;OB|Bi+1, R,Bτ , SB, Aτ , SA, OA)+

1

2
·

r−1∑
i=0,i odd

I(Ci+1;OA|Ai+1) +
r−1∑

i=0,i odd

I(Ci+1;R,Bτ , SB, Aτ , SA|Ai+1, OA)+ (6.8)

1

2
·

r−1∑
i=0,i odd

I(Ci+1;OB|Ai+1, R,Bτ , SB, Aτ , SA, OA)

≤ 1

2
·

r−1∑
i=0,i even

I(Ci+1;R,Bτ , SB, Aτ , SA|Bi+1, OA)+

1

2
·

r−1∑
i=0,i odd

I(Ci+1;R,Bτ , SB, Aτ , SA|Ai+1, OA) +O(r)

=
1

2
·

r−1∑
i=0,i even

Pr[OA = 1] · I(Ci+1;R,Bτ , SB, Aτ , SA|Bi+1, OA = 1)+

1

2
·

r−1∑
i=0,i odd

Pr[OA = 1] · I(Ci+1;R,Bτ , SB, Aτ , SA|Ai+1, OA = 1) +O(r)
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The first two inequalities are by properties of mutual information. The first equality is just

chain rule. Third inequality follows from the fact that OA, OB are one dimensional systems.

The last equality is true because OB is just a copy of OA, so tracing out OB, OA becomes

a classical system and also conditioned on OA = 0, the mutual information expressions are

0 since in that case the Ci+1 registers are independent of everything else. Now lets analyze

the term:

1

2
·

r−1∑
i=0,i even

I(Ci+1;R,Bτ , SB, Aτ , SA|Bi+1, OA = 1) +
1

2
·

r−1∑
i=0,i odd

I(Ci+1;R,Bτ , SB, Aτ , SA|Ai+1, OA = 1)

We claim that this is equal to QIC(πn, ν ′), where ν ′ is the distribution ν|OA = 1. This

follows from the following observations:

• SinceOB is just a copy ofOA, for all i, the state of systemsAi+1, Bi+1, Ci+1, R,Bτ , SB, Aτ , SA

conditioned on OA = 1 (the post-measurement state if OA is measured and the result

is 1) is pure.

• For all i, the marginal state of systems Ai+1, Bi+1, Ci+1 conditioned on OA = 1 is the

same as it would have been if πn was run starting from the distribution ν ′. This is

because πn never touches the registers Bτ , SB, Aτ , SA.

• If |φ〉R
′,A,B,C and |ψ〉R,A,B,C are two pure states such that TrR′ |φ〉R

′,A,B,C = TrR |ψ〉R,A,B,C .

Then I(C;R′|B)φ = I(C;R|B)ψ.

Remark 6.5.2. The reader might have noticed that the trick of merging stuff with the pu-

rification register and then applying the last observation is used at a lot of places in this

chapter. This seems to be a very useful trick and seems to replace the classical Proposition

2.9 from [Bra12].

Putting it all together, we have the following upper bound on information cost of step 3:
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Pr[OA = 1] ·QIC(πn, ν ′) +O(r)

≤ Pr[OA = 1] ·

(
n∑
i=1

QIC(π, ν ′i)

)
+O(r)

≤ Pr[OA = 1] · n ·QIC

(
π,

n∑
i=1

ν ′i/n

)
+O(r)

≤ Pr[OA = 1] · n · (I + δ) +O(Pr[OA = 1] · n · rH(w)) +O(r) (6.9)

Here ν ′i is the marginal distribution on the ith coordinate and w =
∑n

i=1 ν
′
i(1, 1)/n. First

inequality is by lemma 6.3.14. Second inequality is just concavity of information cost, lemma

1.6.10. The last inequality follows from corollary 6.3.9. Now we can assume that Pr[OA =

1] ≥ 1/n, otherwise (6.9) is trivially bounded by O(r). Now let us bound w. Suppose (X, Y )

are random variables s.t. (X, Y ) ∼ ν. Also let N(x, y) be the number of intersections in x

and y i.e. number of i such that xi = yi = 1. Then

Pr[N(X, Y ) = d|OA = 1] =
Pr[N(X, Y ) = d] · Pr[OA = 1|N(X, Y ) = d]

Pr[OA = 1]

≤ Pr[N(X, Y ) = d] · Pr[OA = 1|N(X, Y ) = d] · n

≤ Pr[N(X, Y ) = d] ·

((
1− d

n

)n/ log3(n)

+
log30(n)

n10

)
· n

≤ e−d/ log3(n) · n+
log30(n)

n9

The second inequality follows because if there are d intersections, then getting no inter-

section in n/ log3(n) uniformly random coordinates is at most the first term. The second

term is due to the error of the amplified protocol for disjointness. So for d ≥ 9 ln(2) log4(n),

Pr[N(X, Y ) = d|OA = 1] ≤ 1/n8. Thus
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w =
n∑
i=1

ν ′i(1, 1)/n = E(X,Y )∼ν′N(X, Y )/n ≤ O(log4(n)/n)

Thus we can bound (6.9) as follows:

Pr[OA = 1] · n · (I + δ) +O(Pr[OA = 1] · n · rH(w)) +O(r)

≤ n · (I + δ) +O(n · rH(w)) +O(r)

≤ n · (I + δ) +O(r log5(n))

Since δ was arbitrary small, this completes the proof.

6.6 Proof of the main result

We now put everything together to get a lower bound on QICr
0(AND, 1/3).

Lemma 6.6.1. For all r, it holds that

QICr
0(AND, 1/3) ≥ Ω

(
1

r · log8 r

)
.

Proof. We know by theorem 1.5.7 that GDM1/5(DISJn) ≥ Ω (
√
n). Hence, by Theorem

6.4.7, we must have that maxµQIC(DISJn, µ, 2/n) ≥ Ω(
√
n). Putting this together with

Lemma 6.5.1 and Corollary 6.3.17, and let r = Θ
( √

n

log6 n

)
, we have,

QICr
0(AND, 1/3) = Ω

(
1

√
n · log2 n

)
= Ω

(
1

r · log8 r

)
.
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Corollary 6.6.2. Let µ∗ be the distribution such that µ∗(0, 0) = 1/3, µ∗(0, 1) = 1/3, µ∗(1, 0) =

1/3. Then

inf
Π∈T r(AND,1/3)

QIC(Π, µ∗) = Ω

(
1

r · log8 r

)
.

Proof. For any distribution µ0 such that µ0(1, 1) = 0, it is easy to see that µ∗ can be written

as µ∗ = 1
3
µ0 + 2

3
µ′ where µ′ is some other valid distribution. By Lemma 1.6.10, we have

QIC(Π, µ∗) ≥ 1

3
QIC(Π, µ0) +

2

3
QIC(Π, µ′) ≥ 1

3
QIC(Π, µ0).

Then we have

QIC(Π, µ∗) ≥ 1

3
max

µ0,µ0(1,1)=0
QIC(Π, µ0).

Therefore by Lemma 6.6.1, we have

inf
Π∈T r(AND,1/3)

QIC(Π, µ∗) ≥ 1

3
QICr

0(AND, 1/3) = Ω

(
1

r · log8 r

)
.

Theorem 6.6.3. For all r, n ∈ N, QCCr(DISJn, 1/3) = Ω
(

n
r·log8 r

)
.

Proof. Combining Lemma 6.3.20 and Lemma 6.6.1, we get this theorem.

6.7 Low information protocol for AND

In this section, we exhibit a Õ(1/r) information 4r-round protocol for AND (w.r.t. the prior

1/3, 1/3, 1/3, 0) which computes correctly on all inputs with probability 1. The protocol is

due to Jain, Radhakrishnan and Sen. Consider the protocol described in Protocol 12.
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Inputs: (x, y) ∈ {0, 1} × {0, 1}
Goal: compute AND(x, y)

1. Set θ = π
8r

. Let |v〉 be the vector cos(θ) |0〉+ sin(θ) |1〉. Let Uv be the unitary operation
of reflecting about the vector |v〉 i.e. Uv |0〉 = cos(2θ) |0〉+ sin(2θ) |1〉 and Uv |1〉 =
sin(2θ) |0〉− cos(2θ) |1〉. Also let Z be the unitary operation of reflecting about |0〉 i.e.
Z |0〉 = |0〉 and Z |1〉 = − |1〉.

2. Alice starts by preparing a qubit C in state |0〉.

3. If x = 0, Alice applies the identity operation on C and sends it to Bob. If x = 1, Alice
applies the Uv operation on C and sends it to Bob.

4. If y = 0, Bob applies the identity operation on C and sends it to Alice. If y = 1, Bob
applies the Z operation on C and sends it to Alice.

5. After 4r − 1 rounds, Bob measures the register C. If the result is 1, then he answers
1, otherwise 0. He also sends this to Alice.

Protocol 12: Protocol for AND

First let us see why it computes AND. Let |ψx,yi 〉 = cos(φx,yi ) |0〉+ sin(φx,yi ) |1〉 be the

state of qubit C after i rounds when the input is (x, y). If the input is 0, 0, φ0,0
i is always 0.

Also when the input is 0, 1, φ0,1
i is always 0. So

∣∣ψ0,0
i

〉
=
∣∣ψ0,1

i

〉
= |0〉 always. When the input

is 1, 0, φ1,0
i follows the trajectory 2θ → 2θ → 0 → 0 → 2θ → · · · . So

∣∣ψ1,0
4r−1

〉
= |0〉 as well.

When the input is 1, 1, φ1,1
i follows the trajectory 2θ → −2θ → 4θ → −4θ → · · · → −π/2.

So
∣∣ψ1,1

4r−1

〉
= − |1〉. Thus the players compute AND correctly.

Now let us analyze the information cost of this protocol. Note that after i rounds the

full state can be written as follows:

|ψi〉XY CR =
∑

x, y s.t. x ∧ y = 0

1√
3
|x〉X |y〉Y |ψx,yi 〉

C |x, y〉R

Then information cost is given by:
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1

2
·

4r−1∑
i=1,odd

I(C;R|Y )ψi +
1

2
·

4r−1∑
i=1,even

I(C;R|X)ψi

Let us look at a particular term:

I(C;R|Y )ψi = H(C, Y )ψi +H(R, Y )ψi −H(C,R, Y )ψi −H(Y )ψi

= H(C, Y )ψi +H(C,X)ψi −H(X)ψi −H(Y )ψi

= H(C|Y )ψi +H(C|X)ψi

=
2

3
H(C|Y = 0)ψi +

1

3
H(C|Y = 1)ψi +

2

3
H(C|X = 0)ψi +

1

3
H(C|X = 1)ψi

=
2

3
H(C|Y = 0)ψi

First equality is by definition. For second equality, we are using the fact that for a pure

state on some systems A,B, H(A) = H(B). Third equality is again by definition. For

fourth equality, we use the fact that if we trace out R, X, Y become classical. For the fifth

equality, we use the fact that conditioned on Y = 1, system C is in a pure state, namely∣∣ψ0,1
i

〉
. Similarly conditioned on X = 1, it is in state

∣∣ψ1,0
i

〉
. Conditioned on X = 0, C is in

the state |0〉. Now conditioned on Y = 0, C is in the state:

1

2

∣∣ψ0,0
i

〉 〈
ψ0,0
i

∣∣+1

2

∣∣ψ1,0
i

〉 〈
ψ1,0
i

∣∣
This is |0〉 if i ≡ 3(mod 4) and if i ≡ 1(mod 4), the density matrix is given by:
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ρ =

 1
2

+ 1
2

cos2(2θ) 1
2

cos(2θ) sin(2θ)

1
2

cos(2θ) sin(2θ) 1
2

sin2(2θ)


Eigenvalue computation shows that H(ρ) = H(sin2(θ)) = O(θ2 log(1/θ)) = O(log(r)/r2). So

some of Alice’s terms are 0 and some are O(log(r)/r2). Similarly some of Bob’s terms are 0

and some are O(log(r)/r2). So in total we get that the information cost is O(log(r)/r). Note

that from the protocol it might seem that since the roles of Alice and Bob are asymmetric,

only Alice is sending information and Bob is not. However this definition of quantum infor-

mation cost also accounts for sending back information in some sense. For example, in some

of the rounds, Alice is sending Bob some information but Bob is sending it back, so that is

accounted for. This results in Bob’s part of the cost to be non-zero and in fact equal to that

of Alice.

Now let us see what happens if we place a small mass w on (1, 1) entry. Then the full

state can be described as follows:

|ψi〉XY CR =
∑

x, y s.t. x ∧ y = 0

√
1− w

3
|x〉X |y〉Y |ψx,yi 〉

C |x, y〉R +
√
w |1〉X |1〉Y

∣∣ψ1,1
i

〉C |1, 1〉R
The ith term of the information cost as before is given by:

2(1− w)

3
H(C|Y = 0)ψi +

1 + 2w

3
H(C|Y = 1)ψi +

2(1− w)

3
H(C|X = 0)ψi

+
1 + 2w

3
H(C|X = 1)ψi

=
2(1− w)

3
H(C|Y = 0)ψi +

1 + 2w

3
H(C|Y = 1)ψi +

1 + 2w

3
H(C|X = 1)ψi

As before H(C|X = 0)ψi = 0. But the other three terms are non-zero. H(C|Y = 0)ψi is the
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same as before. Let us focus on H(C|Y = 1)ψi . State of C conditioned on Y = 1 is given

by:

1− w
1 + 2w

∣∣ψ0,1
i

〉 〈
ψ0,1
i

∣∣+ 3w

1 + 2w

∣∣ψ1,1
i

〉 〈
ψ1,1
i

∣∣
For i odd, the density matrix is given by:

ρ =

 1−w
1+2w

+ 3w
1+2w

cos2((i+ 1)θ) 3w
1+2w

cos((i+ 1)θ) sin((i+ 1)θ)

3w
1+2w

cos((i+ 1)θ) sin((i+ 1)θ) 3w
1+2w

sin2((i+ 1)θ)


Eigenvalue computation shows that

H(ρ) = H

1−
√

1− 12w(1−w) sin2((i+1)θ)
(1+2w)2

2


Now assuming w ≤ 1/6 and considering i such that sin2((i+ 1)θ) ≥ 4/5, we get that

1−
√

1− 12w(1−w) sin2((i+1)θ)
(1+2w)2

2
≥

1−
√

1− 8w
(1+2w)2

2

=
1− 1−2w

1+2w

2

=
2w

1 + 2w

Since other terms involving w either have positive contribution or are of lower order, we get

that for a constant fraction of the rounds, the information cost term increases by an additive

Ω(H(w)). And hence overall the increase in information cost is at least Ω(rH(w)).
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Chapter 7

Communication Complexity Lower

Bounds for Statistical Estimation

The results in this chapter are based on joint work with Mark Braverman, Tengyu Ma,

Huy Nguyen and David Woodruff [BGM+16]. Results in [BGM+16] subsume the results in

[GMN14]. So we only include the results in the paper [BGM+16].

7.1 Introduction

Rapid growth in the size of modern data sets has fueled a lot of interest in solving statistical

and machine learning tasks in a distributed environment using multiple machines. Commu-

nication between the machines has emerged as an important resource and sometimes the

main bottleneck. A lot of recent work has been devoted to design communication-efficient

learning algorithms [DAW12, ZDW13, ZX15, KVW14, LBKW14, SSZ14, LSLT15].

In this paper we consider statistical estimation problems in the distributed setting, which

can be formalized as follows. There is a family of distributions P = {µθ : θ ∈ Ω ⊂ Rd} that

is parameterized by θ ∈ Rd. Each of the m machines is given n i.i.d samples drawn from
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an unknown distribution µθ ∈ P . The machines communicate with each other by message

passing, and do computation on their local samples and the messages that they receives from

others. Finally one of the machines needs to output an estimator θ̂ and the statistical error

is usually measured by the mean-squared loss E[‖θ̂ − θ‖2]. We count the communication

between the machines in bits.

This paper focuses on understanding the fundamental tradeoff between communication

and the statistical error for high-dimensional statistical estimation problems. Modern large

datasets are often equipped with a high-dimensional statistical model, while communication

of high dimensional vectors could potentially be expensive. It has been shown in [DJWZ14]

and [GMN14] that for the linear regression problem, the communication cost must scale with

the dimensionality for achieving optimal statistical minimax error – not surprisingly, the ma-

chines have to communicate high-dimensional vectors in order to estimate high-dimensional

parameters.

These negative results naturally lead to the interest in high-dimensional estimation prob-

lems with additional sparse structure on the parameter θ. It has been well understood that

the statistical minimax error typically depends on the intrinsic dimension, that is, the spar-

sity of the parameters, instead of the ambient dimension1. Thus it is natural to expect that

the same phenomenon also happens for communication.

However, this paper disproves this possibility in the interactive communication model

by proving that for the sparse Gaussian mean estimation problem (where one estimates

the mean of a Gaussian distribution which is promised to be sparse, see Section 7.2 for the

formal definition), in order to achieve the statistical minimax error, the communication must

scale with the ambient dimension. On the other end of the spectrum, if alternatively the

communication only scales with the sparsity, then the statistical error must scale with the

ambient dimension (see Theorem 7.4.6). Shamir [Sha14] establishes the same result for the

1the dependency on the ambient dimension is typically logarithmic.
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1-sparse case under a non-iterative communication model.

Our lower bounds for the Gaussian mean estimation problem imply lower bounds for

the sparse linear regression problem (Corollary 7.4.9) via the reduction of [ZDJW13]: for a

Gaussian design matrix, to achieve the statistical minimax error, the communication cost per

machine needs to be Ω(min{n, d}) where d is the ambient dimension and n is the dimension

of the observation that each machine receives. This lower bound matches the upper bound

in [LSLT15] when n is larger than d. When n is less than d, we note that it is not clear

whether O(n) or O(d) should be the minimum communication cost per machine needed. In

any case, our contribution here is in proving a lower bound that does not depend on the

sparsity. Compared to previous work of Steinhardt and Duchi [SD15], which proves the same

lower bounds for a memory-bounded model, our results work for a stronger communication

model where multi-round iterative communication is allowed. Moreover, our techniques are

possibly simpler and potentially easier to adapt to related problems. For example, we show

that the result of Woodruff and Zhang [WZ12] on the information complexity of distributed

gap majority can be reproduced by our technique with a cleaner proof (see Theorem 7.8.1).

We complement our lower bounds for this problem in the dense case by providing a

new simultaneous protocol, improving the number of rounds of the previous communication-

optimal protocol from O(logm) to 1 (see Theorem 7.4.7). Our protocol is based on a certain

combination of many bits from a few Gaussian samples, together with roundings (to a single

bit) of the fractional parts of many Gaussian samples.

Our proof techniques are potentially useful for other questions along these lines. We first

use a modification of the direct-sum result of [GMN14], which is tailored towards sparse

problems, to reduce the estimation problem to a detection problem. Then we prove what we

call a distributed data processing inequality for bounding from below the cost of the detection

problem. The latter is the crux of our proofs. We elaborate more on it in the next subsection.
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7.1.1 Distributed Data Processing Inequality

We consider the following distributed detection problem. As we will show in Section 7.4 (by

a direct-sum theorem), it suffices to prove a tight lower bound in this setting, in order to

prove a lower bound on the communication cost for the sparse linear regression problem.

Distributed detection problem: We have a family of distributions P that consist of

only two distributions {µ0, µ1}, and the parameter space Ω = {0, 1}. To facilitate the use of

tools from information theory, sometimes it is useful to introduce a prior over the parameter

space. Let V ∼ Bq be a Bernoulli random variable with probability q of being 1. Given

v ∈ {0, 1}, we draw i.i.d. samples X1, . . . , Xm from µv and the j-th machine receives one

sample Xj, for j = 1, . . . ,m. We use Π ∈ {0, 1}∗ to denote the sequences of messages that

are communicated by the machines. We will refer to Π as a “transcript”, and the distributed

algorithm that the machines execute as a “protocol”.

The final goal of the machines is to output an estimator for the hidden parameter v which

is as accurate as possible. We formalize the estimator as a (random) function v̂ : {0, 1}∗ →

{0, 1} that takes the transcript Π as input. We require that given V = v, the estimator is

correct with probability at least 3/4, that is, minv∈{0,1} Pr[v̂(Π) = v | V = v] ≥ 3/4. When

q = 1/2, this is essentially equivalent to the statement that the transcript Π carries Ω(1)

information about the random variable V . Therefore, the mutual information I(V ; Π) is also

used as a convenient measure for the quality of the protocol when q = 1/2.

Strong data processing inequality: The mutual information viewpoint of the accuracy

naturally leads us to the following approach for studying the simple case when m = 1 and

q = 1/2. When m = 1, we note that the parameter V , data X, and transcript Π form a

simple Markov chain V → X → Π. The channel V → X is defined as X ∼ µv, conditioned

on V = v. The strong data processing inequality (SDPI) captures the relative ratio between

I(V ; Π) and I(X; Π).
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Definition 7.1.1 (Special case of SDPI). Let V ∼ B1/2 and the channel V → X be defined

as above. Then there exists a constant β ≤ 1 that depends on µ0 and µ1, such that for any

Π that depends only on X (that is, V → X → Π forms a Markov Chain), we have

I(V ; Π) ≤ β · I(X; Π). (7.1)

An inequality of this type is typically referred to as a strong data processing inequality

for mutual information when β < 1 2. Let β(µ0, µ1) be the infimum over all possible β such

that (7.1) is true, which we refer to as the SDPI constant.

Observe that the LHS of (7.1) measures how much information Π carries about V , which

is closely related to the accuracy of the protocol. The RHS of (7.1) is a lower bound on the

expected length of Π, that is, the expected communication cost. Therefore the inequality

relates two quantities that we are interested in - the statistical quality of the protocol and the

communication cost of the protocol. Concretely, when q = 1/2, in order to recover V from

Π, we need that I(V ; Π) ≥ Ω(1), and therefore inequality (7.1) gives that I(X; Π) ≥ Ω(β−1).

Then it follows from Shannon’s source coding theorem that the expected length of Π (denoted

by |Π|) is bounded from below by E[|Π|] ≥ Ω(β−1). We refer to [Rag16] for a thorough survey

of SDPI.

In the multiple machine setting, Duchi et al. [DJWZ14] links the distributed detection

problem with SDPI by showing from scratch that for any m, when q = 1/2, if β is such that

(1−
√
β)µ1 ≤ µ0 ≤ (1 +

√
β)µ1, then

I(V ; Π) ≤ β · I(X1 . . . Xm; Π).

This results in the bounds for the Gaussian mean estimation problem and the linear regres-

2Inequality (7.1) is always true for a Markov chain V → X → Π with β = 1 and this is called the data
processing inequality.
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sion problem. The main limitation of this inequality is that it requires the prior Bq to be

unbiased (or close to unbiased). For our target application of high-dimensional problems

with sparsity structures, like sparse linear regression, in order to apply this inequality we

need to put a very biased prior Bq on V . The proof technique of [DJWZ14] seems also hard

to extend to this case with a tight bound3. Moreover, the relation between β, µ0 and µ1

may not be necessary (or optimal), and indeed for the Gaussian mean estimation problem,

the inequality is only tight up to a logarithmic factor, while potentially in other situations

the gap is even larger.

Our approach is essentially a prior-free multi-machine SDPI, which has the same SDPI

constant β as is required for the single machine one. We prove that, as long as the SDPI (7.1)

for a single machine is true with parameter β, and µ0 ≤ O(1)µ1, then the following prior-free

multi-machine SDPI is true with the same constant β (up to a constant factor).

Theorem 7.1.2 (Distributed SDPI). Suppose 1
c
· µ0 ≤ µ1 ≤ cµ0 for some constant c ≥ 1,

and let β(µ0, µ1) be the SDPI constant defined in Definition 7.1.1. Then in the distributed

detection problem, we have the following distributed strong data processing inequality,

h2(Π|V=0,Π|V=1) ≤ Kcβ(µ0, µ1) ·min{I(X1 . . . Xm; Π | V = 0), I(X1 . . . Xm; Π | V = 1)}

(7.2)

where K is a universal constant, and h(·, ·) is the Hellinger distance between two distributions

and Π|V=v denotes the distribution of Π conditioned on V = v.

As an immediate consequence, we obtain a lower bound on the communication cost for

the distributed detection problem.

Corollary 7.1.3. Suppose the protocol and estimator (Π, v̂) are such that for any v ∈ {0, 1},

given V = v , the estimator v̂ (that takes Π as input) can recover v with probability 3/4.

3We note, though, that it seems possible to extend the proof to the situation where there is only one-round
of communication.
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Then

max
v∈{0,1}

E[|Π| | V = v] ≥ Ω(β−1).

Our theorem suggests that to bound the communication cost of the multi-machine setting

from below, one could simply work in the single machine setting and obtain the right SDPI

constant β. Then, a lower bound of Ω(β−1) for the multi-machine setting immediately

follows. In other words, multi-machines need to communicate a lot to fully exploit the m

data points they receive (1 on each single machine) regardless of however complicated their

multi-round protocol is.

Organization of the chapter: Section 7.2 formally sets up our model and problems and

introduces some preliminaries. Then we prove our main theorem in Section 7.3. In Section 7.4

we state the main applications of our theory to the sparse Gaussian mean estimation problem

and to the sparse linear regression problem. The next three sections are devoted to the proofs

of results in Section 7.4. In Section 7.5, we prove Theorem 7.4.5. In Section 7.6 we provide

tools for proving single machine strong data processing inequality and prove Theorem 7.4.1.

In Section 7.7 we present our matching upper bound in the simultaneous communication

model. In section 7.8 we give a simple proof of distributed gap majority problems using our

machinery.

7.2 Problem Setup, Notations and Preliminaries

7.2.1 Distributed Protocols and Parameter Estimation Problems

Let P = {µθ : θ ∈ Ω} be a family of distributions over some space X , and Ω ⊂ Rd be

the space of all possible parameters. There is an unknown distribution µθ ∈ P , and our

goal is to estimate a parameter θ using m machines. Machine j receives n i.i.d samples

X
(1)
j , . . . , X

(n)
j from distribution µθ. For simplicity we will use Xj as a shorthand for all
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the samples machine j receives, that is, Xj = (X
(1)
j , . . . , X

(n)
j ). Therefore Xj ∼ µnθ , where

µn denotes the product of n copies of µ. When it is clear from context, we will use X as

a shorthand for (X1, . . . , Xm). We define the problem of estimating parameter θ in this

distributed setting formally as task T (n,m,P). When Ω = {0, 1}, we call this a detection

problem and refer it to as Tdet(n,m,P).

The machines communicate via a publicly shown blackboard. That is, when a machine

writes a message on the blackboard, all other machines can see the content. The messages

that are written on the blackboard are counted as communication between the machines.

Note that this model captures both point-to-point communication as well as broadcast com-

munication. Therefore, our lower bounds in this model apply to both the message passing

setting and the broadcast setting.

We denote the public randomness and the collection of all the messages written on the

blackboard by Π. We will refer to Π as the transcript and note that Π ∈ {0, 1}∗ is written

in bits and the communication cost is defined as the length of Π, denoted by |Π|. We will

call the algorithm that the machines follow to produce Π a protocol. With a slight abuse of

notation, we use Π to denote both the protocol and the transcript produced by the protocol.

One of the machines needs to estimate the value of θ using an estimator θ̂ : {0, 1}∗ → Rd

which takes Π as input. The accuracy of the estimator on θ is measured by the mean-squared

loss:

R((Π, θ̂), θ) = E
[
‖θ̂(Π)− θ‖2

2

]
,

where the expectation is taken over the randomness of the data X, and the randomness of

the protocol. The error of the estimator is the supremum of the loss over all θ,

R(Π, θ̂) = sup
θ∈Ω

E
[
‖θ̂(Π)− θ‖2

2

]
. (7.3)

The communication cost of a protocol is measured by the expected length of the transcript
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Π, that is, CC(Π) = supθ∈Ω E[|Π|]. The information cost IC of a protocol is defined as the

mutual information between transcript Π and the data X,

IC(Π) = sup
θ∈Ω

Iθ(Π;X | Rpub) (7.4)

where Rpub denotes the random variable for the public coins used by the protocol and

Iθ(Π;X | Rpub) denotes the mutual information between random variable X and Π (condi-

tioned on Rpub) when the data X is drawn from distribution µθ. We will drop the subscript

θ when it is clear from context. 4

For the detection problem, we need to define minimum information cost, a stronger

version of information cost

min-IC(Π) = min
v∈{0,1}

Iv(Π;X | Rpub) (7.5)

Definition 7.2.1. We say that a protocol and estimator pair (Π, θ̂) solves the distributed

estimation problem T (m,n, d,Ω,P) with information cost I, communication cost C, and

mean-squared loss R if IC(Π) ≤ I, CC(Π) ≤ C and R(Π, θ̂) ≤ R.

When Ω = {0, 1}, we have a detection problem, and we typically use v to denote the

parameter and v̂ as the (discrete) estimator for it. We define the communication and infor-

mation cost the same as above, while defining the error in a more meaningful and convenient

way,

Rdet(Π, v̂) = max
v∈{0,1}

Pr[v̂(Π) 6= v | V = v]

Definition 7.2.2. We say that a protocol and estimator pair (Π, v̂) solves the distributed

detection problem Tdet(m,n, d,Ω,P) with information cost I, if IC(Π) ≤ I, Rdet(Π, v̂) ≤ 1/4.

4Note that because of the convention that public randomness is part of Π, I(Π;X|Rpub) = I(Π;X), since
Rpub is independent of X.

194



Now we formally define the concrete questions that we are concerned with.

Distributed Gaussian detection problem: We call the problem with Ω = {0, 1} and

P = {N (0, σ2)n,N (δ, σ2)n} the Gaussian mean detection problem, denoted by GD(n,m, δ, σ2).

Distributed (sparse) Gaussian mean estimation problem: The distributed statistical

estimation problem defined by Ω = Rd and P = {N (θ, σ2Id×d) : θ ∈ Ω} is called the

distributed Gaussian mean estimation problem, abbreviated GME(n,m, d, σ2). When Ω =

{θ ∈ Rd : |θ|0 ≤ k}, the corresponding problem is referred to as distributed sparse Gaussian

mean estimation, abbreviated SGME(n,m, d, k, σ2).

Distributed sparse linear regression: For simplicity and the purpose of lower bounds,

we only consider sparse linear regression with a random design matrix. To fit into our

framework, we can also regard the design matrix as part of the data. We have a parameter

space Ω = {θ ∈ Rd : |θ|0 ≤ k}. The j-th data point consists of a row of design matrix Aj

and the observation yj = 〈Aj, θ〉 + wj where wj ∼ N (0, σ2) for j = 1, . . . ,mn, and each

machine receives n data points among them5. Formally, let µθ denote the joint distribution

of (Aj, yj) here, and let P = {µθ : θ ∈ Ω}. We use SLR(n,m, d, k, σ2) as shorthand for this

problem.

7.2.2 Hellinger distance and cut-paste property

In this subsection, we introduce Hellinger distance, and the key property of protocols that we

exploit here, the so-called “cut-paste” property developed by [BYJKS04] for proving lower

bounds for set-disjointness and other problems. We also introduce some notation that will

be used later in the proofs.

Definition 7.2.3 (Hellinger distance). Consider two distributions with probability density

5We note that here for convenience, we use subscripts for samples, which is different from the notation
convention used for previous problems.
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functions f, g : Ω→ R. The square of the Hellinger distance between f and g is defined as

h2(f, g) :=
1

2
·
∫

Ω

(√
f(x)−

√
g(x)

)2

dx

A key observation regarding the property of a protocol by [BYJKS04, Lemma 16] is the

following: fixing X1 = x1, . . . , Xm = xm, the distribution of Π|X=x can be factored in the

following form,

Pr[Π = π | X = x] = p1,π(x1) . . . pm,π(xm) (7.6)

where pi,π(·) is a function that only depends on i and the entire transcript π . To see

this, one could simply write the density of π as a products of density of each messages of

the machines and group the terms properly according to machines (and note that pi,π(·) is

allowed to depend on the entire transcript π).

We extend equation (7.6) to the situation where the inputs are from product distributions.

For any vector b ∈ {0, 1}m, let µb := µb1 × · · · × µbm be a distribution over Xm. We denote

by Πb the distribution of Π(X1, . . . , Xm) when (X1, . . . , Xm) ∼ µb.

Therefore if X ∼ µb, using the fact that µb is a product measure, we can marginalize

over X and obtain the marginal distribution of Π when X ∼ µb,

Pr
X∼µb

[Π = π] = q1,π(b1) . . . qm,π(bm), (7.7)

where qj,π(bj) is the marginalization of pj,π(x) over x ∼ µbj , that is, qj,π(bj) =
∫
x
pj,π(x)dµbj .

Let Πb denote the distribution of Π when X ∼ µb. Then by the decomposition (7.7) of

Πb(π) above, we have the following cut-paste property for Πb which will be the key property

of a protocol that we exploit.

Proposition 7.2.4 (Cut-paste property of a protocol). For any a, b and c,d with {ai, bi} =
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{ci, di} (in a multi-set sense) for every i ∈ [m],

Πa(π) · Πb(π) = Πc(π) · Πd(π) (7.8)

and therefore,

h2(Πa,Πb) = h2(Πc,Πd) (7.9)

Lemma 7.2.5 (Hellinger v.s. total variation). For any two distribution P,Q, we have

h2(P,Q) ≤ ‖P −Q‖TV ≤
√

2h(P,Q)

Lemma 7.2.6. Let φ(z1) and φ(z2) be two random variables. Let Z denote a random variable

with uniform distribution in {z1, z2}: Suppose φ(z) is independent of Z for each z ∈ {z1, z2}:

Then,

2h2(φz1 , φz2) ≥ I(Z;φ(Z)) ≥ h2(φz1 , φz2)

Proof. The lower bound of the mutual information follows from Lemma 6.2 of [BYJKS04].

For the upper bound, we assume that for simplicity φ has discrete support X , though the

proof extends continuous random variable directly. We have

I(Z;φ(Z)) =
1

2
Dkl(φ1‖(φ1 + φ2)/2) +

1

2
Dkl(φ2‖(φ1 + φ2)/2)

≤ 1

2
χ2(φ1‖(φ1 + φ2)/2) +

1

2
χ2(φ2‖(φ1 + φ2)/2)

=
1

4

∑
x∈X

(φ1(x)− φ2(x))2

φ1(x) + φ2(x)
+

1

4

∑
x∈X

(φ1(x)− φ2(x))2

φ1(x) + φ2(x)

≤
∑
x∈X

(φ1(x)− φ2(x))2

(
√
φ1(x) +

√
φ2(x))2

= 2h2(φ1, φ2)

where the first inequality uses that KL-divergence is less than χ2 distance and the second
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one uses the inequality a2 + b2 ≥ (a+b)2

2
.

Theorem 7.2.7 (Corollary of Theorem 7 of [Jay09b]). Suppose a family of distribution

{Pb : b ∈ {0, 1}m} satisfies the cut-paste property: for any for any a, b and c,d with

{ai, bi} = {ci, di} (in a multi-set sense) for every i ∈ [m], h2(Πa,Πb) = h2(Πc,Πd). Then

we have
m∑
i=1

h2(P0, Pei) ≥ Ω(1) · h2(P0, P1) (7.10)

where 0 and 1 are all 0’s and all 1’s vectors respectively, and ei is the unit vector that only

takes 1 in the ith entry.

Proof. Theorem 7 of [Jay09b] already proves a stronger version of this theorem for the m = 2t

case. Suppose on the other hand m = 2t + ` for ` < 2t. We divide [m] = {1, . . . ,m} into

a collection of 2t subsets A1, . . . , A2t , each of which contains at most 2 elements. Let fi

be the indicator vector of the subset Ai. For example, if Ai = {p, q}, then fi = ep + eq.

We claim that
∑

j∈Ai h2(P0, Pej ) ≥ Ω(1)h2(P0, Pfi
). This is trivial when |Ai| = 1 and when

Ai = {p, q}, we have that by Cauchy–Schwarz inequality and the cut-paste property

h2(P0, Pep) + h2(P0, Peq) ≥ 1

2
h2(Pep , Peq) =

1

2
h2(P0, Peq+eq).

Therefore, we can lowerbound LHS as

m∑
i=1

h2(P0, Pei) ≥
1

2

2t∑
i=1

h2(P0, Pfi
).

Then applying Theorem 7 of [Jay09b] on the RHS of the inequality above we have

1

2

2t∑
i=1

h2(P0, Pfi
) ≥ Ω(1) · h2(P0, P1),

and the theorem follows.
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7.3 Distributed Strong Data Processing Inequalities

In this section we prove our main Theorem 7.1.2. We state a slightly weaker looking version

here but in fact it implies Theorem 7.1.2 by symmetry. The same proof also goes through

for the case when the RHS is conditioned on V = 1.

Theorem 7.3.1. Suppose µ1 ≤ c · µ0, and β(µ0, µ1) = β, we have

h2(Π|V=0,Π|V=1) ≤ K(c+ 1)β · I(X; Π | V = 0) . (7.11)

where K is an absolute constant.

Note that the RHS of (7.11) naturally tensorizes (by Lemma 7.3.2 that appears below) in

the sense that
m∑
i=1

I(Xi; Π | V = 0) ≤ I(X; Π | V = 0), (7.12)

since conditioned on V = 0, the Xi’s are independent. Our main idea consists of the following

two steps a) We tensorize the LHS of (7.11) so that the target inequality (7.11) can be written

as a sum of m inequalities. b) We prove each of these m inequalities using the single machine

SDPI.

To this end, we do the following thought experiment: Suppose W is a random variable

that takes value from {0, 1} uniformly. Suppose data X ′ is generated as follows: X ′j ∼ µW ,

and for any j 6= i, X ′j ∼ µ0. We apply the protocol on the input X ′, and view the resulting

transcript Π′ as communication between the i-th machine and the remaining machines. Then

we are in the situation of a single machine case, that is, W → X ′i → Π′ forms a Markov

Chain. Applying the data processing inequality (7.1), we obtain that

I(W ; Π′) ≤ βI(X ′i; Π′)· (7.13)
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Using Lemma 7.2.6, we can lower bound the LHS of (7.13) by the Hellinger distance and

obtain

h2(Π′|W=0,Π
′|W=1) ≤ β · I(X ′i; Π′)

Let ei = (0, 0, . . . , 1, . . . , 0) be the unit vector that only takes 1 in the ith entry, and 0 the

all zero vector. Using the notation defined in Section 7.2.2, we observe that Π′|W=0 has

distribution Π0 while Π′|W=1 has distribution Πei . Then we can rewrite the equation above

as

h2(Π0,Πei) ≤ β · I(X ′i; Π′) (7.14)

Observe that the RHS of (7.14) is close to the first entry of the LHS of (7.12) since the joint

distribution of (X ′1,Π
′) is not very far from X,Π | V = 0. (The only difference is that X ′1

is drawn from a mixture of µ0 and µ1, and note that µ0 is not too far from µ1). On the

other hand, the sum of LHS of (7.14) over i ∈ [m] is lower-bounded by the LHS of (7.11).

Therefore, we can tensorize equation (7.11) into inequality (7.14) which can be proved by

the single machine SDPI.

We formalize the intuition above by the following two lemmas,

Lemma 7.3.2. Suppose µ1 ≤ c · µ0, and β(µ0, µ1) = β, then

h2(Πei ,Π0) ≤ (c+ 1)β

2
· I(Xi; Π | V = 0) (7.15)

Lemma 7.3.3. Let 0 be the m-dimensional all 0’s vector, and 1 the all 1’s vector, we have

that

h2(Π0,Π1) ≤ O(1) ·
m∑
i=1

h2(Πei ,Π0) (7.16)

Using Lemma 7.3.2 and Lemma 7.3.3, we obtain Theorem 7.3.1 straightforwardly by

combining inequalities (7.12), (7.15) and (7.16)6.

6Note that Π0 is the same distribution as Π|V=0 under the notation introduced in Section 7.2.2.

200



Finally we provide the proof of Lemma 7.3.2. Lemma 7.3.3 is a direct corollary of Theo-

rem 7.2.7 (which is in turn a direct corollary of Theorem 7 of [Jay09b]) and Proposition 7.2.4.

Proof of Lemma 7.3.2. Let W be uniform Bernoulli random variable and define X ′ and Π′

as follows: Conditioned on W = 0, X ′ ∼ µ0 and conditioned on W = 1, X ′ ∼ µei . We run

protocol on X ′ and get transcript Π′.

Note that V → X ′ → Π′ is a Markov chain and so is V → X ′i → Π′. Also by definition,

the conditional random variable X ′|V has the same distribution as the random variable X|V

in Definition 7.1.1. Therefore by Definition 7.1.1, we have that

β · I(X ′i; Π′) ≥ I(V ; Π′). (7.17)

It is known that mutual information can be expressed as the expectation of KL divergence,

which in turn is lower-bounded by Hellinger distance. We invoke a technical variant of this

argument, Lemma 6.2 of [BYJKS04], restated as Lemma 7.2.6, to lower bound the right

hand side. Note that Z in Lemma 7.2.6 corresponds to V here and φz1 , φz2 corresponds to

Πei and Π0. Therefore,

I(V ; Π′) ≥ h2(Πei ,Π0). (7.18)

It remains to relate I(X ′i; Π′) to I(Xi; Π | V = 0). Note that the difference between joint

distributions of (X ′i,Π
′) and (Xi,Π)|V=0 is that X ′i ∼ 1

2
(µ0 +µ1) and Xi|V=0 ∼ µ0. We claim

(by Lemma 1.2.24) that since µ0 ≥ 2
c+1

(µ0+µ1
2

), we have

I(Xi; Π | V = 0) ≥ 2

c+ 1
· I(X ′i; Π′). (7.19)

Combining equations (7.17), (7.18) and (7.19), we obtain the desired inequality.
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7.4 Applications to Parameter Estimation Problems

7.4.1 Warm-up: Distributed Gaussian mean detection

In this section we apply our main technical Theorem 7.3.1 to the situation when µ0 =

N (0, σ2) and µ1 = N (δ, σ2). We are also interested in the case when each machine receives

n samples from either µ0 or µ1. We will denote the product of n i.i.d copies of µv by µnv , for

v ∈ {0, 1}.

Theorem 7.3.1 requires that a) β = β(µ0, µ1) can be calculated/estimated b) the densities

of distributions µ0 and µ1 are within a constant factor with each other at every point.

Certainly b) is not true for any two Gaussian distributions. To this end, we consider

µ′0, µ
′
1, the truncation of µ0 and µ1 on some support [−τ, τ ], and argue that the probability

mass outside [−τ, τ ] is too small to make a difference.

For a), we use tools provided by Raginsky [Rag16] to estimate the SDPI constant β.

[Rag16] proves that Gaussian distributions µ0 and µ1 have SDPI constant β(µ0, µ1) ≤

O(δ2/σ2), and more generally it connects the SDPI constants to transportation inequali-

ties. We use the framework established by [Rag16] and apply it to the truncated Gaussian

distributions µ′0 and µ′1. Our proof essentially uses the fact that (µ′0 +µ′1)/2 is a log-concacve

distribution and therefore it satisfies the log-Sobolev inequality, and equivalently it also satis-

fies the transportation inequality. The details and connections to concentration of measures

are provided in Section 7.6.3.

Theorem 7.4.1. Let µ′0 and µ′1 be the distributions obtained by truncating µ0 and µ1 on

support [−τ, τ ] for some τ > 0. If δ ≤ σ, we have β(µ′0, µ
′
1) ≤ δ2/σ2.

As a corollary, the SDPI constant between n copies of µ′0 and µ′1 is bounded by nδ2/σ2.

Corollary 7.4.2. Let µ̃0 and µ̃1 be the distributions over Rn that are obtained by truncating
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µn0 and µn1 outside the ball B = {x ∈ Rn : |x1 + · · ·+xn| ≤ τ}. Then when
√
nδ ≤ σ, we have

β(µ̃0, µ̃1) ≤ nδ2/σ2

Applying our distributed data processing inequality (Theorem 7.3.1) on µ̃0 and µ̃1, we

obtain directly that to distinguish µ̃0 and µ̃1 in the distributed setting, Ω
(
σ2

nδ2

)
communi-

cation is required. By properly handling the truncation of the support, we can prove that it

is also true with the true Gaussian distribution.

Theorem 7.4.3. Any protocol estimator pair (Π, v̂) that solves the distributed Gaussian

mean detection problem GD(n,m, δ, σ2) with δ ≤ σ/
√
n requires communication cost and

minimum information cost at least,

E[|Π|] ≥ min-IC(Π) ≥ Ω

(
σ2

nδ2

)
.

Remark 7.4.4. The condition δ ≤ σ/
√
n captures the interesting regime. When δ � σ/

√
n,

a single machine can even distinguish µ0 and µ1 by its local n samples.

Proof of Theorem 7.4.3. Let Π0 and Π1 be the distribution of Π|V = 0 and Π|V = 1 as

defined in Section 7.2.2. Since v̂ solves the detection problem, we have that ‖Π0−Π1‖TV ≥

1/4. It follows from Lemma 7.2.5 that h(Π0,Π1) ≥ Ω(1).

We pick a threshold τ = 20σ, and let B = {z ∈ Rn : |z1 + · · · + zn| ≤
√
nτ}. Let

F = 1 denote the event that X = (X1, . . . , Xn) ∈ B, and otherwise F = 0. Note that

Pr[F = 1] ≥ 0.95 and therefore even if we conditioned on the event that F = 1, the protocol

estimator pair should still be able to recover v with good probability in the sense that

Pr[v̂(Π(X)) = v | V = v, F = 1] ≥ 0.6 (7.20)

We run our whole argument conditioning on the event F = 1. First note that for any
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Markov chain V → X → Π, and any random variable F that only depends on X, the chain

V |F=1 → X|F=1 → Π|F=1 is also a Markov Chain. Second, the channel from V to X|F=1

satisfies that random variable X|V=v,F=1 has the distribution µ̃v as defined in the statement

of Corollary 7.4.2. Note that by Corollary 7.4.2, we have that β(µ̃0, µ̃1) ≤ nδ2/σ2. Also

note that by the choice of τ and the fact that δ ≤ O(σ/
√
n), we have that for any z ∈ B,

µ̃0(z) ≤ O(1) · µ̃1(z).

Therefore we are ready to apply Theorem 7.3.1 and conclude that

I(X; Π | V = 0, F = 1) ≥ Ω(β(µ̃0, µ̃1)−1) = Ω

(
σ2

nδ2

)

Note that Π is independent of F conditioned on X and V = 0. Therefore we have that

I(X; Π | V = 0) ≥ I(X; Π | F, V = 0) ≥ I(X; Π|F = 1, V = 0) Pr[F = 1 | V = 0] = Ω

(
σ2

nδ2

)

Note that by construction, it is also true that µ̃0 ≤ O(1)µ̃1, and therefore if we switch

the position of µ̃0, µ̃1 and run the argument above we will have

I(X; Π | V = 1) = Ω

(
σ2

nδ2

)

Hence the proof is complete.

7.4.2 Sparse Gaussian mean estimation

In this subsection, we prove our lower bound for the sparse Gaussian mean estimation prob-

lem via a variant of the direct-sum theorem of [GMN14] tailored towards sparse mean esti-

mation.
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Our general idea is to make the following reduction argument: Given a protocol Π′

for d-dimensional k-sparse estimation problem with information cost I and loss R, we can

construct a protocol Π′ for the detection problem with information cost roughly I/d and

loss R/k. The protocol Π′ embeds the detection problem into one random coordinate of the

d-dimensional problem, prepares fake data on the remaining coordinates, and then runs the

protocol Π on the high dimensional problem. It then extracts information about the true

data from the corresponding coordinate of the high-dimensional estimator.

The key distinction from the construction of [GMN14] is that here we are not able to

show that Π′ has small information cost, but only able to show that Π′ has a small minimum

information cost 7. This is the reason why in Theorem 7.4.3 we needed to bound the minimum

information cost instead of the information cost.

To formalize the intuition, let P = {µ0, µ1} define the detection problem. Let Ωd,k,δ =

{θ : θ ∈ {0, δ}d, |θ|0 ≤ k} and Qd,k,δ = {µθ = µθ1/δ × · · · × µθd/δ : θ ∈ Ωd,k,δ}. Therefore Q is

a special case of the general k-sparse high-dimensional problem. We have that

Theorem 7.4.5 (Direct-sum for sparse parameters). Let d ≥ 2k, and P and Q defined as

above. If there exists a protocol estimator pair (Π, θ̂) that solves the detection task T (n,m,Q)

with information cost I and mean-squared loss R ≤ 1
16
kδ2, then there exists a protocol esti-

mator pair (Π′, v̂′) (shown in Protocol 13 in Section 7.5) that solves the task Tdet(n,m,P)

with minimum information cost I
d−k+1

.

The proof of the theorem is deferred to Section 7.5. Combining Theorem 7.4.3 and

Theorem 7.4.5, we get the following theorem:

Theorem 7.4.6. Suppose d ≥ 2k. Any protocol estimator pair (Π, v̂) that solves the k-sparse

Gaussian mean problem SGME(n,m, d, k, σ2) with mean-squared loss R and information cost

7This might be inevitable because protocol Π might reveal a lot information for the nonzero coordinate
of θ but since there are very few non-zeros, the total information revealed is still not too much.
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I and communication cost C satisfy that

R ≥ Ω

(
min

{
σ2k

n
,max

{
σ2dk

nI
,
σ2k

nm

}})
≥ Ω

(
min

{
σ2k

n
,max

{
σ2dk

nC
,
σ2k

nm

}})
. (7.21)

Intuitively, to parse equation (7.21), we remark that the term σ2k
n

comes from the fact that

any local machine can achieve this error O(σ
2k
n

) using only its local samples, and the term σ2k
nm

is the minimax error that the machines can achieve with infinite amount of communication.

When the target error is between these two quantities, equation (7.21) predicts that the

minimum communication C should scale inverse linearly in the error R.

Our theorem gives a tight tradeoff between C and R up to logarithmic factor, since it is

known [GMN14] that for any communication budget C, there exists protocol which uses C

bits and has error R ≤ O
(

min
{
σ2k
n
,max

{
σ2dk
nC

, σ
2k
nm

}}
· log d

)
.

As a side product, in the case when k = d/2, our lower bound improves previous

works [DJWZ14] and [GMN14] by a logarithmic factor, and turns out to match the up-

per bound in [GMN14] up to a constant factor.

Proof of Theorem 7.4.6. If R ≤ 1
16
kσ2

n
then we are done. Otherwise, let δ :=

√
16R/k ≤

σ/
√
n. Let µ0 = N (0, σ2) and µ1 = N (δ, σ2) and P = {µ0, µ1}. Let Qd,k,δ = {µθ =

µθ1/δ×· · ·×µθd/δ : θ ∈ Ωd,k,δ}. Then T (n,m,Q) is just a special case of sparse Gaussian mean

estimation problem SGME(n,m, d, k, σ2), and T (n,m,P) is the distributed Gaussian mean

detection problem GD(n,m, δ, σ2). Therefore, by Theorem 7.4.5, there exists (Π′, v̂′) that

solves GD(n,m, δ, σ2) with minimum information cost I ′ = O(I/d). Since δ ≤ O(σ/
√
n),

by Theorem 7.4.3 we have that I ′ ≥ Ω(σ2/(nδ2)). It follows that I ≥ Ω(dσ2/(nδ2)) =

Ω(kdσ2/(nR)). To derive (7.21), we observe that Ω(σ2k/nm) is the minimax lower bound

for R, which completes the proof.

To complement our lower bounds, we also give a new protocol for the Gaussian mean

estimation problem achieving communication optimal up to a constant factor in any number
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of dimensions in the dense case. Our protocol is a simultaneous protocol, whereas the only

previous protocol achieving optimal communication requires Ω(logm) rounds [GMN14]. This

resolves an open question in Remark 2 of [GMN14], improving the trivial protocol in which

each player sends its truncated Gaussian to the coordinator by an O(logm) factor.

Theorem 7.4.7. For any 0 ≤ α ≤ 1, there exists a protocol that uses one round of commu-

nication for the Gaussian mean estimation problem GME(n,m, d, σ2) with communication

cost C = αdm and mean-squared loss R = O
(
σ2d
αmn

)
.

The protocol and proof of this theorem are deferred to Section 7.7, though we mention a

few aspects here. We first give a protocol under the assumption that |θ|∞ ≤ σ√
n
. The protocol

trivially generalizes to d dimensions so we focus on 1 dimension. The protocol coincides with

the first round of the multi-round protocol in [GMN14], yet we can extract all necessary

information in only one round, by having each machine send a single bit indicating if its

input Gaussian is positive or negative. Since the mean is on the same order as the standard

deviation, one can bound the variance and give an estimator based on the Gaussian density

function. In Section 7.7.1 the mean of the Gaussian is allowed to be much larger than the

variance, and this no longer works. Instead, a few machines send their truncated inputs

so the coordinator learns a crude approximation. To refine this approximation, in parallel

the remaining machines each send a bit which is 1 with probability x− bxc, where x is the

machine’s input Gaussian. This can be viewed as rounding a sample of the “sawtooth wave

function” h applied to a Gaussian. For technical reasons each machine needs to send two

bits, another which is 1 with probability (x+1/5)−b(x+1/5)c. We give an estimator based

on an analysis using the Fourier series of h.

Sparse Gaussian estimation with signal strength lower bound Our techniques can

also be used to study the optimal rate-communication tradeoffs in the presence of a strong

signal in the non-zero coordinates, which is sometimes assumed for sparse signals. That is,

207



suppose the machines are promised that the mean θ ∈ Rd is k-sparse and also if θi 6= 0, then

|θi| ≥ η, where η is a parameter called the signal strength. We get tight lower bounds for

this case as well.

Theorem 7.4.8. For d ≥ 2k and η2 ≥ 16R/k, any protocol estimator pair (Π, v̂) that solves

the k-sparse Gaussian mean problem SGME(n,m, d, k, σ2) with signal strength η and mean-

squared loss R requires information cost (and hence expected communication cost) at least

Ω
(
σ2d
nη2

)
.

Note that there is a protocol for SGME(n,m, d, k, σ2) with signal strength η and mean-

squared loss R that has communication cost Õ
(

min
{
σ2d
nη2

+ σ2k2

nR
, σ

2dk
nR

})
. In the regime

where η2 ≥ 16R/k, the first term dominates and by Theorem 7.4.8, and the fact that σ2k2

nR
is

a lower bound even when the machines know the support [GMN14], we also get a matching

lower bound. In the regime where η2 ≤ 16R/k, second term dominates and it is a lower

bound by Theorem 7.4.6.

Proof of Theorem 7.4.8. The proof is very similar to the proof of Theorem 7.4.5. Given a

protocol estimator pair (Π, v̂) that solves SGME(n,m, d, k, σ2) with signal strength η, mean-

squared loss R and information cost I (where η2 ≥ 16R/k), we can find a protocol Π′ that

solves the Gaussian mean detection problem GD(n,m, η, σ2) with information cost ≤ O(I/d)

(as usual the information cost is measured when the mean is 0). Π′ would be exactly the

same as Protocol 13 but with µ0 replaced byN (0, σ2), µ1 replaced byN (η, σ2) and δ replaced

by η. We leave the details to the reader.

7.4.3 Lower bound for Sparse Linear Regression

In this section we consider the sparse linear regression problem SLR(n,m, d, k, σ2) in the

distributed setting as defined in Section 7.2. Suppose the i-th machine receives a subset Si

of the mn data points, and we use ASi ∈ Rn×d to denote the design matrix that the i-th
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machine receives and ySi to denote the observed vector. That is, ySi = ASiθ + wSi , where

wSi ∼ N (0, σ2In×n) is Gaussian noise.

This problem can be reduced from the sparse Gaussian mean problem, and thus its

communication can be lower-bounded. It follows straightforwardly from our Theorem 7.4.6

and the reduction in Corollary 2 of [DJWZ14]. Suppose λ = max1≤i≤m ‖ASi‖/
√
n.

Corollary 7.4.9. Suppose machines receive data from the sparse linear regression model.

Let λ be as defined above. If there exists a protocol under which the machines can output an

estimator θ̂ with mean squared loss R = E[‖θ̂ − θ‖2] with communication C, then R · C ≥

Ω
(
σ2kd
λ2n

)
.

When ASi is a Gaussian design matrix, that is, the rows of ASi are i.i.d drawn from

distribution N (0, Id×d), we have λ = O
(

max{
√
d/n, 1}

)
and Corollary 7.4.9 implies that

to achieve the statistical minimax rate R = O(kσ
2

nm
), the algorithm has to communicate

Ω(m ·min{n, d}) bits. The point is that we get a lower bound that doesn’t depend on k– that

is, with sparsity assumptions, it is impossible to improve both the loss and communication so

that they depend on the intrinsic dimension k instead of the ambient dimension d. Moreover,

in the regime when d/n→ c for a constant c, our lower bound matches the upper bound of

[LSLT15] up to a logarithmic factor. The proof follows from Theorem 7.4.6 and the reduction

from Gaussian mean estimation to sparse linear regression of [ZDJW13] straightforwardly.

Proof of Corollary 7.4.9. Suppose there exists such a protocol with mean-squared loss R

and communication cost C for sparse linear regression problem SLR(n,m, k, d, σ2). We are

going to use it to solve the sparse linear regression problem SGME(m, 1, d, k, σ0) as follows.

Suppose the ith machine has data Xi ∼ N (θ, σ2
0Id×d) with σ0 = σ

λ
√
n
. Then the machines can

prepare

ySi = ASiXi + bi
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where bi ∼ N (0, σ2I − σ2
0ASiA

T
Si

). Note that by the bound ‖ASi‖ ≤ λ/
√
n, we have that

σ2I − σ2
0ASiA

T
Si

is positive semidefinite. Note that then ySi can written in the form

ySi = ASiθ + ξi

where ξi’s are independent distributed according to N (0, σ2In×n)

Then the machines call the protocol for the sparse linear regression problem with data

(ySi , ASi). Therefore we obtain a protocol that solves SGME(m, 1, d, k, σ0) with communi-

cation R and C. Then by Theorem 7.4.6, we know that

R · C ≥ Ω(σ2
0kd) = Ω

(
σ2kd

λ2n

)

7.5 Direct-sum Theorem for Sparse Parameters

Unknown parameter: v ∈ {0, 1}
Inputs: Machine j gets n samples Xj = (X

(1)
j , . . . , X

(n)
j ), where Xj is distributed according

to µnv .

1. All machines publicly sample k independent coordinates I1, . . . , Ik ⊂ [d] (without re-
placement).

2. Each machine j locally prepares data X̃j =
(
X̃j,1, . . . , X̃j,d

)
as follows: The I1-th coor-

dinate is embedded with the true data, X̃j,I1 = Xj. For r = 2, . . . , k, j-th the machine

draws X̃j,Ir privately from distribution µn1 . For any coordinate i ∈ [d]\{I1, . . . , Ik}, the

j-th machine draws privately X̃j,i from the distribution µn0 .

3. The machines run protocol Π with input data X̃.

4. If |θ̂(Π)I1| ≥ δ/2, then the machines output 1, otherwise they output 0.

Protocol 13: direct-sum reduction for sparse parameter

210



We prove Theorem 7.4.5 in this section. Let Π′ be the protocol described in Protocol 13.

Let θ ∈ Rd be such that θI1 = vδ and θIr = δ for r = 2, . . . , k, and θi = 0 for i ∈

[d]\{I1, . . . , Ik}. We can see that by our construction, the distribution of X̃j is the same as

µnθ , and all Xj’s are independent. Also note that θ is k-sparse. Therefore when Π′ invokes

Π on data X̃, Π will have loss R and information cost I with respect to X̃.

We first verify that the protocol Π does distinguish between v = 0 and v = 1.

Proposition 7.5.1. Under the assumption of Theorem 7.4.5, when v = 1, we have that

E
[
|θ̂(Π)I1 − δ|2

]
≤ R

k
(7.22)

and when v = 0, we have

E
[
|θ̂(Π)I1|2

]
≤ R

d− k + 1
(7.23)

Moreover, with probability at least 3/4, Π′ outputs the correct answer v.

Proof. We know that Π has mean-squared loss R, that is,

R((Π, θ̂), θ) = E
[
||θ̂(Π)− θ||22

]
= E

[
d∑
i=1

|θ̂(Π)i − θi|2
]

Here the expectation is over the randomness of the protocol Π and randomness of the samples

X̃1, . . . , X̃m. We first prove equation (7.23), that is

E
[
|θ̂(Π)I1|2

]
≤ R

d− k + 1

Here the expectation is over I1, . . . , Ik in addition to being over the randomness of Π and

the samples X̃1, . . . , X̃m. We will in fact prove this claim for any fixing of I2, . . . , Ik to some
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i2, . . . , ik. Then I1 is a random coordinate in [d]\{i2, . . . , ik}. Then

E
[
|θ̂(Π)I1|2 | Ir = ir, r ≥ 2

]
=

1

d− k + 1

∑
i∈[d]\{i2,...,ik}

E
[
|θ̂(Π)i|2 | Ir = ir, r ≥ 2

]

≤ 1

d− k + 1

 ∑
i∈[d]\{i2,...,ik}

E
[
|θ̂(Π)i|2 | Ir = ir, r ≥ 2

]

+
∑

i∈{i2,...,ik}

E
[
|θ̂(Π)i − δ|2 | Ir = ir, r ≥ 2

]

Taking expectation over I2, . . . , Ir we obtain

E
[
|θ̂(Π)I1|2

]
≤ 1

d− k + 1

d∑
i=1

E
[
|θ̂(Π)i − θ|2

]
=

1

d− k + 1
R((Π, θ̂), θ)

≤ R

d− k + 1

In order to prove equation (7.22), we prove the statement for every fixing of {I1, . . . , Ik}

to some S ⊂ [d].
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E
[
|θ̂(Π)I1 − δ|2 | {I1, . . . , Ik} = S

]
=

1

k

∑
i∈S

E
[
|θ̂(Π)i − δ|2 | {I1, . . . , Ik} = S

]
≤ 1

k

(∑
i∈S

E
[
|θ̂(Π)i − δ|2 | {I1, . . . , Ik} = S

]
+
∑
i/∈S

E
[
|θ̂(Π)i|2 | {I1, . . . , Ik} = S

])

=
1

k

d∑
i=1

E
[
|θ̂(Π)i − δ|2 | {I1, . . . , Ik} = S

]

Taking expectation over I1, . . . , Ik we obtain,

E
[
E
[
|θ̂(Π)I1 − δ|2

]
| {I1, . . . , Ik} = S

]
=

1

k
R((Π, θ̂), θ) ≤ R

k

The last statement of proposition follows easily from Markov’s inequality and the assumption

that R ≤ kδ2/16.

Now we prove the information cost of the protocol Π′ under the case v = 0 is small.

Proposition 7.5.2. Under the assumption of Theorem 7.4.5, we have

min-IC(Π′) ≤ I0(Π′;X1, . . . , Xm | R′pub) ≤ I

d− k + 1

where Xj ∼ µn0 and R′pub is the public coin used by Π′.

Proof. Let us denote
(
X̃

(1)
j,i , . . . , X̃

(n)
j,i

)
by X̃j,i, that is, X̃j,i is the collection of i-th coordinates

of the samples on machine j. Let Rpub be the public coins used by protocol Π. Note that
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R′pub are just I1, . . . , Ik and Rpub, therefore, the information cost of Π′ is

I0(Π′;X1, . . . , Xm | R′pub) = I(Π; X̃1,I1 , . . . , X̃m,I1|I1, . . . , Ik, Rpub)

= E
i2,...,ik

[
I(Π; X̃1,I1 , . . . , X̃m,I1|I1, I2 = i2, . . . , Ik = ik, Rpub)

]
(7.24)

For each i2, . . . , ik, we will prove that I(Π; X̃1,I1 , . . . , X̃m,I1|I1, I2 = i2, . . . , Ik = ik, Rpub) ≤

I/(d− k + 1). Note that conditioned on Ir = ir for r ≥ 2, I1 is uniform over [d]\{i2, . . . , ik}

I(Π; X̃1,I1 , . . . , X̃m,I1|I1, I2 = i2, . . . , Ik = ik, Rpub) (7.25)

=
1

d− k + 1

∑
i∈[d]\{i2,...,ik}

I(Π; X̃1,i, . . . , X̃m,i|I1 = i, I2 = i2, . . . , Ik = ik, Rpub)

=
1

d− k + 1

∑
i∈[d]\{i2,...,ik}

I(Π; X̃1,i, . . . , X̃m,i|I2 = i2, . . . , Ik = ik, Rpub)

≤ 1

d− k + 1
I

(
Π;
(
X̃1,i, . . . , X̃m,i

)
i∈[d]\{i2,...,ik}

|I2 = i2, . . . , Ik = ik, Rpub

)
≤ 1

d− k + 1
I(Π; X̃1, . . . , X̃m|I2 = i2, . . . , Ik = ik, Rpub) (7.26)

The second equality follows from the fact that the distribution of X̃1,i, . . . , X̃m,i for

i ∈ [d]\{i2, . . . , ik} does not depend on i and the protocol Π is also oblivious of I1 and

hence we can remove the conditioning on I1 = i. First inequality follows from lemma 1.2.25

and the fact that X̃1,i, . . . , X̃m,i are independent across i. The second inequality follows from

the fact that I(A;B) ≤ I(A;B,C).

Finally, note that Π performs the task T (n,m,Q) with information cost I = supθ Iθ(Π; X̃ |

Rpub). Note that conditioned on Ir = ir and I1 = i, X̃ are drawn from some valid µθ with a

k-sparse θ. Therefore by the definition of information cost, we have that

I(Π; X̃1, . . . , X̃m|I1 = i, I2 = i2, . . . , Ik = ik, Rpub) ≤ I (7.27)

214



Hence it follows from equations (7.24) and (7.26) and (7.27), we have that

I0(Π′;X1, . . . , Xm | R′pub) ≤ I

d− k + 1
(7.28)

ant it follows by definition that min-IC(Π′) ≤ I
d−k+1

.

7.6 Data Processing Inequality for Truncated Gaus-

sian

In this section, we prove Theorem 7.4.1, the SDPI for truncated gaussian distributions. We

first survey the connection between SDPI and transportation inequalities established by Ra-

ginsky [Rag16] in Section 7.6.1. Then we prove in Section 7.6.2 that when a distribution has

log-concave density function on a finite interval, it satisfies the transportation inequalities.

These preparations imply straightforwardly Theorem 7.4.1, which is proved in Section 7.6.3.

7.6.1 SDPI Constant and Transportation Inequality

Usually in literature, the inequality (7.1) is referred to SDPI for mutual information. Here

we introduce the more common version of strong data processing inequality, which turns out

to be generally equivalent to SDPI for mutual information. In this section, it will be more

convenient to work with the definition of KL divergence with natural log. We will denote

this by Dkl. Note that we will mostly be working with ratios of divergence terms for which

it doesn’t matter which log to take.

Lemma 7.6.1 (Special case of Theorem 4 in [AGKN13]). Consider the joint distribution

of (V,X) where V ∼ B1/2 and conditioned on V = v, we have X ∼ µv. Note that X is

distributed according to the distribution µ = (µ0 + µ1)/2. By Bayes’ rule, we can define the

reverse channel K : X → V with transition probabilities {K(v|x) : v ∈ {0, 1}, x ∈ R} the
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same as the conditional probabilities PV |X of the above joint distribution. For any distribution

ν over R, let νK denote the distribution of the output v of K if the input x is distributed

according to ν. Then

β(µ0, µ1) = sup
ν 6=µ

Dkl(νK‖µK)

Dkl(ν‖µ)
(7.29)

Thus, it suffices to bound from above the RHS of (7.29). We use the technique developed

in Theorem 3.7 of [Rag16], which relates the strong data processing inequality with the

concentration of measure and specifically the transportation inequality.

To state the transportation inequality, we define the Wasserstein distance w1(·, ·) between

two probability measures,

Definition 7.6.2. The w1 distance between two probability measure µ, ν over R is defined

as

w1(ν, µ) = sup
f :f is 1-Lipschitz

∣∣∣∣∫ fdν −
∫
fdµ

∣∣∣∣ (7.30)

We will review transportation inequalities in section 7.6.2, which relate the cost of trans-

porting ν to µ in Wasserstein distance w1 with the KL-divergence between ν and µ,

w1(ν, µ)2 ≤ αDkl(ν‖µ). (7.31)

For a complete survey of transportation inequalities with other cost functions, please see the

survey of Gozlan and Léonard [GL10]. However, before moving to transportation inequalities,

we show how to use it to derive a bound on β(µ0, µ1).

Lemma 7.6.3 (A special case of Theorem 3.7 [Rag16]). Suppose for any v ∈ {0, 1}, fv(x) =

Pr[V = v | X = x] is L-Lipschitz, and transportation inequality (7.31) is true for µ =

(µ0 + µ1)/2 and any measure ν, then

β(µ0, µ1) = sup
ν 6=µ

Dkl(νK‖µK)

Dkl(ν‖µ)
≤ 4αL2 (7.32)
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Proof of Lemma 7.6.3. We basically follow the proof of Theorem 3.7 of [Rag16] with some

simplifications and modifications. Note µK is the unbiased Bernoulli distribution and by the

fact that KL divergence is not greater than χ2 divergence (easy consequence of concavity of

log), we have

Dkl(νK‖µK) ≤ χ2(νK‖µK) =
∑

v∈{0,1}

(µK(v)− νK(v))2

µK(v)

= 2
∑

v∈{0,1}

(µK(v)− νK(v))2 (7.33)

Fixing any v ∈ {0, 1}, we have that

|µK(v)− νK(v)| =

∣∣∣∣∫ Pr[V = v | X = x]dµ−
∫

Pr[V = v | X = x]dν

∣∣∣∣
=

∣∣∣∣∫ fv(x)dµ−
∫
fv(x)dν

∣∣∣∣
≤ Lw1(ν, µ) (7.34)

where the last inequality is by the definition of Wasserstein distance and the fact that

fv(x) is L-Lipschitz.

It follows from (7.34) and (7.33) that

Dkl(νK‖µK) ≤ 4L2w2
1(ν, µ).

Then by transportation inequality (7.31) we have that

Dkl(νK‖µK) ≤ 4L2w2
1(ν, µ) ≤ 4αL2D(ν‖µ).
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7.6.2 Proving transportation inequality via concentration of mea-

sure

In this subsection, we show that if µ is log-concave then it satisfies transportation inequality

(7.31). To obtain the following theorem, we use a series of tools from the theory of concen-

tration of measures in a straightforward way, albeit that in our setting, µ has only support

on a finite interval and therefore we need to take some additional care.

Theorem 7.6.4. Suppose µ is a measure defined on [a, b] with dµ = exp(−u(x))dx, and

∇2u(x) ≥ c, then for any measure ν we have

w1(ν, µ)2 ≤ 2

c
·Dkl(ν‖µ). (7.35)

In addition, it can be proved by direct calculation that if both µ0 and µ1 are log-concave

and µ0 and µ1 are not too far away in some sense, then µ = (µ0 + µ1)/2 is also log-concave

with similar parameters.

Lemma 7.6.5. Suppose distribution µ0 and µ1 has supports on [a, b] with dµ0 = exp(−u0(x))dx

and dµ1 = exp(−u1(x))dx. Suppose ∇2u0(x) ≥ c, and ∇2u1(x) ≥ c, and |∇u0(x) −

∇u1(x)| ≤
√
c then µ = 1

2
(µ0 + µ1) satisfies that dµ = exp(−u(x))dx with ∇2u(x) ≥ c

2
.

Proof of Lemma 7.6.5. Let u(x) be such that dµ = exp(−u(x))dx, that is,

u(x) = − ln

(
exp(−u0(x)) + exp(−u1(x))

2

)

We calculate u′′(x) as follows:

We can simply calculate the derivatives of u. For simplicity of notation, let h(x) =
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exp(−u0(x)) + exp(−u1(x)). We have that

h′ = −u′0 exp(−u0)− u′1 exp(−u1),

and

h′′ = (u′20 − u′′0) exp(−u0) + (u′21 − u′′1) exp(−u1).

Therefore we have

u′′ =
−hh′′ + h′2

h2

=
u′′0 exp(−2u0) + u′′1 exp(−2u1) + (u′′0 + u′′1 − (u′0 − u′1)2) exp(−u1 − u2)

(exp(−u0) + exp(−u1))2

With some simple algebraic manipulations we have that u′′ ≥ t (for t ≤ min{µ′′0, µ′′1}) is

equivalent to

(√
µ′′0 − t exp(−u0)−

√
µ′′1 − t exp(−u1)

)2

+((√
µ′′0 − t+

√
µ′′1 − t

)2

− (u′0 − u′1)2

)
exp(−u0 − u1) ≥ 0

Therefore, taking t = c
2

and under our assumptions that |µ′0(x) − µ′1(x)| ≤
√
c for any

x ∈ [a, b], we have that u′′ ≥ c
2

as desired.

To prove Theorem 7.6.4, we exploit the well-established connections between transporta-

tion inequality, concentration of measure and log-Sobolev inequalities. First of all, trans-

portation inequality (7.35) with Wasserstein w1 and KL-divergence ties closely to the con-

centration of probability measure µ. The theorem of Bobkov-Gotze established the exact

connection:
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Theorem 7.6.6 (Bobkov-Gotze [BG99] Theorem 3.1). Let µ ∈ P1 be a probability measure

on a metric space (X, d). Then the following two are equivalent for X ∼ µ.

1. w1(ν, µ) ≤
√

2σ2Dkl(ν‖µ) for all ν.

2. f(X) is σ2-subgaussian for every 1-Lipschitz function f .

Using Theorem 7.6.6, in order to prove Theorem 7.6.4, it suffices to prove the concen-

tration of measure for f(X) when X ∼ µ, and f is 1-Lipschitz. Although one might prove

f(X) is subgaussian directly by definition, we use the log-Sobolev inequality to get around

the tedious calculation. We begin by defining the entropy of a nonnegative random variable.

Definition 7.6.7. The entropy of the a nonnegative random variable Z is defined as

Ent[Z] := E[Z logZ]− E[Z] logE[Z] (7.36)

Entropy is very useful for proving concentration of measure. As illustrated in the following

lemma, to prove X is subgaussian we only need to bound Ent[eλX ] by E[eλX ].

Lemma 7.6.8 (Herbst, c.f. [Led01]). Suppose that for some random variable X, we have

Ent[eλX ] ≤ λ2σ2

2
E[eλX ], for all λ ≥ 0 (7.37)

Then

ψ(λ) := logE[eλ(X−EX)] ≤ λ2σ2

2
, for all λ ≥ 0

and as an immediate consequences, X is a σ2-subgaussian random variable.

Therefore by Theorem 7.6.6 and Lemma 7.6.8, in order to prove transportation inequality,

it suffices to to upper bound Entµ[eλf ] by E[eλf ]. It turns out that as long as the measure µ

is log-concave, we get the concentration inequality for f(X) with 1-Lipschitz function f .
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Theorem 7.6.9 (Theorem 5.2 of [Led01]). Let dµ = e−udx where for some c > 0, ∇2u(x) ≥

c for all x ∈ R. Then for all smooth functions f on R,

Entµ(f 2) ≤ 2

c

∫
|∇f |2dµ

As a direct corollary, we obtain inequality (7.37) that we are interested in.

Corollary 7.6.10. Let dµ = e−udx where for some c > 0, ∇2u(x) ≥ c for all x ∈ R. Then

for all 1-Lipschitz and smooth function f on R, and any λ ≥ 0, we have

Entµ(eλf ) ≤ λ2

2c
E[eλf ]

Proof of Corollary 7.6.10. Applying directly Theorem 7.6.9 on eλf/2 we obtain,

Entµ[eλf ] ≤ 2

c

∫
|∇eλf/2|2dµ =

2

c

∫
|eλf/2 · λ∇f/2|2dµ

Note that if f is 1-Lipschitz, we have |∇eλf/2| ≤ |1
2
λeλf/2|, and therefore

Entµ[eλf ] ≤ λ2

2c

∫
eλfdµ =

λ2

2c
Eµ[eλf ]

The distributions that we are interested has continuous density function on a finite sup-

port and 0 elsewhere. Therefore we need to use a non-continuous version of the Corollary

above to be rigorous.

Corollary 7.6.11. Let S = [a, b] be a finite interval in R. Let dµ = e−udx for x ∈ S and

dµ = 0 for x 6∈ S. Suppose for some c > 0, we have ∇2u(x) ≥ c for all x ∈ S.Then the

conclusion of Corollary 7.6.10 is still true.
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Proof of Corollary 7.6.11. We first extend Theorem 7.6.9 to the finite support case. Let g

be an extension of f to R, such that g is nonnegative and bounded above by some constant

C, and ∇g is also bounded by C. Let un be a series of extensions of u to R such that the

following happens: a) un is twice-differentiable b) ∇2un(x) ≥ c for all x ∈ R c) µn = e−undx

approaches to µ in TV norm as n tends to infinity. The following choice will work, for

example,

un(x) = u(x)

+ 1x>b ·
(
∇u(b)(x− b) +∇2u(b)(x− b)2 + exp(n(x− b)4)

)
+ 1x<a ·

(
∇u(b)(x− a) +∇2u(b)(x− a)2 + exp(n(x− a)4)

)
Since g and ∇g are bounded, we have that |Eµn(g2) − Eµ(g2)| =

∫
g2(dµn − dµ) ≤

C2‖µn − µ‖TV → 0 as n tends to infinity. Similarly we have that Entµn(g2) → Entµ(g2)

and Eµn [|∇g|2]→ Eµ[|∇g|2]. Note that under µ, g agrees with f and therefore we have that

Entµn(g2)→ Entµ(f 2) and Eµn [|∇g|2]→ Eµ[|∇f |2].

Also note that µn satisfies the condition of Theorem 7.6.9, therefore

Entµn(g2) ≤ 2

c

∫
|∇g|2dµn

and the desired result follows by taking n to infinity.

7.6.3 SDPI for truncated Gaussian

We first compute the Lipschitz constants for fv(x) = Pr[V = 0 | X = x] as defined in

Lemma 7.6.3. Here V ∼ B1/2. X|V = 0 ∼ µ′0 and X|V = 1 ∼ µ′1, where µ′0 is the truncation

of µ0 = N (0, σ2) to the interval [−τ, τ ] and µ′1 is the truncation of µ1 = N (δ, σ2) to the

interval [−τ, τ ].
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Lemma 7.6.12. When X is generated by X ∼ µv conditioned on V = v, let fv(x) = Pr[V =

0 | X = x], we have that fv(x) is δ/4σ2-Lipschitz for any v ∈ {0, 1}.

Proof. The proof is by direct calculation. Note that by definition, on support [−τ, τ ], dµ′0 =

γ0 exp(−u0(x))dx, and dµ′1 = γ1 exp(−u1(x))dx with u0(x) = x2

2σ2 and u1(x) = (x−δ)2
2σ2 , where

γ0 and γ1 are scaling constants. Note that by the definition of the reverse channel K,

f0(x) = Pr[V = 0 | X = x] =
γ0e
− x2

2σ2

γ0e
− x2

2σ2 + γ1e
− (x−δ)2

2σ2

Therefore

f ′0(x) = −
(
γ0 + γ1 exp

(
2xδ − δ2

2σ2

))−2

· γ0γ1 ·
(
δ

σ2

)
· exp

(
2xδ − δ2

2σ2

)

By AM-GM inequality we have

f ′0(x) ≥ −
(

4γ0γ1 exp

(
2xδ − δ2

2σ2

))−1

· γ0γ1 ·
(
δ

σ2

)
· exp

(
2xδ − δ2

2σ2

)
= − δ

4σ2

Similarly for f1(x) we have

f1(x) =
γ1e
− (x−δ)2

2σ2

γ0e
− x2

2σ2 + γ1e
− (x−δ)2

2σ2

and

f ′1(x) =

(
γ1 + γ0 exp

(
−2xδ + δ2

2σ2

))−2

· γ0γ1 ·
(
δ

σ2

)
· exp

(
−2xδ + δ2

2σ2

)
≤ δ

4σ2

Also note that f ′0 ≤ 0 and f ′1 ≥ 0. Therefore for any v, fv is δ
4σ2 -Lipschitz.

Proof of Theorem 7.4.1. Note that by definition on support [−τ, τ ], dµ′0 = γ0 exp(−u0(x))dx,

and dµ′1 = γ1 exp(−u1(x))dx with u0(x) = x2

2σ2 and u1(x) = (x−δ)2
2σ2 . By Lemma 7.6.5, we have
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that µ = (µ′0 + µ′1)/2 is 1/2σ2 log-concave, and therefore by Theorem 7.6.4, we have

w1(ν, µ)2 ≤ 4σ2 ·Dkl(ν‖µ).

By Lemma 7.6.12, we have that fv’s are δ/4σ2-Lipschitz and therefore by Lemma 7.6.3, we

have that

β(µ0, µ1) ≤ δ2/σ2

Then we present the proof of Corollary 7.4.2, which relies on the following observation:

Lemma 7.6.13. Suppose V → (X1, . . . , Xn)→ Π forms a Markov Chain, where conditioned

on V = v, (X1, . . . , Xn) are distributed according to µ′v. Then V → X1 + · · · + Xn →

(X1, . . . , Xn)→ Π also forms a Markov Chain.

Proof. Let us look at the density of (X1, . . . , Xn) conditioned on X1 + · · ·+Xn = l ≤ τ and

V = v. Suppose x1, · · · , xn be such that
∑

i xi = l, then for some normalizing constant C

p(x1, · · · , xn|l, v) = C
e−(x1−vδ)2/2σ2 · · · e−(xn−vδ)2/2σ2

e−(l−nvδ)2/2nσ2

= Ce(l−nvδ)2/2nσ2−
∑
i(xi−vδ)2/2σ2

= Ce
(l−nvδ)2−n

∑
i(xi−vδ)

2

2nσ2

= Ce
l2−n

∑
i x

2
i

2nσ2

which is independent of v and that proves the lemma. Note that we used the fact that∑
i xi = l to simplify the expression.

Now we are ready to prove Corollary 7.4.2.

Proof. (Of corollary 7.4.2) Let us restate what we want to prove. Suppose V ∼ B1/2,
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(X1, . . . , Xn)|V = 0 ∼ µ̃0 and (X1, . . . , Xn)|V = 1 ∼ µ̃1 and V → (X1, . . . , Xn) → Π be a

Markov chain. Then

I(Π;V ) ≤ nδ2

σ2
I(Π;X1, . . . , Xn)

By lemma 7.6.13, V → X1 + · · ·+Xn → (X1, . . . , Xn)→ Π also forms a Markov chain. Then

I(Π;V ) ≤ nδ2

σ2
I(Π;X1 + · · ·+Xn) ≤ nδ2

σ2
I(Π;X1, . . . , Xn)

where the first inequality follows from Theorem 7.4.1 and the fact that the distribution of

X1 + · · ·+Xn|V = 0 is the Gaussian N (0, nσ2) truncated to [−τ, τ ] and the distribution of

X1 + · · ·+Xn|V = 1 is the Gaussian N (nδ, nσ2) truncated to [−τ, τ ]. The second inequality

follows from data processing.

7.7 Tight Upper Bound with One-way Communication

In this section, we describe a one-way communication protocol achieving the tight mini-

mal communication for Gaussian mean estimation problem GME(n,m, d, σ2) with the as-

sumption that |θ|∞ ≤ σ√
n
. Note that for the design of protocol, it suffices to consider a

one-dimensional problem. Protocol 14 solves the one-dimensional Gaussian mean estimation

problem, with each machine sending exactly 1 bit, and therefore the total communication is

m bits. To get a d-dimensional protocol, we just need to apply Protocol 14 to each dimen-

sion. In order to obtain the tradeoff as stated in Theorem 7.4.7, one needs to run Protocol 14

on the first αm machines, and let the other machines be idle.

The correctness of the protocol follows from the following theorem.

Theorem 7.7.1. The algorithm described in Protocol 14 uses m bits of communication and
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Unknown parameter θ ∈ [−σ/
√
n, σ/

√
n]

Inputs: Machine i gets n samples (X
(1)
i , . . . , X

(n)
i ) where X

(j)
i ∼ N (θ, σ).

• Simultaneously, each machine i

1. Computes Xi = 1
σ
√
n

∑n
j=1X

(j)
i

2. Sends Bi

Bi =

{
1 if Xi ≥ 0
−1 otherwise

• Machine 1 computes

T =
√

2 · erf−1

(
1

m

m∑
i=1

Bi

)
where erf−1 is the inverse of the Gauss error function.

• It returns the estimate θ̂ = σ√
n
θ̂′ where θ̂′ = max(min(T, 1),−1) is obtained by trun-

cating T to the interval [−1, 1].

Protocol 14: A simultaneous algorithm for estimating the mean of a normal distribution
in the distributed setting.

achieves the following mean squared loss.

E
[
(θ̂ − θ)2

]
= O

(
σ2

mn

)

where the expectation is over the random samples and the random coin tosses of the machines.

Proof. Let θ̄ = θ
√
n/σ.

Notice that Xi is distributed according to N (θ̄, 1). Our goal is to estimate θ̄ from the

Xi’s. By our assumption on θ, we have θ̄ ∈ [−1, 1].

The random variables Bi are independent with each other. We consider the mean and

variance of Bi’s. For the mean we have that,
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E [Bi] = E [2 · Pr[0 ≤ Xi]− 1]

For any i ∈ [m],

Pr[0 ≤ Xi] = Pr[−Xi ≤ 0] = Φ−θ̄,1(0), where Φµ,σ2 is the CDF of normal distribution

N (µ, σ2). Note the following relation between the error function and the CDF of a normal

random variable

Φµ,σ2(x) =
1

2
+

1

2
erf

(
x− µ√

2σ2

)
Hence,

E [Bi] = erf(θ̄/
√

2).

Let B = 1
m

∑m
i=1Bi, then we have that E[B] = erf(θ̄/

√
2) ≤ erf(1/

√
2) and therefore by

a Chernoff bound,

the probability that B > erf(1) or B ≤ erf(−1) is exp(−Ω(m)). Thus, with probability

at least 1− exp(−Ω(m)), we have erf(−1) ≤ B ≤ erf(1) and therefore |T | ≤
√

2.

Let E be the event that |T | ≤
√

2, then we have that the error of θ̄ is bounded by

E[|θ̂′ − θ̄|2] = E[|θ̂′ − θ̄|2 | E ] Pr[E ] + E[|θ̂′ − θ̄|2 | Ē ] Pr[Ē ]

≤ E[|
√

2 erf−1(B)−
√

2 erf−1(E[B])|2 | E ] Pr[E ] + 2 Pr[Ē ]

= E[|
√

2 erf−1(B)−
√

2 erf−1(E[B])|2 | E ] Pr[E ] + 2 exp(−Ω(m))

Let M = maxerf−1(x)∈[−1,1]
derf−1(x)

dx
< 3. Then we have that | erf−1(x)−erf−1(y)| ≤M |x−y| ≤
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O(1) · |x− y| for any x, y ∈ [−1, 1]. Therefore it follows that

E[|θ̂′ − θ̄|2] ≤ E[|
√

2 erf−1(B)−
√

2 erf−1(E[B])|2 | E ] Pr[E ] + 2 exp(−Ω(m))

≤ E[2M2|B − E[B]|2 | E ] Pr[E ] + 2 exp(−Ω(m))

≤ E[2M2|B − E[B]|2] + 2 exp(−Ω(m))

≤ O

(
1

m

)
+ 2 exp(−Ω(m))

≤ O

(
1

m

)

Hence we have that

E
[
|θ̂ − θ|2

]
=
σ2

n
E
[
|θ̂′ − θ̄|2

]
= O

(
σ2

mn

)

7.7.1 Extension to general θ

Now we do not assume that θ` ∈ [−σ/
√
n, σ/

√
n] for each dimension ` ∈ [d], and still show

how to achieve a 1-round protocol with O(md) bits of communication, up to low order terms.

We will make the simplifying and standard assumptions though, that |θ`| ≤ U = poly(md)

for each ` ∈ [d], as well as log(mdn/σ) = o(m) and mdn/σ ≥ (mdn)c for a constant c > 0.

As before, it suffices to consider a one-dimensional problem. Protocol 15 solves the

one-dimensional Gaussian mean estimation problem using O(m+ log2(mdn/σ)) bits of com-

munication. To solve the d-dimensional problem, we run the protocol independently on each

coordinate. The total communication will be O(md + d log2(mdn/σ)) bits. We fix ` ∈ [d]

and let θ = θ`. Let θ̄ = θ
√
n/σ, where now we no longer assume θ̄ ≤ 1. We will show the
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output θ̂ satisfies:

E[|θ̂ − θ̄|2] = O

(
1

m

)
,

from which it follows that

E[| σ√
n
θ̂ − θ|2] = O

(
σ2

mn

)
.

We now describe the one-dimensional problem for a given unknown mean θ̄. The first

r = O(log(mdn/σ)) machines i send the first O(log(mdn/σ)) bits of their (averaged) input

Gaussians Xi = 1
σ
√
n

∑n
j=1X

(j)
i to the coordinator. Note that the random variables Xi are

distributed according to N (θ̄, 1).

Since O(log(mdn/σ)) bits of each Xi are communicated to the coordinator, since θ̄ ≤

poly(md) ·
√
n/σ (here we use our assumption that |θ`| ≤ poly(md) for each ` ∈ [d]), and

since each Xi has variance 1, it follows by standard Chernoff bounds that the median γ

of X1, . . . , Xr is within an additive 1
100

of θ̄ with probability 1 − 1
(mdn/σ)α

for an arbitrarily

large constant α > 0 depending on the value r = O(log(mdn/σ)). We call this event E , so

Pr[E ] ≥ 1− 1
(mdn/σ)α

.

In parallel, machines r + 1, r + 2, . . . ,m do the following. Let Ri ∈ [0, 1) be such that

Ri = Xi − bXic. Similarly, let R′i ∈ [0, 1) be such that R′i = Xi + 1/5− bXi + 1/5c.

For i = r + 1, . . . ,m, the i-th machine sends a bit Bi ∈ {0, 1}, where

Pr[Bi = 1] = Ri,

and the i-th matchine also sends a bit B′i ∈ {0, 1} where

Pr[B′i = 1] = R′i.

We describe the output of the coordinator in the proof of correctness below. Observe that

the overall communication is O(m+ log2(mdn/σ)), as desired.
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Correctness. Consider the “sawtooth” wave f(x), which for a parameter L, satisfies

f(x) = x/(2L) for x ∈ [0, 2L), and is periodic with period 2L. Its Fourier series8 is given by

f(x) =
1

2
− 1

π

∞∑
k=1

1

k
sin

(
kπx

L

)
.

We set L = 1/2 and note that f(Xi) = Ri. Then, for X ∼ N(θ̄, 1), using a standard

transformation of the Gaussian distribution,

E[sin(tX)] = e−t
2/2 sin(tθ̄),

we have

E[Bi] = E[Ri]

= E[f(Xi)]

=
1

2
− 1

π

∞∑
k=1

1

k
e−(kπ/L)2/2 sin(kπθ̄/L)

=
1

2
− 1

π

∞∑
k=1

1

k
e−2k2π2

sin(2kπθ̄).

Let B = 1
m

∑m
i=r+1 Bi, so that E[B] = E[Bi]. Since the Bi are Bernoulli random variables,

E[|B − E[B]|2] ≤ 1

m− r
≤ 2

m
, (7.38)

where the second inequality uses that r = O(log(mdn/σ)) is at most m/2 under our assump-

tion that log(mdn/σ) = o(m).

In an analogous fashion the coordinator computes a B′ using the B′i.

If event E occurs, then the coordinator knows γ satisfying |γ − θ̄| < 1
100

, and using γ

8See, e.g., http://mathworld.wolfram.com/FourierSeriesSawtoothWave.html
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together with B, will output its estimate to θ̄ as follows. Let {x} = x−bxc. The coordinator

checks which of the two conditions γ satisfies:

1. 1/50 < {γ} < 49/50 and |{γ} − 1/4| ≥ 3/100 and |{γ} − 3/4| ≥ 3/100

2. 1/50 < {γ+1/5} < 49/50 and |{γ+1/5}−1/4| ≥ 3/100 and |{γ+1/5}−3/4| ≥ 3/100.

We note that one of these two conditions must be satisfied. To see this, suppose the first

condition is not satisfied. If it is not satisfied because {γ} < 1/50, then {γ + 1/5} ∈

[1/5, 1/5 + 1/50], which satisfies the second of the two conditions. If it is not satisfied

because {γ} > 49/50, then {γ + 1/5} ∈ [1/5 − 1/50, 1/5], which satisfies the second of the

two conditions. If the first condition is not satisfied because {γ} ∈ [1/4− 1/50, 1/4 + 1/50],

then {γ + 1/5} ∈ [9/20 − 1/50, 9/20 + 1/50] and the second condition is satisfied. If the

first condition is not satisfied because {γ} ∈ [3/4 − 1/50, 3/4 + 1/50], then {γ + 1/5} ∈

[19/20− 1/50, 19/20 + 1/50], which satisfies the second condition.

If the first condition holds, the coordinator will use B and estimate θ̄ below, otherwise

it will use B′ and estimate θ̄ + 1/5 below. We will analyze the first case; the second case is

analogous. Note that since {γ} > 1/50, and |γ − θ̄| < 1
100

, the coordinator learns Z = bθ̄c.

Its estimate θ̂ for θ̄ is then Z+g(B), for a function g(B) to be specified (in the other case the

coordinator would have learned {θ̄ + 1/5} and θ̂ would have been {θ̄ + 1/5}+ g(B′)− 1/5).

To define g(B), we need the following claim. Note that in the first case |{γ}−1/4| ≥ 3/100

and so by the triangle inequality |{θ̄}−1/4| ≥ 3/100−γ = 1/50. Similarly, |{θ̄}−3/4| ≥ 1/50,

so the conditions of the following claim hold for {θ̄}.

Claim 7.7.2. Define h(x) =
∑∞

k=1
1
k
e−2k2π2

sin(2kπx). There exists a constant C > 0 with

the following guarantee. If |{θ̄} − 1/4| ≥ 1/50 and |{θ̄} − 3/4| ≥ 1/50 then for any number

x ∈ [{θ̄} − 1/100, {θ̄}+ 1/100],

C ≤ h′(x) ≤ 1.
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Before proving the claim, we conclude the correctness proof. The coordinator guesses

i√
m

for each integer i for which |Z + i√
m
− γ| < 1

100
. For each guess i√

m
, the coordinator

checks if

|
∞∑
k=1

1

k
e−2k2π2

sin(2kπ
i√
m

)− π(
1

2
−B)| ≤ 1√

m
(7.39)

Note that, since the above Fourier series is periodic between succesive integers, we need

not add Z to i√
m

in (7.39). Let g(B) be the first guess which passes the check. The

coordinator outputs θ̂ = Z + g(B) as its estimate to θ̄ (the second case is analogous, in

which Z corresponds to bθ̄+ 1/5c and g(B′) is defined in the same way). If there is no such

g(B) the coordinator just outputs γ. Note also that if its output ever exceeds our assumed

upper bound U = poly(mnd/σ) on the magnitude of θ̄, then we instead output U .

Then

E[|θ̂ − θ̄|2] = E[|θ̂ − θ̄|2 | E ] Pr[E ] + E[|θ̂ − θ̄|2 | ¬E ] Pr[¬E ]

= E[|θ̂ − θ̄|2 | E ](1− 1

(mdn/σ)α
) + 4U2 · 1

(nmd/σ)α

≤ E[|θ̂ − θ̄|2 | E ](1− 1

(mdn)cα
) + 4U2 · 1

(mdn)cα

≤ E[|θ̂ − θ̄|2 | E ] +
1

m
, (7.40)

where the first inequality uses our assumption that (mdn/σ) ≥ (mdn)c for a constant c > 0,

and the second inequality holds for a sufficiently large constant α > 0.

Conditioned on E , we have θ̂ − θ̄ = g(B)− {θ}. If (7.39) holds for a given i√
m

, then

|
∞∑
k=1

1

k
e−2k2π2

sin(2kπ
i√
m

)− π(
1

2
−B)| ≤ 1√

m
.

Let F be the event that the coordinator finds such an i√
m

for which (7.39) holds. We use
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the shorthand h(z) to denote
∑∞

k=1
1
k
e−2k2π2

sin(2kπz).

E[|θ̂ − θ̄|2 | E ∧ F ] = E[| i√
m
− {θ̄}|2 | E ∧ F ]

≤ E[|h(
i√
m

)− h({θ̄})|2 | E ∧ F ]

≤ E[(|h(
i√
m

)− π(
1

2
−B)|+ |π(

1

2
−B)− h({θ̄})|)2 | E ∧ F ]

≤ E[(
1√
m

+ |π(
1

2
−B)− π(

1

2
− E[B])|)2 | E ∧ F ]

≤ E[(
1√
m

+ π|B − E[B]|)2 | E ∧ F ]

≤ 2

m
+ 2π2E[|B − E[B]|2 | E ∧ F ]

where the first equality follows from θ̂ − θ̄ = g(B) − {θ}, the first inequality uses the fact

that the algorithm ensures | i√
m
− {θ̄}| ≤ 1

100
given that E occurs and therefore one can

apply Claim 7.7.2 with x = i√
m

to conclude that |h( i√
m

)− h({θ̄})| ≤ | i√
m
−{θ̄}|, the second

inequality is the triangle inequality, the third inequality uses the guarantee on the value i√
m

chosen by the coordinator and the definition of E[B], the fourth inequality rearranges terms,

and the fifth inequality uses (a+ b)2 ≤ 2a2 + 2b2.

If there is no value i√
m

for which (7.39) holds, then since E occurs it means there is no

integer multiple of 1√
m

, call it x, with |x − {θ̄}| ≤ 1
100

for which |h(x) − π(1
2
− B)| ≤ 1√

m
.

If it were the case that |E[B] − B| < C
100π

, where C > 0 is the constant of Claim 7.7.2,

then |1
2
− 1

π
h(θ̄) − B| < C

100π
, or equivalently, |π(1

2
− B) − h(θ̄)| < C

100
. By Claim 7.7.2,

though, we can find an x which is an integer multiple of 1√
m

which is within 1√
m

of y, where

h(y) = π(1
2
−B). This follows since the derivative on [{θ̄}−1/100, {θ̄}+1/100] is at least C.

But then |h(x)−h(y)| ≤ |x−y| ≤ 1√
m

, contradicting that (7.39) did not hold. It follows that

in this case |E[B] − B| ≥ C
100π

. Now in this case, we obtain an additive 1
100

approximation,
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and so |θ̂ − θ̄|2 ≤ π2

C2 |B − E[B]|2. Hence,

E[|θ̂ − θ̄|2 | E ∧ ¬F ] ≤ O(1) · E[|B − E[B]|2 | E ∧ ¬F ],

and so

E[|θ̂ − θ̄|2 | E ] ≤ E[|θ̂ − θ̄|2 | E ,F ] Pr[F ] + E[|θ̂ − θ̄|2 | E ,¬F ] Pr[¬F ]

≤ 2

m
+ 2π2E[|B − E[B]|2 | E ∧ F ] Pr[F ] +O(1) · E[|B − E[B]|2 | E ∧ ¬F ] Pr[¬F ]

≤ O

(
1

m

)
+O(1) · E[|B − E[B]|2 | E ]

≤ O

(
1

m

)
,

where the final inequality uses E[|B − E[B]|2 | E ] ≤ E[|B−E[B]|2]
Pr[E]

≤ 2E[|B − E[B]|2], and

(7.38).

Combining this with (7.40) completes the proof that E[|θ̂ − θ̄|2] = O(1/m).

Proof of Claim. We need to understand the derivative, with respect to x, of the function

h(x) =
∞∑
k=1

1

k
e−2k2π2

sin(2kπx),

which is equal to

h′(x) =
∞∑
k=1

2πe−2k2π2

cos(2kπx).

Note that the function is periodic in x with period 1, so we can restrict to x ∈ [0, 1). Consider

z = 2πx. Suppose first that |z − π/2| > ε and |z − 3π/2| > ε for a constant ε > 0 to be

determined. Then,

| cos(2πz)| ≥ cos(π/2− ε) = sin(ε) ≥ 2ε/π,

using that cos(π/2 − ε) = sin(ε) and that sin(x)/x ≥ 2/π for 0 < x < π/2. In this case, it
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follows that

|h′(x)| ≥ (2π)e−2π2

2ε/π −
∑
k>1

2πe−2k2π2 ≥ 4e−2π2

ε− 4πe−8π2

,

using that the summation is dominated by a geometric series. Note that this expression is

at least 4e−2π2
(ε − πe−6π2

), and so setting ε = 2πe−6π2
shows that |h′(x)| = Ω(1). Notice

that x satisfies |2πx − π/2| > ε provided |x − 1/4| ≥ 1/100 > ε/(2π) and that x satisfies

|2πx − 3π/2| > ε provided that |x − 3/4| ≥ 1/100 > ε/(2π). As |{θ̄} − 1/4| ≥ 1/50 and

|{θ̄} − 3/4| ≥ 1/50, it follows that x ∈ [{θ̄} − 1/100, {θ̄}+ 1/100]. Hence, |h′(x)| = Ω(1) for

such x, as desired.

On the other hand, it is clear that h′(x) ≤ 1, by upper bounding cos(2kπx) by 1 and

using a geometric series to bound h′(x).

7.8 Distributed Gap Majority

Our techniques can also be used to obtain a cleaner proof of the lower bound on the infor-

mation complexity of distributed gap majority due to Woodruff and Zhang [WZ12]. In this

problem, there are k parties/machines and the ith machine receives a bit zi. The machines

communicate via a shared blackboard and their goal is to decide whether
∑k

i=1 zi ≤ k/2−
√
k

or
∑k

i=1 zi ≥ k/2 +
√
k. In [WZ12], it was proven that the information complexity of this

problem is Ω(k). We give a different proof using strong data processing inequalities.

The distribution we will consider is the following: let B ∼ B1/2. Denote B1/2+10/
√
k by

µ1 and B1/2−10/
√
k by µ0. If B = 1, sample Z1, . . . , Zk according to µk1. If B = 0, sample

Z1, . . . , Zk according to µk0.

Theorem 7.8.1. Suppose π is a k-party protocol (with inputs Z1, . . . , Zk) and π solves the

gap majority problem (up to some error). Then I(Π;Z1, . . . , Zk|B = 0) ≥ Ω(k).
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Π is the random variable for the transcript of the protocol π. The intuition for the proof is

pretty simple. It is not hard to verify that since π solves the gap majority problem, it should

be able to estimate B as well i.e. I(Π;B) ≥ Ω(1). However since each Zi has only Θ(1/k)

information about B, the protocol needs to gather information about Ω(k) of the Zi’s. It is

satisfying that this intuition can indeed be formalized! Perhaps worth noting that similar

intuition can be drawn for the two-party gap hamming distance problem but there we don’t

have a completely information theoretic proof of the linear lower bound [CR11]. We will be

using the strong data processing inequality for the binary symmetric channel first proven by

[AG76]. It studies how information decays on a binary symmetric channel. Suppose X be a

bit distributed according to B1/2. Y be another bit obtained from X by passing it through

a binary symmetric channel with error 1/2 − ε (i.e. Y remains X w.p. 1/2 + ε and gets

flipped w.p. 1/2− ε). Then for any random variable U s.t. U −X − Y is a Markov chain,

I(U ;Y ) ≤ 4ε2I(U ;X).

Proof. We will denote by Πb1,...,bk the transcript of the protocol π when the inputs to π are

sampled according to µb1⊗µb2⊗· · ·⊗µbk . Since I(Π;B) ≥ Ω(1), we know that h2(Π0k ,Π1k) ≥

Ω(1). Now

I(Π;Z1, . . . , Zk|B = 0) ≥
k∑
i=1

I(Π;Zi|B = 0)

Lets denote our distribution of Π, Z1, . . . , Zk, B by ρ. We will tweak this distribution a little

bit. Take an independent B′ ∼ B1/2. All the variables are distributed the same as ρ except

Zi which is taken to be independently distributed as µB′ . Denote the new distribution as ρ′.

It is easy to verify that

I(Π;Zi|B = 0)ρ ≥ I(Π;Zi|B = 0)ρ′/2
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This is true since in ρ, conditioned on B = 0, Zi has the distribution B1/2−10/
√
k and in ρ′ it

is B1/2 (and hence use Lemma 1.2.24). We can also see that

I(Π;Zi|B = 0)ρ′ ≥ Ω (k · I(Π;B′|B = 0)ρ′)

≥ Ω
(
k · h2(Πei ,Π0k)

)
The first inequality is by strong data processing inequality for the binary symmetric channel

and the second by Lemma 7.2.6. Now

I(Π;Z1, . . . , Zk|B = 0) ≥
k∑
i=1

I(Π;Zi|B = 0)

≥
k∑
i=1

Ω
(
k · h2(Πei ,Π0k)

)
≥ Ω

(
k · h2(Π0k ,Π1k)

)
≥ Ω(k)

The third inequality is by noting that Πb1,...,bk satisfies a cut-and-paste property because π

is a k-party protocol and hence Theorem 7.2.7 applies.
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Unknown parameter θ
Inputs: Machine i gets n samples (X

(1)
i , . . . , X

(n)
i ) where X

(j)
i ∼ N (θ, σ).

• Simultaneously, each machine i

1. Computes Xi = 1
σ
√
n

∑n
j=1X

(j)
i

2. If i ≤ r = O(log(mdn/σ)), machine i sends its first O(log(mdn/σ)) bits of Xi to
the coordinator (Machine 1)

3. Else if i > r, machine i

(a) Computes Ri = Xi − bXic, R′i = Xi + 1/5− bXi + 1/5c
(b) Sends Bi and B′i

Bi =

{
1 with probability Ri

0 with probability 1−Ri

B′i =

{
1 with probability R′i
0 with probability 1−R′i

• Machine 1

1. Computes an estimate γ =
√
n
σ

times the median of Xi’s sent by the first r ma-
chines.

2. Computes

T =
1

m− r

m∑
i=r+1

Bi, T
′ =

1

m− r

m∑
i=r+1

B′i

3. Returns σ√
n
θ̂ where θ̂ is a multiple of 1/

√
m− r satisfying |γ − θ̂| < 1/100 and

certain agreement conditions with T, T ′ described in the text.

Protocol 15: A simultaneous algorithm for estimating the mean of a normal distribution
in the distributed setting without assuming |θ| ≤ σ/

√
n.
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and Nikolay Vereshchagin. Towards a reverse newman’s theorem in interactive

information complexity. Conference on Computational Complexity, pages 24 –

33, 2013.

[BCK14] Joshua Brody, Amit Chakrabarti, and Ranganath Kondapally. Certifying equal-

ity with limited interaction. APPROX-RANDOM, pages 545–581, 2014.

[BCW98] Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. classical

communication and computation. In STOC, 1998.

[BG99] Sergej G Bobkov and Friedrich Götze. Exponential integrability and trans-

portation cost related to logarithmic sobolev inequalities. Journal of Functional

Analysis, 163(1):1–28, 1999.

[BG14] Mark Braverman and Ankit Garg. Public vs private coin in bounded-round

information. 41st International Colloquium on Automata, Languages and Pro-

gramming, 2014.

[BG15] Mark Braverman and Ankit Garg. Small value parallel repetition for general

games. STOC, pages 335–340, 2015.

[BGK+15] Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao, and Dave

Touchette. Near-optimal bounds on bounded-round quantum communication

complexity of disjointness. FOCS, 2015.

[BGM+16] Mark Braverman, Ankit Garg, Tengyu Ma, Huy Nguyen, and David Woodruff.

Communication lower bounds for statistical estimation problems via a dis-

tributed data processing inequality. STOC, 2016.

240



[BGPW13a] Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From

information to exact communication. STOC, 2013.

[BGPW13b] Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From

information to exact communication. http://eccc.hpi-web.de/report/2012/171/,

2013.

[BGPW13c] Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. Infor-

mation lower bounds via self-reducibility. In Computer Science–Theory and

Applications, pages 183–194. Springer, 2013.

[BHOS14] Fernando G.S.L. Brandao, Aram W. Harrow, Jonathan Oppenheim, and Sergii

Strelchuk. Quantum conditional mutual information, reconstructed states, and

state redistribution. http://arxiv.org/abs/1411.4921, 2014.

[BM13] Mark Braverman and Ankur Moitra. An information complexity approach to

extended formulations. STOC, 2013.

[BMY15] Balthazar Bauer, Shay Moran, and Amir Yehudayoff. Internal compression of

protocols to entropy. RANDOM, 2015.

[BP13] Gabor Braun and Sebastian Pokutta. Common information and unique dis-

jointness. FOCS, 2013.

[BR11] Mark Braverman and Anup Rao. Information equals amortized communication.

FOCS, 2011.

[Bra12] Mark Braverman. Interactive information complexity. In STOC, pages 505–524,

2012.

[BRR+09] Boaz Barak, Anup Rao, Ran Raz, Ricky Rosen, and Ronen Shaltiel. Strong

parallel repetition theorem for free projection games. RANDOM, 2009.

241



[BRWY13a] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct

product via round-preserving compression. ECCC, 20(35), 2013.

[BRWY13b] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct

products in communication complexity. FOCS, 2013.

[BRWY13c] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct

products in communication complexity. In Foundations of Computer Science

(FOCS), 2013 IEEE 54th Annual Symposium on, pages 746–755. IEEE, 2013.

[BS16] Mark Braverman and Jon Schneider. Information complexity is computable.

ICALP, 2016.

[BSST99] Charles Bennett, Peter Shor, John Smolin, and Ashish Thapliyal.

Entanglement-assisted classical capacity of noisy quantum channels. Physical

Review Letters, 83(15):3081–3084, 1999.

[BT91] Richard Beigel and Jun Tarui. On acc. In FOCS, pages 783–792, 1991.

[BT15] Mario Berta and Marco Tomamichel. The fidelity of recovery is multiplicative.

http://arxiv.org/abs/1502.07973, 2015.

[BW12] Mark Braverman and Omri Weinstein. A discrepancy lower bound for infor-

mation complexity. In RANDOM, pages 459–470. Springer, 2012.

[BYJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information

statistics approach to data stream and communication complexity. Journal of

Computer and System Sciences, 68(4):702–732, 2004.

[CA08] Arkadev Chattopadhyay and Anil Ada. Multiparty communication complexity

of disjointness. Electronic Colloquium on Computational Complexity (ECCC),

15(002), 2008.

242



[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak random-

ness and probabilistic communication complexity. SIAM Journal on Comput-

ing, 17(2):230–261, 1988.

[CKS03] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower

bounds on the multi-party communication complexity of set disjointness. CCC,

pages 107–117, 2003.

[CKW12] Amit Chakrabarti, Ranganath Kondapally, and Zhenghui Wang. Informa-

tion complexity versus corruption and applications to orthogonality and gap-

hamming. CoRR, abs/1205.0968, 2012.

[CR11] Amit Chakrabarti and Oded Regev. An optimal lower bound on the commu-

nication complexity of gap-hamming-distance. In STOC, pages 51–60, 2011.

[CS14] André Chailloux and Giannicola Scarpa. Parallel repetition of entangled games

with exponential decay via the superposed information cost. 41st International

Colloquium on Automata, Languages and Programming, 2014.

[CSUU08] Richard Cleve, William Slofstra, Falk Unger, and Sarvagya Upadhyay. Perfect

parallel repetition theorem for quantum xor proof systems. Journal of Compu-

tational Complexity, 17(2):282–299, May 2008.

[CSWY01] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Yao. Informa-

tional complexity and the direct sum problem for simultaneous message com-

plexity. In Bob Werner, editor, Proceedings of the 42nd Annual IEEE Sympo-

sium on Foundations of Computer Science, pages 270–278, Los Alamitos, CA,

October 14–17 2001. IEEE Computer Society.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley

series in telecommunications. J. Wiley and Sons, New York, 1991.

243



[DAW12] John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for

distributed optimization: convergence analysis and network scaling. Automatic

Control, IEEE Transactions on, 57(3):592–606, 2012.

[DJWZ14] John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Yuchen Zhang.

Information-theoretic lower bounds for distributed statistical estimation with

communication constraints. CoRR, abs/1405.0782, 2014.

[DM11] Irit Dinur and Or Meir. Derandomized parallel repetition via structured pcps.

IEEE Conference on Computational Complexity, 2011.

[DP] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure for

the analysis of randomised algorithms.

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repetition. 46th

Annual Symposium on the Theory of Computing, 2014.

[DSV14] Irit Dinur, David Steurer, and Thomas Vidick. A parallel repetition theorem for

entangled projection games. IEEE Conference on Computational Complexity,

2014.

[EV93] Avshalom C Elitzur and Lev Vaidman. Quantum mechanical interaction-free

measurements. Foundations of Physics, 23(7):987–997, 1993.

[FR14] Omar Fawzi and Renato Renner. Quantum conditional mutual information and

approximate markov chains. http://arxiv.org/abs/1410.0664, 2014.

[FV02] Uriel Feige and Oleg Verbitsky. Error reduction by parallel repetition–A nega-

tive result. Combinatorica, 22, 2002.

[GKR14a] Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information

and communication. FOCS, 2014.

244



[GKR14b] Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information

and communication. In Foundations of Computer Science (FOCS), 2014 IEEE

55th Annual Symposium on, pages 176–185. IEEE, 2014.

[GKR15] Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information

and communication for boolean functions. STOC, 2015.
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