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Abstract

In this thesis we address the access control and resource allocation problems in computational

federations, such as testbeds and cloud computing federations. The computational federations of

today are growing in their number of participant organizations, where one challenge is to allow

organizations participate autonomously by expressing how much of their resources should be used

and by whom, through complex policies. In addition, such organizations should be able to exchange

resources with any other organizations without necessarily knowing all of them beforehand.

We introduce our federation framework which allows to build federations in varying complexi-

ties easily, by synthesizing trust management, policy languages and resource discovery into a single

system. Although these three have been studied separately in the past, we show that they are

in fact related, and can be viewed as separate layers of a more general system. We argue that

complex agreements that involve indirect trust relationships is one key way to enable resource

exchange in a federation with numerous organizations, and this can be realized by our synthesis

architecture that provides usability as well as expressiveness.

As part of our framework, federation policy language (FPL) is used to express both the security

and allocation policies, by providing simple primitives such as contracts that hide the underlying

complexity. FPL primitives allow system administrators to express policies such as indirect trust

and resource restrictions within the same construct. Underneath, FPL uses our distributed trust

management system (CERTDIST) to implement and impose policy primitives. CERTDIST uses

digital certificates to allow or deny resource requests and a DHT for complex distributive proofs

in an efficient way. The Resource discovery part of our framework (CODAL) is layered on top of

FPL, and uses contracts to discover peers, FPL security and allocation policies to authorize for

resources that are located possibly in many different organizations.

This thesis also involves a trust model analysis of today’s federations and enabler technologies,

which shows that simpler trust relationships have been used in these systems, but complex trust

relationships is a logical evolutionary step. We evaluate the federation framework with a realistic

emulation of a large scale federation using real PlanetLab traces, that shows that complex policies

can be expressed with a minimal amount of code, and we can efficiently perform the access control

and resource discovery operations in a federation.
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Chapter 1

Introduction

The word federation is defined in politics as “the act of constituting a political unity out of a

number of separate states or colonies or provinces so that each member retains the management of

its internal affairs.” In more general terms, federation means a group within which smaller divisions

have some degree of internal autonomy, and operate under common set of rules. In computer

science, we study computational federations, where the goal is to share computational resources

across organizational boundaries. While a single organization has limited resources, federation

increases the amount and diversity of resources available to its participants. Today, an increasing

number of federations are arising with requirements that are different from existing federated

systems. This thesis explores the requirements for access control and resource allocation in such

federations and explains a general federation framework that can be used to build federations.

1.1 Federation Examples

We give some examples that show that computational federations have been around for a while,

but are recently gaining more attention in fields of cloud computing and testbeds. The examples

are also instrumental in explaining the requirements of our federation framework.

One well-known federation is the Internet, which is composed of more than 50,000 autonomous

systems (AS), each of which provides connectivity to a smaller geographical region. By federating

with each other, ASes, and hence their users, gain access to the overall global Internet. A peering

between two ASes is established by setting up physical connectivity between them, following an

1



out-of-band agreement on its terms. Such a peering agreement generally requires each AS to

access each other’s portion of the Internet, with upper/lower bounds on certain network metrics

such as bandwidth, packet loss, and so on. For the case of users, Internet customers are identified

and charged only by their home ISPs and access the Internet according to the some customer

agreement. Therefore, for both users and ASes, there is a direct out-of-band knowledge between

two entities.

InCommon [31] is a federation of more than 250 academic institutions in the United States.

The goal is to share academic materials, where each participating institution grants the others

access to its own documents and, in return, gains access to theirs. Authentication is done cryp-

tographically, which, in contrast to the Internet federation, allows an institution to authenticate

messages coming from any other one in the federation. This is performed with the assumption

that each participant has a direct a priori knowledge of other institutions, hence, their public keys.

An InCommon user is authenticated at the home institution with a user name and password and

is authenticated and authorized at other institutions with credentials, that is, statements digitally

signed by the home institution. REFEDS [55] and IGTF [30] are similar federations that aim to

foster academic research, and operate using similar mechanisms.

Another area where federations are emerging is website and applications. Google Apps is

set of applications such as email, calendar, and so on, provided by Google. There can also be

third-party applications, called the marketplace applications, that are developed by independent

software providers. Users who log in to use Google Apps may possibly want to use the marketplace

applications too, but a separate sign-up is a burden. To achieve seamless authentication of users

at marketplace applications, third-party providers federate with Google and authenticate users

using their Google IDs. In addition, the marketplace applications might need to use user-specific

resources residing at Google servers. In this case, they federate with Google for access to such

resources. Similar to InCommon, it is assumed that marketplace applications know Google’s

public key so that they can authenticate users from Google, and also Google vets the marketplace

application with a human-involved process before sharing the resources.

Global Environment for Network Innovations (GENI) [10] is a project aiming to fed-

erate numerous research infrastructures and testbeds to form a global testbed for network experi-

mentation. Each testbed in GENI has a set of computational and network resources and possibly

a set of users. These resources can be unique to the testbed, perhaps because of its geographical
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location. The goal is to allow all users to have access to the overall global resource pool. In this

scenario, users should be able to authenticate at different testbeds and, if authorized, access their

resources. On the other hand, the individual testbeds should be able to authenticate any users

system-wide and control how much of their own resources are being used and by whom. This

project is still an ongoing effort, and the devised authentication and authorization mechanisms

have to meet these requirements.

Cloud computing federation has similar goals to testbed federation—that is, sharing compute

and network resources between cloud organizations. Cloud federation participants are commercial

systems with large user bases. The goal of a federation of cloud companies is to increase the

diversity and scale of the resources they offer to their customers, while keeping their costs to

a minimum. Products like OnApp [46] aim at providing users a federated cloud experience with

diverse resources from multiple clouds. In addition, in recent years there has been several studies on

federated cloud computing, such as ones focusing on authentication [43], real-time applications [67],

platform as a service solutions [48], and so on. Such research is also related to grid computing,

where attribute [35], role based [69] and other access control systems across multiple administrative

domains have been studied.

Examples suggest that federation is an important option for academic institutions, cloud com-

panies and Internet services companies. Academic institutions can share their uniquely located

resources, so that a researcher who is affiliated with a particular university can have access to

world-wide resources [52]. Similarly, cloud companies can decrease hardware costs by federating

with others, increasing utilization of overall resources, or diversifying geographical presence [34].

Smaller clouds can meet temporal high demand by utilizing idle resource from others. Similarly, a

larger cloud company in North America can federate one in Japan in order to meet demand from

customer who wants to run CDN-like applications, requiring geographical presence. Also, CPU

intensive virtual machines with less strict network delay requirements can be moved to a remote

cloud during day time, where the available CPU is much higher because it is at another time zone

and overall CPU usage is lower. Finally, as a general vision, federation among Internet services

can enable applications that are yet to be developed, provided that the individual companies have

means to express and dictate how their services will be shared and with whom.

Three common problems in these example federations are multiplexing resources, access control

and resource discovery/allocation. The first is achieved in cloud computing by virtual machines,
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providing an abstraction to users independent of the underlying resource pool. Security threats

caused by others sharing an organization’s resources is another issue caused by multiplexing of

resources. In today’s cloud computing systems, this is solved by isolation of client’s environment

from the host’s. Therefore, we can say that the resource multiplexing problem is solved to a large

extent. As for the access control problem, one subproblem is the human related process of deciding

policies about how much resource to be granted to whom. While cloud organizations apply pricing

methods, testbeds base their policies on bartering so that others can benefit from their resources

as well. Although humans can come up with a variety of allocation policies, current mechanisms

to express and dictate policies are programmatically limited. Such mechanisms depend on direct

knowledge between organizations, which is limiting when there are numerous organizations in

a federation. In general, we need mechanisms to express policies, apply those policies in an

automated fashion, discover resources allowed by those policies, and allocate them. This thesis

will argue that a new system that handles resource authorization, discovery and allocation among

indirectly known organizations is a gating function to expand federations. Once we have such

systems in place, we can construct larger federations that will make the previous problems harder,

such as more resource multiplexing, or lead to new ones not known before.

1.2 Requirements

In this thesis we focus on the access control and resource allocation problems in large scale fed-

erations. The model of federation that we envision in this thesis is as follows. A federation is

made of numerous autonomous organizations that have their own resources and users, but want

to provide their users a larger resource pool. Organizations follow some federation-wide policies

to interoperate, but also specify their own policies about how their resources are used by their

users and also other organizations. Policies can be very complex, such as roles, resource amount,

capacity, time based dynamic policies, and so on. For example, some cloud organization can issue

policy P1 = “CloudX gives discount to Testbed1’s preferred users.”, where the preferred users

are defined by other policies issued by Testbed1. Another example policy can be that CloudX

can grant “10% discount in peak hours and 20% discount other times, with maximum 10 virtual

machines per user”. Policies like this are represented as credentials, and can be passed to other

principals in a federation. When a user issues a resource request to an organization, resources are
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granted if the available credentials allow it. This set of credentials can also include authentication

credentials, proving user’s identity. The access control decision follows from a process that tries

to prove that a chain of credentials imply eligibility for the resources.

Some specific questions raised from such a federation are, how can complex policies be expressed

by organizations, how can a proof process be built that uses credentials to arrive at access control

decisions, how are the available organizations and resources discovered in a federation, how can a

resource request be mapped to multiple organizations’ resources and acquired automatically, how

can a federation scale to millions of organizations, how fault tolerant is a federation in the face of

organizational failures and misbehaving entities, and so on.

We can categorize these questions under three main technical requirements: trust management,

expressing policies and resource discovery. These are fields studied in the past, but lack features

to fulfill federation requirements which we explain next in more detail.

1.2.1 Trust Management

Authentication and authorization of principals in a distributed system is performed by a trust

mechanism that discovers/collects and uses credentials to verify conformance to the policies. For

example, when a Google Apps user tries to log in to a marketplace application, the user’s au-

thentication tokens are transferred from Google to this application using OpenID [47]. Similarly,

security tokens are transferred between two InCommon participating organizations using SAML,

Security Assertion Markup Language [57], when one’s student wants to use resources at the other.

Such mechanisms are commonly referred to as identity management systems.

Federations that we study in this thesis, on the other hand, require trust management, which

is a more complex approach to access control than the identity management systems. Trust

management systems were studied in the past [14,16,32,37], which can construct complex proofs

of access control decisions using formal languages and digital certificates. The reason for this

complexity is scale, because as the number of organizations increase, not every organization will

necessarily know all others directly. Therefore, proof of access control in such federations will

require many credentials to be discovered and used together to logically infer whether an operation

should be allowed or not.

One requirement for trust management system for federations is efficient credential discovery

and proof construction for arbitrary trust relationships. For example, a hypothetical cloud organi-
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zation can issue the following policy: P1 = “CloudX gives discount to Testbed1’s preferred users.”.

Then, the testbed can declare: P2 = “StateU is a preferred organization”. Finally, the university

identifies its student with P3 = “Alice is student at StateU”. Each credential originates from a

different entity, yet all need to be present at CloudX so that Alice can use the discount. Credential

chains like this, and possibly longer, constitute proof for access control, which is not always easy

to construct. One challenge is that the credential may not always be present at its subject. For

example, Alice may not have P3 when she visits CloudX. In that case, it may be impractical for

CloudX to traverse all preferred organizations of Testbed1 and check if Alice is associated with

any of them. Subject may not have the credential maybe because it was not stored, or it was

issued for a group of principals, thereby individual principals lacking knowledge of it, or it was

issued for a short time interval within which it did not reach the subject. Therefore, we need a

reliable and efficient mechanism to search and retrieve relevant certificates for a proof. Current

trust management solutions assume the certificates are stored at the signer [32] or the subject [37].

We are not aware of trust management solutions that operate with centralized repositories. Al-

though some Grid computing federations use centralized credential stores, such as CAS [50] and

Permis [20], they do not apply trust management, hence have simpler trust structures, which will

be discussed in more detail in Section 2.6. Even if all federation participants agreed on a central

location to store certificates, it is hard to ensure efficient and reliable operation of a centralized

repository in an autonomous and distributed system.

A second requirement for a trust management system in a federation is programmable creden-

tials. Policies in cloud computing and testbeds may be more complex than string attributes such

as “discount” in the example policy P1. CloudX can issue instead “10% discount in peak hours

and 20% discount other times, with maximum 10 virtual machines per user”. Such policies can

get arbitrarily complex, and therefore can be represented only with a program getting specific pa-

rameters, such as time. Furthermore, assume that CloudX grants this credential for its resources

located at some other organization Cloud0. Therefore, Alice should present all three credentials,

in terms of digital certificates, to Cloud0 to be able to use the discount. To our knowledge, none

of the trust management systems in literature support both distributed credential discovery and

fully programmable credentials.
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1.2.2 Expressing Policies

Policy languages and their requirements were explored in the past in the context of testbed feder-

ations such as sfatables policy engine [11], and Grid computing [33,66]. The goal of these systems

is to allow an organization to express the amount of its resources that can be allocated by others in

a federated system. The federations that we study in this thesis require expression of not only the

local resources but also third party resources, which is possible by using programmable credentials

supported by the trust management system. We can generalize the relation of the policy language

to the trust management system such that the language should provide an easy way to program

the credentials. There are three overall requirements of the federation policy language, which we

explain by using the example policy in Section 1.2.1.

First, the policy language should be able to express complex resource amounts and limits that

can be seen in cloud computing and testbed federations. Attributes like “discount” of example

policy P1 can get more complex and be expressed by programs, as mentioned before. Some

other examples are maximum 100 machines, 10% of free capacity, 2GB/sec bandwidth during

night time and 1 GB/sec day time, machines except in set X, and so on. Existing systems like

sfatables can express such complex resource allocation policies, by providing simple primitives

that exposes metrics relevant for computational resources, the implementation of which are with

complex programs that compile and process policies in the backend.

Second, the language should be able to express the credentials required for the policy. For

example, one should be able to precisely specify what it means to be a “preferred” user. Such

policies are generally defined by a set of credentials, and called security policies. While the trust

management system is responsible for construction of the proof of the policy, the goal of the policy

language is to provide simple primitives and libraries to allow one to easily express the required

credentials. Existing trust management systems provide the underlying mechanism to express

security policies, but they lack higher level abstractions for cloud and testbed federation.

Finally, a policy language should be able to express third party resources. We mentioned that at

P1, CloudX could grant its resources located at Cloud0 instead of the local resources. For example,

Cloud0 may have issued P0 = “Cloud0 gives maximum 100 machines to CloudX excluding any

of its 10 quad core machines”. So, when CloudX grants some of its resources located at Cloud0

to Testbed1, it might mean only the ones granted through P0, or possibly also other credentials

issued before. Therefore, such policies refer to other policies in a nested way in order to delegate
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third party resources. Since this delegation can get arbitrarily long, the proof of access control

needs a chain of programmable credentials presented at the resource origin. Existing systems does

not support such complex third party resource delegation, which depends on trust management

integration and programmable credentials.

1.2.3 Resource Discovery

Resource discovery systems in literature investigate how to map a user’s resource requirements

to the available resources in a distributed system. These involve specification of the request,

gathering of resource availability information, and mapping the request to resources by possibly

maximizing some utility metrics. Federations need such a mechanism since it is not practical for

users to know where any requested resources may reside, especially in a large scale federation.

One distinct requirement of resource discovery in federations is that the system should be able

to process policy as well as resource availability in mapping request to resources. For example, in

SWORD [2] which runs on PlanetLab, a user can ask for “10 machines at North America with

10GB free disk, 1GB free memory”’. SWORD focuses on fulfilling the request in a way to optimize

resource utilization, by reducing some penalty metric, however, no complex policy is involved, since

all requests are administrated by PlanetLab. In a larger scale federation, on the other hand, the

policies of organizations in which the machines reside, and also delegator organizations’ policies,

if any, would opt into the decision process. Therefore, the discovery system should be able to

execute the complex programs written by the policy language. Moreover, since discovery may

be possible over indirect paths, system should be able to use multiple credentials to arrive at a

resource mapping.

Second, a single user request should be able to be fulfilled from many organizations, since not

all pieces of the request might be found at only one organization. This should be done in a seamless

way, requiring minimal participation from the user, and by automatically detecting, authorizing,

and acquiring resources.

1.3 Contributions

This thesis shows that one practical way to scale federations of today is through complex indirect

trust relationships, which can be realized with a system that synthesizes trust management, policy
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languages and resource discovery systems. These three areas were studied separately in the past,

but fail to fulfill both of the expressiveness and usability requirements of today’s federations,

where one key way to accommodate large number of participants is establishing complex trust

relations easily. We argue that the three types of systems are interrelated, and should be seen

as layers of a more general system, that we call the federation framework, which is crucial to

realize such federations. Having reduced the barriers to expressiveness and ease of use, we believe

this framework will enable resource sharing agreements that were not possible before, and allow

federations with more number of organizations that can access to more diverse resources.

While synthesis of the three domains is the primary contribution of this thesis, we make in-

dividual contributions with respect to the three domains as well. First we analyze trust models

of the federated systems and make the observation that indirect trust relations are inevitable

for political and technical reasons in a federation. Access control in such an environment can

only be achieved by a complex trust management system. To satisfy the requirements mentioned

in Section 1.2.1, we develop a distributed trust management system called CERTDIST that has

distinguishing features of distributed hash table (DHT) based credential store and retrieval, and

programmable credentials, that is, certificates carrying programs. DHT allows key-based, in addi-

tion to IP-based certificate retrievals, making it possible to construct a wider range of policy proofs

distributedly. DHT also increases fault tolerance and improves retrieval efficiency, especially in

case of temporary glitches or overloads at federation participants. Programmable credentials allow

integration of policy language with trust management, effectively allowing expressing and proving

the complex policies required by the federations.

Second, in order to allow administrators to easily write policies with requirements mentioned

in Section 1.2.2, we build a declarative policy language, FPL, on top of CERTDIST. FPL allows

policy writers to easily express policies in a federation. Though it provides high level abstractions

and primitives especially relevant for cloud and testbed federations, it can be used in other contexts

as well. FPL exposes CERTDIST’s certificate retrieval capability with its language primitives to

able to write complex security policies. High-level FPL constructs such as “contracts” combine

both security and allocation policy elements to express complex policies in federations concisely

and easily. This includes ones expressing third party resources, as well, which use CERTDIST’s

programmable credentials underneath in its implementation.

Finally, in order to satisfy the requirements of Section 1.2.3, we introduce Contract-based
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Resource Discovery and Allocation system, CODAL, that uses the policy language, FPL as its lower

layer. It is different from previous systems [2, 68], which operate either in a single administrative

domain or a federation with small number of organizations and simple inter-organizational policies.

CODAL’s “collaborative matching algorithm” can fulfill a user request from many organizations

in the federation by utilizing FPL contracts to dynamically discover peer organizations and the

security policies to authorize for resources. It performs constraint logic programming (CLP) to

map a user resource request to available resources, which utilizes FPL elements to impose complex

allocation policies in addition to user constraints.

We evaluate this framework in Chapter 8 by emulating a realistic large-scale federation using

real PlanetLab usage logs and making use of the distributed nature of PlanetLab to create a

federation model from scratch. Our evaluation shows that FPL can express complex policies, and

CODAL can discover federation peers and allocate resources efficiently. We show that CERTDIST

increases fault tolerance and efficiency in certificate retrievals, especially under high user-request

loads at an organization.
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Chapter 2

Background

This chapter gives more detailed information on the federations of today, and the technologies

used, and contrasts them to the federation model we envision in this thesis. We first give a brief

overview of trust models in literature, which we use to analyze federations. Next, each federation

is explained in detail, including technologies used, the actors and their interactions, and their

trust model analysis. We describe the technologies that do not particularly appear in a federation

but studied separately, in Section 2.7. Finally, this chapter argues that federations of today have

simpler trust structures than that of our federation model, and/or the technologies used are limited,

lacking the expressiveness and usability properties required by a complex federation model.

2.1 Trust Models

To better characterize different federations, we use trust models that depict the trust relation-

ships in the system. Trust models have been studied [39, 45] to analyze security of distributed

systems. Depending on the complexity level of the trust model in a distributed system, we can

characterize the required authentication and authorization mechanisms or argue if the currently

used mechanisms are a limiting factor for the system.

Today, mostly simple trust relationships exist in distributed systems, in which simple authen-

tication and authorization mechanisms are sufficient. For example, PlanetLab trusts Stanford

University in attesting to valid students, so that when Stanford says that a particular individual

is a student, PlanetLab accepts him or her as a valid user and later can give the right for ex-
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Figure 2.1: Trust models

perimentation in the testbed. This delegation is done by giving a managing role to a responsible

person in Stanford who can input new Stanford users into the PLC database. On the other hand,

trust relationships may get more complex in future systems. For example, similar to PlanetLab,

ProtoGENI can choose to trust Taiwan University for its students. Then, PlanetLab may want

to trust every university that ProtoGENI trusts in attesting new students, and in doing so, Plan-

etLab verifies students indirectly through ProtoGENI. In this scenario, a role-based delegation of

the creation of user records will not work since we cannot expect PG to create all its user records

at PL’s database. Such trust relationship would require using a chain of digital certificates.

Figure 2.1 shows some well-known trust models: circle of trust, hierarchical, distributed, and

bridge. A solid directed edge from a node A to node B shows A trusts B, which is established out

of band between the two entities. More specifically, a directed edge represents an assertion, or a

policy statement, made by A about B that could be stating a vouching relationship or delegation,

depending on the policy. An assertion can be implemented as a single digital certificate signed by

A. A trust path is a sequence of directed edges that begins with some node A and ends at a node

B, showing an indirect trust from A to B.

In the circle of trust model (2.1(a)), there is a direct trust between every entity in the system.

The length of any trust path is 1. The downside of this model is that it is difficult for a new node

to join the system, since there need to be O(N) trust relationships established out of band for N

nodes.

In the hierarchical trust model (2.1(b)), every node trusts its children, if any, and the root.

One example is a PKI system. In the process of authenticating a domain like princeton.edu, there

are three assertions required. First, everybody trusts a root certificate authority, locally keeping

its public key. This trust is depicted with the first edge going from node A to the root node.

Next, the root has to sign a certificate for the edu domain, shown by the edge from the root to
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the second-level node. Finally the third edge shows edu trusts princeton. It is easier for a new

node to join in the hierarchical trust model, which is done by the new node downloading the root

public key. The disadvantage is that the root becomes the single point of compromise that can

affect the whole system.

In the distributed trust model (2.1(c)), there are multiple trust anchors and trust between

them. This model fits environments with more autonomy, where there is not a single root of trust

but multiple rootlike entities. One feature of this model is that trust paths can be longer; as seen

in the figure, the maximum path length is 5, compared to lengths 1 and 3 in the other two models.

The advantage of this model is that the compromise of one or more nodes does not affect the whole

system. Also, similar to hierarchical trust model, it is easy to join the system, by establishing

trust relationship to one or more participants. Distributed trust model is the most general and

complex one, where all other models are a special case of it. It is also interesting because it

reflects the trust relationships among humans for resource exchange. Because, generally entities

autonomously decide the peers with whom they will share their resources, and in turn, those peers

can decide their own peers. This results in an almost arbitrary set of paths for resources to be

delegated and accessed.

Finally, the bridge trust model (2.1(d)) involves a bridge node connecting different parts of the

graph, which can reduce the trust path length compared to distributed model. Bridge model can

also be used in a situation where two or more groups of nodes with different trust models need to

be connected, and nodes can talk to only the ones in their own group. In that case, when a node

wants to exercise the trust path to a node in another group, its request has to go through the

bridge node. This implies that the node logs in to the bridge, and the bridge talks to the target

node on its behalf. This usage of bridge model is basically for providing a compatibility layer for

the end points of the overall graph, and can be scaled by having multiple bridge nodes form a

group that has, for example, a distributed trust model.

In the following sections, we use these trust models to analyze the trust structure of some

existing federations.
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Figure 2.2: PlanetLab’s centralized structure, where PLC manages all users and nodes from all
sites, and the resource allocation using machine virtualization

2.2 PlanetLab Federation: SFA, sfatables

PlanetLab (PL) [52] is a research facility for realistic network experimentation that has machines

that span the world. Figure 2.2 depicts the architecture of PL. Universities and research institu-

tions, called sites, join PL by donating a set of machines and, in turn, gain access to the overall

resource pool. PlanetLab Central (PLC) manages resource sharing, acting as a central trusted

entity. It uses machine virtualization technology to allow machines be simultaneously shared by

many users, researchers using the facility. A node is a single machine contributed by one of the

sites. Users are allocated a slice of overall resources, which consists of a collection of individual

virtualized nodes, called slivers. A slice can be used to perform a single experiment conducted by

a group of users in the testbed.

The main property of this architecture is that PLC is the central trusted authority that manages

the whole testbed. The user, node, and slice records are kept in PLC database and can be accessed

and updated by the users through web or programmatic interface. New slices are requested by

users, which have to be approved by the operators.

A single centralized testbed is limited in terms of both quantity and diversity of resources.

14



Figure 2.3: System actors and interfaces at SFA participant testbeds: (1) Authorities set allocation
policies and create slices; (2) users access resources by collecting and passing credentials from/to
authority-managed interfaces, RI and SI

Therefore, PL has chosen to federate with similar testbeds in order to increase the available

resources to its users. Slice-based Federation Architecture (SFA) [51] is an ongoing effort for

a federation architecture that aims to provide a set of standards and mechanisms that enable

federation. Today, PL federates with other PL-like testbeds, such as PlanetLab Europe, Japan,

and VINI [9]. A user of PL can use resources at those testbeds, and vice versa. The difference from

the central structure is that each testbed is autonomous, managing their own resources and users.

As a result, the resource allocation decisions are not made solely by PLC, but by the individual

facilities and as a result of agreements between them.

SFA defines the system interfaces, principals, objects, and a trust mechanism, as depicted

in Figure 2.3. A testbed has a set of components, each of which is an object representing a

testbed resource, such as a single machine or a programmable router, and corresponds to a node

in PL. Components export two interfaces, a management interface (MI) and a slice interface (SI).

MI comprises the management operations, such as installing and booting machines. SI involves

slice-related operations at a component, such as allocating, starting, and stopping a sliver. The

aggregate manager (AM) of the testbed represents and manages all components within the testbed

and exports the interfaces MI and SI. A user can invoke such operations at the AM or one by one at

each component in a user’s slice. A management authority (MA) is a principal who is responsible

for the proper operation of the nodes and for placing the resource allocation policies at the AM or
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components using the MI. These policies are set to fulfill the allocation preferences of the testbed

or the resource owners. If the testbed has its own users, their records and the slices assigned to

them are kept in slice registry (SR). A slice authority (SA) is a principal who is responsible for the

creation of slices and approval of new users into the system. Registry interface (RI) exports record

modification and retrieval operations at the slice registry. Users can call functions in RI in order

to update their individual records, as well as to obtain credentials. Users can call “GetCredential”

to get a slice credential in the form of a digital certificate, which denotes the user as a user of

a particular slice. Using the slice credential, a user can allocate resources at any testbed in the

federation by a call at the slice interface (SI) of their AMs or components. Currently VINI has

only resources; therefore, it is depicted by an AM but not an SR. SI performs resource allocation,

adhering to the policy established by the MA at the AM or component. All users in the system

have a public/private key pair kept in the SR of their home testbed, which they use during remote

calls and which SR uses while signing the credential for the user. SFA introduces a policy tool

called sfatables [11], used by an MA to set resource allocation policies at an AM. This can place

complex policies on resources, imposed on users who have a slice and want to allocate resources

at the AM.

ProtoGENI (PG) [53] (not shown in the figure) is a federation effort led by the Emulab [63]

research testbed, developed at the University of Utah. It brings together more than 10 Emulab-like

testbeds in the United States, all of which run the Emulab code base for specifying and creating

experiments. The difference between Emulab and PlanetLab is such that Emulab experiments

focus on control and repeatability, whereas PlanetLab provides a realistic network environment

in which an experiment runs in the real Internet. Emulab allows specification of network metrics,

such as delay and bandwidth, to create an emulation of desired network conditions. Emulab

allows an experiment to run in a real machine and allows choice and full control of the OS. Since

the machine is not shared by others, this allows more repeatable experiments. Therefore, PL and

Emulab provide two different points in the spectrum of network experimentation, where researchers

use them back and forth for first controlled and then realistic testing of new services.

ProtoGENI contributes to SFA and adopts it as its federation architecture, allowing compatibil-

ity with the PL federation. Therefore, its actors and interfaces are similar to Figure 2.3; however,

since these federations are developed by independent teams, they arrive at different implementa-

tions of the same architecture. The SI and RI are the most important pieces for compatibility,
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since the MI is mostly called internally by the testbed management authority. The consolidation

of such interfaces is crucial for federation between those systems, which is an ongoing effort.

2.2.1 Trust Model Analysis

Figure 2.4: SFA Federation Trust Model: Circles represent the autonomous entities, or actors in a
trust model, such that a gray circle is the MA or AM administered by MA; likewise, a light circle
is SA or SR. Dotted and solid directed edges show identity trust and trust for resource allocation,
respectively.

The PlanetLab and SFA trust model is shown in Figure 2.4. Each of PL, PG, PLE, and PLJ

has both resources and users, whereas VINI has only resources. Circles represent the autonomous

entities, or actors in a trust model, such that a gray circle is the MA or the AM administered by

the MA; likewise, a light circle is SA or SR. For PL* and PG, there are both light and gray circles,

whereas VINI is denoted by a gray circle only. Two types of directed edges distinguish between

identity trust and trust for allocation of resources, where the former is represented by dotted edges

and the latter, by solid edges. We use this convention as a convenience in later sections as well.

Each testbed has a set of trusted users, and it can decide to give a slice to some of those users.

A slice credential is shown by the solid directed edges from an authority to its users. Testbeds give

slices only to their own users. A directed edge from an AM to an authority means that the AM
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trusts the slices from that authority; that is, it can create slivers for those slices. Therefore, a set

of edges beginning at an AM and ending at a user shows that the user can create a sliver at that

aggregate, constructing a trust path, as described in Section 2.1. In the current SFA federation, a

slice from any PL* authority can be used to create slivers at the other PL* aggregates, as shown

by edges from AMs to authorities for all PL*. On the other hand, VINI allows only PL and PLE

slices; therefore, we have directed edges from VINI to PL and PLE authorities. This might be

because a need for PLJ did not occur yet, because this is not negotiated yet, or because of other

such human-related reasons.

The interoperability effort between PlanetLab and ProtoGENI is also seen in the figure. While

the main focus of this effort is to make the credential format and API operations compatible, its

implication in terms of trust is that both AMs trust other authorities for allocation of resources.

We expect such trust relations will be constructed over time between ProtoGENI and other PLs

as well.

In the current SFA federation, slices can be created only for the already registered federation

users. This means a user who wants to create an experiment has to sign up at one of these

testbeds. Users of such testbeds are generally already associated with their home institutions such

as universities, and have accounts with user names and passwords. Therefore, a separate sign-up

for the federation is generally a burden. Another limitation of the current SFA trust model is that

indirect trust relations do not exist; for example, the fact that PL trusts PG does not imply that

PLJ and PLE also trust PG.

2.3 InCommon: SAML

In contrast to SFA, InCommon does not require users to have public/private keys but, rather, user

name and passwords. Authentication and authorization of users are done by a federated identity

management system (FIM). The particular FIM used by InCommon is the single sign on (SSO)

protocol specified by the SAML [57] standard. SAML SSO protocol involves two types of entities,

service providers (SP) and identity providers (IdP). All the institutions in InCommon that want

to share their academic documents must have the SP software, and the institutions that have

users to use those resources have to have the IdP software. These software pieces are provided

by an implementation of SAML called Shibboleth [60], which is the most widely used software by

18



Figure 2.5: Use of SAML SSO Protocol in InCommon: A Princeton user requests documents at
Cornell at step 1, which is interrupted by the SAML SP software at Cornell, which initiates the
federated authentication and authorization (steps 2–6)

InCommon participants.

SAML SSO is exemplified in Figure 2.5. In the first step, a Princeton University student tries

to view documents residing at Cornell University web server with the browser. The SP software

intercepts the request to the web server and starts the SSO protocol to authenticate and authorize

the user. In the second step, the user is returned a list of known and trusted identity providers

(IdP) by the SP from which user selects his or her home institution, if it exists. Third, the

user selects Princeton University from the list, is redirected to it, and is authenticated with the

Princeton user name and password. The IdP software runs as a web application within the web

server, which in the fourth step retrieves user identity and attributes from the institution’s LDAP

and databases. Attributes can be user properties such as affiliation, email, and so on, that can

help the SP decide to give user access to resources or not. Fifth, if the user is authenticated, it is

redirected back to SP together with the authentication and authorization tokens. Finally, at step

6, the user is granted access to the secure page at the SP server, where user’s passed attributes

are used to determine level of access for the user.
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(a) (b)

Figure 2.6: Trust models of (a) SAML SSO and (b) InCommon, which uses SAML SSO. Each
participant institution has SP and IdP, which are not explicitly shown.

2.3.1 Trust Model Analysis

SAML SSO has a simple trust model where the service provider (SP) trusts the set of known

identity providers (IdP) and the IdPs trust their own users, as shown in the Figure 2.6(a). A user

can be authenticated by an SP only if there is a trust path starting at the SP and ending at the

user.

InCommon uses SAML SSO and has a trust model, as shown in Figure 2.6(b). For the pur-

pose of our discussion, assume that every member institution in InCommon, such as Princeton

University or University of Utah, runs both a SAML SP and IdP. Actually, some might choose to

just run an IdP if they do not have any resources to share or just run an SP if they do not have

any users. So the figure shows directed edges from every SP to every IdP, where, for simplicity,

we do not explicitly depict the SP and IdP pieces at each node. InCommon forms a trust model

much like the circle of trust model between the institutions.

One limitation of the circle of trust model is that it can be hard for new members to fully join

the system, since they need to establish direct trust relations with participants one by one. In

this model, the existing member institutions generally get to know new members by periodically

updating the list of public keys for all members. In the case of InCommon, this update operation

might not be too inefficient, since participants are generally treated uniformly; that is, an insti-

tution shares its resources with all members or none. In contrast, if a participating institution
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were picky about which members to trust or to what level, then it would have to review every

new member separately. Therefore, in a federation where peering policies are more specific to

institutions, the circle of trust model is less preferable.

On the other hand, unlike the PlanetLab federation, users do not need to sign up, but they

can readily use the federation resources with their existing accounts in their home institutions.

Another important feature of InCommon is that its user base is also interesting for other federations

such as testbeds and cloud computing. The already-existing institution-to-user trust relations in

InCommon can be made use of as part of other federations. For example, if PL were to trust

InCommon for its users, then many users from academic backgrounds could use PlanetLab without

extra sign-up overhead.

2.4 Google Apps: SAML and OpenID

Figure 2.7: User’s authentication at Google Apps and marketplace applications using the FIM
technologies SAML SSO and OpenID

As mentioned before, Google Apps is an environment where both Google and independent

organizations provide applications for users. Google Apps makes use of FIM technologies like

SAML and OpenID. OpenID [47] is another standard like SAML for SSO and is mostly used

for authentication. A user can login into an OpenID-supported web site using an ID from well

known OpenID providers, like Google and Yahoo. Similar to SAML SSO, OpenID runs a message

exchange protocol between domains to authenticate the user.

Figure 2.7 shows how Google Apps makes use of these technologies. There are two ways to log
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into Google Apps. First, a user can be directly associated with Google and has a user name and

password from Google (not shown in the figure); second, users of partner organizations can log in

with their organizational user name and passwords using a SAML SSO (shown by the steps 1–6

in the figure).

There are again two ways to log into marketplace applications. First, a user already logged in

at Google Apps can seamlessly log in at the marketplace application using OpenID. Second, the

user can directly visit the marketplace application, and again OpenID authenticates the user after

a series of steps very similar to SAML SSO, as shown by the steps 1′–6′ in the figure. As a user logs

in at the marketplace application, Google acts as the identity provider and has an OpenID IdP

installation. On the other hand, the marketplace application is the service provider, also called

the relying party (RP). Each such application has to implement OpenID login by installing the

software for the OpenID RP.

There are special cases of the OpenID protocol that are different from SAML SSO and are

not shown in the figure. For example, if the user is visiting the marketplace application by first

logging on to Google Apps, then log-in step 3 is bypassed. This allows the user to seamlessly

land in the marketplace application, for example, by following a link to the application within

the Google Apps website. Second, OpenID can be used together with resource sharing federation

technologies such as OAuth and can induce an additional step to ask the user whether or not he

or she agrees to send identity and other information to the marketplace application.

2.4.1 Trust Model Analysis

The Google Apps trust model is shown in Figure 2.8. Similar to InCommon, users can use their

home domain log-in information for authentication, using SAML SSO. In addition, they can also

choose to sign up Google Apps and be directly trusted by Google. Marketplace applications trust

Google for valid IDs, and they can indirectly authenticate both Google users or users from other

domains using OpenID. As an improvement over the trust models of PlanetLab federation and

InCommon, there can be indirect trust between two organizations in Google Apps, where Google is

a trusted intermediary, acting as an identity broker. In this way, a third-party application provider

can authenticate users from an independent domain even if it does not know them directly.

One drawback of this trust model is that there is a single trusted entity over all the federation.

This means a user from an independent domain that wants to authenticate at a marketplace
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Figure 2.8: Google Apps Trust Model: Users from partner organizations can be authenticated at
Google directly or indirectly and also at marketplace applications indirectly over Google.

application has to log into Google Apps first. In contrast, if a federation had many Google-like

entities, a trust path from an application to a user could go through any one or more of the many

intermediaries. The current authentication method of Google Apps is not suitable for this case

because the intermediary to log into is not obvious to the user. Instead, such an environment

would need an automated mechanism that discovers a trust path from user to app, constructs a

proof of it, and provides that proof to the app that the user wants to log into.

2.5 GENI: SFA/ABAC

The GENI [10] project is led by the GENI Project Office (GPO), which promotes and coordinates

different federation efforts in order to arrive at a ubiquitous federated testbed. The GPO supports

SFA as a candidate architecture for GENI and contributes to the compatibility efforts such as, for

API, credential and resource specification formats among implementations like PL and PG. Also,

the GPO develops tools and prototypes testing the interoperability of such federations, informing

the ongoing implementations the design.

Attribute Based Access Control (ABAC) is a federation enabler technology that is also proposed

as a candidate for implementing GENI. ABAC formally expresses the assertions in a distributed

system and constructs logic proofs of access control decisions by using these assertions. The

assertions are in the form of attributes assigned to the system principals or logic rules about how
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new attributes can be derived from existing attributes. ABAC [37] represents assertions with

digital certificates and, distributively collects and uses them to construct proofs for access control

decisions. We talk more about ABAC in Section 2.5.1.

2.5.1 Trust Model Analysis

Figure 2.9: Example ABAC policy trust models: Bold directed edges show the trust path that
proves Ted is a GENI prototyper, and the light directed edge shows Ted has demo attribute.

Figure 2.9 shows a trust model that illustrates trust paths of two example ABAC access

control decisions. This federation example is from the ABAC wiki web page [6] and involves three

organizations: the GENI Project Office (GPO), the National Science Foundation (NSF), and the

Information Science Institute (ISI) at USC. There are two policies made by the GPO, which are as

follows: Policy 1,“All ISI staff are GPO prototypers,” and Policy 2, “All principals having GENI

attribute from NSF-funded organizations have demo attribute.” Therefore, for a user called Ted

to prove that he is a GPO prototyper, the user’s ABAC software has to collect a certificate saying

he is ISI staff. When combined with the Policy 1 statement, the proof is complete. This is depicted

by the trust path drawn by bold edges, beginning with GPO and ending with Ted. Similarly, to

prove that he has the demo attribute, the user first gathers a certificate stating that NSF funds

ISI and also a certificate stating that ISI says that Ted has the GENI attribute. Combining these

two and Policy 2, proof of Ted having the demo attribute is complete, which is shown by the trust

path with lighter edges on the figure.

Unlike Google Apps, there is a more complex trust path discovery in ABAC. Normally there

will be many organizations funded by NSF in addition to ISI; therefore, ABAC’s logic engine has

the task of inferring that the organization has to be among one of those organizations that gives
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Ted the GENI attribute. Then, the possible organizations will be contacted, and the assertion

containing the attribute will be retrieved as a certificate to construct the proof.

The downside of the ABAC system is that it is more theoretical and the credential discovery

does not have a full implementation at the current state. For this reason, the efficiency of the

discovery and proof process at a large scale is unknown. In addition, ABAC credential discovery

assumes certificates are located either at the issuer or the subject [38], which is not necessarily

true in large-scale federations. ABAC cannot express policies like delegation depth, which can be

done by more formal logic language based system like SD3 or DL. Finally, ABAC attributes do not

include the resource allocation policies, which are not always as simple as roles. The federation

framework described in this thesis aims to handle complex trust models similar to the ABAC

model, but also to handle allocation policies.

While ABAC is one candidate proposed for GENI that can handle some complex trust rela-

tions, the actual deployments of GENI has been simple structures so far. More recently GENI

design is aligned towards a bridge trust model, where a clearinghouse servers as the trusted in-

termediary [17]. This work is published after our work on trust structures of federations [58], and

explains different types of trust and their role in GENI. We see this work as a natural evolution

of GENI from circle of trust model to more complex trust models, in this case the bridge model.

Since GENI is only in academic context, this architecture can be sufficient for medium term or it

can serve as a stepping stone for the future.

2.6 Grid Computing

Grid computing aims to make computing available whenever and wherever needed, analogous to

the power grid, where the computational power will be supplied by many administrative domains,

which are hidden from the users of the Grid. This idea is very similar to the computational fed-

erations that we study in this thesis, such as federated cloud or testbeds. However, the primary

deployments of Grid computing has been to support a few well known large projects that have large

computational requirements, and therefore has to span multiple domains, such as SETI@home [4]

and LHC [13]. This kind of usage requires simpler trust relationships among different organiza-

tions and also organizations and projects. Therefore, the technologies that run on deployed Grid

computing platforms generally use identity or attribute certificates issued by known authorities,
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with simple allocation policies. This is similar to the testbed federation examples we have given

before, therefore we will not depict the trust models of such systems. Research on Grid comput-

ing introduces trust management and negotiation systems that can delegate attributes. However

these systems do not address complex resource delegations among organizations through arbitrary

paths.

Community Authorization Service (CAS) [50] was used in Earth System Grid [23]. CAS is

used a trusted third party service, that keeps policies issued by all resource providers (RP) for all

the users. A RP can grant some portion of its resources to the “community” by issuing a policy

at the CAS server, and specify actions a user can perform such as read, write, execute on files. A

user who authenticates at the CAS server can obtain credential to use a particular resource and

present them at the RP, which allows the request if the credential is valid, or can also temporarily

deny the request according to local policies. This is a bridge model of trust, where CAS acts as

a clearinghouse trusted by every principal in the system to keep policies intact, hence is a single

point of compromise. A similar system is PERMIS [20], where role-based policies are stored in a

centralized LDAP server.

Virtual Organization Membership Service (VOMS) [3] is an authorization system that is used

for European Data Grid (EDG) [27] deployment. It involves virtual organizations (VO) that

consists of a group of users, who want to access resources located at resource providers (RP).

Users can have different groups and roles within a VO, which can be obtained from a VO’s VOMS

server, and presented to RP, which grants resources to the user based on the particular VO(s)

the user is part of, and the attributes user has. VOMS leaves it to RP to construct local policy

mechanisms that should consume these attributes. The trust relationships are between VOs and

RPs and also a VO and its users, that result in simple trust paths rather than multi-path.

GB-RBAC [69] is a role based access control system that simplifies assigning roles to users by

introducing groups, and allows group-level administrators as well as system-level administrators

within a single domain. However, it assumes direct trust relationships between any two domains

are already established.

Attribute based multi access control, ABMAC [35] provides a common representation of local

policies that use attributes. Local policies are represented by the logical conjunction of a set of

functions, where the internal definition of functions are specific to different domains. Although

the representation of local policies are logic based, it does not involve trust management.
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Akenti [61] is a system developed for authorization to web resources, but also used in Grid

context, which involves a more distributed authorization approach and also conditional credentials.

When a user wants to access a resource, one or more policy files for a resource are consulted,

which give the locations of a set of stakeholders. Then, the policies of stakeholders (use-condition

certificates) are remotely obtained, which contain conditions, such as attributes needed to perform

certain actions on the resource, and also which authorities should sign the attributes. Finally,

attribute certificates are retrieved from the authorities. As a result, a longer trust path is walked

compared to CAS or VOMS, when a user tries access a resource. However, there are no arbitrary

delegations, such as delegation of stakeholder, authority or attribute in Akenti, which makes

the trust model limited. Also, the policy language for Akenti is XML, which makes it hard

to express a delegation logic with multiple credentials. On the other hand, Akenti use-condition

certificates are expressive, and can specify conditions in terms of a boolean expression for an action

to be performed. These conditions can be statements that can only be evaluated at the policy

enforcement point (PEP) of the resource, such as about current machine load, disk availability,

time or the state of some related system variable. This makes those credentials similar to the

programmable credentials that we envision in our federation framework.

PRIMA [40] system uses privileges that can be delegated by users to others, allowing distributed

collaboration. A privilege is defined by a subject, object (resource) and allowed actions on the

object, such as allowed operations on a file. Although this represents a fine grained policy at certain

contexts, it cannot express conditions, hence its expressiveness is limited. The goal of PRIMA

is to enable smaller Grid collaborations, where users do not necessarily contact administrators

to manage resource delegations. This goal is set as a real world user requirement, as a result

of a Grid community survey. Therefore, PRIMA allows direct delegations between two users,

forming indirect trust relations that improves scalability. We also adopt this as a requirement in

our framework, and allow delegations among users. A set of privilege certificates will be analyzed

at a PRIMA policy decision point to check validity and authoritativeness of each certificate, and

specific actions will be allowed. However, the mechanism to discover/retrieve delegation certificates

is not clear in PRIMA, and the privilege structure lacks programmability. This precludes any such

delegations to occur between organizations as well.

Negotiating trust on the Grid [8] applies distributed trust management on the Grid resource

allocation problem, and therefore is very closely related to our federation framework. It uses the
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PeerTrust [42] distributed trust management system to dynamically negotiate and establish trust

between entities previously unknown to each other. When a user tries to access a resource, an

incremental disclosure of credentials takes place between parties, to arrive at a chain of certificates

that reveals that user has the attributes that allow him to use the resources. PeerTrust uses a

logic based language to express its policies, where the credentials can contain conditionals that

express requirements for the policy to be valid, such as date time, or additional credentials. While

these features allow PeerTrust to be able to express arbitrary attribute delegations, hence com-

plex trust models, the programmability of the credentials are limited to security policies such as

assigning attributes to principals with simple conditionals. Therefore, PeerTrust cannot express

complex resource allocation policies, such as those that require the ability to operate on compound

data structures, such as local accounting state of an organization at which a credential is being

evaluated, a list of requested resources, a blacklist of resource units to be avoided, etc, to perform

arithmetic operations such as quotas, and also to access to system related metrics such as CPU

utilization, and so on. Another feature of PeerTrust that limits its applicability to distributed trust

models is that its credential discovery cannot retrieve certificates where the signer is unknown.

This limits the proof construction to top-down fashion (from root certificate to end of a chain),

which can be inefficient in multi-path delegations where there are many intermediate delegees.

MyProxy [44] is a credential repository service that allows storing and retrieving user cre-

dentials. This is utilized by other Grid systems, such as the work on the Grid trust negotiation

with PeerTrust, as an additional credential store. In our framework, we do not assume such a

repository, and store credentials in a DHT composed of participant organizations. But in the

future, MyProxy can be an efficient alternative to store and access certificates, provided that this

repository is maintained properly, and the security considerations related to host compromise, as

mentioned by its authors, are handled, which otherwise makes the repository a single point of

failure. In light of such considerations, we choose the federation credential storage to be fully

distributed, but allow for the possibly to leverage centralized solutions in the future.

Grid Security Infrastructure (GSI) [24] allows proxy certificates, where a user’s identity can

be delegated to one or more of user’s jobs that act on user’s behalf, forming a trust path, how-

ever, these delegations are not actually between different principals and do not contain complex

policies. GSI has been the default authentication and identity delegation standard for most of

the authorization systems we mentioned in this section, and also systems like Condor-G [25] that
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combine it with intra-domain resource management protocols such as file transfer.

Policy service for the Grid [62] studies resource allocation policy to allow individual institutions

to manage access to their resources. This includes limiting the number of machines that can be used

by a VO, specifying the allowed connections within the network, placing bandwidth limits and so

on. Similarly, sfatables [11] allows expressing detailed allocation policies in the testbed federations

context, and manages conflicting ones through prioritization. These resource allocation policy

languages lack the ability to merge security policies and allocation policies, therefore resort to

inflexible user attributes to classify users. They also grant local resources only, rather than third

party resources.

Resource Management Architecture [22] involves a resource specification language (RSL) that

allows allocation of Grid resources from multiple domains. This is a common objective with our

federation framework’s resource discovery and allocation, where a resource request should be ful-

filled from possibly multiple organizations. RSL requests are also similar to our framework, which

involves resource units and conditions on their properties, such as minimum memory requirements.

A resource broker divides an RSL request to multiple requests to various resource managers, all of

which are known by the broker through an information service. This system is limited in assump-

tions that all resource managers are known by the broker through an information service, and user

authorization depends only on local policy at individual domains and domain’s direct knowledge

of the user. In our view, resource discovery is not independent of allocation policies, and it is not

desirable and/or feasible for every user to discover any resource in a large scale federation.

Another Grid system uses Sub-contracts [18] to utilize peering relationships between organi-

zations to discover and allocate resources. While this is very much like contract-based resource

discovery and allocation (CODAL) of our federation framework, it does not define any language

or authorization mechanisms to specify and enforce contracts. The described contract structure

is basically a description of resource requests, or the final scheduled resources. It assumes that re-

source requests are submitted directly to a peer, which is responsible for allocating it or submitting

to another peer. This does not require any indirect trust relations, hence trust management mech-

anisms, but suffers from every user request possibly having to go through peers. Also, there are

no allocation policies defined, therefore resources are assumed to be granted to peers independent

of any resource allocation agreements.

OurGrid [5] system improves the inter-organizational peering relationship with a reputation
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mechanism, where peers who contribute more are favored more by their peers. However, OurGrid

does not involve allocation policies, therefore an organization cannot differentiate among its peers

through resource agreements. Also, resource requests are through peers and there is no trust

management in OurGrid system, similar to Sub-contracts approach. We believe reputation is an

important mechanism that can be an input in in-person resource sharing agreements, therefore

can shape allocation policies, but is not enough to replace them.

A different branch of research that explores Grid resource allocation problem is the Grid

economy, which applies market based mechanisms to arbitrate Grid resources among its partici-

pants [1, 7, 19, 65]. These mechanisms involve auctions that maximize the utilization of resources,

and use electronic transactions. Market mechanisms are generally seen as too complex to be

practical in large scale federations [5].

2.7 Other Technologies

Various systems in the literature do not appear as part of any existing federations, but are related to

our federation framework. These involve trust management systems (TM), contracting languages,

and resource discovery systems.

PolicyMaker [16] is the first system that introduced the trust management concept, describing

how a set of remote and local policies, called assertions, can be regarded as programs that interact

and compute together into a policy decision. PolicyMaker is very expressive since it supports fully

programmable credentials; however, the computational complexity of its compliance checker—that

is, the trust path constructing algorithm—is too high to be practical in its original form [15]. Also,

the cost of high programmability is that it is hard to write policies. Every application that uses

PolicyMaker must develop its own way of creating the policy program.

KeyNote [14] is another TM system that is based on PolicyMaker, which introduces a specific

language to encode policies. This makes it easier to write policies, but it cannot express policies

such as delegation depth, or conjunction of attributes. Therefore, it trades-off expressiveness for

ease of use.

Delegation Logic (DL) [36] is the first TM system to our knowledge that used a logic language

to express policies. Declarative semantics makes writing policy programs easier and the program

serves as a logical proof of its expected behavior. DL can express some common security primitives
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such as delegation depth, threshold structures, delegation of attribute authority, etc. DL shares a

common limitation with PolicyMaker and KeyNote, in that it does not involve credential discovery

and assumes all credentials are present at the time of policy execution. DL is more expressive

than KeyNote, but does not support programmability as in PolicyMaker.

Secure Dynamically Distributed Datalog (SD3) [32] is a distributed TM system, involving self-

certification by credential discovery, which is also based on a declarative logic language. SD3

certificate retrieval depends on name resolution to an IP address and authoritative queries at the

signer of a certificate. This can be limited in cases where a signer is not yet known during policy

execution. Also, SD3 does not involve conditions in the certificates, or arbitrary programs required

for supporting complex policies, such as allocation constraints.

Another area that is related to our federation framework is the contracting languages. Similar

to contracts in our federation policy language (FPL), there are courteous logic programs (CLP) [28,

29,54] in semantic web to express business rules in contracts. CLP involves logic based expression

of business rules, which is in declarative nature similar to FPL contracts. These contracts involve

policies such as how much refund for a product can be given depending on time and defect, lead

time allowed before an order can be changed that depends on type of customer, product type,

backlog at seller, etc. The policy allows specifying prioritization of conflicting rules, so that the

appropriate rule will be executed if a caller satisfies both rules. Therefore, it is similar to sfatables

that was mentioned in Section 2.6. We can also utilize this feature in our contracts in the future.

On the other hand, CLP policies do not involve constructs that make it possible to express resource

allocation policies, such as operation on compound data structures like lists, recursion capability,

etc.

Similar to CLPs, SLAs in the context of Internet service providers (ISP) and web services [12,

56], can describe the QoS of services such as overall 99% availability of an email service and 99.9%

from 8 AM to 5 PM. These are simple contracts that do not involve security policies, complex

allocation policies or third party resources.

Resource discovery systems in literature, such as SWORD [2] and Rhizoma [68], operate within

a single administrative domain and therefore lack interorganizational allocation policies, as well

as any per user allocation policies. While Rhizoma allows specifying complex rules to constrain

the required resource sets, SWORD allows only range queries. Therefore, the former has more

expressive policies in specification of resources.
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Another distributed allocation system is SHARP [26], which allocates resources from many

administrative domains in a federation. It mediates resource exchange between domains with

simple bartering policies such as number of machines exchanged. Similar to SHARP, our discovery

system CODAL can perform multi domain resource discovery and allocation but support much

more complex allocation policies than SHARP by using FPL elements in its algorithms.

2.8 Federation Framework

Our federation framework aims at realizing distributed trust model. All of the other trust models

discussed in Section 2.1 are special cases of this model; they can be implemented as abstrac-

tion layers on top of a system supporting the distributed trust model. Moreover, the distributed

trust model is inevitable in real life scenarios such as users delegating privileges without contact-

ing administrators [40], or organizations establishing in-person contractual agreements with small

number of well connected but trusted organizations. Therefore, we should support the distributed

trust model, and not only security policies, but also resource allocation policies. None of the ex-

isting federations or technologies involve multi-path delegations with complex policies. Therefore,

we need a different approach to realize the federation model we envision in this thesis.

Figure 2.10 shows a rough comparison of some of the trust mechanisms, and our approach.

Points on the graph do not represent exact numeric points, but rather try depict the usabil-

ity/expressiveness trade off that we encounter in various systems.

One family of access control technologies is the federated identity management systems (FIM),

as discussed before, such as SAML, OpenID and OAuth. Such systems perform authentication and

authorization with CoT models, and policies are simple attribute-based policies. Another family of

technologies is the trust management systems, that can realize more complex trust models, such

as PolicyMaker, SD3, ABAC, etc as discussed before. Trust management systems can express

more complex policies; on the other hand, they are harder to use since they require writing policy

programs, and can have high computational complexity.

PolicyMaker is very expressive since it supports fully programmable credentials; however, it is

hard to express policies and computational complexity of its compliance checker is too high to be

practical. Other TMs sacrificed expressiveness for ease of use, for example, DL introduced using

logic primitives as policies, which makes it easier to write policies in comparison, but policies are
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Figure 2.10: Comparison of access control systems

restricted in certain ways. A later work by same authors, ABAC, was constrained to attribute

based policies, which cannot express policies like delegation depth, but it can be easier to write

attribute policies. SD3, on the other hand, can express delegation depth, is based on a logic

language and can discover credentials unlike DL and PolicyMaker. PeerTrust is similarly a logic

based language, can also support conditional credentials, and performs trust negotiation.

Compared to those systems, CERTDIST has two distinguishing features. First, it has a more

powerful certificate retrieval, finding certificates from a DHT even if the signer is not known. This

allows distributed proofs of complex trust models, that is, even when certificates are not known

locally or by subject.

Second, CERTDIST allows fully programmable certificates, making it as expressive as Poli-

cyMaker. On the other hand, CERTDIST is not very easy to use, since writing a checker and

programming the credentials can require expertise in logic language. Our federation policy lan-

guage(FPL) defines the federation-specific abstractions that are implemented by CERTDIST and

presented to system administrators to use as high-level constructs. As a result, we achieve both

expressiveness and usability, first by CERTDIST, which is used by security architects to create

new FPL elements, and second by FPL, which is used by system administrators and resource
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Figure 2.11: Comparison of distributed resource discovery and allocation systems

owners to easily express policies.

Figure 2.11 shows a comparison of previous work in resource discovery and allocation systems.

Again, the points in the graph are not exact data points, but relative comparisons.

Since SWORD and Rhizoma are built for resource discovery within a single administrative

domain, they reside lower in the graph. Rhizoma can support complex policies while choosing the

best fit for a request, such as utility values, applying group constraints, maximum network path

length, etc.

The sub-contracts work can support allocation among organizations indirectly knowing each

other, therefore scales to many administrative domains; however, there is no allocation policy

in this system, therefore it resides in the upper left corner of the graph. OurGrid can allocate

resources through only one-hop among indirectly known domains, but regulates allocation amount

depending on reputation based classification of its peers.

SHARP is able to allocate from many domains though arbitrarily long trust paths. How-

ever, the bartering type allocation policies do not satisfy the complex allocation policy needs of

organizations.

Our contract based resource discovery and allocation system, CODAL, uses FPL (hence CERT-
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DIST) in its lower layer to be able to discover many organizations where resources could reside,

process complex allocation policies issued by those organizations in a delegation path, and autho-

rize allocations.
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Chapter 3

Federation Framework

This chapter describes the primary contribution of our thesis: the synthesis of trust manage-

ment, policy language, and resource discovery mechanisms into a general and flexible federation

framework. The individual pieces of the federation framework, CERTDIST, FPL, and CODAL

mechanisms, are explained in more detail in later chapters.

The general requirements that the federation architecture must meet are expressiveness, us-

ability and extensibility. It should be possible to express security policies with complex trust

relationships, such as ones seen in a distributed trust model. The system should be able to

efficiently construct proofs of access control decisions using distributed credential storage and col-

lection. Despite the complexity, it has to be easy for system administrators to write policies using

simple constructs, the implementation of which is hidden underneath. Similarly, resource alloca-

tion policies should be easily expressed, where policies can involve various computational resource

types and constraints. These should easily be extended to resources and constraints in other do-

mains as well. Moreover, allocation policy must allow expressing third-party resource delegations.

Security and allocation policies should be able to be expressed in the same framework, where

they can be used within one policy statement. Finally, the federation architecture must require

minimal effort from the user, automatically discovering federation wide resources, authorizing and

allocating them in a seamless way.

Federation Framework is designed to meet those requirements. Figure 3.1 shows the general

layout of the federation framework. CERTDIST’s distinguishing features, such as enhanced cer-

tificate retrieval functionality and conditional credentials, are utilized by the Federation Policy
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Language (FPL) to develop federation specific abstractions. These abstractions can be catego-

rized as security policies, allocation policies, and, finally, the contracts, which can use both types

of policies. The Contract-Based Discovery and Allocation (CODAL) system utilizes FPL elements

to perform federation-specific tasks, such as discovering new organizations in federation, collect-

ing necessary credentials for authorization, and applying allocation policies in its constraint logic

programming, which maps user requests to available resources.

Figure 3.1: High-level view of federation framework that combines a trust management system,
policy language, and resource discovery system.

3.1 System Actors

Different layers of our federation framework are used by different groups of people in a federation.

Here we list these actors and the tasks they perform in the system, which generally differ in their

level of complexity and ease of use.
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3.1.1 Security Architects

Security architects extend FPL with primitives that serve as building blocks of higher level poli-

cies. Such primitives are generally policies that are general to the federation. For example, in

order to join a federation, each participant organization should adopt a common chosen authen-

tication policy. An example to such a policy would be one that is based on a hierarchical trust

model, which would require multiple certificates in its proof. This policy can be represented with

a primitive called authenticate(), that would be implemented by using CERTDIST. Creating such

primitives in an efficient and secure way requires expertise in logic programming, and understand-

ing of distributed trust management that involves collecting and using credentials, therefore digital

certificates. Therefore, architects deal with most of the complexity in our federation framework.

As federation evolves, architects continue to figure out common policies required by federa-

tion participants, and extend FPL with language elements that will allow expressing and proving

such policies. Similar to authentication, access control for the common API supported by most

organizations in a federation can be represented by authorization primitives written for specific

operations. In addition to security policies, architects also extend FPL with primitives that rep-

resent allocation policies. This requires not only determining resource types, but also available

constraints that can be placed on them. The implementation of such constraints will again be

much more involved, using functions like tapping into system resources, figuring out dynamic met-

rics such as requester’s capacity, and gathering and using system state information. Primitives

can be used by policy makers in individual organizations in a federation, avoiding most of their

underlying complexity. FPL contains elements in the context of testbed and cloud federations, as

will be discussed in Chapter 5, but is flexible and can be extended for other contexts as well.

3.1.2 System Administrators

System admins determine the organization-specific policies at each organization, possibly reflect-

ing the allocation wishes of the resource owners. Admins use FPL to impose these policies at

their organization. The primary FPL construct admins use is a contract, which arbitrates an

organization’s resources among the other organizations in a federation. It is up to the admins to

decide with whom to share resources, and then to negotiate in various out of band ways about

the conditions of a contract. An admin then writes the contract that will fulfill his/her end of

the agreement, expressing the conditions under which the local resources should be granted. Note
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that a contract does not always have to be reciprocal to another: it can be a one-way donation

of resources to others. Contracts combine both security and allocation policy primitives, there-

fore admins can express not only what type and how much of resources to be granted, but also

to which principals, roles, or attribute owners over arbitrary trust models. Once a contract is

decided, it is placed in the organization’s active contracts repository to allow or deny incoming re-

source requests. Admins can use security policies directly as well, to express special access control

restrictions on any chosen API operations or custom services.

3.1.3 Users

Users of a federation are consumers of the federation resources, such as a researcher in GENI

who wants computational resources to run an experiment, a student who wants to view academic

documents in the InCommon federation, or Internet users using an e-commerce application. Users

interact with the topmost layer of the federation framework, CODAL, that discovers, authorizes

and acquires resources for the user. Each user’s request is represented with a resource specification

(RSPEC) that has to be fulfilled from one or more organizations in federation. Users are hidden

from any inter-organizational allocation agreements, and they are not concerned with the orga-

nizations from which the resources will be obtained, as long as the RSPEC is fulfilled. Users do

not have to write any security or allocation policies; however, they need to construct the RSPEC,

which generally involves resource descriptions involving type and number of resources, unit and

group constraints on them. Such constraints can be specified by the user programmatically or

using various graphical user interface (GUI) methods. The resulting resource and constraints are

translated into RSPEC in Prolog format. While the format of RPSEC stays the same, the re-

source types and user constraint primitives can be extended by security architects, as needed. The

RSPEC will be processed by CODAL software that runs the user constraints and also contract

policies to arrive at resource allocation decisions. This software runs the primitives in a generic

way, therefore remains static as FPL is extended.

3.2 Trust Management

The lowest layer of the framework is our trust management system, CERTDIST. This is the piece

that performs distributed credential storage, discovery and proof construction for access control.
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As part of the requirements of our architecture, it is able to implement complex trust relationships

in a federation, by discovering credentials in an efficient way and even when the signers are not

known. CERTDIST allows expressing policies that require large numbers of certificates through

recursive logic rules. In addition, it allows programmability of the credentials with its expressive

logic-based language. Therefore, two main abstractions that it provides are about credential

discovery and the programmability of these credentials.

Figure 3.2 shows the two distinguishing features of CERTDIST, certificate retrieval (credential

discovery) and conditional credentials. Certificate retrieval uses a distributed has table (DHT),

particularly Kademlia [41], as part of its processing, different from other distributed trust manage-

ment systems such as SD3 and ABAC, or any other trust management systems that do not support

certificate retrievals, such as PolicyMaker and Keynote. This allows expressing more complex poli-

cies and more robust proving capability, which will be discussed in greater detail in Chapter 4. In

addition, conditional credentials contain Prolog programs, specifically SWI Prolog [64], in addi-

tion to the local policies. This is a powerful language used to express various policies using string

processing, datetime operations, arithmetic operators and compound data structures. This is un-

like other trust management systems that allow only attributes or a limited form of assertions in

their credentials, but more like the PolicyMaker system, which allows programmable credentials.

Some other CERTDIST components are certificate storage, event subsystem, and cryptography

extensions for Prolog.

Figure 3.2: CERTDIST trust management system’s features, certificate retrieval and conditional
credentials, are realized using DHT and the Prolog language, respectively.
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3.3 Federation Abstractions

Federation abstractions are defined in FPL, where the security and allocation policy elements

are created by architects and used by organizational admins in creating contracts. As mentioned

before, FPL should provide organizational admins with simple abstractions which possess all the

expressive power of a complex trust management system, and combine it with resource allocation

policies. The primary categories of abstractions that need to be supported are authentication and

authorization policies, resource types and constraints, third party resources, and constructs that

combine security and allocation policies.

Figure 3.3 shows a high-level view of the FPL components. This language is extensible by new

elements for other federation contexts or as new security and allocation policies are required while

the federation evolves. Here we explain the connection of FPL to CERTDIST and how language

elements are implemented using CERTDIST, also with some policy examples. We also show how

our contracts differ from previous systems that use contracts.

Figure 3.3: FPL federation abstractions that express security and allocation policies, created using
CERTDIST as its lower layer. Contracts can combine both types of policies to express complex
policies in federations.
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3.3.1 Security Policy

Security policy in general determines which principals are allowed to perform various operations

in a system. In systems with simple trust models, mechanisms such as access control lists can be

used to map user identities to operations, such as in a web portal. Similarly, roles can be used to

determine the set of principals who can perform certain operations, as in InCommon, which maps

attributes like “student” or “faculty” to permission to see different documents. On the other hand,

complex trust model systems have security policies requiring many digital certificates signed by

different authorities and having complex dependencies. DNSSEC is one example policy where a

set of certificates is required for proving that a name maps to specific IP addresses. In federations,

such policies can be placed for individual API operations, naming of principals, creation of system

wide roles, and so on.

FPL security policies are a library of known roles, authentication, and authorization primitives,

each defined using the underlying CERTDIST, which collects and interprets digital certificates

to construct a security proof. Security architects implement these primitives, by defining the

certificates required to construct a proof of a particular policy. Such primitives are provided to

the policy writers, such as organizational admins, as the high-level security abstractions.

An example of complex federation policy is one proposed security policy for GENI. It con-

sists of hierarchical human-readable names (HRN), such as plc.eu.inria, to name objects—that

is, organizations, users, machines, and slices. HRNs reflect the hierarchy of organizations within

geographical locations and the users and resources under them. A slice basically stands for an

organization-specific role, such as plc.eu.inria.overlaysec, such that whoever belongs to this slice

can use it to allocate a set of resources across the federation. HRNs can be created under a

namespace only by objects that have a “register” privilege on that namespace; plc implicitly has

this privilege, being the root, and hence can create plc.eu, but plc.eu has to obtain the credentials

from plc first to create plc.eu.inria. An object can delegate its privilege if it has a delegate bit for

this privilege. Objects that have register privilege on a namespace can create slices.

Consider the slice membership policy, with an example such as when a user named plc.jp.keio.matt

wants to use slice plc.eu.inria.overlaysec. We represent a certificate with {S}PrX , where the state-

ment S is signed using private key PrX, the public key of which is PbX. The following set of

digital certificates proves Matt’s public key PbM is allowed to perform this operation. PbP is

plc’s public key, known by everybody as the root.
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(1) {PbE has hrn plc.eu}PrP

(2) {plc.eu can register at plc.eu with delegation 1}PrP

(3) {PbI has hrn plc.eu.inria}PrE

(4) {plc.eu.inria can register at plc.eu.inria with delegation 1}PrE

(5) {PbT has hrn plc.eu.inria.thierry}PrI

(6) {plc.eu.inria.thierry has slice plc.eu.inria.overlaysec with delegation 1}PrI

(7) {plc.jp.keio.matt has slice plc.eu.inria.overlaysec with delegation 0}PrT

(8) {PbJ has hrn plc.jp}PrP

(9) {PbK has hrn plc.jp.keio}PrJ

(10) {PbM has hrn plc.jp.keio.matt}PrK

The certificate (1) binds a public key to HRN plc.eu, and (2) states that it can create new

objects under this namespace. (3) and (4) are required to prove the same thing for plc.eu.inria.

(4) and (5) designate the user Thierry as a part of the slice overlaysec. Since this credential has

the delegate bit, Thierry can join another user, Matt, to this slice using certificate (7). Finally,

certificates (8), (9) and (10) authenticate PbM as plc.jp.keio.matt. The set of certificates that

can prove a particular policy is not unique. For example, Inria may have directly given the slice

to Matt, or it may be given through more than one delegations. Therefore, the implementation of

the policy is not bound to a fixed number or set of certificates, but is able to define and execute

a logical proof given a set of input certificates, and produces an outcome. In our example, the

implementation would involve checking certificate fields such as whether the right delegate bit is

set or not, and also whether the privileges are given at required namespaces or not, etc.

Security architects can implement such a policy using CERTDIST to come up with FPL ab-

stractions such as, authenticate(User, PublicKey) or has privilege(User, Cred, NameSpace). These

abstractions are implemented as functions that evaluate to true or false by collecting and verify-

ing certificates. The definition of the abstractions can use each other, such as authentication of

an object requiring first, the creator object to prove register privilege. New abstractions can be

created from existing ones, such as has slice(User, SliceName) or other types of security policies,

such as access to API operations.

In order to define the abstractions, security architects first determine the type of certificates
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in the system, such as identity, privilege and slice. Second, depending on the semantics and

fields of credentials, federation-specific callback functions can be written by architects to ease

DHT certificate retrievals. These two are depicted by the credential types and proof boxes in

Figure 3.3, which are described in more detail in Chapters 4 and 5. Systems like ABAC [37]

also provide higher-level abstractions to specify security policies, but FPL is more extensible and

expressive since it directly interfaces to a powerful trust management system that allows new

complex policy primitives to be developed.

3.3.2 Allocation Policy

Allocation policy determines how much of a set of resources is allocated to principals. In previous

work for both the Grid computing and testbed arenas, allocation policies regulate access to network

and computational resources. For example, sfatables [11] is a tool used in PlanetLab federation,

which can express a variety of allocation policies. The allocation policy for Grid computing

is studied at [62], leveraging existing policy frameworks such as IETF and DMTF. Resource

specification language (RSL) [22], again in Grid context, can gather resource information from

multiple domains, and allow users to specify resource units and conditions on their properties, such

as minimum memory requirements. A different way of arbitrating resources in Grid is through

market based mechanisms, as studied in various systems mentioned in Section 2.6. Our framework

is unlike market mechanisms, but relies on humans writing the allocation policy, similar to other

systems we mentioned.

Allocation policy involves defining resource types and the constraints placed on them. In

previous work, the resource types consist of local computational resources such as CPU, memory

and storage, which can be grouped into different virtual machine types. Constraints can be

static, such as “maximum of 10 virtual machines” or “except the machines in an exclude-list”.

Constraints can also be dynamic, such as “10% of my current resources during day time, 20% at

nights”. To realize dynamic policies, an organization would collect the current system information

and execute the policy with such information as input. FPL also provides primitives to define

third-party resources that can be used as a new meta-type in policies, and also new primitives

for dynamic resource constraints, that are unique to our federation setting with indirect trust

relationships. These are represented by resource types and constraints boxes in Figure 3.3.

FPL allows delegating third-party resources to others, without them having to negotiate or
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agree on any resource exchange with the third parties. Third-party resources are implemented

by using conditional credentials underneath. A set of such credentials proves the existence of a

third-party resource, and therefore can be used in a policy statement. An FPL primitive that

defines such a set of credentials is used by an organizational admin to easily express third-party

resources in a contract, such as “resources I have at plc.jp”.

Here are some sample FPL allocation policies in testbed federation context. Policy P1 says

plc.eu gives to plc.jp a maximum of 100 machines during the day and a maximum of 200 machines

during nights. P1 will be obtained by plc.jp in a signed certificate. The mechanism (discovery)

through which this credential is obtained is not crucial for this example, and will be explained

later. plc.jp can later use P1 to allocate resources, where overall successive allocations have to

conform to P1’s policy. A later policy, P2, by plc.jp can say that plc.jp gives 20% of the capacity

it obtained from European organizations (plc.eu.*) to the plc.jp.keio organization. As a result of

P2, plc.jp will not only grant to plc.jp.keio a credential containing P2’s allocation constraints, but

also pass the credential for P1, and any other credentials it obtained from plc.eu.*, which allow

plc.jp.keio to prove to them that it has the right to some portion of plc.jp’s resources. Different

primitives can express different granularity of third-party resources, such as single organization,

or continental resource as in the example. Also note that third-party resource delegation can

happen over arbitrarily long paths. While the admins just use these primitives, implementation

details such as the credential collection and proving of a valid certificate chain are handled by

CERTDIST.

Security architects also provide primitives for expressing constraints on the resources (local or

third-party). As mentioned before, some examples are percent capacity limit, machine number

limit and resource exemption in testbeds context. Some dynamic constraints are more challenging

to implement in the face of third-party resources. For example, the capacity of local resources in an

organization is simply a function of the available hardware at the organization. But when we talk

about the capacity of the organization at a remote site, it depends both on remote organization’s

hardware, and also the policy that applies to the first organization. Since the allocation policy

is a binary function that accepts or denies a particular resource request, it is not trivial to come

up with a capacity value associated with the policy. In order to calculate capacity, that is, the

maximum resource that could possibly allocated with it, a heuristic search algorithm is applied. A

primitive that represents such an algorithm is provided by FPL, again hiding its implementation.
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Another example to such a primitive is one that allows to tap into accounting data structures

keeping track of current resource usage amount per credential. Such primitives can be building

blocks for higher level allocation policies implemented by security architects, or directly used by

admins who want to create their custom policy constructs.

3.3.3 Contracts

Contracts are a key abstraction in Federation Framework. Contracts allow organizations to easily

make their resources available to others, which is a gating function to expand a federation. Con-

tracts enable this by combining allocation and security policies in the same policy statement, to

first express the resources to be granted, and second, the delegees of the resource. This is impor-

tant since it can be impractical to write a contract per grantee, especially when there are many

organizations in a federation. In that case, contracts can grant resources to groups of principals

that are defined by security policies. For example, in testbed federation context, plc.jp can write

a contract saying it delegates all resources it obtained from European organizations (plc.eu.*)

to organizations in Japan (plc.jp.*), with a limitation of 40 virtual machines maximum at each

organization. As a result, in order to be eligible for the contract, certain credentials need to be

provided. Also, as new organizations in Japan emerge, they can have access to these resources

automatically. Similarly, any other security policy provided in FPL can be used to restrict the

recipients of the resources to certain organizations.

Contracts that are seen in previous work do not have this ability to express both types of

policies. For example, CLPs discussed in Section 2.7 do not involve security policies, but only

define the conditions of certain purchases or interactions in semantic web. These conditions are

logic based rules, which is similar to our contracts, but do not express complex allocation policies,

or third-party resources either. Similarly, SLAs in the context of Internet service providers (ISP)

and web services [12,56], describe the QoS of services negotiated only between certain organization

or services, and lack security policies.

3.4 Resource Discovery

The last layer of our architecture is contract-based resource discovery and allocation (CODAL).

The resource discovery problem in a federation is different from previous systems that operate
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within a single administrative domain. Here we explain the individual pieces of CODAL, which

interface to FPL elements such as contracts, security, and allocation policies, as shown in Fig-

ure 3.4.

Figure 3.4: Resource discovery layer, CODAL, uses FPL contracts, security, and allocation policies
to perform federation-wide resource discovery and allocation.

3.4.1 Organizational Discovery

A key problem in a federation is discovering new federation peers. This is different from systems like

RSL, where organizations publish their resource information into a common information service.

In a federation, organizations can have private agreements with others, and do not have to publish

these globally. Therefore, similar to the acquisition of resources, visibility of them can be dictated

by organizational policies.

CODAL discovers new federation peers, that is, organizations from which resources can be

allocated. As mentioned before, contracts can express delegation of a multi-origin set of resources

to a set of principals. CODAL uses FPL contracts already granted to the organization and

periodically queries their granters to learn about possible third-party resource sources, together

with the allocation policy restrictions applied on them. In the contract example of Section 3.3.3,

plc.jp.jaist can query plc.jp and discover resources residing at plc.eu.inria, plc.eu.cambridge, so on,

where a chain of conditional credentials are passed for each path so that plc.jp.jaist can allocate
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from those sources later. Obtaining of digital credentials can be coupled with the discovery phase

or be separate for efficiency reasons, which are discussed in more detail in Chapter 6.

3.4.2 Collaborative Allocation

CODAL performs collaborative allocation, meaning it fulfills user requests from one or more orga-

nizations. Even assuming the organizations are known, that is, after the organizational discovery

of Section 3.4.1, it is challenging to fulfill a resource request from multiple administrative domains.

The group constraints of the resource request need to be satisfied even though the individual pieces

might reside in different peers. Also, necessary certificates need to be collected efficiently in order

to allocate from many peers quickly.

Collaborative allocation performs a sequential querying of peers until the resource request

is fulfilled. It passes the whole resource request and the constraints to each peer in sequence,

with the restriction that the group constraints are “subset-aware”, which is explained in more

detail in Chapter 6. This restriction is instrumental in a peer’s matching algorithm to arrive at

a partial match of the resource request. Collaborative allocation uses FPL security policies in

order to collect necessary certificates before each remote query. Such certificates can be needed

for authentication at peer organizations or authorization of resource ownership using a chain of

conditional credentials.

Collaborative allocation assumes there are enough peers in a federation that, when queried

sequentially, will eventually satisfy all the units and constraints in a resource request. This may not

always be true, or the requester may have been granted only a small amount of overall resources.

In those cases, a more complex algorithm that optimizes the mapping of resource request to a

global view of the resources can be more effective. Also, there could be group constraints that

can only be satisfied in a transaction-like allocation scheme from multiple organizations. Parallel

allocation or transactions can be a future work for the collaborative allocation.

3.4.3 Matching Algorithm

A resource request arriving at an organization is processed by the matching (or mediator) algo-

rithm, which performs constraint logic programming (CLP) to map an RSPEC to available local

resources of the organization. CODAL performs best-effort partial matching of an RSPEC, mean-

ing it find only a subset of overall resource units requested, but still not violating any unit or group
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constraints. CLP applies both the user-specified constraints in RSPEC, as well as allocation policy

restrictions placed in contracts, in order to determine the properties of the resources that can be

allocated. As a result, CODAL’s matching algorithm executes the FPL abstractions written inside

contracts in order to determine which resources can be allocated and in what amount.
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Chapter 4

Trust Mechanism: CERTDIST

We introduce our trust mechanism CERTDIST, which is in the family of trust management (TM)

systems such as PolicyMaker and Keynote. CERTDIST has a logic-based language for specification

of policies, similar to TM systems like SD3 [32] and PeerTrust [42] but can support more expressive

policies. CERTDIST has a distributed hash table (DHT) retrieval of certificates, that allows

distributed compliance checking of a wider range of policies. With these features, CERTDIST is

powerful enough to perform access control in complex trust models and serves as an underlying

mechanism to implement the FPL (Federation Policy Language). In this chapter we first explain

some trust management terminology and then details of CERTDIST design components. The

processing of our system is explained with an example using the Prolog language; therefore, we

give a short introduction to Prolog beforehand.

4.1 What is Trust Management?

Before explaining our system in more detail, we describe how trust management differs from other

security mechanism approaches. A trust management (TM) system handles complex authorization

decisions by possibly using policies from many remote sources in the form of certificates and also

local policies. When a remote request arrives at an application, the application passes the request

string and any relevant certificates to the TM system. The TM decides on authorization depending

on the specific principal requesting the action and the obtained certificates. During the decision

process, the TM may retrieve more certificates if needed, running a complex program to check
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if they together meet the conditions specified in the local policy. This is different from identity

management systems, in which the decision process is as simple as checking for the existence of

some string attributes in user certificates.

Figure 4.1: An e-commerce application, where a requester wants to place a bid on an item. The
TM approach to categorizing policies: Local policy is made of trust relations and application
policy. Remote policies are credentials carrying trust relations.

Figure 4.1 exemplifies an application that can use TM and describes terminology for TM. There

is an e-commerce site which can accept bids for items. The access control policy for the specific

type of bid is such that users who request to place bids need to have a total credit rate of 250

from three of the trusted rater organizations. The local policy of a site is composed of the access

control policies and the trust relations of the site. Examples of the latter are the organizations

trusted to rate the users, the site’s local key, users, and so on. A subset of the trust relations at an

organization can be signed in digital certificates, called credentials, which becomes a remote policy

at another site. The trust relations that can go into a credential are public trust relations, such

as ones in the banks, and others are private trust relations, such as one at the e-commerce site.

Access control policies do not go in a credential, because by definition they are policies for a local

operation specific to the organization. In the figure, credentials from three banks, B1, B2, and

B3, are passed to the e-commerce site. We do not depict here how the credentials are collected,

how the TM is invoked, or its processing of the local and remote policy, and so on, which will be

discussed more later in this section.

There are three main pieces in a trust management system: policy expression language, com-

pliance checker and certificate retrieval (credential discovery). First, a policy language can support

policies with varying levels of complexity, such as attributes, attribute-based delegation, param-
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eterized attributes, and fully programmable policies. The RT family of languages [37] captures

most of these policy types with a sequence of languages of increasing complexity. The drawback

of expressive policy languages is that they can be hard to use. For example, the first TM system,

PolicyMaker allows fully programmable policies, but it is hard to write policies and the computa-

tional complexity of its compliance checker is NP-hard in its original form, and polynomial when

restricted in certain ways. TM systems like SD3 and PeerTrust utilize declarative logic program-

ming as their policy language, based on Datalog and Minerva Prolog, respectively, which increases

readability and correctness of policies. RT is also a declarative family of languages, but diverge

from logic programming for the sake of simplicity, although it is based on Datalog in its core.

The second main piece of a TM is compliance checking, which is defined as the process of

reaching a yes or no result to a request, given a set of certificates and the local policies [15]. From

the trust models’ perspective, which was explained in Section 2.1, it is equivalent to discovering

a trust path between two entities. Therefore, compliance checking translates into finding one

or more credential chains that show a delegation of rights, starting from trusted owners to the

subject of the request. If the required certificates are not locally present, a decision cannot be

reached until they are remotely discovered; therefore, compliance checking is closely related to

the credential discovery problem. Previous work on credential chain discovery [38] introduces a

compliance checker for the RT0 language that can work both with local or remote credentials.

One issue in compliance checking is the direction of the search for certificate chains in the cer-

tificate graph. A TM can perform top-down, bottom-up (backward, forward in [38], respectively)

or bi-directional search of the certificates, meaning, starting from the root of the certificate chain

to the subject, or the other way, or both. Depending on the set of certificates and the properties of

the policy such as delegation fan-out, it can be more efficient to look for subjects with particular

certificates, or signers that have signed particular certificates, or both, while trying to construct a

chain. Another consideration is the graph traversal method, such as depth-first and/or breadth-

first traversal of a credential graph, where either can be more efficient depending on the policy

parameters, such as the length of delegations. Finally, application-specific constraints and heuris-

tics as part of the policies can be utilized by a compliance checker, searching some paths before the

others or eliminating some, while searching for credential chains. This relates to the expressiveness

of the policies, such that, expressive policies can enable more efficient heuristics. In other words,

although compliance checker is application independent, the policies within individual credentials
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can pro-actively help graph search to skip some paths, or favor others.

The third main feature of a TM system is credential discovery, that is, retrieving certificates

remotely to be able to prove policies. Some early TM systems do not support this feature, and

assume credentials are stored locally, such as PolicyMaker and Keynote. More recent TM systems

solve this problem by storing/retrieving credentials at/from their signers or subjects. Storing

certificates and responding to many requests can be costly and require high availability for these

parties. Therefore, RT introduces a type system that dictates that a type of credential will always

be stored either at signer or subjects, to ensure certificates are always available. Grid systems

utilize central repositories such as MyProxy [44] to increase availability of certificates, but there

is no TM system that is based on centralized certificate storage.

4.2 CERTDIST Design

In this section we explain CERTDIST design in terms of three main TM design considerations:

policy language, compliance checker and credential discovery. CERTDIST policy language is based

on SWI-Prolog [64], similar to SD3 and PeerTrust that are based on Datalog and Minerva Prolog,

respectively, but allows pure Prolog policies, unlike those two that impose higher level syntax.

CERTDIST extends Prolog with cryptography and certificate discovery primitives, and utilizes

built-in function and data structures, and as a result, can express policies ranging from param-

eterized attributes to programmable credentials, and resource allocation policies. CERTDIST

compliance checker is based on the Prolog interpreter, has the ability to apply any of the compli-

ance checking methods mentioned in Section 4.1, and can verify policies that other TM systems

cannot. CERTDIST has a DHT credential discovery feature, that allows certificate retrieval even

when signers are not known, allowing credential chain discovery in any direction, and even when

signer/subject servers are unavailable to answer requests.

We first explain compliance checking in CERTDIST in detail with comparison to other TM

systems, and also show the general flow of how access control requests are sent and received,

and the components involved during this process. Next, we specifically describe the certificate

retrieval steps, which is a crucial part of the overall flow, with a comparison to previous TM

systems, emphasizing CERTDIST’s distinguishing features. Finally we explain the policy language

in CERTDIST, and also give a brief introduction to Prolog.
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4.2.1 Compliance Checking

CERTDIST combines the capabilities of compliance checkers in RT0 and SD3 TM systems, hence

can search a credential graph with any direction or traversal method, and can use application

specific policies in this search. To better explain certificate graphs, credential chain discovery, and

considerations associated with it, consider the following DNSSEC example, similar to one used in

the SD3 paper. We change and simplify the policy for the sake of our example, into “name N is a

valid DNS name”, rather than “name N is bound to IP address A”. So, to prove such a policy, the

compliance checker has to find a chain of certificates with ns attribute, and a final certificate with

addr attribute. More specifically, the chain starts with a certificate signed by the root key. There

can be zero or more certificates that bind the next key to ns attribute, and finally one certificate

that binds the name N to addr attribute. Note that the set of certificates in this credential graph

would be pretty large, if we happen to mimic all branches in today’s DNS system. Despite its

size, let’s assume for now that this graph is stored locally and available to the TM system. When

an access control query asks if N is a valid name or not, the compliance checker should ideally be

able to traverse the graph in bottom-up direction (forward in RT terminology) in a small number

of steps, to see if there is a path from N to the root, or not. SD3 relies on an existing key to

start a search, therefore, is limited to top-down direction, which is inefficient for this policy. RT0’s

compliance checker can perform search in both directions; therefore in this graph, it can initiate

search in both directions, realize there is a large fan-out in top-down direction, and complete chain

discovery using bottom-up direction instead.

Although RT0 is able to search the graph in both directions, it has a limited ability to incor-

porate application specific constraints in the search. Note that, the credential graph can contain

not only DNSSEC credentials, but ones related to other policies. In that case, name N can have

a large fan-out in bottom-up direction, as well. Although DNSSEC policy dictates that the chain

must end with an addr attribute credential, there is no way to express this in the RT0 compliance

checker. The checker will try to handle cases such as, a name server delegates addr attribute to

anyone having tmp attribute. This is completely legitimate for RT0’s generic compliance checker,

but does not reflect the application policy, DNSSEC in this case. RT0 checker has a limited appli-

cation specific customization of the search process, such that, some attributes can be configured to

invoke search in specific directions. For example, since only bottom-up direction makes sense for

this policy, addr attribute could be configured to never check top-down direction. Similarly, there
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can be customizations as to the traversal method, either depth-first or breadth-first traversal can

be applied per role. However, such customizations do not address the general problem, since one

attribute can be used in different applications and policies.

The complexity level of the individual policies can be effective in determining compliance

checking efficiency. For example, if the credentials expressed parameterized attributes, such as

ns(princeton.edu), it would be possible to efficiently perform top-bottom search of credential graph.

Because, the ns attribute would tell explicitly which part of the namespace the name server is

responsible for, therefore, we could eliminate unrelated paths in the search. SD3’s DNSSEC

algorithm does this, by supporting parameterized attributes, and placing a constraint such that

the parameter seen in a credential must be the suffix of the one following it in a chain of credentials.

Note that, to achieve such an efficiency in compliance checking, a TM has to support complex

policies, such as ones based on string processing, in order to do checks like if one parameter is a

suffix of another. We can easily extend this example to lists and subset/superset relationships, and

deduce that TM system should be able to support arithmetic, string, date-time based operators

and compound data structures. RT0 language does not support parameterized attributes, or string

based constraints.

CERTDIST is similar to SD3 in that it can support complex constraints and heuristics. In

addition, the expressiveness of Prolog gives it the ability to apply graph search methods used

in RT0. It can perform top-down/bottom-up/bi-directional search in a credential graph, both

locally, or distributively thanks to DHT certificate retrieval. Although depth-first is the default

method in answering queries in logic languages, CERTDIST can perform breadth-first traversal

of a certificate graph as well, by utilizing Prolog data structures such as queues, or programming

techniques such as iterative deepening. Therefore, we can say that CERTDIST combines merits of

both systems, and can prove policies neither system can. For example, using CERTDIST we can

decide to eliminate certain branches seen in top-down direction depending on some paths discovered

during bottom-up direction. Let’s assume we want to check if a user U is granted resources by

organization O1. In bottom-up direction, we can check which institutions U is associated with.

Then we can learn that U is part of a testbed T in Japan. Then, in top-down direction, we see

that O1 grants its resources to some cloud organizations and some testbeds, some of which are in

Asia. So, we first try to construct a delegation path from “testbeds in Asia” to T, assuming this

is the most likely path we can find a credential chain. It is most likely because we can derive that
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Figure 4.2: Application specific components: access control policies, trust relations, events han-
dlers, and auxiliary functions. Certificate retrieval is used during compliance checking.

Japan is a country in Asia probably by looking up in a list or calculating proximity in other ways,

and also resource exchange between testbeds is more likely rather than between commercial clouds

and testbeds. As a result, we are able to find a chain from O1 to O2, and to T and finally to

U, granting some resources to the user. In other TM systems, this kind of selective bi-directional

compliance checking is not possible.

In CERTDIST and similar TMs like SD3, such heuristics and constraints are expressed by a

complex local policy, which we often call the local access control policy that exists per application

or per query type. In the DNS example, this would be the policy that dictates suffix relationship

between two parameters, or expresses the requirement that the last certificate should be an addr

attribute. Similarly, in the TM example of Figure 4.1, it is the policy that expresses total rating

must be greater than 250. In other words, we can say that the local access control policy of a

query describes the properties of one or more chains of certificates required to allow the query.

In theory, a local access control policy does not have to be more complex than the credentials

collected remotely, but generally it is, and as a convention we also call them application specific

checkers.
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Figure 4.2 shows the overall components of CERTDIST. The programmer writes access control

policies, trust relationships, event handlers, and some auxiliary functions in Prolog. We note that

programmers in CERTDIST context correspond to the architects in our federation framework.

Since CERTDIST can be utilized for other purposes, we use programmers as a general class

of people who design and/or know and implement an application’s security architecture. Any

remote operation in an application that requires complex policy decisions will have a separate

checker function, located at the access control policies. This checker function is dispatched upon

a query made to the CERTDIST daemon. For simplicity, we can name the checker functions with

the convention request name. For instance, in the TM example of Section 4.1, the bid() function

will have a checker function such as request bid() that determines whether the bidding should be

allowed or not. As depicted in the figure, access control policies can utilize private trust relations

and also retrieve certificates during its execution.

The general processing of CERTDIST is as follows. At step 1, the CERTDIST event subsystem

triggers an event that requires authenticating and authorizing at a remote CERTDIST daemon.

Such an event could be a user trying to create an experiment at a tested/cloud that requires his or

her student credentials and identity information. An event handler specific to the type of request

is invoked, which first collects necessary certificates for the request at step 2. We explain the

specifics of the certificate retrieval in the next section in detail. The event handler performs the

remote request at step 3 by passing the certificates as a parameter. The event handler should

be written by the application specific policy writers, just like the access control policies. Events

are registered at the event subsystem so that upon a click at UI or form input, and so on, the

appropriate handler is invoked.

The request arrives at a remote CERTDIST daemon at step 4, which is dispatched to an access

control policy. The certificates that are passed by the query are stored at the certificate store,

which is not shown in the figure. The request may need additional certificates in case they are

not already passed by the callee. Such certificates can be retrieved at step 5 by invoking the

certificate retrieval module. The access control policy can be programmed to remotely retrieve

a small number of certificates or use only the locally stored certificates, and so on, since remote

certificate retrievals can be overhead for the callee. If the result of the access control policy is to

allow the request, then the semantics of it are performed by passing the request and parameters

to the application-level modules responsible for the request.
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Figure 4.3: Certificate retrieval can use a local certificate store, digitally sign certificates, or
perform DHT or authoritative queries to locate them.

4.2.2 Certificate Retrieval

As mentioned before, the certificate retrieval module can be invoked both by the event handler at

the caller and the access control policy at the callee. One distinguishing feature of CERTDIST is

that it can retrieve certificates not only directly from their signers but also from a DHT. This allows

credential chain discovery in forward direction even when subject does not have the certificate,

and similarly, in backward direction even when signer does not have the certificate, or the server

of any party is down. As a result, DHT can increase efficiency, fault tolerance and feasibility of

distributed compliance checking. We believe DHT certificate retrieval can be incorporated and

useful in other TM systems as well, in decreasing individual certificate retrieval latency. However,

it would not be very useful in their distributed compliance checking ability, since their checkers are

limited even with local certificates, as discussed in Section 4.2.1. Next, we explain the processing

of certificate retrieval logic below using an example certificate.
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{plc.eu.inria.thierry has slice plc.eu.inria.overlaysec with delegation 1}PrI

A certificate can be found even though there is partial knowledge about it. A certificate is com-

posed of signer and content fields and a type, which can be used as indices in the search. In the ex-

ample above, the signer field is PbI, the content fields are (plc.eu.inria.thierry, plc.eu.inria.overlaysec,

1), and type is “has slice.” Before a certificate retrieval, only some of these fields may be

known. For example, a certificate query can be: retrieve all “has slice” certificates signed for

plc.eu.inria.thierry. In such a query, neither the signer fields nor the delegation bit field of the

certificate is known. Our system can retrieve certificates even if some fields are missing, but it

requires that the type of certificate is always known.

The certificate retrieval logic is depicted in Figure 4.3. There are four ways a certificate can

be retrieved, which are explained in a specific order. However, we do not restrict this order; it is

possible to pass a parameter to certificate retrieval logic to specify which one of these ways should

be used and in what order.

Locally from the Certificate Store

The locally saved certificates will be checked at step 1 in the figure to see if any of them matches

the certificate description. This is the fastest way of retrieving a certificate since it does not

require any remote queries or cryptographic signing operations. Any certificate in the store is

verified before to have a valid signature and not have expired yet. The specific format in which

the certificates are stored and the way they are searched are explained in the implementation in

Chapter 7.

Locally from Local Policy

If step 1 fails, the local public trust relations are checked at step 2 in order to find a policy that

can be used to sign the certificate locally. This entails the certificate type and content matching

the certificate query and the signer being the local CERTDIST daemon. If the policy is found,

the cryptography library is used to sign the certificate. The implementation of the cryptographic

functionality will further be explained in the implementation in Chapter 7.

Once a new certificate is signed, it will be stored in local certificate store to avoid signing a

new certificate if requested again later. In addition, the certificate will be stored at the Kademlia

DHT. A certificate has to be public in order to be stored in the DHT. Also, a certificate should be
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usable by other principals in the system, such as a DNSSEC IP address certificate. Such properties

depend on the semantics of the certificate and hence, on the specific application. Therefore, the

decision to store—and under what keys—should be specified by the programmer as an application-

level primitive. Such a primitive can be implemented in CERTDISTs auxiliary functions module,

as shown in the figure. Hence, at step 3, this function will be invoked with the certificate as input,

which will return the list of DHT keys. Next, the certificate will be stored in the DHT with such

keys.

When storing values in a DHT, a design decision is choosing how to specify keys for later

lookup. The DHT keys for a certificate can be hash of a combination of its type and any of its

signer and content fields. The certificate can be stored under several keys to allow it to be retrieved

under different partial knowledges of fields. Each key will be stored at several peers in a DHT as

part of regular processing of DHT systems.

For example, this certificate can be stored under the key “hash(has slice, plc.eu.inria.thierry,

plc.eu.inria.overlaysec)”, so that it can be retrieved without necessarily knowing the signer. DHT

lookup would especially be useful to retrieve further certificates signed by Thierry, since authori-

tative queries to Inria will not result in any certificates.

Storing under different keys can make sense when there are multiple delegation paths to the

subject, and different certificate fields are important for different policies. For example, an at-

tribute certificate can give a user “Register” privilege at namespace “plc.eu.inria”. This can be

stored under the hash of username and privilege, and also username and namespace. One policy

may need the user to exercise the register right, independent of namespace, in which case the

first key would be used to retrieve the certificate. Note that, since credentials are delegable, it

might have been signed by anyone having the credential with delegation rights, and there can be

more than one such certificate. Similarly, another policy could require one of several rights at a

namespace, in which case the second key would be relevant. In general, the benefits of multiple

keys depend on the specifics of the policy that CERTDIST is implementing, and multiple keys can

increase efficiency of DHT lookups if properly chosen.

Remotely from DHT

If the certificate is not found in a certificate store or local policy, then it will be looked up in

the DHT. Similar to step 3 of certificate store operation, the DHT keys will be first looked up by
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calling the auxiliary function; next, one or more DHT lookup operations will be issued using such

keys.

Since CERTDIST’s DHT peer daemon is connected to other CERTDIST instances through the

Kademlia protocol, a DHT lookup will arrive at several nodes in the DHT, which are responsible

for the key searched. A DHT node which gets a lookup request will check its certificate store, and

if certificates matching the description given in lookup are found, the result will be returned. As

soon as one of the nodes returns the answer, the DHT lookup will return the answer to the querier

peer daemon.

In our example, when a user wants to use the overlaysec slice, the lookup key will be gener-

ated from the username and slice name, and the certificate signed by Inria or Thierry would be

found in DHT. Similarly, when a user wants to perform an operation, the required privilege or

the namespace can be used to generate the hash, together with the username, and one or more

certificates can be retrieved.

Authoritatively from the Signer

A certificate can be retrieved with an authoritative query, which is sent directly to the signer of

the certificate at step 4, if the signer is known. In our certificate example, a query will be sent to

plc.eu.inria’s IP address. An authoritative query can require, first, the resolution of the signer’s

IP address, which itself may require retrieval of several certificates. The address resolution policy

is application specific and can be written by the programmer at the auxiliary functions part of

CERTDIST. After a certificate is found remotely, it can be stored at the certificate store, which

is not shown in the figure.

In the access control policies section of CERTDIST, there is one system-defined checker func-

tion, called request cert, for certificate requests made to the CERTDIST daemon. This is required

because revealing digital certificates to others is also subject to security policy, meaning that

not everybody can retrieve any certificate from a CERTDIST daemon. Any application has re-

quest cert, but different applications can implement different semantics for the function, such as

different preconditions for various types of certificates. When a certificate request arrives at step

5, it is looked up at the local certificate store and local policies only and returned if found.
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4.2.3 Policy Language

CERTDIST can express not only policies seen in RT and SD3, including attribute-based delegation

and parameterized attributes, but also programmable credentials, using Prolog policies. Logic

programming is declarative, readable and unambiguous, therefore is a natural choice for specifying

policies, hence for our TM system; it is also used in other TM systems like SD3 and PeerTrust, as

well as other contexts like representing business policies in CLP contracts [28,29,54]. Prolog also

improves compliance checking of our system, as discussed in Section 4.3.4.

We mentioned that the local access control policies are complex rules that have arithmetic,

string operations and compound data structures. Such policies can be part of credentials as

well, in addition to the local policies, which we specifically call conditional credentials, meaning,

executable certificates rather than with simple attribute bindings. Also, we extend Prolog with

our advanced certificate retrieval primitive, that handles the DHT certificate retrieval that was

discussed in Section 4.2.2, and the cryptographic operations underneath.

Among the previous work, the PolicyMaker system supports fully programmable credentials;

hence it is very expressive but has high computational and programming complexity, as mentioned

in Section 2.8. Later TM systems are generally built for purposes where complex policies are not

needed. As mentioned before in Section 4.3.4, RT family of languages are attribute based, and

do not contain primitives like string processing for parameterized attributes. SD3 can express

parameterized attributes, but lack programmable credentials, and is restricted to DNSSEC policy.

We categorize the complexity level of CERTDIST policies and explain them with compari-

son to previous TM systems. Both the credentials and the local policies in CERTDIST can be

constructed by four policy types or constructs: attributes, conditionals, general-purpose opera-

tions, and repetitions. We will give examples of these category of policies in CERTDIST later in

Section 4.3.

Attributes

Assigning attributes to principals is the simplest type of policy. An attribute is one or more

values in basic data types, such as string, integer, and so on, which denote roles or properties of

a principal. All SD3 credentials are attribute policies. An example SD3 credential is given below;

it is in the form of a tuple, signed by key K3, associating a DNS name “a.gtld-servers.net” with

an IP address.
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K3$DNS(a.gtld-servers.net.,198.41.3.38)

Conditionals

Some policies express conditions for principals to be able to have certain attributes. SD3 expresses

its access control policies with Datalog rules, which can contain conjunction and disjunction of

conditions but cannot have conditionals in its credentials. The RT family of languages can express

conditionals in credentials as well as the local policy. These credentials can give attributes to a

principal with the condition that the principal has some other attributes, and their conjunction

and disjunction. Being able to express conditionals in credentials is important for expressing

policies such as attribute-based delegation. As an example, consider the following RT credential.

A.R← A.R1.R2

This means that if an entity which is given attribute R1 by A gives attribute R2 to any entity

B, then A believes that entity B also has attribute R. If R2 and R are equal, this means A

delegates the right to issue the R attribute to anyone having the A.R1 attribute. Such statements

allow policy writers to state general rules about the ownership of attributes, avoiding having to

write policies for each principal.

General-Purpose Operations

Sometimes we need to express complex operators and compound data structures in policy, such as

arithmetic, string, date/time operations, and lists. In the application example given in Section 4.1,

the sum of the credit ratings should be at least 250, which the policy language should be able

to express arithmetically. The same holds for strings, which was discussed in DNS example of

Section 4.3.4. List arguments are also needed for policy statements.

The RT family of languages does not support general arithmetic/string operations or lists, but

one can place simple constraints on the variables with enumeration, integer, float, and date-time

values. Similarly, SD3 does not have most of the general purpose operations.

Repetition

A policy statement may express repetitive tasks, such as conditions to be held for each element of

a given list, which can be realized by loops or recursion. SD3 access control policies have recursion,
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by which they can operate on structured strings. For example, in order to prove a DNSSEC name

to key binding, SD3 policy runs the proof recursively starting at root to a variable depth in the

tree. RT language does not have loops or recursion in policies. For example, as intersection of k

attributes is expressed by statically writing each of the attributes in the policy, rather than looping

until conjunction of k attributes are obtained, which can be useful when k is large, and especially

using parameterized attributes.

4.2.4 Prolog: Programming in Logic

CERTDIST uses Prolog to represent the four policy types—attributes, conditionals, general-

purpose operations, and repetition—listed in Section 4.2.3. Next, we give an introduction to

SWI-Prolog [64], and show how these policy types are represented using Prolog.

Facts and Rules

A Prolog program consists of definition of a set of predicates—that is, functions that return either

true or false. Predicates are defined with facts and rules. Consider the following Prolog program:

child(alice, bob).

child(alice, jack).

child(john, bob).

child(john, jack).

sibling(bob, jane).

sibling(X, Y) :- child(F, X), child(F, Y), not(X=Y).

The program defines two predicates, child and sibling. Here, child is defined only with

facts, whereas sibling is defined both by a fact and a rule. A rule defines the conditions for a

predicate with the Horn clause :-, such that all predicates on its right-hand side have to evaluate to

true for the predicate to be true. The predicate child(P, C) means C is a child of P. The comma

indicates logical AND and the semicolon indicates logical OR operators when placed between two

predicates. Any term that begins with an uppercase letter is a variable. Therefore, the rule says

that X is a sibling of Y if they share a common parent and they are not the same.
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term

var
X,Y

nonvar

compound

structure
child(F,Y)

list
[1,abc]

atomic

atom
’ab c’, bob

number

float
1.23

integer
123

string
“hello”

Figure 4.4: Prolog’s type hierarchy

Data Types

Figure 4.4 shows the Prolog data types and their examples. Atoms are non-compound Prolog

values that are not numbers or strings, such as john or 'alice bob'. A structure is a term in the

form child(X,Y) where here child is called the functor and the rest are arguments. Arguments

themselves can be structures as well.

Lists are represented by comma-separated elements within square brackets. Elements of a list

are not accessed in random fashion, but rather one by one, starting with the first element. If L

is a list, then the expression L = [Head|Tail] allows us to get the first element at Head and the

remaining list at Tail.

Execution

A Prolog program is run by querying the program with a goal. The Prolog engine tries to evaluate

the goal to true, and if it can, it also finds all possible answers. For example, if we provide the

goal child(alice, X), then the program will return a result set containing child(alice, bob)

and child(alice, jack). On the other hand, the goal child(john, jane) will return false. The

goal sibling(X, Y) will return true with the following answers:

sibling(bob, jane)

sibling(bob, jack)

sibling(jack, bob)
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sibling(bob, jack)

sibling(jack, bob)

The reason of this ordering is because the Prolog engine processes facts and rules top-down.

The goal sibling(X, Y) will match to the sibling fact first; therefore, sibling(bob, jane) is

output first. Next, the goal will try to be satisfied by the rule. Prolog engine tries all possibilities

of matching in a process called backtracking. For example, since there are 4 child facts and the

sibling rule requires a pair of child predicates, 16 combinations of pairs are possible. Eight of the

pairs fail because they do not have same parent, and 4 of them fail because they do not satisfy

not(X=Y). The final 4 pairs produce the remaining results.

Cut Operator

Programmers can control backtracking using the cut symbol (!). The Prolog engine does not

backtrack for predicates before a cut operator, which means it forgets all the alternative matching

possibilities up to that point. For example, suppose we write the above rule as

sibling(X, Y) :- child(F, X), !, child(F, Y), not(X=Y).

This time the goal sibling(X, Y) will produce only the answers sibling(bob, jane) and

sibling(bob, jack). This is because once the first child predicate is matched to child(alice,

bob), Prolog will not try to match it to another child fact. The second child predicate will try

to match all the four child facts, of which only one satisfies the rule.

Special Symbols and Built-in Predicates

Terms that begin with an underscore are anonymous variables whose values are not remembered

and can match any value. Special predicate not(P) gets the negation of the predicate P.

Implementing Policy Types

Using structures, we can bind atoms to strings or other values, effectively representing attributes

or parameterized attributes. A rule is a conditional, where the right hind side of a Horn clause is

the conditions for a predicate to hold true. We can represent attribute-based delegation or more

complex conditions using a Prolog rule. SWI-Prolog [64] has a large library that can be used to

realize general-purpose operations and has lists, among other data structures like queues. Finally,
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Prolog has a similar usage of recursion as SD3 which is based on Datalog, which handles the

repetitive policies. SD3 also regards recursion to be a required piece for implementing realistic

policies [32].

4.3 CERTDIST Example

We give an example application that uses CERTDIST and specifically show access control policies,

public and private trust relations, certificate retrieval, and conditional credentials. We use an

application example independent from federations to better describe CERTDIST’s processing as

a stand-alone TM system.

The example is from the PolicyMaker [16] paper, which first introduced the trust management

concept. Think of a work-flow system in a company, where there is a purchase department, per-

sonnel department, directors, and the company manager. The manager has the right to place

orders at the purchase department without any limitations. The manager can delegate this right

to others by placing limitations such as restricting the maximum amount in a purchase. This

delegation can be made by others, as well, resulting in a chain of delegations. The manager can

also delegate taking care of company personnels’ positions to the personnel department, which

therefore can attest who is a director, a regular worker, and so on. One specific purchase policy

set by the manager is that purchase orders larger than $1,000,000 can be issued only if at least

three people authorize them, and all these people are attested to be company directors by a specific

personnel key. When the three directors Jack, Joan, and Matt want to make a purchase, they send

a request to the purchase department’s servers, which basically can be represented with the tuple:

(Amount, [“jack key”, “joan key”, “matt key”]). For such a request to go through, six different

policy statements need to be present at the purchase department:

1. Manager’s key, trusted by the purchase department

2. Purchase policy set by the ManagerKey

3. PersonnelKey attests JackKey as director

4. PersonnelKey attests JoanKey as director

5. PersonnelKey attests MattKey as director

6. Jack, Joan, and Matt authorize purchase with specified amount
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Among these policies, possibly all except (1) are certificates, that is, remote policies. (1) is in

the local policy of the purchase department, as a part of its trust relationships, because one can

assume that everybody knows and trusts the manager’s key. On the other hand, the manager’s

purchase policy can possibly change, as do the personnels’ positions. Therefore, such certificates

have to be retrieved remotely or submitted together with the request.

Figure 4.5 shows the local policies of (a) the purchase department, (b) the manager, and (c)

the personnel department. Line 1 in (a) and all lines at (b) and (c) are trust relations. Lines 3–20

at (a) are access control policies, where lines 11-20 are part of a common schema. We use the

shorthand notation “... key” to refer to keys that stand for very long strings.

4.3.1 Access Control Policy

There is one access control policy called request purchase, which is located at the purchase

department. This policy is also defined in terms of some other predicates, which are shown

from lines 6 to 20. The policy will be invoked when the event handler at manager’s CERTDIST

daemon makes a remote call in order to purchase at the purchase department. The event handler

at manager daemon simply performs the remote query without complex certificate collection, and,

therefore is omitted here. The action is allowed only if the result of request purchase is true.

4.3.2 Trust Relations

Trust relations can be specified both with Prolog facts and rules. In our example, trustedKey,

can purchase, and director are predicates that express trust relationship policies, where the

first two are specified by facts and the third is specified by two facts and a rule. The director

predicates at lines 1 and 2 are Prolog facts, which specify the people who are directors probably for

a long time, less likely to change, so they are hardcoded. In addition, the new assigned directors

can be read from a more dynamically updated file, “directors.txt”, using the Prolog rule at line

3. The rule looks up a given key in the file and returns true if it is found in the file. To avoid

queries pulling all file information, the Key must be specified as a value. The built-in Prolog

predicate var(X) returns true if X is not set to a value, and the built-in predicate not(P) gets the

negation of P. In addition, member is a built-in predicate that checks membership in a list. Lastly,

file to list is a predicate that can be implemented using built-in Prolog I/O operations such

as see and read.
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(a) Local Policy of Purchase Department:

1. trustedKey("manager_key").

2.

3. request_purchase(Amount, KList, CallerKey) :- KList = [CallerKey|_],

4. credential(amount(Amount), KList),

5. preconditions(Amount, KList), !.

6. preconditions(Amount, Key) :- trustedKey(Key).

7. preconditions(Amount, Key) :- credential(can_purchase(Key, Conds), XKey),

8. Conds = [Rule],

9. apply_conditions(Rule, [Amount, Key]),

10. preconditions(Amount, XKey).

11. apply_conditions(Rule, Param) :- Rule = (rule(Param) :- Prog), Prog, !.

12.

13. subset_signed(N, KList, KSign) :- subset_signed_rec(0, N, KList, LSign).

14. subset_signed_rec(N, N, _, _).

15. subset_signed_rec(X, N, [KNext|KList], KSign) :-

16. credential(director(KNext), KSign), !,

17. NewX is X+1,

18. subset_signed_rec(NewX, N, KList, KSign).

19. subset_signed_rec(X, N, [KNext|KList], KSign) :-

20. subset_signed_rec(X, N, KList, KSign).

(b) Local Policy of Manager:

1. can_purchase(_, [(rule([Amount, KList]) :-

2. subset_signed(3, KList, "personnel_key"),

3. Amount <= 1000000)]).

(c) Local Policy of Personnel Department:

1. director("jack_key").

2. director("joan_key").

3. director(Key) :- not(var(Key)),

4. file_to_list("director.txt", DList), member(Key, DList).

Figure 4.5: CERTDIST implementation of PolicyMaker example
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As mentioned before, some trust relations are public, meaning they can go in credentials,

and the others are private, used only locally. In our example, trustedKey is private, whereas

can purchase and director are public trust relationship policies.

Public Trust Relations

Public trust relationship policies are the set of policies that can be placed inside certificates and

shipped remotely. We choose the format of such policies, hence the credentials, always to be a

Prolog structure for uniformity.

Some of the public trust relationship policies can be simple facts such as the director predicate

of line 1 at (c). Such policies have the format, as seen below, where the functor is the type of the

policy statement, and the Fields is an ordered sequence of Prolog values.

functor(Fields)

On the other hand, some public trust relationship policies express conditionals by including

conditions as the last field of the Prolog structure. When placed inside certificates, such policies

produce conditional credentials; therefore, we call such policies conditional public trust relations.

We explain the format of these credentials for the clarity of our example. Although this does

not represent an extension to the Prolog language, hence not a contribution by itself, the fact that

it can be placed in certificates and retrieved remotely is a distinguishing part of CERTDIST. The

credential primitive that does that will be described in Section 4.3.3.

A conditional public trust relationship policy is a modified form of Prolog rule, where the

right-hand side of a Horn clause is placed as the last field of a Prolog fact. The specific format is

as follows:

functor(Fields, Conditions)

Fields = zero or more comma-separated Prolog values and anonymous variables

Conditions = list of Rule’s

Rule = (rule(ParamList) :- Prog)

ParamList = a Prolog list containing variables

Prog = a Prolog program that uses ParamList
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The specific prototype of functor is assumed to be known by whoever uses it as part of a common

schema. This includes the fields Fields, parameters ParamList and their semantic. Fields is used

to express the policy using non-variable terms; however, it can contain anonymous variables, too,

in order to make general statements about policy. Conditions defines a list of rules, each rule being

a predicate that must hold true for the policy to be satisfied. A rule has parameters ParamList,

and the conditions on those parameters, Prog, which is basically a Prolog program. This means

the credentials can carry programs, but not arbitrary code, which will be discussed later.

In the example, the can purchase predicate is a Prolog fact which expresses a conditional

public trust relationship policy. Fields contains one element that denotes the set of keys to which

purchase right is being delegated. Conditions contain a single Rule, where ParamList contains

two elements: the delegees’ keys, KList, and the requested purchase amount, Amount. So, this

predicate can delegate the purchase right either directly to a set of keys, using the Fields, or it can

place conditions based on delegee keys and the purchase amount, using Conditions. More than

one Rule could be needed for cases where Conditions contains multiple Rules, where, each is a

logically distinct predicate with different parameters.

The can purchase predicate appears in the local policy of the manager, (b), where Fields is

to an anonymous variable, , meaning the credential is not issued for a specific principal. Instead,

its Conditions specify conditions on the KList about who can use this credential and with what

amount, Amount.

4.3.3 Certificate Retrieval

CERTDIST can search and retrieve certificates using the special predicate credential, as seen in

Figure 4.5. We explain the implementation of this predicate in Chapter 7 in more detail, including

its optional parameters. Here, we explain only the high-level processing of the predicate, with its

basic format as follows:

credential(Statement, SignerKey)

The predicate certifies that Statement is uttered by SignerKey. Statement is a Prolog struc-

ture that specifies the certificate content being searched. This structure can contain fields that

are Prolog variables, which allow certificate retrieval with partial knowledge, as explained in Sec-

tion 4.2.2. The credential predicate can find a fact that matches Statement in any of four ways:
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from the local certificate store, by signing, from DHT, or authoritatively. If there is more than one

match, credential will backtrack on these. If the predicate found a list of certificates remotely,

it will store these locally and backtrack on the locally stored certificates. Note that, it is possible

to write inefficient policy, such as one that backtracks on a previous predicate and performs many

remote certificate queries, each retrieving only one certificate, although retrieving all certificates

at once may be possible. These are considerations that the architects keep in mind while writing

policies. If SignerKey is a list of keys, then credential will verify it is uttered by all these keys.

This means every key indexed i in the list utters Statement and is also aware of previous keys in

the list who also utter it, that is, the ones indexed i = 0, .., i − 1. This can be implemented by i

signing a certificate that contains a certificate signed by i − 1, and so on, which finally contains

Statement itself.

The auxiliary functions part of CERTDIST, mentioned in Section 4.2.2, will contain functions

such as IP address resolution and determining the DHT keys from the certificates. Such functions

can be written by the programmer; for example address resolution, a directory can map known

public keys to IP addresses. Second, the DHT keys can be hash of non-compound fields of amount,

director, and can purchase structures. Such functions will automatically be utilized by the

credential primitive while performing authoritative and DHT queries, respectively. Federation

architects/CERTDIST programmers decide on the best ways to utilize the DHT; what certificates

to store/lookup under what keys, since this is a very policy dependent process. However, it can

be a future work for CERTDIST to not allow certain ways where DHT definitely does not make

sense.

4.3.4 Compliance Checking

Here we explain the overall flow of the compliance checking in our example, where a set of directors

want to make a purchase. As mentioned before, our example application has one access control

policy that performs compliance checking, called request purchase(Amount, KList), as seen in

Figure 4.5. We assume Matt’s CERTDIST daemon performs a call request purchase(250000,

["matt key", "joan key", "jack key"]) and also passes a certificate that contains amount(250000),

signed first by Matt and then by Joan and Jack. We can assume there is a unique identifier per

certificate so that one amount certificate cannot be used to perform multiple purchases. Af-

ter the certificate is stored at the receiver, request purchase is invoked with CallerKey set to
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"matt key".

The processing of request purchase in Figure 4.5 is as follows. In line 3, it checks whether the

call was made by the first element of KList, the list of requester keys. In line 4, the credential

predicate ensures that the specified Amount is approved by all keys at KList. It performs this by

finding a certificate containing amount(Amount), signed by the keys in KList in specified order.

The credential predicate will find it in the certificate store, and if it satisfies the ordering, it will

go on with further preconditions at line 6.

The predicate preconditions checks if Key and Amount comply with the purchase policy.

Recall that the manager has the right to order a purchase with any amount, and it can delegate this

right to others. Thus, it can be the case that a chain of delegation certificates proves that Key can

order with size Amount. These semantics are reflected by the recursive property of preconditions

predicate starting at line 7, which says that Key can order with amount Amount, provided that first

there is a principal with key XKey who delegates to Key with a set of conditions, Conds (line 7);

second, the single rule Rule in these conditions can be satisfied with parameters Key and Amount

(line 9), and, finally, XKey itself has the right to order a purchase of size Amount (line 9). Line 6 is

the base of this recursion, which indicates that recursion can end with a trusted key, such as the

manager.

In our example query, the credential predicate at line 7 will try to find a certificate that

matches:

can_purchase(["matt_key","joan_key","jack_key"], Conds) signed by XKey

We can see that the Key field of can purchase is set to a value, whereas Conds and XKey

are variables. This means the signer of the certificate is not known; therefore, credential can-

not make an authoritative query but can possibly find it either from store or DHT. If Matt had

already passed this certificate together with the request, credential will find it locally in the

certificate store. However, credential cannot find it in local policy, because the purchase de-

partment trust relationship policies do not involve a can purchase fact or rule with this list of

keys. But, credential can also query DHT with keys derived from two possible sets of fields:

{can purchase} and {can purchase, ["matt key", "joan key", "jack key"]}. The former

will search for all can purchase certificates in the system, and the latter will search for ones that

are signed specifically for this key list. In our example, only the former can succeed, because the
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manager’s delegation certificate would be stored only with the former key, since its KList field is

a variable.

Either from certificate store or DHT, credential will find a certificate with content as follows,

which matches to the previous certificate definition. This is the certificate created by manager key,

which contains the manager’s policy at (b).

can_purchase(_, [(rule([Amount, KList]) :-

subset_signed(3, KList, "personnel_key"),

Amount <= 1000000)]

) signed by "manager_key"

After credential executes successfully at line 7, XKey will be set to "manager key", and the

Rule will be set to manager’s 3-out-of-k keys delegation policy, at line 8, where Rule is as shown

below.

rule([Amount, KList]) :-

subset_signed(3, KList, "personnel_key"),

Amount <= 1000000

At line 9, apply conditions will be invoked with all its parameters set to values, that is, Rule,

Amount and Key. The definition of apply conditions in line 11 simply runs the program Prog

located inside the rule, which is shown below.

subset_signed(3, ["matt_key","joan_key","jack_key"], "personnel_key"),

250000 <= 1000000

This program will evaluate to true only if subset signed succeeds. This predicate is part of

the common schema between the caller and callee, whose definition is given in line 13. It returns

true if at least N number keys from the list KList are verified to be directors by the key KSign.

The predicate is defined recursively, checking elements of KList one by one at each call. Line 16

tries to find a certificate signed by KSign and states that the first element of the list is a director.

If it succeeds, the current number of found directors is increased by one, and the recursive call

is made to find the others. If it fails, line 20 will be executed, where the recursive call is made

without increasing the current found number. The recursive predicate will succeed when N number
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of directors are found at line 14, or it will fail when all elements of KList are traversed and no

more calls to recursive predicate are possible.

Note that the call to credential predicate at line 16 can perform authoritative queries as well,

in contrast to the credential at line 7, because this time the signer key field is set to a value,

personnel key, which can be used to map to its IP address and query the personnel department

directly for certificates.

After apply conditions succeeds at line 9, preconditions will be called recursively, this time

trying to satisfy preconditions(250000, "manager key"). This will succeed at line 6, since

manager key is one of trusted keys in trust relation of line 1. As a result, the request purchase

predicate evaluates to true, and the application calling the TM knows that this call is authorized

and can place the order.

Our example shows that a complex policy can be implemented by CERTDIST with a minimal

amount of code. We note that, the format of the credentials and other common policy elements

need to be uniformity known by the different principals. In fact, in every distributed system there

has to be a common understanding of data structures and operations so that distinct entities can

interoperate. All the credentials and access control policies in a CERTDIST application should be

part of the common schema. In our example, the following predicates’ names and parameters are

schema elements: can purchase, request purchase, and director. In addition, the complete

definition of subset signed is part of the schema. The schema should be periodically exchanged

among different entities in the system in order to interoperate.

4.3.5 Policy Complexity

The example of Figure 4.5 contains all four types of policy constructs: assertions, conditionals,

general-purpose operations, and repetitions. Trust relations like director predicate express at-

tributes about principals. Both local policies and credentials can contain conditionals, expressed

by rules and facts. Built-in Prolog list operations are used in recursion for repetitive policy pro-

cessing.

Using these constructs we can build more diverse and complex policies. For example, an

access control policy can look for certificates in different directions, such as starting at the root

of a chain, or the subject, as in the case of the request purchase example. Another example is

that one can place a limit on the delegation chain length using an additional parameter to the
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recursive checker function, incrementing and checking this value at each call, and so on. Also,

credentials can contain more complex programs so that apply conditions produce results for one

credential, which can be a parameter to the conditions of another credential. In this way, policies

that require sharing states between different credential conditions can be implemented. As a final

example, it is possible to use a Prolog list to keep the set of credentials used in the policy and

place group constraints on them. These examples of more complex access control policies can be

easily implemented with CERTDIST.

One drawback of expressive credentials is that they can contain possibly dangerous operations,

such as writing to disk, sending packets over a network, inserting new rules or facts in the policy,

and so on. A malicious credential should not be permitted to execute such operations. In the next

chapter we provide a schema of high-level elements in the FPL language, which also overcomes

such problems in a federation by introducing a safe set of primitives to construct credentials. One

approach in future work can be to allow only the credentials constructed with such primitives or

to allow arbitrary credentials only from trusted entities.

In the context of our federation framework, security architects are responsible for the efficiency

and correctness of the policies. Also, every certificate signed in the federation framework can be

traced back to a HRN, human readable hierarchal name, which also is a basis for accountability.

An organization in a federation, that is, an academic institution, testbed, cloud computing orga-

nizations, etc., participates in contractual agreements with other organizations, hence is directly

accountable to others in the credentials issued. We expect such accountability to ensure efficiency

and proper operation of policies to a large extent.

76



Chapter 5

Federation Policy Language

In this chapter we introduce the federation policy language (FPL) piece of the federation frame-

work, which is used to express policies in a federation. FPL is built on top of CERTDIST and is

a schema that is designed to express federation policies. FPL has the same syntax as Prolog and

can use Prolog built-in and CERTDIST predicates. FPL constitutes federation specific functions

and structures that make it possible to express policies, and generate new schema elements. It is

easy for federation security architects to extend FPL policies, using CERTDIST and existing FPL

elements.

FPL has a distinct feature: it can express both security and allocation policies, as opposed to

languages like ABAC [37] that was proposed for GENI or sfatables [11] that is used in PlanetLab.

While it allows very complex policies, it is also easy to express such policies. FPL achieves this by

layering the policy language on top of a distributed trust management system, which represents

a unique place in the design space of other policy languages and trust management systems. We

argue that the policy languages and trust management systems are mutually dependent in most

real deployment scenarios, such as computational federations.

First, a trust management system cannot be fully useful without a domain-specific policy

language. To illustrate this, consider the ABAC trust management system that is designed for

applications where access control is attribute based. ABAC has high-level constructs to express

such policies easily, but they are not specific to a particular domain, hence are limited. For

example, ABAC is one candidate TM to implement GENI access control, but could also be used

to implement a web publishing service authorization as mentioned in their paper, or internal policy
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in a company, and so on. Although ABAC is designed specifically for attribute based policies, it

does not support simple features such as delegation depth for attributes. This is as a result of how

ABAC addresses the trade-off between expressiveness and ease of use: limiting expressiveness to

make it easier to write and understand policies. If GENI needed delegation depth based policies in

the future, ABAC would not be able to implement such a policy, since it is designed from the start

for ease of use and simpler policies. Although a TM system is a static mechanism with a fixed

code base, policy is a human dependent, dynamic set of rules, that evolve by time. Therefore,

“one size fits all” approach does not work if we want to apply a TM system directly to implement

polices.

Instead, we take a systems approach based on layering, where the trust management system is

distinct from a domain-specific policy language that is layered on top of it. Our trust management

system, CERTDIST, is Turing-complete, hence fully expressive as discussed in Chapter 4. FPL

does not have to expose all of this expressiveness, maintaining the simplicity in policies. For

example, FPL does not include delegation depth in its security policies but it is easy to include

such a policy construct to the language if needed. As a result, we address the trade-off between

ease of use and expressiveness by layering policy language on top of a very expressive TM system,

while maintaining the possibility for this language to be extended by security architects. A rough

analogy would be: CERTDIST is similar to C or assembly language, with which higher-level

languages can be written; Python and Java are analogous to FPL, where each language is useful

in a different context.

Similarly, a policy language is not fully useful without a trust management system. Policy

languages such as sfatables and CLP express the amount of, or conditions for, local resources to

be granted to other principals. Such a policy is written by admins at an organization, and stored

locally to later facilitate the decision of whether to accept or deny incoming requests, and to keep

track of accounting of allocations. However, more complex polices often need to refer to certain

roles rather than individual principals. For example, in PlanetLab or GENI, one can grant certain

resources to all participants of a particular slice. This requires a security policy definition of what

slice membership is, which can be complex, and so requires a trust management system. The

general observation is that, a chain of certificates is required that starts at the resource owner and

ends at the requester, for resource allocation to happen. In the simplest allocation policy, this

chain has length 1, which is the locally stored policy at the organization. In the complex case, a
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chain of certificates can define not only to whom the resources are granted, but also the resource

itself. The resource that is granted can be defined by a chain of certificates, which happens when

an organization is delegating third-party resources. In that case, this allocation policy would

appear somewhere in the middle of the chain of certificates that grant resources to a principal.

FPL achieves both ease of use and expressiveness through layering on top of a trust management

system, but requires a distinct group of people—security architects—to evolve and extend the

language. This can be both an advantage and a disadvantage, since first, architects must have both

an understanding of the federation requirements and the technical knowledge of logic programming

to express this formally in CERTDIST. On the other hand, it is an advantage to understand the

pros and cons of candidate policies and also to reduce ambiguity in discussions on policies.

One drawback that comes with the power of a fully programmable trust management system is

the potential for mistakes or malicious code in the implementation of FPL elements. Accountability

features of FPL allow one to trace every signed certificate to a vouched principal in the system,

where a human-readable hierarchical name (HRN) represents this vouching relationship; this is

discussed more in depth in this chapter. HRN and the security architects can help reduce the

effects of such drawbacks, and we see the additional mechanisms to address these issues as future

work.

Table 5.1 shows the FPL elements and their simple typing. FPL types are derived from the

Prolog types and denoted after a colon following FPL fields or elements. For example, hrn is

a Prolog atom that must be in the format of an HRN, as discussed in Section 3.3.1. Similarly,

some fields must contain valid public keys, denoted by the pkey type, which is basically a Prolog

string. Also, cert is a Prolog string that contains a valid x509 digital certificate. The overall FPL

elements are in three larger categories; security policies, allocation policies, and utility elements.

Also, all three contain subcategories determining the context where the elements are used, such as

credential types, authentication elements, resource types, and so on. In this chapter we will explain

each of the subcategories in detail; however, we explain their implementation using CERTDIST

in Chapter 7.

Figure 5.1 shows how different subcategories relate to each other, which is similar to the high-

level Figure 3.3. Contracts are a key abstraction of FPL, and will be discussed in Section 5.4, and

are shown as the highest level element in the figure. Admins at each organization in a federation

can create contracts to manage allocation of their resources, place complex allocation policies
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Category Security Policy

Federation
Statements
(Cred. Types)

<fedSt>= <idSt>| <ipSt>| <attrSt>| <resSt>

ip(Signer:hrn, Subject:hrn, IP:ip):ipSt

id(Signer:hrn, Subject:hrn, Key:pkey, Authority:bool):idSt

attr(Signer:hrn, Subject:hrn, Location:hrn, Attribute:atom, Delegate:bool):attrSt

resource(From:hrn, To:hrn, ID:int, (- | Resource:resSt), Constraints):resSt

Statement
Proofs

certify(Statement:fedSt, From:hrn, Method:atom, CertList:cert list)

Authentication
Policy

authenticate(HRN:hrn, Pubkey:pkey, Authority:bool)

Role/Attribute
Authorization

has attr(HRN:hrn, Target:hrn, Attribute:atom, Delegate:int)

Resource
Authorization

has resource(Permit:resSt)

Category Allocation Policy and Contracts
Resource
Specification

nodespec(Name:atom, Loc:int, Core:int, Disk:int, Cpu:float, Mem:int, Bw:int):node

Resource
Constraints

mn limit(Permit:resSt, NodeList:node list, Limit:int)

fr limit(Permit:resSt, NodeList:node list, Limit:float)

exclude machines(NodeList:atom list, EList:atom list)

Accounting &
Capacity

scheduled(Permit:resSt, Nodes:unit list, Total:unit list)

capacity(Permit:resSt, Capacity:float list)

account nodes(Permit:resSt, Nodes:unit list)

Third party
Resources

permit from(From:hrn, Permits:resSt list)

Contracts contract(ID:int, Start:date, End:date, To:hrn, Resource:resSt, Constraints) :- Conds

Category Other

Utility &
Built-in
Predicates

get authority(HRN:hrn, AuthHRN:hrn)

begins with(HRN:hrn, Prefix:hrn)

permit origin(Permit:resSt, Origin:hrn)

is onpath(HRN:hrn, Permit:resSt)

can alloc(Permit:resSt, NodeList:node list)

arg/3, not/1, var/1, member/2

Basic Policy
myIP(IP:ip) rootIP(IP:ip)

myHRN(HRN:hrn) rootHRN(HRN:hrn)

myPubkey(PKey:pkey) rootPubkey(PKey:pkey)

myPrivkey(PKey:pkey)

Table 5.1: FPL elements and types: Types are derived from Prolog types, such as hrn, which is a
Prolog atom that must be a human-readable name (HRN), pkey, a string containing a public key,
or cert, which should be a valid x509 certificate.
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to express the conditions of allocations and also to whom these resources should be granted.

Contracts use the security and allocation policy elements, which can be extended by the security

architects in federation. Security polices are complex predicates that define the required set of

certificates for the policy to be true; therefore, they use certificate retrieval functionality and also

define a set of known certificate types at a lower layer. Allocation policies use elements for various

resource types, including third party resources that are granted to this organization from others.

Also, allocation polices use the FPL resource constraint elements, which are implemented using

the accounting and capacity primitives.

Figure 5.1: Relationship among various categories of FPL elements. Contracts are used by admins,
while security architects create and extend security and allocation policy elements at a lower level
using CERTDIST.

5.1 Federation Statements

Federation statements are predicates that can go into certificates and, therefore, determine the

credential types in a federation. From the CERTDIST point of view, these are the public trust

relationship policies of an organization, as discussed at Section 4.3.2. Using such statements, an
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organization makes a declaration about other principals, such as authenticating users or delegating

resources to other organizations. The first parameter in all these statements is the organization’s

own name, the second is the name of the subject, and the rest are statement information. FPL uses

human-readable hierarchical names (HRN), as exemplified in Section 3.3.1. So, an organization

called plc.eu can make a policy such as ip(plc.eu, plc.eu.inria, ’139.19.142.6’), declaring the network

address of another organization. Similarly, id statement binds a subject to a public key and also

a boolean, “authority,” which, if set, allows the subject to create names under its namespace. The

attr statement binds a subject to an attribute at a specific location. For example, plc.eu can give

record lookup right to plc.eu.inria at the plc.eu namespace. In addition, a boolean, “delegate”

determines whether this attribute can be delegated to others. The statements ip, pubkey, and

attr can simply reside at a local configuration file of an organization, or they can be looked up

from other sources, such as a relational database.

The resource statement denotes resource delegation, and we call the credentials containing this

statement permits. In CERTDIST terms a permit is a conditional credential and has the format

mentioned in Section 4.3.2, containing conditions as its last field. The source of the delegation

is denoted by the fourth field, Resource, which can either be ’-’, for local resources, or another

permit, expressing third-party resources. The resource statements are derived from contracts

made by the organization, which will be discussed further in this chapter.

5.2 Statement Proofs

Federation statements can be proven by the FPL predicate certify, which uses CERTDIST’s

built-in credential primitive to retrieve certificates and prove a statement. It has four argu-

ments, where only the first, Statement, is mandatory. It finds a set of certificates that proves a

federation statement, Statement, is true. It separately authenticates the Signer field of a federa-

tion statement in order to retrieve its public key, finds a certificate signed by this key, and contains

the federation statement. The From field specifies an HRN to which to send authoritative queries,

and Method is a sequence of characters determining types and order of queries. For example, with

Method = slda, it will check for certificates first at the certificate store, then local policy, then

DHT, and, finally, authoritatively. The final list of digital certificates retrieved to prove Statement

is unified with the last argument, CertList. The detailed implementation of the FPL statement
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proof element will be explained in Section 7.2.1.

5.3 Security Policy

Security policy defines the set of digital certificates for authentication and authorization of prin-

cipals in a federation. These policies are constructed by using the lower-level FPL elements pre-

viously described, the credential types, and proof elements. In this section we give some example

polices and the corresponding FPL elements for them. One important feature of FPL is that such

elements can easily be extended in the future by federation security architects, as required, when

the federation evolves, resulting in new elements for the federation language.

Authentication policy is implemented by the authenticate element, which binds an HRN to

a public key. There is an optional Authority field, which determines whether or not HRN can

create new objects under its namespace. We next illustrate how higher-level FPL elements are

implemented using the lower-level elements below, with an example authentication policy.

authenticate(HRN, Pubkey, 1) :- rootHRN(HRN), rootPubkey(Pubkey), !.

authenticate(HRN, Pubkey, Authority) :-

get_authority(HRN, AuthHRN),

authenticate(AuthHRN, AuthPubkey, 1),

Statement = pubkey(AuthHRN, HRN, Pubkey, Authority),

certify(Statement, AuthPubkey).

authenticate(HRN, Pubkey) :- authenticate(HRN, Pubkey, _).

The policy defines authenticate recursively, with root being the base of recursion. It assumes

the public key and the HRN of the root is known. For nonroot HRN, the policy first needs to

authenticate the parent of an HRN, with Authority set to 1. The get authority predicate is

a utility element, which is implemented using built-in Prolog string operators and which prunes

the last piece of an HRN, obtaining its parent. For example, if the HRN is ’plc.eu.inria’, then

AuthHRN gets the value ’plc.eu’. The recursive call performs the authentication of the parent,

and the certify primitive finds a digital certificate that is signed by the parent and contains the

statement that confirms HRN is bound to Pubkey. Since the third field of authenticate is optional,

the two-field version of the predicate will just verify the full predicate and ignore its last field.
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There are much more complex authentication policies, which can easily be expressed by FPL.

For example, there is one candidate GENI authentication policy in which the authentication and

the ability to create a new object have to be expressed with separate certificates. In that case,

instead of Authority, the policy has to look for attr statements to verify that an object has

creation rights, such as the “Register” attribute. Furthermore, this attribute can be delegated to

others; therefore, the creator of an object is not necessarily its parent in HRN namespace. The

choice among various security policies and implementation of additional policies is left to security

architects in our federation framework.

Roles and attributes are used to determine the authorization for various operations in a dis-

tributed system, such as modifying database records or creating new objects. The has attr predi-

cate implements the policy for assigning attributes to principals. For example, has attr(plc.eu.matt,

plc.eu, ’register’, 1) says that plc.eu.matt has the right to create new objects at plc.eu namespace,

and he can further delegate this right to others. For this predicate to be proven, a set of digital

certificates containing id and attr statements has to be collected. Similar to the definition of

authenticate predicate, we express such policy using lower-level FPL elements as well as the

authenticate element itself.

Finally, the has resource predicate evaluates to true if there is a resource path from the

source to the subject of a permit. As discussed before, a permit is a resource statement, which

is recursively defined by possibly many such statements. The has resource predicate obtains the

digital certificates to prove that there is actually a chain of delegations that allows To to possibly

acquire resources. The implementation of these FPL elements is further discussed in Chapter 7.

5.4 Contracts

In the federation framework, contracts determine how an organization’s resources can be granted

to others. An organization creates a contract in an out-of-band way, such as negotiating with

other organizations, or unilaterally by donating resources to other organizations. Once a contract

is decided, an organizational admin encodes it using FPL in the organization’s local policy. In

CERTDIST terms, contracts are part of an organization’s private trust relationship policies. Such

policies are private to an organization and are not directly placed inside digital certificates, as

discussed in Section 4.1 and Section 4.3.2.
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The FPL element for expressing contracts, contract, is the highest-level element, which uses

both the security and allocation policies. We explain contracts in top-down fashion by first giving

an example contract and later explaining the additional FPL elements in greater detail in subse-

quent sections. The contract predicate has a unique identifier ID for each contract, validity dates

from Start to End, and shows delegation of a set of resources, Resource, to a set of principals,

To, subject to Constraints. Conds are conditions on Resource and To fields, determining what

resources can be delegated and to whom.

We give an example contract that an organization might want to apply for allocation of its

resources and show how it is expressed using FPL. Suppose an organization in Japan decides to

grant only its resources located in South America to any organization in Europe, with a maximum

limit of 100 virtual machines. For simplicity, we can express this contract in a more compact way

as follows:

plc.jp gives to (plc.eu.* org’s) resources from (plc.south.*) subject to (max 100 VM)

Such a contractual statement can be represented with an FPL contract element as follows.

This example additionally shows details such as contract ID, which is a random unique identifier,

and also the validity period. To and SourcePermit are two Prolog variables that represent the

recipient and the resource paths, respectively. These variables can get values that adhere to the

conditions in the right-hand side of the Horn clause, that is, Conds.

contract( 206257450416,'11-02-2013 21:00','02-02-2014 21:00', % ID, Start, End

To, SourcePermit,

(rule(Cred,NodeList) :- mn_limit(Cred,NodeList,100)) % Constraints

) :- permit_from(plc.south,SourcePermit), % Conds

begins_with(To,plc.eu),

has_attr(To, To,register, _),

not(is_onpath(To,SourcePermit)).

The constraints on the resource are placed using a rule predicate, which has the same format

as a CERTDIST conditional credential’s Rule, defining the credential conditions, as described in

Section 4.3.2. Contracts use FPL allocation policy elements to construct rule conditions. In the
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example, we see that rule gets two parameters and applies an allocation policy, mn limit, with a

limit of 100 machines. We discuss this and other allocation policies later in more detail.

Contracts can grant resources that do not reside locally in the organization, which we call as

third-party resources. Such resources that were previously obtained from other organizations can

be queried using permit from element. In the example, SourcePermit will match to any existing

permit having a source with name beginning with plc.south.*.

Contracts can use FPL security policy elements to define the recipient of the resources. The

has attr predicate places the condition that the recipient, To, must be an organization; that is, if

can create objects in its own namespace. The begins with element is a utility that checks if the

recipient has an HRN beginning with plc.eu. Finally, the contract uses another utility predicate,

is onpath, to avoid cyclic delegations by making sure it does not give permits that were actually

passed from To, by looking at its delegation path.

5.5 Resource Specification

Security architects specify the types of resources in a federation. One common resource in testbeds

and clouds is a virtual machine, which we represent with nodespec element. A node has properties

such as host name, geographical region, disk, number of cores, CPU, memory, and bandwidth. De-

pending on the context, a nodespec can represent a requested resource by a principal or an already

allocated amount of resource to be used for accounting. An organization keeps its overall capacity

using such resource unit types, as well as, others’ accounting information for their consumptions.

5.6 Accounting and Capacity

Every organization in a federation has accounting information that keeps track of the current

resource usages of its local resources. Together with the capacity information, this is important

for deciding whether or not to allow a future request. Accounting and capacity are used in defining

allocation policies, which will be explained in detail in Section 5.7.

Accounting of resource allocations is done with respect to permits. A permit is a digital cer-

tificate that contains a resource statement, as discussed in Section 5.1. An allocation request is

always performed with a permit parameter. Therefore, instead of the requester, resource con-

sumptions are accounted with respect to the permit that was used to allocate resources. The
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allocated resources are added to the account of the requester permit and also to its parent and

ancestor permits. So, if a permit was delegated to others, then the allocations made by that child

permit are also accounted to the parent. The parent of a permit is denoted by its recursive field,

Resource, as seen in Table 5.1.

FPL elements scheduled and capacity tell how much resource is currently allocated to a

permit and how much resource the permit can possibly allocate at an organization, respectively.

Total field shows the total set of resources consumed by a permit and its descendants, and

NodeList is the list of nodes allocated only by the permit itself. Capacity of a permit is obtained

by running the constraints program over all the resource pool of an organization and obtaining

the maximum possible resource set. The total amount of CPU, memory, and bandwidth are set to

the Capacity field. We give the details of the implementation of these two elements in Chapter 7.

5.7 Resource Constraints

FPL resource constraint elements are used in a contract to express how much of a resource can be

granted to principals. These constraints depend on the temporal dynamic state at an organization,

such as current aggregate allocations of the requester, current amount of resources at the organi-

zation, time, calendar events, and so on. In our framework, such constraints are only based on the

accounting and the capacity-related state that were discussed in Section 5.6. As more dynamic

parameters are needed in the future, new corresponding FPL elements can be introduced by the

security architects in the federation.

There are three example constraints seen in Table 5.1. Each of these rules places a restriction

on the set of nodes, NodeList, that can be allocated by a permit. The mn limit rule limits the

number of virtual machines that can be allocated with a permit, and fr limit sets a fraction

limit, allowing a fraction of overall capacity of a permit to be granted to a child permit. Also,

exclude machines exempts a set of machines from allocation. The first two rules use the Permit

parameter to retrieve the accounting information of Permit and place a limit based also on its

previous allocations. The last rule specifies a set of host names EList that will be exempt from

the requester and, therefore, should be avoided in a request.

In order to illustrate the definition of resource constraints that use accounting and capacity, we

give the implementation of the fr limit below. Lines 2–3 find the capacity of the parent permit.
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Lines 4–6 find the total amount of resources, past and new, that permit wants to allocate. Lines

7–8 apply the fraction limit by checking whether the total amount is less than the fraction of the

capacity.

1. fr_limit(Permit, NodeList, Limit) :-

2. Permit = delegate(_, _, _, SourcePermit, _),

3. capacity(SourcePermit, SourceCap),

4. scheduled(Permit, _, Used_Resource).

5. append(Used_Resource, NodeList, TotalNodes),

6. nodes_resource(TotalNodes, Tot_Resource),

7. tuple_times(SourceCap, Limit, SourceLimit),

8. tuple_leq(Tot_Resource, SourceLimit).

5.8 Third-Party Resources

Contracts refer to third-party resources using the permit from element. Permits are resource

credentials that are obtained from organizations and delegable to others as third-party resources.

Permits are automatically generated as a result of contracts. Although FPL handles permit

generation without admins seeing the complexity, here we illustrate how this works. For example,

consider the contract given in Section 5.4, where plc.jp gives European organizations resources

from South American organizations. Assume further that plc.jp already obtained some resources

from plc.south.rnp. Then, the example contract can generate a permit, as below. Lines 2–4 contain

the permit obtained from a third-party organization, plc.south.rnp, which is inserted within the

encapsulating permit as a result of the permit from statement in the example contract.

1. resource( plc.jp, plc.eu.inria, 206257450416,

2. resource( plc.south.rnp, plc.jp, 126047660482, -,

3. (rules(C, NodeList) :- fr_limit(C,NodeList,0.75))

4. ),

5. (rules(C,NodeList) :- mn_limit(C,NodeList,100))

6. )

A permit is stored at its subject after it is generated. In our example, the permit signed by

plc.jp will be stored at plc.eu.inria. After that, this permit itself can be referred to as a third-party
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resource in the contracts that are or will be signed by plc.eu.inria. The FPL permit from element

is basically an interface to the permit store that is located at every organization, which will be

further be explained in Chapter 7.

5.9 Basic Policy

Basic policy is composed of a principal’s public and private keys, IP and HRN, and the root’s

name, address and key. These provide the fundamental knowledge base of a principal in order

to participate in the federation. We have already used such policy elements in the definition of

higher-level elements such as authentication policy. Basic policy is not shared with any other

principal, but just used by the local policy. In CERTDIST terms, it is part of the private trust

relations of an organization.
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Chapter 6

Resource Discovery

This chapter explains the resource discovery and allocation piece of our federation framework,

called CODAL, Contract Based Resource Discovery and Allocation. CODAL is built as a layer

on top of FPL, hence CERTDIST, and uses policies and trust management while discovering

and allocating resources. This is because resource discovery in a federation depends not only on

resource availability, but also on federation policies; therefore, resource discovery must be policy-

aware.

In general, the resource discovery problem is about locating a set of resources that fulfills

the requirements of a program, service, etc. For example, in the area of computational testbeds,

individual experiments have computational resource requirements, such as virtual machines with

specific properties, that have to be mapped to a set of physical testbed resources. Previous work on

resource discovery include SWORD [2] and Rhizoma [68], both deployed on PlanetLab, and aim at

discovery of computational resources for developers running PlanetLab slices or cloud computing

services.

Resource discovery in federations has some unique challenges compared to previous work that

is designed for single administrative domain environments. In a federation, there can be numerous

organizations, each willing to utilize resources of others. One problem is that nobody has a

global view of all available resources and constraints on them. In a non-federated system, a user

request is satisfied from the available resources, that are learned globally without any restrictions

throughout the system. On the other hand, we assume that, in a federation, some policies and

available resource information may be private to organizations and undisclosed. This requires a
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more distributed request-to-resource mapping algorithm than the previous work. Another problem

in federated discovery is discovering the organizations themselves, because organizations can join

or leave any time in a large federation. An organization should be able to constantly learn the set

of other organizations from which it can allocate resources. Such a mechanism depends on actual

agreements between organizations and, therefore, has to utilize digital constructs that represent

those agreements in order to be able to discover new organizations on the fly. Finally, in federated

resource discovery, it matters who the requester is, as opposed to previous discovery systems.

The discovery system should be able to authenticate and authorize by collecting and using digital

certificates in order to constrain the allowed amount of resources for a requester. This requires

high-level primitives that handle the access control functionality for the discovery system.

In the rest of this chapter we first describe the key pieces of resource discovery systems in

previous work. Next, we elaborate on the federation-specific challenges for these pieces. Finally,

we describe our discovery and allocation system, CODAL, which is built on top of the FPL layer in

our federation framework. CODAL uses FPL elements to discover organizations, runs a distributed

collaborative matching algorithm to find resources, and performs access control, again using FPL.

6.1 Resource Discovery Overview

Figure 6.1 shows three main components of resource discovery systems studied in the past: (1)

resource specification R, given by a user of the discovery system, that is, the creator of a service

or experiment that needs to use federation resources; (2) a resource information subsystem which

gathers information about available resources A, a subset of which can be used to fulfill the request

R; and (3) a “mediator” algorithm that fulfills the request R by using resources from A in order

to arrive at a final resource mapping, FM .

6.1.1 Request Specification

The request specification R defines a set of resources, where each element in the set is called a

unit. R has three main pieces: (1) Unit constraints define the properties of individual resource

units, where each such constraint is about one unit only and does not relate to any others. For

example, a user request in testbeds and cloud computing can be 30 virtual machines, or nodes. A

user can place a constraint for each node, such as it should have at least 2.5 GHz of CPU, should
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Figure 6.1: General terminology and pieces in a resource discovery system: request specification
and available resource information are input to the mediator, which determines the physical set
of resources to be allocated for the request.

be located at North America, and so on. (2) Group constraints define how units relate to each

other. For example, the user may want 10 nodes that are not more than 50 msec RTT apart from

any others. (3) A utility function specifies the preference among different possible sets of resource

units that fulfill the unit and group constraints.

The SWORD system has unit constraints that are simple upper and lower bounds on the disk,

CPU, memory, and so on, of a node, and group constraints, which are only pairwise constraints

such as bandwidth between two nodes. On the other hand, Rhizoma is based on constraint logic

programming (CLP) and, therefore, has much more expressive unit and group constraints, such as

constraints involving any subset of nodes in a user request R. SWORD allows the user to specify

a penalty value, and Rhizoma has cost and utility functions, again in CLP. The penalty, cost, and

utility are used by the discovery system to choose among several possible matches for a request R.

6.1.2 Gathering Resource Information

Available resources and their properties are periodically collected by a subsystem that ensures

all resource information is up to date. SWORD collects node properties and stores them in a

DHT that runs in all nodes. Rhizoma retrieves resource information from preexisting repositories

populated by monitoring services, such as CoMon, S3, and so on, as illustrated in Figure 6.1.
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What is common for both discovery systems is that all resource information is collected without

restrictions on the requesting user and is available to the mediator to process.

6.1.3 Mediator

The mediator gets the resource request specification and the available resources information as

input, and maps the request to a set of physical resources, arriving at a final mapping FM . In

SWORD, this mediator is called the optimizer, which is potentially run by any node in the DHT.

Once a node gets a discovery request, the SWORD daemon gathers resource data and feeds it

to the optimizer together with the node&group constraints and penalty function. Rhizoma uses

the ECLiPSe constraint solver as mediator, which processes the declarative logic rules to find

a resource set that fits to constraints. The common part of both systems is that the mediator

performs discovery in the light of all resource availability and request constraints. These are

user specified resource constraints, as opposed to allocation policies specified by the resource

owner, hence are not as complex as FPL policies such as ones involving credentials, capacity and

accounting as described in Chapter 5.

6.2 Federation-specific Challenges

The federation-specific challenges of resource discovery are mainly caused by the existence of

multiple autonomous administrative domains instead of one. We investigate these challenges in

terms of three specific subproblems. First, a specific request should be able to be fulfilled from

possibly multiple organizations, yet still satisfy the unit and group constraints. Second, new

organizations should be periodically discovered by other organizations so that they learn possible

new sources of resources. Third, there should be access control for discovering and allocating

resources across organizational boundaries.

6.2.1 Allocating from Multiple Organizations

Because of the nature of a federated environment, not all constraints may be available to a single

mediator to perform the request-to-resource mapping. For example, imagine an application in a

federation that uses Rhizoma for discovering resources. The Rhizoma daemon would want to re-

trieve available resources from many federation participant organizations, because the application
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possibly wants to span resource units from several organizations. We can call each such organiza-

tion a peer, that is, organizations from which one can possibly allocate resources. It may not be

practical to collect resource information from numerous peers, yet ensuring all are up to date until

a final mapping, FM , is calculated that satisfies the user request. Even if the resource informa-

tion is collected from peers, this may not be enough for FM to be valid because of peer-specific

constraints. Peers can have their own preferences in allocating their own resources that are not

always revealed to other organizations. For example, organization can have an internal policy to

balance the allocations between its two datacenters. Therefore, in this thesis we assume there is

a separate mediator at each organization, and a user request is fulfilled by asking one or more of

such peer’s mediators.

Satisfying group constraints of a resource request is particularly difficult when it requires

resource units from multiple organizations. For example, think of a CPU-intensive parallel appli-

cation, which has the requirement of 50 nodes with a sum of CPU that is more than 150 GHz.

Suppose that none of the peers can give this much of its resources at once; therefore, it has to be

allocated from more than one peer. This request is first sent to Org1, which has only 15 spare

nodes at the moment. Org1 needs to have a way of knowing if group constraints would be satisfied

if it granted these nodes, but it cannot process this particular group constraint since it does not

have access to the remaining 35 nodes’ properties. The request can be sent to another peer, Org2

which gives 15 more nodes, and, finally, to Org3, which gives the remaining 20 nodes. The group

constraints can fully be satisfied only by the last mediator, the one at Org3, which knows all units

in the mapping. Such a scenario requires some mechanisms and/or assumptions on the group

constraints that allow incrementally satisfying group constraints, so that the mediators arrive at

mappings that help the subsequent mediators fully satisfy a group constraint.

6.2.2 Discovering Organizations

Organizations in a federation should be able to learn about other organizations from which they can

possibly allocate resources. Since there is no limit on the federation size, there can be organizations

joining the federation at any time. As an example, new universities have been joining PlanetLab

even years after its establishment, from all around the world. The frequency of joins can be

much more for cloud computing federations, where an individual organization is potentially any

company with spare capacity. Therefore, each organization should perform discovery continuously
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to keep its peer knowledge up to date. An organization may be directly known by a small set of

organizations, rather than all other organizations in a federation; however, multi-hop allocation

agreements may allow an organization’s resources be used by others as soon as it joins federation.

For example, in the contract example of Section 5.4, an organization in Japan grants to a European

organization its resources that are located at any organization in South America. This means that

if the European organization learns new organizations in South America in the future, they will

also be available to the Japanese organization. Therefore, organizations should possibly be able to

discover new sources of federation resources any time, arising from their existing agreements with

other organizations in the federation. It is also possible that an organization is known by only a

small number of others; therefore, it is possible that an organization can discover only part of the

federation.

6.2.3 Access Control

Federation necessitates complex authentication and authorization even for discovering federation

peers, in addition to allocation of actual resources. These require proofs about a requester’s

identity, attributes, and resource bindings, that may need many certificates with complex policies.

For example, the authentication of a requester as one of the subjects of a contract requires a

chain of identity certificates, as discussed in Section 5.3, or a slice membership policy requires a

complex set of certificates, as discussed in Section 3.3.1. In addition, the implication of discovering

organizations over indirect paths, as mentioned in Section 6.2.2, is that the authorization should

be done over indirect paths as well. This again requires a chain of credentials that prove that the

requester is eligible to obtain the resources, subject to specific constraints. All these functionalities

are beyond the capabilities of resource discovery systems studied in the past, and requires a

distributed trust management capability underneath.

6.3 CODAL

This section explains our federated resource discovery system CODAL (contract-based discovery

and allocation system), which is designed to overcome the challenges discussed in Section 6.2.

High-level components of it are depicted in Figure 6.2, where the organizational discovery utilizes

FPL contracts and the querier and mediator utilize FPL security and allocation policies. We
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Figure 6.2: CODAL uses FPL contracts for discovering organizations and uses FPL security and
allocation policies for access control.

first explain the querier, which performs collaborative allocation from many organizations in a

federation. Next, we discuss the resource discovery and mediator in detail.

6.3.1 Querier

CODAL querier performs a collaborative allocation, which is depicted in Figure 6.3. Querier is

invoked by a user submitting a resource request R to the querier at user’s organization Q. Querier

tries to fulfill the request from a set of known peer organizations Pi by obtaining a partial match

PMi at each step and feeding this partial match to the next query as parameter. Querier also

passes the required digital certificates for authentication and authorization of Q at each Pi, which

is not shown in the figure. Such certificates are obtained by using the FPL security policy elements.

Group Constraints

One challenge in allocating a request from multiple organizations is the group constraints, as

mentioned in Section 6.2.1. Recall a group constraint is about a collection of resource units,

rather than individual units, such as, four virtual machines must be in different geographical

regions. We introduce a class of group constraints, called subset-aware group constraints, that are

suitable to use in a collaborative allocation model. We can also think of this as a programming
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Figure 6.3: An organization Q allocates a resource request R from multiple peer organizations by
sequentially querying each and obtaining partial matches PMi, until the request is fully mapped
to physical resources.
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technique applied to specify the constraints. With subset-aware group constraints, it is possible

to find a solution to R from multiple federation participant organizations. The basic idea behind

such type of constraints is that the constraint function can operate on the subsets of the units in a

request R, as well. Also, if the function satisfies a subset, it should ensure that there is a superset

that satisfies the function. We first introduce the concept of subset-awareness, give examples of

some constraints having this property, and show how to possibly alter existing constraints to make

them subset-aware.

Here are some definitions about resource requests and constraints. A user resource request

specification R contains an ordered set of N units. Each unit is Ui, i = 1, ..., N , where Ui is a

k-tuple containing a unit’s sequence number and properties. In the testbeds context, we can think

of a unit as a virtual machine with properties such as CPU and disk, where each is a field in the

tuple. Tuple fields are referred to as Ui
j, j = 0, ..., k − 1, where Ui

0 = i, showing the sequence

number of the unit. k can be around 10 for nodes and depends on the level of detail in representing

a resource unit. A tuple field can either be a variable or a value. For instance, in a request, the

host name field of a VM can be set to a value if it is important in which physical machine the VM

should reside; otherwise, it can be left as variable. Or, the memory field of a VM can be set to a

variable, which is further used as a parameter in unit and group constraints. A mapping of a unit

Ui is another tuple that is exactly same as Ui, except that all its variable fields are set to some

values. We can represent a mapping of Ui with U'i, and there can be alternative mappings of the

same unit, such as U''1. Two mappings X and Y are distinct if they are for different units—in

other words, X0 6= Y 0.

Group constraints of R are defined to be a function c(x), which gets as a parameter a set of

distinct mappings and returns true or false. A full match FM is a set that contains mappings U'i,

i = 1, ..., N and c(FM) is true. Note that since there can be alternative mappings of any unit,

it is possible to find more than one full match for a request R, which can be referred as FMi,

i = 0, 1, .... A partial match PM is a set of distinct mappings for only some of the units in R but

still satisfies the group constraint. In other words,

PM is a partial match ⇐⇒ 0 < |PM | < N and c(PM) is true

Again, there can be many partial matches for a resource request, which can be shown as PMi,

i = 0, 1, .... A group constraint c(x) at a request R is subset aware if there is at least one partial
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match PM , and for all partial matches there exists at least one full match that contains it. In

other words:

c(x) is subset aware ⇐⇒

(∃PM s.t. PM is a partial match) ∧

(PM is a partial match =⇒ ∃FM s.t. (FM ⊃ PM) ∧ FM is a full match)

“There exists” in this definition is independent of resource availability; rather it is about

theoretical existence of mappings that can result in a full match.

Subset-aware group constraints allow us to solve the problem of finding a full match in several

simpler steps. This is achieved by finding a sequence of partial matches, each a subset of the

next one, until a full match is found. Finding one particular partial match is easier and can be

performed within a single organization. Then, another organization can use this partial match to

find a full match or, if it cannot, to find another partial match containing first partial match. As

a result, a full match can be found collaboratively by many organizations.

Examples of Group Constraints

One example of a group constraint from testbeds and cloud computing is that the set of virtual

machines must reside at distinct physical machines. Specifically, the user request R contains

N = 100 nodes and has the constraint distinct(x), which checks U1
i of the given mappings to

be different. The U1
i field contains the host name of the physical machine, such as a DNS name.

distinct(x) is subset-aware because if any subset of 100 nodes, say the first 5, are distinct, it is still

possible to assign values to remaining Nodei
j, i = 6, ..., 100, j = 1, ..., k which satisfies distinct(x),

which is a full match. Whether the federation has those remaining 95 nodes or not is a matter

of availability, and actually a full match may not be found in the federation because of lack of

resources. In a federation with sufficient resources, such a request can be matched from as many

as 100 organizations, each organization but the last one finding a partial match and last one, a

full match.

Another example is such that N = 50 nodes are required with the constraint called cluster(x),

which says nodes have to be in clusters of 5 nodes with maximum RTT of 5 ms within each cluster

and minimum RTT of 50 ms between any two clusters. cluster(x) for N = 50 is also subset-aware.

Any subset of nodes that satisfy cluster(x) will have one or more full clusters, which still allows

a full match by properly selecting other nodes and their properties. Subset-awareness is always
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defined in the context of a request R. For example, if N = 51, there would be no possibility of

a full match in this example, even though there are partial matches; therefore, cluster(x) is not

subset-aware for N = 51.

Group constraints that are not subset-aware can possibly be altered in a way to make them

subset-aware. For example, a network experimenter wants 20 nodes that communicate with a

central server and places a group constraint called bound(x). It requires the added total of some

metric such as RTT or packet loss of each machine from the server be less than threshold T .

bound(x) is not subset-aware, because even though the sum of metrics for a subset of machines

is less than T , it does not guarantee there exists a full match containing those machines, since

any additional node has definitely a nonzero RTT, packet loss, and so on. It is possible, though,

to write a subset-aware version of bound(x). For example, bound avg(x) ensures the average of

the metrics of nodes is bounded by T/20, which effectively achieves bound(x) for 20 machines and

is subset-aware. For more complex group constraints, the programmer can develop their subset-

aware versions by treating subsets with varying sizes differently and writing the conditions so that

those subsets will lead to a full match.

Note that, theoretically there are cases where it is very hard or not possible to come up

with a subset-aware equivalent of a group constant. For example, we could restrict the hash

of the all node names concatenated to be a specific value. In that case, selection of the node

set is not an incremental process, that is, finding a subset of nodes does not give any benefit for

finding a superset. Nevertheless, we believe most actual group constraints can have a subset-aware

equivalent.

6.3.2 Organizational Discovery

CODAL discovers new organizations in a federation through contractual relationships among or-

ganizations. A resource recipient in an FPL contract periodically queries the contract signer to get

the updated resource sources and routes. We assume that an organization that is a subject of a

contract, that is, granted resources, learns about this through out-of-band means. For example, in

the contract example of Section 5.4, plc.eu.inria is aware that plc.jp gives resources to it; therefore,

it can direct organizational discovery requests to it.

When a discovery request arrives at an organization, all contracts are executed to check whether

the requester should be granted any resources. This is also depicted in Figure 6.2, where the
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organizational discovery uses FPL contracts. If the caller conforms to any contract definitions,

a set of permits are returned to the caller. A permit is a digital certificate expressing a set of

resources determined by the contract it is generated from. For instance, the permit example of

Section 5.8 can be obtained by plc.eu.inria, upon a discovery request sent to plc.jp. For efficiency,

the discovery request can return only the content of the permit rather than the whole digital

certificate, which can later be obtained if/when the recipient actually wants to use it to allocate

resources.

6.3.3 Mediator

A resource request sent to an organization arrives at the mediator, as shown in Figure 6.3. CO-

DAL’s mediator performs “partial matching” of a request to available resources, meaning, it can

find resources that only partly satisfy the request, so that the request can be fulfilled from multiple

organizations. Mediator performs constraint logic programming (CLP), similar to previous work

such as Rhizoma [68]. CLP allows processing of logic rules on system parameters, together with

the range constraints on those parameters, in order to find a solution. Our mediator uses FPL al-

location policies in order to impose policy restrictions set by the organizations, which is also shown

in Figure 6.2. It also applies user-provided constraints such as upper/lower bounds on resource

properties, such as memory, CPU, and disk. One particular problem in mapping resource requests

to available resources is the computational complexity of the mapping algorithm. CODAL limits

computational complexity by restricting the resource requests to have only a particular kind of

subset-aware group constraints.

Computational Complexity

The combinatory problem of mapping of N node descriptions to M available physical nodes has

high computational complexity. There are
(
M
N

)
N ! possibilities that can possibly satisfy node and

group constraints in R; therefore, a brute-force method that tries each is impractical. Moreover,

for collaborative matching, there are many more possibilities arising from the partial matches, as

well, which can be given by the following expression:

min(M,N)∑
i=1

(
M

i

)(
N

i

)
i! = MN +

(
M

2

)(
N

2

)
2 +

(
M

3

)(
N

3

)
6 + ... (6.1)
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This is because a partial match is allowed to find any number of nodes for R instead of N . In

other words, although the partial matching will try to find as many nodes as possible for R, it may

fail and try to map fewer nodes to R. The expression adds up possibilities from each partial match

i, where i number of nodes that are assigned physical resources. As a result, a partial match could

result in matches of only 1 node or up to N or M , whichever is smaller.

In previous work, the computational complexity is bounded by avoiding checking every possible

combination. This is done by using heuristics to find utility-maximizing combinations rather than

strictly optimal solutions. For example, SWORD makes use of presorting and pruning on candidate

nodes, and Rhizoma performs a hill-climbing approach to add or remove a few nodes to the solution

at a time to improve utility. Similarly, in our case we do not seek an optimal solution, but try to

find plausible solutions and confine the computational complexity.

We limit the complexity of a partial matching operation with the observation from Equation 6.1

that as the number of nodes to be matched is smaller, the complexity drops significantly. For

example, if the mediator searches a partial match with only one additional node, the complexity

is bounded by O(MN). We first introduce a classification of subset-aware group constraints and

show how complexity can be bounded in different levels for different classes.

The degree of a subset-aware constraint c(x) in a request R is a measure of the additional

number of mappings that should be added to a partial match in order to arrive at a larger partial

match or a full match. For example, the degree of distinct(x) is 1, but that of cluster(x) is 5

because, to every partial match for distinct(x) can be added just one additional mapping in order

to arrive at another partial or full match. For cluster(x), on the other hand, at least five mappings

have to be added to a partial match for it to again satisfy the constraint.

Formally, degree is defined as follows. For a request R with group constraint c(x), let PMi be

any partial match and Mi be a partial or full match that has the smallest number of mappings

and is a proper superset of PMi. Then, over all partial matches PMi, the degree of c(x) in

R is max(|Mi| − |PMi|). Degree is inversely proportional to the maximum number of different

organizations from which a request R can be fulfilled. For example, for distinct(x) the maximum

number of organizations is N , whereas for cluster(x), it is N/5.

By limiting the degree of subset-aware group constraints, we can limit the mediator complexity.

A partial match can be found with adding only “degree” number of additional mappings to another

partial match. In addition, one can alter constraints to reduce their degree. For example, cluster(x)
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can be changed to allow the partial matches to have incomplete clusters so that they can be

completed by nodes from several organizations rather than nodes from only one organization. In

that case, the constraint would be a more complex program, rather than simply checking cluster

completeness. It is the programmer’s task to decide which particular subsets of mappings have

the chance of leading to full matches.

In our current mediator implementation, we assume degree-1 subset-aware group constraints;

therefore, the computational complexity of the mediator is O(MN). In addition, the mediator

optimizes the resource selection in order to increase the organization’s resource utilization and to

minimize idle capacity. We provide a detailed explanation of the mediator in Section 7.3.4.

103



Chapter 7

Implementation

This chapter describes the implementation details of the federation framework, which consists

of the previously discussed mechanisms, CERTDIST, FPL, and CODAL. We specifically explain

the data structures and algorithms used to implement the individual components depicted in

Figures 4.2, 5.1, and 6.2. In addition, we explain the interfaces used in interaction among com-

ponents within a mechanism and also between any two mechanisms. This chapter is crucial to

understanding the performance characteristics of the federation framework, which will be discussed

in Chapter 8.

7.1 CERTDIST

CERTDIST is implemented with Prolog and Python languages, because these two have strong

capabilities for different tasks, such as policy specification versus network programming and sup-

porting diverse data structures, respectively. Functions implemented in different languages can

call each other through network sockets, where the function name and parameters are encoded in

JSON messaging format.

Figure 7.1 depicts the implementation details of CERTDIST. The individual components that

were previously described in Figure 4.2 appear as subsystems with interfaces in this figure. Among

these, the certificate storage subsystem, certificate retrieval logic, and a part of the remote query

subsystem are written in Prolog; on the other hand, the event subsystem, cryptography library,

DHT peer, and XMLRPC functionality of the remote query subsystem are written in Python.
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Figure 7.1: Interfaces and data structures comprising the main CERTDIST design components.
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The figure does not show interprocess communication details.

A larger box in the figure represents a subsystem, and the smaller boxes within a subsystem

represent individual functions or data structures that comprise the subsystem. The smaller boxes

that touch an edge of the larger box are interface functions or event handlers that expose the

functionality of this subsystem to others. An arrow from a function to another function or data

structure shows a function call or usage of the data structure. We will explain the process flow of

these operations in the next sections.

7.1.1 Certificate Storage Subsystem

A certificate storage subsystem keeps all the digital certificates that are obtained by the CERT-

DIST daemon, either signed locally or obtained remotely. Since signing or obtaining a certificate

remotely is an expensive operation, the certificate store is the primary location for checking for

certificates when they are needed by the policy. The subsystem consists of in-memory and disk

data structures, interfaces to store and check for certificates, and event handler functions that

remove the expired certificates from the store or synchronize the memory and disk states. Here

we explain the implementation of these functions and data structures in Prolog.

Certificate Record

X509 certificates are stored in memory as Prolog facts and can be saved in a file as Prolog programs.

These facts have the structure shown:

cert_directory(Id, Keys, Statement, SignerPubkey, Cert, ExpireTime)

Cert is a X509 digital certificate in PEM format, and the other fields are used for indexing

certificates. Statement is the content of the certificate, excluding its expiration time or signature.

It is a CERTDIST public trust relationship policy, which is a Prolog structure, such as the fed-

eration statements of FPL in Section 5.1. Id is an integer that uniquely identifies the content of

a certificate, independent of its expiration time. It is obtained by getting the hash function of a

canonical version of Statement. In some cases Statement can contain variables, such as when it

contains programs expressing certificate conditions. In that case, any variables appearing in it are

given a uniform format such as Var1, Var2, and so on, in order to keep the hash from being affected

by specific variable names. Id is used internally to easily locate a certificate in the store, such as
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when replacing a certificate with another having a later expiration time, or finding unsynchronized

certificates between memory and disk. SignerPubkey is a self-signed certificate, where its public

key is the signer of Cert. A self-signed certificate is the usual way to pass and store public keys.

ExpireTime is the integer value corresponding to the date and time of expiration of Cert. Keys

is a set of DHT keys, which can index a certificate. Similar to Id, each key is an integer value

obtained from a hash function, but this time from a subset of type and fields of Statement. DHT

keys were described in Section 4.2.2.

Interfaces

The interface check cert(S, K, Record) is used to search certificates in the local certificate

store. Given a statement S as parameter, it tries to unify it with Statement field of any of the

records in the store. In addition, optional field K can be used to specify a key to narrow down

the search, such that a record must have this key in its Keys field. Record is a Prolog variable

that is populated with the result of the search, where each matched record is unified with Record,

making the check cert predicate true. The search is performed in the in-memory facts and is,

therefore, handled by Prolog unification.

The interface store cert(Cert, SignerPubkey, K) stores a digital certificate record in the

store. The arguments are a certificate in PEM format, the public key of its claimed signer, and an

optional DHT key. It performs this in three steps, as seen in Figure 7.1. First, Cert is verified not

to be expired and signed by SignerPubkey by calling the crypto function verify cert. Second,

if the certificate is valid, any existing certificates with earlier expiration time are removed from

the store, and the record is created with index fields and inserted. If there is already a newer

certificate in the store, insertion is not performed, but K is added to Keys field of the existing

record, unless it is there. The second step is all performed in a mutex so that the store is kept

synchronized since many threads can perform operations on the certificate store. Finally, if the

certificate was inserted, an event is registered, using register event, to remove the certificate

when it expires.

Event Handlers

There are two event handlers, cert expire and save state, that modify the memory and disk

data structures. The former gets a certificate Id and removes it from the store by simply deleting
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the fact from Prolog knowledge base. The latter reads all the records in the memory and writes

them in a file; it reregisters the same event for a later time, so that certificates are saved periodically.

In system initialization, the certificates are read from the file to memory and the expiration events

are registered, which is not shown in the figure.

7.1.2 Event Subsystem

Event subsystem runs a continuous loop as a separate thread to check for events that are generated

by the system or its users, and executes the corresponding event handlers. Events are registered

with register event, which gets their types, execution times, and parameters and places them

in a queue to be executed later. Event subsystem is written in Python, which allows easy im-

plementation of data structures like queues, and allows using classes to represent different event

types and their execution parameters. Some events can be stored on disk to avoid loss of state in

case of node failures or restarts.

System events are certificate expiration and saving certificates to file, both registered by the

certificate storage subsystem, as discussed in Section 7.1.1. Applications can register events, as

well, as in the case of spontaneous user requests. For example, a user requesting to create an

experiment in a testbed will cause an event to be registered with an execution time as the current

time. The event handler for this would be similar to the querier of CODAL, as discussed in

Section 6.3.1, and will try to allocate resources for the user.

7.1.3 Certificate Retrieval Logic

Certificate retrieval logic implements the credential predicate of CERTDIST, as explained in

Section 4.3.3, which retrieves a digital certificate that matches a statement. The complete proto-

type of this predicate is as follows:

credential(Statement, SignerPubkey, From, Method, X509Cert)

Statement and SignerPubkey are fields that define a credential, which are the content and

signer of a certificate, respectively. Variables can appear as part of Statement, expressing partial

knowledge about the credential, as discussed in Section 4.2.2. From is optional, and is a hint about

where to retrieve a certificate from, such as an HRN for the principal in a federation. Method is an

ordered sequence of a subset of letters l, s, a, and d, which specifies the sequence of methods used for
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certificate retrieval: local signing, certificate store, authoritative, and DHT queries, respectively.

The default value of this parameter is “slda”. X509Cert is an optional parameter that is a variable,

which is populated with the value of the retrieved certificate upon successful execution.

Certificate retrieval uses functions from other subsystems, such as certificate storage, cryp-

tography, remote query, and DHT. As part of its processing, the prove store predicate is first

invoked to find a certificate record from the store by using check cert interface. If not found,

second, the prove sign predicate checks the public trust relationship policies, such as federation

statements in FPL, to unify Statement with any such policies. If found in the second step, a

certificate is created that contains Statement, by making use of the interface create cert. A

newly created certificate is stored in local store and also possibly in DHT by using interfaces

store cert and dht store, respectively. Only the signers store certificates at DHT, which avoids

duplicate store operations and ensures the most up-to-date certificates are at DHT. Finally, the

prove remote predicate can perform authoritative or DHT queries to retrieve a certificate with a

content that matches Statement and next stores this certificate in the certificate store, so that it

can later be reused. All three methods will also check if the signer of the found certificate has the

public key SignerPubkey, if this field was specified at the credential predicate. This is done by

the pubkey equal cryptographic function. The credential predicate will backtrack on possible

certificates if it finds more than one candidate that matches Statement and SignerPKey.

7.1.4 Cryptography Library

We use the cryptography libraries from Python OpenSSL and M2Crypto packages to implement

three functions: First, pubkey equal(PKey1, PKey2) checks if two given self-signed certificates

have the same public key, which involves extracting the field from the certificate and comparing.

Second, verify cert(X509Cert, PKey, Statement, ExpireTime) checks if a given digital cer-

tificate X509Cert is signed by a given public key PKey and not expired. If it succeeds, it extracts the

content of the certificate into Statement and its expiration time to ExpireTime variables. Finally,

create cert(Statement, ExpireTime, X509Cert) creates a digital certificate X509Cert, which

contains Statement encoded in its “subjectAltName” field, with an expiration time of ExpireTime.

Certificate creation uses the private key of the principal whom the CERTDIST daemon represents,

where the keys are generally stored as private trust relationships in CERTDIST.
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7.1.5 Remote Query Subsystem

The remote query subsystem serves as the gateway by which CERTDIST daemon connects other

CERTDIST instances over the network, sends queries, and listens for incoming queries. It exports

three interface functions for other components to use that are in the form of Prolog predicates.

A call to the interface function succeeds if the predicate evaluates to true, and its results, if any,

appear as part of the predicate fields.

The first of these interfaces is dht query(Statement, SignerPubkey, ResultCerts), which

performs a DHT query in order to find certificates that have content Statement and are signed

by SignerPubkey. It first obtains DHT keys by calling the get dht keys auxiliary function with

Statement and SignerPubkey parameters. Next, it performs a DHT query using the DHT daemon

interface called QueryCert. The obtained certificates are placed in the ResultCerts list.

The second interface is dht store(Statement, SignerPKey, X509Cert), which gets infor-

mation about a certificate and stores a record for it in DHT. It first obtains DHT keys and next

stores the certificate at DHT with the keys by invoking the DHT daemon interface StoreCert for

each key.

Finally, auth query(Destination, Query, Certs) performs a remote authoritative query

Query at another CERTDIST daemon located at Destination, passing any required certificates,

Certs. The call is made using the Python XMLRPC libraries, where the channel can be configured

either to SSL or plain unencrypted. It uses an auxiliary function first to look up IP, which must

be implemented by the application-specific policy, as discussed in Section 4.2.2. Query can be

an application or system defined operation. An example of the latter is the certificate retrieval

operation, which is invoked by the certificate retrieval logic, by prove remote, as depicted in

Figure 7.1. An example of an application-defined operation is the individual request made by the

CODAL’s querier.

Any authoritative query from other CERTDIST instances arrives at the XMLRPC listener

of the remote query subsystem. The listener first stores any input certificates for the query and

next passes the query to the dispatcher, together with the public key used in the SSL connection.

The dispatcher invokes the access control policies for the query located in the application-specific

policy. The policy for answering remote certificate requests can perform application-specific checks

and call credential with appropriate parameters to find certificates locally or remotely to answer

the request.
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7.1.6 DHT Peer

We use the Kademlia distributed hash table (DHT) and an implementation of it in Python, called

Entangled DHT, in order to replicate, distribute, and retrieve certificates. DHT peer is part

of the remote query subsystem, as shown in Figure 7.1, and provides routing for store/lookup

operations, but not storage. All the data distributed through DHT are stored in our certificate

store. Each CERTDIST instance runs a DHT peer as a separate daemon and communicates with it

through network sockets. Distributing certificates in a DHT layer increases efficiency in certificate

lookups, increases fault tolerance in the face of organizational servers’ temporary failures, and

also enables certificate retrieval even when the signer is not explicitly known. We first explain

the usual operation of a Kademlia DHT system and next discuss our modifications to use within

CERTDIST.

Kademlia Overview

In a Kademlia network every peer has a unique ID and keeps two main data structures, a routing

table and a data store. The routing table keeps neighbor peer ID and addresses, and the data store

keeps key-value pairs. Kademlia replicates a key-value pair at k number of DHT peers, where k

is a system parameter, which is 8 by default.

Kademlia has three main protocol messages or RPCs. First, store(K, V) creates an entry in a

peer’s data store with key-value pair K, V. Second, find node(K) returns the neighbors with ID

closest to key K in a peer’s routing table. Finally, find value(K) returns the value V if the pair

K, V exists in the data store, else returns the closest neighbors, exactly like find node(K).

Kademlia has two main high-level functions that use the protocol messages. First, StoreValue(K,

V) performs a series of find node(K) RPCs to find k nodes with closest IDs to key K and stops

when no more closer nodes are found. Next, it executes store(K, V) RPCs at this final list of nodes.

Second, GetValue(K) similarly performs a series of find value(K) RPCs to find closer nodes, until

a node returns a value V or no more closer nodes are found. If the result is found, it finally

performs store(K, V) at the node with ID closest to K that did not have the result.

CERTDIST-related Modifications

Each CERTDIST instance runs a modified version of a Kademlia peer daemon. We introduce

additional RPC functions that communicate with the local certificate store. Second, we implement
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additional higher-level operations specialized for certificate lookup/store that use previous and new

RPC functions.

We implement two additional RPC functions. First is storecert(K, V), which is similar to

store(K, V) but interconnects with CERTDIST and inserts V to the its certificate store. V is

always a list of certificates, where each is stored by indexing with the key K, using the store cert

interface function. If insertion to the certificate store was successful—that is, at least one record

is created having key K —the key K is also inserted to the Kademlia data store, so that it can

be found in later DHT query operations. We use the Kademlia data store only to check if a key

exists in the peer; we actually never use a value from its default data store but always store and

look up values in the certificate store.

The second RPC function is querycert(K, Q), which is similar to find value(K) but has an

additional parameter, Q, which is a query to be asked to the certificate store. The format of Q is

again a Prolog predicate: dq(K, Statement, SignerPKey, ResultCerts). K appears two times

in call parameters, where the former is seen only by the DHT code in Python, used while checking

if this key is in its data store. If not found, it will return neighbor peers, as find value does. If

found, querycert invokes the query dq, which is not depicted in the figure and is handled by Prolog.

The processing of dq is such that it first uses check cert interface function to check for certificates

with content Statement and having key K. Next, it verifies that it is signed by SignerPKey using

the pkey eq function. The list of matching certificates is assigned to the ResultCerts variable.

Function querycert returns the final dq structure as the result to the caller.

Function querycert keeps the key space synchronized between the DHT data store (Python)

and the Prolog CERTDIST certificate store (Prolog). Certificates can expire and be removed

from the certificate store after a time; therefore, keys that no longer exist have to be removed

from DHT’s data store, as well. Function querycert checks keys at the certificate store and deletes

them from the DHT’s data store if necessary, whenever a query returns no result.

We implement two high-level functions, StoreCert(K, V), and QueryCert(K, Q), which are

similar to StoreValue(K, V) and GetValue(K). They use both the newly implemented functions

and some of the Kademlia RPC functions. First, StoreCert(K, V) performs a series of find node(K)

RPCs until k peers are found and next performs storecert(K, V) RPCs at each node in order to

store certificates. Second, QueryCert(K, Q) performs a series of querycert(K, Q) RPCs until a

node returns a result. Again, if a result is found, it is stored at the node with ID closest to K that
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did not have the result, using storecert(K, V) at that node.

QueryCert(K, Q) does not ensure all possible certificates that match to a query Q will be

found, but at least one, if it exists in DHT, will be found. This is because it stops sending RPCs

as soon as one node returns a result, which may or may not have all relevant certificates stored

in it. While this functionality is enough for the current state of the policies in the federation

architecture, we see it as future work to implement more sophisticated QueryCert(K, Q), which

can retrieve results from many peers and combine them to arrive at a comprehensive result set for

a query.

7.1.7 Application-specific Components

There are application-specific components of CERTDIST, as mentioned in Section 4.2: access

control policies, trust relationship policies, auxiliary functions, and event handlers. Since these

are application specific, their implementation is not part of CERTDIST; however, we talk more

about these pieces in implementation of FPL and CODAL in later sections. Hence, Figure 7.1

does not show such components but still depicts some calls to these components.

For example, a listener invokes an application-specific dispatch that calls an access control

policy. Applications can use CERTDIST by implementing a set of access control functions, placing

their prototypes in a dispatcher so that they can be invoked upon an authoritative query.

Certificate retrieval logic consults the application’s public trust relationship policies while sign-

ing a new certificate, as depicted by the prove sign interface invoking the application-specific

check local policy function.

Similarly, dht store and dht query interfaces obtain the DHT keys by invoking get dht keys;

also auth query looks up IP address of the query destination by calling address resolution primitive

lookup ip. DHT key and IP lookup are part of the application-specific auxiliary functions of

CERTDIST.

Finally, there are event handlers written by programmers that handle application-specific

events, possibly collecting certificates first and then invoking the auth query interface of the

remote query subsystem, which is not shown in this figure.
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7.2 FPL: Federation Policy Language

This section explains the implementation of specific FPL elements that are shown in Table 5.1, and

depicted in Figure 5.1. These elements are implemented in Prolog and utilize CERTDIST primi-

tives such as certificate retrieval and data structures such as conditional credentials, as mentioned

in Sections 5.1 and 5.2. Among these elements, we have already explained how to write security

and allocation policy FPL elements and provided examples of FPL contracts in Sections 5.3, 5.7,

and 5.4, respectively. In this section, we focus on the implementation of lower-level FPL ele-

ments, that is, the statement proofs, accounting and capacity elements, and primitives to express

third-party resources.

7.2.1 Statement Proofs

Federation statements are proven by the certify predicate of FPL. As explained in Section 5.2,

it has three input arguments, Statement, From, and Method, and a result argument, CertList.

We give part of its implementation, excluding its optional arguments, for simplicity. This illus-

trates usage of Prolog built-in predicates and the CERTDIST built-in credential predicate in

implementing FPL elements.

certify(Statement) :- arg(1, Statement, SignerHRN),

not(var(SignerHRN)), !,

authenticate(SignerHRN, SignerPKey),

From = SignerHRN,

credential(Statement, SignerPKey, From).

certify(Statement) :- credential(Statement, SignerPKey),

arg(1, Statement, SignerHRN),

authenticate(SignerHRN, SignerPKey).

A statement can be proven in two ways, shown by two definitions of the certify predicate,

where the first handles the case where signer of a statement is known and the second handles the

case otherwise.

In the first case, the Prolog built-in arg predicate gets the first parameter from a given pred-

icate. In our code, this predicate is a federation statement, Statement; therefore, the first field
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is the principal who utters it, which is SignerHRN. If SignerHRN is known, that is, it is not vari-

able, it is authenticated first in order to find its public key, SignerPKey. Then, we can call the

CERTDIST built-in credential predicate to prove Statement with that public key. In addition,

we provide credential with a destination, From, to which it can direct its authoritative query.

In the second case, the signer is not known; therefore, the only way a certificate can be found

is to check it in DHT. The call to credential will query DHT to see if there are any certificates

with contents matching Statement. If it executes successfully, it will have a value at SignerPKey

field. The last authenticate predicate will verify that the statement is uttered by SignerHRN.

In its full implementation, the additional optional fields for certify are passed to the credential

predicate, which can help the proving process. For example, providing a From field will allow the

second part of the proof to perform authoritative queries as well. The full implementation of

certify considers any combination of the mandatory and optional fields and calls credential

with appropriate parameters one or more times until the certificate is found.

7.2.2 Accounting and Capacity

Accounting and capacity FPL elements are explained in Section 5.6 as crucial pieces for expressing

allocation policies. In this section we will explain the implementation details of those language

primitives, specifically, scheduled and capacity FPL elements.

The scheduled(Permit, Nodes, Total) element keeps the set of resources allocated by a permit

and its descendants. Every organization stores such Prolog facts, one per permit that has been used

to allocate resources at the organization. These facts are updated each time a resource allocation

happens in the organization, specifically by the account nodes element. They are removed

when an allocation expires. Permits have an hierarchical structure, where permits delegated from

another are children of that permit, as mentioned in Section 5.6. Allocations performed by a

descendant are accounted for the ancestors as well.

For example, consider the example permits that were mentioned in Section 5.8.

P1 = plc.south.rnp gives to plc.jp local resources subject to max 75%

P2 = plc.jp gives to plc.eu.inria P1 resources subject to max 100 machines

Let’s say first plc.eu.inria allocated NodeA by using P2 at plc.south.rnp. After that operation,

the accounting structures at plc.south.rnp organization would look as follows:

scheduled(P1, [], [NodeA])
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scheduled(P2, [NodeA], [NodeA])

P1 is the parent permits and therefore keeps NodeA in its Total list. Next, let’s say plc.jp

allocates NodeB by using P1 at plc.south.rnp. The accounting structures will be updated to the

following state.

scheduled(P1, [NodeB ], [NodeA, NodeB ])

scheduled(P2, [NodeA], [NodeA])

These Prolog facts are stored in memory and also in the disk for persistence. Access to

these facts is performed in a mutex, so that they are never in an inconsistent state caused by a

multithreaded operation.

The second FPL element, capacity(Permit, Capacity), is a predicate that computes the max-

imum amount of resources that a particular permit can allocate at an organization, as constrained

by the policy program in the permit. This predicate is dynamic since the policy program can

contain temporal parameters such as current set of organizational resources, time, and so on. The

capacity element runs a binary search algorithm in order to find the maximum amount of re-

sources that permit’s policy allows. For example, it first tries to allocate all the memory/CPU/disk

of a machine, say, amount X. If policy allows, it is added to the computed capacity; otherwise

X/2 is tried, and so on. This is performed for all nodes in the organization. Since capacity can

result in different values at different times, this computation can be done every time a permit is

used to allocate at an organization, or the result of the computation can be cached for a short

time for efficiency.

7.2.3 Third-Party Resources

In this section we explain the implementation details of the FPL element that is used to re-

fer to third-party resources, namely, permit from(From, Permits), which was also discussed in

Section 5.8.

Every organization has a permit store, which stores the permits issued by other organizations to

this organization. Similar to certificates in the certificate store, permits are deleted from the store

when they expire. They are kept in memory and also persisted on disk, in case the node has to

restart. The permit from element is an interface to the store that returns permits originating from

a particular organization. This interface is used by organizational admins in writing contracts,

specifically to express third-party resource delegations.
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The permit store is populated continuously at an organization X as long as there are other

organizations that have contracts granting resources to X. First, other organizations generate the

permits from those contracts; second, those permits are obtained remotely by X and stored at its

store. We talk about the mechanism that realize the second step in Sections 6.3.2 in discovery and

allocation and its implementation in Section 7.3. The first step, on the other hand, is basically

performed with the following Prolog rule.

delegate(Signer, To, ID, Resource, Constraints) :-

myHRN(Signer),

contract(ID, T1, T2, To, Resource, Constraints),

timenow(T), time_between(T, T1, T2).

This tells us that if the contract has a valid date and time, a permit, which is a delegate

statement, can be issued to any organization that will satisfy the contract conditions (Conds of

Section 5.4). This means a contract can give rise to one or more permits, which are possibly to

different recipients and for different resource sources.

7.3 CODAL: Resource Discovery

In this section we give the implementation details of CODAL. Specifically, we explain the resource

request specification, organizational discovery, querier, and mediator algorithms that were talked

about in the CODAL design in Chapter 6.

7.3.1 Resource Request Specification

Users specify the requested resources, unit, and group constraints with a data structure called

RSPEC. Implementation of RSPEC reflects the goal of finding at least one possible solution

rather than optimizing among multiple possible solutions. This is because RSPEC can contain

large request sizes, which possibly need to be matched from multiple organizations, which is a big

challenge itself. Therefore, RSPEC does not contain complex utility or cost functions, as in the

case of previous work on discovery systems. We illustrate RSPEC in the context of computational

testbeds and use resource units as virtual machines, namely, nodes. A node is represented by a

nodespec, which we discussed in Section 5.5; nodespec has seven main properties: host name,
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geographic region, disk size, number of cores, CPU in terms of GHz, memory, and bandwidth.

The node and group constraints are built by using those seven parameters from each node. One

final field of nodespec in RSPEC context is NodeAssigned, which is 0 or 1, indicating whether or

not this nodespec is yet assigned to a physical resource.

rspec(NodeList, Constraints)

nodespec(Name, Location, Core, Disk, Cpu, Mem, NodeBw, NodeAssigned)

distinct(NameList)

The Constraints field of an RSPEC is a list of lists of length N + 1, where N is the length

of NodeList, list i keeps the node constraints for node i node, where i = 0, 1, ..., N − 1, and the

final list keeps group constraints. Node and group constraints are Prolog expressions, such as

predicates from common schema. An RSPEC is said to be satisfied, or fully matched, when all

nodespecs in it are assigned and Constraints hold true.

The distinct predicate is used in our schema as an example subset-aware group constraint.

It simply gets the list of names of nodes and return true if they are distinct. This is a natural

user-side policy, since testbed users generally choose to allocate one virtual machine from each

different physical machine. It is easy to generate such new elements to the schema because Prolog

is a declarative and expressive language.

Below is an example RSPEC, which contains two nodes. This RSPEC denotes a request which

is yet to be fulfilled, since nodes are not assigned yet. The per-node constraints are represented

by the first two lists, which are basically lower bounds on the node resource metrics. The group

constraints contain one predicate, which makes up the last list of the Constraints.

[ [ nodespec(Name1, 1, C1, D1, Cpu1, M1, Bw1, 0),

nodespec(Name2, 2, C2, D2, Cpu2, M2, Bw2, 0)],

[ [ C1>=1, D1>=5, Cpu1>=0.5, M1>=100, Bw1>=1000 ],

[ C2>=2, D2>=10, Cpu2>=1, M2>=500, Bw2>=10000 ],

[ distinct([Name1, Name2]) ] ] ]

7.3.2 Querier

CODAL’s querier performs a series of allocation requests to the peer organizations, as mentioned

in Section 6.3.1, which we call collaborative allocation. These peer organizations are basically

118



the origins of the permits in the permit store. As discussed in Section 7.2.3, the permit store is

populated as a result of contractual agreements between organizations, where each permit indicates

resources either from the direct contract partner or a third-party source.

Querier performs queries in a specific sequence special to the RSPEC in order to minimize the

time to fulfill the request. For example, if the RSPEC needs nodes from North America, then

a permit having an origin of a North American organization is used first to perform a query to

that organization. More complex querier implementations are possible as future work, such as

parallel remote calls, so that resource sets that are independent in terms of group constraints can

be acquired in parallel.

7.3.3 Organizational Discovery

Organizational discovery is achieved by contract partners periodically querying each other, as

discussed in Section 6.3.2. The receiver of such a query executes the contracts with the Prolog

rule that is mentioned in Section 7.2.3. The resulting permits obtained from executing the contract

are returned to the caller.

Both the caller and the callee organizations perform some optimizations so that a query does

not cause overhead for the callee. The execution of contracts that give third-party resources can

be expensive, because the complexity increases linearly with the number of permits in the permit

store. If the store size is large, both the time to compute and the size of the resulting delegation

permits can be large. To solve this problem, the callee limits the maximum number of permits

that are returned per call by stopping the execution once that number of permits is reached. Also,

the caller passes the signatures of the set of permits that it already obtained from previous calls

so that the callee does not return these permits again. Finally, the caller can adjust the periodic

discovery call frequency by deducing from the response times of the callee whether or not it is

overwhelmed by many requests.

7.3.4 Mediator

The RSPEC is mapped to available resources using constraint logic programming (CLP), as dis-

cussed in Section 6.3.3. In this section we explain its implementation in Prolog, the pseudocode

of which is shown in Figure 7.2, with the match resources predicate.

The algorithm runs a loop with maximum N iterations, where N is the number of nodes in
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1. match_resources(Permit, RSPEC) :-

2. Used ← [],

3. get_group_cons(RSPEC, Group_Cons),

4. while there are unprocessed nodes in RSPEC:

5. select_nodespec(RSPEC, Node, Node_Cons)

6. process_node(Node, Node_Cons, Group_Cons, Used).

7.

8. process_node(Node, Node_Cons, Group_Cons, Used) :-

9. match_to_instance(Node, Node_Cons),

10. match_to_resource(Node, Node_Cons, Group_Cons, Used),

11. can_alloc(Permit, [Node | Used]),

12. set_assigned(Node),

13. Used ← [Node | Used].

14. process_node(Node, Node_Cons, Group_Cons) :- true.

15.

16. match_to_instance(Node, Node_Cons) :-

17. for i=0 to 4:

18. member(Node[i+3], Rangei),
19. run_constraints(Node_Cons),

20. Node ← enhance_match(Node, Node_Cons).

21.

22. match_to_resource(Node, Node_Cons, Group_Cons, Used) :-

23. get_ordering(Node, Used, AvailNodes),

24. member(Candidate, AvailNodes),

25. for i=0 to 4:

26. Candidate[i+3] > Node[i+3]

27. Node[0] = Candidate[0],

28. append(Node_Cons, Group_Cons, Cons),

29. run_constraints(Cons).

30.

31. run_constraints([Con|Cons]) :-

32. catch(Con, _, true),

33. run_constraints(Cons).

34. run_constraints([]).

Figure 7.2: The mediator algorithm in Prolog pseudocode
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RSPEC. At each iteration it selects one nodespec from RSPEC that is not assigned to a physical

machine and not processed before and tries to find a mapping for it. The process node predicate

tries to map a nodespec to a physical node in three stages: First, match to instance finds a

virtual machine (VM) instance type suitable for the nodespec; second, match to resource selects

a physical organizational machine to host this VM; finally, can alloc runs the allocation policies to

check if this resource is allocatable by Permit. Since the second and third stages can be performed

M times, the overall complexity becomes O(MN), where M is the number of available physical

machines.

The match to instance predicate uses Prolog backtracking at line 18 to find a VM fitting

to the nodespec. Each Rangei, i = 0, ..., 3 is an ascending list of possible values for disk, CPU,

memory and bandwidth, respectively. Node[k] is shorthand for field k of nodepsec Node, where

k = 0, 1, ..., 6; therefore, Node[3] is the disk, Node[4] is the CPU of node, and so on. Minimal

values are matched for all node properties and verified to satisfy the node constraints by running

run constraints. This is a predicate that simply runs Prolog expressions, such as inequalities,

or predicates from schema. Once a nodespec is mapped to a VM instance, it is further refined to

minimize the individual VM properties using enhance match at line 20. This function performs

a binary search for each node property i in order to find the least value that satisfies the node

constraints. For example, if Node[5] (memory of the node) is matched to Range2[3], then we

perform a search in interval (Range2[2], Range2[3]). Binary search stops when some targeted

granularity is met. There are different granularity values for each of the four node properties.

If Rangei[0] was matched, then no more enhancement is possible. We find match enhancement

useful in situations where resources are scarce; for example, in our evaluation using PlanetLab

in Chapter 8, RSPECs need to be matched very closely so that a high system allocation rate is

achieved.

The predicate match to resource backtracks over available physical nodes of the organization,

at line 24, to find one that has enough resources to contain the VM. The order of this list of physical

nodes, AvailNodes, is generated by the get ordering predicate, which performs “min-occupy-

first” ordering. The “occupy” value for a physical node P that is a candidate to host a VM V is

defined as follows. First, the occupy value of a node property, ci, such as disk, CPU, memory and

bandwidth, is the ratio of the current available amount to the available amount if V was placed in

P , that is, P[i+3]/(P[i+3] − V[i+3]). The occupy value of a physical node, c, on the other hand,
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is the maximum of occupy values of all its properties; in other words, c = max(ci), i = 0, ..., 3.

The get ordering predicate orders the available nodes by ascending occupy values. This ordering

stems from the observation that a physical node is not preferable to host a VM if it will use most

of any of the node’s resources. For example, if a VM with a high CPU requirement is mapped

to a physical machine that can barely provide the required CPU, this mapping would leave all

the remaining resources of the node, such as bandwidth and memory, useless, since there will not

be any more possible VMs because the CPU is depleted. We call this the singular deprivation

problem. We saw in our experiments that this problem can be significantly avoided by ascending

occupy value ordering of nodes. Once a physical machine is assigned to the VM, the VM becomes

fully mapped by setting its hostname at line 27, and finally group and node constraints can be

run on the RSPEC at line 29.

The can alloc predicate at line 11 runs the policies embedded inside a permit, as Prolog

predicates. If all three steps successfully go through, this means a partial matching is found,

which contains only one additional mapped node. If any of the node or group constraints or

allocation policy are not satisfied, then this node is just skipped at line 14, and the next node is

selected, and so on, until no more nodes are left in RSPEC. The algorithm can result in as many

as N or as few as 0 mapped nodes in RSPEC.
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Chapter 8

Evaluation

We evaluate our federation framework mechanisms, CERTDIST, FPL, and CODAL, to show that

the framework can build federations with complex policy and many participants. The challenge

of evaluating a federation framework is that building a large-scale federation from scratch would

require a collective effort from many parties, such as many organizations adopting and using

the framework. Instead, we perform an emulation of a realistic federation setting by using real

system state and logs. We derive federation information, such as participant organizations, their

resources and users, resource request patterns, and so on, from the current state of real systems

and construct a federation setup with them. This approach is useful not only to show that our

architecture and mechanisms are running properly and are efficient, but also to provide a realistic

federation instance, which can be a candidate for existing systems to migrate to over time.

Our evaluation is in the context of testbeds, specifically the PlanetLab (PL) federation. PL

consists of hundreds of universities and research institutions, called sites, each having its own users

and resources, and, therefore, provides an ideal candidate for a large-scale federation. Today PL

is partly federated, where a small number of autonomous regional subfederations such as PLE

and PLJ branched out in the last few years and where each also contains many sites in their

region. As mentioned in Section 2.2.1, this federation is based on direct trust relations and has

few autonomous organizations. The sites are not fully autonomous, since their users and resources

are administered and allocated by the regional PlanetLab. In our emulation, we treat each site as

a separate autonomous organization in a large-scale federation. Since we have access to PL usage

traces and the PL central (PLC) database, we can rerun user-request patterns as if they occur in
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the fully fledged federated environment and observe federation processing.

PlanetLab serves not only as the source of our federation setup and traces to derive experiments,

but also as the platform to run experiments on. Our experiments are run at PlanetLab by deploying

the code, federation configuration, and usage traces at hundreds of machines located around the

world. In the next sections we first explain our experimentation setup, and then talk about

the specific experiments. Our results show that system performs in desired ways in terms of

organizational discovery, resource allocation success rate, remote query times and success rates,

and the effect of DHT on reducing load on organizational servers and improving certificate retrieval

times. We published some of the evaluation in this chapter [59], where we used PlanetLab logs to

evaluate CERTDIST by emulating API and machine login events. We will explain these in detail,

as well as CODAL’s resource allocation.

8.1 Experiment Setup

For our experiments we first emulate authentication and contract topologies that can allow au-

thentication and resource exchange in the system. Next, we emulate user resource request, API

operation, and machine log-in events that trigger operations requiring authentication and autho-

rizations. In addition, per-organization resource sets are generated, on which the user resource

request events operate.

8.1.1 Authentication Topology

We assign human-readable names (HRN) to any site, user, node and slice, which originally have

flat names in PL. We designate one root authority called plc and four other top-level regional

authorities, plc.south, plc.eu, plc.asia and plc.jp. Any site in PL is assigned an HRN under

the top-level authority of its geographic region. The slice, user, and nodes are assigned HRNs

under their site’s HRN. For example, a site called “inria” in PL becomes plc.eu.inria, and a slice

called “inria demo” becomes plc.eu.inria.demo. Since we have access to the PLC database, we

automatically obtain the geographical location of PL sites and place them under the right top-

level authority. This database also includes the user, node, and slice records, which are again

automatically given HRNs depending on the site to which they belong.
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8.1.2 Machine Assignment

Our federation setup runs as a PL experiment spanning all machines and, hence, is itself a slice that

uses a portion of resources at each machine. We select one unique machine to host each organization

in the federation, where each such machine has a CERTDIST daemon that runs CODAL. Since

there are about 350 sites in PL and more than 450 live machines, we have enough machines to

emulate all organizations. Each organization machine is selected to be geographically proximate

to it, so that it best represents the behavior of queries performed by and at its CERTDIST

daemon in a real federation deployment. In addition to proximity, we also take into account

machine load, such that the busiest organizations in our experimentations, which are the top-level

authorities and the organizations performing or receiving many allocation requests, are assigned to

the machines having the least system load in PlanetLab, according to data provided by the CoMon

node-monitoring tool [49] statistics. These arrangements are enough to run our experiments to

produce meaningful results, although they do not exactly represent a real federation deployment,

where all organizations would have dedicated servers located in their particular locations. The

effects of this on our results are discussed later.

8.1.3 Contract Topology

We generate contracts among organizations, which allow them to allocate resources from one

another in our emulation. The layout of overall contracts in a federation is called the contract

topology. Since there are no data in PL from which we can emulate federation contracts, we

generate all contracts in our federation setup from scratch. Nevertheless, we generate contracts in

such a way that any organization can possibly allocate resources from any others, which is parallel

to the usage goal followed by the current PlanetLab. As a result, we believe our contract topology

is reasonable, allows us to test resource allocation at a large scale, and can serve as a candidate

topology for future federations.

Figure 8.1 shows the “linear” contract topology, which contains bilateral contracts between

geographically adjacent top-level authorities. For example, resources at plc.jp are first known

only to and can be acquired by plc.asia. Only through contracts of plc.asia with plc.eu and its

subsequent contracts with others can those resources get to be known and used in all organizations

around the world. Obviously, it would be less efficient for plc.south, plc, plc.eu, and plc.asia

individually to make separate agreements with plc.jp to use its resources. This topology both
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Figure 8.1: Linear contract topology contains contracts between top-level authorities, between
top- and low-level authorities, and between authorities and their slices.

contains a small number of contracts and also allows a trust path for resource allocation from

any organization to another in the federation. The figure also shows the contract relations within

individual geographical regions. All authorities have contracts with the top-level authority such

that they use the top-level authority as a proxy to obtain resources from other organizations and

publish their own resources to other organizations.

In our emulated contracts we use only the fr limit contract rule, which grants a fraction

of organizational resources. This rule is independent of the resource size of an organization;

therefore, it is simple to generate automatically and also can effectively distribute resources among

many principals. For simplicity, we represent such a contract with the tuple (ResourceSource,

Fraction). For example, in Figure 8.1, one of the contracts from plc.eu to plc.asia is (plc.south,

2/3), which actually converts to a contract rule in our experiments, one that has a permit from

predicate in its conditions (RHS). This contract grants resources from any organization at South

America, with a fraction limit of 2/3. In other words, plc.eu grants to plc.asia 2/3 of any resources

that it can possibly obtain from organizations with HRN plc.south.*.

The fraction values in the contracts are selected according to a heuristic of fair sharing among

geographical regions. For example, plc.eu grants 2/5 of its own resources to plc.asia because the

number of regions at plc.asia’s branch are 2 and the total regions are 5. On the other hand,

it grants 2/3 of its resources at South American organizations (plc.south.*) because plc.eu itself
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obtained only 3/5 of plc.south.* resources and should use only 1/5 of the total locally and pass

the remaining 2/5 to plc.asia so that plc.asia and plc.jp can use the same amount as plc.eu does.

Between two top-level authorities:

CT [i],T [i+1] =

{(
T [i],

l − i− 1

l

)}
∪

i−1⋃
k=0

{(
T [k],

l − i− 1

l − i

)}

CT [j],T [j−1] =

{(
T [j],

j

l

)}
∪

l−1⋃
k=j+1

{(
T [k],

j

j + 1

)}
,

for i = 0, ..., l − 2 and j = 1, ..., l − 1

Between a top- and a low-level authority:

CT [i],Li,j
={(∗, 1)}

CLi,j ,T [i] ={(L, 1)},

for i = 0, ..., l − 1, where Li,j is a low level authority at T [i]’s region

From any authority to its slices:

CA,S ={(∗, 1)},

where S is any slice of authority A

Table 8.1: The formula representing contracts in the linear contract topology, where a single
contract is represented with the tuple (ResourceSource, Fraction).

The formula for any contract in the system is shown in Table 8.1, where CX,Y denotes the

the set of contracts granted by X to Y , which are HRNs. The formula is in three categories: (1)

contracts between top-level authorities only; (2) contracts between top- and low-level authorities,

and (3) contracts between authorities and slices. T is the list of top-level authorities of length l,

ordered according to their position in the linear topology, so T [0] =plc.south and T [4] =plc.jp in

our case. First, the contracts between two adjacent top-level authorities in the linear topology

reflect our fair-sharing heuristic. Each such contract grants a collection of resources from different

owners. Second, top- and low-level authorities share their resources without any limit, shown by

“1” as the fraction. The top- to low-level contracts again grant resources from many sources;

on the other hand, low- to top-level contracts grant a single organization resources. Finally,

authorities grant all their resources without limit to their slices. This is done by issuing only

one contract, with multiple receivers. Unrestricted sharing within the individual regions increases

resource utilization, although it can lead to unfair sharing among lower-level authorities. In a
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real deployment, excessive consumer authorities can be prevented over time by configuring lower

fractions in their contract rule.

For our experiments we introduce an additional parameter, γ, in order to observe the effect

of changing contract rules. We alter any contract (ResourceSource, Fraction) in the system to

(ResourceSource, γ × Fraction). For different values of γ, observing the system behavior gives

insight about the effect of contract rules on resource allocation success rate and time.

8.1.4 User Events

We emulate three types of user events: resource allocation requests, API operations on database

objects, and machine log-in requests. We have access to PlanetLab logs that contain information

about the parameters and patterns of past user requests. From these logs we can derive traces of

those three types of events that would be expected to occur in a federation.

Resource Allocation Requests

The resource allocations happen in the context of slices in PL. Each slice in PL corresponds to a

resource discovery/allocation request in our emulation, invoking the querier of CODAL to satisfy

resource request. To emulate such events, the primary data we need to derive from PL logs are

the RSPEC parameters of allocation requests. These data are not explicitly available in PL logs,

because the PL allocation model leaves the resource discovery phase to the user. We have access

only to the final allocated resource set, instead of the initial request RSPEC for a slice. Therefore,

we choose to derive this request RSPEC from the final resource set allocated to the slice, which

consists of virtual machines located at PL machines and their resource properties.

We map PL slices to allocation events with the assumption that several operation calls for

a slice are consolidated into one. Normally, the nodes of a PL slice may be allocated with one

or more calls to the PLC API as its users select and add them over time in the course of an

experiment. On the other hand, we represent all these calls with a single allocation request event,

which will allocate all nodes at once, because the primary challenge we see in federated allocation

is not handling a relatively larger number of such calls, but allocating large request RSPEC sizes

efficiently and from many organizations.

The RSPEC parameter of each emulated event contains as many nodespecs as the number

of machines the corresponding slice has currently. The individual node properties in RSPEC are
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derived using the per-slice resource consumption logs provided by CoTop measurement tool [21] in

PlanetLab. CoTop provides memory, CPU, and bandwidth consumptions every 5 minutes, by each

slice in PL and at each node at which it resides. For each slice node, we obtain the averages of such

consumptions during 288 intervals, that is, one day, and place node constraints in RSPEC for that

nodespec to have such averages as lower bounds. The other fields of RSPEC, geographical location

and number of cores, are static values, which are obtained from CoMon node properties data. We

designate a default value for disk usage for each slice node since we do not have access to such

information directly; a disk is generally a less scarce resource in PL as compared to others and,

hence, is not very important in VM’s placement to a physical node. We leave all host name fields

as variable in the generated RSPEC because we assume the user cares only about the properties of

VMs, not the specific physical machines at which they reside. Finally, all RSPECs have the group

constraint of all nodespecs reside in distinct physical machines since it is the case in PL’s slice

allocation model. At the end, we arrive at 460 resource allocation events overall in our emulation.

API Operation and Machine Login Requests

Another set of logs that we obtain from PlanetLab is the API operations performed at the PLC

database by users and also administrators. These operations include adding and modifying records

of users, nodes, slices, and so on, in the database, configuring and managing resources such as

rebooting machines. We implemented a possible policy for such operations using our federation

framework and executed traces in our emulation. Specifically, each such operation requires the

chain of authentication and authorization certificates for the caller, the latter being specific to

the operation to be performed. The authorization chain is similar to the proof of “can register”

permission in the security policy in Section 3.3.1, which starts with a certificate signed by the root

and ends with the final principal, which is the permission being given.

We derive federation traces from a PLC API log by determining the new origin and desti-

nation of each call. For example, a PLC API operation to update a node with the DNS name

“node1.planet-lab.titech.ac.jp” will be mapped to a federation call with destination as the organiza-

tion owning this node, which is plc.jp.titech, and will update the record called plc.jp.titech.node1.

Also, by checking which user performed this operation, we determine an origin node close to the

geographical location of a user’s site in order to run the emulated traces at that location.

The last type of operation in PL that we map to a federation is the machine login requests,
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that is, SSH, to the testbed machines. PL handles authorization by having each node download

SSH keys of allowed slices every 20 minutes from the PLC database, so that when any user of a

slice tries to log in to the machine, the node knows this slice has not expired. In the federation, on

the other hand, there is not a central authority from which to obtain keys. In our emulation, each

SSH requires two chains of certificates. The first is the caller’s authentication certificates, which

can be used for accounting at the logged-in node. Second is the proof that the caller is a user that

belongs to the slice. Since a slice is an object with an HRN representing a group of users, this

proof is similar to authentication, requiring a chain of certificates starting at the root. Similar to

API operations, we determine the origin and destination of such calls and run in our experiments.

8.1.5 Organizational Resources

Any machine in PL is donated by one of the institutions that is part of the PL; therefore, per-

organization resource sets are composed of such machines as resources. This machine-to-site

mapping is obtained from the PLC database. Since some sites contribute a very small number of

nodes, as low as 2, the node density can be quite low. To avoid this, we designate some subset of the

authorities as data centers. Data center authorities manage all resources of a group of authorities

in their region. Our experiments use a total of 50 different data center authorities, 2 at least

from each region, overall managing a total of 644 machines. For each node, we extract the node

properties, disk, core, CPU, bandwidth, and memory from CoMon node information and create

a nodespec to represent the node. The list of nodespecs is encoded inside an authority-specific

policy file for each data center authority.

8.1.6 Configuration and Trace Files

All the above configurations and events are encoded in per-organization configuration and trace

files, respectively, and next placed in the PL machine that corresponds to that organization in

the emulation. The configuration file first consists of basic policy for the organization, such as

private keys, as shown in Table 5.1. Next, it contains records for slice and subauthorities if any,

containing their public keys and IP addresses. Also encoded is the organizational resource set,

federation peers list, and all contracts granted to others, which are obtained from the contract

topology. The trace files contain a record for each event, which contains event execution time,

caller HRN, operation name and parameters, and its specific destination, if any. Each trace file is
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fed into the event subsystem of the CERTDIST daemon at the node for the organization, which

invokes them at the exact time for each event.

8.2 Organization Discovery

After passing the system code and configuration and trace files to the node hosting each orga-

nization, the CERTDIST daemons in these nodes are started. We have a warm-up period, in

which organizations query others to obtain permits and discover remote organizations by periodic

renew permit calls. Only after this warm-up period do the events start to be invoked.

Our experiments show that the permit-renewal period can be important for efficient organiza-

tion discovery. Our strategy in choosing a period length is that the smaller authorities keep their

permit-request period high so that they do not overwhelm top-level authorities. On the other

hand, the request period between top levels is high, so that path information flows fast from one

edge of the federation to another. In our topology, setting the inter-top-level period at 20 seconds,

the top-to-low level authority period at 60 seconds, and the low-to-top level authority period at 120

seconds allows more than 350 authorities to learn 50 different permits within 5 minutes without

needing excessive CPU or bandwidth.

8.3 Allocation Rate

Our first goal is to measure how successfully a user’s resource allocation request can be fulfilled

in a federated environment. We define the allocation rate of a single request as the ratio of the

number of mapped nodespecs to the total number of nodespecs in an RSPEC. Some parameters

that can affect the allocation rate are the size of the request RSPEC and also the contract rules,

together with availability in peer organizations.

To measure allocation rate, we make an experiment run using only the resource allocation

events. At the end of the experimentation, we gather results for the 460 RSPECs and calculate

system average allocation rates. Figure 8.2 shows the average allocation rates with respect to

RSPEC sizes, which are grouped by multiples of 40. The second graph shows how many data

centers are contacted on average, again with respect the RSPEC size.

We perform four separate experiments with different γ values. As mentioned in Section 8.1.3,

this parameter alters the contract rules such that, the higher γ is, the more generously the orga-
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nizational resources are granted. For example, γ = 1 represents the contract rules that achieve

fair sharing according to the geographical region heuristic. On the other hand, γ = 5 causes all

fractions in all contracts to flatten to 1 (fractions greater than 1 default to 1), thereby leading to a

first-come, first-served type of allocation policy. The cases where γ < 1 study what happens when

organizations behave less altruistically in sharing resources in contracts granted to others.

The allocation policy for ideal fair sharing, γ = 1, yields close to 100% allocation rates for

smaller slices but slightly lower rates for very large slices, such as ones with more than 600 nodes.

This shows us that the current resource sharing in PL is almost fair according to our contract

policy. Next, we increase γ to 5 to eliminate any limits in contracts, where we see that the

allocation rate increases slightly, especially for large RSPECs.

Not only the size of a requested RSPEC but also the individual nodespec properties in it

can affect its allocation rate. For example, there are some slices in PL that reside at machines

where they consume 100% of its CPU. In our emulation it can be hard to find a mapping for such

a nodespec, because our mediator algorithm avoids such large allocations in order to avoid the

singular deprivation problem, which is described in Section 7.3.4. For example, in the upper graph

for γ = 5, the small decrease in allocation rate of RSPECs of sizes 480 to 520 is caused by the

“coblitz” slice, which is one of the top 10 memory consumers and top 3 bandwidth consumers in

overall slices in PL.

We emphasize that our federated allocation is not performing a single-point global optimization

in order to arrive at a perfect fit of all requested RSPECs to all available nodes in the system.

It is not possible to run such an optimization because there is no global knowledge of resources

and policies since each organization manages its own resources and policies. Nevertheless, even

with local optimization, we see that our resource allocation mechanism performs well, with more

than a 95% average allocation rate for all RSPEC size categories. Moreover, we believe in real

federation deployments, the number and diversity of resources at individual data centers will be

much higher, increasing the very large nodespecs’ chance of allocation.

We also experiment with smaller values of γ, 0.8 and 0.6, in order to show the result of restrictive

policies on allocation rate. With γ = 0.8, any top-level authority would share only 80% of what it

used to share with γ = 1. Figure 8.2 shows that the allocation rates of RSPECs, especially with

size larger than 160, are affected adversely.

Allocation rates and the number of contacted data centers tend to be inversely proportional.
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This is because, as long as an RSPEC is not fully allocated, it will cause more data centers to be

queried. This can be seen by the fact that a decrease in the allocation graph generally corresponds

to a spike in the data centers graph, and vice versa. Also, if the allocation rate of a specific request

is less than 1, then the number of contracted data centers will always be the maximum, which is

50. This cannot be seen in the graphs because they depict only the per-interval averages.

8.4 Allocation Time

Another metric that is important for the efficiency of the federation is the resource allocation time.

As seen in Figure 8.2, a single RSPEC allocation request can be fulfilled from many datacenters,

where requests from each can take time. Therefore, overall allocation time depends on the size

and characteristics of an RSPEC and resource amounts in data centers. As a better indicator of

the system performance, we study and analyze the allocation times of individual requests to data

centers.

The two required stages of allocating from a remote organization are first constructing the

proof of a request and next performing the allocation RPC. Our experiments show that both

stages can be performed in a few seconds with high probability, but sometimes it can take a long

time, as in cases that are explained below. The main factor affecting proof time is availability of

cached certificates. On the other hand, the main factors affecting remote allocation request times

are RTT and bandwidth to the data center and the mediator algorithm execution time.

Proof construction is a complex process, which retrieves chains of certificates to prove eligibility

for allocation. The final proof has to contain the chain of certificates, or, more specifically, permits.

During proof construction, IP certificates can also be retrieved for address resolution and ID

certificates, for authentication. For example, for plc.south.ufmg to allocate from plc.jp.utokyo, it

has to collect certificates for allocation proof if they were not collected recently. It will request the

proof certificates from plc.south, which may require resolving its IP by another set of certificate

queries. Similarly plc.south will ask for proof certificates from plc, and so on, until it reaches

plc.jp.utokyo. The proof is provided to its requester by signing an additional delegation certificate

at each step. In the linear topology, as many as nine queries overall will have to be performed

to construct proof of allocation from a single organization. Once proof is cached at plc.south, it

can be reused to respond proof requests from other lower-level authorities as well; therefore, nine
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queries may not be required for all proofs.

Figure 8.3 shows the cumulative distribution function (CDF) of proof construction time and

the allocation request RPC times. For the latter, we show both the receiver-experienced query

processing time (recv request alloc) and the querier-experienced total time to get the response

(send request alloc).

We see that the proof is constructed fast, in less than a second for most of the requests; however,

it can take long time for others. The first case happens when all the certificates of the proof are

already cached locally. In that case, the only processing needed is to verify that they adhere to

the policy, which can require cryptographic operations such as checking that public keys match

between two certificates. Otherwise, remote queries will be made, which take much more time,

such as the queries that take more than 0.5 seconds in Figure 8.3. In our experiments, although

97% of proofs end in 10 seconds, we can see proofs taking as much as 40 seconds. This depends

on network conditions such as RTT and bandwidth in addition to the number of queries made.

A proof consists of many certificates; therefore, tens of KB have to be returned for each query,

adding to the delay, especially if bandwidth is not abundant in PlanetLab nodes. We note that

local caching of certificates can be utilized much more. For example, it is possible to construct
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the proofs of discovered resources before users’ allocation requests and store the certificates, so

that when a user allocation request happens, the existing proof can be used. In our experiments

we construct a proof only when a request is made by the user, but we allow proofs to be reused

among different users’ requests; therefore, we partly benefit from local caching.

The graph shows the time it takes to process allocation requests with the received request alloc.

Its time is mostly caused by the mediator algorithm running time and a small constant time to

process input certificates. We observe that algorithm time is proportional to the number of un-

mapped nodes in an RSPEC and the number of nodes owned by the data center organization.

The running time also depends on the CPU availability in the organization server. Although run-

ning time can be higher for large RSPECs at slow machines, it is bounded and small for the vast

majority of allocation requests.

The requester’s perceived time to allocate, shown by sent request alloc time in the graph, is

much higher than the time to process the request. This is caused by the time lost in the channel

in connection and transferring of query parameters and sending results back. The allocation

requests can be performed in geographically distant locations and with low bandwidth, leading to

delays. Allocation requests can include more than 100 KB of RSPEC and proof as parameters;

and similarly the returned value can include a large result-RSPEC, which takes more time to

transfer in low-bandwidth links. The additional time caused by channel delays does not invalidate

our emulation but gives insight into what factors can be the cause of delays in a real deployment.

While there is room for improvement in the algorithm, the main source of query time comes

from the channel delays; therefore, we can say algorithm time compares reasonably well with the

channel delays. The total time taken for system-wide allocation of all 460 slices in experimentation

is about 20 minutes.

8.5 Certificate Requests

This section evaluates the certificate requests in the emulated federation in terms of their time and

incurred system load. Certificate retrievals happen during construction of the allocation proof, as

discussed in Section 8.4, and also for SSH operations after resources are allocated and for the API

operations. This section shows experiments that emulate only API and SSH events, which give

results general enough for all certificate retrievals. Also, experiments in this section were performed
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in earlier stages of the project; therefore, the authentication topology is different. However, this

does not affect our analysis of the results. The summary of results of this section is that short

certificate lifetimes can cause overhead in organizational servers, but DHT can significantly reduce

the load on servers and improve the certificate retrieval times.

8.5.1 Organizational Load

Figure 8.4 shows the number of authoritative certificate requests arriving at the US authority

server, plc.us. We can think of plc.us as equivalent to plc authority of our previous experiments,

since it represents the North America geographical region. The graph depicts results for two

separate runs, each for 1 hour, where the first of these experiments uses only authoritative queries

to retrieve certificates. The second has DHT enabled—that is, it uses first DHT query, and if it

fails, it performs an authoritative query. We can see that first checking the certificates from DHT

significantly reduces possible excessive load in authorities.
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There are spikes in the graph that occur periodically, caused by the 15 minutes of certificate

lifetime that we designate for particular types of certificates. Whenever a certificate expires, it

needs to be renewed by the principals using it, causing requests be made by all those principals at

about the same time. For example, an authentication certificate of plc.us.princeton or plc.us will

be required by all Princeton users as part of their authentication chain so that they can SSH to any

machine in the system; therefore, certificates will be retrieved either from these authorities or their

parents. We call this the flash crowd effect of certificate retrievals. One way to avoid flash crowds

could be to give principals different certificates with more continuous range of expiration times;

however, this causes more certificates to be signed at the server, which has a high computational

cost. So far in our experiments, DHT caching was enough to distribute the load and avoid a high

number of requests at authoritative servers.

Short lifetimes can be given to some certificates in order to achieve fail safety in the system.

For example, certificates that bind public keys to HRNs have short lifetimes, first because users’

private keys can be stolen, in which case a short TTL keeps the window of vulnerability short.

Second, principals can misbehave, in which case the voucher of the principal should have a fast

way of indicating that it no longer trusts that principal. In the experiments of this section,

all certificates have 15 minutes of lifetime, that is, authentication, API authorization, and slice

certificates. On the other hand, resource delegation certificates of evaluation in the previous section

had long lifetimes since we assume resources are granted for longer time periods and do not need

fast revocation.

Our results does not include certificate retrievals that occur during resource allocation. Since

SSH and API events are much more than allocation requests, our results are still valid in the

general case. Because there are about one million SSH events and ten thousand API operations

per day, compared to the 460 slice-creation events that happen over many days. Therefore, we

can say that the users generally allocate once and then use the allocated resources many times,

during which certificates are retrieved most often.

8.5.2 Certificate Retrieval Times

We measure the effect of DHT on certificate retrieval times and find that it helps reduce time

under high loads. We perform experiments that run normal and high loads and observe their

certificate retrieval times for both DHT enabled and disabled experiments.
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The certificate retrieval process in a DHT enabled emulation is such that first, DHT is queried

for the certificate. Since it is a key-based search, it does not require IP resolution. If no result

returns for some time threshold, the DHT query times out and an authoritative query is made. In

this case, if the IP address of the destination of an authoritative query is not known, it will have to

be retrieved first, with another set of certificate queries. For the DHT disabled configuration, the

process starts directly by authoritative query. We measure the overall time this process takes for

each certificate and study results in both DHT enabled and disabled configurations. We select the

DHT timeout threshold to be 0.7 seconds since we observe that 90% percent of successful DHT

queries are completed within this time.
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Figure 8.5 shows the CDF of certificate retrieval times for normal load and 10x load, with DHT

and without DHT. The normal-load experiment emulates the SSH and API events at the same

rate they appear in logs, whereas the 10x load emulates them with 10 times the normal user base.

139



The upper two lines in the graph show that, with normal load, DHT does not improve retrieval

times, although it was shown before to reduce load on the servers. This is because some time is

lost in failed DHT queries, and authoritative queries execute fast enough since they are not very

overwhelmed. On the other hand, the lower two lines show that, as the system load increases,

DHT improves the retrieval times and also the success rate. Because, the authority servers become

very overwhelmed and it takes more time to process the authoritative queries, DHT can help by

spreading the load, thereby improving retrieval times.

The graph shows that there is about 15% failure rate in certificate retrieval under normal

load. Also, lower lines show that failures happen around 5 seconds, which is our authoritative

query timeout value. The reason of the high rate of failures is mainly the experimentation node

set. This set of experiments used around 550 machines, some of which are not in very good

condition and can go down or lack machine and link resources during the experimentation period.

In experiments of Section 8.3 and 8.4, on the other hand, we used fewer nodes and select those

in the best condition; therefore, query failures in that case were around 1%. Failed retrievals do

not invalidate our analysis on the effect of DHT on retrieval times. We expect such failures to be

eliminated in real deployments by per-organization management teams.

In summary, the two graphs show that DHT can be useful for reducing load on organizational

servers, improve certificate retrieval times, and increase their success rate. The rate of the op-

eration requests in the system can affect the overall benefits obtained from using the DHT. In

addition, we note that the existence of common certificates is key to efficiency benefits of DHT.

In other words, if the same certificates are needed by many principals, it is possible to replicate

and cache them in DHT to improve efficiency.
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Chapter 9

Conclusions

In this thesis we investigated the access control and resource allocation problems in computa-

tional federations, such as federated testbeds and cloud computing federations, and introduced

our federation framework that makes it easy to build federations of varying complexities.

Our work aims to be the foundation of future federations. The key challenge is the growing

number of participant organizations in a federation, establishing and maintaining trust relation-

ships in an environment where each participant can potentially allocate resources from any other.

Today’s federations have small number of participant organizations and their architectures do not

address the scalability problem.

Unlike in a traditional market where buyer and seller interaction lasts until payment occurs

for a particular price, computational resource exchange is an ongoing relationship where resources

are leased for some period, during which both the tenant (user) and resource owner need to trust

each other, and allocations should adhere to a set of conditions imposed by the owner. As a

result, computational resource exchange depends not only on price and payment, but also on trust

and policy. Resource owners accept only trusted tenants and vice versa, where trust arises from

in-person agreements, usage history, etc., and this trust may have to be strengthened, repaired or

rebuilt from time to time through in-person checks and sanctions. We assume maintaining such

trust is not trivial and can be time consuming since it involves humans.

In Chapter 2 we introduced a trust model analysis of today’s federations and technologies and

showed that they have simple trust structures. These structures such as circle of trust or bridge

model may not be scalable because they require too many trust relationships to be established
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by all or some participants of the federation. Our federation framework takes the approach of

allowing any type of trust structures in a federation, supporting simple models such as the circle

of trust, as well as complex ones such as the distributed trust model in federations.

The primary contribution of this thesis is to show that arbitrarily complex indirect trust

relationships can be a practical way to scale federations. This can be realized by a system that

synthesizes trust management, policy languages and resource discovery systems. These three areas

were studied separately in the past, but we show that they are related, and constitute different

layers of a more general system that we call the federation framework.

From Chapters 3 to 8, we have explained the design, implementation and evaluation of the

federation framework, which is the only system to our knowledge that combines trust management,

policy languages and resource discovery in a single system. Individual pieces of this framework,

CERTDIST, FPL and CODAL, have unique features and provide contributions in the areas of

trust management, policy languages and resource discovery systems, respectively. Chapter 2

showed that none of the previous systems in these three areas have features capable of building

our federation framework.

Expressiveness, ease of use and extensibility are primary goals of the federation framework.

Chapter 3 explained the key actors and abstractions that allow us to achieve these goals. Security

architects use the lowest layer, CERTDIST, to create expressive FPL security and allocation

policies, which in turn are used by system admins to write contracts easily. Users interact with

CODAL, which underneath uses FPL contracts and policies to discover and authorize for resources.

Chapter 4 explained CERTDIST in detail. CERTDIST can express programmable credentials,

and perform any of the compliance checking methods seen in previous work, thanks to its Prolog

engine. Also, CERTDIST’s DHT certificate retrieval allows distributed proofs that were not

possible before. As a result, CERTDIST serves as the underlying mechanism for FPL to be able

to express both security and allocation policies.

In Chapter 5 we argued that a trust management system is not very usable without a domain

specific language, and vice versa. We introduced FPL as the policy language for federations,

layered on top of CERTDIST. FPL exposes the expressiveness of CERTDIST with easy-to-use

primitives, such as contracts, which are crucial for federations to scale easily.

Similarly, CODAL is built on top of FPL, because resource discovery must be policy aware,

as explained in Chapter 6. CODAL uses FPL contracts to discover organizations, uses the se-
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curity policies to authorize operations on resources, and finally the allocation policies to acquire

sets of resources. CODAL applies a partial matching algorithm to satisfy a user request from

multiple domains, and addresses the problem of resource information being private to individual

organizations.

One future work for federation framework is to enrich the FPL language with constructs rel-

evant for cloud computing federations, such as pricing. Pricing can fit into our federation model

by expressing prices as part of contracts, allowing both the resource owners and the brokers to

charge for allocations. Specifically, this could be done by using an additional dimension in contract

constraints, that denotes the allocation cost. Granter of a contract can express various formulas

that compute the allocation cost, similar to the way they express the allocation constraints. When

a user requests an RSPEC, contracts can determine not only the type, quantity and location of re-

sources, but also the cost. Depending on this cost, allocation can be allowed to go through or not.

CODAL should also take into consideration the pricing constructs, where the CODAL’s mediator

can compute the overall cost of a requested allocation by adding the resource and brokering costs,

and CODAL’s querier can be improved to minimize the cost of allocations, in a similar way that it

processes the group constraints. The actual money transfer can occur during the allocation or at

a later time. Misbehaviors in transactions should be unlikely, since parties are accountable to each

other through contracts, and transactions can be proven by signed credentials, and allocations are

recorded by CODAL’s accounting structures.

Another future work is to optimize CODAL’s querier by utilizing parallel queries. CODAL

performs queries at many peers sequentially in order to discover resources, which can take time.

Although time consuming, more queries can be useful to find cheaper or better resources in terms of

various metrics such as latency and bandwidth. To address this trade-off, new strategies involving

parallel queries can be developed to optimize allocation time, cost or other metrics. Reducing

the querier runtime can be important for possibly supporting transactions, where allocations are

reserved in various peers for a short time, until all of RSPEC is satisfied by unit and group

constraints, and finally are executed at the same time. That said, transaction support could be

another important future direction depending on the need for commercial use cases.

Once our framework is adopted, one future direction will be to analyze commonly issued

contracts between organizations and their relationship to the types of contracts used in other

research areas including economics. Federation framework should make it very easy to create
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contracts by providing GUI tools, providing commonly used contract types and letting admins to

possibly just fill out the details. Analysis of these agreements will give insights into what contracts

allow efficient resource utilization and also are healthy for federation to grow.

Similarly, the analysis of new policy requirements and extending FPL language with new

primitives is a future direction. As mentioned before, pricing is one such construct. As new

contract types will be needed, new FPL primitives will be introduced to realize them, which can

contribute to the policy languages research in general. Similar to the tools for admins to easily

create contracts, our framework should also provide tools that help security architects construct

correct and efficient FPL primitives. Such tools and checkers are additional future work that will

allow easy evolution of our framework with new policies.

In our view, there will be two drivers behind the adoption of our federation framework: the

need for fine-grained allocation policies and indirect trust structures. Currently in GENI, resource

requesters and owners trust a single GENI clearinghouse that forms a bridge trust model. Since

everybody trusts the clearinghouse, there is not much incentive for owners to express complex

contracts; rather, they express simple policies, such as, “allocate 4 machines to clearinghouse”.

This can make sense in an academic environment, where trust breaches will be minimal and

clearinghouse vetting for all participants can be enough, as long as the number of participants

is not very high. On the other hand, not all cloud computing institutions may be willing to

operate under a single intermediary. The number of these institutions can also be a reason for

adopting indirect trust, since it is hard to establish and maintain trust relationships. Also, profit-

based institutions have an incentive to maximally utilize the available hardware, which can result

in more fine grained allocation conditions, involving varying payments, locations and durations.

Overall, we believe our federation framework will be a solid foundation and a reference point while

building new federations, as well as expanding and merging existing ones.
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