
Systems and Algorithms for High-Performance,

Cost-Efficient Key-Value Storage

Xiaozhou Li

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Michael J. Freedman

June 2016

© Copyright by Xiaozhou Li, 2016.

All rights reserved.

Abstract

Key-value storage systems are increasingly essential building blocks of modern cloud and

big data applications. The workloads these systems support often require random access

to small objects over massive datasets with highly skewed and dynamic key popularity. It

is challenging for a storage cluster to serve these workloads with both high performance

and low-cost operations. Today’s systems usually sacrifice one for the other. In this disser-

tation, we present novel approaches to improve both the performance and cost-efficiency

of key-value systems by combining new hardware and software techniques with careful

architectural design and algorithmic optimizations.

First, at cluster scale, we build SwitchKV, a heterogeneous system that uses small high-

end cache nodes to guarantee load balancing across many SSD-based backend nodes under

nearly-arbitrary workloads. The cache nodes absorb the hottest queries so that no individual

backend node is over-burdened or underutilized. The system exploits OpenFlow switches

to enable efficient content-aware routing so that it can achieve scalable high throughput,

low tail latency, and high availability. It uses new algorithms to keep the cache and switch

forwarding rules updated with low overhead, and to ensure stable high performance under

rapidly changing workloads. SwitchKV can meet the service level objectives for many

cloud services more efficiently than traditional systems.

Second, to improve the efficiency of each individual multi-core server, we build a high-

throughput and memory-efficient concurrent hash table based around optimistic cuckoo

hashing. Our re-design minimizes critical section length, reduces interprocessor coher-

ence traffic, and enables effective prefetching through careful algorithm and data structure

engineering. We explore hardware transactional memory and fine-grained locking for con-

currency control, and find that both of them require the same level of algorithmic efforts

to achieve high performance. Our new hash table design greatly outperforms other opti-

mized concurrent hash tables for both read- and write-heavy workloads, even while using

substantially less memory for small key-value items.

iii

Acknowledgements

The past few years of my life have been an incredible journey. I consider myself extremely

fortunate to have been accompanied by my fantastic advisors, collaborators, friends and

family. I wish to express my most sincere gratitude and appreciation to everyone who

helped and supported me during my time at graduate school.

I am deeply indebted to my adviser, Mike Freedman, for his invaluable guidance and

support. Mike is always sharp, passionate and inspiring. He motivated me to pursue sys-

tem research, encouraged me to explore different paths, and guided me to solve hard but

interesting problems. He provides a role model for me to follow, not only in research, but

also in life outside of work. Without Mike, I would not be even close to my current state as

a seasoned researcher and software engineer who enjoy my everyday life.

My dissertation research was done in collaboration with my adviser, Dave Andersen,

Michael Kaminsky, and Raghav Sethi. Dave and Michael also served as my unofficial sec-

ondary advisers. They taught me a lot in every aspect of being a successful researcher, from

finding the right problems and challenging every assumptions, to writing good papers and

making impressive presentations. Raghav made significant contributions to the SwitchKV

project. He is a proficient hacker and an ideal collaborator.

I thank the other members of my committee—Kyle Jamieson, Kai Li, and Jennifer

Rexford—for their helpful comments on improving my dissertation. I would like to es-

pecially recognize Jen as a great mentor who often provide insightful advice on research,

graduate life and career directions.

I owe a tremendous amount to Boon Thau Loo, who advised me at the University of

Pennsylvania. I would not have been in Princeton without his guidance and help.

Many thanks go to my fellow graduate students and postdocs in the SNS group for cre-

ating such a friendly and warn environment, especially to Haoyu Zhang, Aaron Blankstein,

Annie Liu, Amy Tai, David Shue, Wyatt Lloyd, Siddhartha Sen, Jeff Terrace, Raghav Sethi,

Matvey Arye and Rob Kiefer.

iv

My time at Princeton has been immensely enjoyable, thanks in large part to the good

friends I have made here, including Xin Jin, Linpeng Tang, Feng Liu, Yida Wang, Peng

Sun, Nanxi Kang, Yichen Chen, Xuan Zou, Tianqiang Liu, Yiming Liu, Tianlong Wang,

Xinyi Fan, Minlan Yu, Jidong Chen, Wei Wang, and all the SNS members.

The research in this dissertation was supported by National Science Foundation Awards

CSR-0953197 (CAREER) and CCF-0964474, and by Intel via the Intel Science and Tech-

nology Center for Cloud Computing (ISTC-CC). I am also grateful to the university and

the Siebel Scholars Foundation for providing generous fellowships.

Most of all, I would like to thank my wonderful family. To my parents Wanxia Liu

and Zuocheng Li, thank you for your unconditional love and dedication all the time. None

of my accomplishments would be possible without you. To my parents-in-law Runqiu

Guo and Yue Hao, thank you for your unwavering support and faith in me. Finally, to my

beloved wife Rui Hao, thank you for being my partner in life and always standing by me

no matter what. Our journey continues on.

v

To my family.

vi

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . x

List of Figures . xi

1 Introduction 1

1.1 Current Approaches and Challenges . 3

1.1.1 Key-Value Cluster and Load Balancing 3

1.1.2 Memory-Efficiency for Big Data Storage 5

1.1.3 Parallelism in Multi-Core Systems 6

1.2 Contributions . 7

2 SwitchKV 10

2.1 Background and Related Work . 11

2.2 SwitchKV Design . 13

2.2.1 Content Routing for Queries . 14

2.2.1.1 Key Encoding and Switch Forwarding 14

2.2.1.2 Query Flow Through the System 17

2.2.2 Hybrid Cache Update . 19

2.2.2.1 Update with Periodic Hot Key Report 20

2.2.2.2 Update for Bursty Hot Keys 23

vii

2.2.2.3 Handle Burst Change with Rule Buffer 23

2.2.2.4 Cache Consistency . 24

2.2.3 Local Storage and Networking . 25

2.2.3.1 Parallel Data Access . 26

2.2.3.2 Network Stack . 26

2.2.4 Cluster Scaling . 27

2.3 Evaluation . 28

2.3.1 Evaluation Setup . 28

2.3.2 Load Balancing with a Small Cache 31

2.3.3 Benefits of the New Architecture 33

2.3.4 Cache Updates . 36

2.4 Conclusion . 41

3 Fast Concurrent Cuckoo Hashing 42

3.1 Background and Related Work . 44

3.1.1 Hash Tables . 44

3.1.2 Concurrency Control Mechanisms 46

3.1.3 Naive use of concurrency control fails 47

3.2 Principles to Improve Concurrency . 49

3.3 Concurrent Cuckoo Hashing . 50

3.3.1 Cuckoo Hashing . 51

3.3.2 Prior Work in Concurrent Cuckoo 52

3.3.3 Algorithmic Optimizations . 54

3.3.3.1 Lock After Discovering a Cuckoo Path 54

3.3.3.2 Breadth-first Search for an Empty Slot 56

3.3.3.3 Increase Set-associativity 59

3.3.4 Fine-grained Locking . 60

3.4 Optimizing for Intel TSX . 61

viii

3.4.1 Optimized TSX lock elision . 63

3.5 Evaluation . 65

3.5.1 Factor Analysis of Insert Performance 66

3.5.2 Multi-core Scaling Comparison 70

3.5.3 Set-associativity and Load Factor 71

3.5.4 Different Key-Value Sizes . 73

3.6 Discussion and Implementation Availability 74

3.7 Conclusion . 75

4 Conclusion 76

4.1 Summary of Contributions . 76

4.2 Open Issues and Future Work . 77

4.3 Concluding Remarks . 79

Bibliography 80

ix

List of Tables

2.1 Comparison of different cache architectures. 13

2.2 Default experiment settings unless otherwise specified 30

x

List of Figures

2.1 Different cache architectures. 12

2.2 Packet flow through a switch. 16

2.3 Query packets flows and destination MAC addresses. Internal messages

for cache consistency during put or delete operations are not included. A

cache miss only occurs due to key hash collision or temporarily outdated

switch rules. 17

2.4 Cache update overview. 19

2.5 Structure of top-k frequency counter. 21

2.6 Circular log and counter. 23

2.7 Updates to keep cache consistency. 25

2.8 Evaluation platform. 29

2.9 Throughput of each backend node without cache under workloads with

different Zipf skewness. Node IDs (x-axis) are sorted according to their

throughput. 31

2.10 System throughput with and without the use of a cache. Figure illustrates

the portion of total throughput handled by the cache and that by backend

nodes. 31

2.11 System throughput as cache size increases. Even a modest-sized cache of

10,000 items achieves significant gains. 32

2.12 System throughput with different write ratio. 32

xi

2.13 End-to-end latency as a function of throughput. 34

2.14 System throughput scalability as the number of backend nodes increases,

for SwitchKV and look-aside architecture with Zipf 0.99 workload and at

most 10000 items in cache. On-path look-through has the same throughput

as look-aside. Each backend node is rate limited at 50K queries per second,

cache is rate limited at 5 million queries per second. Look-through has

similar performance to look-aside. 35

2.15 Throughput with hot-in workload changes, i.e., change 200 cold keys into

the hottest keys every 10 seconds. 38

2.16 Throughput with hot-out workload changes, i.e., move out 200 hottest keys

every second. 38

2.17 Throughput with random workload changes, i.e., replace 200 out of the top

10000 keys every second. 39

2.18 Throughput with hot-in workload changes with 600 new hottest keys every

time, which requires 1200 rule updates and will take the switch at least

three seconds to finish them. 40

2.19 Throughput with different workload change patterns as a function of

change rate. 40

3.1 Highest throughput achieved by different hash tables on a 4-core machine.

(*) are our new hash tables. 43

3.2 Insert throughput vs. number of threads for single writer hash tables with

and without TSX lock elision. Each thread is pinned to a different hyper-

threaded core. 16 million different keys are inserted in each table. 48

3.3 Cuckoo hash table overview: Each key is mapped to 2 buckets by hash

functions and associated with 1 version counter. ∅ represents an empty

slot. “a → b → c → ∅” is a cuckoo path to make one bucket available to

insert key y. 52

xii

3.4 Search for an empty slot by Insert in a 2-way set-associative hash table.

Left(3.4a) is the traditional approach, right(3.4b) is our approach. Slots

in gray are examined before the empty slot is found. Alphabet letters are

keys selected to be moved to their alternate locations along the cuckoo path

represented by the arrows (→). 58

3.5 Optimized TSX lock elision . 65

3.6 Contribution of optimizations to the hash table Insert performance. Opti-

mizations are cumulative. 67

3.7 Throughput vs. number of threads. “cuckoo” is the optimistic cuckoo

hashing used in MemC3, “cuckoo+” is cuckoo with optimizations in Sec-

tion 3.3.3. TSX lock elision is the optimized version in Section 3.4.1. The

cuckoo hash table is 2 GB with ∼ 134.2 million slots. Table occupancy is

for cuckoo hashing only. TBB concurrent_hash_map is inserted with the

same number and size of key-value pairs, with 2× to 3×more memory used

than cuckoo hash table. 68

3.8 Overall throughput vs number of cores. On a 16-core machine without

TSX support. 71

3.9 8-thread aggregate Lookup throughput of hash tables with different set-

associativities at 95% occupancy. Use optimized cuckoo hashing with TSX

lock elision. 72

3.10 8-thread aggregate throughput of hash tables with different set-associativities

at different table occupancy. Use optimized cuckoo hashing with TSX lock

elision. 73

3.11 Throughput with 8 byte keys and different sizes of values. thr stands for

thread, ins for insert. 74

xiii

Chapter 1

Introduction

Key-value storage systems provide operations to store and retrieve data (values) identified

by unique names (keys). Their simple APIs (e.g., get, put, delete) form a fundamental

building block of modern large-scale cloud services such as Google (BigTable [11]), Face-

book (Memcached [59]), Amazon (Dynamo [21]), LinkedIn (Voldemort [75]), and many

others (Cassandra [10], Redis [68]).1 They are also critical components of big data analytics

such distributed machine learning (parameter server [49]).

These systems usually seek high performance. Ensuring high throughput and low tail

latency is important because many higher-level applications rely on the key-value storage

layer to achieve reliable high service quality. It is equally important to keep the system cost-

efficient because it determines whether the service is able to easily scale its performance

and capacity as the data keeps growing at increasingly accelerated rates.

Though key-value storage systems have been extensively studied and optimized by the

research community and industry, with various focuses on performance [55, 63], availabil-

ity [10, 59], consistency [26, 71], cost [4, 54], it is still challenging to build systems that can

provide both high performance and low cost operations to serve the workloads of today’s

cloud and big data applications, which share similar characteristics:

1Some of these stores support more complex operations such as transactions and range queries. This
dissertation only focuses on supporting simple get, put and delete queries, which are the most essential
operations of key-value storage.

1

• Parallel random access to small objects over large datasets [4, 6, 59]. While the

data volumes of many systems are reaching to terabytes or petabytes and beyond, the

size of each object is typically small, mostly within tens to hundreds of bytes. These

objects are accessed randomly through many concurrent, mostly-independent client

requests.

• Highly skewed and dynamic key popularity [6, 9, 16, 28]. Many workloads have

power-law access frequency distribution, where a small portion of keys account for

the majority of the queries. These hot spots often change quickly. Many applications

further experience unpredictable flash crowds or adversarial access patterns.

These highly I/O intensive, concurrent, skewed, and fast-changing workloads pose great

challenges to both scaling out the system capacity and performance with large clusters, and

improving the efficiency of each individual storage server. Most current systems offer

high performance or low cost, but not both. Some systems use DRAM aggressively in

order to meet the high performance goals, and substantially over-provision the resources

to handle the dynamic and unpredictable workload skew. They are often expensive and

power-hungry. Other systems choose to use a large cluster of low-power servers in order

to reduce the cost. These clusters usually have poor performance and face severe load

balancing problems, which leads to most servers being either over- or underutilized.

The goal of this dissertation research is to build systems that are cheaper and more

power-efficient than conventional architectures, while providing the same or even better

performance under real-world workloads. This requires the systems to use hardware re-

sources efficiently, both in each individual server and as the cluster scales out. To achieve

this goal, our key-value storage systems face three major challenges:

1. How to ensure dynamic load balancing as the cluster scales out, so that the system

can fully utilize all the storage servers regardless of the workload distribution?

2

2. How to use different types of memory (e.g., DRAM, flash) efficiently, so that the

system can meet the performance and capacity requirements with minimal cost?

3. How to achieve maximum parallelism in multi-core systems, so that each individual

server can fully utilize the processing power of modern CPUs?

We first explain and analyze these main challenges in the next section, and then ad-

dress these challenges in the rest of this dissertation with our careful system design and

algorithmic optimizations.

1.1 Current Approaches and Challenges

In this section, we summarize the approaches and problems of current system solutions

according to the challenges described above—load balancing, memory efficiency, and par-

allel access. We will discuss the principles and directions to solve these problems and meet

these challenges in Section 1.2.

1.1.1 Key-Value Cluster and Load Balancing

Cloud service providers are building increasingly large storage clusters to support their

rapidly growing active key-value datasets. For example, Apple runs over 75,000 Cassandra

nodes storing over 10 PB of data, with a single cluster spanning over 1,000 nodes [67];

Google runs BigTable and GFS with with 1000 to 7000 nodes in each storage cell [30];

Facebook runs Memcached as their in-memory caching solution, with over thousands of

servers within a cluster [59].2 These systems scale out by partitioning data across cluster

nodes, where each node handles only a subset of the data set; these designs usually achieve

high availability against node or network failures by replicating each piece of data over

multiple nodes [11, 21, 48].

2In this dissertation, we use the term node and server indistinguishably. Each storage server is considered
a node in the cluster.

3

Key-value workloads for cloud applications are often skewed and rapidly changing.

For example, workload analysis of Facebook’s Memcached cluster shows that 50% of keys

occur in only 1% of all requests, while 5% of keys account for 80% of requests [6]. Yahoo’s

YCSB framework models many workloads as Zipfan distribution [16]. Prior study shows

that Internet-scale data-intensive sites often experience “data spikes”: a sudden increase in

demand for certain objects, or more generally, a pronounced change in the distribution of

object popularity on the site [9].

As a result, dynamic load balancing becomes a key challenge as the storage cluster

scales out, because the system service quality is often bottlenecked by the performance

of the overloaded (slowest) node. For example, a web server may need to contact 10s

to 100s of storage nodes with many sequential queries when responding to a single page

request [59], and the tail latency of the queries can significantly degrade the service per-

formance [19]. The system aggregate throughput would also be severely affected by the

overloaded nodes. Therefore, service providers often choose to provision each storage

node based on peak load [59], even though at most times the actual load is far below it.

This greatly increases the system cost.

Good load balancing is necessary to ensure that the cluster can meet its performance

goals without substantial over-provisioning. Consistent hashing [44] and virtual nodes [18]

are popular and effective techniques to balance the static load and space utilization, but are

unable to balance the dynamic load with skewed query distributions. Traditional dynamic

load balancing methods often migrate data between nodes [13, 45, 70]. They are limited

in their ability to deal with large skew, are usually too slow to handle rapid workload

changes, and often introduce consistency challenges and system overhead for migration

or replication.

Frontend caching can provide effective backend load balancing [5, 28], because the

cache can directly serve and filter out the hot spots so that the load across the backends can

be much more uniform. Prior research further proved that the size of the cache required

4

to provide good load balance is only O(n log n), where n is the total number of backend

nodes [28]. This means that a large cluster can have guaranteed load balance by only using

one or a few small high-end cache servers. However, this is a theorem without practical

realizations. It introduces new challenges to the systems because the cache is small and

the hit ratio could be low, which breaks the assumptions of existing caching architectures.

It is difficult to keep the small cache updated with low overhead and serve queries for the

uncached keys efficiently. One of the main contributions of this dissertation is to address

these challenges with new system designs and algorithms, and build a highly efficient load-

balanced key-value storage cluster based on this theoretical result.

1.1.2 Memory-Efficiency for Big Data Storage

In pursuit of meeting aggressive latency and throughput performance goals for Internet

services, providers have increasingly turned to in-memory [59, 63, 68] or flash-based [4,

69] key-value storage systems as caches or primary data stores. These systems can offer

microseconds of latency and provide throughput hundreds to thousands of times that of the

hard-disk-based approaches of yesteryear.

The choice of flash vs DRAM comes with important differences in throughput, latency,

persistence, and cost-per-gigabyte. Given the performance requirements, some systems

keep data entirely in memory [63, 68], with disks used only for failure recovery; others put a

significant fraction of data in cache to achieve high hit ratio [59]. Systems that aggressively

use DRAM are both expensive and consume a surprising amount of power. Google once

reported that DRAM accounts for 30% of the power usage in its data centers [7], and the

power draw of storage clusters is becoming an increasing fraction of their cost—up to 50%

of the three-year total cost of owning a cluster [4].

Meanwhile, SSDs are 10x cheaper and 100x more power-efficient than DRAM [4].

Recent advances in SSD performance, including new hardware technologies such as

NVMe [61] and optimized software stacks such as RocksDB [69], are opening up new

5

points in the design space of storage systems that were formerly the exclusive domain of

DRAM-based systems. It is now possible to build SSD-based key-value storage clusters

that can meet the performance goals of many cloud services. This would lead to significant

cost savings, especially for services that require the data to be stored persistently. A key

contribution of this dissertation is to build such a cluster with performance optimizations

in each SSD-based storage node and efficient techniques to ensure load balancing across

many nodes as the cluster grows.

Of course, SSDs cannot replace DRAM everywhere, as their performance gap is still

significant. Many applications use DRAM to store all their data or cache the hot objects

in order to meet their high performance goals. Flash-based storage applications often use

DRAM to index the massive data stored in SSDs. Yet as the growth of DRAM capacity is

slower than the growth of big data volume and flash storage capacity [54], it is increasingly

important to have memory-efficient key-value data structures such as hash tables. This

is especially challenging for small objects, because any metadata per object, including

pointers, may lead to huge waste of memory. Another key contribution of this dissertation

is to explore the memory-efficient cuckoo hash table [64, 27], and optimize its performance

for both read- and write-intensive workloads.

1.1.3 Parallelism in Multi-Core Systems

In addition to using DRAM and flash efficiently, another critical aspect of improving the

performance and efficiency of each individual sever is to fully utilize each modern mul-

ticore system. As we scale systems on a storage server to greater numbers of cores and

threads, the ability to exploit the maximum parallelism enabled by these cores becomes

increasingly important. There are two different access models: exclusive access and con-

current access.

6

Exclusive access has been well-studied and proven to be very efficient for networked

key-value storage [8, 43, 55]. By partitioning the data, each core can exclusively access

its own partition in parallel, without worrying about any inter-core communication or lock

synchronization. Modern network interfaces and drivers such as Intel DPDK [40] allow the

NIC to deliver incoming packets to the specific cores based on the packet header fields, so

that the query packets can be directly sent to the right cores for processing.

One concern of this approach is that the performance would degrade if the load across

partitions is imbalanced [27, 56, 74]. This can be solved by exploiting CPU caches and

packet burst I/O to eliminate the penalty from skewed workloads [55], or applying load

balancing techniques to make the load across cores more uniform. The key-value cluster

proposed in this dissertation explores both techniques for its cache and storage servers.

Concurrent access is also used by many key-value systems [20, 27, 56, 59], where all

cores can access all the data. It supports more generic abstractions and has wider usage.

However, it requires careful data structure design and algorithm engineering to achieve

high concurrency and make sure everything behaves correctly.

This dissertation studies the most widely used data structure—hash tables. It focuses

on cuckoo hashing, an open-addressing hash table that can be extremely memory-efficient

for small key-value objects [27, 64]. The previous state-of-art implementation of cuckoo

hash table can support concurrent read operations efficiently, but has to serialize all the

write operations. As a result, the performance degrades quickly as the write ratio increases.

Extensive algorithmic optimizations are needed in order to support fast concurrent writes.

1.2 Contributions

The goals of our research are 1) to achieve high performance with low memory over-

head on each multi-core server, and 2) to keep high performance without substantial over-

provisioning under widely varying workloads on a cluster with many storage servers. These

7

goals are deeply coupled with the challenges discussed above. Meeting the first goal re-

quires efficient usage of DRAM and flash storage, and achieving maximum parallelism in

multicore systems. Meeting the second goal needs an efficient dynamic load balancing

mechanism to ensure that each cluster node can be fully utilized under any workloads.

Fortunately, new hardware technologies such as OpenFlow switches [62] and hardware

transactional memory [77] offer us new opportunities to meet the challenges. However,

through careful system design and engineering, we find that naively applying these hard-

ware techniques introduces more problems than they solve. Both architectural and algorith-

mic optimizations are necessary to realize the hardware benefits and maximize the system

performance and cost-efficiency.

With deep understanding of current system challenges, existing solutions, and emerg-

ing technical trends, our dissertation research improves the performance and efficiency of

key-value storage systems by combining new hardware and infrastructure capabilities with

carefully-crafted algorithmic techniques. We make the following two major contributions:

• At cluster scale, we build SwitchKV, a fast, scalable and efficiently load-balanced

SSD-based key-value system for widely varying real-world workloads. [52]

SwitchKV combines high-performance cache nodes with resource-constrained SSD-

based backend nodes to provide load balancing in the face of unpredictable workload

skew. The cache nodes absorb the hottest queries so that no individual backend node

is over-burdened. Compared with previous designs, SwitchKV exploits SDN tech-

niques and deeply optimized switch hardware to enable efficient content-based rout-

ing. Programmable network switches keep track of cached keys and route requests

to the appropriate nodes at line speed, based on keys encoded in packet headers. A

new hybrid caching strategy keeps cache and switch forwarding rules updated with

low overhead and ensures that system load is always well-balanced under rapidly

changing workloads. SwitchKV can meet the performance goals for many cloud ser-

8

vices efficiently by being able to fully utilize the capacity of all SSD-based backend

servers under nearly-arbitrary workloads.

• For each individual multi-core server, we build a fast and memory-efficient cuckoo

hash table for both highly concurrent read- and write-intensive workloads. [51]

We present the design, implementation, and evaluation of a high-throughput and

memory-efficient concurrent hash table that supports multiple readers and writers.

The design arises from careful attention to systems-level optimizations such as min-

imizing critical section length and reducing interprocessor coherence traffic through

algorithm re-engineering. As part of the architectural basis for this engineering, we

include a discussion of our experience and results adopting Intel’s recent hardware

transactional memory (HTM) support to this critical building block. We find that

naively allowing concurrent access using a coarse-grained lock on existing data struc-

tures reduces overall performance with more threads. While HTM mitigates this

slowdown somewhat, it does not eliminate it. Algorithmic optimizations that benefit

both HTM and designs for fine-grained locking are needed to achieve high perfor-

mance. Our performance results demonstrate that our new hash table design—based

around optimistic cuckoo hashing—outperforms other optimized concurrent hash ta-

bles by up to 2.5x for write-heavy workloads, even while using substantially less

memory for small key-value items.

Taken together, SwitchKV and concurrent cuckoo hashing provide in-depth exploration

of building highly-efficient key-value systems to meet the high performance goals for real-

world applications at different scale: scalable clusters and many-core servers. Chapters 2

and 3 describe these two contributions in detail respectively. Chapter 4 summarizes our

research and discusses possible directions for future work.

9

Chapter 2

SwitchKV

SwitchKV is a new cluster-level key-value store architecture that can achieve high effi-

ciency under widely varying and rapidly changing workloads. SwitchKV uses a mix of

server classes, where specially-configured high-performance nodes serve as fast, small in-

memory caches for data that is hash partitioned across resource-constrained SSD-based

backend nodes. The cache absorbs the hottest queries and ensure the load across the back-

ends well-balanced [28].

At the heart of SwitchKV’s design is an efficient content-based routing mechanism that

uses software-defined networking (SDN) techniques to serve requests with minimal over-

head. Clients encode keys into packet headers and send the requests to OpenFlow switches.

These switches maintain forwarding rules for all cached items, and route requests directly

to the cache or backend nodes as appropriate based on the embedded key information.

SwitchKV achieves high performance by moving the cache out of the data path and by

exploiting switch hardware that has already been optimized to match (on query keys) and

forward traffic to the right node at line rate with low latency. All responses return within

one round-trip, and there is no overhead for the significant volume of queries for keys that

are not in the cache. SwitchKV can scale-out by adding more cache nodes and switches,

and is resilient to cache crashes.

10

The benefits of using OpenFlow switches come at a price: the update rate of forwarding

rules in hardware is much lower than that of in-memory caches. Our solution includes

an efficient hybrid cache update mechanism that minimizes the cache churn, while still

reacting quickly to rapid changes in key popularity. Backends send periodic reports to the

cache nodes about their recent hot keys as well as instant reports about keys that suddenly

become very popular. Cache nodes maintain query statistics for the cached keys, add or

evict the appropriate keys when they receive reports, and instruct SDN controllers to update

switch forwarding rules accordingly.

Our evaluation and analysis shows that SwitchKV can handle the traffic characteristics

of modern cloud applications more efficiently than conventional systems, and can achieve

up to 5× throughput and 3× latency improvements over traditional caching architectures.

Our SwitchKV prototype uses low-power backend nodes. The same design principles

and evaluation results also apply to clusters with more powerful backends, by using high-

end cache servers [50] that can keep the same order of performance (and cost) gap between

the cache node and backend node.

2.1 Background and Related Work

Load Balancing. Dynamic load balancing is a key challenge to scaling out storage sys-

tems under skewed and fast changing real-world workloads [6, 9, 16]. The system per-

formance must not become bottlenecked due to unevenly partitioned load across cluster

nodes. Conventional static data partitioning techniques such as consistent hashing [44] do

not help with dynamic load imbalance caused by skewed and rapidly-changing key popu-

larity. Load balancing techniques that reactively replicate or transfer hot data across nodes

often introduce performance and complexity overheads [45].

Prior research shows that a small, fast frontend cache can provide effective dynamic

load-balancing by directly serving the most popular items without querying the backend

11

Backend Nodes

Client

Cache

(a) Look-aside
Backend Nodes

Client

Load Balancer Cache

(b) Look-through
Backend Nodes

Client

CacheOpenFlow Switches

Controller

(c) SwitchKV

Figure 2.1: Different cache architectures.

nodes, making the load across the backends much more uniform [28]. That work proves

that the cache needs to store only the O(n log n) hottest items to guarantee good load bal-

ance, where n is the total number of backend nodes (independent of the number of keys).

This theoretical result inspired the design of SwitchKV.

Caching Architectures. Look-aside [29] and on-path look-through [28] are the two typi-

cal caching architectures, shown in Fig. 2.1 and compared in Table 2.1. They suffer a major

drawback when using a frontend cache for load balancing. In these architectures, clients

must send all read requests to the cache first. This approach imposes high overhead when

the hit ratio is low, which could be the case when the cache is small and used primarily for

load balancing.

A cache miss in a look-aside architecture results in an additional round-trip of latency,

as the query must be sent back to the client with a cache miss notification, and then resent

to the backend. Look-through architectures reduce this latency by placing the cache in

the on-path load balancer, however, the cache still must process each incoming request to

determine whether to forward or serve it. Additionally, the load balancers become new

critical failure points, which are far less reliable and durable than network switches [31].

12

Look-aside Look-through SwitchKV

Clients’
responsibilities

handle cache
misses

nothing
(transparent)

encode keys in
packet headers

Cache load 100% queries 100% queries cache hits only
(likely <40% queries)

Latency with
cache miss

three machine
transits

two machine
transits

only one machine
transit

Failure points switches cache, switches switches

Cache update
involves

cache, backends cache, backends cache, backends,
switches

Cache update
rate limit

high high low (less than 10K/s
in switch hardware)

Table 2.1: Comparison of different cache architectures.

2.2 SwitchKV Design

The primary design goal of SwitchKV is to remove redundant components on the query

path such that latency can be minimized for all queries, throughput can scale out with the

number of backend nodes, and availability is not affected by cache node failures.

The key to achieving this goal is the observation that specialized programmable network

switches can play a key role in the caching system. Switch hardware has been optimized

for decades to perform basic lookups at high speed and low cost. This simple but efficient

function is a perfect match to the first step of a query processing: determine whether the

key is cached or not.

The core of our new architectural design is an effective content-based routing mecha-

nism. All clients, cache nodes, and backend nodes are connected with OpenFlow switches,

as shown in Fig. 2.1c. Clients encode keys in query packet headers, and send packets to

the cluster switch. Switches have forwarding rules installed, including exact match rules

for each cached key and wildcard rules for each backend, to route queries to the right node

13

at line rate. Table 2.1 summarizes the significant benefits of this new architecture over

traditional ones.

Exploiting SDN and fast switch hardware benefits system performance, efficiency and

robustness. However, it also adds complexity and limitations. The switches have lim-

ited rule space and a relatively slow rule update rate. Therefore, cached keys and switch

forwarding rules must be managed carefully to realize the full benefits of this new architec-

ture. The rest of this section describes SwitchKV’s query-processing flow and mechanisms

to keep the cache up-to-date.

2.2.1 Content Routing for Queries

We first describe how SwitchKV handles client queries, assuming both cache and switch

forwarding rules are installed and up-to-date. The process of updating cache and switch

rules will be discussed in Section 2.2.2.

Query operations are performed over UDP, which has been widely used in large-scale,

high-performance in-memory key-value systems for low latency and low overhead [55, 59].

Because UDP is connectionless, queries can be directed to different servers by switches

without worrying about connection states. With a well-provisioned network, packet loss is

rare [59], and simple application-driven loss recovery is sufficient to ensure both reliability

and high throughput [55].

2.2.1.1 Key Encoding and Switch Forwarding

An essential system component to enable content-based routing is the programmable net-

work switches that can install new per cached key forwarding rules on the fly. These

switches can use both TCAM and L2/L3 tables for packet processing. The TCAM is

able to perform flexible wildcard matches, but it is expensive and power hungry to in-

clude on switches. Thus, the size of the TCAM table is usually limited to a few thousand

14

entries [46, 66].1 The L2 table, however, matches only on destination MAC addresses; it

can be more cost-effectively implemented in switches and is more power-efficient. Modern

commodity switches support 128K [66] or more L2 entries. These sizes may be insufficient

for environments where a large percentage of data must be cached, but is a large enough

cache size to ensure good load balancing in SwitchKV.

Key Encoding in Packet Headers. Because MAC addresses have more bits for key en-

coding and switches usually have large enough L2 tables to store forwarding rules for all

cached keys, clients encode query keys in the destination MAC addresses of UDP packets.

The MAC consists of a small prefix and a hash of the key, computed by the same consistent

hashing used to partition the keyspace across the backends.

The prefix is used to identify the packet as being a request destined for SwitchKV, and

to let the switches distinguish different types of queries. Only get queries coming directly

from the clients may need to be forwarded to the cache nodes. Other types of queries should

be forwarded to the backends, including put queries, delete queries, and get queries from

a cache node due to cache misses. Therefore, get queries from the clients use one prefix,

and all other queries use a different one.

In order to forward queries to the appropriate backend nodes, each client tracks the

mapping between keyspace partitions and the backend nodes, and encodes identifiers of

backends for the query keys into the destination IP addresses. This mapping changes only

when backend nodes are added or removed, so client state synchronization has very low

overhead.

Finally, the client’s address and identity information is stored in the packet payload so

that the node that serves the request knows where to send responses.

1Some high-end switches advertise larger TCAM table (e.g., 125K to 1 million entries [60]), albeit at
higher cost and power consumption. Such capabilities would not meaningfully change our design, as our
design primarily relies on exact-match rules.

15

L2 Table
exact match per cached key

exact match per node address

TCAM Table
wildcard match per backend

Ingress port

Egress port

Packet-In

Packet-Out

miss

hit

Figure 2.2: Packet flow through a switch.

Switch Forwarding. There are three classes of rules in switches, which are used to for-

ward get queries for the cached keys to the cache nodes, other queries to the backends, and

non-query packets (e.g., query responses, cache updates) to the destination node respec-

tively. Fig. 2.2 shows the packet flow through a switch. The L2 table stores exact match

rules on destination MAC addresses for each cached key and each cache and backend node.

The TCAM table stores wildcard match rules on destination IP addresses for each backend

node.

The L2 table is set to have a higher priority. A switch will first look for an exact match in

the L2 table and will forward the packet to an egress port if either the packet was addressed

directly to a node or it is a get query for a cached key. If there is no match in the L2 table,

the switch will then look for a wildcard match in the TCAM and forward the packet to the

appropriate backend node.

Below are the detailed switch forwarding rules:

• Exact match rules in L2 table for all cached keys. We use pre1 to denote the prefix

for get queries from clients. For each cached key in cache node:

match:<mac_dst = pre1-keyhash>

action:<port_out = port_cache_node>

• Exact match rules in L2 table for all clients, caches, and backends. For each node:

match:<mac_dst = mac_node>

action:<port_out = port_node>

16

client switch cache backend

get cached object

get query with cache miss (rare)

1

4

2 3

MAC Headers: pre1 keyhash pre2 keyhash client MAC

get un-cached object

put/delete cached object

2

3

1

4

2

3

1

4

4

5

1

6

2 3

Figure 2.3: Query packets flows and destination MAC addresses. Internal messages for
cache consistency during put or delete operations are not included. A cache miss only
occurs due to key hash collision or temporarily outdated switch rules.

• Wildcard match rules in TCAM table for all backend nodes. For each backend node:

match:<ip_dst/mask = id_node>

action:<port_out = port_backend_node>

2.2.1.2 Query Flow Through the System

A main benefit of SwitchKV is that it can send queries to the appropriate nodes with min-

imal overhead, especially for queries on uncached keys which make up most of the traffic.

Fig. 2.3 shows the possible packet flows of queries.

Handle Read Requests. SwitchKV targets read-heavy workloads, so the efficiency of

handling read requests is critical to the system performance. Switches route get queries to

the cache or backends based on match results in the forwarding tables. When it receives

17

a get query, the cache or backend node will look for the key in its local store, either in

memory or SSD. The backend will send a reply message with the destination MAC set as

the client address. The cache node will also reply if the key is found. This reply will be

forwarded back to the client.

In most cases, queries sent to the cache node will hit the cache, because queries for keys

not in the cache were filtered out by the switches. However, it is possible for a cache node

to receive a get query but not find the key in its local in-memory store. This may occur due

to a small delay in rule removal from the switch, or a rare hash collision with another key.

When this happens, the cache node must forward the packet to the backends. To do so, the

cache will send the query packet back to the switch, with the appropriate destination MAC

address prefix (e.g., from pre1 to pre2 in Fig. 2.3). This prevents the packet from matching

the same L2 rule in switches again, so that the query can be forwarded to the appropriate

backend node via a wildcard match in TCAM.

Handle Write Requests. Clients send put and delete queries with a MAC prefix that is

different from the prefix of get queries (as shown in Fig. 2.3), so that the packets will not

trigger a rule in the L2 table of switches, and will be forwarded directly to the backends.

When a backend node receives a put or delete query for a key, it will update its local data

store and reply to the client.

Each backend node keeps track of which keys in its local store are also being cached.

If a put or delete request for a cached key arrives, the backend will send messages to

update the cache node before replying to the clients. The cache node is then responsi-

ble for communicating the update to the network controller for switch rule updates. This

policy ensures that data items in the cache and backends are consistent to the client, but al-

lows temporary inconsistency between cached keys and switch forwarding rules. The next

section describes the detailed mechanism of cache update and consistency.

18

Cache Backend

switch rule update Top-k <key, load> list

(periodic)

fetch-request <key>

fetch-reply <key, value>

update for consistency

(see section 3.2.4)

(instant)

bursty hot <key, value>

Controller

Figure 2.4: Cache update overview.

2.2.2 Hybrid Cache Update

As our goal is to build a system that is robust for (nearly) arbitrary workloads, the limited

forwarding rule update rate poses challenges for the caching mechanism. Since each cache

addition or eviction requires a switch rule installation or removal, the rule update rate in

switches directly limits the cache update rate, which affects how quickly SwitchKV can

react to workload distribution changes. Though switches are continuously being optimized

to speed up their rule update and some switches can now achieve 12K updates per sec-

ond [60], they are still too slow to support traditional caching strategies that insert each

recently-visited key to the cache.

To meet this new challenge, we designed new hybrid cache update algorithms and pro-

tocols to minimize unnecessary cache churn. The cache update mechanism consists of three

components: 1) Backends periodically report recent hot keys to the cache nodes. 2) Back-

ends immediately report keys that suddenly become very hot to the cache nodes. 3) Cache

nodes add selected keys from reports and evict appropriate keys when necessary, and they

instruct the network controller to make corresponding switch rule updates through REST

APIs. Cache addition is prioritized over eviction in order to react quickly to sudden work-

load distribution changes at the cost of some additional buffer switch rule space. Fig. 2.4

shows our cache update mechanism at a high level.

19

2.2.2.1 Update with Periodic Hot Key Report

In most caching systems, a query for a key that is not in the cache would bring that key into

cache and evict another key if the cache is full. However, many recently visited keys are

not hot and will not be accessed again in the near future. This would result in unnecessary

cache churn, which would harm the performance of SwitchKV because its cache update

rate is limited.

Instead, we use a different approach to add objects to the cache less aggressively. Each

backend node maintains an efficient top-k load tracker to track recent popular keys. Back-

end nodes periodically (e.g., every second) report their recent hot keys and loads to the

cache nodes. Each cache node maintains an in-memory data store and frequency counter

for the cached items with the same load metric. The cache node keeps a load threshold

based on the load statistics of cached keys. Upon receiving the reports, the cache node se-

lects keys whose loads are above the threshold to add to the cache. It sends fetch requests

for the selected keys to the corresponding backend nodes to get the values. It then updates

the cache and instructs the network controller to update switch rules based on the received

fetch responses.

Time-segmented Top-K Load Tracker. Each backend node maintains a key-load list

with k entries to store its approximated hottest k keys and their loads. It also keeps a

local frequency counter for the recently visited keys, so that it can know what are the

most popular keys and how frequently they are queried. A backend node cannot afford to

keep counters for all keys in memory. Instead, since only information about hot keys is

needed, we can use memory-efficient top-k algorithms to find frequent items in the query

stream [17].

To keep track of recent hot keys, we segment the query stream into separate intervals.

At the end of each interval, the frequency counter extracts the top-k list of its current

segment, then clears itself for the next segment. The key-load list is updated by the top-k

20

f1 f2 f3 f4buckets

keys x1 x2 x3 x4 x5 x6 x7

Figure 2.5: Structure of top-k frequency counter.

list of the new segment using weighted average. Suppose the frequency of key x in the new

segment is f x , and the current load of x is L′x , then the new load of x is

Lx = α · f x + (1 − α) · L′x , (2.1)

where α represents the degree of weighting decrease. A higher α discounts previous load

faster. Only keys in the new top-k list will be kept in the new updated key-load list. L′x is

zero for keys not in the previous key-load list.

The frequency counter uses a “space-saving algorithm” [58] to track the heavy hitters

of the query stream in each time segment and approximate the frequencies of these keys.

Fig. 2.5 shows the data structure of the frequency counter.

The counter consists of a linked list of buckets, each with a unique frequency number f .

The buckets are sorted by their frequency in increasing order (e.g., f1 < f2). Each bucket

has a linked list of keys that have been visited for the same number of times, f . Keys in the

same bucket are sorted by their most recent visited time, with newest key at the tail of the

list. With this structure, getting a list of top-k hot keys and their load is straightforward.

For example, the top-5 list in Fig. 2.5 is [〈x7, f4〉 〈x6, f3〉 〈x5, f3〉 〈x4, f2〉 〈x3, f1〉].

The counter has a configurable size limit N , which is the maximum number of keys it

can track. Algorithm 1 describes how to update the counter. When processing (e.g., create,

delete, move) buckets and keys, the orders described above are always maintained. The

counter requires O(N) memory, and has O(1) running time for each query. To reduce the

computational overhead, we can randomly sample the query packets, and only update the

21

Algorithm 1 Update Frequency Counter
1: function SeeQuery(x)
2: if x is not tracked in the counter then
3: if the counter is not full then
4: create a bucket with f = 1 if not exists
5: add x to the first bucket;
6: return
7: y ← first key of first bucket, which is the least visited key
8: replace y with x and keep the same frequency
9: Update(x)

10: function Update(x)
11: 〈b, f 〉 ← current 〈bucket, frequency〉 of x
12: if next bucket of b has frequency f + 1 then
13: move x to the next bucket
14: else if x is the only key of b then
15: increase frequency of b to f + 1
16: else creat a new bucket with frequency f + 1 and move x to it
17: if b is empty then delete b

counter for a small fraction of the queries. Sampling can provide a good approximation of

the ranking of heavy hitters in highly skewed workloads.

Cache Adds Selected Keys from Reports. The cache also tracks the load for all cached

keys. In order to be comparable with the load of reported keys, it must keep the same

parameters (e.g., time segment interval, average weights, sampling rate) with the tracker

in the backends. Cache nodes update a load threshold periodically based on the loads

of cached keys, and send fetch queries for the reported keys with load higher than the

threshold.

Too big of a threshold would prevent caching hot keys, while a too small of one would

cause frequent unnecessary cache churn. To compute a proper load threshold in practice,

the cache samples a certain number of key loads and uses the load at a certain rank (e.g.,

10th percentile from the lowest) as the threshold value. This process runs in the background

periodically, so it does not introduce overhead to serving queries or updating cached data.

22

y

pos
0 N-1

Query for x: insert x evict y

count [x] + +

count [y] - -

pos = (pos + 1) mod N

Figure 2.6: Circular log and counter.

2.2.2.2 Update for Bursty Hot Keys

Periodic reports can update the cache effectively with low communication and memory

overhead, but cannot react quickly when some keys suddenly become popular. In addition

to periodic reports, the backends also send instant reports to the cache to report bursty

queries, so that those queries can be offloaded to the cache immediately.

Each backend maintains a circular log to track the recently visited keys, and a hash table

that keeps only entries for keys currently in the log and tracks the number of occurrence

of these keys. As shown in Fig. 2.6, when a key is queried, it is inserted into the circular

log, with the existing key at that position evicted. The hash table updates the count of the

keys accordingly and adds or deletes related entries when necessary. If the count of a key

exceeds a threshold and the node’s overall load is also above a certain threshold, the key

and its value are immediately sent and added to the cache. The size of the circular log and

hash table could be small (e.g., a few hundreds of entries), which introduces little overhead

to query processing.

2.2.2.3 Handle Burst Change with Rule Buffer

The distribution changes in real-world workloads are not constant. Sudden changes in the

key popularity may lead a large number of cache updates in a short period of time. In

traditional caching algorithms, a cache addition when the cache is full would also trigger a

cache eviction, which in SwitchKV would mean that each addition involves two forwarding

rule updates in the switch. As a result, the cache would only able to add keys at half of the

switch update rate on average.

23

In order to react quickly to sudden workload changes, we prioritize cache addition over

eviction. Cache evictions and switch rule deletion requests are queued and executed after

cache additions and rule installations until a maximum delay is reached. In this way, we can

reduce the required peak switch update rate for bursty cache updates to half, so that new

hot keys can be added to cache more quickly. For example, if the switch update rate limit

is 2000 rules per second, and the maximum delay for rule deletions is one second, then the

cache can update at 1000 keys/second on average, and a maximum of 2000 keys/second for

a short period (one second).

To allow delay in switch rule deletions, a rule buffer must be reserved in the L2 table.

The size of this buffer is the maximum switch update rate times the duration of maximum

delay. In the example above, the switch should reserve space for at least 2000 rules, which

is small compared to the available L2 table size in switches.

Delaying rule deletion may result in stale forwarding rules in the L2 table. The stale

rules will produce a temporary cache miss for some queries, as shown in the lower right

block of Fig. 2.3. The miss overhead is small, however, because the evicted or deleted keys

are (by definition) less likely to be frequently visited.

2.2.2.4 Cache Consistency

SwitchKV always guarantees consistent responses to clients. As a performance optimiza-

tion, it allows temporary inconsistency between switch forwarding rules and cached keys,

which (as described above) can introduce temporary overheads for a small number of

queries, but never causes inconsistent data access.

In traditional cache systems such as Memcached [29], when a client sends a put or

delete request, it will also send a request to the cache to either update or invalidate the

item if it is in cache. The cache in SwitchKV is small and it is possible that most requests

are for uncached keys, so forwarding each put or delete request to the cache introduces

unnecessary overhead.

24

put or delete response

4

put or delete request

1
Cache

Backend

update request

2

update response

3

cached keys

Figure 2.7: Updates to keep cache consistency.

The backends avoid this overhead by tracking, in-memory, which keys in its local store

are currently cached. The backend only updates the cache when it receives requests for one

of these cached keys. Keys are added to the set whenever the backend receives a fetch

request, or sends an instant hot object detected by the circular-log counter. When the cache

evicts a key, or decides not to add the item from a fetch response or instant report, it sends

a message to the backend so that the backend can remove this key from its cached key set.

We use standard leasing mechanisms to ensure consistency when there are cache or

backend failures or network partitions [33]. Backends grant the cache a short-term lease on

each cached key. The cache periodically renews its leases and only return a cached value

while the lease is still valid. When a backend receives a put or delete request for a cached

key, it will send an update request to the cache, as shown in Fig. 2.7, and will wait for the

response or until the lease expires before it replies to the client. We choose to update the

cached data rather than invalidate it for a put request to reduce the cache churn and rule

update burden on switches.

2.2.3 Local Storage and Networking

Optimizing the single-node local performance of cache and backends is not our primary

goal, and has been extensively researched [54, 55, 69]. Nevertheless, we made several

design choices on local storage and networking to maximize the potential performance of

each server, which we discuss here.

25

2.2.3.1 Parallel Data Access

Exploiting the parallelism of multi-core systems is critical for high performance. Many

key-value systems use various concurrent data structures so that all cores can access the

shared data in parallel [20, 27, 59]. However, they usually scale poorly with writes and can

introduce significant overhead and complexity to our cache update algorithms that require

query statistics tracking.

Instead, SwitchKV partitions the data in each cache and backend node based on key

hash. Each core has exclusive access to its own partition, and runs its own load track-

ers. This greatly improves both the concurrency and simplicity of the local stores. Prior

work [27, 56, 74] observed that partitioning may lower the performance when the load

across partitions is imbalanced. In SwitchKV, however, backend nodes do not face high

skew in key popularity. By exploiting CPU caches and packet burst I/O, a cache node that

serves a small number of keys can handle different workload distributions [55].

2.2.3.2 Network Stack

SwitchKV uses Intel® DPDK [40] instead of standard socket I/O, which allows our user-

level libraries to control NICs, modify packet headers, and transfer packet data with mini-

mal overhead [55].

Since each core in the cache and backend nodes has exclusive access to its own partition

of data, we can have the NIC deliver each query packet to the appropriate RX queue based

on the key. SwitchKV can achieve this by using Receive Side Scaling (RSS) [23, 36]

or Flow Director (FDir) [55, 65].2 Both methods require information about the key in

packet headers for the NIC to identify which RX queue should the packet be sent to. This

requirement is automatic in SwitchKV where key hashes are already part of the packet

header.

2Our prototype uses RSS. FDir enables more flexible control of the network stack, but it is not supported
in the Mellanox NICs that we use.

26

2.2.4 Cluster Scaling

To scale system performance, the cluster will require multiple caches and OpenFlow

switches. This section briefly sketches a design (not yet implemented) for a scale-out

version of SwitchKV.

Multiple Caches. We can increase SwitchKV’s total system throughput by deploying

additional cache nodes. As each individual node can deliver high throughput because of its

small dataset size (especially when keys fit within its L3 cache), we do not replicate keys

across nodes and instead simply partition the cache across the set of participating nodes.

Note that while we are very concerned about load amongst our backend nodes, our cache

nodes have orders-of-magnitude higher performance, and thus the same load-balancing

concerns do not arise. Each cache node is responsible for multiple backends, and each

backend reports only to its dedicated cache node. As such, we do not require any cache

coherency protocols between the cache nodes.

If the mapping between backends and cache nodes changes, the relevant backends will

delete their cached items from their old cache nodes, and then report to the new ones. If the

change is due to a cache crash, the network controller will detect the failed node and delete

all forwarding rules to it.

Network Scaling. To scale network throughput, we can use the well-studied multi-rooted

fat-tree [3, 35]. Such an architecture may require exact match rules for cached keys to be

replicated at multiple switches. This approach may sacrifice performance until the rule

updates complete, but does not compromise correctness (the backends may need to serve

the keys temporarily).

On the other hand, if the switching bottleneck is in terms of rule space (as opposed

to bandwidth), then each switch must be configured to store only rules for a subset of the

backend nodes, i.e., we partition the backends, and thus the rule space, across our switches.

27

In this case, queries for keys in a backend node must be sent through a switch associated

with that key’s backend (i.e., that has the appropriate rules); that switch can be identified

easily by the query packets’ destination IP addresses.

2.3 Evaluation

In this section, we demonstrate how our new architecture and algorithms significantly im-

prove the overall performance of a key-value storage cluster under various workloads. Our

experiments answer three questions:

• How well does a fast small cache improve the cluster load balance and overall

throughput? (§2.3.2)

• Does SwitchKV improve system throughput and latency compared to traditional ar-

chitectures? (§2.3.3)

• Can SwitchKV’s new cache update mechanism react quickly to workload changes?

(§2.3.4)

Our SwitchKV prototype is written in C/C++ and runs on x86-64 Linux. Packet I/O

uses DPDK 2.0 [40]. In order to minimize the effects of implementation (rather than archi-

tectural) differences, we implemented the look-aside and look-through caches used in our

evaluation simply by changing the query data path in SwitchKV.

2.3.1 Evaluation Setup

Platform. Our testbed consists of four server machines and one OpenFlow switch. Each

machine is equipped with dual 8-core CPUs (Intel® Xeon® E5-2660 processors @ 2.20

GHz), 32 GB of total system memory, and one 40Gb Ethernet port (Mellanox ConnectX-3

EN) that is connected to one of the four 40GbE ports on a Pica8 P-3922 switch. Fig. 2.8

28

Client

Mellanox

ConnectX-3 EN

Xeon Server 1

Cache

Mellanox

ConnectX-3 EN

40 GbE

40 GbE

40 GbE

40 GbE

Pica8 P-3922
(OVS 2.3)

40GBASE-CR4

Emulated Backends

Mellanox

ConnectX-3 EN

Mellanox

ConnectX-3 EN

Xeon Server 3

40GBASE-CR4

Ryu controller

40GBASE-CR4

40GBASE-CR4

OpenFlow

Xeon Server 2

Xeon Server 4

Emulated Backends

Figure 2.8: Evaluation platform.

diagrams our evaluation platform. One machine serves as the client, one machine as the

cache, and two machines emulate many backends nodes.

We derived our emulated performance from experimental measurements on a back-

end node that fits our target configuration: an Intel® Atom™ C2750 processor paired

with an Intel® DC P3600 PCIe-based SSD. On this SSD-based target backend, we ran

RocksDB [69] with 120 million 1KB key-value pairs, and measured its performance against

a client over a 1Gb link. The backend could serve 99.4K queries per second on average.

Each emulated backend node in our experiments runs its own isolated in-memory data

structures to serve queries, track workloads, and update the cache. It has a configurable

maximum throughput enforced by a fine-grained rate limiter. Since it is hard to predict the

performance bottleneck at a backend node if its load is skewed, we assume backends have

a fixed throughput limit as measured under uniform workloads. The emulated backends do

not store the actual key-value pairs due to limited memory space. Instead, they reply to

the client or update the cache with a fake random value for each key. In most experiments

(except Fig. 2.14), we emulate a total of 128 backend nodes in the two server machines,

29

Number of backend nodes 128
Max throughput of each backend 100 KQPS
Workload distribution Zipf (0.99)
Number of items in cache 10000

Table 2.2: Default experiment settings unless otherwise specified

and limit each node to serve at most 100K queries per second. Table 2.2 summarize the

default experiment settings unless otherwise specified.

Workloads and Method. We evaluate both skewed and uniform workloads in our experi-

ments, and focus mainly on skewed workloads. Most skewed workloads use a non-uniform

key popularity that follows a Zipf distribution of skewness 0.99, which is the same that used

by YCSB [16]. The request generator uses approximation techniques to quickly generate

workloads with a Zipf distribution [34, 55]. The keyspace size is 10 billion, so each of the

128 backend nodes is responsible for serving approximately 78 million unique keys. The

mapping of a given key to a backend is decided by the key hash. We use fixed 16-byte keys

and 128-byte values.

Most experiments (except Fig. 2.12) use read-only workloads, since SwitchKV aims to

load balance read requests. All write requests have to be processed by the backends, so

they cannot be load balanced by the cache.

To find the maximum effective system throughput, the client tracks the packet loss rate,

and adjusts its sending rate every 10 milliseconds to keep the loss rate between 0.5% to 1%.

This self-adjusted rate control enables us to evaluate the real-time system performance.

Our server machines can send packets at 28 Mpps, but receive at only 15 Mpps. To

avoid the system being bottlenecked by the client’s receiving rate, the backends and cache

node fully process all incoming queries, but send only half of the responses back to the

client. The client doubles its receiving rate before computing the loss rate.

30

0

50

100 zipf-0.9

0

50

100

T
h
ro

u
g
h
p
u
t

(K
Q

P
S
)

zipf-0.95

0

50

100 zipf-0.99

Figure 2.9: Throughput of each backend node without cache under workloads with different
Zipf skewness. Node IDs (x-axis) are sorted according to their throughput.

uniform zipf-0.9 zipf-0.95 zipf-0.99
Workload Distribution

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
Q

P
S
)

Backends (without cache)

Backends (with 1000 items in cache)

Backends (with 10000 items in cache)

Cache (1000 items)

Cache (10000 items)

Figure 2.10: System throughput with and without the use of a cache. Figure illustrates the
portion of total throughput handled by the cache and that by backend nodes.

2.3.2 Load Balancing with a Small Cache

We first evaluate the effectiveness of introducing a small cache for reducing load imbal-

ances.

Fig. 2.9 shows a snapshot of the individual backend node throughput with caching

disabled under workloads of varying skewness. We observe that the load across the backend

nodes is highly imbalanced.

Fig. 2.10 shows how caching affects the system throughput. Under uniform random

workload, the backends total throughput can reach near the maximum capacity (128 back-

ends × 100 KQPS). However, when the workload is skewed, the system throughput without

the cache is bottlenecked by the overloaded node and significantly reduced. Adding a small

31

1 10 100 1000

Number of items in cache

0

5

10

15

20

25

T
h
ro

u
g
h
p
u
t

(M
Q

P
S
)

total tput (zipf-0.99)

total tput (zipf-0.9)

backends tput (zipf-0.99)

backends tput (zipf-0.9)

10000 20000 40000

Figure 2.11: System throughput as cache size increases. Even a modest-sized cache of
10,000 items achieves significant gains.

0.0 0.2 0.4 0.6 0.8 1.0
Write ratio

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
O

P
S
)

total tput (uniform write)

total tput (skewed write)

backends tput (uniform write)

backends tput (skewed write)

Figure 2.12: System throughput with different write ratio.

cache can help the system achieve good load balance across all of nodes: A cache with only

10,000 items can improve the system’s overall throughput by 7× for workloads with Zipf

skewness of 0.99.

Fig. 2.11 investigates how different numbers of cached items affect the system through-

put. The backends’ load quickly becomes well balanced as the number of cached items

grows to 1000. Then, the system throughput continues to grow as more items are cached,

but the benefits from increased cache size diminish (as one expects given a Zipf workload).

The system would require significantly more memory at the cache node or many more

cache nodes to further increase the hit ratio. We choose to cache 10,000 items for the rest

of the experiments.

Fig. 2.12 plots the systems throughput with different write ratios and write workloads.

We assume the backend nodes have the same performance for read and write operations,

32

and use two types of write workload: write queries uniformly distributed across all keys and

write queries according to the same Zipf 0.99 distribution as read queries. Write workloads

cannot be balanced by the cache, so the system throughput with skewed write workload

quickly decreases as the write ratio increases. With the uniform write workload, load across

the backends is always uniform, so increasing the write ratio only decreases the effective

throughput of the cache.

2.3.3 Benefits of the New Architecture

This section compares the system performance between SwitchKV and traditional look-

aside and on-path look-through architectures. As summarized in Table 2.1, compared to

traditional architectures in which the cache handles all queries first, the cache in SwitchKV

is only involved when the requested key is already cached (with high likelihood), and

thus uncached items are served with only a single machine transit. As a result, we expect

SwitchKV to have both lower latency and higher throughput than traditional architectures,

which is strongly supported by our experimental results.

Latency. We first compare the average and 99th percentile latency of different architec-

tures, as shown in Fig. 2.13. To measure the end-to-end latency, the client tags each query

packet with the current timestamp. When receiving responses, the client compares the

current timestamp and the previous timestamp echoed back in the responses. To measure

latency under different throughputs, we disable the client’s self rate adjustment, and manu-

ally set different send rates.

Fig. 2.13a shows the latency when the client only sends queries for keys in the cache.

In all three architectures, the queries will be forwarded to the cache by the switch and the

cache reply directly to the client. Accordingly, they have the same latency for cache hits.

Fig. 2.13b shows the latency when the client generates uniform workloads and the cache

is empty, which results in all queries missing the cache. Look-aside has the highest latency

33

0 2 4 6 8 10 12 14
Throughput (MQPS)

0

50

100

150

200

250

300

La
te

n
cy

 (
¹
s)

Throughput limit (beyond which >1% of packets are dropped)

99th percentile latency

Average latency

(a) Queries for cached keys with Zipf 0.99 workloads.

0 2 4 6 8 10 12 14
Throughput (MQPS)

0

100

200

300

400

500

600

La
te

n
cy

 (
¹
s)

Average
Look-aside

Look-through

SwitchKV

0 2 4 6 8 10 12 14
Throughput (MQPS)

99th Percentile

(b) Queries for uncached keys with uniform workloads.

0 5 10 15 20
Throughput (MQPS)

0

100

200

300

400

500

600

La
te

n
cy

 (
¹
s)

Average
Look-aside

Look-through

SwitchKV

0 5 10 15 20
Throughput (MQPS)

99th Percentile

(c) Zipf 0.99 workloads with 10000 items in cache.

Figure 2.13: End-to-end latency as a function of throughput.

because it takes three machine transits (cache→client→backend) to handle a cache miss.

Look-through also has high latency because it takes two machine transits (cache→backend)

to handle a cache miss. In comparison, queries for uncached keys in SwitchKV cache will

directly go to the backend nodes.

Fig. 2.13c shows the overall latency for a Zipf 0.99 workload and 10000-item cache.

As shown in Fig. 2.10, about 38% of queries will hit the cache under these settings. The

average latency is within the range of cache hits and cache misses. The 99th percentile

latency is about the same as cache miss latency. As all queries must go through the cache in

look-aside and look-through architectures, we cannot collect latency measurements beyond

34

0 200 400 600 800 1000 1200 1400
Number of backend nodes

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

(M
Q

P
S
)

bottlenecked by the cache throughput

load becomes imbalanced

Max capacity

SwitchKV (testbed)

Look-aside (testbed)

Backends capacity

SwitchKV (simulation)

Look-aside (simulation)

Figure 2.14: System throughput scalability as the number of backend nodes increases, for
SwitchKV and look-aside architecture with Zipf 0.99 workload and at most 10000 items in
cache. On-path look-through has the same throughput as look-aside. Each backend node is
rate limited at 50K queries per second, cache is rate limited at 5 million queries per second.
Look-through has similar performance to look-aside.

the 14 million QPS mark for them, as the cache is unable to handle more traffic. This result

illustrates one of the major benefits of the SwitchKV design: requests for uncached keys

are simply not sent to the cache, allowing a single cache node to support more backends

(higher aggregate system throughput).

Throughput. We then compare the full system throughput under a Zipf 0.99 workload

as the number of backend nodes increase, for different architectures. For each architecture,

the cache node stores at most 10000 items.

In order to emulate more backend nodes in this experiment, we scale down the rate

capacity of each backend node to at most 50K queries per second, and limit the cache

to serve at most 5 million queries per second. The performance improvement ratio of

SwitchKV to other architectures will be the same as long as the performance ratio of the

cache to a backend node is 100:1. To achieve the maximum system throughput, the cache

may store fewer items when it becomes the performance bottleneck as the backend cluster

size increases.

35

Fig. 2.14 shows the experiment results. The throughput of the look-aside architecture

is bottlenecked quickly by the cache capacity when the number of backend nodes increases

to 64, while the throughput of SwitchKV can scale out to much larger cluster sizes. When

the number of backend nodes goes beyond 400, the throughput begins to drop below the

maximum system capacity, because the cache is insufficient for providing good load bal-

ance for such a cluster. To retain linear scalability as the cluster grows, we would need to

have a more powerful cache node or increase the number of cache nodes.

Less skewed workloads will yield better scalability for SwitchKV, but will hit the same

performance bottleneck for both look-aside and look-through architectures. Due to space

constraints, we omit these results.

2.3.4 Cache Updates

This section evaluates the effectiveness of SwitchKV’s hybrid cache-update mechanisms.

In these experiments, we keep the workload distribution (Zipf 0.99) the same, and change

only the popularity of each key. The workload generator in the client actually generates

key indices with fixed popularity ranks. We change the query workloads by changing the

mapping between indices and key strings. We use three different workload change patterns:

1. Hot-in: Move N cold keys to the top of the popularity ranks, and decrease the ranks

of other keys accordingly. This change is radical, as cold keys suddenly become the

hottest ones in the cluster.

2. Hot-out: Move N hottest keys to the bottom of the popularity ranks, and increase the

ranks of other keys accordingly. This change is more moderate, since the new hottest

keys are most likely already in the cache if N is smaller than the cache size.

3. Random: Replace N random keys in the top K hottest keys with cold keys. We

typically set K to the cache size. This change is typically moderate when N is not

large, since the probability that most of the hottest keys are changed at once is low.

36

A note about our experimental infrastructure, which affects SwitchKV’s performance

under rapid workload changes: The Pica8 P-3922 switch’s L2 rule update is poorly imple-

mented. The switch performs an unnecessary linear scan of all existing rules before each

rule installation, which makes the updates very slow as the L2 table grows. We benchmark

the switch and find it can only update about 400 rules/second when the there are about 10K

existing rules, which means the cache can only update 200 items/second on average. Some

other switches can update their rules much faster (e.g., 12K updates/second [60]). Though

still too slow to support the update rate needed by traditional caching algorithms, these

switches would provide much higher performance with SwitchKV under rapidly changing

workloads.

All experiments use Zipf 0.99 workloads and a 10000-item-sized cache. Each experi-

ment begins with a pre-populated cache containing the top 10,000 hot items. Each backend

node sends reports to the cache as follows: its top five hot keys every second, and keys

that were visited more than eight times within the last two hundred queries instantly. The

choice of parameters for periodic and instant updates is flexible, determined by the per-

formance goals, cache size, and update rate limit. For example, the size and threshold of

the ring counter for instant reports determines when a key is hot enough to be immediately

added to the cache. A threshold that is too low may cause unnecessary cache churn, while a

threshold that is too high may make the cache slow to respond to bursty workload changes.

We also compare SwitchKV with a traditional update method, in which backends try to add

every queried key to the cache.

We first evaluate system throughput under the hot-in change pattern. Since this is a rad-

ical change, we do not expect it to happen frequently. Thus, we move 200 cold keys to the

top of the popularity ranks every ten seconds. Fig. 2.15 shows the system throughput over

time. A traditional cache update method has very poor performance, as it performs many

cache updates for recently-visited yet non-hot keys. With periodic top-k reports alone, a

backend’s hot keys are not added to the cache until its next report (once per second). The

37

0 50 100 150 200 250 300
Time (second)

0

10

20
complete hybrid cache updates

average throughput per second

average throughput per 10 seconds

0

10

20

T
h
ro

u
g
h
p
u
t

(M
Q

P
S
)

periodic top-k reports only

0

10

20
traditional cache update method

Figure 2.15: Throughput with hot-in workload changes, i.e., change 200 cold keys into the
hottest keys every 10 seconds.

0 50 100 150 200 250 300
Time (second)

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
Q

P
S
)

complete hybrid cache updates

instant hot key reports only

traditional cache update method

Figure 2.16: Throughput with hot-out workload changes, i.e., move out 200 hottest keys
every second.

throughput is reduced to less than half after the workload changes, and recovers in 1-2 sec-

onds. The bottom subfigure shows SwitchKV’s throughput using its complete cache update

mechanism, which includes the instant hot key reports. The new hot keys are immediately

added to the cache, resulting in a lower performance drop and a much faster recovery after

a sudden workload change. This demonstrates that SwitchKV is robust enough to meet the

performance goals even with certain adversarial changes in key popularity.

38

0 50 100 150 200 250 300
Time (second)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

Q
PS

)

complete hybrid cache updates (average = 20.1)
instant hot key reports only (average = 19.4)
periodic reports only (average = 19.4)
traditional cache update method (average = 12.2)

Figure 2.17: Throughput with random workload changes, i.e., replace 200 out of the top
10000 keys every second.

Our next experiment evaluates SwitchKV’s throughput under a hot-out change pattern.

Every second, the 200 hottest keys suddenly go cold, and we thus increase the popularity

ranks of all other keys accordingly. As shown in Fig. 2.16, the complete update mechanism

can handle this change well. With instant reports only and no periodic reports, the system

cannot achieve its maximum throughput: the circular log counter can detect only very hot

keys, not the keys just entering the bottom of the top-10000 hot-key list. These keys are

only added to cache as they further increase in their popularity when more of the hottest

keys move out. Note that this gap becomes particularly apparent as the system reaches its

steady state 50 seconds into the experiment; at this point, none of the pre-populated cached

keys remain in the cache.

Fig. 2.17 shows the throughput with a random change pattern, in which we randomly

replace 200 keys in the top 10000 popular keys every second. The complete update mech-

anism is able to handle the workload changes. There are occasionally short-term small

performance drops, which occur when the hottest keys are replaced. The throughput would

be lower, however, if SwitchKV were to omit either its instant or periodic reports.

Fig 2.18 shows the effectiveness of SwitchKV’s rule buffer in handling bursty workload

changes (see §2.2.2.3). The maximum delay for cache eviction and rule deletion is set to

39

0 5 10 15 20 25 30 35
Time (second)

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
Q

P
S
)

with rule buffer

without rule buffer

Figure 2.18: Throughput with hot-in workload changes with 600 new hottest keys every
time, which requires 1200 rule updates and will take the switch at least three seconds to
finish them.

0 200 400 600 800 1000

Number of changed hot keys per second

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
Q

P
S
)

random

hot out

hot in

5000 10000 15000 20000

Figure 2.19: Throughput with different workload change patterns as a function of change
rate.

2 seconds. With a switch rule buffer and prioritizing rule installation, the 600 new keys

can be added to the cache within 1.5 seconds. Without the rule buffer, this installation

time would double. The rule buffer thus reduces any throughput impact and allows faster

recovery during bursty workload changes.

Fig. 2.19 shows the average throughput with different change patterns and rates. The

switch can update 400 rules per second, which can support 200 cache updates per second.

The system throughput is near maximum for random and hot-out change patterns when

the change rate is within 200 keys per second, and then goes down as the change rate

increases. Throughput drops quickly under increasing hot-in changes, as the cache is less

effective when more of the hottest keys change every second. Once all patterns change

more than 10000 of the hottest keys per second, all three patterns yield similar throughput,

as all patterns replace the entire cache every second. Still, even at this point the cache can

40

still keep up to 200 of current hot keys, and most of the hottest keys are likely to added

to the cache from the instant reports, so throughput is still much higher (by 3×) than that

of the system lacking a cache. The performance under fast changing workloads would be

higher with switches that can update their rules faster.

2.4 Conclusion

SwitchKV is a high-performance and cost-efficient SSD-based key-value storage cluster.

It can maintain efficient load balancing under widely varying and rapidly changing real-

world workloads. SwitchKV achieves stable high throughput and low tail latency in a

cost-effective manner, both by combining fast small caches with new algorithm design,

and by exploiting SDN techniques and switch hardware. All storage nodes in a SwitchKV

cluster can be fully utilized regardless of the workload distributions, and all queries can

be served with minimal overhead through efficient content-aware routing. We demonstrate

SwitchKV can meet throughput and latency performance goals more efficiently than tradi-

tional systems.

41

Chapter 3

Fast Concurrent Cuckoo Hashing

As discussed before, the key to improve the performance and efficiency of each individual

key-value storage server is to maximize memory efficiency and exploit multi-core paral-

lelism. This chapter focuses on the most widely used key-value data structure—the hash

table. We present a new memory-efficient concurrent hash table that can achieve high

throughput for both read- and write-intensive workloads.

High-performance, concurrent hash tables are one of the fundamental building blocks

for modern systems, used both in concurrent user-level applications and in system appli-

cations such as kernel caches. As we continue our hardware-driven race towards more

and more cores, the importance of having high-performance, concurrency-friendly build-

ing blocks increases. Obtaining these properties increasingly requires a combination of al-

gorithmic engineering and careful attention to systems issues such as internal parallelism,

cache alignment, and cache coherency.

At the outset of this research, we hoped to capitalize on the recently introduced hard-

ware transactional memory (HTM) support in Intel’s new Haswell chipset, the TSX in-

structions [1]. Contrary to our expectations, however, we ended up implementing a design

that performs well regardless of its use of HTM, and the bulk of our time was not spent

dealing with concurrency mechanisms, but rather in algorithm and data structure engineer-

42

0 5 10 15 20 25 30 35 40
Throughput (million reqs per sec)

(*) cuckoo+ with HTM

(*) cuckoo+ with fine-grained locking

Intel TBB concurrent_hash_map

optimistic concurrent cuckoo

C++11 std:unordered_map

Google dense_hash_map 64 bit key/value pairs

read-to-write ratio = 1:1

120 million keys

Figure 3.1: Highest throughput achieved by different hash tables on a 4-core machine. (*)
are our new hash tables.

ing to optimize for concurrent access. For fast hash tables, HTM’s biggest benefit may be

to software engineering, by reducing the intellectual complexity of locking, with a modest

performance gain as a secondary benefit.

As a result of these efforts, this chapter presents the design and implementation of the

first high-performance, multiple-reader/writer hash table that achieves the memory effi-

ciency of multi-way Cuckoo hashing [64]. Most fine-grained concurrent hash tables today

store entries in a linked-list with per-bucket locks [2] or Read-Copy-Update (RCU) mech-

anisms [57, 72]. While often fast, the pointers used in these approaches add high overhead

when the key/value items are small. In contrast, our Cuckoo-based design achieves high

occupancy with no pointers.

We contribute a design that provides high throughput for multiple writers; prior work

we build upon [27] allowed only a single writer, limiting the generality of the data struc-

ture. Our design is based on algorithmic engineering of Cuckoo hashing, combined with

architectural tuning in the form of effective prefetching, use of striped fine-grained spin-

locks, and an optimistic design that minimizes the size of the locked critical section during

updates.

The result of these engineering efforts is a solid building block for key-value storage

of small objects. On a 16-core machine, our table achieves almost 40 million inserts per

second, outperforming the concurrent hash table in Intel’s Thread Building Blocks by 2.5x,

while using less than half of the memory for 64 bit key/value pairs. Figure 3.1 gives an

43

example of how our scheme (cuckoo+) outperforms other hash tables with mixed random

read/write workloads. Section 3.5 presents a performance evaluation detailing the advan-

tages of this cuckoo-based approach for multicore applications.

3.1 Background and Related Work

This section provides background information on hash tables and concurrency control

mechanisms. We conclude with a brief performance evaluation of the effects of naively

applying standard concurrency control techniques to several common hash table imple-

mentations. These results remind that high-performance concurrency is not trivial: careful

algorithm engineering is important regardless of the underlying concurrency control mech-

anisms, and the algorithmic effects dominate the choice of concurrency mechanism.

3.1.1 Hash Tables

As used in this chapter, a hash table provides Lookup, Insert, and Delete operations for

indexing all key-value objects. Hash tables do not support retrieval by any key ordering.

Popular designs vary in their support for iterating through the hash table in the presence of

concurrent modifications; we omit consideration of this feature.

Interface. On Lookup, a value is returned for the given key, or “does not exist” if the key

cannot be found. On Insert, the hash table returns success, or an error code to indicate

whether the hash table is too full or the key already exists. Delete simply removes the key’s

entry from the hash table. We focus on Lookup and Insert, as Delete is very similar to

Lookup.

High-performance single-thread hash tables. As an example of a modern, extremely

fast hash table, we compare in several places against Google’s dense_hash_map, a hash

44

table available in the Google SparseHash [32] library. Dense hash sacrifices space effi-

ciency for extremely high speed: It uses open addressing with quadratic internal probing.

It maintains a maximum load factor of 0.5 with default configurations, and stores entries in

a single large array.

C++11 introduces an unordered_map implemented as a separate chaining hash table.

It has very fast lookup performance, but also at the cost of more memory usage.

The performance of these hash tables does not scale with the number of cores in the

machine, as shown in Figure 3.1, because only one writer or one reader is allowed at the

same time.

Multiple-reader, single-writer hash tables. As a middle ground between no thread

safety and full concurrency, single-writer tables can be extended to permit many concurrent

readers. Such designs often use optimistic techniques such as versioning or the read-copy-

update (RCU) [57] techniques becoming widely used within the Linux kernel.

Our work builds upon one such hash table design and extends it to support multiple

writers. Cuckoo hashing [64] is an open-addressed hashing technique with high memory

efficiency and O(1) amortized insertion time and retrieval. As a basis for its hashing,

our work uses the multi-reader version of cuckoo hashing from MemC3 [27], which is

optimized for high memory efficiency and fast concurrent reads (detailed in Section 3.3.2).

Scalable concurrent hash tables. The Intel Threading Building Blocks library (Intel

TBB) [2] provides a concurrent_hash_map that allows multiple threads to concurrently

access and update values. This hash table is also based upon the classic separate chaining

design, where keys are hashed to a bucket that contains a linked list of entries. This design

is quite popular for concurrent hash tables: Because a key hashes to one unique bucket,

holding a per-bucket lock permits guaranteed exclusive modification while still allowing

fine-grained access. Further care must be taken if the hash table permits expansion.

45

3.1.2 Concurrency Control Mechanisms

As noted earlier, part of our motivation was to explore the application of hardware trans-

actional memory to this core data structure. All concurrent data structures require some

mechanism for arbitrating concurrent access, which we briefly list below, focusing on those

used in this work.

Locking. Multi-threaded applications take advantage of increasing number of cores to

achieve high performance. To ensure thread-safety, multiple threads have to serialize their

operations when accessing shared data, often through the use of a critical section protected

by a lock.

The simplest form of locking is to wrap a coarse-grained lock around the whole shared

data structure. Only one thread can hold the lock at the same time. This tends to be

pessimistic, since the thread with the lock prevents any other threads from accessing the

shared resource, even if they only want to read the data or make non-conflicting updates.

Another option is to use fine-grained locking by splitting the coarse-grained lock into

multiple locks. Each fine-grained lock is responsible for protecting a region of the data, and

multiple threads can operate on different regions of the data at the same time. Fine-grained

locking can improve the overall performance of a concurrent system. However, it must

be carefully designed and implemented to behave correctly without deadlock, livelock,

starvation, etc.

Hardware Transactional Memory (HTM). It is often hard to write fast and correct

multi-threaded code using fine-grained locking. Transactional memory [37] is designed to

make the creation of reliable multi-threaded programs easier. Much like database trans-

actions, all shared memory accesses and their effects are applied atomically, i.e., they are

either committed together or discarded as a group. With transactional memory, threads no

46

longer need to take locks when accessing the shared data structures held in memory, yet

the system will still guarantee thread safety.

Previous experience, implementations and evaluations of HTM include Sun’s Rock [12,

22] processor, AMD advanced synchronization family [15, 14], IBM Blue Gene/Q [76] and

System Z [42].

Recently, Intel released Transactional Synchronization Extensions (TSX) [1], an exten-

sion to the Intel 64 architecture that adds transactional memory support in hardware. Part of

the recently-released Intel Haswell microarchitecture, TSX allows the processor to deter-

mine dynamically whether threads need to serialize through lock-protected critical sections,

and to serialize only when required. With TSX, the program can declare a region of code as

a transaction. A transaction executes and atomically commits all results to memory when

the transaction succeeds, or aborts and cancels all the results if the transaction fails (e.g.,

conflicts occur). We focus on the use of Restricted Transactional Memory (RTM) interface

of TSX, which gives the programmer the flexibility to start, commit and abort transactional

execution. Intel evaluated TSX for high-performance computing workloads [77], already

optimized for parallelism, and showed that TSX provides an average speedup of 1.41x.

3.1.3 Naive use of concurrency control fails

Before making deeper changes, we begin by examining the performance of several hash

tables without algorithmic optimization, using both naive global locking and using Intel’s

TSX to optimize this approach. While the poor performance of these approaches is not

surprising, their relative simplicity makes them an important starting baseline for under-

standing further improvements.

Haswell’s hardware memory transactions are a best-effort model intended for fast paths.

The hardware provides no guarantees as to whether a transactional region will ever success-

fully commit. Therefore, any transaction implemented with TSX needs a fallback path.

The simplest fallback mechanisms is “lock elision”: the program executes a lock-protected

47

1 2 4 8
Number of threads

2

4

6

8

T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c)

Cuckoo hash table w/ TSX

Cuckoo hash table

Google dense_hash_map w/ TSX

Google dense_hash_map

C++11 std::unordered_map w/ TSX

C++11 std::unordered_map

Figure 3.2: Insert throughput vs. number of threads for single writer hash tables with
and without TSX lock elision. Each thread is pinned to a different hyper-threaded core. 16
million different keys are inserted in each table.

region speculatively as a transaction, and only falls back to use normal locking if the trans-

action does not succeed. An implementation of TSX lock elision for glibc [73] has been

released. It adds a TSX elided lock as a new type of POSIX mutex. Applications linked

against this new glibc library automatically have their pthread locks elided.

Lock elision may seem promising for designing a concurrent, multi-writer hash table:

multiple threads may be able to update different sets of non-conflicting entries of the hash

table as transactions at the same time. Through a set of experiments, we make two obser-

vations about TSX lock elision: It outperforms the naive use of a global lock, but it does

not ensure that multicore concurrent writes are faster than single-core exclusive access.

We evaluated the Insert throughput of the optimistic cuckoo hash table in MemC3,

std::unordered_map in C++11, and dense_hash_map in Google SparseHash [32] library,

both with and without TSX lock elision, on a quad-core machine with hyperthreading en-

abled. All these hash tables allow only one writer at a time, as each Insert has to lock the

entire table. Global counters were removed in cuckoo hash table and dense_hash_map to

avoid obvious common data conflicts.

Figure 3.2 shows the results of our experiment. With global pthread locks, each hash

table’s multi-thread aggregate write throughput is much lower than that of a single thread,

due to extensive lock contention. By enabling TSX lock elision, the aggregation write

48

throughput is higher than that with pthread global locks, but still much lower than the

single thread throughput. This is because most transactions fail and abort, forcing the

program to take the fallback lock frequently, resulting in sequential behavior. According to

Intel Performance Counter Monitor [41], the transactional abort rates are above 80% for all

three hash tables with 8 concurrent writers. We will discuss the reasons for transactional

aborts and how to reduce the abort rate in Section 3.4.

Through this experiment, we find that naively making a data structure concurrent may

harm its performance. Simply applying lock elision using hardware transactional memory

could mitigate the performance degradation caused by lock contention, but may not be able

to scale up throughput as more cores access the same lock protected data structure.

3.2 Principles to Improve Concurrency

Given that naive application of global locking with or without hardware transactional mem-

ory support fails to provide scalable performance, what must be done? In this section we

present our design principles to improve the concurrent performance of data structures.

Although these principles are general and well known, we state them here to illustrate the

framework within which our algorithmic engineering discussed in the next section opti-

mizes for concurrent access in cuckoo hashing. In general, the key to improving concur-

rency for a data structure is to reduce lock contention. We present three principles to help

achieve this reduction:

P1. Avoid unnecessary or unintentional access to common data. When possible, make

globals thread-local; for example, disable instant global statistics counters in favor of

lazily aggregated per-thread counters. These simple optimizations are already included

in our results for cuckoo hash table and Google dense_hash_map in Figure 3.2. Without

them, concurrent performance was much worse.

49

P2. Minimize the size and execution time of critical sections. A promising strategy is

to move data accesses out of the critical section whenever possible. As we show in

the following section, an optimistic approach can work well here if there are search-

like operations that must be performed: Perform the entire search outside of a critical

section, and then transactionally execute by only verifying that the found value remains

unchanged.

P3. Optimize the concurrency control mechanism. Tune the concurrency control imple-

mentation to match the expected behavior of the data structure. For example, because

the critical sections of our optimized hash tables are all very short, we use lightweight

splinlocks and lock striping in the fine-grained locking implementation, and optimize

TSX lock elision to reduce transactional abort rate when applying it to the coarse-

grained locking implementation.

By following these principles, data structures can reduce the possibility of multiple

threads attempting to access data protected by a shared lock or within a same transactional

region, thus improve the concurrent performance with either fine-grained or coarse-grained

locking. We show how to apply these principles to the design of a concurrent cuckoo hash

table in the next two sections, to greatly improve multi-threaded read/write throughput.

3.3 Concurrent Cuckoo Hashing

We now present the design of a multi-reader/multi-writer cuckoo hash table that is op-

timized for fast concurrent writes. By applying the principles previously described, our

resulting design achieves high and scalable multi-threading performance for both read- and

write-heavy workloads.

We begin by presenting the basic operation of cuckoo hashing [64], followed by the

multiple-reader/single-writer version that we build upon to create our final solution [27].

50

3.3.1 Cuckoo Hashing

Cuckoo hashing [64] is an open-addressed hash table design. All items are stored in a large

array, with no pointers or linked lists. To resolve collisions, two techniques are used: First,

items can be stored in one of two buckets in the array, and they can be moved to their other

location if the first is full. Second, in common use, the hash buckets are multi-way set

associative, i.e., each bucket has B “slots” for items. B = 4 is a common value in practice.1

A lookup for key proceeds by computing two hashes of key to find buckets b1 and b2 that

could be used to store the key, and examining all of the slots within each of those buckets

to determine if the key is present. A basic “2,4-cuckoo” hash table (two hash functions,

four slots per bucket) is shown in Figure 3.3.

A consequence of this is that Lookup operations are both fast and predictable, always

checking 2B keys.

To Insert a new key into the table, if either of the two buckets has an empty slot, it

is then inserted in that bucket; if neither bucket has space, a random key from one candi-

date bucket is displaced by the new item. The displaced item is then relocated to its own

alternate location, possibly displacing another item, and so on, until a maximum number of

displacements is reached. If no vacant slot is found, the hash table is considered too full to

insert and an expansion process is scheduled.

We call the sequence of displaced keys in an Insert operation a cuckoo path, as illus-

trated in Figure 3.3. Write performance of cuckoo hashing degrades as the table occupancy

increases, since the cuckoo path length will increase, and more random reads/writes are

needed for each Insert.

1Without set-associativity, basic cuckoo hashing allows only 50% percent of the table entries to be occu-
pied before unresolvable collisions occur. It is possible to improve the space utilization to over 90% by using
4-way (or higher) set associative hash table [25].

51

c	

∅	

b	

a	

key	
 x	

Insert key	
 y	

key	
 version	
 	

counters	

Cuckoo	
 hash	
 table	

key	
 value	

Figure 3.3: Cuckoo hash table overview: Each key is mapped to 2 buckets by hash functions
and associated with 1 version counter. ∅ represents an empty slot. “a → b→ c → ∅” is a
cuckoo path to make one bucket available to insert key y.

3.3.2 Prior Work in Concurrent Cuckoo

Basic cuckoo hashing does not support concurrent access. Our work builds upon the

two major prior approaches to concurrent cuckoo hashing: Herlihy’s lock-striped ap-

proach [38], and the optimistic cuckoo with separated path discovery and item movement

from MemC3 [27]. Our resulting design realizes the strengths of each: The low space

overhead of MemC3’s approach and the concurrent writer support of Herlihy’s approach.

Our starting point was MemC3’s table, which used three building blocks:

• To eliminate reader/writer false misses, change the order of the basic cuckoo hashing

insertions. Allow concurrent reads and cuckoo movement by moving “holes” back-

wards along the cuckoo path instead of moving “items” forward along the cuckoo

path. This ensures that an item can always be found by a reader thread; if it is un-

dergoing concurrent cuckoo movement, it may be present twice in the table, but will

never be missing.

Providing this property requires separating the process of searching for a cuckoo

path from using it: find the empty slot, and then use the path. As we show, this has a

second benefit: This searching process can be moved outside of the critical section.

52

• Implement efficient concurrency control by using lock striping. Lock striping [38]

uses a smaller vector of locks (or, in MemC3, version counters) that each maps to a

set of items in the hash table. To lock a bucket, a writer thread computes the lock

stripe entry corresponding to the bucket and locks that entry. By using reasonable

size lock tables, such as 1K-8K entries, the locking can be both very fine-grained and

low-overhead.

• Allow reads to be performed with no cache line writes by using optimistic lock-

ing [47]. Instead of locking for reads, the hash table uses a lock-striped version

counter associated with the buckets, updates it upon insertion or displacement, and

looks for a version change during lookup.

By using these techniques with only version counters and a simple global lock for writ-

ers, MemC3 provided substantial gains for read-intensive workloads, but still performed

poorly for write-heavy workloads. Unfortunately, the basic scheme used in MemC3 was

not obviously amenable to fine-grained locking:

1. The cuckoo path can be very long. Grabbing a few hundred locks in the right order to

avoid deadlock and livelock is tricky. There is also a nontrivial probability that a path

becomes invalid, and the execution of Insert needs to restart, further complicating

locking, increasing the risk of livelock, and harming performance.

2. The Insert procedure for optimistic concurrent cuckoo hashing in MemC3 [27]

involves nested locks if fine-grained locking is implemented, which can easily cause

deadlocks.

53

Algorithm 2 MemC3 Cuckoo Insert Procedure.
Region between dashed lines is the largest possible critical section.

1: function Insert(h, x) . Insert key x to table h
2: b1, b2 ← two buckets mapped by key x
3: Lock(h)

4: if Add(h, b1, x) or Add(h, b2, x) then
5: Unlock(h); return true
6: if path ←Search(h, b1, b2) then
7: Execute(h, path)

8: Unlock(h); return true
9: Unlock(h); return f alse

3.3.3 Algorithmic Optimizations

3.3.3.1 Lock After Discovering a Cuckoo Path

In MemC3 cuckoo hashing, each Insert operation locks the hash table at the very be-

ginning of the process, and releases the lock after the insertion completes. The separated

phases of search and execution of the cuckoo path are all protected by the lock within one

(big) critical section.

To reduce the size of critical sections, our first optimization was to search for an empty

slot before acquiring the lock, then only lock the table when displacing the items along the

cuckoo path and inserting the new item. In this way, multiple Insert threads can look for

their cuckoo paths at the same time without interfering with each other. Inserts are still

serialized, but the critical section is smaller.

Algorithm 2 shows the basic Insert procedure that allows concurrent reads.

Add(h, b, x) tries to insert key x to bucket b, returns true on success or f alse if

the bucket is full. Search(h, b1 b2) searches for a cuckoo path that makes either bucket b1

or b2 available to insert a new item. Execute(h, path) moves items backwards along the

cuckoo path, and then inserts key x to the bucket made available. The critical section of

this algorithm is the whole process. When the table occupancy is high, this may involve

hundreds of bucket reads to search for a cuckoo path, followed by hundreds of item

54

Algorithm 3 Cuckoo Insert – lock after discovering a path.
Region between dashed lines is the largest possible critical section.

1: function Insert(h, x) . Insert key x to table h
2: b1, b2 ← two buckets mapped by key x
3: for i ← 1,2 do
4: if Available(h, bi) then . if bi has an empty slot
5: Lock(h)
6: if Add(h, bi , x) then
7: Unlock(h); return true
8: Unlock(h)
9: while path ←Search(h, b1, b2) do

10: Lock(h)

11: if Validate_Execute(h, path) then

12: Unlock(h); return true
13: Unlock(h)
14: return f alse

displacements along that path, during which all Insert operations of other threads are

blocked.

Algorithm 3 shows our new Insert procedure. The lock is acquired only when doing

the actual writes to the hash table. As the search phase is not protected by the lock, there

exists a potential race condition: After one thread reads a bucket to extend its cuckoo path,

another thread can write to the same bucket and cause the first thread to read corrupted data.

Therefore, Insert must re-check if the related entries have been modified before each item

displacement in the execution phase, which is handled by Validate_Execute(h, path). If

the existing path becomes invalid, it restarts and looks for a new path. Each displacement

relocates only one item to its alternate bucket, so there is no undo needed if execution

aborts. We omit the steps to check if key x already exists in both Algorithm 2 and 3, which

should be proceeded within each critical section.

To summarize, each Insert optimistically searches for a cuckoo path, displacing items

along the path with lock protection. Execution terminates at the end of the path or if the

path becomes invalid (and then Insert restarts). We can estimate the probability of a

55

cuckoo path become invalid after being discovered, which is the probability that a path of

one writer overlaps with paths of other writers.

Let N denote the number of entries in the hash table, L (� N) denote the maximum

length of a cuckoo path, and T denote the number of concurrent writers. A cuckoo path has

the highest possibility of overlapping with others when all the T paths are at their maximum

length L. For a cuckoo path with length L, the probability that it does not overlap with

another cuckoo path with length L is

P =

(
N−L

L

)(
N
L

) =

L−1∏
i=0

N − L − i
N − i

. (3.1)

The probability that the cuckoo path overlaps with at least one of other (T − 1) paths is

Pinvalid_max = 1 − PT−1 = 1 −
L−1∏
i=0

(N − L − i
N − i

) (T−1)
. (3.2)

Because i � N , we can assume N−L−i
N−i ≈

N−L
N , so that

Pinvalid_max ≈ 1 −
(
(N − L)/N

)L(T−1) . (3.3)

For example, the maximum length of a cuckoo path in MemC3 is L = 250. Suppose

N = 10 million, T = 8, then Pinvalid < 4.28%. This upper bound assumes all paths are

at maximum length, which occurs only rarely; the expected probability is much lower. It

is, however, non-negligible. We apply further algorithmic optimizations next to reduce the

odds of such a failure by several orders of magnitude.

3.3.3.2 Breadth-first Search for an Empty Slot

Basic cuckoo hashing searches for an empty slot using a greedy algorithm: if the current

bucket is full, a random key is “kicked out” to its alternate location, and possibly kicks

out another random key there, until a vacant position is found. Each bucket touched by

56

the process is a part of the cuckoo path. As table occupancy grows, the average length of

cuckoo paths increases, because it needs to examine more buckets to find an empty slot.

It may require hundreds of displacements for one Insert, which greatly slows down the

performance.

A cuckoo hash table can be viewed as an undirected graph called a cuckoo graph,

which has a vertex for each bucket, and an edge for each key in the table, connecting the

two alternative buckets of the key. The “random displacements” scheme used by basic

cuckoo hashing to look for an empty slot is thus a random depth-first search (DFS) of the

graph. To reduce the number of item displacements and the size of critical sections, we use

breadth-first search (BFS) instead. Each slot in a bucket is considered as a possible path,

and extends its own path to alternate buckets in the same way.

Figure 3.4 shows an example of the two searching schemes in a 2-way set-associative

hash table. Both schemes examine 18 slots (9 buckets) to find an empty slot in the search

with no item actually moved. Figure 3.4a is the traditional searching scheme where each

time only one random key is displaced. The cuckoo path discovered is a → e → b →

h → x → f → d → t → ∅. Figure 3.4b uses BFS to look for an empty slot. While the

number of examined slots are same, the BFS cuckoo path is a → z → u → ∅, which is

much shorter.

The prior work on MemC3 used an optimization of tracking two cuckoo paths in paral-

lel, completing when either found an empty slot, but still used a DFS strategy. This strategy,

in general, reduced the expected length of a cuckoo path by a factor of two. In contrast, the

BFS strategy we present here reduces the expected length to a logarithmic factor.

Let B denote the set-associatitivity of the hash table, M denote the maximum number

of slots to be examined when looking for an empty slot before declaring the table is full,

LBFS denote the maximum length of the cuckoo path. The search process expands to two

BFS tree rooted by the two alternative buckets of the key to be inserted. Each tree has at

57

*	
 a	

*	
 t	

d	
 *	

e	
 *	

*	
 f	

*	
 x	

*	
 ∅	

*	
 h	

b	
 *	

(a) Random displacements

*	
 a	

*	
 *	
 z	
 *	

*	
 *	

*	
 *	

*	
 u	

*	
 *	

*	
 *	
 *	
 ∅	

(b) Breadth-first search

Figure 3.4: Search for an empty slot by Insert in a 2-way set-associative hash table.
Left(3.4a) is the traditional approach, right(3.4b) is our approach. Slots in gray are exam-
ined before the empty slot is found. Alphabet letters are keys selected to be moved to their
alternate locations along the cuckoo path represented by the arrows (→).

most M/2 slots. Therefore,

B + B2 + B3 + · · · + BLBFS ≥ M/2, (3.4)

which gives us

LBFS =
⌈

logB
(
M/2 − M/(2B) + 1

)⌉
. (3.5)

As used in MemC3, B = 4, M = 2000. With two-way DFS, the maximum number of

displacements for a single Insert is 250, whereas with LBFS = 5.

This optimization is key to reducing the size of the critical section: While the total

number of slots examined is still M , this is work that can be performed without a lock held.

With BFS, however, at most five buckets must be examined and modified with the lock

actually held, reducing both the duration of the critical section and the number of cache

lines dirtied while doing so.

58

Shorter cuckoo paths also reduce the chance of a path becoming invalid (and of trans-

actional aborts). Based on Eq. 3.3, with LBFS = 5, and the same settings of the example at

the end of Section 3.3.3.1 , the new worst-case Pinvalid < 1.75 × 10−5 — an extremely rare

event.

Prefetching. BFS provides a second benefit: because the schedule of buckets to visit

is predictable, we can prefetch buckets into cache before they are accessed to reduce the

cache-miss penalty. In the cuckoo graph, each alternative bucket of the keys in the cur-

rent bucket are considered neighbors of that bucket. BFS scans all neighbors of a bucket

to extend the cuckoo path. Before scanning one neighbor, the processor can load the

next_neighbor in cache, which will be accessed soon if no empty slot is found in the current

neighbor. This cannot be done with the traditional DFS approach, because the next bucket

location is unknown until one key in the current bucket is “kicked out”.

3.3.3.3 Increase Set-associativity

As discussed in Section 3.3.1, higher set-associativity improves space utilization. Then

cuckoo hash table in MemC3 is 4-way set-associative, which achieves 95% maximum load

factor, and high performance for read-intensive workloads.

The impact of set-associativity on the read and write performance of cuckoo hashing is

two-fold:

• Higher set-associativity leads to lower read throughput, since each Lookup must scan

up to 2B slots from two buckets in an B-way set-associative hash table. If a bucket

fits in a cache line, then the read throughput would not be affected too much.

• Higher set-associativity may improve write throughput, because each Insert can

read fewer random buckets (with fewer cache misses) to find an empty slot, and needs

fewer item displacements to insert a new item. However, the set-associativity cannot

59

be too high, since a Lookup is required to check if the new key already exits in the

hash table before each Insert, which becomes slower as set-associativity increases.

To achieve a good balance between read- and write-heavy workloads, we use a 8-

way set-associative hash table. Section 3.5 evaluates the performance with different set-

associativities and different workloads. Our choice of 8-way associativity may require

reading more than one cache line per bucket, but this extra cost is offset by the fact that the

two lines can be fetched together, costing only memory bandwidth, not latency, and that

sequential memory reads are substantially faster because they typically hit in the DRAM

row buffer.

3.3.4 Fine-grained Locking

Fine-grained locking is often used to improve concurrency. However, it is non-trivial to

implement fine-grained per-bucket locking for traditional cuckoo hashing. There are high

deadlock and livelock risks.

In basic cuckoo hashing, it is not known before displacing the keys how many and

which buckets will be modified, because each displaced key depends on the one previously

kicked out. Therefore, standard techniques to make Insert atomic and avoid deadlock,

such as acquiring all necessary locks in advance, are not obviously applicable. As noted

earlier, simply using the optimization of finding the path in advance was not enough to

solve this problem because of lingering locking complexity issues.

By reducing the length of the cuckoo path and reordering the locking procedure, our

optimizations make fine-grained locking practical. To do so, we go back to the basic design

of lock-striped cuckoo hashing and maintain an actual lock in the stripe in addition to the

version counter (our lock uses the high-order bit of the counter). Here we favor spinlocks

using compare-and-swap over more general purpose mutexes. A spinlock wastes CPU

cycles spinning on the lock while other writers are active, but has low overhead, particularly

60

for uncontended access. Because the operations that our hash tables support are all very

short and have low contention, very simple spinlocks are often the best choice.

To Insert each new key-value pair, there is at most one new item inserted and four

item displacements. Each insert or displacement involves exactly two buckets. The Insert

operation only locks the pair of buckets associated with ongoing insertion or displacement,

and releases the lock immediately after it completes, before locking the next pair. Locks of

the pair of buckets are ordered by the bucket id to avoid deadlock. If two buckets share the

same lock, then only one lock is acquired and released during the process. In summary, a

writer must only lock at most five (usually fewer than three) pairs of buckets sequentially

for an Insert operation.

Although there is a small chance that any cuckoo insert will abort because of other

concurrent inserts, it is likely to succeed on a re-try. It is worth noting that this design only

avoids livelock probabilistically. A writer thread that encounters excessive insert aborts

could pessimistically acquire a full-table lock by acquiring each of the 2048 locks in the

lock-striped table, but we have never observed a condition where this would be warranted.

The combination of these techniques results in a cuckoo hash table that (i) retains high

memory efficiency (the efficiency of the basic table plus the small additional lock-striping

table), (ii) permits highly concurrent read-write access, and (iii) has a minimally-sized

critical section that reads and dirties few cache lines while holding the lock or executing

under hardware transactional memory.

3.4 Optimizing for Intel TSX

As shown in Section 3.1.3, naive use of TSX lock elision to hash tables with a global

lock does not provide high multi-threaded throughput. The key to improving concurrent

performance is to reduce the “transactional abort rate.” In the Haswell implementation of

TSX, the underlying hardware transactional memory system uses tags in the L1 cache to

61

track the read- and write-sets of transactions at a granularity of a cache line. Transactions

abort for three common reasons:

1. Data conflict on a transactionally accessed address. A transaction encounters a con-

flict if a cache line in its read-set is written by another thread, or if a cache line in its

write-set is read or written by another thread.

2. Limited resources for transactional stores. A transaction will abort if there is not

enough space to buffer its reads and writes in cache. Current implementations can

track only 16KB of data.

3. TSX-unfriendly instructions. Several instructions (e.g., XABORT, PAUSE) and sys-

tem calls (e.g., mmap) cause transactions to abort.

For high performance, the program must minimize transactional aborts. From the first

two causes, we draw several conclusions about general issues with transactional aborts:

• Transactions that touch more memory are more likely to conflict with others, as well

as to exceed the L1-cache-limited capacity for transactional reads and writes.

• Transactions that take longer to execute are more likely to conflict with others.

• Sharing of commonly-accessed data, such as global statistics counters, can greatly

increase conflicts.

• Because the hardware tracks reads and writes at the granularity of a cache line, false

sharing can create transactional conflicts even if no data appears to be shared.

The observant reader will no doubt note that many of these same issues arise in cache-

centric performance optimizations. Our solutions are similar but not identical. To address

these issues and improve the multi-threaded concurrent performance of cuckoo hashing

with coarse-grained locking and TSX lock elision enabled, we just need to follow principle

62

P1 and P2 presented in Section 3.2, which are detailed in Section 3.3. Our algorithmic op-

timizations can significantly reduce the size of the transactional region in a cuckoo Insert

process from hundreds of bucket reads and writes to only a few bucket writes, which greatly

reduces the transactional abort rate caused by data conflicts or limited transactional stores.

The third cause of transactional abort indicates that a program should minimize the oc-

currence of TSX-unfriendly instructions within transactional regions. A common example

is if dynamic memory allocation must invoke a system call such as brk, futex, or mmap.

While our implementation of Cuckoo hashing does not do this, we observed this problem

when testing TSX using chained hashing and Masstree [56]. It is therefore useful to pre-

allocate structures that may be needed inside the transactional region. If they are not used,

one can simply store them in a per-thread cache and use for a subsequent transaction (or

preallocate and free if using a malloc that already does this, such as tcmalloc). This is an

application of principle P3.

Further, we use a tuned version of TSX lock elision that matches the expected behavior

of the data structure. The generic glibc version of TSX lock elision for pthread mutexes can

be improved substantially if the application’s transactional behavior is known in advance,

as is the case for our optimized cuckoo hash table, in which every transaction is small. This

is another application of principle P3. The following subsection details our implementation

of TSX lock elision.

3.4.1 Optimized TSX lock elision

Intel TSX provides two interfaces for transactional memory. The first is Hardware Lock

Elision (HLE), a legacy compatible instruction set extension that allows easy conversion

of lock-based programs to transactional programs. The second mode is Restricted Trans-

actional Memory (RTM), a new instruction set interface with more complete transactional

memory implementation. It provides three explicit instructions—XBEGIN, XEND, and

XABORT—for programmers to start, commit, and abort a transactional execution, respec-

63

tively. RTM is not backwards compatible, but it allows much finer control of the transac-

tions than HLE. We focus on the use of RTM since it is more powerful and flexible than

HLE and can serve as a upper bound of the performance improvements one may realize

through TSX.

The released TSX RTM lock elision implementation for glibc [73] can be improved

by specializing it for our hash tables. As a generic implementation, it is designed to work

well for any mix of transactions, including the case of a mix of short transactions that must

potentially coexist with long-running ones. In contrast, in the hash table workloads, all

transactions are short. We further observed that the generic version misuses the EAX abort

status code for RTM and takes the fallback lock too frequently. This causes performance

to suffer because whenever a fallback lock is taken by one core, all the other cores have to

abort their concurrent transactions.

We implemented our own TSX elision wrapper around existing lock functions. It is

optimized for short transactions and elides the lock more aggressively. Figure 3.5 shows

the implementation of our RTM elision wrapper, a modified version of the released glibc

one [73]. It is a small library separated from glibc pthread, and thus does not require

building a new glibc library. Its fallback lock can be of any type, including the custom

spinlocks we use for cuckoo hashing.

Implementation details. _xbegin(), _xabort(), and _end() calls are wrappers around

the special instructions that begin, abort, and commit the transaction. _xbegin() returns

_XBEGIN_STARTED if the transaction begins successfully. _ABORT_RETRY is an EAX abort

status code which indicates the transaction may succeed on a retry. We found that even if

_ABORT_RETRY is not set in the EAX register, the transaction may succeed still on a retry.

Whenever _ABORT_RETRY is not set, however, the glibc TSX lock elision aborts the trans-

action and takes the fallback lock immediately, forcing all other concurrent transactions to

64

void elided_lock_wrapper(lock) {
xbegin_retry = 0; abort_retry = 0;
while (xbegin_retry < _MAX_XBEGIN_RETRY) {

if (status=_xbegin() == _XBEGIN_STARTED) { // Start transaction
if (lock is free) // Check lock and put into read-set

return; // Execute in transaction
_xabort (_ABORT_LOCK_BUSY); // Abort transaction as lock is busy

}
if (!(status & _ABORT_RETRY)) { // Transaction may not succeed on a retry

if (abort_retry >= _MAX_ABORT_RETRY) // There is no chance for a retry
break;

abort_retry ++ ;
}
xbegin_retry ++;

}
take fallback lock;

}

void elided_unlock_wrapper(lock) {
if (lock is free)

_xend(); // Commit transaction
else

unlock lock;
}

Figure 3.5: Optimized TSX lock elision

abort. Instead, we always retry several times before taking the fallback lock (using more

retries if _ABORT_RETRY is set).

3.5 Evaluation

In this section, we investigate how the proposed techniques and optimizations contribute to

the improvements of read and write performance in cuckoo hashing.

Platform. Most experiments (except Figure 3.8) run on a 4-core Haswell-microarchitecture

Intel i7-4770 at 3.4GHz. This is the highest core count currently available with TSX sup-

port. The L1 D-cache is 32KB; the L2 cache is 256KB, the L3 cache is 8MB. The machine

is equipped with 16GB of DDR3 SDRAM.

65

Method and Workloads. 8 byte keys and 8 byte values are used for most experiments.

The default cuckoo hash table is 8-way set-associative with 227 = 134,217,728 slots, which

uses about 2 GB memory. Each bucket has all the keys come first and then the values, and

fits exactly two cache lines: one for 8 keys and another for 8 values. We evaluate different

set-associativities in Section 3.5.3 and key-value sizes in Section 3.5.4.

We focus on the performance benefit from our optimizations and TSX support for work-

loads with concurrent writes by measuring the aggregate throughput of multiple threads

accessing the same hash table. We focus on three workloads: a) 100% Insert, b) 50%

Insert and 50% Lookup, and c) 10% Insert and 90% Lookup.

Each experiment first creates an empty cuckoo hash table and then fills it to 95% ca-

pacity, with random mixed concurrent reads and writes as per the specified insert/lookup

ratio. Because Cuckoo hashing slows down as the table fills (more items must be moved),

we measure both overall throughput and throughput for certain load factor intervals (e.g.,

empty to 50% full). Each data point in the graphs of this section is the average of 10 runs.

We observed that the performance is always stable, so we do not include error bars in the

graphs.

3.5.1 Factor Analysis of Insert Performance

This experiment investigates how much our optimizations and the use of Intel TSX im-

prove the Insert performance of cuckoo hashing. We break down the performance gap

between basic optimistic cuckoo hashing and our optimized concurrent cuckoo hashing.

We measure different hash table designs with the Insert-only workload starting from the

basic cuckoo and adding optimizations cumulatively as follows:

• cuckoo: The optimistic concurrent multi-reader/single-writer cuckoo hashing used

in MemC3 [27]. Each Insert locks the whole hash table.

• +lock later: Lock after discovering a cuckoo path.

66

cuckoo

+BFS
+prefetch

cuckoo

+BFS
+prefetch

cuckoo

+BFS
+prefetch

0

2

4

6

T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c)

5.64 5.89 5.98

3.97
4.57 4.76

1.96
2.48 2.70

load 0-0.95

load 0.75-0.9

load 0.9-0.95

(a) Single thread Insert performance (all locks disabled)

cuckoo

+TSX-glibc

+TSX*
+lock later

+BFS w/ prefetch

cuckoo

+TSX-glibc

+TSX*
+lock later

+BFS w/ prefetch

cuckoo

+TSX-glibc

+TSX*
+lock later

+BFS w/ prefetch

0

10

20

30

T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c)

1.38 1.84

7.94

22.11

29.21

1.29 1.69 2.81

18.31
22.81

0.97 0.99 1.11

7.24
12.17

load 0-0.95 load 0.75-0.9 load 0.9-0.95

cuckoo

+lock later

+BFS w/ prefetch

+TSX-glibc

+TSX*
cuckoo

+lock later

+BFS w/ prefetch

+TSX-glibc

+TSX*
cuckoo

+lock later

+BFS w/ prefetch

+TSX-glibc

+TSX*

0

10

20

30

T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c)

1.38
3.72 3.67

17.72

29.21

1.29
3.51 3.71

12.44

22.81

0.97
3.11 3.76

9.21
12.17

(b) Aggregate Insert performance of 8 threads, with locking

Figure 3.6: Contribution of optimizations to the hash table Insert performance. Optimiza-
tions are cumulative.

• +BFS: Look for an empty slot by breadth-first search.

• +prefetch: Prefetch the next bucket into cache.

• +TSX-glibc: Use the released glibc TSX lock elision [73] to support concurrent

writers.

• +TSX*: Use our TSX lock elision implementation that is optimized for short trans-

actions (Section 3.4.1) instead of TSX-glibc.

Single-thread Insert performance is shown in Figure 3.6a. All locks are disabled, so

“lock later” and “TSX” do not apply here. At high load factors, BFS improves single-
67

1 2 4 8
Number of threads

0

10

20

30

40

50
T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c)

100% Insert

cuckoo

cuckoo+

cuckoo with TSX lock elision

cuckoo+ with fine-grained locking

cuckoo+ with TSX lock elision

TBB concurrent_hash_map

1 2 4 8
Number of threads

0

10

20

30

40

50

50% Insert

1 2 4 8
Number of threads

0

10

20

30

40

50

10% Insert

(a) Average throughput to fill the table from 0% to 95% occupancy.

1 2 4 8
Number of threads

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c)

100% Insert

1 2 4 8
Number of threads

0

10

20

30

40

50% Insert

1 2 4 8
Number of threads

0

10

20

30

40

10% Insert

(b) Average throughput at high table occupancy (0.9% − 0.95%).

Figure 3.7: Throughput vs. number of threads. “cuckoo” is the optimistic cuckoo hashing
used in MemC3, “cuckoo+” is cuckoo with optimizations in Section 3.3.3. TSX lock eli-
sion is the optimized version in Section 3.4.1. The cuckoo hash table is 2 GB with ∼ 134.2
million slots. Table occupancy is for cuckoo hashing only. TBB concurrent_hash_map is
inserted with the same number and size of key-value pairs, with 2× to 3× more memory
used than cuckoo hash table.

thread write performance by ∼ 26%, and data prefetching further increases the throughput

by ∼ 9%.

At low table occupancy, these optimizations are less important. In most cases, there are

plenty of empty slots, and so no keys need to be moved. Further, when the cuckoo paths

are all short, there is no savings in item motion to outweigh the slightly increased search

cost of BFS over DFS. At high occupancy, BFS substantially reduces the number of item

displacements, and prefetching is more useful because more buckets need to be evaluated

as insertion candidates.

68

Multi-thread insert performance is shown in Figure 3.6b, measured by aggregating

the throughput from 8 threads accessing the same hash table. A global lock is used for

each Insert in the optimistic cuckoo hashing. Due to lock contention, the multi-threaded

aggregate throughput of the optimistic cuckoo hashing is much lower than the single-thread

throughput. The performance difference between the original optimistic cuckoo hashing

scheme and optimized cuckoo hashing with TSX lock elision is roughly 20×.

To understand the source of these benefits, the upper plot of Figure 3.6b shows the

optimization sequence with lock elision enabled first and algorithmic optimizations applied

later. With no algorithmic optimizations, using the customized TSX* elision improves

overall throughput by ∼ 4.3× over basic TSX lock elision. Comparing the top and bottom

figures, when TSX* is applied after our algorithmic changes, it still improves throughput by

almost 2x. This demonstrates the importance of using TSX in a way that is well-matched

to the properties of the transactions it is handling. The improvements from fine-grained

locking (not shown) are similar to those from applying TSX*, but slightly slower.

Simply reducing the size of the critical section without TSX or fine-grained locking

results in only modest improvements (bottom graph, far left): from 1.38 to 3.7 million

operations per second. However, once the system is capable of supporting fine-grained

concurrent access, the improvement from algorithmic improvements is large (top graph,

far left): from 7.94 to 29.2 million operations per second.

High performance is a consequence of both sufficiently fine-grained concurrency and

data structures optimized to make that concurrency efficient. Neither of these optimiza-

tions alone was able to achieve more than 8 million operations per second, but they com-

bine to achieve almost 30 million. Of particular note was that the algorithmic improve-

ments needed here were concurrency-specific: Without concurrency, for example, the BFS

changes were performance-neutral, but with fine-grained locking, BFS increased perfor-

mance by over 30%.

69

This latter conclusion is particularly true under high contention: The rightmost graphs

in the figure show the performance improvements for the highly-loaded portion of the

hash table fill, growing from 90% to 95% (a load factor that might occur with a heavy

insert/delete workload). In this case, the performance gains of the algorithmic engineering

are even more important: The high contention means that TSX alone encounters frequent

aborts, only improving performance by about 10%. The algorithmic optimizations then

provide a roughly 11x improvement.

3.5.2 Multi-core Scaling Comparison

This section evaluates hash table performance under an increasing number of cores, com-

paring both our original and optimized table, and also the Intel TBB [2] concurrent_hash_map

for comparison. We initialize the TBB table with the same number of buckets and key-value

type, then operate with the same workloads.

Cuckoo+ scales well as the number of cores increases, on both our 4-core Haswell ma-

chine (Figure 3.7), as well as when using fine-grained locking on a 16-core Xeon machine

without TSX support (Figure 3.8). On the Haswell machine, the performance increase from

4 to 8 cores is slightly lower than up to 4 cores because there are only 4 physical cores.

In comparison, the basic optimistic cuckoo hash table scales poorly for a write-heavy

workload, even using TSX lock elision. As shown in Figure 3.7, its total Insert throughput

actually drops as more cores are used, except for the read-heavy workloads (rightmost

graphs) for which its optimistic design works well. Notably, however, even under 10%

inserts, cuckoo+ still substantially outperforms optimistic cuckoo.

The fine-grained locking version of Cuckoo+ also scales well for all workloads. Its ab-

solute performance is up to 20% less than the TSX-optimized version, however, suggesting

that there is a non-negligible benefit from hardware support.

To put these numbers in perspective, we also compare against the Intel Thread Building

Blocks hash table. This comparison is slightly unfair: TBB supports concurrent iteration

70

1 2 4 8 16
Number of cores

10
20
30
40
50
60
70
80

T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c)

100% Insert

cuckoo+ with fine-grained locking Intel TBB concurrent_hash_map

1 2 4 8 16
Number of cores

10
20
30
40
50
60
70
80

50% Insert

1 2 4 8 16
Number of cores

10
20
30
40
50
60
70
80

10% Insert

Figure 3.8: Overall throughput vs number of cores. On a 16-core machine without TSX
support.

and other features that our hash table does not, but at a high level, it demonstrates both

that our table’s performance is good (it outperforms TBB substantially), particularly for

read-intensive workloads, and that Cuckoo+ retains the memory efficiency advantages of

the core Cuckoo design: It uses 2 − 3× less memory for these small key-value objects,

occupying only about 2GB of DRAM versus TBB’s 6GB.

The results in Figure 3.8 show that these results also extend to larger machines, using

a dual-socket Xeon server with 16 total cores, each a bit slower than those in the Haswell

machine. Neither server has perfect speedup after 8 cores—memory operations begin to

traverse the QPI interconnect between the sockets—but Cuckoo+ continues to scale for

write-heavy workloads where TBB scales only for read-heavy workloads.

3.5.3 Set-associativity and Load Factor

In this section, we evaluate the impact of set-associativity and load factor on cuckoo hash-

ing performance, using the optimized cuckoo hashing with TSX lock elision. The experi-

ments use the same workloads and hash table with same number of slots as before.

Figure 3.9 shows the aggregate Lookup-only throughput of 8 threads for 4- 8- and 16-

way set associative hash tables, all at 95% table occupancy. As expected, lower associativ-

ity improves throughput, because each reader needs to check fewer slots in order to find the

key. Each Lookup in a 4-way set-associative hash table needs at most two cache line reads

71

4-way 8-way 16-way
0

20

40

60

80

T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c)

68.95
63.64

54.17

Figure 3.9: 8-thread aggregate Lookup throughput of hash tables with different set-
associativities at 95% occupancy. Use optimized cuckoo hashing with TSX lock elision.

to find the key and get the value. Each Lookup in a 8-way set-associative hash table needs

at most two cache line reads to find the key and one more cache line read to get the value.

Each Lookup in a 16-way set-associative hash table needs at most four cache line reads to

find the key and one more cache line read to get the value.

Figure 3.10 shows the 8-thread aggregate throughput of table with different set-

associativities, for different workloads at different table occupancy. Write performance

degrades as the table occupancy increases, since an Insert operation has to read more

buckets to find an empty slot, and needs more item displacements to insert the new key.

The load factor is important in this discussion because of the different use modes for

hash tables: Some applications may simply fill the table in one go and then use it (perhaps

modifying inserted values but not deleting keys), thus caring more about total insert rate.

Others may issue inserts and deletes to a table at high occupancy, thus caring more about

90%-95% insert throughput.

Our results show that 8-way set-associativity has the best overall performance. It al-

ways outperforms 4-way set-associativity for 100% and 50% Insert workloads, and for

10% Insert workloads when the load factor is above 0.85. 16-way set-associativity al-

ways performs worst at low or moderate table occupancy. It starts to outperform 4-way

set-associativity when the load factor is above 0.75, and achieves the highest throughput

for write-heavy workloads when the load factor is above 0.92. We therefore use 8-way

associativity as our default because of its generality.

72

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load factor

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c)

100% Insert

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load factor

10

20

30

40

50

60
50% Insert

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load factor

10

20

30

40

50

60
10% Insert

4-way

8-way

16-way

Figure 3.10: 8-thread aggregate throughput of hash tables with different set-associativities
at different table occupancy. Use optimized cuckoo hashing with TSX lock elision.

3.5.4 Different Key-Value Sizes

All previous experiments used workloads with 8 byte keys and 8 byte values. In this section,

we evaluate the cuckoo hash table performance with different value sizes. Figure 3.11

shows the results of our two experiments.

In Figure 3.11a, we configure the hash table with 225 entries, show throughput as the

value size increases from 8 bytes to 256 bytes. As expected, the throughput decreases

as the value size increases because of the increased memory bandwidth needed. On our

4-core machine, hyperthreading becomes much less effective with large values, because

the machine runs out of memory bandwidth, and so performance scales only to the point

of running one thread on each of the 4 physical cores. For example, with 256 byte val-

ues, single-thread throughput is 3.05 millions reqs per second, 4-thread throughput is 3.6×

higher than 1-thread throughput, but 8-thread throughput is only 27% higher than 4-thread

throughput.

Figure 3.11b reveals an interesting consequence of our current design when used with

TSX: Large values increase the amount of memory touched during the transaction and

therefore increase the odds of a transactional abort. For this experiment, we fix the hash ta-

ble at 4GB and increase the key-value pair size to 1024 bytes. TSX lock elision outperforms

fine-grained locking with small key-value sizes, but is worse at 1024 bytes. Improving our

table design to reduce this effect seems a worthwhile area of future improvement.

73

0 50 100 150 200 250
Value Size (byte)

0

10

20

30

40

50

T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c) 8-thread 100% Insert

4-thread 100% Insert

1-thread 100% Insert

8-thread 10% Insert

1-thread 10% Insert

(a) Hash table with fixed number (∼ 33.4 million) of entries, using opti-
mized cuckoo hashing with TSX lock elision.

0 200 400 600 800 1000
Value Size (byte)

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

 (
m

ill
io

n
 r

e
q
s

p
e
r

se
c) 8-thread 100% Insert, fine-grained locking

8-thread 100% Insert, TSX lock elision

1-thread 100% Insert, TSX lock elision

8-thread 10% Inssert, TSX lock elision

1-thread 10% Insert, TSX lock elision

(b) Hash table with fixed size (4 GB), using optimized cuckoo hashing with
fine-grained locking or TSX lock elision.

Figure 3.11: Throughput with 8 byte keys and different sizes of values. thr stands for
thread, ins for insert.

3.6 Discussion and Implementation Availability

Our results about TSX can be interpreted in two ways. On one hand, in almost all of our

experiments, hardware transactional memory provided a modest but significant speedup

over either global locking or our best-engineered fine-grained locking, and it was easy to

use. This confirms other recent results showing, e.g., a “free” 1.4x speedup from using

TSX in HPC workloads [77]. On the other hand, the benefits of data structure engineering

for efficient concurrent access contributed substantially more to improving performance,

but also required deep algorithmic changes to the point of being a research contribution on

their own.

The focus of this chapter was on the algorithmic and systems changes needed to achieve

the highest possible hash table performance. As is typical in a research prototype, this re-

74

sults in a fast, but somewhat “bare-bones” building block with several limitations, such as

supporting only short fixed-length key-value pairs. To facilitate the wider applicability of

our results, one of our colleagues has, subsequent to the work described herein, incorpo-

rated this design into an open-source C++ library, libcuckoo [53]. The libcuckoo library

offers an easy-to-use interface that supports variable length key value pairs of arbitrary

types, including those with pointers or strings, provides iterators, and dynamically resizes

itself as it fills. The price of this generality is that it uses locks for reads as well as writes,

so that pointer-valued items can be safely dereferenced, at the cost of a 5-20% slowdown.

Specialized applications will, of course, still get the most performance using the hybrid

locking/optimistic approach described herein, and part of our future work will be to pro-

vide one implementation that provides the best of both of these worlds.

3.7 Conclusion

This chapter describes a new high-performance, memory-efficient concurrent hash table

based on cuckoo hashing. This hash table can serve as a critical component to improve the

performance and cost-efficiency of each individual key-value storage server. We demon-

strate that careful algorithmic and data structure engineering is a necessary first step to

achieving increased performance. Our re-design minimizes the size of the hash table’s

critical sections to allow for significantly increased parallelism. These improvements, in

turn, allow for two very different concurrency control mechanisms: fine-grained locking

and hardware transactional memory. On a 16-core machine with write-heavy workloads,

our system outperforms existing concurrent hash tables by up to 2.5x while using less than

half of the memory for small key-value objects.

75

Chapter 4

Conclusion

4.1 Summary of Contributions

This dissertation contributes a number of techniques to build high-performance and cost-

efficient key-value storage for large-scale clusters and multi-core servers. The design arises

from deep understanding of real-world workloads, current system challenges and emerging

technical trends. Our systems achieve high performance and efficiency by 1) minimizing

memory overhead and maximizing parallelism in each server; and 2) ensuring efficient dy-

namic load balancing across a cluster of servers under nearly-arbitrary workloads. Our

system prototypes achieve better performance than conventional systems with lower re-

source consumption. More specifically, this dissertation made following contributions.

• The design of a new cost-effective, large-scale, SSD-based key-value store architec-

ture that uses fast, small cache to ensure dynamic load balancing without substantial

over-provisioning, and exploits SDN and OpenFlow switch hardware capabilities to

achieve scalable throughput, low tail latency, and high system availability with effi-

cient content-aware routing.

• An efficient hybrid cache admission mechanism for our new small-cache-based load-

balanced key-value storage cluster to meet the challenges imposed by the update
76

rate limits in switch hardware and the small cache size. It can keep the cache and

switch forwarding rules updated with low overhead, and ensure stable high system

performance under rapidly changing workloads.

• Algorithmic improvements for fast concurrent cuckoo hashing to achieve both high

memory-efficiency and high throughput for both read- and write-heavy workloads.

The optimizations include minimizing the size of critical sections, minimizing the

number of memory writes per insert operation, enabling effective prefetching, and

optimizing the concurrency control mechanisms.

• Experience from using hardware transactional memory to build concurrent hash ta-

bles, with summarized reasons for transactional aborts and principles to minimize

the abort rate. We find that HTM provides primarily engineering benefits, not perfor-

mance benefits. Algorithmic optimizations are needed to achieve high performance

for both HTM and fine-grained locking implementations.

Collectively, the contributions in this dissertation provide system solutions and lessons

to building key-value storage for cloud and big data applications. They demonstrate how to

integrate different hardware and software techniques with new system and algorithm design

to achieve high performance at low cost.

4.2 Open Issues and Future Work

Most of this dissertation has focused on providing efficient dynamic load balancing for

key-value clusters, and improving the concurrency for cuckoo hash tables. There are still

many questions and challenges that deserve future investigation.

Scalable design and deployment of SwitchKV. In Chapter 2, we only sketch a design

for a scale-out version of SwitchKV with multiple cache servers and OpenFlow switches.

77

The detailed design and deployment in real data centers merit further investigation. It

would be interesting and challenging to explore the interaction of network topologies, cache

and backend server placements, OpenFlow switch forwarding rule management, and the

content-aware routing protocols.

Full exploration of the design space of key-value storage cluster. To achieve high-

efficiency, we moved from one extreme to another: instead of aggressively using DRAM,

SwitchKV serves most (almost all) data from SSD, and only uses a very small amount of

DRAM to serve the very few hot objects. It might be worth to fully explore the design

space of key-value systems, with different choices of using flash and DRAM, and different

designs of architectures.

A more challenging question is given certain expected workloads (e.g., object sizes,

read/write ratio, query distributions), service level objectives (e.g., throughput, latency,

consistency), and infrastructure constraints (e.g., network topologies, number of clients),

can we quickly come up with a cluster design that can meet the service level objectives

with lowest cost?

Better hash tables. We have demonstrated that with algorithmic optimizations, cuckoo

hash table can be highly memory-efficient and very fast with concurrent requests. It would

be interesting to know if there is any other hash table designs that could be better in terms

of performance and memory-efficiency on multi-core systems. One data structure worth

exploring and comparing with is hopscotch hashing [24, 39]. In theory, hopscotch hashing

has better cache locality but requires more memory writes per insert operation when the

table occupancy is high. Therefore, hopscotch hashing should have better performance

when the memory usage is low but worse performance when the memory usage is high.

It is unclear if we can further improve any of these two data structures to achieve better

performance with high table occupancy.

78

4.3 Concluding Remarks

The highly I/O intensive, massively parallel, deeply skewed, and rapidly changing work-

loads of modern cloud and big data applications pose great challenges to scaling key-value

storage performance in a cost-efficient manner. Such systems need to ensure load balancing

without substantial over-provisioning as the number of storage servers increases, and they

must maximize the memory efficiency and resource utilization of each individual server.

This dissertation argues for new approaches to building key-value systems that can meet

these performance goals at low cost. We do so by coupling new hardware and infrastructure

capabilities (e.g., OpenFlow, Intel DPDK, Intel TSX) with careful architectural design (e.g.,

content-aware routing) and algorithm engineering (e.g., hybrid cache update, concurrent

cuckoo hashing). We believe high-performance and cost-efficient key-value storage for

real production systems is worthy of further research, and the insights of this work can be

applied to a wider range of systems.

79

Bibliography

[1] Intel® 64 and IA-32 Architectures Software Developer’s Manual. Number 253665-
047US. Intel Corporation, June 2013.

[2] Intel Threading Building Block. https://www.threadingbuildingblocks.org/.

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scalable, Com-
modity Data Center Network Architecture. In Proceedings of the ACM SIGCOMM
Conference on Data Communication, 2008.

[4] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. FAWN: A Fast Array of Wimpy Nodes. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
2009.

[5] Ismail Ari, Bo Hong, Ethan L. Miller, Scott A. Brandt, and Darrell D. E. Long. Man-
aging flash crowds on the Internet. In Proceedings of the 11th International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS ’03), 2003.

[6] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload Analysis of a Large-scale Key-value Store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and
Modeling of Computer Systems, 2012.

[7] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines. 2009.

[8] Mateusz Berezecki, Eitan Frachtenberg, Mike Paleczny, and Kenneth Steele. Many-
core key-value store. In Proceedings of the Second International Green Computing
Conference, 2011.

[9] Peter Bodik, Armando Fox, Michael J. Franklin, Michael I. Jordan, and David A.
Patterson. Characterizing, Modeling, and Generating Workload Spikes for Stateful
Services. In Proceedings of the 1st ACM Symposium on Cloud Computing (SOCC),
2010.

[10] Cassandra. http://cassandra.apache.org/.

80

https://www.threadingbuildingblocks.org/
http://cassandra.apache.org/

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
Distributed Storage System for Structured Data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation, OSDI ’06, 2006.

[12] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders
Landin, Sherman Yip, Håkan Zeffer, and Marc Tremblay. Rock: A High-Performance
Sparc CMT Processor. IEEE Micro, 29(2):6–16, March 2009.

[13] Yue Cheng, Aayush Gupta, and Ali R. Butt. An In-memory Object Caching Frame-
work with Adaptive Load Balancing. In Proceedings of the Tenth European Confer-
ence on Computer Systems, 2015.

[14] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Martin
Pohlack, Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick Mar-
lier, and Etienne Rivière. Evaluation of AMD’s advanced synchronization facility
within a complete transactional memory stack. In Proc. 5th EuroSys, pages 27–40,
2010.

[15] Jaewoong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack, Michael
Hohmuth, David Christie, and Dan Grossman. ASF: AMD64 Extension for Lock-
Free Data Structures and Transactional Memory. In Proc. 43rd MICRO, pages 39–50,
2010.

[16] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, 2010.

[17] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data
streams. Proc. VLDB Endow., 1(2), August 2008.

[18] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with cfs. In Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles (SOSP), 2001.

[19] Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Commun. ACM, 56(2),
February 2013.

[20] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flashstore: High throughput persistent
key-value store. Proc. VLDB Endow., 3(1-2), September 2010.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s Highly Available Key-value Store. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles,
SOSP ’07, 2007.

81

[22] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early Experience with a
Commercial Hardware Transactional Memory Implementation. In Proc. 14th ASP-
LOS, pages 157–168, 2009.

[23] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall, Gi-
anluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. Route-
Bricks: Exploiting Parallelism to Scale Software Routers. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP), 2009.

[24] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro.
FaRM: Fast Remote Memory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2014), April 2014.

[25] Ulfar Erlingsson, Mark Manasse, and Frank McSherry. A Cool and Practical Alter-
native to Traditional Hash Tables. In Proc. 7th Workshop on Distributed Data and
Structures (WDAS’06), Santa Clara, CA, January 2006.

[26] Robert Escriva, Bernard Wong, and Emin Gün Sirer. HyperDex: A Distributed,
Searchable Key-value Store. In Proceedings of the ACM SIGCOMM Conference on
Data Communication, 2012.

[27] Bin Fan, David G. Andersen, and Michael Kaminsky. Memc3: Compact and con-
current memcache with dumber caching and smarter hashing. In Proceedings of the
10th USENIX Conference on Networked Systems Design and Implementation (NSDI),
2013.

[28] Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. Small Cache,
Big Effect: Provable Load Balancing for Randomly Partitioned Cluster Services. In
Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC), 2011.

[29] Brad Fitzpatrick. Distributed Caching with Memcached. Linux J., 2004(124):5–,
August 2004.

[30] Daniel Ford, Francois Labelle, Florentina Popovici, Murray Stokely, Van-Anh
Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In Proceedings of the 9th USENIX Symposium on Op-
erating Systems Design and Implementation, 2010.

[31] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding Network Fail-
ures in Data Centers: Measurement, Analysis, and Implications. In Proceedings of
the ACM SIGCOMM Conference on Data Communication, 2011.

[32] Google SparseHash. https://code.google.com/p/sparsehash/.

[33] C. Gray and D. Cheriton. Leases: An Efficient Fault-tolerant Mechanism for Dis-
tributed File Cache Consistency. In Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles (SOSP), 1989.

82

https://code.google.com/p/sparsehash/

[34] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J. Wein-
berger. Quickly Generating Billion-record Synthetic Databases. In Proceedings of
the 1994 ACM SIGMOD International Conference on Management of Data, 1994.

[35] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. VL2: A
Scalable and Flexible Data Center Network. In Proceedings of the ACM SIGCOMM
Conference on Data Communication, 2009.

[36] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. PacketShader: A GPU-
accelerated Software Router. In Proceedings of the ACM SIGCOMM Conference on
Data Communication, 2010.

[37] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Support
for Lock-free Data Structures. In Proc. 20th ISCA, pages 289–300, 1993.

[38] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[39] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch Hashing. In Proceedings
of the 22Nd International Symposium on Distributed Computing, DISC ’08, 2008.

[40] Intel Data Plane Development Kit (DPDK). http://dpdk.org/.

[41] Intel Performance Counter Monitor. www.intel.com/software/pcm.

[42] Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional Memory Archi-
tecture and Implementation for IBM System Z. In Proc. 45th MICRO, pages 25–36,
2012.

[43] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin Vah-
dat. Chronos: Predictable Low Latency for Data Center Applications. In Proceedings
of the Third ACM Symposium on Cloud Computing, SoCC ’12, 2012.

[44] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In Proceedings of the Twenty-ninth
Annual ACM Symposium on Theory of Computing (STOC), 1997.

[45] Markus Klems, Adam Silberstein, Jianjun Chen, Masood Mortazavi, Sahaya Andrews
Albert, P.P.S. Narayan, Adwait Tumbde, and Brian Cooper. The yahoo!: Cloud data-
store load balancer. In Proceedings of the Fourth International Workshop on Cloud
Data Management (CloudDB), 2012.

[46] Diego Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Ẽsteve Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-Defined Networking: A Comprehensive Survey. Pro-
ceedings of the IEEE, 103(1), January 2015.

83

http://dpdk.org/
www.intel.com/software/pcm

[47] H. T. Kung and John T. Robinson. On Optimistic Methods for Concurrency Control.
ACM Trans. Database Syst., 6(2):213–226, June 1981.

[48] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized Structured Stor-
age System. SIGOPS Oper. Syst. Rev., 44(2), April 2010.

[49] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning with the Parameter Server. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[50] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn, Anuj Kalia, Michael Kamin-
sky, David G. Andersen, O. Seongil, Sukhan Lee, and Pradeep Dubey. Architecting
to Achieve a Billion Requests Per Second Throughput on a Single Key-value Store
Server Platform. In Proceedings of the 42Nd Annual International Symposium on
Computer Architecture, 2015.

[51] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J. Freedman. Al-
gorithmic Improvements for Fast Concurrent Cuckoo Hashing. In Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14, 2014.

[52] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G. Andersen, and Michael J.
Freedman. Be Fast, Cheap and in Control with SwitchKV. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 16), NSDI ’16, 2016.

[53] libcuckoo. https://github.com/efficient/libcuckoo.

[54] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT: A
Memory-efficient, High-performance Key-value Store. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP), 2011.

[55] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. MICA:
A Holistic Approach to Fast In-memory Key-value Storage. In Proceedings of the
11th USENIX Conference on Networked Systems Design and Implementation (NSDI),
2014.

[56] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache Craftiness for Fast
Multicore Key-value Storage. In Proceedings of the 7th ACM European Conference
on Computer Systems (EuroSys), 2012.

[57] Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen, Orran Krieger,
and Rusty Russell. Read-Copy Update. In In Ottawa Linux Symposium, pages 338–
367, 2001.

[58] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient Computation of
Frequent and Top-k Elements in Data Streams. In Proceedings of the 10th Interna-
tional Conference on Database Theory (ICDT), 2005.

84

https://github.com/efficient/libcuckoo

[59] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scaling Memcache at Facebook.
In Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2013.

[60] NoviSwitch. http://noviflow.com/products/noviswitch/.

[61] NVM Express. http://www.nvmexpress.org/.

[62] OpenFLow. https://www.opennetworking.org/.

[63] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Lev-
erich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar, Mendel
Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman. The Case for
RAMClouds: Scalable High-performance Storage Entirely in DRAM. SIGOPS Oper.
Syst. Rev., 43(4):92–105, January 2010.

[64] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. Journal of Algorithms,
51(2):122–144, May 2004.

[65] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris. Improv-
ing Network Connection Locality on Multicore Systems. In Proceedings of the 7th
ACM European Conference on Computer Systems (EuroSys), 2012.

[66] Pica8. http://www.pica8.com/.

[67] Recap of Cassandra Summit 2014. http://opensourceconnections.com/blog/

2014/09/17/cassandra-summit-2014/.

[68] Redis. http://redis.io/.

[69] RocksDB. http://rocksdb.org/.

[70] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. E-store: Fine-grained
Elastic Partitioning for Distributed Transaction Processing Systems. Proc. VLDB En-
dow., 8(3), November 2014.

[71] Jeff Terrace and Michael J. Freedman. Object Storage on CRAQ: High-throughput
Chain Replication for Read-mostly Workloads. In Proceedings of the 2009 Confer-
ence on USENIX Annual Technical Conference, 2009.

[72] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, Scalable, Concur-
rent Hash Tables via Relativistic Programming. In Proc. USENIX ATC, pages 11–11,
2011.

[73] TSX lock elision for glibc. https://github.com/andikleen/glibc.

85

http://noviflow.com/products/noviswitch/
http://www.nvmexpress.org/
https://www.opennetworking.org/
http://www.pica8.com/
http://opensourceconnections.com/blog/2014/09/17/cassandra-summit-2014/
http://opensourceconnections.com/blog/2014/09/17/cassandra-summit-2014/
http://redis.io/
http://rocksdb.org/
https://github.com/andikleen/glibc

[74] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy Transactions in Multicore In-memory Databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP), 2013.

[75] Voldemort. http://www.project-voldemort.com/.

[76] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht,
Christopher Barton, Raul Silvera, and Maged Michael. Evaluation of Blue Gene/Q
Hardware Support for Transactional Memories. In Proc. 21st PACT, pages 127–136,
2012.

[77] Richard M. Yoo, Christopher J. Hughes, Konrad Laiz, and Ravi Rajwar. Performance
Evaluation of Intel Transactional Synchronization Extensions for High-Performance
Computing. In Proc. SC, 2013.

86

http://www.project-voldemort.com/

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Current Approaches and Challenges
	1.1.1 Key-Value Cluster and Load Balancing
	1.1.2 Memory-Efficiency for Big Data Storage
	1.1.3 Parallelism in Multi-Core Systems

	1.2 Contributions

	2 SwitchKV
	2.1 Background and Related Work
	2.2 SwitchKV Design
	2.2.1 Content Routing for Queries
	2.2.1.1 Key Encoding and Switch Forwarding
	2.2.1.2 Query Flow Through the System

	2.2.2 Hybrid Cache Update
	2.2.2.1 Update with Periodic Hot Key Report
	2.2.2.2 Update for Bursty Hot Keys
	2.2.2.3 Handle Burst Change with Rule Buffer
	2.2.2.4 Cache Consistency

	2.2.3 Local Storage and Networking
	2.2.3.1 Parallel Data Access
	2.2.3.2 Network Stack

	2.2.4 Cluster Scaling

	2.3 Evaluation
	2.3.1 Evaluation Setup
	2.3.2 Load Balancing with a Small Cache
	2.3.3 Benefits of the New Architecture
	2.3.4 Cache Updates

	2.4 Conclusion

	3 Fast Concurrent Cuckoo Hashing
	3.1 Background and Related Work
	3.1.1 Hash Tables
	3.1.2 Concurrency Control Mechanisms
	3.1.3 Naive use of concurrency control fails

	3.2 Principles to Improve Concurrency
	3.3 Concurrent Cuckoo Hashing
	3.3.1 Cuckoo Hashing
	3.3.2 Prior Work in Concurrent Cuckoo
	3.3.3 Algorithmic Optimizations
	3.3.3.1 Lock After Discovering a Cuckoo Path
	3.3.3.2 Breadth-first Search for an Empty Slot
	3.3.3.3 Increase Set-associativity

	3.3.4 Fine-grained Locking

	3.4 Optimizing for Intel TSX
	3.4.1 Optimized TSX lock elision

	3.5 Evaluation
	3.5.1 Factor Analysis of Insert Performance
	3.5.2 Multi-core Scaling Comparison
	3.5.3 Set-associativity and Load Factor
	3.5.4 Different Key-Value Sizes

	3.6 Discussion and Implementation Availability
	3.7 Conclusion

	4 Conclusion
	4.1 Summary of Contributions
	4.2 Open Issues and Future Work
	4.3 Concluding Remarks

	Bibliography

