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ABSTRACT 

 

The accumulation of public gene expression datasets offers numerous opportunities for 

researchers to utilize these data to characterize gene functions, understand pathway 

actions, and formulate hypotheses about the molecular basis of human diseases. Yet, 

exploring this extremely large gene expression data collection has been challenging, due 

to a lack of effective tools in reusing existing datasets and exploring these datasets for 

targeted analyses. An important challenge is discovering robust gene signatures of 

biological processes and diseases, where this depends on the ability to detect similar 

genes that share gene expression patterns across a large set of conditions. This thesis 

discusses query-based systems that are intended for large-scale integration and 

exploration of gene similarities. It also discusses their key biological applications.  

In the first part, I present SEEK, a search system and a novel algorithm for 

searching similar (or coexpressed) genes around a multigene query of interest. The search 

algorithm combines coexpressed genes using a sensitive dataset weighting algorithm for 

effective weighting of coexpression results. Notably, through the robust search of 

thousands of human datasets, the retrieval of functionally co-annotated genes always 

improves with the inclusion of more datasets, showing the promise of the large 

compendia. In the second part, I extend the work of SEEK to the expression compendia 

of 5 commonly studied model organisms. The new system ModSEEK enables accurate 

searches in a wider experimental variety, and has been extensively evaluated. In the third 
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part, I propose a novel framework for integrating and comparing coexpression context 

across a pair of organisms. I leverage both comparative genomics orthology data and 

functional genomics coexpression data, in an unsupervised framework to identify pairs of 

genes in an orthologous group that are similarly highly coexpressed to an orthologous 

query in two organisms.  I show that such functionally similar pairs of genes can be used 

to improve the performance of single-organism gene retrieval searches. In the final part, I 

demonstrate how coexpressed genes can be used to identify important transcription 

factors and dysregulated processes underlying breast cancer subtypes. This part 

highlights the promise of coexpressed genes in providing an understanding of cancer 

dysregulations.  

 

  



v 

 

ACKNOWLEDGMENTS 

 

First, I would like to thank my advisor Olga Troyanskaya for her continued support in 

this project and for teaching me just so many things, from writing scientific papers to 

designing great slides for presentation, offering advice on my career and pointing out 

areas of improvement. Without her guidance, none of this thesis would be possible. I 

want to thank her for her keen insights, and for introducing me to several wonderful 

collaborators that I have had the pleasure working during my graduate study.  

I want to thank my thesis committee members Mona Singh, and Andrea LePaugh for 

taking the time to serve on my committee. I want to thank Kai Li, my coadvisor, and 

Moses Charikar, who is involved in the search project, for providing valuable feedback in 

the early stage of the search project. I want to thank Vessela Kristensen for her continued 

guidance and encouragement, and contagious enthusiasm, which makes collaboration 

with her a great experience.   

I want to thank the current and past members of Olga Troyanskaya’s lab, including: 

Aaron Wong, Christopher Park, Young-suk Lee, Alicja Tadych, Arjun Krishnan, Casey 

Greene, Jian Zhou, Ana Bell, Chandra Theesfeld, Ruth Dannenfelser, Vicky Yao, Ran 

Zhang, Max Homilius, Dima Gorenshteyn, and Yuanfang Guan. These are the people 

with whom I had the pleasure collaborating for the work covered in this thesis, or with 

whom I shared many great moments in the lab. Thanks to all of you for making my time 

in the lab always memorable and enjoyable. 



vi 

 

Last but not least, I want to thank my wife Xi Wang. Thanks to her constant 

encouragement and support, I am able to finish writing this thesis. My parents have 

always been role models for me as I grew up. Their unconditional love and support has 

been absolutely crucial for the completion of my PhD study.  

Finally, I acknowledge the various funding sources from Princeton University and grants 

from US National Institutes of Health (NIH) and US National Science Foundation (NSF): 

NIH R01 HG005998, NIH R01 GM071966, and NSF DBI-0546275. 

  



vii 

 

Contents 

ABSTRACT ...................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................ v 

LIST OF FIGURES ......................................................................................................... xi 

1 INTRODUCTION ................................................................................................... 13 

1.1 Background ........................................................................................................ 13 

1.1.1 Rapid accumulation of gene expression data ................................................. 13 

1.1.2 Challenges in interpreting gene expression data ............................................ 14 

1.1.3 Meta-analysis, integrating diverse gene expression data ................................ 14 

1.1.4 Coexpression and its biological implications ................................................. 15 

1.1.5 Computational approaches for searching coexpressed genes ......................... 17 

1.1.6 Definitions ...................................................................................................... 18 

1.2 Contributions of my thesis ................................................................................. 19 

2 TARGETED EXPLORATION AND ANALYSIS OF LARGE CROSS-

PLATFORM HUMAN TRANSCRIPTOMIC COMPENDIA ................................... 25 

2.1 Abstract .............................................................................................................. 25 

2.2 Introduction ........................................................................................................ 25 

2.3 Results ................................................................................................................ 28 

2.3.1 System description. ......................................................................................... 28 

2.3.2 Gene retrieval evaluations. ............................................................................. 31 

2.3.3 Batch effect evaluation. .................................................................................. 34 

2.3.4 Case study. ...................................................................................................... 37 

2.3.5 Web interface. ................................................................................................. 38 

2.4 Methods .............................................................................................................. 41 

2.4.1 Data preparation and correlation normalization. ............................................ 41 

2.4.2 Search algorithm. ............................................................................................ 43 

2.4.3 Search algorithm pseudocode. ........................................................................ 48 

2.4.4 Estimating the significance of gene scores. .................................................... 49 

2.4.5 Algorithm and interface implementations. ..................................................... 50 

2.4.6 Metadata processing. ...................................................................................... 50 

2.4.7 Large-scale functional evaluation setup. ........................................................ 51 

2.4.8 Other search algorithms and implementations ............................................... 53 



viii 

 

2.4.9 Building compendia: raw data processing ...................................................... 55 

3 MODSEEK: TOWARDS A TARGETED, DATA-DRIVEN VIEW OF MODEL 

ORGANISM TRANSCRIPTOMES ............................................................................. 59 

3.1 Abstract .............................................................................................................. 59 

3.2 Introduction ........................................................................................................ 59 

3.3 Methods .............................................................................................................. 60 

3.3.1 Source data and preparation ........................................................................... 60 

3.3.2 Search algorithm ............................................................................................. 62 

3.3.3 Query coexpression P-value estimation ......................................................... 63 

3.3.4 Evaluation of GPD fit to null coexpression distribution. ............................... 66 

3.3.5 Large-scale gene-retrieval evaluation. ............................................................ 66 

3.3.6 MeSH enrichment ........................................................................................... 66 

3.4 Results and discussion ........................................................................................ 67 

3.4.1 Dataset composition ....................................................................................... 67 

3.4.2 ModSEEK description .................................................................................... 68 

3.4.3 Evaluations ..................................................................................................... 69 

3.4.4 Dataset prioritization and coexpression testing .............................................. 71 

3.5 Conclusions ........................................................................................................ 73 

4 CROSS-ORGANISM GENE RETRIEVAL ......................................................... 75 

4.1 Abstract .............................................................................................................. 75 

4.2 Introduction ........................................................................................................ 75 

4.3 Methods .............................................................................................................. 76 

4.3.1 Definitions ...................................................................................................... 76 

4.3.2 Usage scenario ................................................................................................ 78 

4.3.3 Evaluation procedure ...................................................................................... 80 

4.4 Results ................................................................................................................ 81 

4.4.1 Illustration example ........................................................................................ 81 

4.4.2 Evaluations ..................................................................................................... 81 

4.5 Conclusion .......................................................................................................... 86 

5 IDENTIFICATION OF BREAST CANCER SUBTYPE-SPECIFIC 

REGULATORS AND TARGETS  INFLUENCED BY GENETIC AND 

EPIGENETIC ALTERATIONS ................................................................................... 87 

5.1 Introduction ........................................................................................................ 87 



ix 

 

5.2 Methods .............................................................................................................. 90 

5.2.1 SEEK coexpressed gene search. ..................................................................... 90 

5.2.2 ChIP-seq data processing................................................................................ 90 

5.2.3 Finding subtype-specific TFs from ENCODE data. ....................................... 91 

5.2.4 Differentially enriched ChIP-seq TFs. ............................................................ 93 

5.2.5 Breast cancer methylation, CNA aberration. .................................................. 93 

5.2.6 Testing of association between TFs and dysregulation. ................................. 94 

5.2.7 Dysregulation heatmap construction. ............................................................. 95 

5.3 Results ................................................................................................................ 95 

5.3.1 Identification of TFs relevant to cancer subtypes ........................................... 97 

5.3.2 Subtype-specificity of ChIP-seq TFs .............................................................. 98 

5.3.3 Coexpressed targets of ChIP-seq TFs: literature-based validation ............... 102 

5.3.4 Validation of coexpressed targets in siRNA and knockdown experiments .. 103 

5.3.5 Further expanding the subtype-relevant TFs: motif-derived TFs from 

coexpressed genes. ................................................................................................... 105 

5.3.6 Associations of TFs with dysregulations ...................................................... 107 

5.4 Discussion ........................................................................................................ 111 

6 CONCLUSIONS AND FUTURE WORK ........................................................... 115 

SUPPLEMENTARY NOTES ...................................................................................... 119 

A.1 Hedgehog (Hh) query – detailed analysis of the retrieved genes ......................... 119 

A.2 Web interface details ............................................................................................ 120 

A.3 ModSEEK hedgehog ligand tissue contexts ......................................................... 123 

SUPPLEMENTARY FIGURES .................................................................................. 124 

SUPPLEMENTARY DATA ........................................................................................ 130 

REFERENCES .............................................................................................................. 133 

 

  



x 

 

  



xi 

 

LIST OF FIGURES 

Figure 2.1 | SEEK system overview and systematic functional evaluation ...................... 29 

Figure 2.2 | Gene-retrieval performance vs. query size, and comparisons between SEEK 

and MEM in single- and multiple-gene queries. ............................................................... 32 

Figure 2.3 | Performance of SEEK and other search systems over increasing numbers of 

gene expression data sets. ................................................................................................. 34 

Figure 2.4 | Batch-effect analysis. ..................................................................................... 36 

Figure 2.5 | Search results for the Hedgehog (Hh) signaling query GLI1 GLI2 PTCH1:  

the data sets prioritized for the query. ............................................................................... 38 

Figure 2.6 | Search results for the Hedgehog (Hh) query (GLI1, GLI2, PTCH1) and 

search refinement. ............................................................................................................. 40 

Figure 2.7 | Correlation standardization. ........................................................................... 42 

Figure 2.8 | Spearman and bicor correlation measures. .................................................... 43 

Figure 2.9 | Variation of the parameter p in the weighting formula. ................................ 46 

Figure 3.1 | Proportion of datasets with the different types of characteristics. ................. 68 

Figure 3.2 | Functional evaluation comparison between ModSEEK and other systems. . 70 

Figure 3.4 | Quantile-quantile goodness of fit plot for GPD fitting of null query 

coexpression distribution. ................................................................................................. 72 

Figure 4.1 | ModSEEK combines orthology and coexpression evidences to identify 

orthogroups with co-similar orthologs. ............................................................................. 77 

Figure 4.2 | Cross-organism search process. ..................................................................... 79 

Figure 4.3 | Example hedgehog query in the actual search interface. ............................... 82 

Figure 4.4 | Leveraging model organism orthoquery and search ranking improves the 

gene retrieval performance of human queries. .................................................................. 84 



xii 

 

Figure 4.5 | Leveraging human orthoquery in the search process also improves the 

performance of model organism gene retrieval. ............................................................... 85 

Figure 5.1 | Schematic of the workflow. ........................................................................... 96 

Figure 5.2 | Top ChIP-seq experiments ranked highest in terms of luminal A coexpressed 

genes. .............................................................................................................................. 100 

Figure 5.3 | Top ChIP-seq experiments ranked highest for basal-like coexpressed genes.

......................................................................................................................................... 100 

Figure 5.4 | Proportion of coexpressed genomic targets and TFs having substantial FCH 

after TF knockout or siRNA knockdown........................................................................ 104 

Figure 5.5 | CNA and DNAmeth maps on motif-derived TFs within the coexpressed 

groups. ............................................................................................................................. 109 

Figure 5.6 | CNA and DNAmeth maps on ENCODE ChIP-seq derived TFs. ................ 111 

  



13 

 

1 INTRODUCTION 

1.1 Background 

1.1.1 Rapid accumulation of gene expression data 

The beginning of the 21
st
 century is marked by rapid developments of high-throughput 

genomics technologies. These technologies have generated massive amounts of data 

which hold great potentials for exploration and discoveries by biological researchers. At 

present, Gene Expression Omnibus 
1
 and ArrayExpress 

2
 are two of the most well-known 

web-based repositories for experimental data, and have allowed researchers from all over 

the world to submit diverse high-throughput experiments in standardized formats 
3
.   

These noteworthy efforts in collecting and organizing data, along with the 

reduction of cost of technologies and increase of computational power, have allowed data 

to accumulate at an extremely rapid pace.  Datasets are no longer found in small numbers, 

but are now registered in huge numbers containing together billions of data points. Gene 

expression datasets assayed by microarray 
4
 or by high-throughput RNA-sequencing 

5
 

technologies represent the most abundant category of data. Primarily, gene expression 

datasets have been targeted for patient diagnostic purpose, which stratifies patients to 

different disease risk groups 
6
, or for identifying genes that might be disease-markers 

7
, or 

for understanding gene functions in a perturbed cellular system of model organisms 
8,9

. 

Each expression experiment typically examines the expression (or mRNA abundance) of 

genes for tens of thousands of genes in an organism’s genome, and is specific to a 

condition which can be a disease-state, cell line perturbation, or natural variation among 
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individuals. Needless to say, expression studies have been an extraordinarily powerful 

tool both in research and in the clinic
6,10

. 

1.1.2 Challenges in interpreting gene expression data 

Interpreting microarray datasets can be challenging due to the inherently noisy nature of 

microarray datasets. There are uncertainties in the gene expression measurements, and 

technical variables such as the experimental design, number of replicates can influence 

the interpretability and success of a study. Therefore, typically results from a single 

dataset are combined with or compared to an independent study to gain credibility. In the 

past decade, considerable efforts have been devoted to increasing robustness and 

eliminating technical biases in the data. These include 1) the correction of batch effects 
11

, 

which are experimental factors such as time of day, who perform the experiments, sample 

batches that confound the main variable of interest, 2) increasing sample sizes for better 

statistical power, such as large-scale studies consisting of thousands of individuals, 3) 

publication of guidelines on proper processing and handling of data 
12

, and 4) combining 

the results of multiple related expression studies (also known as meta-analysis) 
13

.  

1.1.3 Meta-analysis, integrating diverse gene expression data 

Particularly, this 4
th

 approach meta-analysis has been popularized, demonstrated to be 

quite successful in the last decade in increasing robustness and generalizability of 

expression studies and can be applied effectively in many situations. Retrospectively, 

early examples of meta-analysis can be traced back to 2004 with the integration of 

differentially expressed genes for about 100 human expression datasets (Oncomine) 
14,15

. 

Here, differentially expressed genes are defined as genes found statistically different in 

terms of expression between two groups of conditions, such as case vs. control, normal vs. 
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disease, or treatment vs. no treatment. Oncomine seeks to integrate cancer vs. normal 

gene-lists across ~100 cancer microarray studies to identify common neoplastic 

progression gene signatures 
14

. Over the years, different meta-analysis approaches have 

been developed
13

, including methods that combine the gene P-values among studies
14

, 

combine ranks
16,17

, combine effect sizes
18

, or directly merge raw datasets 
19

. The key 

message to be learnt from these meta-analysis approaches is that genes derived from 

meta-analysis are more robust than any single expression dataset can derive.  

Though these approaches have been extraordinarily useful, a key challenge has 

been scaling up the meta-analysis to larger data collections. For example, a caveat of 

Oncomine has been that experimenters need to manually identify dichotomous groups of 

conditions prior to differential expression analysis. As the number of expression datasets 

has exploded in the modern day, this would be difficult to do. Namely, manually curating 

datasets cannot be expected to keep pace with the growth of data, so alternative 

computational strategies must be developed for analyzing, integrating datasets in large 

quantities to maximize utilization of the existing data compendia.  

1.1.4 Coexpression and its biological implications 

The idea of finding groups of genes that are coexpressed (or exhibit coordinated 

expression) has become more and more widespread and routine. Coexpression as a 

content-based measure of gene-similarity is normally characterized by the use of 

expression data to define similar genes. It is alternative to other gene similarity measures 

such as semantic similarity
20

 or sequence/phylogenetic similarity 
21

. Coexpression carries 

very valuable information about genes. Early microarray studies on the yeast organism 

have revealed that when genome-wide expression profiles for biological specimens taken 
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from different time points are compared, the expression of genes in cell cycle follow an 

interesting cyclical pattern according to time 
22

. Genes belonging to different clusters of 

expression patterns are heavily enriched in different stages of the cell cycle. For example, 

clusters of genes have been found to be up-regulated (or have the highest expression) 

during the G-phase of the cell cycle, while a distinct second cluster of genes are up-

regulated specifically in S-phase. These observations indicate that gene expression 

programs align closely with the biological activity within the cell. The expressions of 

genes are changed in a coordinated manner (i.e. together in a group) rather than 

individually and stochastically.  

The task of finding coexpressed genes has important biological implications. First, 

it was observed that not only are genes in cell cycle coexpressed but also genes 

participating in other processes are well-coexpressed such as cellular respiration, 

ribosome biogenesis, protein synthesis, in human cancers and other organisms 
23,24

. Thus, 

coexpressions hold the key to solving several difficult tasks, including unraveling gene 

functions for uncharacterized genes in the genome, identifying novel gene members of 

existing pathways, and characterizing multifunctional roles of existing genes.  To 

characterize gene function using coexpression, one relies on the principle of guilt-by-

association 
25

, whereby the unknown function of a gene can be inferred from the known 

gene functions of the neighboring genes (or coexpressed genes). Using this principle, 

coexpression analysis has been extended to multiple organisms to find conserved gene 

functions. This makes use of the fact that homologous genes (or similar genes) across 

organisms can have similar coexpressed gene neighbors 
26

. As it is rather rare that 

compatible experiments can be located for comparing diverse organisms, coexpression 
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can become a useful measure for comparing organisms, as has been illustrated in prior 

works 
27,28

. Useful measures such as the expression context conservation (ECC)
27,29

, 

coexpression network similarity,  have been developed to compare A. thaliana and Oryza 

sativa, based on the similarity between coexpression network neighborhoods for 

orthologous gene pairs. The implications of coexpression have included many other 

applications, including identifying genes that are in the same cellular compartment, or 

being part of a protein complex
30

. 

1.1.5 Computational approaches for searching coexpressed genes 

Methods for finding coexpressed genes have been developed and evolved over time. 

Earlier works include clustering, such as K-means, hierarchical clustering, biclustering-

based approaches (as reviewed in this paper 
31

), singular value decomposition and 

principle component analysis 
32

 approaches. Whereas clustering identifies a set of genes 

coexpressed across all conditions of a dataset, biclustering on the other hand seeks to 

identify genes whose expression is coexpressed across only a subset of conditions. While 

these methods have been successful in many ways, they suffer a major weakness: the fact 

that biclustering is a computationally intractable problem imposes a severe limitation on 

the size of dataset that biclustering generally can tackle. As a result, biclustering 

approaches have been typically applied to datasets involving a few hundred conditions. It 

becomes apparent that coexpression methods that analyze the entirety of the gene 

expression collection (involving 100,000 conditions from thousands of datasets) were 

urgently needed to properly explore the diverse genomic landscape. Query-, context-

sensitive search approaches were designed to overcome this challenge of large-scale 

search and analysis. The idea of query-sensitive search was pioneered by Hibbs & 
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Troyanskaya who first developed a system integrating over 100 datasets covering 2400 

experimental conditions (SPELL 
33

). The distinction with earlier approaches is the 

introduction of a query, which is made up of a gene or a gene-set defining users’ context. 

This search system is closely analogous to what Google has done for text-based 

document search and image search – the output of an expression search is composed of 1) 

expression datasets found to be relevant to the query and 2) genes that are found 

coexpressed with the query based on the measure of similarity of expression in the 

datasets, much like searching for similar images given a query image by utilizing image 

features. The advantages of employing a query in expression search include 1) significant 

savings of search space and time, 2) targeting of the search results to a context of interest, 

and 3) weighting of specific datasets, which is particularly useful for computing context-

specific query similarity scores. Some key concepts of a query-based expression search 

system are next introduced. 

1.1.6 Definitions 

A dataset is an expression matrix composed of genes (rows) and conditions (columns), 

and is a unit of submission in the repository Gene Expression Omnibus. It is linked to a 

biological question or study. Each dataset contains experimental conditions that are 1) 

done at a certain time by a certain laboratory, and 2) intended to investigate a biological 

question, therefore a dataset is typically linked to a publication. A collection or a 

compendium contains many datasets. Instruments generating datasets are called platforms, 

or technologies, such as Affymetrix Human Genome U133 Plus 2.0 Arrays, Illumina 

HiSeq 2000, etc. Gene-gene correlations, interchangeably referred to as gene similarities, 

coexpression, or simply correlations, are measures of similarities of two genes in terms 
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of their expression pattern across all conditions in a given dataset. The simplest ways of 

defining correlations are Pearson and Spearman correlation coefficients. In a multi-

dataset scenario, gene-gene correlations may be weighted and aggregated, for example: 

𝑟𝑥,𝑦 =
1

∑ 𝑤𝑑𝑖𝑑𝑖∈𝐷
(𝑤𝑑1

𝑟𝑑1,𝑥,𝑦 + 𝑤𝑑2
𝑟𝑑2,𝑥,𝑦 + ⋯ ) where rx,y is the aggregated correlation, x, 

y are two genes and wd is the weight of a dataset in the compendium. This weight can be 

a reflection of dataset reliability or relevance to the query of interest. Given a query 

𝑄 = {𝑞1, 𝑞2, … } , the correlation search (or gene-similarity search) for whole-

compendium is described as follows:  find a rank-list of genes sorted by decreasing 

correlation score between each gene and the query, by some measure of similarity and by 

some way of aggregation of compendium datasets to arrive at the final rank-list of genes. 

This type of search system is data-driven, since every step of the search algorithm relies 

only on the expression matrices and the query genes with no human intervention involved. 

It is content-based since the search of similar genes is based on expression data. 

1.2 Contributions of my thesis 

Though several expression-based gene-similarity search systems have been developed in 

the past, none of them have achieved the following objectives simultaneously: 1) Support 

for multi-gene queries. It was assumed that the query must be single-gene in most of 

previous systems. While it is simplistic, single-gene query may cause ambiguous context 

due to genes’ multifunctional roles. 2) Support for cross-platform dataset integration. In 

prior systems, a platform of interest must be selected in order to search the query. Usually 

only Affymetrix array platforms are supported. 3) Explore the entirety of the expression 

compendium. Data integration has been limited to a few hundred datasets, which 

represent a small portion of the available public data holdings. These are the main 
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reasons that motivated me to formulate this thesis, with the goal of developing a large-

scale gene-expression similarity search system for human and later extending it to 5 other 

commonly used model organisms. The developed systems not only solve all of the above 

three objectives, they also feature distinct advantages not previously present, including 1) 

prioritization of all of the thousands of expression datasets based on a multi-gene query, 2) 

visualization of the search results (i.e. display of coexpression patterns between query 

and query-similar genes), 3) refinement of search results by allowing users restrict 

datasets at will, and 4) extensive evaluation of the system using ground-truth Gene 

Ontology Biological Process gene annotations. The systems already have enabled 

thousands of biomedical researchers with or without a computational background to 

easily search and navigate all of the available expression data, which means that these 

systems are practically putting the expression data in the hands of researchers for 

exploration-based discoveries.   

This thesis is divided into the following chapters with contributions listed below: 

 In Chapter 2, I develop a gene-similarity search system called SEEK (Search-based 

exploration of expression compendium) which enables coexpression mining from 

over 5,000 human datasets containing 100,000 conditions. This system importantly 

solves the challenge of weighting datasets. Manually locating relevant datasets to a 

query of interest is infeasible in thousands of datasets. Yet this task of identifying 

important datasets is critical to the effective exploration of data and for accurate 

coexpression mining. I develop a computational method for weighting datasets from a 

query of interest and utilize it in coexpressed gene discovery. This weighting method 

is based on cross-validation of query genes by discovering datasets which exhibit 
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coexpression of query genes themselves. It is robust to detect even datasets where 

query gene-set may not be fully coexpressed with each other but are significantly 

more coexpressed than random gene-sets. To evaluate this method, I demonstrate that 

the derived dataset weights, when being used to integrate coexpressed genes across 

datasets, enable accurate retrieval of genes sharing important biological contexts. The 

coexpressed genes were judged as accurate or not according to the ground-truth GO 

Biological Process gene annotations. The search performance has been evaluated to 

be robust across multiple platforms including microarrays and next generation 

sequencing technologies, and the method can handle thousands of datasets. Also, I 

demonstrate that the accuracy of retrieval is increased when thousands of datasets are 

utilized together. The search system implementing this method is available in a web-

friendly interface at http://seek.princeton.edu, which features on-the-fly computation 

of dataset weights, computation of coexpressed genes, intuitive visualizations, and 

further search refinements. This work is published in Nature Methods. 

 Based on the encouraging results from SEEK, in Chapter 3 I extend the search 

functionalities of SEEK to 5 other commonly studied model organisms: S. cerevisiae 

(yeast), D. melanogaster (fly), M. musculus (mouse), C. elegans (worm), D. rerio 

(zebrafish). The search system, called ModSEEK (model-organism SEEK) and 

available at http://seek.princeton.edu/modSeek/, permits for the first time large-scale 

coexpression mining for model organism biologists. The search system holds in its 

database many more experimental varieties previously not seen in the human version. 

Thus, it is suitable for experiment planning and hypothesis generations. I extensively 

evaluated the system for robust gene retrieval. In addition, I develop a fast estimation 
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method for coexpression P-value given a gene-set of interest. This method is based on 

the extreme value theory, where I show that the distribution of coexpression scores in 

a dataset can be modeled with a generalized pareto distribution (GPD). Estimating the 

parameters of GPD allows fast computation of P-values across thousands of datasets.  

 In Chapter 4, I develop an unsupervised coexpression-based cross-organism gene-

retrieval framework and system (http://seek.princeton.edu/modSeek/viewer 

_index.jsp). The rise of model organism datasets in the repository calls for a need to 

integrate data across organisms for more meaningful comparisons. In this chapter, I 

combine both functional genomics and comparative genomics gene orthology data to 

infer pairs of genes across organisms that share similarly high degree of coexpression 

with respect to a query of interest. These functionally similar linkages are particularly 

robust as they are derived from large-compendia integration, and specific to the query 

context in question. I report that this combined strategy can significantly boost the 

gene retrieval performances of single organisms. A manuscript detailing Chapters 3 

and 4 will be submitted soon for publication. 

 Lastly in Chapter 5, I describe a key biological application of SEEK: transcription 

factor (TF) inference and TF regulatory network mapping. The coexpressed genes 

returned by SEEK can serve as input for further analysis of the transcriptional 

mechanisms regulating coexpressed genes. Analyzing cis-regulatory elements 

enriched by the enhancer and promoter regions of coexpressed genes allow one to 

glean insights on what transcription factors may possibly bind to these genes. The 

ENCODE consortium currently provides experimentally characterized, genome-wide 

maps of cis-regulatory binding elements for hundreds of diverse human cell types and 
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cell lines (via ChIP-seq TF-binding data).  Here I leverage this useful resource and 

couple it with SEEK’s robust coexpressed genes to deduce a list of candidate TF 

regulators of coexpression. Using the breast cancer as a disease system, I use SEEK 

to expand disease-gene signatures for individual subtypes of breast cancer. Then I 

next systematically determine which ENCODE ChIP’d TFs best resemble individual 

disease subtype based on coverage of cis-regulatory elements among coexpressed 

genes. The TF regulators inferred from coexpression are indeed verified to be 

specifically related to breast cancer misregulations (copy number aberrations, DNA 

methylations, SNP) in TCGA datasets, demonstrating success of the approach. This 

work is supervised by Vessela Kristensen and a manuscript will be soon submitted. 

The work was presented at the 2015 Recomb Systems Biology/Regulatory Genomics 

Conference.  
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2 TARGETED EXPLORATION AND ANALYSIS OF 

LARGE CROSS-PLATFORM HUMAN 

TRANSCRIPTOMIC COMPENDIA 

 

2.1 Abstract 

We present SEEK (search-based exploration of expression compendia; 

http://seek.princeton.edu/), an expression-based search engine with the capability to 

handle very large transcriptomic data collections, including thousands of human data sets 

from many different microarray and high-throughput sequencing platforms. SEEK uses a 

query-level cross-validation–based algorithm to automatically prioritize data sets relevant 

to the query and a robust search approach to identify genes, pathways and processes co-

regulated with the query. SEEK provides multigene query searching with iterative 

metadata-based search refinement and extensive visualization-based analysis options. 

2.2 Introduction 

The accumulation of human gene expression data in public repositories, such as The 

Cancer Genome Atlas
34

 and Gene Expression Omnibus
1
, offers unprecedented 

opportunities for data-driven characterization of biological pathways that underlie human 

diseases. Exploratory, unsupervised approaches have proven to be essential to expression 

data analysis because they can provide a relatively unbiased view of a biological system 

and the flexibility for biomedical researchers to focus their analyses on an area of 

interest.  In the past, a number of tools have been developed to enable effective 
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exploration of individual expression datasets
35–37

. However, existing exploratory and 

unsupervised approaches, such as clustering and bi-clustering
35,38

 tools, do not readily 

extend to compendia that contain thousands of datasets from different technologies and 

platform. This is mostly attributable to the lack of scalability and robustness to the 

biological noise of these large expression collections.   

Unsupervised, exploratory approaches are particularly suitable for data-driven 

discovery and settings with insufficient training data, as is the case for many areas of 

human biology. While supervised approaches have demonstrated promise in combining 

expression data for gene function/relationship prediction
39–41

, they can be prone to biases 

towards prior knowledge and require ample high-specificity labeled data for training. 

They are generally focused on specific tasks such as function prediction. There is a clear 

need to enable user-driven, flexible, interactive exploratory analysis of the large 

compendia of gene expression data. Towards addressing this need, recent efforts have 

been focused on query-based search systems
33,42,43

. In general, these systems allow a 

biological researcher to start with a query of interest in mind and find genes that are 

coregulated (or coexpressed) with researcher’s query genes. Query-based search provides 

an effective, easy to use, and flexible approach for generating hypotheses about genes 

and datasets in an area of interest. Previous query-based systems have been hampered by 

the number or type of datasets which can be handled: they are focused on a small number 

of datasets
33,43

, or datasets pre-selected to a particular disease
15,44

, or the system can only 

integrate datasets generated from one platform
42

. Several other approaches, such as 

GeneChaser
45

 and ExpressionBlast
46

, have been proposed for identifying datasets with 
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similar differential expression signals as a query expression profile, but they do not 

provide a coexpressed gene retrieval capability, nor a targeted expression visualization. 

Enabling accurate and robust expression search over the entire diverse 

compendium is powerful because more than one dataset is likely to contain the biological 

signals relevant to the user’s area of interest, as each human dataset represents a mixture 

of signals from diverse pathways affected by disease states, environmental factors, and 

clinical/experimental treatments.  Thus, while it’s challenging to identify such signals, it 

is worthwhile to address this issue so that users can harvest all the existing expression 

data to identify signals and make hypotheses that may not be discoverable from a single 

dataset. Building a query-based, unsupervised search system for the full dimension of the 

human compendium is difficult. The system must first deal with ambiguous probe-to-

gene mappings, changing gene annotations, varying gene coverage between platforms, 

and diversely pre-processed datasets
12,47

, and other technical challenges
11,48

.  Second, the 

system must be able to handle the extensive and heterogeneous expression patterns. The 

compendium includes many different experimental conditions, cell types, and diseases
49

 

with substantial expression diversities
49,50

 – a query-sensitive search algorithm is required 

to detect specific biological signals of interest to the user. 

We thus developed a large-scale search system that is capable of handling 

expression data across multiple platforms, including NGS and microarray technologies. 

The system can automatically prioritize datasets that are relevant to the user’s single or 

multi-gene query, and return genes co-regulated with the query in these datasets.   
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2.3 Results 

2.3.1 System description. 

We present SEEK, a robust cross-platform search system capable of handling large 

human expression data sets across multiple expression platforms, including microarray 

and high-throughput sequencing technologies, and automatically prioritizing data sets 

relevant to the user’s single- or multiple-gene query to identify genes co-regulated with 

the query (Figs. 2.1–2.2). SEEK provides biomedical researchers with a systems-level, 

unbiased exploration of diverse human pathways, tissues and diseases represented in the 

entire heterogeneous human compendium. The system integrates thousands of data sets 

on the fly using a novel cross-validation–based data set–weighting algorithm, which 

robustly identifies relevant data sets and leverages them to retrieve genes co-regulated 

with the query. It supports sophisticated biological search contexts defined by multigene 

queries and enables cross-platform analysis, with the current compendium including 

155,025 experiments spanning 5,210 data sets from 41 different microarray and RNA-seq 

platforms (Fig. 2.1a and Supplementary Data 2.1). It has been implemented in a user-

friendly interactive web interface (http://seek.princeton.edu/), which includes expression 

visualization and interpretation modules (Fig. 2.1a). This interface facilitates hypothesis 

generation by providing (i) intuitive expression visualizations of the retrieved 

coexpressed genes, (ii) explorations of individual data sets to establish associations 

between coexpressed genes and biological variables, and (iii) further refinement of the 

search results, such as limiting data sets to a specific tissue or disease. 
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Figure 2.1 | SEEK system overview and systematic functional evaluation. (a) Users 

begin by providing a query gene set of interest to define a biological context of their 

search (step 1). SEEK searches the entire compendium and returns genes that are 

coexpressed with the query and the top relevant data sets (steps 2 and 3). The web user 

interface provides visualizations of gene coexpressions across prioritized data sets (step 4) 

and enables users to iteratively refine their search (Fig. 2.2) and further analyze the 

results through a condition-specific view (step 5) (Section A.2). (b) Gene-retrieval 

evaluations across 995 diverse GO biological process terms for the SEEK, MEM, Gene 

Recommender and combined data set correlation algorithms (Section 2.3.8). Queries of 

diverse sizes (2–20 genes) were selected randomly among each term’s genes to evaluate 

the precision of retrieving the remaining genes in each term. Individual term 

performances (Supplementary Data 2.2) and additional detailed comparative 

evaluations (Figs. 2.2–2.3, Supplementary Figs. 2.1–2.2) are provided. 

 

The search algorithm (see Section 2.3 Methods) allows for multigene queries and 

includes a ‘hub’ gene
51,52

 bias correction procedure, a novel cross-validation data set–

weighting method, and a summarization procedure to calculate the final score for each 
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gene. Prior to application of the search algorithm, the data compendium is preprocessed 

to make correlation distributions comparable across data sets. Then a hub gene correction 

procedure is applied to remove biases caused by generically well-coexpressed genes not 

specific to the user’s query of interest. The data set–weighting algorithm then prioritizes 

relevant data sets according to the query of interest on the basis of normalized, hub-

corrected coexpression in each data set. The idea is to upweight data sets from which a 

subset of the query genes can retrieve the remaining query genes well using coexpression 

(cross-validation–based weighting). This approach is effective even when not all query 

genes are coexpressed. Finally, the integrated gene scores are calculated on the basis of 

the data set weights and genes’ coexpression patterns in each data set to provide a final 

gene ranking.  

SEEK is based on measuring coexpressions, which minimizes biases toward prior 

knowledge, and accurately extracts functional information without need to explicitly 

model outcome variables such as treatment and control experiments (Fig. 2.1b and prior 

works
23,33,42,43

). The use of coexpression thus enables the robust integration of a large 

number of data sets from diverse tissues, cell lines and disease origins, generated from 

diverse platforms, and such usage can be extended to make functional comparisons 

across organisms. A key challenge here is that the search results can be polluted by batch 

effects
11

, poor-quality data sets or even good-quality data sets irrelevant to the user’s 

query context. Yet the detailed, targeted correction of these issues in each data set or 

modeling of each outcome variable is impossible in the context of a large, multiplatform 

compendium. SEEK’s data set–weighting algorithm addresses this challenge by enabling 

multigene query support for constructing expressive search contexts and by using a 
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discriminative algorithm for identifying which data sets are relevant and accurate in 

representing query-related biological processes. This algorithm automatically 

downweights low-quality data sets (Fig. 2.4 and Section 2.2.3) and provides accurate 

retrieval of functionally related genes and data sets (Fig. 2.1b and Supplementary Figs. 

2.1–2.3).  

 

2.3.2 Gene retrieval evaluations. 

SEEK was accurate and robust in a large-scale gene-retrieval assessment across a diverse 

array of biological contexts. Specifically, we constructed over 129,000 queries spanning 

995 human Gene Ontology (GO) biological process gene sets (by choosing subsets of 

genes from each process) and evaluated the ability of the algorithm to retrieve the 

remaining genes in the process (see Section 2.4 Methods). This setup was designed to 

simulate realistic situations in which the query genes are biologically coherent but are not 

necessarily well coexpressed and in which users are interested in identifying genes 

functionally related to the query (in this case, members of the same biological process). 

SEEK’s performance was robust across a wide range of pathways (Supplementary Data 

2.2), and it consistently outperformed previous search approaches, including the only 

query-based human search system, MEM
42

; Gene Recommender
43

 (not available for 

human as a resource); and the correlations on the combined data set (Fig. 2.1b and Fig. 

2.2). Furthermore, our evaluation demonstrated that SEEK’s support for multigene 

queries enhances the algorithm’s ability to effectively weight relevant data sets from the 

compendium (Fig. 2.2a) and that the algorithm is robust with respect to query noise 

(Supplementary Fig. 2.2).  
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Figure 2.2 | Gene-retrieval performance vs. query size, and comparisons between 

SEEK and MEM in single- and multiple-gene queries. (a) SEEK’s performance vs. 

query size (the number of query genes). The plot shows the median (black line) and the 

IQR (shaded area). The retrieval performance increases as a function of query size, 

showing that the improved query context, resulted from including more process-relevant 

genes in the query, can help boost gene retrieval. (b) Gene Recommender’s performance 

vs. query size. (c) The performance of SEEK and MEM. The evaluation is the same as 

used in Fig. 2 (main text). These plots additionally show the mean (red line), median 

(black line), and the IQR (shaded area) across 995 processes. (d) Single-gene query 

retrieval performance. 
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Notably, our evaluation demonstrated the benefits of robust search of a 

compendium with thousands of expression data sets, as SEEK’s performance improved 

with the inclusion of more microarray and RNA-seq data sets in the compendium, 

assessed by subsampling our large compendium to create smaller subsets (Fig. 2.3 and 

Supplementary Data 2.3). Furthermore, being able to integrate the full scale of the 

existing human gene expression data allows the approach to support focused queries 

covering diverse areas of biology  (Supplementary Fig. 2.2), providing strong 

performance across varied processes including erythrocyte differentiation (44-fold 

improvement of precision over random (FIOR) at 10% recall) and glutamate signaling 

(104-fold) (Supplementary Fig. 2.2). In contrast, using the most relevant single data set 

for the same query yielded weak performance of just 3- and 6-FIOR for the two 

processes, respectively, thus demonstrating the value of using the entire compendium.  
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Figure 2.3 | Performance of SEEK and other search systems over increasing 

numbers of gene expression data sets. A sub set consisting of 121 GO-slim 

(Supplementary Data 2.3) terms were used to evaluate each system’s gene retrieval 

performance on six compendium sizes each built from random subsets of the data sets in 

its full compendium. The FIOR@10% is measured. All algorithms are applied to the 

same data compendia, and MEM, Gene Recommender, and combined data set correlation 

algorithms do not scale to the large human compendium that SEEK is able to effectively 

utilize. 

 

2.3.3 Batch effect evaluation. 

SEEK uses the data set weighting algorithm to systematically address the challenge of the 

possible batch effects that exist in certain data sets in the compendium. To evaluate 

SEEK’s effectiveness, we identified low quality data sets with severe batch effects in the 

compendium based on the variation in the samples’ expression value distribution within 

each data set. Specifically, for each data set d, with n samples, we calculate the standard 

deviation σd 

 𝜎𝑑 = 𝑠𝑡𝑑(𝐼𝑄𝑅𝑑1
, 𝐼𝑄𝑅𝑑2

, … , 𝐼𝑄𝑅𝑑𝑛
) Eq2.1 

where d1, …, dn are the samples in data set d, and IQR is the interquartile range for the 

expression values in a sample dx. A relatively high σd signifies a technical bias or a shift 

in the median and IQR of the gene expression values in that array, which is generally 

caused by batch effects. We then examined the 100 datasets with the highest σd (and thus 

most severe batch effects) in the compendium to see where they are ranked in full dataset 

prioritization (~4,500 data sets) for 121 diverse GO-slim queries (GO-slim
53

 provides a 

curated set of diverse, high-level GO terms that are nonetheless specific enough for 

experimental evaluation and span the full set of GO biological processes. Each GO-slim 

query consists of all experimentally annotated genes in that GO-slim term.) There was 
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indeed a negative enrichment of the 100 data sets in full data prioritizations across 121 

GO slim queries (Fig. 2.4), indicating that data sets with substantial batch effects are 

systematically ranked lower than randomly selected data sets, and thus effectively down-

weighed in the SEEK search process. In fact, a high proportion (84%) of these 100 low 

quality data sets have a non-significant data set weight assigned by SEEK (at P more than 

the 0.001 significance cut off) (Fig. 2.4, source data), thus demonstrating the 

effectiveness of the SEEK data set weighting algorithm in automatically handling low-

quality data sets. 
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Figure 2.4 | Batch-effect analysis. Enrichment of 100 batch affected data sets (Section 

A.1) in full data prioritizations (4,500 data sets) across 121 GO slim queries. This test 

was done to check if the 100 data sets (with severe batch effects) have a lower score than 

randomly selected data sets in the ranking. Score-based PAGE enrichment was used. The 
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data sets consistently received a lower score than randomly selected data sets (avg. z-

score = –6.3, P < 1.39×10
–10

), showing that low quality data sets have a relatively small 

impact on the prioritizations.  

 

2.3.4 Case study. 

We illustrated the power of SEEK and multigene queries by using SEEK to identify 

genes dysregulated in the Hedgehog (Hh) pathway and the corresponding tissues and 

disease states where the Hh pathway is hyperactivated. We used Hh genes GLI1, GLI2 

and PTCH1 as the query, where transcription factors GLI1 and GLI2 have been 

suggested as pathway markers of Hh signaling
54

. By examining this query in the context 

of a large compendium of expression data sets (Fig. 2.5 and Supplementary Fig. 2.3), 

we observed a wide prevalence of aberrant Hh signaling across many diseased tissues 

(Fig. 2.5). The top-ranked data sets had substantially higher weights, indicating the 

presence of a strong query-related signal in these data (Fig. 2.5), and appeared to be more 

specific to the Hh query than to random queries (Supplementary Fig. 2.3). These highly 

weighted data sets included results from studies of tumors with previously documented 

connections to aberrant Hh signaling, such as (i) medulloblastoma, in which 

overactivation of Hh has been documented
55,56

, (ii) human germ cell tumors, in which Hh 

pathway mutations have been linked to aberrant Hh activation in human germ cells
57

, and 

(iii) malignant rhabdoid tumors
58,59

, in which mutations have been found to lead to Hh 

signaling activation
59

. Thus, SEEK correctly identified data sets relevant to the Hh 

signaling and helped explore the important role of the Hh pathway in a wide array of 

cancer types. The data set weighting led to accurate retrieval of other genes in the Hh 

pathway, including those encoding Hh pathway signaling receptors and their associated 
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genes SMO, PTCH2, HHIP, BOC
60

, the Cos2 homolog KIF7 (ref. 
61

) (Fig. 2.6a) as well 

as additional genes associated with Hh dysregulation in cancer (Section A.1). 

 

Figure 2.5 | Search results for the Hedgehog (Hh) signaling query GLI1 GLI2 

PTCH1:  the data sets prioritized for the query. The top 10 data sets among 5,000 data 

sets prioritized by SEEK are displayed in the insert. These data sets are weighted by the 

coexpression of the Hh query genes to indicate the abundance of aberrant Hh signaling 

activations.  

 

2.3.5 Web interface. 

The SEEK interface can visualize the aforementioned results—including the top-ranked 

data sets, genes and coexpression profiles—using flexible and interactive visualizations 

(Fig. 2.6a). The main search result page provides users with the ability to perform 

extensive follow-up analyses, including functional analysis of results with a coexpression 

view that summarizes the query and retrieved genes’ coexpression across 50 data sets at a 

time (Section A.2). Users can also examine the behavior of any gene in a given data set 

in detail through a condition-specific view (Fig. 2.1a step 5), where they can examine 

associations between coexpressed genes and treatments or outcomes on the basis of data 
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set metadata. An additional post-search analysis, the search refinement function, allows 

users to iteratively refine their search by limiting the scope of the query search to data 

sets of a specific disease or tissue of interest (Fig. 2.6b). This feature currently provides 

customized search over not merely the 2,685 cancer data sets of various tissue origins but 

also almost 2,000 noncancer data sets, including nearly 280 stem cell, over 100 

neurodegenerative disease and 1,400 various immune and other cell type related data sets 

(Supplementary Data 2.4). We plan to regularly update SEEK’s compendium as new 

microarray and RNA-seq data sets become publicly available.  
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Figure 2.6 | Search results for the Hedgehog (Hh) query (GLI1, GLI2, PTCH1) and 

search refinement. (a) Data sets prioritized and genes retrieved for the query in the main 

result page, shown in expression view. The top-ranked data sets (i) and the coexpressed 

gene list (ii) are indicated. Conditions in each data set are hierarchically clustered in real 

time according to the expression values of the top genes retrieved from the search (iii), 

and an expression heat map of the genes for each data set is provided (iv). (b) The 

“Refine Search” feature allows users to narrow the scope of their search through selection 

criteria including tissue, cell type or disease categories; platforms; or rank of data sets 

(Section A.4).  
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2.4 Methods 

2.4.1 Data preparation and correlation normalization. 

SEEK assembles its human gene expression compendium by obtaining data sets from 

NCBI’s Gene Expression Omnibus (GEO) database
1
 and the Cancer Genome Atlas 

(TCGA)
34

. The compendium consists of data sets from 41 platforms including 32 

platforms from Affymetrix, Agilent, and Illumina and 9 RNA sequencing platforms 

(Supplementary Data 2.1). These platforms were chosen on the basis of the number of 

available data sets and the availability of raw data to perform consistent processing for 

each platform. The data sets were processed consistently by applying platform-specific 

procedures on their raw measurements (Section 2.3.9 and Supplementary Data 2.5) to 

remove the systematic differences among data sets
12

. The normalized data sets containing 

gene-level expression values can be accessed through the SEEK website. 

The next step of data processing is calculating the Pearson correlations rd(x, y) 

between all pairs of genes x and y in each data set d. As correlation values arising from 

different genome-wide distributions are not directly comparable across data sets, a Fisher 

transform procedure
62

 is applied to convert the distribution of correlations to a normal-

like distribution:  

 
𝑓𝑑(𝑥, 𝑦) =

1

2
ln

1 + 𝑟𝑑(𝑥, 𝑦)

1 − 𝑟𝑑(𝑥, 𝑦)
 

Eq2.2 

where fd(x, y) is the Fisher-transformed score. Then the data are translated to z scores for 

standardization: 

 
𝑧𝑑(𝑥, 𝑦) =

1

𝑠𝑡𝑑(𝑓𝑑)
[𝑓𝑑(𝑥, 𝑦) − 𝑎𝑣𝑔(𝑓𝑑)] 

Eq2.3 
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where avg(fd) is the average of fd for all (x, y) pairs, and std(fd) is the s.d. of fd. 

The normalization procedure has been used in previous studies
33,39

 and has been 

found successful in transforming most correlation distributions that are generated from 

different platforms and technologies into a comparable normal distribution with mean 0 

and variance 1 (Fig. 2.7). Note that SEEK also works well with other correlation 

measures, such as Spearman and biweight midcorrelation (bicor)
63

 (Fig. 2.8). We found 

that the normalized Pearson correlation provides performance better or comparable to 

that of Spearman and bicor in the search setting, likely because the normalization 

procedure and the SEEK algorithm itself reduce the effects of outliers in search 

performance (Fig. 2.8). 

 

Figure 2.7 | Correlation standardization. (a) Prior to standardization, the distribution of 

Pearson correlation (r) (for all pairs of genes in the data set) is not directly comparable 
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across platforms. We picked a data set at random from each of 8 major platforms to 

illustrate this lack of comparability. (b) After the normalization of Pearson by Fisher’s 

transform (ln[(1 + r) / (1 – r)] / 2) followed by standardization, all of the selected data 

sets from these different platforms have been properly standardized to a N(0,1) normal 

distribution.  

 

 

Figure 2.8 | Spearman and bicor correlation measures. Gene retrieval evaluations for 

GO slim biological process queries, searched using the SEEK algorithm. The correlation 

measure is varied: Pearson normalized, Spearman, and bicor. The data sets used are a 

group of 174 breast cancer tumor data sets. 

 

2.4.2 Search algorithm. 

The search algorithm takes two inputs: (i) a set of query genes Q = {q1, …, qx} and (ii) 

the set of correlation z scores containing the query zd(g, q) for each data set d in the data 

compendium D, for all genes q in Q and for all genes g in the genome G. The outputs of 

the algorithm are a prioritized list of data sets and coexpressed genes relevant to Q. 

The search algorithm consists of four steps. The first step is to load precomputed z 

scores of Pearson correlations (in the normalization step above) containing the query 

across D. 
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The second step is to perform hub gene bias correction on each data set d. The 

correction procedure is motivated by the observation that ‘hub’ genes
51,52

 or well-

connected genes in the coexpression network represent global, well-coexpressed 

processes
24

 and can contaminate the search results regardless of query composition owing 

to the effect of unbalanced gene connectivity in a scale-free coexpression network
51,64–66

, 

which can lead to nonspecific results in search or clustering approaches. To avoid the 

bias created by hub genes that are not related to the user’s query or pathway of interest, 

our method corrects each gene g’s correlation to q in each data set d: 

 
𝑧𝑑̃(𝑔, 𝑞) = 𝑧𝑑(𝑔, 𝑞) −

1

|𝐺|
∑ 𝑧𝑑(𝑔, 𝑥)

𝑥∈𝐺

 
Eq2.4 

where z̃ is the hub gene-corrected z score. By subtracting g’s average correlation from the 

correlation of (g, q), we expect the resulting score to emphasize g’s coexpression 

specifically with the query rather than its general connectivity. The control of 

coexpression hub genes enables the detection of specific biological signals in the data 

that would otherwise be swamped by broad coexpression patterns of the most well-

connected genes. 

The third step performs cross-validation–based data set weighting. The goal is to 

rank data sets according to each data set’s relevance to the query
33

. The result will be the 

first output of the search system and will also be used to compute the final gene-score 

vector for the last step. The main idea is to upweight data sets where a subset of the query 

genes can retrieve the remaining query genes well on the basis of normalized, hub 

corrected coexpression in that data set. Thus, it is analogous in spirit to the cross-

validation procedures commonly used in machine learning, where a subset of the 
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standard (in this case, query) ‘hides’ from the system to assess how well the method can 

predict these hidden genes. 

To describe the weighting method, we first introduce some notations. The data set 

d is implicit in each formula below and omitted for brevity; thus z̃ (g, q) is the corrected z 

score for g to a query gene q in Q in data set d. Let Rq = (g
(1)

, g
(2)

, g
(3)

, …, g
(r)

) be the 

sequence of genes at rank 1, 2, 3, …, r obtained from ordering genes by decreasing z̃ (g, 

q). That is, Rq satisfies: z̃ (g
(1)

, q)  z̃ (g
(2)

, q)  z̃ (g
(3)

, q)…. Let r(t, Rq) be the rank of 

gene t in the ranking Rq minus 1 (for example, r(g
(1)

, Rq) = 0), and let p < 1 be a rate 

parameter, which we set at 0.99 based on empirical analysis (Fig. 2.9). Then the weight w 

of the data set is 

 

𝑤 =
1

|𝑄|
∑ [(1 − 𝑝) ∑ 𝑝𝑟(𝑡,𝑅𝑞)

𝑡∈𝑄−𝑞

]

𝑞∈𝑄

 

Eq2.5 

The weighting formula performs cross-validations on q in the set Q. The goal is to 

detect which query genes q can best retrieve the remainder query Q – q; such instances of 

q have a high contribution to w. We shorten r(t, Rq) in equation (2) to r(t). The exact form 

of this expression for weight (i.e., sum of p
r(t)

) is inspired by rank-biased precision
67

 and 

is adapted to our setting to robustly measure the effectiveness of the data set in retrieving 

Q – q. Here, p < 1 is the rate parameter in rank-biased precision and is the parameter of 

geometric distribution, as r(t) assumes discrete values. When it is employed, p
r(t)

 

upweights ranks for genes t in the set Q – q that are high in the rank list (i.e., r(t) is 

small), which intuitively emphasizes those genes in the query that are highly coexpressed 

with each other. The measure has the desired property of upweighting pairs of query 

genes that are well correlated while not allowing the correlations between the 
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uninformative, noncoherent part of the query to affect the weight of the data set because 

the query genes may only be partially coexpressed in a given data set. Compared to 

previous methods
33

, our method gains robustness to heterogeneous query signals because 

the reward on the highly coherent query genes far outweighs the damaging effect of a few 

noncoherent query genes, which are poorly ranked relative to other query genes, have 

high r(t), and have scores p
r(t)

 tending to 0. 

 

Figure 2.9 | Variation of the parameter p in the weighting formula. The parameter p 

that is used in Eq. 2 in Section 2.4 Methods is arrived after testing values in the range 

from 0.90 to 0.99. At p=0.99, SEEK is most stable in retrieving genes across the 995 GO 

biological processes. 

 

The last step of the algorithm calculates the final integrated gene scores to 

generate a master ranking of coexpressed genes that is the second output of the system (in 

addition to data set relevance weighting). We obtain the gene-to-query score matrix 

MG,D, where the entry Mg,d is the average corrected z score of gene g to the query in data 

set d: 
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𝑀𝑔,𝑑 =

1

|𝑄|
∑ 𝑧𝑑̃(𝑔, 𝑞)

𝑞∈𝑄

 
Eq2.6 

With the data set weight vector from the previous step w = [w1, w2, … ], a simple 

formulation of the final gene-score vector F is given by  

 
𝐹 = 𝐌𝐺,𝐷 × 𝛼𝐰𝑇 , 𝛼 =

1

∑ 𝑤𝑑𝑑∈𝐷
 

Eq2.7 

Although previous research had some success with this formulation
33

, our 

findings show that it works well only in the presence of complete gene information with 

no missing genes in MG,D. When there are heterogeneous sources of data in the 

compendium (for example, different microarray and RNA-seq platforms), the 

confounding factor of missing genes and partial gene rankings must be accounted for. 

Our approach is to modify the procedure above by employing threshold parameters to 

exclude a data set from weighting if it does not contain enough query genes and to 

exclude a gene from the final ranking if it is not assayed by a sufficient number of data 

sets in the compendium (Section 2.3.3). 

The pseudocode for the entire SEEK search algorithm can be found in Section 

2.3.3. The algorithm is robust to query composition (Figs. 2.2 and 2.3) and data set 

quality, including automatically downweighting data sets with substantial batch effects 

(Section 2.2.3 and Fig. 2.4). Computer source codes are deposited in 

https://bitbucket.org/ libsleipnir/sleipnir.  

For single-gene queries, the search algorithm performs the same steps above 

except that in the data set weighting step, the algorithm assigns equal weight to all data 

sets. Thus, for single-gene queries, the search system will treat each data set equally and 
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retrieve genes that are generally correlated with the query in the hub gene corrected 

space. If users wish to perform their single-gene searches in a tissue-specific or disease-

specific manner, they can manually define a category of data sets using the extensive 

“Refine Search” interface on the SEEK website, which will restrict D in the search 

system input. 

2.4.3 Search algorithm pseudocode. 

The SEEK search algorithm is a general search algorithm that works to integrate 

coexpressions from diverse data sets across platforms, and tackles the problem of 

incomplete gene ranking that arises from the diverse gene coverage across data sets. The 

algorithm is described in the following pseudocode: 

Input: query genes (Q), genes in genome (G), data sets (D), correlation z-scores for pairs 

containing Q across data sets ( DdQqGgqgzd  ,,),,( ). 

Variables: Mg,d, matrix of gene scores across D; countg, vector of coverage of genes; wd, 

vector of data set weight; Fg, vector of final gene scores.  

Constants: α, β, θ. 

Begin: 

Compute ),(~ qgzd for each g, q, and d, as described in Eq. 2.4 (see Section 2.3 Methods). 

//Hubbiness control 

Initialize Mg,d = 0 for all g, d; countg = 0 for all g; wd = 0 for all d. 

For each data set d:   //Data set weighting 

 Let V = set of genes that d contains 

 If ||V  or  || QV :    //not enough genes, or query genes present 

continue     

 Compute 𝑤𝑑 as described in Eq. 2.5 (see Section 2.3 Methods). 

  


QVq ddg QVqgzM ),(~
, , for each gene Vg   

 countg = countg + 1, for each gene Vg   

End for 

For each g in G:    //Gene scoring 

 If countg > θ: //sufficient data set coverage for g 
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  Let U = set of data sets that contain g 

  
 




Ud dgd

Ud d

g Mw
w

F ,

1
 

Else: 

 gF  

End if 

End for 

Sort 𝐹 based on decreasing score, generate gene ranking (RG) 

Sort 𝑤 based on decreasing weight, generate data set ranking (RD) 

Return RG and RD 

End 

The three thresholds α, β, θ are designed to maximize data utilization while 

keeping in check the biases introduced by incomplete data. α is the minimum number of 

genes required to be present in a data set. β is the minimum number of query genes that 

have to be measured in a data set, and  θ is the minimum number of data sets required to 

contain a gene to include the gene in search ranking. Based on our experience, the 

following thresholds provide robust performance for a variety of queries and for large 

compendia with diverse data sets: α = 10,000, β = 2, θ = 0.5|Dw| where DDw   is the set 

of weighted data sets for the given query. 

2.4.4 Estimating the significance of gene scores. 

We estimate a P value for each retrieved gene by comparing the integrated score of each 

gene with scores from a pool of 10,000 randomly generated queries with diverse query 

sizes varying from 1 to 100 genes. The random pool allows SEEK to estimate the 

significance of gene score as well as evaluate the specificity of that gene to the query 

genes (as opposed to random queries). For a given gene g and its final coexpression score 
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SQ(g) generated from the user’s query Q, the P value of g is estimated as the number of 

random queries R in which SR(g) > SQ(g) divided by the random pool size. 

2.4.5 Algorithm and interface implementations. 

The SEEK algorithm is implemented in C++ and has been integrated into the open-source 

C++ Sleipnir library, enabling other computational users to use and expand SEEK 

without website tie-in
68

. The back end employs the efficient data structures from the 

Sleipnir library to facilitate the process of handling large query sets of over 100 genes 

without memory overflow. SEEK’s jobs are parallelized to make full use of the 

multiprocessor resources and their processing power. The SEEK web server is 

constructed with some of the latest web technologies including JQuery and Qtip2 

libraries. Dynamic pages are generated with Java servlets running behind the Apache 

Tomcat server on a Red Hat CentOS Linux operating system. In addition, Ajax 

technology is deployed to send and retrieve data from the server asynchronously such 

that users can receive instant feedback on their gene enrichment analysis, expression 

zoom-in function, and data set selection module without having to leave or refresh the 

page. 

2.4.6 Metadata processing. 

SEEK categorizes data sets into tissue and disease groups by mining the description, title, 

and sample-level characteristic fields in data sets’ metadata. The text-mining procedure 

utilizes the UMLS MetaThesaurus
69

 and BRENDA
70

 controlled vocabularies to extract 

predefined concept names that are present in the individual fields. To ensure that tissue 

groups are accurate, we manually reviewed annotations to the frequently appearing terms 
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generated by text mining. Similarly, we formed additional ‘meta’ data set groups, such as 

cancer and noncancer groups and the multitissue profiling group (Supplementary Data 

2.4), to provide users with the ability to limit their search to such groups under the 

“Refine Search” feature of the website. 

2.4.7 Large-scale functional evaluation setup. 

We conducted a comprehensive evaluation of SEEK in comparison with existing 

algorithms Gene Recommender, MEM (multi-experiment matrix), and combined data set 

correlation search (Section 2.3.8). We tested each system’s ability to retrieve genes from 

the same biological process given some chosen genes from the process as queries. For the 

evaluation, we partitioned the genes in each of the 995 GO biological process terms 

(Supplementary Data 2.2) into a query building set and a testing set. The query building 

set consists of a random sample of 25 genes from each term if the term has more than 40 

genes, or else it is made of half of the number of genes in the term. Queries were formed 

by repeatedly sampling genes from the set, so that each query size has ten different 

queries of that size represented, and we iteratively generated queries for sizes 2, 3, 4, … 

up to Q genes, where Q = 0.8|query building set|. The testing set consists of the remaining 

genes in the term (after subtracting the query building set) and is used for evaluating the 

queries’ retrieval results. A precision-recall (PR) curve is computed on a per-query basis, 

averaged over all queries of a term, and finally averaged over all evaluated terms to 

derive an overall system performance plot for each method. Fold improvement of 

precision over random is calculated at 10% recall (FIOR@10%) and uses a random 

ranking of genes where genes’ rank positions are shuffled. By selecting genes randomly 

from each process in building the queries, we mimic the situation in which the query 
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genes are functionally related but not well coexpressed. By keeping the two sets (query 

building and testing) separate in the evaluation, we can reduce the performance variation 

between the queries of the same size within a process. 

For building gold-standard GO gene sets used in evaluation, we used gene 

annotations with experimental evidence codes (IMP, IGI, IPI, IDA, IEP, EXP) as well as 

TAS (traceable author statements) and NAS (nontraceable author statement). To select 

the GO slim set (Supplementary Data 2.3) used for studying the effect of compendium 

size, we carefully examined the title and description of the GO terms in the context of the 

GO hierarchy and arrived at a nonredundant subset of GO terms that are both specific 

enough to be informative and diverse enough to represent the hierarchy; this is similar to 

the approach in ref. 
53

. 

To evaluate SEEK’s performance as a function of the query size, we pooled 

together previously built biological process queries from 995 processes and then binned 

them by query size (2–20 genes). We examined three categories of biological processes 

based on the number of annotated genes in each process: 20–40 genes, 40–100 genes, and 

100–300 genes. Performance refers to the fold improvement of precision over random at 

10% recall in using each query to retrieve remaining genes from its corresponding 

process. 

To evaluate the search system’s robustness to noisy query genes, we selected over 

1,800 five-gene and ten-gene queries from 90 KEGG pathways with 50–100 genes per 

pathway. Each pathway had ten queries selected of each query size. We established a ‘no-

noise’ case, where each query was purely made of genes belonging to the same KEGG 

pathway, and a noisy case, where one, two, and four random genes were respectively 



53 

 

added to each query. The fraction (FIOR@10% of each noisy query)/(FIOR@10% of the 

corresponding no-noise query) was calculated, where FIOR@10% refers to the 

performance of retrieving KEGG pathway genes using the queries. 

2.4.8 Other search algorithms and implementations 

Gene Recommender 

Gene Recommender
43

 is an algorithm that can retrieve relevant experiments based 

on the query, and use these experiments to retrieve query coregulated genes. It performs 

an experiment (or sample)-level weighting rather than a data set-level weighting. First it 

merges samples from all data sets to form a meta matrix Yij (i = gene, j = experiment). 

Given the query genes, the weighting algorithm is based on a number of criteria such as 

the gene expression of the query genes, and the expression variance of the query in each 

experiment. The original matrix Yij of n genes by p experiments (or samples) is 

transformed to ranks Yij´, where  

 

𝑌𝑖,𝑗
′ =

𝑅𝑖,𝑗 −
𝑝𝑖 + 1

2
𝑝𝑖

2

 

Eq2.8 

Rij is the rank of i among Yij for j = 1…p, and pi is the number of experiments containing 

gene i. The experiment scoring is calculated as: 

 
𝑍𝑗 = √𝑘𝑗

𝑎𝑣𝑔(𝑌𝑄,𝑗)

√𝑉𝑄,𝑗 +
1

3𝑝2

 
Eq2.9 
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where avg(YQj) is the average expression (Yij´) over query genes Q in j, VQj is the variance 

of the query in j, kj is the number of genes in j. This scoring prefers experiments with a 

tight clustering of the query genes with high expression, low variance. In order to use the 

experiment scoring to return query-coregulated genes, a threshold ε defines the number of 

relevant experiments (with top scores), so the final score of gene i is calculated as: Si = 

the mean of (avg(YQj)×Yij´) over all relevant experiments j. The parameter ε is set at 0.05 

(or 5% of the total experiments).  

MEM 

The MEM algorithm
42,71

 assumes that the query is a single gene q. For each data 

set j, it first transforms the correlations containing the query gene into ranks, so that each 

gene has a rank n that represents the n-th correlated gene to the query. Ranks are 

normalized to [0, 1] by dividing each rank by the maximal rank in each data set. Then, 

the ranks are transformed so that for each gene gi, we generate a rank vector r(q, gi) = [ 

r1
i
, …, rm

i 
], where rj 

i
 is the position of gi in the query on data set j, and m is the number 

of data sets. MEM assumes a null hypothesis where in a model rank-list the genes are 

randomly permuted, and r(q, gi) contains uniformly distributed ranks. It reorders r(q, gi) 

in order to obtain a vector of order statistics, r(1)
i
, …, r(m)

i
 where r(1)

i 
is the smallest, and 

r(m)
i 

is the largest value in r(q, gi). Assuming null hypothesis, it then calculates the 

probability from binomial distribution, b(k), that the order statistic r*(k)
i  

is smaller or 

equal to r(k)
i
, where r*(k)

i
 < r(k)

i
 is generated by null model:  

 
𝑏(𝑘) = ∑ (

𝑚

𝑗
) (𝑟(𝑘)

𝑖 )
𝑗
(1 − 𝑟(𝑘)

𝑖 )
𝑚−𝑗

𝑚

𝑗=𝑘

 
Eq2.10 
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The score of each gene is then the p-value:  

 𝑝(𝑔𝑖) = min[𝑏(𝑘) for each 𝑘 in the range [0, 𝑚]] Eq2.11 

Intuitively, if the rank vector of a gene contains a large number of small ranks (which 

means that the gene is consistently correlated to the query in large number of data sets), 

the distribution of r(q, gi) will be heavily biased towards the small values and different 

from the uniform distribution. 

Combined data set correlation 

Combined data set correlation is a simple approach for combining data sets for 

correlation analysis. Data sets in the compendium were first concatenated into one 

matrix, forming a combined data set. Genes were next ranked according to the average of 

Pearson correlations to the query genes in this combined data set. Because different 

constituent data sets may include different sets of genes, we calculated correlation only 

for pairs of genes where each gene in the pair is present in at least 50% of the arrays in 

the combined data set, yielding a reasonable set of 17,689 genes being ranked. Where the 

array coverage of two genes differs in the combined data set, we chose the entire set of 

arrays with values present for both genes in the matrix for computing their correlation. 

2.4.9 Building compendia: raw data processing 

Each microarray platform had a relatively accepted pipeline for processing its data sets. 

Briefly, for Affymetrix platforms, we normalized each array using Robust Multi-array 

Average (RMA) 
72

, which ensures that the distribution of expression values per array is 
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the same within each data set. We note that SEEK also performs similarly well for data 

sets processed with other techniques, such as MAS5. For Agilent, there are two types of 

arrays: single-channel and dual-channel arrays. Dual channel arrays are designed for 

measuring fold-change between case and control conditions. In dual-channel arrays, 

individual arrays are normalized by loess normalization (Zahurak et al
73

).  Next, we 

calculated the log-2 Cy3 over Cy5 fold change and applied between-array normalization, 

which is essential in two color array analysis, as it normalizes channel intensities and log-

ratios to be comparable across arrays. Single-channel arrays were normalized by within-

data set quantile normalizations. The above analysis was done using the Bioconductor R 

and limma package
74

 following the guide in Chapter 6 in the limma manual
75

. For 

Illumina BeadChip platforms, we limit to the set of data sets that have no missing probe 

measurements, termed “unnormalized” raw data obtained from the Gene Expression 

Omnibus. We normalized the arrays using quantile normalization
76

 as this is the 

recommended approach in the study Ritchie et al
77

. This use of consistent processing 

pipeline across all data sets within a given platform helps remove systematic differences 

between data sets
12

.  

For data sets from the RNA sequencing platforms, we obtained 5,085 RNASeq 

samples that were pre-processed level-3 data from TCGA
34

. Discussion of the processing 

is found in 
78,79

. On a high level, for these TCGA samples, we use normalized counts, 

which are the raw counts divided by the 75
th

 percentile of each column multiplied by 

1000 (known as the upper-quartile normalization
80

). TCGA samples have been split into 

224 data sets according to unique ‘disease type, sample source’ pairs. We also extracted 

54 RNASeq data sets from GEO that have been processed by submitters of the data sets. 
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These data sets have been published in their associated studies (Supplementary Data 

2.5), where the processing of each data set is discussed. We use results summarized in 

raw counts format, and we further performed upper-quartile normalization on counts data 

to be consistent with the TCGA samples. Final measurements are normalized by 

log2(1+normalized_counts). 

The gene expression data sets normalized using the abovementioned procedure 

are publicly available for download on the SEEK website. 
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3 MODSEEK: TOWARDS A TARGETED, DATA-DRIVEN 

VIEW OF MODEL ORGANISM TRANSCRIPTOMES 

 

3.1 Abstract 

SEEK's usefulness in searching large collections of human gene expression data has led 

us to develop the ModSEEK system, which targets gene expression data from multiple 

organisms. The objective of this multi-gene query-focused system is to encompass the 

ability of facilitating large-scale coexpression-based retrieval and analyses in 5 

commonly studied model organisms. This expansion dramatically increases the biological 

diversity among datasets, which contain many experimental types that were previously 

under-represented in the human data. ModSEEK is freely available at 

http://seek.princeton.edu/ modSeek/. 

3.2 Introduction 

Modern high-throughput technologies have generated a myriad of expression datasets for 

a diverse set of organisms. These datasets provide whole-transcriptome view of 

organisms in various conditions such as knockdown, knockout, overexpression, and other 

perturbations, and are a great resource for the study of gene functions. Despite their data 

growth, exploring these datasets for experimental planning and hypothesis generation has 

remained to be difficult. More recently, data-driven approaches and visualization systems 

have begun to leverage the whole body of datasets for achieving coexpression analyses in 

real-time. There are systems that support the coexpression mining of single-gene queries 

42,81
, mining within Affymetrix platforms 

42,81
 and RNAseq datasets 

82
, and mining within 
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a disease domain of interest (e.g. angiogenesis network PADPIN 
83

). We have also 

developed the system SEEK 
84

 that is capable of prioritizing human datasets, and of 

finding gene functions through coregulated genes using multi-gene queries and thousands 

of datasets from a number of platforms. SEEK further demonstrates that increasing the 

size of the compendia can lead to an increase in the accuracy of retrieving functionally 

related genes, and that its search algorithm is capable of overcoming the heterogeneity of 

the large compendia 
84

. To date, this integrative search and visualization system has been 

available for human. However, in model organisms, achieving the tasks of prioritizing 

expressions of genes, datasets, and conditions in a query-dependent manner and mining 

coexpression in full scale are still hurdles for many experimental biologists. To address 

those challenges and provide integrated search across organisms, we developed a system 

called ModSEEK. ModSEEK is the first multi-organism coexpression analysis system for 

integrated cross-platform search of coexpressed genes, relative to a query of interest. The 

system extends SEEK’s data compendium from only human previously to five commonly 

studied model organisms and fully benefits from the robustness of SEEK in retrieving 

coexpressed genes. Additionally, ModSEEK offers full dataset prioritizations, and fast 

statistical testing of coexpression association between candidate genes.  

3.3 Methods 

3.3.1 Source data and preparation 

Our expression compendia for five commonly studied model organisms consist of 

microarray and RNASeq datasets obtained from Gene Expression Omnibus 
1
. The 

number of datasets is provided in Tables 3.1 – 3.2, and a listing of datasets is provided on 

the ModSEEK website. These datasets were normalized to gene-level expression 
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measurements, and were largely processed by following the consistent data processing 

protocol mentioned in SEEK 
84

. Pearson correlations were calculated and Fisher-

transformation was applied to obtain a gene-by-gene correlation matrix for each dataset. 

The final correlation values within a dataset follow a standard normal distribution and the 

distribution is comparable across datasets. The correlation matrices and the query are the 

input of the search algorithm that is described in the next section. 

Table 3.1 | ModSEEK repository of expression datasets 

 No. of 

samples 

No. of 

datasets* 

No. of 

platforms 

No. of 

genes 

No. of 

correlation 

values** 

(billions) 

M. musculus 54,299 2,438 10 22,116 597 

D. melanogaster 5,101 351 3 13,521 32 

C. elegans 2,826 225 7 18,010 36 

D. rerio 1,372 95 3 19,602 18 

S. cerevisiae 4,566 321 3 6,976 8 

*includes both microarray and RNAseq. Sequencing datasets in each organism are 244 

(mouse), 51 (fly), 19 (worm), 21 (yeast). 

**number of gene-gene correlations totaled for all datasets in the compendium. These 

correlations are pre-computed and stored into database. 

 

Table 3.2 | ModSEEK types of datasets 

 Knockout, transgenic 

datasets 

Knockdown 

datasets 

Cancer datasets 

M. musculus 547 61 110 

D. melanogaster 40 30 - 

C. elegans 21 15 - 

D. rerio 20 9 - 

S. cerevisiae 13 - - 
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3.3.2 Search algorithm 

The ModSEEK single-organism search algorithm uses gene-hubbiness correction and 

robust dataset weighting as previously published
84

. Briefly, for each query Q defined by 

the user, the algorithm calculates a dataset weight that reflects the degree of query 

coexpression in the dataset 
33,84

. This dataset weighting step adopts cross-validations, and 

a scoring approach that is inspired by rank-biased precision 
67

. Each dataset’s weight is: 

 
𝑤 =

1

|𝑄|
∑ ∑ (1 − 𝑝)𝑝𝑟𝑎𝑛𝑘(𝑐𝑜𝑟(𝑞′,𝑞),𝑅𝑞)

𝑞′∈𝑄−𝑞𝑞∈𝑄

 
Eq3.12 

where p is a parameter from rank-biased precision that determines the contribution of 

rank to the validation score (p is fixed at 0.99), Rq is the ranked-list of correlations 

between every gene in the genome and q, rank(cor(q’, q), Rq) is the rank of correlation 

for the pair (q’, q) in Rq, and cor is the hubbiness-corrected z-scored correlation. 

Essentially, this scoring function repeatedly examines how well a single query gene can 

retrieve the rest of the query in the dataset and evaluates it against the background of all 

correlations which are associated with that single gene. With the weight determined for 

every dataset, the next step, the gene retrieval step, merges the coexpression scores 

together from many datasets to produce a single score for each gene 

 

𝑠𝑔 =
1

∑ 𝑤𝑑𝑑∈𝐷
∑ (

𝑤𝑑

|𝑄|
∑ 𝑐𝑜𝑟𝑑(𝑔, 𝑞)

𝑞∈𝑄

)

𝑑∈𝐷

 

Eq3.13 

where sg  is the coexpression score of g to the query, wd is the weight from earlier Eq3.12. 

Note that the correlation cord(g, q) is hubbiness corrected.  
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3.3.3 Query coexpression P-value estimation 

Previously in SEEK, the query coexpression P-value is estimated empirically based on 

randomly selected queries of matched size. However, the empirical P-values may 

fluctuate due to error and the accuracy of P-values depends on the number of random 

queries for building the null distribution. Recently, an estimation procedure based on 

generalized pareto modeling allows one to estimate accurate P-values with fewer 

permutations
85

. In a similar spirit, we adopted generalized pareto distribution (GPD) to 

model the distribution of coexpression score observed from null queries.  

Given a query, the goal is to provide a P-value for query coexpression score (QCS) 

for each dataset to represent how likely that coexpression is to arise by random chance. 

The first step is to build a null distribution of QCS per dataset per query size, as we wish 

to have a distribution sensitive to query size. For this, we simulated 5000 random queries 

for each possible query size (from 2 to 100 genes) and calculated QCS for each random 

query using the dataset weight formulation in Eq3.12. Next, we recognize that only 

random queries with the highest QCS values are most meaningful for estimation 

(corresponding to the rarest events), so we extracted only the right 5% portion of the 

distribution, which represents the highest extreme values, for GPD modeling. Next, we 

smoothed them using GPD function. This GPD smoothing is essential to estimating more 

accurate P-values with a limited number of permutations 
85

. In the past, GPD has been 

used to model extreme values in weather, failure detection, insurance, and financial 

applications.  

Specifically, to model the right 5% tail of distribution of permutation values from 

random queries using GPD, we first obtained the excess (or exceedance) M0.05: 
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 𝑀0.05 = {log(𝑛) − log(𝑛0.05) , ∀𝑛 ∈ 𝑁, 𝑛 > 𝑛0.05} Eq3.14 

where n0.05 is the top 5-th percentile value of the null distribution, and N is the set of 

values in the null distributions. Because any function that preserves monotonicity can be 

applied on N, we chose log-function in order to keep N within a narrow range. Next, we 

tried a number of ways to estimate the GPD parameters, shape and scale, such as the 

gPdtest R library 
86

.  Here, we assume shape<0 based on the fit of the null distribution 

data. This presents a difficult problem because when the shape is smaller than 0, GPD is 

light-tailed and subject to a finite range 
85

, preventing us from estimating p-values for 

large QCS scores not observed in the random trials. To resolve this issue, we need to 

choose a bound for QCS score when shape<0. This bound can be derived in that there is a 

maximum theoretical limit to QCS, m, that is dependent on query size and can be derived 

exactly (see derivation procedure below). We also note the relation m=-scale/shape (the 

maximum bound of GPD for the case shape<0) (see below). These constraints have been 

built into the estimation procedure accordingly, similar to what Villasenor-Alva et al 

have done.  

Shape and scale parameter exact formula derivation: The expected value of 

generalized pareto distribution is given by m = μ+ γ/ (1 – α) where μ, γ, and α are the 

location, shape, and scale respectively. Here, μ=0, and an estimate of m is computed from 

null data: m=1/nΣT, where T is the exceedance values. We note that the maximum 

achievable coexpression scores for a query of size q is: r= Σ (1 – p)p
rank

, for rank = 0, 1, 

2, …, q– 2, and p=0.99. Converting into log-scale, the corresponding exceedance for r is 

Tmax=log(r) – log(n0.05),where n0.05 is the 95th percentile value of the null distribution r. 

When γ<0, the range of the GPD modeled values are restricted to 0<T<-α/γ. The 
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maximum GPD-modeled value is Tmax, which sets the bound of the model. Therefore, 

Tmax= - α/γ. By rearranging m, we get γ = m(1 – α). Finally, we arrive at the parameter 

estimates γ= m/(m – Tmax)and α=-γTmax. 

After the shape and scale parameters have been estimated, we computed the P-

value given a QCS score x using the cumulative distribution function of the GPD: 

 

𝑃 = 0.05 (1 +
𝑠(log(𝑥) − log(𝑛0.05))

𝑎
)

−
1
𝑠

 

Eq3.15 

where s is the shape, a is the scale parameter. We assume x≥n0.05. If x<n0.05, which means 

that P>0.05, we use the original distribution N to estimate P-value that is accurate to 

every 0.01.  

Why is GPD suitable? The choice of GPD is suitable because: 1) in a null query, 

QCS is generated by a process of summing the exponentially weighted scores p
rank

 for 

randomly sampled rank, 2) this sum is more extreme than the distribution of the 

maximum of randomly drawn samples (see Eq3.16 below), which has a known extreme 

value distribution to which GPD can be applied to model the distribution.  

 ∑ 𝑝𝑟𝑎𝑛𝑘

𝑟𝑎𝑛𝑘∈𝑅

> max(𝑃) , 𝑃 = {𝑝𝑟𝑎𝑛𝑘 , 𝑟𝑎𝑛𝑘 ∈ 𝑅}, 𝑅~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 
Eq3.16 

where R is a set of randomly selected ranks drawn from a uniform distribution (from rank 

1 to |G|, the size of genome). If |R| is small, then ∑ 𝑝𝑟𝑎𝑛𝑘
𝑟𝑎𝑛𝑘∈𝑅 ≈ max(𝑃), which is 

close to extreme value distribution. If |R| is large, then ∑ 𝑝𝑟𝑎𝑛𝑘
𝑟𝑎𝑛𝑘∈𝑅  will be close to a 

normal distribution. 
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3.3.4 Evaluation of GPD fit to null coexpression distribution. 

We constructed quantile-quantile goodness of fit plot between GPD-estimated and 

observed exceedance values (see Eq3.14). R
2
 is calculated. 

3.3.5 Large-scale gene-retrieval evaluation. 

To perform a large-scale functional evaluation, we obtained experimental gene-sets for 

274 KEGG pathways and 609 Gene Ontology biological processes from all organisms. 

Queries of length ranging from 2 to 20 genes were constructed by a random selection of 

genes from each term and the remaining genes were used for held-out evaluation. We 

plotted a precision-recall (PR) curve for each query based on its retrieval result and then 

averaged all the queries’ PR curves at each recall point in the interval [0.01, 0.99] (step 

size of 0.01) to build a system’s PR curve. To calculate fold precision over random, we 

generated a random retrieval ranking list by shuffling the genes’ rank positions from a 

true ranking list and  then computed the ratio of the true ranking’s precision over that of 

the random ranking. 

3.3.6 MeSH enrichment 

All datasets have been systematically annotated with keywords in the Medical Subject 

Heading (MeSH) controlled vocabulary 
87

 (our focus is primarily on the disease, anatomy, 

and experimental branches). To do this, we applied a text-mining algorithm on each 

dataset’s title, description, as well as its containing samples’ characteristic field. Just as 

genes may be enriched for GO or KEGG terms, a prioritization of datasets may show 

possible enrichment of tissue or disease MeSH concepts in the top ranked datasets. To 

calculate MeSH enrichment significance, we used a hypergeometric distribution: 
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𝑃(𝑋 ≥ 𝑘) = ∑

(𝐾
𝑖
)(𝑁−𝐾

𝑛−𝑖
)

(𝑁
𝑛

)
𝑖=𝑘…𝐾

 
Eq3.17 

where N is the number of datasets with annotations, K is the term size, n is the depth in 

the dataset list, and k is the number of overlapped datasets. To correct for multiple 

hypothesis testing, we ranked all terms by their P value and applied the Benjamini-

Hochberg
88

 FDR procedure to derive FDR-controlled P value. 

3.4 Results and discussion 

3.4.1 Dataset composition  

ModSEEK is composed of a large number of gene expression datasets for 5 extensively 

studied model organisms – S. cerevisiae, D. melanogaster, C. elegans, M. musculus, and 

D. rerio. These organisms are chosen due to the wide availability of datasets and the 

organisms’ popularity. Together, the datasets in the compendium represent the collective 

knowledge of over 2,273 publications. They cover a diverse range of topics including 

development, apoptosis, neuroscience, and a large variety of experimental conditions, 

such as mutations, RNA interference, knockouts, knockdowns, etc (Tables 3.1 – 3.2). 

The large compendium provides biologists with a good platform to examine their genes 

of interest in diverse experimental perturbations and tissue contexts. The multi-organism 

compendium contains MeSH-annotated datasets categorized into several main 

experimental types (Fig. 3.1). The extracted experimental vocabulary consists of a large 

number of knockout, transgenic studies (Fig. 3.1), cell culture studies, and developmental 

stage related conditions.  
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Figure 3.1 | Proportion of datasets with the different types of characteristics. 

 

3.4.2 ModSEEK description 

First, datasets are consistently processed and correlations are calculated, normalized for 

each dataset to ensure that differences and biases of individual datasets are accounted for 

(see Section 3.3 Methods). Then, ModSEEK applies our previously developed and 

query-dependent dataset weighting algorithm to discover relevant datasets, on the criteria 

of the query coexpression strength in each dataset (see Section 3.3 Methods). This 

dataset weighting filters away poor quality datasets that are unlikely to exhibit query 

coexpression, and at the same time achieves query context-specificity in the retrieval of 

coexpressed genes. After that, this algorithm generates an integrated, context-dependent 
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list of coexpressed genes, from which the expression profiles are visualized in the web 

result page. 

3.4.3 Evaluations 

We evaluated ModSEEK’s gene retrieval ability for a broad range of GO biological 

processes. ModSEEK consistently outperforms five other alternative search approaches 

(variance, meta-dataset, SPELL, Gene Recommender, MEM) even when we applied 

them to the same compendium as ModSEEK (Fig. 3.2). Note that none of these 

approaches is available across all the ModSEEK included organisms. The variance 

approach gauges at which datasets exhibit the largest expression variance of the query 

genes, as highly varied genes are likely to be true signals in the dataset 
89

. The approach’s 

weakness, however, is in its bias towards datasets with high variance baseline. High 

variance could arise by virtue of genes being highly expressed (not necessarily related to 

the query genes), because of the possible mutual dependence between variance and 

average expression 
90

. ModSEEK outperforms SPELL in yeast and on a per-GO-term 

basis, where ModSEEK holds fold-improvement of 1.2X in area under the precision 

recall curve (AUPRC) (Fig. 3.3). For meta-dataset correlation, this approach merges all 

datasets in the compendium to form a meta-matrix, and calculates correlation on it. It is 

evident that ModSEEK’s performance lead extends across organisms. The mean fold-

over-random precision values at 10% recall across organisms are: 38-fold for fly, 58-fold 

for yeast, 33-fold for worm, 34-fold for mouse, and 14-fold for zebrafish.  
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Figure 3.2 | Functional evaluation comparison between ModSEEK and other 

systems. This comparison evaluates each system’s ability to retrieve functionally related 

genes from GO biological process terms in each model organism. Where there is an 

existing search method for the organism, there is a line to represent it in the plot. If there 

is no existing method, the standard baseline method meta-dataset correlation is plotted. 

Performance in fold-precision-over-random is first calculated from averaging 

performances of queries per GO term, then it is averaged across terms in the organism. 

 

Examining the dataset weight plot with increasing rank (Supplementary Fig. 3.1) 

reveals two common types of queries in the study of biological processes. The first one is 

the ubiquitous type, such as proteasome, in which the query is coregulated in a large 

majority of datasets (e.g., 234 out of 400 datasets in Supplementary Fig. 3.1). The 
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second type (Supplementary Fig. 3.1) is the specific type where the coregulation is 

expected to occur in only a subset of datasets that possibly originate from a specific 

context. ModSEEK is robust to both types of queries and also robust to discovering genes 

from 275 collected KEGG pathways (in addition to GO). In our KEGG evaluation results, 

the number of pathways with retrieval average fold-precision over random (at 10% recall) 

greater than 10-fold are respectively: 118 / 253 (human), 141 / 254 (mouse), 69 / 96 (fly), 

61 / 88 (worm), and 62 / 76 (yeast), where the denominator denotes the total number of 

pathways in each organism. Queries from proteasome, ribosome, and DNA replications 

tend to be ubiquitous, where these are coexpressed (with P<0.05) in 146, 159, 124 

datasets respectively in fly, representing approximately 50% of the fly’s compendium 

size. Amazingly, specific-type queries from pathways, such as endocytosis, arachidonic 

acid metabolism, sphingolipid metabolism, hedgehog signaling pathway, can be retrieved 

equally well with the search algorithm. Specifically, ModSEEK achieved precisions of 

10-fold, 18-fold, 12-fold, 15-fold respectively for these pathways, despite the fact that 

these have only low representation in the fly compendium and they are coexpressed in 

only 33, 26, 28, and 30 datasets. Thus, ModSEEK is robust to both ubiquitous and 

specific queries. 

3.4.4 Dataset prioritization and coexpression testing 

An important usage example of ModSEEK is finding tissues, conditions that are 

associated with a gene set. This task can be accomplished by ModSEEK’s dataset 

prioritization function. Although SEEK is also capable of performing coexpression 

testing, what is new in ModSEEK is that it builds random coexpression model that is 

specific to each “dataset, query-size” pair based on permuted queries, and applies 
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generalized pareto distribution (GPD) modeling to provide an accurate fit of null 

coexpression score distribution (see Section 3.3 Methods, and see Supplementary Fig. 

3.2 for goodness-of-fit assessment of an example dataset). This modeling at the same 

time permits very quick coexpression testing. Dataset prioritization has thus benefited 

significantly from this procedure.  

 

Figure 3.4 | Quantile-quantile goodness of fit plot for GPD fitting of null query 

coexpression distribution. The plot displays the estimated and observed exceedance 

values for an example mouse dataset GSE5876, that is used for modeling permuted 

queries of size 2 (a), 5 (b), 10 (c), and 20 (d). Tail exceedance values are defined as the 

set T > 0, T = {log(QCS) - log(QCS0.05)}, where QCS0.05 is the 95th percentile of null 

coexpression score distribution. Estimated values are derived from GPD fitting of 

coexpression score distribution. 
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3.5 Conclusions 

We described ModSEEK, a system that for the first time enabled multi-organism 

coexpression search for five most commonly studied model organisms - mouse, fruit fly, 

zebrafish, worm, yeast. The system allowed us to explore the entirety of the expression 

compendium within a model organism, by providing a full prioritization of all available 

expression datasets and a full ranking of coexpressed genes to the query.  

ModSEEK is robust in diverse processes. As expression datasets continue to grow 

in number, large-scale weighted integration of coexpressions will become increasingly 

appreciated due to its unbiased gene retrieval, on-the-fly dataset weighting, and its 

genome-wide assessment. We believe that ModSEEK will be well-suited for assigning 

functions to unannotated genes in model organisms, especially in worm, where currently 

other experiments are scarce for hypothesizing the function of many uncharacterized 

genes. ModSEEK can also be useful for revealing tissue/cell-type or other context-

dependent roles of existing genes. 

ModSEEK houses several important community-standard tissue/localization/cell 

line expression datasets such as the GNF Mouse Atlas, Mouse Brain Atlas, FlyAtlas, 

which are very useful for checking expression values of single and multiple genes of 

interest. We will continue to regularly maintain and update ModSEEK’s compendia as 

more datasets are collected in the public repository. We believe that ModSEEK will 

undoubtedly play an important role in facilitating gene function discovery in the model 

organisms.  
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4 CROSS-ORGANISM GENE RETRIEVAL 

 

 

4.1 Abstract 

The previous chapter has demonstrated the power of ModSEEK in single-organism gene 

retrieval studies. Nonetheless, the true strength of the ModSEEK system lies in its ability 

to harness information from other model organisms’ gene expression data not only for 

coexpression comparisons but also for boosting of gene retrieval performances from 

single-organism studies. In addition, bringing the cross-organism capability to ModSEEK 

would permit the graphic visualization of coexpression patterns between members of the 

orthologous group in a pair of organisms, which can explicitly illuminate key members of 

the query coexpression context.  

4.2 Introduction 

Our knowledge about biological processes is unequally distributed: some biological 

processes are well studied in one organism, but not in others. This phenomenon is clearly 

manifested in the number of gene annotations per biological process. For example, cell 

cycle genes are better studied in yeast mutant strains, thus they receive more annotations; 

and some signal transduction processes such as phototransduction have been traditionally 

studied in fruit flies. Annotations of understudied processes can be notably limited in an 

organism due to the scarcity of experiments in the organism or the possibility that the 

experimentation cannot be done altogether. This limitation poses great challenges to gene 

function prediction. Park et al
91

 addressed this problem with a cross-organism gene 

function prediction algorithm called function knowledge transfer whereby gene 
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annotations are transferred between organisms via function-similar orthologs in a 

machine-learning framework.  In this work, we propose an alternative unsupervised 

strategy to tackle this problem. Our approach is based on whole organism data 

compendium and coexpression, and our goal is query-sensitive cross-organism gene 

retrieval through search algorithms. As ModSEEK is based on coexpression, which is 

relatively unbiased to training data and prediction algorithm, there is a clear need to 

identify which coexpressed genes are simultaneously coexpressed to the query in a pair 

of organisms. This chapter highlights and addresses this need.  

4.3 Methods 

4.3.1 Definitions 

We are given a pair of organisms S and T, the query gene set Q in S, and the 

corresponding orthoquery Q’ in T. Each gene gX in S receives a coexpression score to the 

query Q, and similarly gene g’X in T has a coexpression score to Q’.  An orthogroup (Fig. 

4.1a), defined across two organisms, groups together sequence similar paralogs 

(duplicated genes within the same organism) and orthologs (sequence-similar genes 

across organisms) based on sequence alignment score (bidirectional best hit), species tree 

phylogeny, and other evidences. For our purpose we use externally constructed 

orthogroup definitions provided by OrthoMCL
92

 and InParanoid
93

. The goal is to identify 

co-similar orthogroups that are coexpressed to the query, whereby at least one member of 

the orthogroup from S is coexpressed with Q, and at least one member from T is 

coexpressed with Q’ (Fig. 4.1b).  
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Figure 4.1 | ModSEEK combines orthology and coexpression evidences to identify 

orthogroups with co-similar orthologs. (a). Orthogroup definition. (b). Orthogroup co-

similar to the query in two organisms. Each member g1, g2, g’1, g’2 has a coexpression 

score to the respective organism’s query Q or Q’. Then, the orthogroup is checked if 

there is at least one member per organism that is significantly coexpressed to the 

organism’s query (Q or Q’). If this is satisfied, it is considered a functionally co-similar 

orthogroup to the query (first orthogroup illustrated). The second orthogroup illustrated 

does not have species S containing at least one coexpressed member, so it is not co-

similar.    

 

The above formulation offers much-needed flexibility in the definition of 

functionally similar orthologs as it recognizes that the expression of orthologs can vary 

with the query context. Accordingly it uses the query context to identify function-similar 

orthologs, i.e. specific pairs of orthologs that exhibit similar coexpression to the 

orthoqueries. Finding co-similar orthogroups given two coexpression gene rankings is 

straightforward and can be done relatively quickly. Typically, users first define a P-value 
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threshold with which to define significant correlation linkages within an orthogroup. In 

SEEK and ModSEEK, this P-value reveals whether a gene is specifically correlated to 

the query and not to other random query genes. This definition of P-value carries 

specificity and is much more stringent than permutation-defined P-value that asks a 

different and easier question – the question of whether the correlation is significantly 

different from that of a randomly shuffled expression matrix. In ModSEEK’s web 

interface, the co-similar orthogroups are defined with the default P-value threshold 0.05.   

4.3.2 Usage scenario 

To illustrate how these orthogroups are used, we can envision the following real-world 

scenario (Fig. 4.2). A user first presents the query in an organism say H. sapiens, and 

selects what he wishes to compare and search in D. melanogaster. Next, within-organism 

coexpressed genes are retrieved independently of each other and the results of two 

searches are grouped into orthogroups. Subsequently they are classified into groups that 

show whether or not they are co-similar orthogroups to the query. Those co-similar ones 

are selected for visual presentation to the user, while illuminating key members of 

pathways and processes (Fig. 4.2).  
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Figure 4.2 | Cross-organism search process. For illustration purpose, a human-fly 

comparison is used. (1) A human query is entered. ModSEEK automatically maps it to its 

orthologs in fly. (2) Each query is searched independently to get human and fly 

coexpressed genes. These are further filtered by correlation P-value. (3) The filtered 

coexpressed genes are combined to form orthogroups, pre-defined by OrthoMCL and 

InParanoid. (4) The results, orthogroups co-similar to the query, are displayed in a 

comparative web interface. See Section 4.3.1 for definition of expression co-similarity. 

(5) An example of orthogroup. Web interface denotes each orthogroup by a pair of grey 

horizontal lines spanning across the entire page. 
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4.3.3 Evaluation procedure 

We have performed both a small-scale case study using short hedgehog gene query, and 

large-scale systematic gene-retrieval evaluations using 5-gene and 10-gene queries. We 

detail the evaluation procedure for the latter case. This evaluation requires us to first 

construct a combined whole-genome ranking or the “consensus” correlation ranking of 

genes to the query among two organisms. Specifically, the following procedure was used 

to construct combined retrieval ranking: 

Let S and T be two organisms. Using S-T orthology mapping, we map genes g and 

g’ from S and T respectively to orthogroups OST. Let PS(g, Q) be correlation P-value of 

gene g to Q in organism S, and similarly let PT(g’, Q’) be correlation P-value of gene g’ 

to Q’, where Q and Q’ are orthoqueries. An orthogroup OX ∈ OST consists of genes gX and 

g’X from S and T. 

For each gene gX in organism S, such that gX is part of some orthogroup OX ∈ OST, do  

PT(OX, Q’)= min(PT(g’X, Q’) for each g’X in OX) (i.e. g’X  are members in OX from 

organism T) 

 Χ
2
 = -2.0 (ln(PS(gX, Q)) + ln(PT,rescaled(OX, Q’))) 

 Combined P(gX, Q) = P-value of Χ
 2

 statistic with 2k degrees of freedom (k=2) 

Done 

Specifically, PT(OX, Q’) is the orthogroup OX’s correlation P-value to Q’ from organism 

T side and PT,rescaled(OX, Q’) is its rescaled P-value. Here, rescaling the P-values corrects 

the PT(OX, Q’) according to extreme value distribution of uniform random variables. This 

adjustment is especially necessary as the min(PT(g’X, Q’)) in the 2
nd

 line produce a non-

uniform P-value distribution when null hypothesis is true. With the adjustment, the 
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distribution of rescaled P-values can be expected to be uniform under null hypothesis. 

Then the Fisher’s combined probability method (last two lines) would be applicable. The 

Fisher’s combined probability method was used to merge correlation P-values of two 

coexpression rankings into a Χ
 2

 statistic. The combined ranking is thus used for 

precision-recall evaluation to check if cross-organism retrieval improves performance at 

various recall levels. 

 

4.4 Results 

4.4.1 Illustration example  

As an example of this comparative approach, we first look at a simple human query GLI1, 

GLI2, PTCH1 – transcription factors and a receptor of the conserved hedgehog signaling 

pathway. The corresponding orthoquery in fly is ci and ptc. Upon ranking the 

orthogroups according to the correlation p-value to the query, ModSEEK has identified 

many orthogroups sharing coexpression with the orthoquery in human and fly. These 

include the critical developmental genes SMO (smo in fly), NOTCH3/1/4 (n in fly), SOX2 

(soxn in fly), FZD8 (fz2 in fly), TCF7L1/2 (pan in fly), all of which are ranked highly and 

participate in various orthogroup arrangements (Fig. 4.3).  As hedgehog signaling is a 

developmental pathway, the retrieval of these genes appearsrelevant. 

4.4.2 Evaluations 
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Figure 4.3 | Example hedgehog query in the actual search interface. Arrows denote 

key developmental genes retrieved to the hedgehog query. 

 

ModSEEK not only works well for the hedgehog signaling pathway. In a large-scale 

systematic evaluation, we gathered KEGG
94

 annotated pathway and metabolism gene-

sets. We focused on these because signaling pathways and metabolic processes are two of 

the most conserved categories of biological process across diverse organisms. To 

evaluate the improvement brought about by cross-organism retrieval, we calculated 

precision-recall curve for single-organism unaided retrieval and for combined retrieval 

which utilizes both organisms’ coexpression rankings. In combined retrieval, search 

rankings from respective organism’s orthoquery are merged into a meta-ranking using 

Fisher’s combined probability method (see Methods).  Subsamples of 5-gene or 10-gene 
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are taken from each term as query to retrieve the remaining genes in the term. The results 

of searching these subsampled queries indicate that combined retrieval outperforms 

single-organism retrieval, by as much as 15% in human when aided by mouse, and 18% 

in human when aided by fly. Those combined retrieval cases leveraging model organism 

mouse or fly indeed perform better than human-only gene retrieval. This clearly 

demonstrates the potential for performance gain despite the fact that human data 

compendium is the largest of all organisms which already consists of thousands of 

datasets.  

Fly and worm KEGG retrieval have each benefited significantly from using 

human orthoqueries as aid, which is a clear indication that a large data collection like 

human may improve gene function annotations of model organisms with much smaller 

data holding. In some cases, performance gain is not always bi-directional. For example 

mouse metabolism terms appear to drop slightly in performance when it is combined with 

human orthoqueries. One reason to account for this is that the mouse compendium may 

contain a greater experimental diversity of datasets than human, and those  datasets 

encourage more accurate retrieval of diverse terms.  
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Figure 4.4 | Leveraging model organism orthoquery and search ranking improves 

the gene retrieval performance of human queries. Single-org: single organism human 

without any aid. Combined: combined human and mouse or human and fly orthogroup 

ranking. Evaluation gold standard used for the construction of PR curve was human in 

both cases.  
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Figure 4.5 | Leveraging human orthoquery in the search process also improves the 

performance of model organism gene retrieval. Single-org: single organism without 

any aid. Combined: combined fly and human or worm and human. When human is 

employed as aid, evaluation gold standard uses fly and worm KEGG annotations 

respectively.  

 

ModSEEK makes cross-organism expression search and functional analysis 

straightforward for the users. The comparative search interface is flexible and user-

friendly and is supplemented with flexible options such as the ability to specify 

correlation P-value threshold for orthogroup selection, easy switch between multiple 

zoom modes in the expression viewer, and genome-wide coexpression score with P-value 

for custom filtering and analysis. Each search session generates a unique session ID that 

is stored and fully traceable by the user should there be a need to revisit the results. The 
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comparative search interface is available at http://seek.princeton.edu/modSeek/ 

viewer_index.jsp. 

4.5 Conclusion 

Just as our universe of compendium information is growing, so are the datasets for a 

diverse set of organisms. The data compendium composition of each organism is not 

unbiased, as it is a unique mix of research topics that are of interest to model organism 

biologists, of experimental setups that are widely adopted, and of many other preferences. 

ModSEEK comparative search function leverages these unique differences to allow 

biologists to transfer experimental knowledge between organisms in a coexpression-

based, unsupervised manner. ModSEEK is the first unsupervised system to our 

knowledge that combines comparative genomics orthology data, multi-organism 

functional genomics coexpression scores, and visualizations for truly user-driven, data-

driven exploratory discoveries of gene function. We expect that by utilizing cross 

organism data ModSEEK should enable a more balanced, more accurate retrieval of 

query coregulated genes supported by conservation and functional genomics evidences. 

  



87 

 

5 IDENTIFICATION OF BREAST CANCER SUBTYPE-

SPECIFIC REGULATORS AND TARGETS  

INFLUENCED BY GENETIC AND EPIGENETIC 

ALTERATIONS 

 

 

5.1 Introduction 

Tumorigenesis in breast cancer is thought to be the result of a combination of somatic 

genetic events including copy number aberrations (CNA), point mutations, and epigenetic 

alterations such as DNA methylation. In contrast to normal tissue development, somatic 

mutations can accumulate at various points of the differentiation process, making normal 

cells possess properties of stem cells that turn them into cancer cells. Despite the 

extensive generation of molecular data, how these mutations and aberrations specifically 

affect transcription factors and their targets is not well understood.  

Breast cancer is a heterogeneous disease comprised of several molecular subtypes: 

luminal A, luminal B, Her2, basal, and normal-like, that are clinically important
6,95–98

. 

Recently a new and refined classification was proposed based on both mRNA expression 

and CNA
99

. Aberrations in breast cancer are manifested in a subtype-specific manner, 

and distinct biological processes are uniquely perturbed in these subtypes
100

. Previous 

efforts have identified mutational events at an unprecedented resolution and scale, linking 

those to the breast cancer subtypes
97,99

.  The full picture of what TF networks need to be 

perturbed in order to lead to the development of different breast cancer subtypes, how 
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they evolve downstream of germ-line and somatic genetic events and what subtype-

specific regulators are affected in order to give rise to the subtype-specific coexpression 

of genes is not yet understood.  Here we address these questions, focusing specifically on 

basal and luminal breast cancer subtypes, which are the most distinct and best 

molecularly characterized subtypes, with distinct clinical outcomes and treatment 

regimens. 

Transcription factor (TF) binding to proximal and/or distal regulatory elements is 

a critical mechanism regulating gene expression. Various TF regulatory networks have 

been constructed from ChIP-seq and ChIP-ChIP data, including a general TF network
101

 

based on a large number of cell types from the ENCODE project, and for breast – a 

nuclear receptor TF network focused on MCF7 cells
102

. Other studies focused on the 

identification of master regulators of differentially expressed and coexpressed genes
103,104

. 

All these studies are valuable in elucidating the regulatory structure of human cells, but 

suffer from a lack of specificity towards breast cancer subtypes. Computational 

approaches have focused on identifying candidate TFs through motifs overrepresented in 

the promoter regions of a set of breast cancer related marker genes, including works by us 

and others
105,106

. The downside of these in silico analyses was that transcriptional 

regulation was assumed to occur merely in promoter regions and distal enhancer elements 

were largely ignored. Yet it has become clear that important regulators in breast cancer 

such as GATA3, ESR1 and FOXA1 act through interacting regions occurring mostly at 

distal enhancer elements
107–110

.  
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The expression and overexpression of genes in each subtype is mediated in a large 

part by the molecular processes that are turned on and the transcription factors that 

control the genes involved in these processes. The goal of this work is to identify breast 

cancer subtype-specific coexpressed genes and understand the transcriptional regulation 

that underlies this coordination. Our approach is to identify co-expressed genes in each 

breast cancer subtype and then find transcription factors that may regulate these co-

expressed genes, as well as molecular lesions that disrupt this regulation (somatic copy 

number aberrations and altered methylation status). 

Toward this goal, we integrate breast cancer subtype specific transcriptomic 

(expression) with cistromic (ChIP-seq) datasets to infer regulators and targets underlying 

breast cancer subtypes. We used over 130 breast cancer gene expression/epigenomics 

datasets from our compendium
111 

and ENCODE
112

 ChIP-seq data. Through integrated 

analysis of ENCODE data and transcriptional behavior of genes associated with each 

breast cancer subtype (identified by our context-relevant search algorithm based on breast 

cancer expression data
111

), we identified the most suitable cell line models from the 

ENCODE database: MCF7, T47D, previously well-known models for luminal A, and the 

identified here A549 and H1-hESC as novel suitable surrogates for the basal subtype. We 

further identified common regulatory regions in the coexpressed genes using epigenomic 

ChIP-seq experiments from these relevant cell lines. We show that these regulatory 

regions are enriched for motifs corresponding to TFs identified by SEEK as coexpressed 

with subtype specific seed genes, suggesting the regulatory role of the coexpressed TFs in 

a subtype specific manner. Overall, the integrated network that we construct from ChIP-

seq TFs and motif-derived TFs (identified from motif analysis and subtype specific 
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coexpression), and refined gene target lists help us to better understand the regulatory 

events underlying the development of the breast cancer subtypes. Examination of 

aberration data revealed a tendency for coexpressed TFs in luminal A cancers to be 

subjected to DNA hypomethylation, whereas basal subtype TFs were often associated 

with somatic CNAs corresponding to regulation of  epithelial-mesenchymal transition. 

5.2 Methods 

5.2.1 SEEK coexpressed gene search. 

A short seed list of subtype-specific genes
113,114

 (Supplementary Data 5.1) serve as 

input genes (or query in search terminology) for coexpression analysis. We have four 

input seed lists corresponding to the four breast cancer subtypes: luminal A, luminal B, 

basal-like, Her2-enriched. Each subtype gene list was queried in SEEK and the top 

returned coexpressed genes (P<0.05) were retained for subsequent analyses 

(Supplementary Data 5.3). Approximately 130 breast tumor RNA sequencing and 

microarray datasets were used for this coexpression analysis (Supplementary Data 5.2). 

The retrieved genes are termed coexpressed genes and are thus specific to each breast 

cancer subtype. 

5.2.2 ChIP-seq data processing. 

We used the collection of ChIP-seq datasets processed by the ENCODE Analysis 

Working Group (AWG)
115

. The AWG collection uses the SPP peak caller coupled with 

the irreproducibility discovery rate (IDR) procedure to discover significant and consistent 

peaks between two replicates of each ChIP-seq experiment within ENCODE
115

. We need 

to derive a gene-based score representing the amount of binding per gene. For this, we 
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first divide the peak signal score (the number of tags) by the 75-percentile peak score of 

the whole experiment
80

, multiplied by base score 500, to adjust for sequencing depth. 

Next the peaks’ chromosomal locations are aligned to all gene regions +/- 50kb TSS 

using BEDOPS
116

 and human hg19 UCSC genome build. To account for the case when a 

peak falls within multiple genes’ region, we calculate each gene score as sum of 

normalized contribution of peak scores: 𝑔 = ∑ 𝑝𝑓/𝑛𝑓𝑓∈𝑃(𝑔)   where g is the gene score, f 

in P(g) is the set of peaks in the vicinity of g, p(f) is the peak score of f, n(f) is the number 

of genes f overlaps. 

5.2.3 Finding subtype-specific TFs from ENCODE data. 

ChIP-seq derived TFs and motif-derived TFs. 

We derived two categories of TFs relevant to cancer subtype-specific coexpressed genes. 

The first category is ChIP-seq-derived TFs. The relevant TFs are inferred by assessing if 

the list of ChIP’d target genes in a given ENCODE experiment is significantly similar to 

the list of cancer-subtype-specific co-expressed genes found by SEEK. To find the ChIP-

seq derived TFs, we used the above procedure (Section 5.2.2) and obtained DNA-binding 

score per gene for each ENCODE ChIP-seq experiment Ci. To ask if a Chip-seq 

experiment Ci is relevant to subtype A, the ranked list of genes in Ci is compared to 

coexpressed genes of subtype A for significance testing using minimal hypergeometric 

overlap statistic (GORILLA
117

). GORILLA finds enrichment between a rank-list and the 

coexpressed genes without a need to specify depth of rank-list to compare with the gene-

set. A relevant ChIP-seq experiment must satisfy P < 1e-5, and if so the ChIP’d TF 

becomes a relevant TF.  
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The second category of TFs is inferred from the presence of binding motifs in the 

regulatory region of cancer subtype-specific coexpressed genes (“motif-derived”) with 

additional filtering applied. To find the motif-derived TFs in each subtype 

(Supplementary Fig. 5.1), we first get the regulatory sequences within 50kb of TSS for 

all coexpressed genes in a subtype. Regulatory sequences include transcription factor 

binding sites from ChIP-seq experiments and open-chromatin regions from DNase 

hypersensitivity experiments (Supplementary Data 5.4). We then performed motif-

enrichment analysis on these sequences using in vitro motif database Weirauch et al
118

. 

Pscan-ChIP algorithm
119

 was applied to find motifs enriched such that the probability of 

finding motif within the ChIP-seq region is greater than finding it within the flanking 

regions according to Welch’s t-test (Supplementary Fig. 5.1). We further built on top of 

this algorithm since enriched motifs may not be regulating specifically coexpressed genes 

(but also other genes), and yet specificity is our interest, so we repeatedly draw random 

groups of genes of matched size with coexpressed genes, and performed the same motif 

discovery on 50kb regulatory regions of random genes (Supplementary Fig. 5.1). 

Qualified motifs must therefore be ranked in 95-percentile among the number of random 

trials. As a final stage of filtering, we checked whether TFs corresponding to these motifs 

are coexpressed with the subtype seed genes. (Supplementary Fig. 5.1). For example, if 

V$Gata family is an enriched motif, the TFs matching it (GATA1-6) are each checked 

for coexpression with luminal A subtype. GATA3 is finally selected as regulator due to it 

being the only member coexpressed. 
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5.2.4 Differentially enriched ChIP-seq TFs. 

ChIP-seq derived TFs are categorized as differentially enriched depending on 

∆(− log(𝑃𝑣𝑎𝑙))  between the luminal A/B columns in Figure 5.1a and the basal column in 

Figure 5.1a. These TFs’ ChIP-seq experiments were used to prioritize subset of 

coexpressed genes that are true transcriptional targets.  

5.2.5 Breast cancer methylation, CNA aberration. 

DNA methylation, copy number aberration (CNA) datasets were gathered from TCGA
97

 

sequencing and array-based sources available at ICGC
120

. These ICGC-provided data 

were supplied in processed forms. For our purpose, we excluded blood-derived normal 

samples, and metastatic samples from the TCGA list. Focusing on primary tumor samples, 

we derived tumor subtype-related dysregulation gene-sets using the procedure described 

below. We also constructed a separate normal breast tissue sample set from TCGA for 

comparison. To account for patient-to-patient variation within each subtype, we further 

require significance threshold to be satisfied to ensure that the level of dysregulation is 

consistent within subtype. To do this, we performed 1-sample or 2-sample t-tests 

(depending on the mechanism) between subtype and normal group (procedure described 

below). 

Testing Association between TFs and DNA methylation or TFs and copy number 

aberrations. Preparation of datasets: Nucleotide-resolution methylation frequency (%) is 

binarized using 50% threshold, and aggregated to gene-level values using additive 

summary. We calculate subtype-specific DNA methylation frequency by averaging 

patients within subtype. To derive hyper- and hypo-methylation, for every gene we 
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calculate the difference between each cancer subtype’s DNA methylation frequency and 

that of healthy normal group consisting of normal breast tissue samples. The resulting 

values per subtype are upper-quartile normalized
80

 and subject to significance testing (2-

sample t-tests with unequal variance, with respect to normal samples) to detect genes 

with substantial hyper- or hypo-methylation. For CNA, original data consists of copy 

number for various chromosomal segments detected per patient. Each copy number 

ranges from -1 to +1 (in log scale) which is relative to normal copy number. To derive 

gene-based copy number, let cna be the copy number of segment f; len be the number of 

genes contained in f; FG(g) be the set of gained fragments containing gene g; FL(g) be the 

set of lost fragments containing g. We calculate: 𝑔𝑎𝑖𝑛(𝑔) = ∑ 𝑐𝑛𝑎(𝑓)/𝑙𝑒𝑛(𝑓)𝑓∈𝐹𝐺(𝑔) and 

𝑙𝑜𝑠𝑠(𝑔) = ∑ 𝑐𝑛𝑎(𝑓)/𝑙𝑒𝑛(𝑓)𝑓∈𝐹𝐿(𝑔) . As before, copy number values were aggregated 

among patients in the same subtype, followed by upper-quartile normalization, and are 

further subject to significance testing (1-sample t-test) to obtain gene-based CNA gain 

and CNA loss values for each cancer subtype. The gene-based copy number values 

derived this way are found reasonably close to the reported values found in the Metabric 

study
99

. 

5.2.6 Testing of association between TFs and dysregulation. 

This uses GORILLA
117

 which finds enrichment between a rank-list and a gene-set of 

interest to determine if the gene-set is enriched at the top of the rank-list. For our context, 

the rank-list is the whole-genome list of genes sorted by absolute dysregulation values. 

Test is independently performed for each mechanism of dysregulation. The gene-set of 

interest is the coexpressed genes of each cancer subtype. Tests that involve TFs 

(coexpressed and ChIP-seq derived TFs) used a random background of ~1000 TFs (in 
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human genome). Otherwise, tests involving coexpressed genes used the whole-genome 

background (~17000 genes). Multiple hypothesis testing procedure, by Benjamini-

Hochberg
88

, was applied to comparisons within each mode of dysregulation.  

5.2.7 Dysregulation heatmap construction. 

Values in the heatmap represent previously computed cancer subtype-specific upper-

quartile normalized dysregulation values. Choosing normalized values is especially 

appropriate for this visualization purpose, as it permits cancer subtypes to be directly 

compared. A blue or red dot in the heatmap requires that t-test P<0.01 in 1-sample t-test 

(CNA) and P<0.01 in 2-sample t-test (DNAmeth) with respect to the normal group. If 

significant, the intensity of a dot in the heatmap is proportional to the effect size 

(dysregulation magnitude). Otherwise, a black dot (no signal) is displayed for the specific 

entry. 

5.3 Results 

In order to understand how transcriptional decisions influence the development of breast 

cancer cells, we reverse engineer the process, starting with coexpressed genes 

upregulated in specific breast cancer subtypes, which reflect distinct disease 

manifestation and then discover the basis for the coordinated transcriptional regulation. 

We used SEEK
111

 to accurately identify coexpressed genes from a large compendium of 

over 130 breast cancer datasets publicly available in Gene Expression Omnibus
1
.  First, a 

seed list of breast cancer subtype-specific genes was used to query SEEK and the top 

significant coexpressed genes were retained and used in subsequent analyses (Fig. 5.1).  

Next, two categories of transcription factors were inferred for each subtype: one inferred 
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by experimental ChIP-seq data from the ENCODE consortium (further referred in the 

text as ChIP-seq derived TFs) (Fig. 5.1, #1). These are TFs that are experimentally shown 

to bind to the regulatory region of a significantly large number of the expanded 

coexpressed genes as evident from the ChIP-seq data. The other category TFs, is the 

motif derived TFs (Fig. 5.1 #2, Supplementary Fig. 5.1), that satisfy the following: 1) 

they are themselves coexpressed with subtype-specific seed genes; 2) their binding motifs 

are significantly enriched among the regulatory regions of the coexpressed genes in a 

given cancer subtype. 

 

Figure 5.1 | Schematic of the workflow. As a first step, SEEK coexpression analysis 

enlarges the subtype specific seed genes to a larger signature gene set. Then, the next step 

is to find TFs that may regulate these coexpressed genes. Two sources of data, namely 

ENCODE ChIP-seq experiments (marked with #1) and motif-based analysis of cis-

regulatory sequences of coexpressed genes (marked with #2), help reveal distinct 

regulators of subtype coexpressed genes. Afterward, to validate the TF regulators, we ask 
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whether they are more often than random subjected to breast cancer subtype specific 

dysregulations (copy number aberrations and DNA methylations). 

 

5.3.1 Identification of TFs relevant to cancer subtypes  

Identification of ChIP-seq-derived TFs and motif-derived coexpressed TFs 

Our goal was to identify TFs that were known to bind to regulatory regions of 

coexpressed genes for each cancer subtype. To do this, we looked for ENCODE ChIP-

seq experiments where the set of targets bound by the tested TF significantly overlapped 

with the set of coexpressed genes for a given cancer subtype. To find these ChIP-seq TFs, 

we first preprocessed ENCODE ChIP-seq datasets by mapping ChIP-seq fragments to 

genomic locations of individual genes based on a window size of 50kb+/- from the gene 

transcription start site. Then, read counts of these regulatory regions were summed to 

report a single value per gene. This assumes a local regulation model, whereby the 

regulatory regions close to the TSS are assumed to be important for the expression of all 

the genes nearby (50kb distance). The choice of 50kb allows for a range of informative 

distances to be established linking enhancer elements to the TSS region, and has been 

used previously
102,109

. Afterward, the coexpressed genes for each cancer subtype were 

compared to gene-level ChIP-seq read counts and the GORILLA hypergeometric test was 

applied to determine significant overlap (See Methods). In other words, the identified 

ChIP’d TF experiments must have significantly high TF-binding reads at the coexpressed 

genes compared to non-coexpressed genes. When significant, we inferred that the TF in 

the ChIP-seq experiment may regulate the coexpressed genes for that cancer subtype. 
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Because ChIP-seq TFs are biased towards the knowledge of what TFs scientists 

have chosen as interesting to antibody and profile, the scope of TFs from ENCODE is 

notably limited. To complement ChIP-seq data and to expand the scope of inferable TFs, 

we further studied the coexpressed TFs which were found in the SEEK output as 

themselves coexpressed with the subtype marker genes. An additional requirement is that 

there must be a motif enrichment for the respective coexpressed TF in the regulatory 

region of the subtype coexpressed genes. This precludes the possibility that coexpressed 

TFs are merely targets rather than drivers of coexpression transcriptional programs. 

5.3.2 Subtype-specificity of ChIP-seq TFs 

Luminal A TFs 

We expected that the lists of inferred cancer subtype-specific ChIP-seq TFs would 

include known subtype-specific TFs. We indeed found three well-known luminal A-

associated TFs on the list of inferred luminal A TFs: Esr1, Gata3, and Foxa1 (Fig. 5.2). 

Furthermore, the experiments identifying these TFs were done in MCF7 and T47D cell 

lines, well-accepted models of luminal A biology, indicating that the set of TF targets are 

subtype-specific as well (Fig. 5.2). Accordingly, basal-like coexpressed genes were not 

significantly enriched among the targets of the luminal A ChIP-seq TFs (difference in -

log2(P value) is 7, 9, and 16 respectively for Gata3, Esr1, and Foxa1 (Fig. 5.2). Other 

ChIP-seq TFs with strong target enrichment with luminal A genes, but not with basal-like 

coexpressed genes, were Znf217, Nr2f2, Myc, Foxm1, Max, and Tead4, all from MCF7 

cell lines (Fig. 5.2). Altogether, over 50 of the 59 top Chip-seq experiments with -log(P 

value) enrichment greater than 5 come from MCF7, corroborating with the fact that 

MCF7 is the most appropriate model for the physiology of luminal A subtype. 
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Basal TFs 

The specific set of ChIP-seq TFs most actively binding basal-like genes include Cfos, 

Stat3, Myc (-log2(P) ranging from 20 to 40), Gr, Fosl2, Tcf12, Atf3 (of A549, -log2(P) is 

15 to 19), and Tead4, Chd1, Jund, Rbbp5, Ctbp2, and several others of H1hesc (-log(P) > 

10) (Fig. 5.3). The above suggested basal regulators are subtype specific given that they 

show weak (-log(P)<5) or no enrichment for targeting luminal A coexpressed genes. As 

we observed above, we were particularly intrigued by the connection of A549 and 

H1hesc cell lines to basal as no other cell lines were previously suggested as good models 

of basal-like subtype than the conventional MCF10aes. Yet, our unbiased analysis shows 

that the epithelial and messenchymal stem cell lines A549 and H1hesc can serve as useful 

models, matching the known epithelial and mesenchymal stem cell like characteristics of 

the basal subtype
121

. Overall, overlapping analysis between coexpressed genes and genes 

ranked by ChIP-seq reads successfully prioritized relevant cell line models, and ChIP’d 

TFs to be candidate regulators of basal and luminal A coexpressed genes. 
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Figure 5.2 | Top ChIP-seq experiments ranked highest in terms of luminal A 

coexpressed genes. Each entry shows the –log(P) of gene-set overlap between 

coexpressed genes of a subtype and target genes of a ChIP-seq experiment. A significant 

P-value indicates the ChIP’d TF binds regulatory sequences of a large number of 

coexpressed genes, and is thus a candidate regulator of subtype. The right bar is P-value 

legend.  

 

Figure 5.3 | Top ChIP-seq experiments ranked highest for basal-like coexpressed 

genes. This is a similar graph as Fig. 5.2, except this shows the basal-like ChIP’d TFs.  

Table 5.1 | Luminal A ChIP-seq derived TFs 

ChIP-seq derived TFs 

GATA3 10p15 

TCF7L2 10q25 

FOXM1 12p13 

TEAD4 12p13 

ELF1 13q13 

FOXA1 14q12 

MAX 14q23 

TCF12 15q21 
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PML 15q22 

SIN3A 15q22 

NR2F2 15q26 

JUND 19p13 

CEBPB 20q13 

ZNF217 20q13 

FOSL2 2p23 

HDAC2 6q21 

ESR1 6q24 

MYC 8q24 

 

Table 5.2 | Basal-like ChIP-seq derived TFs 

ChIP-seq derived TFs 

CTBP2 10q26 

NANOG 12p13 

TEAD4 12p13 

MAX 14q23 

FOS 14q24 

TCF12 15q21 

STAT3 17q21 

GTF2F1 19p13 

JUND 19p13 

BCL3 19q13 

USF1 1q22 

ATF3 1q32 

RBBP5 1q32 

CEBPB 20q13 

BACH1 21q22 

BCL11A 2p16 

FOSL2 2p23 

ATF2 2q32 

REST 4q12 

CHD1 5q15 

EGR1 5q23 

NR3C1 5q31 

TAF7 5q31 

SRF 6p 

POU5F1 6p21 

HDAC2 6q21 

TBP 6q27 

MYC 8q24 

RXRA 9q34 

TAF1 xq13 
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5.3.3 Coexpressed targets of ChIP-seq TFs: literature-based validation 

Luminal A targets identify ChIA-PET supported ER-regulated regions and basal targets 

are partitioned into epithelial and stem cell phenotypes, further confirming EMT in basal 

subtype 

We next identified the subset of coexpressed genes most frequently targeted by the 

inferred regulators (ChIP-seq targets). Using ChIP-seq TFs that are differentially 

enriched between the luminal and basal subtypes, we prioritize and identify subset of 

coexpressed genes that are likely targets. We identified over 141 luminal A targets and 

137 basal targets. Luminal A targets, expectedly, include FOXA1, ESR1, as well as EVL, 

PREX1, KCTD3, VAV3, MYOF, PKIB, PBX1, SIAH2 and others. The self- and co-

regulatory functions of ESR1, FOXA1 and GATA3 have been well described
122

. The 

luminal A target list includes KRT8, SIAH2, TFF1 which each contain ER-alpha binding 

sites in distal regulatory regions. They were experimentally verified by ChIA-PET 

experiments
109,123

 to form chromatin loops to activate gene expression in MCF7 cells. 

SIAH2 is part of a single-gene chromatin loop, while KRT8 is the anchor gene part of a 

larger keratin interaction loci
109

. Thus, some of our targets are known to activate gene 

expression through mediating chromatin interactions in a Luminal A-relevant cell line. 

Because target genes are required to be coexpressed (and upregulated) in luminal A, our 

list of coexpressed targets can potentially inform those chromatin interactions that likely 

result in active or overactive expression.  

In the basal subtype, frequent targets were NFIB (nuclear factor 1B), and cell 

surface genes EDN1 (endothelin 1), SVIL, FAT1, ANXA1 (annexin A1), KANK1 (KN 

motif and ankyrin repeat domains 1), EGFR, RND3 (Rho family GTPase 3), NCOA7 
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(nuclear receptor coactivator 7), ROR1, VGLL4 (vestigial like family member 4), of 

which several are TFs or co-factors themselves. Specifically, this list of basal targets was 

derived from experiments in two cell types: A549 (epithelial phenotype) and H1hesc 

(mesenchymal phenotype). Amongst the basal target genes we found markers of both 

epithelial and mesenchymal phenotype: 1) ERRFI1, ANXA1, EDN1, MID1 (using 

epithelial A549 cell line); 2) BCL11A, LPHN2, ROR1, ZNF532, GCNT2, PODXL, SPRY2, 

EPHB3 (using stem cell H1hesc) (Supplementary Fig. 5.2). A hallmark of the basal 

breast cancer subtype is the expression of EMT genes. 

5.3.4 Validation of coexpressed targets in siRNA and knockdown experiments 

To further validate targets, we looked for public gene expression datasets that investigate 

the effect of TF knockout or knockdown in relevant breast cancer cell lines. If the TF has 

been perturbed, then we expect gene expression changes should be greater for the target 

genes than for non-target genes (the random control in this analysis). For this purpose, we 

obtained TF-perturbation experiments for four TFs from our basal and luminal A subtype 

lists: BCL11A (basal), CTBP2 (basal), and REST (basal), FOXA1 (luminal A). Fold 

change expression between knockdown and a control condition without knockdown was 

measured. For each of the luminal A and basal subtypes coexpressed genes we found that 

coexpressed targets have greater absolute fold changes between the two conditions than a 

random control set of genes (Fig. 5.4). A slightly greater proportion of targets are 

enriched with high absolute FCH, where FCH > mean + std, if the target genes are TFs 

than non-TF targets. These results further reaffirm the importance of our inferred TFs and 

target lists. 
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Figure 5.4 | Proportion of coexpressed genomic targets and TFs having substantial 

FCH after TF knockout or siRNA knockdown. Substantial fold change (FCH) is 

defined as abs(FCH) > mean + std, where FCH is fold-change relative to a control 

condition without perturbation. (a–b) Basal coexpressed genes and TFs are evaluated for 

FCH for TFs inferred to be important in basal-subtype: BCL11A (knock out), REST 

(siRNA), CTBP2 (siRNA).(c–d) Luminal A coexpressed genes and TFs are tested for 

FOXA1 perturbation (siRNA). Experimental data are obtained from public sources 

(GSE25315, GSE36529, GSE63389, and GSE63608). 
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5.3.5 Further expanding the subtype-relevant TFs: motif-derived TFs from 

coexpressed genes. 

The TFs inferred from ChIP-seq experiments were chosen based on the similarity 

between the target gene regulatory regions they bind and the subtype-specific 

coexpressed genes. The TFs themselves may not be coexpressed in the cancer with the 

subtype-specific genes we have identified with SEEK. We observed that there are TFs in 

the list of co-expressed genes and decided to test whether these coexpressed TFs could in 

fact regulate the coexpressed genes also. Examples supporting this case includes ESR1, 

GATA3, and FOXA1 which all are both coexpressed to, and regulate luminal A’s 

coexpressed genes.  

Motif-derived TFs from coexpressed groups identify luminal steroid hormone regulators 

and basal regulators 

To confirm that each subtype’s coexpressed TFs could regulate the coexpressed genes, 

we used motif-analysis (Supplementary Fig 5.1). We identified 16 luminal A motif-

derived coexpressed TF regulators (2 of which are also nonspecifically targeting non-

subtype genes, i.e., ubiquitous), and 23 basal regulators (4 of which are nonspecific) 

(Tables 5.3–5.4 motif-derived column). Among the list of motif-verified coexpressed 

luminal A TFs we found Xbp1 (X-box binding protein), Pgr (progesterone receptor), Ar 

(androgen receptor), in addition to Foxa1, Esr1, Gata3 for which ChIP-seq data were 

available. Among the basal-like motif-derived regulators (Table 5.4) we found Bcl11a, 

Id4, En1, Sox9, for which literature evidence supports their roles in triple-negative breast 

cancer or part of the stem cell differentiation programs
124,125

. The highly relevant basal 

Foxq1 is a driver of the TGF-beta signaling pathway, participates in crosstalk with Wnt 



106 

 

signaling pathway, and influences EMT
126

. The results confirm the presence of motifs for 

steroid hormone receptors, including Esr, Pgr, and Ar within 50kb open chromatin region 

of luminal A coexpressed genes. 

Table 5.3 | Luminal A motif-derived TFs 

Motif-derived TFs 

GATA3 10p15 

PGR 11q22 

TBX3 12q24 

FOXA1 14q12 

ZBTB42 14q32 

IRX5 16q11 

SREBF1 17p11 

CREB3L4 1q21 

PBX1 1q23 

XBP1 22q12 

FOXP1 3p14 

SPDEF 6p21 

ESR1 6q24 

AR xq12 

  
Table 5.4 | Basal motif-derived TFs 

Motif derived TFs 

ELF5 11p13 

ETV6 12p13 

SOX8 16p13 

SOX9 17q23 

RUNX3 1p36 

CEBPB 20q13 

ETS2 21q22 

MAFF 22q12 

SOX10 22q13 

BCL11A 2p16 

EN1 2q13 

ETV5 3q28 

ID4 6p22 

FOXC1 6p25 

FOXQ1 6p25 

CREB3L2 7q34 

NFIB 9p24 

NFIL3 9q22 
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5.3.6 Associations of TFs with dysregulations 

Groups of ChIP-seq and coexpressed TFs are distinctly associated with subtype-specific 

breast cancer aberrations including DNA methylation, copy number aberrations 

Development of cancer involves dysregulation at multiple levels, including changes to 

the DNA, such as somatic copy number aberrations (CNA) and changes in promoter 

methylation. We therefore assessed whether the sets of cancer subtype specific TFs 

described here, were more often than expected by chance subjected to genetic (CNA) 

and/or epigenetic (DNAmeth) aberrations, i.e. significantly more often than random sets 

of TFs in breast cancer subtypes. To address this, we used data from 700 breast tumors 

with subtype-specific DNA methylation (DNAmeth), and copy number aberrations (CNA) 

data at TCGA. We summarized aberrations on a gene-level to facilitate comparisons with 

the coexpressed genes, and tested the relevance of each type of subtype-specific 

aberration (CNA, DNAmeth) on the subtype-specific regulators. As we are concerned 

with whether or not they are subject to dysregulations, absolute CNA or DNAmeth 

frequencies were measured. 

Table 5.5 | Associations (Copy Number Aberrations and DNA Methylations). 

 

Gene sets tested 

LumA 

ChIP-seq 

TFs (Q-val) 

LumA 

motif-

derived TFs 

(Q-val) 

LumA 

Targets* 

(Q-val) 

TCGA lumA population CNA 3.07E-01 5.79E-02 2.34E-02 

Curtis et al lumA population CNA 2.85E-01 3.18E-03 8.51E-02 

TCGA lumA population DNAmeth 4.64E-01 4.02E-02 1.88E-04 

Fleischer et al lumA population DNAmeth 8.55E-02 1.19E-03 1.07E-04 

  

 Gene sets tested 
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Basal ChIP-

seq TFs (Q-

val) 

Basal motif-

derived TFs 

(Q-val) 

Basal 

Targets* 

(Q-val) 

TCGA basal population CNA 2.21E-03 1.41E-01 1.38E-03 

Curtis et al basal population CNA 2.07E-02 1.40E-03 1.81E-04 

TCGA basal population DNAmeth 9.10E-01 1.32E-01 4.58E-01 

Fleischer et al basal population DNAmeth 8.17E-01 5.43E-02 9.40E-02 

*ChIP-seq derived targets within coexpressed group 

 

Our results (Table 5.5) indicate that among luminal A population, luminal A 

coexpressed motif-derived TFs as a whole group are significantly  dysregulated by CNA 

(Q<0.06 in TCGA and Q<0.00318 in Curtis et al
99

) and by DNAmeth (Q<0.04 in TCGA 

and Q<0.00119 in Fleischer et al
127

) (note that Curtis et al and Fleischer et al are external 

cohorts provided in addition to TCGA). In contrast, no specific associations could be 

made between the luminal A ChIP-seq TFs and CNA or DNAmeth in luminal A 

population (Q<0.4 – 0.6). In basal population, basal ChIP-seq TFs are dysregulated by 

CNA (Q<0.00462 in TCGA and Q<0.019 in Curtis et al), but not by DNAmeth (Q<0.87 

and Q<0.79). The results reflect distinct preference towards a specific type of 

dysregulations depending on subtype, and type of TFs examined. Note that because 

motif-derived TFs are coexpressed with the subtype seed genes, they are found more 

relevant and more generally informative than ChIP-seq TFs in carrying subtype 

dysregulations. They are not reliant on the availability of ChIP-seq experiments. It 

suggests that disruption of motif-derived TFs may be highly relevant to tumor 

development. 

Individual TFs in the ChIP-seq and coexpressed sets are illustrated to have unique 

clustering pattern based on patterns of dysregulations across the four tumor types (Figs. 

5.5-5.6). Distinct CNA targeting of basal ChIP-seq TFs in basal subpopulation is noted, 
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but not noted in other subtypes and are not noted in coexpressed groups, suggesting 

specificity.  

 

 

Figure 5.5 | CNA and DNAmeth maps on motif-derived TFs within the coexpressed 

groups. TCGA breast cancer cohort. DNAmeth, both hyper and hypomethylation is 
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widely prevalent across luminal A/B subpopulations at the luminal A specific TFs 

(bottom). This is consistent with the reported association in Table 5.5 top.  A significant 

number of basal motif-derived TFs have CNA in the basal subpopulation. Differential 

pattern is obvious between the basal and luminal A subtypes.  
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Figure 5.6 | CNA and DNAmeth maps on ENCODE ChIP-seq derived TFs. TCGA 

breast cancer cohort. A number of TFs (MYC, CEBPB, USF1, ATF3, RBBP5) are 

universally targeted across all subtypes. However, a large number of basal ENCODE 

Chip-seq derived TFs (top right) are distinctly associated with CNA gain (e.g. BCL11A) 

and CNA loss (e.g. FOS, STAT3), supporting the overall association reported in Table 

5.5 bottom. ENCODE Chip-seq TFs are devoid of DNAmeth (bottom right). 

  

 

Patterns of DNAmeth dysregulation at the coexpressed TF level are particularly 

subtype specific (Fig. 5.5 bottom). For example, we located a subset of TFs containing 

stem cell differentiation factors SOX9, EN1, GRHL1, FOXC1, ETS2, ETV6 which are 

hypomethylated in basal subpopulation and hypermethylated in luminal A subpopulation. 

Such factors in hyper/hypomethylation states possibly suggest that stem-like properties 

are effectively suppressed in the non-basal subtypes through DNA methylation. On the 

other hand, luminal A coexpressed TFs are characterized by having hypomethylations in 

luminal A/B subpopulations (evidence of hypomethylation marks is noted at GATA3, 

BHLHE40, ZBTB42, SPDEF, TOX3 in luminal A patients and not in basal) (Fig. 5.5). 

Thus, differential DNA methylation at TFs plays a critical role in maintaining luminal 

progenitor states and initiating cancer stem cell states in the basal subtype.  

5.4 Discussion 

Understanding transcriptional regulatory processes in breast cancer subtypes is a 

prerequisite step to understand subtype specific susceptibility and to develop therapy 

strategies that target individual subtypes. Our work enables us to gain insights into the 

molecular factors of each individual subtype using data-driven analysis.  We combined 
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existing cistromic and a large compendium of transcriptomic datasetsin an integrative 

framework to better understand the roles of transcription factors behind tumorigenesis. 

Previously, transcriptional regulators and targets have been inferred using 

differentially expressed genes of interest, with cistromic ChIP-seq data, and with 

promoter information. However, inferring relevant TFs by using cistromic data is not 

sufficient because the scope of ChIP’d TFs in ENCODE consortium is rather limited to 

general and well known TFs such as EP300, HDAC2, etc. Other TFs which have not 

been ChIP’d and play critical roles in the development of cell types and tissue types have 

been missed. So far for breast cancer, only a few tissue-specific TFs, such as ESR1, 

FOXA1, GATA3 have corresponding ChIP-seq experiments generated by ENCODE. In 

this work, we used the large-scale integrative system SEEK coupled with motif analysis, 

to discover perhaps an understudied class of subtype-specific TF regulators, which are 

coexpressed with the subtype biomarkers, and have their motifs enriched among the 

subtype’s coexpressed genes. We illustrate the value of such approach in analyzing 

luminal A and basal subtypes of breast cancer.    

By analyzing the two categories of TFs, i.e. ChIP-seq TFs from the ENCODE 

project, mostly noncoexpressed, and motif-derived TFs within the coexpressed groups, 

we are able to reveal the rewiring of transcription networks at different levels. For 

example, we found in this work that DNA hypomethylation tend to be associated with 

coexpressed TFs upregulated in the luminal A population, but does not involve a cell 

state change. In basal population, however, we found that CNA affects more often (than 

in other subtypes) general set of ENCODE ChIP-seq TFs that regulate stem cell and 
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epithelial phenotype switch, suggesting that basal cell state is much more dynamic and 

alterations occur at the more general ubiquitous TF level. The important contribution of 

CNA to basal like breast cancer tumors has also been reported previously, where basal 

CNA identify genes involved in genomic instability
128

. 

Forces of epigenetic and genetic alterations have severe impacts on transcriptional 

networks in breast cancer. It is for this reason that we studied CNA and DNAmeth on 

transcription factors in subtype specific breast cancer. Not only do we observe MYC is 

implicated in perturbed transcription factor network as revealed by ChIP-seq experiments, 

MYC also has CNA gain in subtypes of breast cancer. It is likely that more TFs which 

regulate the expression of the coexpressed genes, have been also subjected to CNA and 

DNAmeth dysregulations. Our study investigates the tight inter-play between three 

elements of regulation (CNA, DNAmeth, TF binding) for the first time in breast cancer, 

and will contribute to a better understanding of how subtype-specific breast cancer arises. 
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6 CONCLUSIONS AND FUTURE WORK 

In this thesis, I have designed search systems to address the critical need for unsupervised 

targeted analysis of the massive gene expression data collections. These systems have 

wide ranging applications, such as gene function prediction, prioritization of datasets, and 

inference of genes for further motif-based analysis and master regulator inference.  

Specifically, I first developed the human-only search system, SEEK, that supports 

the targeted integration of over 5000 gene expression datasets covering 48 different 

platforms. The number of datasets integrated is the largest to date. I showed that this 

system is general enough to support the investigation of diverse areas of biology using 

large-scale gene function prediction evaluations from 995 gene ontology biological 

processes. A key reason for SEEK’s accuracy is the query-based weighting of datasets, 

that can automatically detect relevant datasets from the compendium for retrieving 

coexpressed genes. This novel rank-based, cross-validation-based weighting algorithm 

shows great discriminatory power for the most query-relevant datasets. As the dataset 

weighting specifically exploits multigene queries, multigene queries have allowed highly 

expressive query context to be constructed, thus enabling accurate search results. 

In the next chapter, I have extended the functionality from human-only to 5 other 

commonly studied model organisms: mouse, fly, worm, yeast, and zebrafish. Systematic 

evaluations have shown that the SEEK algorithm work equally well to retrieve model 

organism-specific biological process genes, given member genes as query. I developed a 

fast coexpression testing procedure based on generalized pareto distribution modeling of 

coexpression score. The computed coexpression score summarizes the full and partial 
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coexpression relationships between the query genes, and is robustly tested against 

randomly selected genes of matched size. This procedure has been adopted for large-

scale dataset prioritization given a query of interest. 

In the following chapter, I have developed the ModSEEK comparative search 

system, a system that permits researchers to combine orthology data with coexpression 

data to identify orthogroups with functionally co-similar orthologs relative to a query 

reference. The system has been evaluated systematically in gene retrieval studies, where I 

showed that cross-organism retrieval leveraging the transfer of annotations along 

functionally similar orthologs enabled better retrieval performance compared to unaided 

single-organism-based gene retrieval. 

Finally, I demonstrate an important use of SEEK in a breast-cancer focused case 

study. The coexpressed genes retrieved by SEEK have become subtype-specific gene 

signatures, an important starting point for ensuing investigations. Specifically, using 

coexpressed genes I was able to trace subtype-specific regulators and motifs governing 

individual subtypes’ regulation. Motif analysis and ChIP-seq data were integrated to 

bring about a full picture of subtype-specific transcriptional landscape. An important 

class of TF regulators that are found coexpressed to subtype seed genes, has been 

uncovered and has been shown to carry subtype-specificity not only in expression but 

also in cancer dysregulations such as copy number aberrations and DNA methylations. 

The SEEK search algorithm can be applied to more organisms. The 5 model 

organisms shown in this thesis provide promising examples that it would likely work for 

other organisms with large data compendia. The multigene query ability has opened up 



117 

 

unexpected opportunities for new analysis. For example, large multigene queries 

constructed from differentially expressed gene sets can enable researchers to identify 

datasets with coordinated up- or down-regulation in the query genes. This analysis would 

be based on SEEK’s query-based dataset weighting score. SEEK provides an appealing 

alternative and a data-driven extension to services such as MsigDB.  

In future, there will be an increasing need to integrate even larger amounts of 

expression data, so scalable algorithms that can handle several times the existing data size 

should be developed to anticipate future data growth. As well, methods that can 

intelligently handle compendium update and mechanism of keeping track data 

provenance will be an important area of research to support the goals of open and 

reproducible workflow. The era of big data is full of exciting opportunities and 

challenges. Rather than being fearful of big data, I believe that we should embrace it for 

what it is capable of achieving, and its transformative potential to enable novel insights 

and shift research paradigm. 
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SUPPLEMENTARY NOTES 

A.1 Hedgehog (Hh) query – detailed analysis of the retrieved genes 

Below we describe additional details of the top retrieved genes for the Hh pathway 

example described in the manuscript.  The known Hh pathway members SMO (rank 1), 

HHIP (rank 6), BOC (rank 7), and PTCH2 (rank 9) are all among the top 10 SEEK-

retrieved genes, and KIF7 is ranked 22 – all in the first view immediately available to the 

biologist running SEEK. Other Hh-associated genes are also retrieved with top ranks. 

Multiple studies show that the TGF-beta pathway genes RGMA (rank 2), LTBP4 (rank 8) 

are significantly co-induced with GLI1 and GLI2 in recurrent tumors
129,130

. The ortholog 

of protocadherin 18 (PCDH18, rank 3) interacts with DAB1, which functions in concert 

with the Hh pathway to control retina development
131

. FZD7 (rank 4) is an important 

receptor in the Wnt pathway that extensively cross-talks with the Hh pathway 
132

. The 

Notch signaling protein HEYL (rank 15) regulates HES1, which directly modulates Gli1 

expression and Hh signaling
133,134

. HHIP-AS1 (rank 20) encodes the antisense RNA of 

the Hh interacting protein HHIP, which is a vertebrate-specific inhibitor of Hh 

signaling
135

. Many others genes among the top 25 retrieved – KIF26A (rank 10), CRMP1 

(rank 11), CCDC8 (rank 13), SLC26A10 (rank 14), RUNX1T1 (rank 17), MRAP2 (rank 

18), GPR124 (rank 19), and PCYT1B (rank 21) – have literature evidence for either 

regulatory interactions (direct or indirect), or pathway-level cross-talk with members of 

the Hh signaling pathway. 
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A.2 Web interface details 

SEEK has been implemented as an interactive, easy-to-use website that allows biologists 

to perform queries, view expression patterns of the retrieved coexpressed genes, and 

perform visualization-based analyses. The goal of the SEEK web interface is to offer a 

Google-like engine for expression and coexpression retrieval, enabling biomedical 

researchers to fully utilize the thousands of expression data sets for accomplishing their 

analyses with a focused yet flexible and interactive web-based system. The web interface 

offers three flexible modes of visualizing users’ results: expression view, coexpression 

view, and condition-specific view.  

Expression view is the first view that the user sees upon completion of their 

search. Fig. 6a (main text) shows an example. The top 100 coexpressed genes are shown 

for the query GLI1, GLI2, and PTCH1 (the user can easily see other lower-ranked genes 

of interest). The data sets are displayed in order of relevance, allowing the user to focus 

on those most related to their area of interest based on query coexpressions. In this view, 

expression levels for each gene are displayed, and a score is provided for each gene that 

conveys its level of normalized, hubbiness-corrected, and weighted coexpression to the 

query. A weight is provided for each data set, which offers a measure of the coexpression 

between the query genes in that data set as an indication of data set relevance. Each page 

juxtaposes multiple data sets’ expression matrices to allow quick comparison and 

navigation. Within each data set’s expression matrix, SEEK hierarchically clusters the 

conditions in the data set according to expression of the retrieved genes that are shown to 

the user. This clustering provides a quick visualization for identifying up- and down-

regulation pertinent to the query genes. 
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Condition-specific view (Supplementary Fig. 2.4) is activated by clicking on 

the expression pattern of a gene in a particular data set. This view allows users to 

associate coexpressed genes with the meta-information (or measured outcome) attached 

to the data set, such as disease state, cell type, cell line, drug treatment, and patient 

characteristics. Users can choose among the data set’s available attributes, and re-cluster 

the selected data set based on an attribute of interest. For example, by selecting the 

attribute “anatomical sites” for a Hedgehog related data set, and viewing the Hedgehog 

genes in the context of anatomical sites, they can observe that Hedgehog signaling is 

abundant in testis and pancreas, but not in lymph node tissues (Supplementary Fig. 2.4). 

Thus, potential associations to various measured outcomes can be readily uncovered post-

search through the condition-specific view. 

SEEK’s coexpression view (Supplementary Fig. 2.5) provides a “bird’s-eye” 

view of the coexpression landscape across up to 50 data sets at a time. Users can readily 

identify the data sets that are most relevant for the query, based on the coexpression of 

each retrieved gene to the query visualized as single columns. Users can readily assess 

the contribution of each data set. This view also serves to visually analyze the query 

coherence (Supplementary Fig. 2.5, top heat-map), helping users in constructing a 

coherent query gene set, which in turn guides SEEK in producing more relevant results.  

Downstream analyses – Refine Search 

An important feature of SEEK is providing the user with flexible search refinement 

options (Supplementary Fig. 2.6). Although the SEEK algorithm enables robust search 

over the whole expression compendium, there are cases when users intend to restrict the 
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search domain to a subset of data sets, for instance, when they desire a tissue- or disease-

oriented coexpression analysis, or when the user encounters a situation when her query is 

too small or heterogeneous, and the intended context is not readily identifiable from the 

query alone. The Refine Search function provides users with several ways of refining the 

search analysis. Users may narrow their results down by: 

1) Limiting to a tissue or disease of interest. There are currently hundreds of 

selectable tissues, cell-types, and diseases defined by UMLS and BRENDA 

keywords. 

2) Limiting the search to only cancer or non-cancer data sets. The cancer data 

compendium includes primary tumors, metastasized tumors, and cancer cell lines. 

The non-cancer compendium includes diverse non-cancer samples, including 

stem cells, muscle and adipose cells, neurodegenerative, immune and infectious 

disease samples, epithelial and endothelial cell types, and blood cell types in non-

cancerous diseases. 

3) Limiting to multi-tissue profiling data sets only. This group of 13 data sets is 

useful for checking the expression of gene(s) across normal tissues, cell lines, cell 

types, and diseased tissues from various organs.  

4) Limiting to primary tumor data sets only. Users can select the 224 TCGA 

RNASeq data sets as well as around 200 data sets from independent research 

studies that profile single-tissue tumors in each data set. 

SEEK provides users with an easy-to-use and easily searchable data set-type 

selector (Supplementary Fig. 2.6). After a category has been selected, SEEK will 
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perform the data set prioritization and coexpressed gene search within the chosen 

category of data sets only.  

A.3 ModSEEK hedgehog ligand tissue contexts 

In our evaluation, ModSEEK's automatic prioritization of murine datasets has accurately 

rediscovered the divergent roles of the hedgehog ligands Shh, Dhh, and Ihh. These results 

are consistent with multiple previous independent studies of individual ligands: 

Ligand Tissue contexts revealed by 

ModSEEK’s data-driven 

dataset prioritizations 

Supporting evidences 

Shh Skin, hair follicles, epidermis, 

hypothalamus, brain 

Hedgehog signalling in skin development and 

cancer (Athar et al 
136

) 

Shh expression is required for embryonic hair 

follicle but not mammary gland development 

(Michno et al 
137

) 

Dhh Gonads, testis, ovary Distinct roles for Steroidogenic factor 1 and 

Desert hedgehog pathways in fetal and adult 

leydig cell development (Park et al 
138

) 

Ihh Chondrocytes, intestines Indian hedgehog signaling regulates 

proliferation and differentiation of 

chondrocytes and is essential for bone 

formation. (St-Jacques et al 
139

) 

Indian hedgehog regulates intestinal stem cell 

fate through epithelial-mesenchymal 

interactions during development (Kosinski et 

al 
140

) 

 

The link between SHH-mediated hedgehog signaling and basal cell carcinoma (BCC) is 

well supported by the study Daya-Grosjean et al 
141

. In our results, we have inferred 

squamous cell carcinoma which includes BCC. 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 2.1 | Robustness of SEEK and Gene Recommender to noisy 

query genes. (a) SEEK’s retrieval robustness in the presence of random gene noise in the 

query. Red line (at 1.0) denotes the no-noise queries’ performance level. Relative 

performance, defined by the fraction in fold improvement of precision over random at 

10% recall (FIOR@10%) between noisy and no-noise queries, is plotted (see Section 2.4 

Methods). The percentage numbers below the box plot shows the median per-query 

performance drop. (b) Gene Recommender’s gene retrieval robustness in the presence of 

random gene noise in the query.  
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Supplementary Figure 2.2 | SEEK’s performance across process groups. Each black 

dot represents a process. Different statistics were used to summarize performance 

(FIOR@10%) per group: red dot (mean), blue line (75
th

 percentile), orange line (median). 

Memberships of the biological processes to the 11 term groups are determined by text-

mining the process title, except for the 3 super-groups (see figure for their definitions). 

Red arrows indicate examples of top-performing processes: “erythrocyte differentiation” 

(44-fold), “lysosomal transport” (25-fold), “glutamate signaling” (104-fold), and 

“digestive system development” (33-fold). 

 

 

 

Supplementary Figure 2.3 | Search results for the Hedgehog (Hh) signaling query 

GLI1 GLI2 PTCH1: data set weight significance and gene-retrieval validation. (a) 

Top-ranked data sets are specifically highly weighted to the Hedgehog (Hh) query. Data 

set weight significance is calculated by a comparison with 100 random queries. Empirical 

P value for each data set d represents the fraction of 100 random queries where the score 

(or weight) of the data set d prioritized by a random query is higher than d’s score in the 

Hh query. (b) Gene retrieval validation, which serves as an indication of the relevance of 

the search results (i.e., coexpressed genes) to the Hh context. The gold standard consists 

of 71 Hh genes assembled from KEGG and GO.  
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Supplementary Figure. 2.4 | Condition-specific view. This zoom-in view is generated 

by clicking on the row corresponding to SMO and GSE12630 data set in the result page 

of the GLI1, GLI2, PTCH1 query. 

 

 
 

Supplementary Figure 2.5 | Coexpression view. Top heat map: query coherence, 

measured by the degree to which each query gene correlates with the rest of the query 

across the top 50 data sets. Each column represents a data set. Any “outlier” genes can 

thus be identified and subsequently removed from the query. 

 

Query  ? :   Options Home

Expression  ? Co-expression  ? 

SEEK has identified the following genes to be related to the query by co-expression. Below is a heat map showing the degree of co-expression in the top weighted

datasets. Tips: Hover on the co-expression image. Hover, click on a gene label, or a dataset ID

Genes 1- 100 Datasets 1- 50

 
Dataset rank,
keywords  ? 

   Query Cross-Validations  ? 

  GLI1
  GLI2
  PTCH1

    ? 

0.0 2.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4

   Gene-Query Co-expression

Rank Coexp  ? Gene

    ? 

-3.2 -2.5 -1.9 -1.2 -0.5 0.2 0.8 1.5 2.2 2.9

Analyses: Enrichment of genes  ? Refine search  ? 

 
See the complete gene-list ranked by co-expression score

See the complete dataset-list ranked by query-relevance

Export the co-expression matrices on this page

1 0.976 SMO 
2 0.876 RGMA 
3 0.827 PCDH18 
4 0.814 FZD7 
5 0.808 HHIP 
6 0.804 TSPAN18 
7 0.790 BOC 
8 0.784 LTBP4 
9 0.760 PTCH2 

10 0.757 KIF26A 
11 0.747 CRMP1 
12 0.745 CCDC8 
13 0.742 NRXN2 
14 0.731 SLC26A10 
15 0.711 MRAP2 
16 0.711 HEYL 
17 0.711 NLGN3 
18 0.704 RUNX1T1 
19 0.693 HHIP-AS1 
20 0.690 GPR124 
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Supplementary Figure 2.6 | Available options within the Refine Search window. The 

second column lists the number of data sets in each data set category. 
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Supplementary Figure 3.1 | Two types of query. (a) A ubiquitous-type query (PROS29 

RPN12 PROSBETA2 PROS26.4 CG30382).  (b) A unique-type query in fly endocytosis 

process, HTL VPS28 SKTL HSP70BC GAP69C. Plots show the -log of p value of dataset 

weight as a function of dataset rank. 

 

Supplementary Figure 5.1 | Generation of motif-derived TFs. 
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Supplementary Figure 5.2 | Basal coexpressed targets reveal epithelial and stem cell 

lineages. Rows: top basal coexpressed genes that are targets of basal-specific TF 

regulators. Columns: TF regulators, ChIP’d from ENCODE with cell line indicated. 

Entry in heatmap: binding abundance of a TF at the upstream region of a coexpressed 

gene. The heatmap indicates that the binding pattern at the coexpressed genes can be 



130 

 

largely divided into epithelial cell specific (A549) (e.g. NFIB, ERRFI1, ANXA1, EDN1, 

MD1), stem cell specific (H1hesc) (e.g. BCL11A, LPHN2, FOR1, etc), and both (A549 + 

H1hesc) (e.g. GRPN2, FAT1, EPH2). This is evident from the clustering of Chip 

experiments. 

SUPPLEMENTARY DATA 

Supplementary Data 2.1 – 2.5. 

All supplementary data can be found at the Nature Methods website or at the PubMed 

Central website: 

http://www.nature.com/nmeth/journal/v12/n3/full/nmeth.3249.html 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768301/ 

Supplementary Data 5.1. Seed genes. 

Luminal A Ref
113

 ENPP5 TCEA3 NPNT SNX13 STEAP2 MGRN1 CYP2A6 

KIAA0182 ECHDC2 FMO5 SELENBP1 MUC1 CRAT CFB 

RARRES3 CYB5A GALNT10 HSD17B4 APPL2 PTP4A2 

ASAH1 ALCAM MSX2 SLC40A1 SVEP1 SNED1 PLAT FMOD 

ADRA2A ECE1 BCAM SHC2 ACBD4 GSTM3 CAMK2N1 

RALGPS1 PTPRN2 BLVRA AGTR1 NPY1R TLE3 PHF15 

MED13L CCND1 QDPR SIAH2 COX6C SCNN1A TFF3 

MCCC2 FBP1 ANXA9 REEP5 LRBA HEXIM1 BECN1 

TCEAL1 RERG SLC39A6 RABEP1 ESR1 ACADSB VAV3 

NAT1 SCUBE2 GATA3 FOXA1 XBP1 

Luminal B Ref 
114

 CDC6 CCNB1 UBE2T NUF2 BLVRA SLC39A6 ESR1 CXXC5 

Her2-

enriched 

Ref
113

 TBPL1 TLK1 FLOT2 SMARCE1 MED24 STARD3 GRB7 

ERBB2 S100P CEACAM6 

Basal-like Ref
113

 ZNF532 B3GNT5 CDK6 KDSR NCL SLC5A6 CHI3L2 SLPI 

CXCL1 VGLL1 DSC2 FOXC1 MFGE8 ACTG2 GABRP 

TRIM29 KRT5 KRT17 CX3CL1 CDH3 SGCE FZD7 VCL EXT2 

Normal-

like 

Ref
113

 KRT13 RAPGEF3 RAB11FIP5 ACSS2 GNB2L1 TFAP2C 

GSTA4 CA2 AQP3 AKR1C1 ACSL1 LTF PIK3R1 ABLIM1 

PTPRM PAM 

 

Supplementary Data 5.2. Breast cancer compendium. 
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GSE12814.GPL570 

GSE13274.GPL570 

GSE13671.GPL570 

GSE1456.GPL96 
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TCGA-AC-01.RNASEQ 

TCGA-AN-01.RNASEQ 

TCGA-AO-01.RNASEQ 

TCGA-AQ-01.RNASEQ 

TCGA-AR-01.RNASEQ 

TCGA-B6-01.RNASEQ 

TCGA-BH-01.RNASEQ 
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Supplementary Data 5.3. SEEK expanded coexpressed gene lists. 

Luminal A 

SEEK 

analysis 

http://seek.princeton.edu/viewer33.jsp?sessionID=1469824943666&sort_s

ample_by_expr=true 

Coexpressed genes (includes P-values for all genes): 

http://seek.princeton.edu/servlet/GetScoreServlet?sessionID=14698249436

66&type=gene_score&keyword=all_sorted&show_query=true 

Prioritized datasets: 

http://seek.princeton.edu/servlet/GetScoreServlet?sessionID=14698249436

66&type=dataset_weight&keyword=all_sorted 

Luminal B 

SEEK 

analysis 

http://seek.princeton.edu/viewer33.jsp?sessionID=1469825046409&sort_s

ample_by_expr=true 

Coexpressed genes (includes P-values for all genes): 

http://seek.princeton.edu/servlet/GetScoreServlet?sessionID=14698250464
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09&type=gene_score&keyword=all_sorted&show_query=true 

Prioritized datasets: 

http://seek.princeton.edu/servlet/GetScoreServlet?sessionID=14698250464

09&type=dataset_weight&keyword=all_sorted 

Basal-like 

SEEK 

analysis 

http://seek.princeton.edu/viewer33.jsp?sessionID=1469825090287&sort_s

ample_by_expr=true 

Coexpressed genes (includes P-values for all genes): 

http://seek.princeton.edu/servlet/GetScoreServlet?sessionID=14698250902

87&type=gene_score&keyword=all_sorted&show_query=true 

Prioritized datasets: 

http://seek.princeton.edu/servlet/GetScoreServlet?sessionID=14698250902

87&type=dataset_weight&keyword=all_sorted 

Normal-

like SEEK 

analysis 

http://seek.princeton.edu/viewer33.jsp?sessionID=1469825139414&sort_s

ample_by_expr=true 

Coexpressed genes (includes P-values for all genes): 

http://seek.princeton.edu/servlet/GetScoreServlet?sessionID=14698251394

14&type=gene_score&keyword=all_sorted&show_query=true 

Prioritized datasets: 

http://seek.princeton.edu/servlet/GetScoreServlet?sessionID=14698251394

14&type=dataset_weight&keyword=all_sorted 

Her2-

enriched 

SEEK 

analysis 

http://seek.princeton.edu/viewer33.jsp?sessionID=1469824901640&sort_s

ample_by_expr=true 

Coexpressed genes (includes P-values for all genes): 

http://seek.princeton.edu/servlet/GetScoreServlet?sessionID=14698249016

40&type=gene_score&keyword=all_sorted&show_query=true 

Prioritized datasets: 

http://seek.princeton.edu/servlet/GetScoreServlet?sessionID=14698249016

40&type=dataset_weight&keyword=all_sorted 

 

Supplementary Data 5.4. ENCODE DNase and Chip-seq experiments used for motif-

finding analysis 

Luminal A MCF7 DNase Hypersensitivity (ENCODE) 

T-47D DNase Hypersensitivity (ENCODE) 

Eralpha T-47D Chip-seq (ENCODE) 

Foxa1 T-47D Chip-seq (ENCODE) 

Gata3 T-48D Chip-seq (ENCODE) 

Basal-like A549 DNase Hypersensitivity (ENCODE) 

H1hesc DNase Hypersensitivity (ENCODE) 

Cfos Mcf10aes Chip-seq (ENCODE) 

Stat3 Mcf10aes Chip-seq (ENCODE) 
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