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Abstract

Researchers and analysts from many diverse fields are interested in unstructured observations

of human behavior; this variety of data is constantly increasing in quantity. In this dissertation,

we describe a suite of computational methods to assist investigators in interpreting, organizing,

and exploring this data.

We develop two Bayesian latent variable models for human-centered applications; specif-

ically, we rely on additive Poisson models, which allow behavior to be associated with

various sources of influence. Given observed data, we estimate the posterior distributions of

these models with scalable variational inference algorithms. These models and inference

algorithms are validated on real-world data.

Developing statistical models and corresponding inference algorithms only addresses part of

the needs of investigators. Non-technical researchers faced with analyzing large quantities

of human behavior data are not able to use the results of inference algorithms without tools

to translate estimated posterior distributions into accessible visualizations, browsers, or

navigators. We present visualization based on an underlying statistical model as a first-class

research problem, and provide principles to guide the construction of these systems. We

demonstrate these principles with exploratory tools for two latent variable models.

By considering the interplay between developing statistical models and tools for visualization,

we are able to develop computational methods that provide for the full needs of investigators

interested in exploring human behavior.
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1
ˇ̌

Introduction

Essentially, all models are wrong, but some are useful.

– George E. P. Box

Human behavior, either at an individual or collective level, is complex. This complexity

warrants a myriad of disciplines dedicated to the study of human behavior, each with a

unique perspective. Investigators from disparate fields find themselves interested in identical

or overlapping data—for example, both economists and socialists analyze consumer pur-

chases; both historians and linguists study written records. And now with the deluge of data

emanating from the digital era, investigators find themselves relying on massive unstructured

observational data—again, using the same data for different purposes.

Computational methods assist investigators with the analysis of such data. These methods

are sufficiently generic to expose patterns in the data that are of interest across disciplines.

Computer scientists typically separate these methods for analysis into two areas: statistical

modeling for finding patterns in data and building tools for exploring data. While this

distinction can prove useful, both areas are intrinsically connected: exploration relies on an

underlying model to summarize the data, and modeling relies on exploratory tools to make

the inferred results accessible to investigators.

Latent variable models are well-suited to exploratory data analysis because variables can

map to intuitive concepts such as the “topic” of a document or the “influence” of one person
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on another. These variables represent assumptions about some hidden structure that was

involved in the creation of the data—we do not directly observe the “topics” of a document,

only the resulting words. Given a joint probability model of latent and observed variables,

the central computational task is to compute or estimate the posterior distribution of the

latent variables, given the observed data.

The goal of exploratory tools is to translate a posterior distribution into a visualization,

browser, or navigator that is accessible to an investigator. Ideally, such tools will display not

only summaries of the entire data, but also relevant latent variables alongside the original

observations; this allows the model to be a lens through which to view the data.

This dissertation is concerned with the interplay between statistical modeling of human

behavior and the exploration of model results. In it, we develop additive Poisson models

(a family of latent variable models which are discussed in detail in Section 2.4.1) for two

human-centered applications; this model family is particularly convenient for attributing

observed behavior to various sources of influence. We also present visualization based on

an underlying statistical model as a first-class research problem, and provide principles to

guide the construction of these systems. We demonstrate these principles with exploratory

tools for two latent variable models.

The remainder of this dissertation is organized as follows.

We begin with preliminary material in Chapter 2. This chapter provides background on

latent variables models and posterior inference for these models given observed data. It also

contains descriptions for two specific latent variable models on which this work builds—

latent Dirichlet allocation (LDA) (Blei et al., 2003) and Poisson Factorization (PF) (Canny,

2004), along with a discussion of their relationship.

In Chapter 3, we turn to modeling text when the authoring entities are being influenced by

external events. We present Capsule, an additive Poisson model for capturing these events,

and demonstrate that our model recovers real-world events and corresponding documents

2



relevant to these events.

In Chapter 4, we develop social Poisson Factorization (SPF), another additive Poisson model

to identify social influence. Instead of using text documents as our observations, we now

consider logs of user actions online, such as clicking on a product. And instead of external

events prompting changes in behavior, we examine the online social network as a source of

influence. We demonstrate that this model outperforms competing methods at predicting

users’ behavior, while also providing an interpretable scaffold with with to explore user

preferences.

To make these and other latent variable models accessible to investigators, we present five

principles for model development and visualization in Chapter 5, along with guidelines on

their application. We first apply these principles by concretely demonstrating how results

from the LDA model can be more accessible to investigators with a browsing tool. We show

that LDA can be used to organize and navigate an unstructured collection of text documents,

making it easier to find documents of interest. We again apply our modeling and visualization

principles to demonstrate how the Capsule model for detecting and characterizing events

can be used to organize and explore primary source documents.

Finally, we conclude with Chapter 6, in which we summarize the contributions of this

dissertation and discuss directions for future work.
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2
ˇ̌

Preliminary Material

If I have seen a little further it is by standing

on the shoulders of giants.

– Isaac Newton

The ideas of this dissertation relies extensively on existing work, which will be outlined in

this chapter. We first discuss latent variables models and common systems to represent them.

Second, we describe variational inference, an approach to inferring the posterior of a given

latent variable model. Then, we present two specific models—latent Dirichlet allocation

(LDA) (Blei et al., 2003) and Poisson Factorization (PF) (Canny, 2004)—and describe

their relationship. Finally, we briefly discuss how to develop models and use inferences for

exploratory analysis.

2.1 Latent Variable Models

All statistical models are based on some underlying assumptions about how a collection

of observed data was generated or is organized. A latent variable model encodes these

assumptions with a set of latent variables that can have relationships among themselves and

with the observations, or observed variables (Bishop, 1998). Variables that are “latent” are

termed so because they are not observed directly; instead, their structure is assumed to exist
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based on expert knowledge of the system, and estimates of their values are discovered via

patterns in the observations.

Latent variable models are usually specified in two ways: graphical models and formal

generative processes. We describe both varieties of specification.

2.1.1 Graphical Models

Graphical models depict potential dependencies between variables with a directed graph

of edges and nodes. Each variable corresponds to a node and each possible dependency

is indicated by a directed edge. Further, shaded nodes specify that a variable is observed,

while unshaded nodes express that the variable is unobserved. Plates denote replication of

variables.

As an example, imagine that we have N observations of some variable x. This variable

could take discrete values, such as heads or tails from a coin flip, or it could take continuous

values, like it would if it represented the height of various individuals. This variable is shown

in Figure 2.1 as a shaded node within a plate labeled with the number of replicates N .

Figure 2.1: A simple graphical model showing N observations of some variable x.

Alone, this variable simply depicts the structure of the data. If we know that there areM

coins that are each flipped N times, we could represent this with Figure 2.2. This could also

represent the heights of individuals fromM villages, each with population N .

To learn something about the data, we need to introduce unobserved variables. Figure 2.3

shows unshaded node z, which indicates one latent variable for each group m (e.g., coin

or village). The latent variables z (indicated in bold when we refer to the entire collection
5



Figure 2.2: A graphical model showingM groups of N observations of variable x.

of these variables) could represent the bias of each coin m or an unobserved condition that

impacts height for village m.

Figure 2.3: A graphical model showing observations of variable x, which may depend on
its respective latent variable z.

Some graphical models omit fixed priors, or model hyper-parameters. In this dissertation,

we include them as small solid squares; for example, Figure 2.4 shows fixed hyper-parameter

�, which could represent our prior belief about the distribution of coin biases or expert

knowledge about the distribution of conditions that impact height.

Figure 2.4: A graphical model showing observations of variable x, which may depend on
its respective latent variable z, which in turn depends on prior �.

Here we focus on directed graphical models, also known as “Bayesian networks,” but undi-

rected variants of graphical models exist and have their own principles and techniques (Koller

and Friedman, 2009).
6



Graphical model representations are general and intuitive. They provide an easy way of

visualizing dependencies between latent and observed variables; in the case of Figure 2.4,

observed variables x can depend on latent variables z. Graphical models specify a family

of models with this dependency structure, but to infer the values of the latent variables, we

need a formal generative process.

2.1.2 Formal Generative Processes

A formal generative process defines specific probability distributions from which the latent

and observed variables are assumed to be generated. Each node, be it latent or observed, must

be drawn from some distribution; this distribution can be conditional on other parameters or

the fixed hyper-parameters.

Using the coin flip example from the previous section, we can construct a generative process

to model this data. If we are to match the graphical model of Figure 2.4, then we need to

specify a distribution for each coin bias z, conditional on prior �; we also need a distribution

for each observed coin flip result x, conditional on its corresponding coin bias z. Figure 2.5

defines a formal generative process that fulfills these requirements and matches the graphical

model.

� for each coin m D 1:M ,
� draw coin bias zm � Beta.�˛; �ˇ /1

� for each flip n D 1:N ,
I draw side of coin xmn � Bernoulli .zm/

Figure 2.5: A generative process for coin flips.

In this example, the coin biases z are each drawn from a beta distribution, but they could

alternatively be drawn from other probability distributions such as the logit-normal distribu-
1The beta distribution is specified by two shape parameters, ˛ and ˇ. Thus the hyper-parameter � is broken

into two components: � D .�˛; �ˇ /.

7



tion.

We can similarly specify a formal generative process for the village example, as shown in

Figure 2.6. Note that both this generative process and the one shown in Figure 2.5 specify

models consistent with the graphical model shown in Figure 2.4; both are members of

the general family specified by the graphical model, but each generative process defines a

unique model. Both generative processes and graphical models are useful in describing a

model: graphical models provide quick intuitions and generative processes define precise

models.

� for each village m D 1:M ,
� draw local condition zm � N .�/2

� for each person n D 1:N ,
I draw height xmn � N .zm/

Figure 2.6: A generative process for heights of villagers.

These specifications define a joint probability distribution of the hidden and observed

parameters for a given model. Graphical models indicate the dependencies in the joint

distribution, and generative processes prescribe their exact mathematical form.

2.1.3 Conditionally Specified Models

Directed probabilistic graphical models must be acyclic in order to guarantee that they define

a true joint probability distribution. Similarly, generative processes must not create cycles in

their dependencies.

Occasionally, models can only be understood in terms of their conditionally probabilities—

the joint distribution may be difficult to investigate directly. In this case, one of two situations

occur. The ideal situation is that a well-defined joint distribution exists and the probabilis-
2Here we use unit normal distributions for simplicity, but we could extend the model to account for variance.
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tic interpretation of the model holds.3 Alternatively, we have an improper conditionally

specified model which may have utility despite its failure to qualify as a genuine joint

distribution (Arnold et al., 1999).

In the particular case where the observed data x is specified by an improper conditional

model, the specification defines a pseudo-likelihood (Besag, 1975) instead of a true likelihood.

This pseudo-likelihood encapsulates some assumptions about the data and can be used to

learn the model parameters for exponential family models (Billiot et al., 2008). Pseudo-

likelihoods are typically used to approximate well-defined likelihoods, but if we are using

an improper conditional model, we do not know if a genuine likelihood exists to match to

our approximation. If the model successfully produces accurate predictions and organizes

the original data in an interpretable way, we can posit that there exists and unknown but

well-defined likelihood.

Even if the model is useful for prediction and exploring the data, one should avoid making

formal causal claims based on inferences under an improper model; its exploratory value

is primarily in discovering non-causal associations. As improper models may be easier to

develop, they can be used as a precursor to formal causal models.

2.2 Variational Inference

Once an investigator has both data of interest and a formally specified model of how the data

was generated, the task is to infer the hidden parameters in the model from the data. This

is essentially reversing the generative process to determine the distribution of all the latent

variables conditional on the observed data, or the posterior distribution.

Using Bayes’ law, we can construct the posterior distribution for our running example from
3See Arnold et al. (1999) for the conditions under which this occurs.
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Figure 2.4:

p.z jx; �/ D
p.z;x j�/R
p.z;x j�/dz

: (2.1)

On the left, we are mathematically representing the posterior distribution: the probability of

the latent parameters z given data x and hyper-parameters �. The right-side numerator is

the joint distribution of latent parameters z and observed data x; the joint is easy to evaluate

for a single setting of latent parameters z.

The challenge arises from the denominator of Equation (2.1): we want to obtain the joint

probability with any given single setting of latent parameters z, relative to the joint under all

possible settings of z, which is why we integrate over these values. In simple models, this can

be computationally feasible, but for most models of interest to investigators, it is usually not

tractable. This means that we cannot evaluate the posterior exactly and our central statistical

and computational problem is to approximate the posterior.

Variational inference (Jordan et al., 1999; Wainwright and Jordan, 2008) approximates the

posterior p with a family of distributions q. The distributions in q are defined over the latent

variables and parameterized with a set of variational parameters. For our example model,

we write this family as q.z j�/, where � are the variational parameters.

The approximation q is commonly defined using the mean-field assumption, or that the

distribution factorizes and each variable is independent:

q.z j�/ D

MY
mD1

q.zm j�m/: (2.2)

Each latent variable receives its own free variational parameter � (or set of parameters).

The q family can also be defined to maintain some dependency structure (Han et al., 2013;

Hoffman and Blei, 2015).

Given this paradigm, the goal is to find the settings of the variational parameters � that

define a distribution in q which is as close as possible to the true posterior p. Closeness is

10



measured in terms of Kullback-Leibler (KL) divergence (Kullback, 1997; MacKay, 2003),

which is an asymmetric measure of distance between distributions:

KL.qjjp/ D Eq

�
log

q.z/

p.z jx/

�
: (2.3)

Minimizing the KL divergence from an approximating distribution q to the true posterior

p cannot be done directly, but it is equivalent to maximizing the evidence lower bound

(ELBO) (Hoffman et al., 2013),

L.q/ D Eq
�
logp.x; z j�/ � log q.z j�/

�
: (2.4)

If we can write out the complete conditional distribution for each latent variable, or the

probability of a variable given all other latent and observed variables, then we can use

coordinate ascent to maximize the ELBO.4 With coordinate ascent, we update each variable

in turn, holding all the others fixed.

In order for amodel to have an analytic complete conditional for each variable, the dependency

relationships need to be conjugate (Carlin and Polson, 1991; Gelman et al., 2014). Without

these relationships, further approximations are needed; Wang and Blei (2013) derived

variational algorithms for a wide class of non-conjugate models and Ranganath et al. (2014)

developed “black box” variational inference, which can be applied to any model specified

with exponential family distributions.

These optimization algorithms return values for each of the variational parameters �; these

parameters select the one approximate posterior distribution from the full q family. With this

distribution, we can compute expected values of the latent parameters, e.g., EŒzm�. These

expectations can then be used to explore the model and the original data.
4Other optimization approaches, such as gradient ascent, can be used instead of coordinate ascent.
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2.2.1 Stochastic Variational Inference

Traditional or batch variational inference considers all the data in every iteration; for massive

or even streaming data, this is not practical. For these situations, Hoffman et al. (2013)

developed stochastic variational inference, which uses samples from the data to estimate

the updates for each variable. With stochastic variational inference, parameter updates that

involves a function of the data are altered—the original data is replaced with a scaled sample

of the data.

There is some finesse in selecting the scope of the sampling. For instance, if the data is

naturally grouped, sampling may be most efficient at the group level—when a group is

sampled, its local parameters can be updated in a batch manner, and only global parameters

shared between groups need to be stochastically updated. In this case, if the local parameters

are of interest, then a final pass over all the observations must be done at the end of the

algorithm to ensure that the local parameters have values which correspond to the most

recent global parameters.

To illustrate this subtlety and provide concrete examples of both batch and stochastic varia-

tional inference, we now turn to discussing two popular latent variable models on which the

work of this dissertation builds.

2.3 Latent Dirichlet Allocation

Probabilistic topic models discover the hidden thematic structure in large collection of docu-

ments; Latent Dirichlet allocation (LDA) (Blei et al., 2003) is the simplest topic model, on

which many other models are based (Blei, 2012; Blei and Lafferty, 2009). LDA decomposes

a collection of documents into topics and represents each document with a weighted subset

of the topics.

12



Figure 2.7: The graphical model for latent Dirichlet allocation (LDA). The variables include
K topics ˇ, local topical representations � for each of theD documents, topic assignments
z for each of the N words, and observed words w.

More formally, each topic ˇ is a distribution over V vocabulary terms. Each document is

represented as a distribution over the K topics: �d is a local K-dimensional topic vector for

document d . Also at the document level is the latent variable zdn, the topic assignment for

the nth word of document d . A word’s topic assignments z depend on the topic distributions

for its respective document. In turn, the observed word w depends on its topic assignment z

and the distribution of terms for the corresponding topic ˇz . These dependencies are shown

in Figure 2.7, the graphical model for LDA; the full generative process is shown in Figure 2.8.

These define the joint distribution of the model:

p
�
ˇ;�; z;w j˛ˇ ; ˛�

�
D

KY
kD1

p.ˇk j˛ˇ /

DY
dD1

"
p.�d j˛�/

NdY
nD1

p.zdn j �d /p.wdn j zdn; ˇ/

#
: (2.5)

To infer the values of the latent variables (ˇ, � , z) of this model with variational inference,

we approximate this posterior with a flexible family q. Using the mean field assumption,

this family is

q .ˇ;�; z j�/ D

KY
kD1

q.ˇk j�
ˇ

k
/

DY
dD1

"
q.�d j�

�
d /

NdY
nD1

q.zdn j�
z
dn/

#
; (2.6)

13



� for each topic k D 1:K,
� draw topic distribution over vocabulary ˇk � DirichletV .˛ˇ /

� for each document d D 1:D,
� draw local document topics �d � DirichletK.˛� /
� for each word n D 1:Nd ,

I draw word assignment zdn � CategoricalK .�d /
I draw word wdn � CategoricalV

�
ˇzdn

�
Figure 2.8: The generative process for latent Dirichlet allocation (LDA).

where q.ˇk/ and q.�d / areDirichlet-distributed, and q.zdn/ is a categorical distribution.

In addition to this approximation, we need the complete conditional distributions for each

of the latent parameters. The joint distribution allows us to derive the following complete

conditionals (see Appendix B), with the assumption that zdn is a K-dimensional probability

vector and wdn is a V -dimensional indicator vector.

ˇk j�; z;w ; ˛ˇ ; ˛� � DirichletV

 
˛ˇ C

DX
dD1

NdX
nD1

zdn;kwdn

!
(2.7)

�d jˇ; z;w ; ˛ˇ ; ˛� � DirichletK

 
˛� C

NdX
nD1

zdn

!
(2.8)

zdn jˇ;�;w; ˛ˇ ; ˛� � CategoricalV .�dˇwdn/ (2.9)

With the family q and the complete conditionals defined, we are able to iteratively update

each parameter, as shown in the full variational inference procedure of Algorithm 1.

To adapt inference for a large quantity of documents, M documents are sampled at each

iteration, as shown by Hoffman et al. (2013). Local document-specific parameters � and z

are fit as in batch inference, but the variational parameters for global topics ˇ are updated
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Algorithm 1:Mean Field Variational Inference for LDA
Input: words w
Output: approximate posterior of latent parameters (topics ˇ, document topics � , and word

assignments z) in terms of variational parameters �
Initialize EŒˇ� to slightly random around uniform
Initialize EŒ� � to uniform
for iteration i D 1 WM do

set �ˇ and �� to respective priors
set �z to zero
for each document d D 1 W D do

for each term n D 1 W Nd / do
set k-vector �z

dn
/ hEŒ�d;1�EŒˇ1�; : : : ;EŒ�d;K �EŒˇK �iwdn

set EŒz�d;n D �d;n
update ��

d
CD EŒzdn�

update �ˇ CD EŒzdn�wdn
end
set EŒ�d � / �

�
d

end
for each topic k D 1 W K do

set EŒˇk� / �
ˇ

k

end
end
return �

stochastically. The contribution of each document (EŒzdn�wdn) is scaled as if the sample is

representative of the entire collection, or by D=M , and added to intermediate variational

parameters; then, the final variational parameters are a weighted average of the old parameters

and the new intermediate parameters.

Researchers have developed alternative algorithms for LDA inference, including Markov

chain Monte Carlo sampling (Steyvers and Griffiths, 2006; Newman et al., 2007) and other

optimization-based variational approaches (Teh et al., 2006).

We now turn to a related model; this discussion will further illustrate model specification

and variational inference, as well as provide the groundwork for models developed in this

dissertation.
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2.4 Poisson Factorization

Factorization approaches are used in many fields; recommendation systems are popular

application (Koren et al., 2009). The setup for factorization is to frame the observed data

as a matrix. In recommendation systems, one dimension of this matrix is the users and the

other is items—the matrix is then filled with observations of users interacting with items,

such as the number of times a user has clicked an item.

While less typical, factorization can also be used for topic modeling. In this context, one

dimension of the matrix is documents, and the other is vocabulary terms; each cell contains

the number of times a word occurs in a given document. Both recommendation and topic

modeling applications are well-suited to non-negative matrix factorization (Lee and Seung,

2000), where both the observed matrix and the factor matrices have non-negative cell values.

In this discussion, we will continue to use the language of topic modeling to elucidate the

parallels with LDA.

Matrix factorization approaches most commonly assume that the cells of a matrix are

Gaussian distributed (Salakhutdinov and Mnih, 2007), but they can also be assumed to

be Poisson-distributed (Canny, 2004; Gopalan et al., 2015); the latter representation more

accurate captures the structure of positive discrete observations such as word counts.

Poisson factorization (PF) represents the observations as wdv; these are the total number of

times that vocabulary word v occurs in document d .5 The latent variables areK-dimensional

representations �d for each document d and K-dimensional vocabulary term prevalences

ˇv. Like LDA, these parameters represent the global topics in terms of words and docu-

ments in terms of topics,6 but unlike LDA, the these representations do not live on the unit

simplex.
5For recommendation systems, observations are more commonly noted as rui , the number of interactions

that user u has with item i , or the user’s explicit or implicit rating of that item.
6Recommendation systems can be interpreted as capturing user preferences � and item attributes ˇ.
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Figure 2.9: The graphical model for Poisson factorization (PF). The variables include ˇ:
V vocabulary word prevalences in the K topics, � : local K-dimensional topic representa-
tions for each of theD documents, and observed word counts w. Hyper-parameters � are
composed of shape and rate components: � D .�s; �r/.

For a given document d and vocabulary term v, the word count wdv depends on both the

topical representation of the document �d and the term prevalences ˇv. These dependencies

are shown in Figure 2.9, the graphical model for PF; the full generative process is shown in

Figure 2.10. These define the joint distribution of the model:

p
�
ˇ;�;w j�ˇ ; ��

�
D

KY
kD1

"
VY
vD1

p.ˇvk j�ˇ /

DY
dD1

p.�dk j��/

#
DY
dD1

VY
vD1

p.wdv j �dk; ˇvk/: (2.10)

To infer the values of the latent variables ˇ and � , we must again define a flexible family q

to approximate this posterior; we define this family as

q .ˇ;� j�/ D

KY
kD1

"
VY
vD1

q.ˇvk j�
ˇ

vk
/

DY
dD1

p.�dk j�
�
dk/

#
; (2.11)

where q.ˇvk/ and q.�dk/ are both gamma-distributed.7

7Throughout this dissertation, we use the shape and rate parameterization of the gamma distribution, or

Gamma.x j s; r/ D
rs

�.s/
xs�1e�rx :
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� for each topic k D 1:K,
� for each term topic v D 1:V ,

I draw topic distribution over vocabulary ˇvk � Gamma.�s
ˇ
; �r
ˇ
/

� for each document d D 1:D,
� for each topic k D 1:K,

I draw local document topics �dk � Gamma.�s
�
; �r
�
/

� for each vocabulary term v D 1:V ,
I draw word counts wdv � Poisson

�
�>
d
ˇv
�

Figure 2.10: The generative process for Poisson Factorization (PF).

To obtain simple updates for each parameter, we first employ auxiliary latent variables z.

These variables, when marginalized out, leave the original model intact. This construction de-

pends on the additive property of the Poisson distribution. Specifically, if x � Poisson.aCb/

then x D z1 C z2 where z1 � Poisson.a/ and z2 � Poisson.b/. We apply this decomposi-

tion to the generative distribution for the word counts w, and define Poisson variables for

each topic in the count:

wdv D

KX
kD1

zdvk; (2.12)

where

zdvk � Poisson.�dkˇvk/: (2.13)

The complete conditional distributions of the original latent parameters can then be derived

using these auxiliary, or “helper,” parameters.

; ˇvk j�; z;w ; �ˇ ; �� � Gamma

 
�sˇ C

DX
dD1

zdvk; �
r
ˇ C

DX
dD1

�dk

!
(2.14)

�dk jˇ; z;w ; �ˇ ; �� � Gamma

 
�s� C

VX
vD1

zdvk; �
r
� C

VX
vD1

ˇvk

!
(2.15)
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Algorithm 2:Mean Field Variational Inference for PF
Input: word counts w
Output: approximate posterior of latent parameters (global topics ˇ and document representations

�) in terms of variational parameters �
Initialize EŒˇ� to slightly random around uniform
Initialize EŒ� � to uniform
for iteration i D 1 WM do

set �ˇ and �� to respective priors
update rate paramter ��;r CD

PV
vD1 EŒˇv�

for each document d D 1 W D do
for each vocabulary word v 2 V.d/8 do

set K-vector �dv / hEŒ�d1�EŒˇv1�; : : : ;EŒ�dK �EŒˇvK �i
set K-vector EŒzdv� D wdv � �dv

update shape parameter ��;s
d
CD EŒzdv�

update shape parameter �ˇ;sv CD EŒzdv�

end
set EŒ�d � D �

�;s
d
=�
z;r
d

update rate parameter �ˇ;r CD EŒ�d �

end
for each vocabulary word v D 1 W V do

set EŒˇv� D �
ˇ;s
v =�

ˇ;r
v

end
end
return �

We also need to define the conditional distribution for the auxiliary parameters:

zdv jˇ;�;w ; �ˇ ; �� � Multinomial .wdv; �dv/ ; (2.16)

where

�dv / h�d1ˇv1; � � � ; �dKˇvKi: (2.17)

With this setup, we can iteratively update each parameter to construct the full variational

inference procedure, shown in Algorithm 2.

To adapt this algorithm for a large corpora, documents are sampled at each iteration, as done
8V.d/ is the set of vocabulary indices for the collection of words in document d . We could also iterate

over all V , but as zero word counts give EŒzdv� D 0 8v 62 V.d/, the two are equivalent.
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for LDA: document-specific parameters zd and �d are updated as in the batch variant, and

global topic parameters ˇ are updated stochastically.

PF has also been extended to a Bayesian nonparametric version that learns the number of

components (Gopalan et al., 2014) and a model that combines multiple signals, such as text

and user behavior (Gopalan et al., 2014a).

Gopalan et al. (2015) showed that PF realistically captures patterns of user behavior for

recommendation systems, lends itself to scalable algorithms for sparse data, and outper-

forms traditional matrix factorization based on Gaussian likelihoods (Gopalan et al., 2015;

Salakhutdinov and Mnih, 2007).

2.4.1 Additivity

The additive property of Poisson distributed variable was mentioned in the previous sec-

tion to assist with inference; here we discuss its application to modeling. To reiterate the

property:

Property 2.4.1 (Additivity of Poisson random variables) If x � Poisson.a C b/, then

x D z1 C z2 where z1 � Poisson.a/ and z2 � Poisson.b/.

When multiple factors occur in the parameterization of the Poisson, as in PF, then an

observation can be attributed to these various components. For instance, a document with

three occurrence of the word bark could have one instance attributed to a topic about dogs,

and the other two instances attributed to a topic about trees; this attribution is observed via

the auxiliary parameters z used during inference.

Additionally, models can be constructed with multiple terms parameterizing a Poisson

distribution. For instance, if a document has author information and we wish to model author

words, we can introduce a latent V -dimensional variable ˛ad
, where ad indicates the author
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of document d . Then, we can extend the PF model to include these author biases:

wdv � Poisson.�>d ˇv C ˛adv/: (2.18)

Now, word counts can be attributed not only to topics, but also to author biases. For

example, if the word bark is used five times in a single document, we could infer that

EŒzdv� D h0:6; 1:0; 3:4i. If these values map to a topic about dogs, a topic about trees, and

the author’s word inclinations, respectively, then this vector indicates that the author is using

the word a little bit because they are discussing dogs and trees, but mostly because they

like to use the word regardless of context (perhaps to indicate explosive sounds or brusque

orders).

The base model can continue to be extended, adding new latent variables and corresponding

terms to parameterize the Poisson. This structure allows additive Poisson models to be

applied to problems where interpretability is important, as the model structure includes

attribution, which lends itself well to interpretation.

While causal claims are not made in this dissertation, the ability to attribute observations

to multiple latent components has the potential to be useful when investigating causal

questions.

2.5 The Relationship Between LDA and PF

Latent Dirichlet allocation and Poisson factorization have many parallels (Canny, 2004;

Paisley et al., 2014); the type of data they consider is identical, and both uncover latent local

and global patterns with similar structure.

The similarities extend to the mathematical distributions used in each model. Specifically,

the Dirichlet distribution is equivalent to the distribution of a normalized collection of
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gamma variables—in LDA global topics ˇ and document representations � are assumed

to be Dirichlet distributed while in PF, global topics ˇ and document representations �

are assumed to be drawn from unnormalized gamma distributions.9 Thus one of the main

distinctions between the models is that LDA topics and document representations are on the

probability simplex, whereas in PF they are not; the simplex representation is more desirable

for interpretation.

The models also have subtle distinctions in their assumptions about the total number of words

in each document, or document length. In the original LDA specification (Blei et al., 2003),

the number of words in a documentNd is drawn from a Poisson distribution—this is typically

marginalized out. Poisson factorization, in contrast, does not model the total number of words

explicitly and this gamma representation for documents better accommodates documents of

various lengths (Canny, 2004).

2.5.1 A Hybrid Model

We can draw on the strengths of each model to construct a hybrid model of both LDA

and PF. Global topics ˇ are drawn from Dirichlet distributions, allowing them to be true

distributions over vocabulary words. Document representations � are drawn from gamma

distributions, allowing for greater flexibility in document lengths; instead of �dk representing

the proportion of document d about topic k, it represents the expected number of words

assigned to topic k in document d . The full generative process of this hybrid approach is

shown in Figure 2.11.
9See Appendix B for inference derivations that emphasize the mathematical similarity between the two

representations.
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� for each topic k D 1:K,
� draw topic distribution over vocabulary ˇ�;k � DirichletV .˛/

� for each document d D 1:D,
� for each topic k D 1:K,

I draw local document topics �dk � Gamma.�s; �r/
� for each vocabulary term v D 1:V ,

I draw word counts wdv � Poisson
�
�>
d
ˇv
�

Figure 2.11: The generative process for a LDA/PF hybrid model.

This generative process specifies the joint distribution

p .ˇ;�;w j˛;�/ D

KY
kD1

"
p.ˇ�;k j˛/

DY
dD1

p.�dk j�/

#
DY
dD1

VY
vD1

p.wdv j �dk; ˇvk/: (2.19)

To infer the posterior distribution over the hidden variables, we again construct a flexible

approximating family,

q .ˇ;� j�/ D

KY
kD1

"
q.ˇ�;k j�

ˇ

�;k
/

DY
dD1

p.�dk j�
�
dk/

#
; (2.20)

and derive the complete conditional distributions for the latent parameters (see Appendix B).

These derivations rely on auxiliary parameters z, produced by the application of Prop-

erty 2.4.1, which is identical to Equations (2.12) and (2.13). The complete conditionals for

� and z are the same as shown in Equations (2.15) to (2.17), but the distribution for ˇ is

slightly modified:

ˇ�;k j�; z;w ; ˛; � � DirichletV

 
˛ C

DX
dD1

hzd1k; � � � ; zdV ki

!
: (2.21)

Algorithm 3 shows the full variational inference procedure for this model; it can be adapted
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for a large number of observations as done for the PF inference procedure.

Algorithm 3:Mean Field Variational Inference for a LDA/PF Hybrid Model
Input: word counts w
Output: approximate posterior of latent parameters (global topics ˇ and document representations

�) in terms of variational parameters �
Initialize EŒˇ� to slightly random around uniform
Initialize EŒ� � to uniform
for iteration i D 1 WM do

set �ˇ and �� to respective priors
update rate parameter ��;r CD

PV
vD1 EŒˇv�

for each document d D 1 W D do
for each vocabulary word v 2 V.d/10 do

set K-vector �dv / hEŒ�d1�EŒˇv;1�; : : : ;EŒ�dK �EŒˇv;K �i
set K-vector EŒzdv� D wdv � �dv

update shape parameter ��;s
d
CD EŒzdv�

update parameter �ˇv CD EŒzdv�

end
set EŒ�d � D �

�;s
d
=�
z;r
d

end
for each topic k D 1 W K do

set EŒˇ�;k� / �
ˇ

k

end
end
return �

2.6 Using Inferences for Exploration

When we introduced variational inference in Section 2.2, we made a brief note on how

to use the the variational parameters � returned by these optimization algorithms. These

parameters define an approximate posterior distribution from which we can compute the

expected values of the latent parameters; these expectations are used to explore the model

and the original data.

However, the procedure for using these expectations for exploration is not always clear.

This section surveys approaches to building and evaluating exploratory models. Using this
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literature and the general visualization concepts described in Section 5.1, we propose five

principles to guide the design and exploration of latent variable models in Chapter 5.

2.6.1 Modeling for Exploration

Exploration is about discovering relationships between constructs. For example, words

obtain meaning in context (Condry, 2016); we cannot tell know if the word plant is a verb or

a noun without the surrounding words. In the latent variable paradigm, we seek to explore

the relationships between the latent and observed variables.

The challenge is that it is difficult to evaluate whether or not this exploration is successful.

Computer science researchers tend to focus on the predictive ability of a model, but these

objectives do not align with exploratory goals (Shmueli, 2010). At best, predictive evaluation

proves a secondary use of an exploratory model; at worst, it introduces a “fictitious prediction

problem” (Grimmer, 2013) to assuage reviewers that demand predictive evaluation or to

bypass a more nuanced but onerous evaluation on the part of the researcher.

With topic models, the estimated probability of held-out documents is used to evaluate

models (Wallach et al., 2009), but this and other traditional metrics are not correlated with

human-evaluated coherence (Chang et al., 2009). One option is to intentionally optimize

for semantic coherence (Mimno et al., 2011); another approach is to explicitly incorporate

human input (Hu et al., 2014).

No matter the application, modeling is an elaborate process involving multiple iterations

of making an attempt to represent the data-generating process and then critiquing the re-

sults (Blei, 2014). Human intuitions and feedback can be included at every stage; domain

experts are invaluable in defining important concepts to include, and in critiquing, refining,

and evaluating models.

The latent variable framework is particularly import in this process. Latent variables can

25



(and should) map to intuitive concepts. In the social sciences, researchers are often interested

in constructs that are not directly observable, such as happiness (Diener, 2000), political

ideals (Martin and Quinn, 2002), or sense of community (Glynn, 1981). We can design

latent variables to capture these constructs and infer them from observed quantities.

When the object is to uncover a concrete measurement for an abstract construct, it is called

a measurement model. One challenge is to determine whether or not a construct is valid;

there are at least six ways to assess construct validity (Quinn et al., 2010). Validity and

interpretability go hand in hand: if each latent variable has a corresponding valid construct,

then it ensures that the individual variables and the model as a whole are interpretable.

Once we have a exploratory model fit to data, the next step is to investigate the results. This

investigation allows researchers to verify that the model constructs are valid, to criticize the

model such that it can be improved, and to understand the underlying data through the lens

of the model.

We now turn to developing two exploratory models of human behavior (Chapters 3 and 4),

after which we will describe general principles for designing and exploring latent variable

models (Chapter 5).
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3
ˇ̌

Detecting and Characterizing Events

We can do nothing but scrutinize historical events

themselves if we want to discover what they are.

– Dean W. R. Matthews

Foreign embassies of the United States government communicate with each other and with

the U.S. State Department through cabled message. The National Archive collects these

documents in a running corpus, which traces the (unclassified) diplomatic history of the

United States. It has collected, for example, about two million cables sent between 1973 and

1978.

Typically, a cable from this collection describes diplomatic “business as usual,” such as

arrangements for visiting officials, recovery of lost or stolen passports, or obtaining lists of

names for meetings and conferences. For example, the embassies sent 8,635 cables during

the week of April 21, 1975. Here is one, selected at random,

Hoffman, UNESCO Secretariat, requested info from PermDel concerning an official

invitation from the USG RE subject meeting scheduled 10-13 JUNE 1975, Madison,

Wisconsin. Would appreciate info RE status of action to be taken in order to inform

Secretariat. Hoffman communicating with Dr. John P. Klus RE list of persons to

be invited.
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But hidden in the corpus are also cables about important diplomatic events, the cables and

events that are of primary interest to historians. During that same week, the United States

was in the last moments of the Vietnam war and, on April 30, 1975, lost its hold on Saigon.

This resulted in the end of the Vietnam War and a max exodus of refugees from the country.

One of the cables around this event is

GOA program to move Vietnamese Refugees to Australia is making little progress

and probably will not cover more than 100-200 persons. Press comment on

smallness of program has recognized difficulty of getting Vietnamese out of Saigon,

but “Canberra Times” Apr 25 sharply critical of government’s performance. [...]

Labor government clearly hopes whole matter will somehow disappear.

Our goal in this chapter is to develop a method to help historians and political scientists

wade through their collections, such as the 1970s cables, to find potentially important events,

such as the fall of Saigon, and the primary sources around them. We develop Capsule, a

probabilistic model for detecting and characterizing important events in large collections of

historical communication.

Figure 3.1 illustrates Capsule’s analysis of the two million cables from the National Archives.

The y-axis is “eventness”, a loose measure how strongly a week’s cables deviate from the

usual diplomatic chatter to discuss a matter that is common to many embassies. (This is

described in detail in Section 3.2.)

The figure shows that Capsule detects many of the important moments during this five-year

span, including the Air France hijacking and Israeli rescue operation “Operation Entebbe”

(June 27–July 4, 1976), and the fall of Saigon (April 30, 1975). It also identifies other

moments, such as the U.S. sharing lunar rocks with other countries (March 21, 1973) and

the death of Mao Tse-tung (Sept. 9, 1976). Broadly speaking, Capsule gives a picture of the

diplomatic history of these five years; it identifies and characterizes moments and source
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Figure 3.1: Measure of “eventness,” or time interval impact on cable content (Eq. 3.2). Grey
background indicates the number of cables sent over time. This comes from the model fit we
discuss in Section 3.4. Capsule successful detects real-world events from National Archive
diplomatic cables.

material that might be of interest to a historian.

The intuition behind Capsule is this: embassies write cables throughout the year, usually

describing typical business such as the visiting of a government official. Sometimes, how-

ever, there is an important event, e.g., the fall of Saigon. When an event occurs, it pulls

embassies away from their typical business to write cables that discuss what happened and

its consequences. Thus Capsule effectively defines an “event” to be a moment in history

when embassies deviate from what each usually discusses, and when each embassy deviates

in the same way.

Capsule embeds this intuition into a Bayesian model. It uses hidden variables to encode

what “typical business” means for each embassy, how to characterize the events of each

week, and which cables discuss those events. Given a corpus, the corresponding posterior

distribution provides a filter on the cables that isolates important moments in the diplomatic

history. Figure 3.1 illustrates the mean of this posterior.

Capsule can be used to explore any corpora with the same underlying structure: text (or

other discrete multivariate data) generated over time by known entities. This includes email,

consumer behavior, social media posts, and opinion articles.
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We present the model in Section 3.2, providing a formal model specification and give

guidance on how to use the model posterior to detect and characterize real-worlds events

(Chapter 5 presents a visualization scaffold for the model). In Section 3.4, we evaluate

Capsule and explore its results on a collection of U.S. State Department cables and on

simulated data.

3.1 Related work

We first review previous work on automatic event detection and other related concepts.

In both univariate and multivariate settings, the goal is often that analysts want to predict

whether or not rare events will occur (Weiss and Hirsh, 1998; Das et al., 2008). Capsule, in

contrast, is designed to help analysts explore and understand the original data: our goal is

interpretability, not prediction.

Events can also be construed as “change points” to mark when typical observations shift

semi-permanently from one value to another (Guralnik and Srivastava, 1999; Adams and

MacKay, 2007). Both varieties of events are important, but we focus on temporary shifts

away from normal.

A common goal is to identify clusters of documents; these approaches are used on news

articles (Zhao et al., 2012, 2007; Zhang et al., 2002; Li et al., 2005; Wang et al., 2007; Allan

et al., 1998) and social media posts (VanDam, 2012; Lau et al., 2012; Jackoway et al., 2011;

Sakaki et al., 2010; Reuter and Cimiano, 2012; Becker et al., 2010; Sayyadi et al., 2009).

In the case of news articles, the task is to create new clusters as novel news stories appear—

this does not help disentangle typical content from rare events of interest. Social media

approaches identify rare events, but the methods are designed for short, noisy documents;

they are not appropriate for larger documents that contain information about a variety of

subjects.
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Many existingmethods use document terms as features, usually weighted by tf-idf value (Fung

et al., 2005; Kumaran and Allan, 2004; Brants et al., 2003; Das Sarma et al., 2011; Zhao

et al., 2007, 2012); here, events are bursts in groups of terms.

Topic models (Blei, 2012) reduce the dimensionality of text data; they have been used to help

detect events mentioned in social media posts (Lau et al., 2012; Dou et al., 2012) and posts

relevant to monitored events (VanDam, 2012). We rely on topic models to characterize both

typical content and events, but grouped observations can also be summarized directly (Peng

et al., 2007; Chakrabarti and Punera, 2011; Gao et al., 2012).

In addition to text data over time, author (Zhao et al., 2007), news outlet (Wang et al., 2007),

and spatial information (Neill et al., 2005; Mathioudakis et al., 2010; Liu et al., 2011) can be

used to augment event detection. Capsule uses author information in order to characterize

the typical concerns of authors.

Detecting and characterizing relationships (Schein et al., 2015; Linderman and Adams, 2014;

Das Sarma et al., 2011) is related to event detection. When a message recipient is known,

Capsule can use a sender-receiver pair in place of an author, but the model could be further

tailored for network interactions.

3.2 The Capsule Model

In this section we develop the Capsule model for detecting and characterizing events. Capsule

relies on text data sent between entities over time, and builds on topics models. We first give

the intuition on Capsule, then formally specify the model. We also describe how we learn its

hidden variables.

Consider an entity like the Bangkok American embassy, shown in Figure 3.2. We can imagine

that there is a stream of messages (or diplomatic cables) being sent by this embassy—some

might be sent to the US State Department, others to another American embassy like Hong
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Figure 3.2: Cartoon intuition of Capsule; the y axis is the stacked proportion of messages
about various subjects during a given time interval. The Bangkok embassy, Honk Kong
embassy, and State Department all have typical concerns about which they usually send
messages. When an events occurs at time t , the stream of message content alters to include
the event, then fades back to “business as usual.” Capsule discovers entities’ typical concerns
as well as the event occurrence and content.

Kong. An entity will usually talk about certain topics; the Bangkok embassy, for instance, is

concerned with topics regarding southeast Asia more generally.

Now imagine that at a particular time t , an event occurs, such as the capture of Saigon

during the Vietnam War. We do not directly observe that events occur, but we do observe the

message stream. Using this stream, each event will be described as a distribution over the

vocabulary, similar to how topics are distributions over these same terms. When an event

occurs, the message content changes for multiple entities—significant events impact multiple

parties simultaneously. The day following the capture of Saigon, for instance, the majority

of the diplomatic cables sent by the Bangkok embassy and several other entities were about

Vietnam War refugees. Thus we imagine that an entity’s stream of messages is controlled by

what it usually talks about as well as the higher level stream of unobserved events.
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topic type top terms

general visit, hotel, schedule, arrival
entity soviet, moscow, ussr, agreement
event saigon, evacuation, vietnam, help

Table 3.1: Top vocabulary terms for examples of each of the three topic varieties; these
three types of topics blend to form the distribution of each message. They come from the
model fit we discuss in Section 3.4.

3.2.1 Model Specification

We now define Capsule in detail. Our data are entities sending messages over time. The

observed variables are wd;v, the number of times term v occurs in message d . The message

is associated with an entity (or author) ad and a time (or date) interval id .

We model each message with a bank of Poisson distributions, one per term in the vocabulary,

wd;v � Poisson.�d;v/. The rate �d;v blends the different influences on the content of the

message, which are defined in terms of different types of topics. A topic, as in typical topic

modeling (Blei et al., 2003; Canny, 2004; Gopalan et al., 2014b), is a distribution over

terms.

Specifically, the message blends general topics about diplomacy (e.g., diplomats, commu-

nication) ˇk, an entity topic that is specific to the author of the message (e.g., terms about

France) �ad
,1 and an event topic that is specific to the events of relevant recent weeks (e.g.,

terms about an international crisis) 
t . Notice how messages share these topics in different

configurations: all messages share the general topics; messages from the same entity share

the entity topics; and messages from the same interval share the event topics.

Examples of these three types of topics are in Table 3.1—the general topic relates to planning

travel, the entity topic captures words related to the U.S.S.R., and the event topic captures

words related to the evacuation of Saigon toward the end of the Vietnam War.
1These entity-specific topics are similar to background topics (Paul and Dredze, 2012).
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Each message blends its corresponding topics with different strengths, which are drawn

per message. Each message represents a different mix of the events of recent weeks, entity-

specific items, and general diplomacy.

Putting this together, the Poisson rate for term v in document d is

�d;v D �
>
d ˇv C �d�ad ;v C

TX
tD1

f .id ; t /�d;t
t;v; (3.1)

where �d corresponds to strength of general diplomacy, �d corresponds to strength of entity-

specific concerns, and �d corresponds to strength of events; f is some function of decay.

This function is important because events should not remain at their full strength indefinitely,

but should decay over time. In our experiments, we find that exponential decay, as in

Equation (3.21), performs well.

We place gamma priors on the topic strengths and Dirichlet priors on the topics. The distri-

butions of general and entity topic strengths are defined hierarchically by entity, capturing

the different topics that each entity tends to discuss. The prior on the entity strength is also

defined hierarchically; different weeks are more or less “eventful.” The graphical model is

shown in Figure 3.3 and the generative process is in Figure 3.4.

There are connections between Capsule and recent work on Poisson processes. In particular,

we can interpret Capsule as a collection of related discrete time Poisson processes with

random intensity measures. Further, marginalizing out the event strength prior reveals that

word use from one entity can “excite” word use in another, which suggests a close relationship

to Hawkes processes (Hawkes, 1971).

Given a collection of messages, posterior inference uncovers the different types of topics

and how each message exhibits them. We will see below, how inferences about the event

strengths enable us to filter the corpus to find important messages.

34



Figure 3.3: The graphical model for Capsule. Observed words w depend on general topics
ˇ, entity-specific topics �, and event topics 
 , as well as document representations � , � , and
�. Variables � and � represent entity concerns (with general topics and entity-specific topics,
respectively) and  represents the event strength of a given time interval. Hyper-parameters
are indicated by black squares, but not labeled for visual simplicity.

3.2.2 Detecting and Characterizing Events

Once we estimate the posterior distribution of the Capsule parameters, described in the

following section, we can use the expectations of the latent parameters to explore the original

data. To detect events, we consider the proportion of the document about an event, and take

a weighted average of these proportions:

mt D
1PD

dD1 f .id ; t /

DX
dD1

f .id ; t /EŒ�d;t �

�d C
PT
jD1 f .id ; j /EŒ�d;j �C

PK
kD1 EŒ�d;k�

: (3.2)

This measure of “eventness” provides an estimate of the proportion of words that are related

to a real-world event in that interval. Figure 3.1 shows events detected with this metric.

Given an identified event, we can characterize it in terms of its top terms under 
 , but we can

also use weighted event relevancy parameters f .id ; t /�d;t to sort documents; Section 3.4
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� for each time step t D 1:T ,
� draw interval description over vocabulary (event topic) 
t � DirichletV .˛/
� draw interval strength  t � Gamma.s ; r /

� for each entity n D 1:N ,
� draw entity-specific topics over vocabulary �n � DirichletV .˛/
� draw entity-specific topic strength �n � Gamma.s� ; r�/

� for each topic k D 1:K,
� draw general topic distribution over vocabulary ˇk � DirichletV .˛/
� for each entity n D 1:N ,

I draw general entity concern �n;k � Gamma.s� ; r�/

� for each document d D 1:D sent at time id by author ad ,
� draw local entity concern �d � Gamma.s� ; �ad

/

� for each topic k D 1:K,
I draw local entity concern �d;k � Gamma.s� ; �ad ;k/

� for each time t D 1:T ,
I draw local interval relevancy �d;t � Gamma.s�;  t /
� for each vocabulary term v D 1:V ,

I set �d;v D �>d ˇv C �d�ad
C
PT
tD1 f .id ; t /�d;t
t;v

I draw word counts wd;v � Poisson
�
�d;v

�
Figure 3.4: The generative process for Capsule.
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explores relevant documents for events found in the National Archive diplomatic cables data.

In addition to detecting and characterizing events, Capsule can be used to explore entity

concerns and the general themes in a given collection.

3.3 Variational Inference for Capsule

In order to use the Capsule model to explore the observed documents, we must compute the

posterior distribution. Conditional on the observed word counts w, our goal is to compute

the posterior values of the hidden parameters—general topics ˇ, entity topics �, event

topics 
 , entity concerns � (for general topics) and � (for their own topic), overall event

strengths  , and document-specific strengths for general topics � , entity topics �, and event

topics �.

As for many Bayesian models, the exact posterior for Capsule is not tractable to compute

and it must be approximated. In this section, we develop an approximate inference algorithm

for Capsule based on variational methods (see Section 2.2).

Variational inference approaches the problem of posterior inference by minimizing the KL

divergence from an approximating distribution q to the true posterior p. This is equivalent

to maximizing the ELBO,

L.q/ D Eq
�
logp.w; ; 
; �; ˇ; �; �; �; �; �/ � log q. ; 
; �; ˇ; �; �; �; �; �/

�
: (3.3)
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We define the approximating distribution q using the mean field assumption:

q. ; 
; �; ˇ; �; �; �; �; �/ D

DY
dD1

"
q.�d j�d /

KY
kD1

q.�d;k j�
�
d;k/

TY
tD1

q.�d;t j�
�
d;t/

#
TY
tD1

h
q.
t j�



t /q. t j�

 
t /
i NY
nD1

h
q.�n j�

�
n/ q.�n j�

�
n/
i KY
kD1

"
q.ˇk j�

ˇ

k
/

NY
nD1

q.�n;k j�
�

n;k
/

#
(3.4)

The variational distributions for the topics q.
/, q.ˇ/ and q.�/ are all Dirichlet-distributed

with free variational parameters �
 , �ˇ , and �� respectively. Similarly, the variational distri-

butions q. /, q.�/, q.�/, q.�/, q.�/, and q.�/ are all gamma-distributed with corresponding

free variational parameters � , �� , �� , �� , �� and �� . For these gamma-distributed variables,

each free parameter � has two components: shape s and rate r .

The expectations under q, which are needed to maximize the ELBO, have closed form

analytic updates–we update each parameter in turn, following standard coordinate ascent

variational inference techniques, as the Capsule model is specified with the required conjugate

relationships that make this approach possible Ghahramani and Beal (2001).

To obtain simple updates, we first rely on auxiliary latent variables z. These variables, when

marginalized out, leave the original model intact. We apply 2.4.1 to the word count rate in

Equation (3.1) and define Poisson variables for each component of the word count:

zK
d;v;k � Poisson.�d;kˇk;v/;

zE
d;v � Poisson.�d�ad ;v/;

zT
d;v;t � Poisson .f .id ; t /�d;t
t;v/ :

The K , E , and T superscripts indicate the contributions from general, entity, and event
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topics, respectively. Given these variables, the total word count is deterministic:

wd;v D

KX
kD1

zK
d;v;k C z

E
d C

TX
tD1

zT
d;v;t :

Coordinate-ascent variational inference is derived from complete conditionals, i.e., the con-

ditional distributions of each variable given the other variables and observations. These

conditionals define both the form of each variational factor and their updates. The following

are the complete conditional for each of the gamma- and Dirchlet-distributed latent parame-

ters. The notationD.n/ is used for the set of documents sent by entity n;D.t/ is the set of

documents sent impacted by events at time t (e.g., all documents after the event in the case

of exponential decay).


t jW;  ; �; �; ˇ; �; �; �; �; z � DirichletV

 
˛
 C

DX
dD1

hzT
d;1;t ; � � � ; z

T
d;V;ti

!
(3.5)

�n jW;  ; �; �; ˇ; 
; �; �; �; z � DirichletV

0@˛� C X
d2D.n/

hzE
d;v; � � � ; z

E
d;vi

1A (3.6)

ˇk jW;  ; �; �; 
; �; �; �; �; z � DirichletV

 
˛ˇ C

DX
dD1

hzK
d;1;k; � � � ; z

K
d;V;ki

!
(3.7)

 t jW; �; �; ˇ; 
; �; �; �; �; z � Gamma

0@s C jD.t/js�; r C X
d2D.t/

�d;t

1A (3.8)
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�n jW;  ; �; ˇ; 
; �; �; �; �; z � Gamma

0@s� C jD.n/js� ; r� C X
d2D.n/

�d

1A (3.9)

�n;k jW;  ; �; ˇ; 
; �; �; �; �; z � Gamma

0@s� C jD.n/js� ; r� C X
d2D.n/

�d;k

1A (3.10)

�d;k jW;  ; �; �; ˇ; 
; �; �; �; z � Gamma

 
s� C

VX
vD1

zK
d;v;k; �ad ;k C

VX
vD1

ˇk;v

!
(3.11)

�d;t jW;  ; �; �; ˇ; 
; �; �; �; z � Gamma

 
s� C

VX
vD1

zT
d;v;t ;  t C f .id ; t /

VX
vD1


t;v

!
(3.12)

�d jW;  ; �; �; ˇ; 
; �; �; �; z � Gamma

 
s� C

VX
vD1

zE
d;v; �ad

C

VX
vD1

�ad ;v

!
(3.13)

The complete conditional for the auxiliary variables has the form

zd;v j ; �; �; ˇ; 
; �; �; �; � � Mult.wd;v; !d;v/;

where

!d;v / h�d;1ˇ1;v; � � � ; �d;KˇK;v; �d�ad ;v; f .id ; 1/�d;1
1;v; � � � ; f .id ; T /�d;T 
T;vi: (3.14)

Intuitively, these variables allocate the data to one of the entity concerns or events, and thus

can be used to explore the data.
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Given these conditionals, the algorithm sets each parameter to the expected conditional

parameter under the variational distribution. The mean field assumption guarantees that this

expectation will not involve the parameter being updated. Algorithm 4 shows our variational

inference algorithm.

This algorithm uses the notation � to refer to the set of variational parameters,

� D f�
 ; ��; �ˇ ; � ; �� ; ��; �� ; ��; ��g:

The notation V.d/ is the set of vocabulary indices for the collection of words in document

d . We could also iterate over all V , but as zero word counts give EŒzd;v� D 0 8v 62 V.d/,

the two are equivalent.

This algorithm produces a fitted variational distribution which can then be used as a proxy

for the true posterior, allowing us to explore a collection of documents with Capsule. Source

code is available at https://github.com/ajbc/capsule.

3.4 Evaluation

In this section we explore the performance of Capsule on simulated data and a collection of

over 2 million U.S. State Department diplomatic cables from the 1970s.

3.4.1 Results on Simulated Data

Prior to exploring Capsule results on data of historical interest, we provide a quantitative

assessment of the model on simulated data.

We generated ten data sets, each with 100 time steps, 10 general topics, and 100 entities.

Each simulation contained about 20,000 documents and followed the generative process
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Algorithm 4: Variational Inference for Capsule
Input: word counts w
Output: approximate posterior of latent parameters in terms of variational parameters �
Initialize EŒˇ� to slightly random around uniform
Initialize EŒall other parameters� to uniform
for iteration m D 1 WM do

set all � to respective priors, excluding ��;rate, ��;rate, and ��;rate, which are set to 0
update ��;rate CD

P
V EŒˇv�

for each document d D 1 W D do
for each term v 2 V.d/2 do

set .K C T C 1/-vector !d;v as shown in eq. (3.14), using E of parameters
set .K C T /-vector EŒzd;v� D wd;v � !d;v

update ��;shape
d

CD EŒzK
d;v
� [eq. (3.11)]

update ��;shape
d

CD EŒzK
d;v
� [eq. (3.12)]

update ��;shape
d

CD EŒzE
d;v
� [eq. (3.13)]

update �ˇv CD EŒzK
d;v
� [eq. (3.7)]

update �
v CD EŒzT
d;v
� [eq. (3.5)]

update ��v CD EŒzE
d;v
� [eq. (3.6)]

end
set ��;rate

d
D EŒ�ad

�C
P
v EŒˇ� [eq. (3.11)]

set ��;rate
d

D EŒ �C f
P
v EŒ
� [eq. (3.12)]

set ��;rate
d

D EŒ�ad
�C

P
v EŒ�� [eq. (3.13)]

set EŒ�d � D �
�;shape

d
=�
�;rate
d

set EŒ�d � D �
�;shape

d
=�
�;rate
d

set EŒ�d � D �
�;shape

d
=�
�;rate

d

update ��;shapead
CD s� [eq. (3.10)]

update � ;shapet CD s�8t W f .id ; t / ¤ 0 [eq. (3.8)]
update ��;shapead

CD s� [eq. (3.9)]
update ��;ratead

CD �d [eq. (3.10)]
update � ;rate CD �d [eq. (3.8)]
update ��;ratead

CD �d [eq. (3.9)]
end
set EŒ�� D ��;shape=��;rate

set EŒˇk� D �
ˇk;v=

P
v �

ˇk8k

set EŒ�� D ��;shape=��;rate

set EŒ�n� D ��n;v=
P
v �

�n8n

set EŒ � D � ;shape=� ;rate

set EŒ
t � D �
t;v=
P
v �


t8t

end
return �
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assumed by Capsule, as shown in Figure 3.4.

To evaluate event detection, we created a ranked list of all time intervals and computed the

overlap between a method and the simulated ground at every threshold; this generates an

curve under which we can compute the area and normalized based on ideal performance—we

refer to this metric as event detection AUC:

event detection AUC D
PT
iD1 jTruthi \Modeli jPT

iD1 i
; (3.15)

where Modeli is a set of the top i most eventful intervals according to the model, and Truthi

is the known set of the top i most eventful intervals. As the data is simulated, we can order

all intervals by their known “eventness”—this metric captures how well the model recovers

the true ordering.

The most successful of the baseline methods for event detection were based on absolute error

in word count relative to the mean. This can be computed for all words:

word count deviation D
VX
vD1

"
DX
dD1

abs

 
wd;v �

1

jDj

DX
dD1

wd;v

!#
; (3.16)

and can also be weighted by tf-idf,

tf-idf word deviation D
VX
vD1

tf-idf.v/

"
DX
dD1

abs

 
wd;v �

1

jDj

DX
dD1

wd;v

!#
: (3.17)

We also considered metrics that computed deviations on the entity and document level, but

the simplest overall metrics performed best.

Figure 3.5 shows that Capsule3 outperforms these approaches for event detection. We also

consider an “event only” model—this is a model that only uses the interval-related subset

of Capsule’s parameters; comparing to this shows that is it important to model “business
3The model was set with the same number of topics K D 10 and exponential decay f used to simulate the

data. More details on the decay function surround its formal definition in Equation (3.21).
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as usual” for improved event detection. LDA based approaches like average deviation from

mean in topic space (Dou et al., 2012) do not perform well for event detection as deviations

in topic space are too coarse to provide a meaningful signal.

Random

Event only (this paper)

tf−idf word deviation (Eq. 3.5)

word count deviation (Eq. 3.4)

Capsule (this paper)

0.7 0.8 0.9
Event detection AUC

Figure 3.5: Event detection performance on ten simulated datasets; each dot is the perfor-
mance on a single dataset, and the shaded green describes the distribution of the performances.
Capsule detects events better than comparison methods.

Once events have been identified, our next task is to identify relevant documents; to evaluate

this, we calculate precision of recovering the top N documents, or

precision@N D
j.set of true top N docs/ \ .set of model top N docs/j

N
: (3.18)

Both Capsule and its event-only partial model outperform all comparison methods in terms of

document recovery. For Capsule, average precision at 10 documents was 0.44; the event-only

model had average precision of 0.09. LDA performed slightly worse than the event-only

model, and the other comparison methods (similar to Equations 3.16 and 3.17) recovered

zero relevant documents–equivalent to random.

Model Sensitivity. We assessed the sensitivity of our model to three different decay

functions f : exponential, linear, and step functions. We simulated data for each function

and then fit Capsule using every permutation of f and multiple settings for event decay
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duration. We considered a step function,

f .id ; t / D

8̂̂<̂
:̂
1; if t � id < t C �

0; otherwise,
(3.19)

as well as linear decay,

f .id ; t / D

8̂̂<̂
:̂
1 � id�t

�
; if t � id < t C �

0; otherwise.
(3.20)

and an exponential decay function:

f .id ; t / D

8̂̂<̂
:̂
0; if t � id < t C �

exp
n
�.id�t/

�=5

o
; otherwise.4

(3.21)

We used duration � D 3 and simulated ten data sets for each of the three functions f . In

fitting the models, we also considered all three functions f and varied the decay duration �

from 1 to 5. Figure 3.6 shows the results of these experiments, using both event detection

and document recovery metrics discussed previously.

As expected, the model performs best when the model decay function matches the function

used to generate the data. For both event detection and document recovery, the exponential

decay was least sensitive to the setting of duration � used in fitting the data; it was also

the least sensitive to the function used in simulating the data. In exploring results on the

real-world cable data, we found that the exponential decay provided the most interpretable

results.
4Unlike the linear and step functions, the exponential function could be evaluated for any time interval t

after a document’s appearance at id ; the function is truncated for computational reasons. The mean lifetime of
this exponential decay is the duration � is divided by 5—this ensures that 99.3% of the area under the curve is
reached before the function is truncated at duration � .
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Figure 3.6: Assessment of model parameter sensitivity on simulated data–Capsule performs
best when the model decay function matches the function used to generate the data. The
exponential decay is least sensitive to the setting of duration � and the true function f .

3.4.2 Results on U.S. State Department Diplomatic Cables

As Capsule is intended to be used to explore large collections of documents, we must

demonstrate its use in that context. This sections describes and explores the application of

Capsule to a real-world collection of diplomatic messages.

Data. The National Archive collects communications between the U.S. Sate Department

and its embassies. We obtained a collection of these diplomatic messages from the History

Lab at Columbia,5 which received them from the Central Foreign Policy Files at the National
5http://history-lab.org
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Archives. The communications in this data set were sent between 1973 and 1978.

In addition to the text of the cables themselves, each document is supplemented with informa-

tion about who sent the cable (e.g., the State Department, the U.S. Embassy in Saigon, or an

individual by name), who received the cable (often multiple entities), and the date the cable

was sent. We used a vocabulary of size 6,293 and omitted cables with fewer than three terms,

resulting in a collection of 2,021,852 messages sent between 22,961 entities. We selected a

weekly duration for the time intervals, as few cables were sent on the weekends.

Model Settings. We fit Capsule with K D 100 general topics and using the exponential

decay f , shown in Equation (3.21), with event duration � D 4. With these settings on the

cables data, fitting the model takes about one hour per iteration.6

Quantitative Results. The History Lab at Columbia provided a list of 39 real-world events

in the time period covered by the cables data; they validated that these events were present

in at least one of six reputable collections of events, such as the Office of the Historian list of

milestones.7

We ran Capsule and baseline comparison methods to recover these events, and used the

nDCG metric to evaluate the methods. The nDCG metric is discounted cumulative gain,

DCG D
TX
jD1

1Œinterval at rank j in known events�
log j

; (3.22)

divided by the ideal DCG value, or

nDCG D
DCG

ideal DCG
: (3.23)

As shown in Table 3.2, Capsule outperforms the baselines.

Additionally, we can compute held-out validation data likelihood on the model and each of
6Our algorithm is batch–we consider each data point for every iteration. Modifying the algorithm to

stochastically sample the data would reduce the time required to achieve an equivalent model fit.
7https://history.state.gov/milestones/1969-1976
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Method nDCG

Capsule 0.693
Average tf-idf weighted word count deviation 0.652
Average unweighted word count deviation 0.642
Single term maximum tf-idf weighted deviation 0.561
Random (10k ave) 0.557
Single term maximum unweighted deviation 0.555

Table 3.2: Evaluation of Capsule and comparison baselines on a collection of 39 real-world
events. Capsule performs best.

Model LL at 10 iterations LL at convergence

Full Capsule -1.62e7 -1.52e7
Entity Topics Only -1.64e7 –
General Topics Only -1.71e7 -1.53e7
Event Only -1.79e7 –

Table 3.3: Log likelihood (LL) computed on validation data at 10 iterations and at
convergence—the event only and entity only models are small enough that they converge
with very few iterations. The full Capsule model achieves the lowest log likelihood in both
cases.

its component parts; Table 3.3 shows that the full Capsule model captures the data better

than any of its component parts individually.

Model Exploration. The evaluations to this point are useful in validating that Capsule

captures its intended constructs, but the objective of the model is not prediction; rather, it is

to be used as a scaffold to explore large collections of documents. We now turn to exploring

the cables data using Capsule.

We begin our exploration by detecting events using Capsule. With Equation (3.2) as our

metric of “eventness,” we consider this metric over time, which is shown in Figure 3.1.

Here, high values—often peaks—correspond to real-worlds events, several of which are

labeled.

One of the tallest peak occurs the week of December 1, 1975, during which the United

Nations General Assembly (UNGA) discussed omnibus decolonization. As discussed in
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f � � Date Entity Subject

4.60 1975-12-05 Canberra 30th UNGA: Item 23, Guam, Obmibus Decolonization and ...
4.26 1975-12-05 Mexico 30th UNGA-Item 23: Guam, Omnibus Decolonization and ...
4.21 1975-12-06 State 30th UNGA-Item 23: Guam, Omnibus Decolonization and ...
4.11 1975-12-03 Dakar 30th UNGA: Resolutions on American Samoa, Guam and ...
4.08 1975-12-04 Monrovia 30th UNGA: Item 23: Resolutions on decolonization and A...

Table 3.4: Top documents for the time interval of week December 1, 1975, when the UN
discussed decolonization resolutions; Capsule recovers relevant documents related to this
real-world event. Typos intentionally copied from original data.

f � � Date Entity Subject

5.06 1975-05-15 Sofia Seizure of US merchant vessel by Cambodian forces
5.05 1975-05-15 Dar es Salaam Seizure of U.S. merchant vessel by Cambodian forces
4.92 1975-05-16 Lusaka Seizure of US merchant vessel by Cambodian forces
4.61 1975-05-13 Zagreb Waiver request for INS Vienna visas Eagle name check...
4.59 1975-05-15 State eizure of US merchant Vessel by Cambodian forces

Table 3.5: Top documents for the week during which the S.S. Mayaguez was captured.
Capsule identifies documents relevant to the real-world event. Typos intentionally copied
from original data.

Section 3.2, we sort documents by their weighted event relevancy parameters f .id ; t /�d;t to

find cables that reflect an event. Table 3.4 shows the top cables for this discussion. Capsule

accurately identifies this real-world event and recovers relevant cables.

Another notable event was the seizure of the S.S. Mayaguez, an American merchant vessel,

in May of 1975—at the end of the Vietnam War. The top documents for this week are shown

in Table 3.5. We can inspect individual documents to confirm their relevancy and learn

more about the events. For instance, the content of the most relevant document, according to

Capsule, is as follows.

In absence of MFA Chief of Eighth Department Avramov, I informed American

desk officer Yankov of circumstances surrounding seizure and recovery of merchant

ship Mayaguez and its crew. Yankov promised to inform the Foreign Minister of

US statement today (May 15). Batjer
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f � � Date Entity Subject

6.86 1976-07-07 Cairo Possible SC meeting on Israeli rescue operation
6.18 1976-07-10 Kuwait Media reaction to Bicentennial summary
6.15 1976-07-06 Damascus Syria condemns Israeli operation to free Air France ...
5.91 1976-07-08 Tel Aviv Passengers comment on Air France hijacking
5.89 1976-07-06 Stockholm Possible SC meeting on Israeli rescue operation
5.38 1976-07-09 Nicosia Bicentennial activities in Cyprus
5.09 1976-07-11 State Security Council debate on Entebbe events CONFID...
4.77 1976-07-09 State Travel of Peter M. Storm, House Budget Committee
4.76 1976-07-06 Jidda Weekly Saudi Editorial Summary (June 30-July 6)
4.68 1976-07-08 Lusaka SWAPO President seeks assessment of Kissinger-Vor...
4.56 1976-07-07 Stockholm Ugandan role in Air France hijacking
4.45 1976-07-06 Karachi Transitional quarter funding for RSS travel
4.43 1976-07-06 Athens Bicentennial anniversary in Greece
4.37 1976-07-08 Damascus Beirut travel
4.34 1976-07-10 State Status of Mrs. Bloch
4.17 1976-07-07 Hong Kong Hong Kong Communist press denounces Israeli resc...
4.12 1976-07-08 Dar es Salaam President Nyerere’s fourth of July messages
4.09 1976-07-10 Moscow Pravda and Krasnaya Zvezda on Entebbe rescue oper...

Table 3.6: Top documents for the week after the US bicentennial celebration and Operation
Entebbe. Capsule identifies documents relevant to both these real-world events.

A third week of interest occurs in early July of 1976. On July 4th, the US celebrated its

Bicentennial, but on the same day, Israeli forces completed a hostage rescue mission—an Air

France flight from Tel Aviv had been hijacked and taken to Entebbe, Uganda. This event, like

many events, is mostly discussed the week following the real-world event; relevant cables are

shown in Table 3.6. The cable from Stockholm describing the “Ugandan role in Air France

hijacking” begins with the following content, which reveals further information about the

event.

1. We provided MFA Director of Political Affairs Leifland with Evidence of Ugandan

assistance to hijackers contained in Ref A. After reading material, Leifland described

it a “quite good”, and said it would be helpful for meeting MFA has scheduled

for early this morning to determine position GOS will take at July 8 UNSC

consideration of Israeli Rescue Operation. ...
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top terms

church, vatican, catholic, bishop, pope, ford, cardinal, ban, religious, archbishop
program, university, grant, education, school, post, institute, research, center, american

security, council, terrorist, threat, sc, sabotage, protective, herein, unsc, honour
visit, hotel, schedule, arrival, arrive, depart, please, meet, day, room

labor, union, strike, ilo, employment, federation, afl cio, trade, worker, confederation
bank, credit, loan, investment, finance, payment, financial, eximbank, opic, central

law, case, court, legal, investigation, arrest, justice, sentence, trial, attorney
party, government, election, opposition, national, leader, campaign, vote, support, anti
tax, company, pay, lease, compensation, exemption, repatriation, income, taxation, fee

oil, petroleum, opec, crude, gulf, price, exploration, refinery, energy, company
israel, arab, israeli, middle, egypt, peace, plo, cairo, egyptian, lebanon

radio, television, broadcast, allotment, appropriation, obligation, zero, warc, transmitter, network
india, indian, pakistan, delhi, goi, ocean, bangladesh, transit, pakistani, afghan
turkish, turkey, cyprus, greek, greece, athens, ankara, morocco, cypriot, algeria

aid, relief, emergency, usaid, disaster, donor, wfp, sahel, ifad, unicef
aircraft, team, flight, clearance, transport, civair, aviation, traffic, charter, cargo
soviet, moscow, press, ussr, soviet union, american, one, war, communist, article
sea, zone, marine, maritime, fish, coastal, continental, territorial, mile, fishery

Table 3.7: Top vocabulary terms for a selection of general topics, one per row, according to
topic distributions ˇk . Capsule identifies general diplomatic themes that can be relevant to
any entity.

Capsule assumes that only one event occurs in each time interval—this example is a clear

violation of this assumption, but it also demonstrates that the model successfully captures

both events, even when they overlap.

In addition to events, Capsule can be used to explore the general themes of a corpus and

entities’ typical concerns. Examples of general topics of conversation are shown in Table 3.7

and entity-exclusive topics are shown in Table 3.8; these show us how entity topics absorb

location-specific words, preventing these terms from overwhelming the general topics.

These exploratory results show that our model is successfully capturing when multiple

entities are discussing the same subjects and that our model can be used to explore the

underlying data by providing a structured scaffold from which to view the data.
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entity top terms

Ankara turkish, turkey, ankara, government, cyprus, greek, party, one, time
Athens greek, athens, greece, gog, government, cyprus, turkish, press, minister

Auckland new zealand, company, box, trade, contact, opportunity, united states
Baghdad iraqi, iraq, goi, arab, state, regime, ministry, government, party
Berlin berlin, frg, german, senat, time, bonn, trade, one, agreement
Bern swiss, bern, federal, bank, snb, gold, end, interest, national

Brussels belgian, belgium, brussels, government, firestone, european, ministry
Budapest hungarian, hungary, trade, mudd, one, time, puja, well, policy

Buenos Aires argentine, argentina, goa, us, hill, government, one, press, police
Cairo egyptian, cairo, egypt, arab, israeli, israel, peace, agreement, president

Canberra australian, australia, goa, government, minister, whitlam, end, dfa, time
Dakar senegalese, president, african, summary, conference, end, support, one

Dar es Salaam tangov, salaam, tanzanian, spain, president, government, african, one
Guayaquil ecuador, ecuadorean, port, congen, one, tuna, local, time, boat
Islamabad pakistan, gop, government, one, party, minister, general, opposition, ppp

Paris paris, france, rush, french, one, government, amconsul, quai, european
Jerusalem jerusalem, bank, israeli, us, israel, plo, one, arab, unifil
Jidda saudi, jidda, saudi arabia, prince, us, fahd, one, time, government

Johannesburg black, africa, african, trade, union, police, labor, one, committee
Kabul afghan, government, goa, minister, one, pakistan, regime, time, ministry
Lima peru, gop, lima, peruvian, dean, minister, general, marcona, government
Lisbon portugal, portuguese, gop, lisbon, government, party, summary, minister
London london, british, government, fco, labor, agreement, one, washdc, summary
Madrid spanish, spain, madrid, one, govt, general, committee, government, time
Nairobi kenya, nairobi, marshall, embassy, kenyan, unep, le, ref, state
Oslo norwegian, norway, soviet, government, minister, ministry, policy
Ottawa canadian, canada, goc, ottawa, us, extaff, government, minister, federal
Peking chinese, peking, uslo, china, people, teng, one, trade, delegation, hong

Phnom penh penh, phnom, khmer, rice, fank, enemy, cambodia, government, dean
Prague czechoslovak, goc, czech, trade, embassy, one, mfa, time, cssr
Quito ecuador, ecuadorean, gulf, government, minister, bloomfield, general, one

Sao Paulo paulo, brazil, state, brazilian, president, government, congen, one, do
Seoul korea, korean, rok, rokg, seoul, park, government, president, time

Singapore singapore, asean, minister, government, one, prime, comment, vietnam
Sofia bulgarian, trade, one, agreement, american, visit, committee, party
Sydney australia, australian, one, general, american, state, government, post
Tokyo japan, japanese, tokyo, fonoff, summary, miti, end, diet, time
Taipei taiwan, groc, china, chinese, government, american, one, local, republic

The Hague dutch, netherlands, hague, government, minister, party, stoel, mfa, one
USUN New York committee, usun, priority, report, draft, resolution, sc, comite, rep, new york

Vancouver canada, government, canadian, british, columbia, pipeline, federal, editorial
Zagreb yugoslav, yugoslavia, croatian, fair, belgrade, american, one, ina, summary
Zurich swiss, congen, consulate, general, american, bern, dollar, shipment

Table 3.8: Top vocabulary terms for a selection of entities according to entity-exclusive
topics �n. Capsule identifies entity-specific themes and interests.
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3.5 Discussion

We have presented Capsule, a Bayesian model that identifies when events occur, charac-

terizes these events, and discovers the typical concerns of author entities. We have shown

that Capsule outperforms comparison methods and explored its results on a real-world

datasets. We anticipate that Capsule and its visualization (presented in Chapter 5) can be

used by historians, political scientists, and others who wish to investigate events in large text

corpora.
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4
ˇ̌

Social Poisson Factorization

People exercise an unconscious selection

in being influenced.

– T. S. Eliot

Until this point, we have focused on the analysis of human behavior based on observations of

text. We turn now to investigate a different variety of human behavior: individuals interacting

with media or purchasing items. We consider the problem of how best to recommend

content to consumers, which obviously has applications in advertising, but is also relevant to

economics, psychology, and sociology.

Recommendation has become a core component in our online experience, such as when

we watch movies, read articles, listen to music, and shop. Given information about what

a user has consumed (e.g., items viewed, marked as “favorites,” or rated), the goal of

recommendation is to suggest a set of unobserved items that she will like.

Most recommendation systems aim to make personalized suggestions to each user based

on similar users’ histories. To solve this problem, matrix factorization algorithms are the

workhorse methods of choice to solve this problem (Koren et al., 2009; Su and Khoshgof-

taar, 2009). Factorization algorithms use historical data to uncover recurring patterns of

consumption, and then describe each user in terms of their varying preferences for those

patterns. For example, the discovered patterns might include art supplies, holiday decora-
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Figure 4.1: Observed and recommended items1 for an Etsy user. The user is shown in the
center, with friends on the sides. The top row is training items and the bottom row is the top
recommendations from our model (SPF). Some items are recommended because they are
favorites of the friends, and others because they match the general preferences of the user.

tions, and vintage kitchenware; and each user has different preferences for each category. To

perform recommendation, factorization algorithms find unmarked items of each user that

are characteristic of her preferences.

Many applications of recommendation contain an additional source of information: a social

network. This network is increasingly available at the same platforms on which we read,

watch, and shop. Examples include Etsy, Instagram, and various social readers. Researchers

have found that users value the opinions of their friends for discovering and discussing

content (Johnstone and Katz, 1957; Volz, 2006), and online access to their network can

reinforce this phenomenon.

Factorization approaches, however, cannot exploit this information. They can capture that

you may enjoy an item because it matches your general preferences, but they cannot capture

that you may enjoy another because your friend enjoyed it. Knowing your connections and

what items your friends like should help better predict what you will enjoy.
1Etsy product images courtesy of Amber Dubois and Ami Lahoff. Used with permission.
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In this chapter we develop social Poisson factorization (SPF), a Bayesian factorization

method that accounts for the social aspect of how users consume items. (SPF is based on

Poisson factorization (Section 2.4), a model that is particularly suited for implicit data.)

SPF assumes that there are two signals driving each user’s clicks: her latent preferences

for items (and the latent attributes of each) and the latent “influence” of her friends.2 From

observed data—which contains both click histories and a social network—SPF infers each

user’s preferences and influences. Subsequently, it recommends items relating both to what

a user is likely to be interested in and what her friends have clicked.

Figure 4.1 gives the intuition. The user is in the center. She clicked on items (on the top,

connected to the user), has friends (to either side), and those friends have clicked on items

too (top and bottom, connected to each friend). From this data, we can learn both about

her preferences (e.g., for handmade soap) and about how much she is influenced by each

of her friends (e.g., more strongly by the friend on the left). SPF recommends items on

the bottom, based on both aspects of the data. It is important to be able to explain the

origins of recommendations to users (Herlocker et al., 2000), and SPF can tell the user

why an item was recommended: it can indicate friends (“you always trust Sally”) and

general item attributes (“you seem to like everything about ninjas”) to describe the source of

recommendations.

We use the language of users clicking on items. This is just a convenience—our model applies

just as easily for users purchasing, rating, watching, reading, and marking as a favorite. Our

goal is to predict which of the unclicked items a user will want to click.

In this chapter, we develop the mathematical details behind the model (Section 4.2), derive

efficient learning algorithms (based on variational inference) for estimating it from data

(Section 4.3), and evaluate it on six real-world data sets (Section 4.4). In all cases, our social
2There is a large body of research literature on peer influence (Leskovec et al., 2006; Crandall et al., 2008;

Shang et al., 2011). In this work we use the term to indicate the latent change in consumption due to social
connections.
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recommendation outperformed both traditional factorization approaches (Gopalan et al.,

2015; Salakhutdinov and Mnih, 2007) and previous recommendation methods that account

for the network (Guo et al., 2015; Jamali and Ester, 2010; Ma et al., 2009, 2008; Yang et al.,

2013).

4.1 Related Work

We first review previous research on using social networks to help recommend items to users.

A crucial component of SPF is that it infers the influence that users have with each other.

In previous work, some systems assume that user influence (sometimes called “trust”) is

observed (Massa and Avesani, 2007). However, trust information beyond a binary yes/no

is onerous for users to input, and thus observing trust beyond “following” or “friending” is

impractical in a large system. Others assume that trust is propagated (Andersen et al., 2008)

or computed from the structure of the network (Golbeck and Hendler, 2006). This is limited

in that it ignores user activity, which can reveal the trust of a user for some parts of the

network over others; SPF captures this idea. Information diffusion (Du et al., 2013; Guille

et al., 2013) also relies on user activity to describe influence, but focuses on understanding the

spread of information in a more global sense than we desire. A final alternative is to compute

trust from rating similarities between users (Fazeli et al., 2014). However, performing this

computation in advance of fitting the model confounds general preference similarity with

instances of influence—two people with the same preferences might read the same books in

isolation.

Other research has included social information directly into various collaborative filtering

methods. Zhao et al. (2014) incorporate the network into pairwise ranking methods. Their

approach is interesting, but one-class rankingmethods are not as interpretable as factorization,

which is important in many applications of recommender systems (Herlocker et al., 2000).
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Ma et al. (2008), Purushotham et al. (2012), and Yang et al. (2013) have explored how

traditional factorization methods can exploit network connections. For example, many of

these models factorize both user-item data and the user-user network. This brings the latent

preferences of connected users closer to each other, reflecting that friends have similar tastes.

Ma et al. (2009) and Ye et al. (2012) incorporate this idea more directly by including friends’

latent representations in computing recommendations made for a user.

Our model has a fundamentally different approach to using the network to form recom-

mendations. It seeks to find friends with different preferences to help recommend items

to a user that are outside of her usual taste. For example, imagine that a user likes an item

simply because many of her friends liked it too, but that it falls squarely outside of her usual

preferences. Models that adjust their friends’ overall preferences according to the social

network do not allow the possibility that the user may still enjoy this anomalous item. As we

show in Section 4.4, using the social network in this way performs better than these previous

approaches.

4.2 Social Poisson Factorization

In this section we develop social Poisson factorization (SPF). SPF is a model for recommen-

dation; it captures patterns in user activity using traditional signals—latent user preferences

and latent item attributes—and estimates how much each user is influenced by his or her

friends’ observed clicks. From its estimate of influence, SPF recommends clicked items

by influential friends even when they are not consistent with a user’s factorization-based

preferences.

We first review Poisson factorization in the context of recommendation systems and give

the intuition on our model. Then, we formally specify our model, describe how to form

recommendations, and discuss how we learn the hidden variables.

58



4.2.1 PF for Recommendation

SPF is based on Poisson factorization (PF) (Gopalan et al., 2015), a variant of probabilistic

matrix factorization for recommendation. Section 2.4 describes the model in detail. Here,

we review PF with an eye towards recommendation.

Let rui be the count of how many times user u clicked item i .3 PF assumes that an observed

count rui comes from a Poisson distribution. Its rate is a linear combination of a non-negative

K-vector of user preferences �u and a non-negative K-vector of item attributes ˇi ,

rui � Poisson.�>u ˇi/:

The user preferences and item attributes are hidden variables with Gamma priors. (Recall

that the Gamma is an exponential family distribution of positive values.) Given a matrix of

observed clicks, posterior inference of these hidden variables reveals a useful factorization:

latent attributes describe each item and latent preference describe each user. These inferences

enable personalized recommendations.

4.2.2 SPF Intuition

In many settings, users are part of an online social network that is connected to the same

platforms on which they engage with items. For some, such as Etsy, these networks are

innate to the site. Others may have external data, e.g., from Facebook or LinkedIn, about the

network of users.

We build on PF to develop a model of data where users click on items and where the same

users are organized in a network. Social Poisson factorization (SPF) accounts for both the

latent preferences of each user and the click patterns of her neighbors.
3The theory around PF works on count data, but Gopalan et al. (2015) showed that it works well empirically

with implicit recommendation data, i.e., censored counts, as well.
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Figure 4.2: A conditional directed graphical model of social Poisson Factorization (SPF) to
show considered dependencies. For brevity, we refer to the set of priors a and b as �; for
example, �� D .a� ; b�/. These hyper-parameters are fixed.

Consider the user whose items are shown in Figure 4.1. The intuition behind SPF is that

there can be two reasons that a user might like an item. The first reason is that the user’s

general preferences match with the attributes of the item; this is the idea behind Poisson

factorization (and other factorization approaches). For example, the user of Figure 4.1 may

inherently enjoy handmade soap. A second reason is that the user has a friend who likes

the item, or perhaps a collection of friends who all like it. This possibility is not exposed

by factorization, but captures how the user might find items that are outside of her general

preferences. Without learning the influence of friends in Figure 4.1, the system could easily

interpret the basket as a general preference and recommend more baskets, even if the user

does not usually like them.

SPF captures this intuition. As in PF, each user has a vector of latent preferences. However,

each user also has a vector of “influence” values, one for each of her friends. Whether she

likes an item depends on both signals: first, it depends on the affinity between her latent

preferences and the item’s latent attributes; second, it depends on whether her influential

friends have clicked it.

60



4.2.3 Model Specification

We formally describe SPF. The observed data are user behavior and a social network. The

behavior data is a sparse matrix R, where rui is the number of times user u clicked on item

i . (Often this will be one or zero.) The social network is represented by its neighbor sets;

N.u/ is the set of indices of other users connected to u. Finally, the hidden variables of SPF

are per-user K-vectors of non-negative preferences �u, per-item K-vectors of non-negative

attributes ˇi , and per-neighbor non-negative user influences �uv. Loosely, �uv represents

how much user u is influenced by the clicks of her neighbor, user v. (Note we must set the

number of components K. Section 4.4 studies the effect of K on performance; usually we

set it to 50 or 100.)

Conditional on the hidden variables and the social network, SPF is a model of clicks rui .

Unlike many models in modern machine learning, we specify the joint distribution of the

entire matrix R by the conditionals of each cell rui given the others,

rui j r�u;i � Poisson
�
�>u ˇi C

P
v2N.u/ �uvrvi

�
; (4.1)

where r�u;i denotes the vector of clicks of the other users of the i th item.4 This equation

captures the intuition behind the model, that the conditional distribution of whether user u

clicks on item i is governed by two terms. The first term, as we said above, is the affinity

between latent preferences �u and latent attributes ˇi ; the second term bumps the parameter

up when trustworthy neighbors v (i.e., those with high values of �uv) also clicked on the

item. Figure 4.2 shows the dependencies between the hidden and observed variables as a

conditional graphical model.

To complete the specification of the variables, we place gamma priors on all of the hidden
4We are specifying an exponential family model conditionally, as described in Section 2.1.3. Here we have

a improper conditional model with the specification defining a pseudo-likelihood (Besag, 1975).
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variables. We chose the hyper-parameters of the gammas so that preferences, attributes, and

influences are sparse. (See Section 4.4 for details.)

4.2.4 Forming Recommendations with SPF

We have specified a probabilistic model of hidden variables and observed clicks. Given

a U � M click matrix R and a U � U social network N, we analyze the data by es-

timating the posterior distribution of the hidden preferences, attributes, and influences

p.�1WU ; ˇ1WM ; �1WU jR;N/. The following section describes our algorithm for estimating this

posterior, which places high probability on configurations of preferences, attributes, and

influence values that best describe the observed clicks within the social network.

From this posterior, we can form predictions for each user and each of their unclicked items.

For a user u and an unclicked item j , we compute

E
�
ruj
�
D E Œ�u�

> E
�
ǰ

�
C

X
v2N.u/

E Œ�uv� rvj ; (4.2)

where all expectations are with respect to the posterior. For each user, we form recommen-

dation lists by making predictions for the user’s set of unclicked items and then ranking

the items by these continuous-valued predictions. This is how we can use SPF to form a

recommendation system.

4.3 Variational Inference for SPF

Social PF enjoys the benefits of Poisson factorization and accounts for the network of users.

However, using SPF requires computing the posterior. Conditioned on click data and a social

network, our goal is to compute the posterior user preferences, item attributes, and latent

influence values.
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As we have encountered previously, the exact posterior for SPF is not tractable to compute

and we approximate the posterior based on variational methods (see Section 2.2). With our

algorithm, we can approximate posterior expectations with very large click and network data

(see Section 4.4).

Like in previous chapters, we use the mean-field variational family, where each latent variable

is independent and governed by its own variational parameter. The latent variables are the

user preferences �u, item attributes ˇi , and user influences �uv. The variational family

is

q.�; ˇ; �/ D
Y
u;k

q.�ukj�
�
uk/

Y
i;k

q.ˇikj�
ˇ

ik
/
Y
u;v

q.�uvj�
�
uv/: (4.3)

This is a flexible family. For example each cell of each user’s preference vector �uk is

associated with its own variational parameter ��
uk
. Thus, when fit to be close to the model’s

posterior, the variational parameters can capture each user’s unique interests, each item’s

unique attributes, and each friend’s unique influence value.

With the family in place, variational inference solves the following optimization problem,

q�.�; ˇ; �/ D argmin
q

KL .q.�; ˇ; �/jjp.�; ˇ; � jR;N// (4.4)

Note that the data—the clicks and the network—enter the variational distribution through

this optimization. Finally, we use the resulting variational parameters of q�.�/ as a proxy for

the exact posterior. This lets us use SPF to perform recommendation.

Our algorithm fits the parameters of the variational distribution in Equation (4.3) so that it is

close in KL divergence to the posterior. We use coordinate ascent, iteratively updating each

parameter while holding the others fixed. This goes uphill in the variational objective and

converges to a local optimum (Bishop, 2006).

To obtain simple updates, we first construct auxiliary latent variables z using Property 2.4.1;
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we apply this decomposition to the conditional click count distribution in Equation (4.1).

We define Poisson variables for each term in the click count:

zMuik � Poisson.�ukˇik/ zSuiv � Poisson .�uvrvi/ :

The M and S superscripts indicate the contributions from matrix factorization (general

preferences) and social factorization (influence), respectively. Given these variables, the

click count is deterministic,

rui j r�u;i D
PK
kD1 z

M
uik
C
PV
vD1 z

S
uiv;

where V D jN.u/j and the index v selects a friend of u (as opposed to selecting from the

set of all users).

We now require the complete conditional distributions for each variable; these conditionals

define both the form of each variational factor and their updates. For the Gamma variables—

the user preferences, item attributes, and user influence—the conditionals are

�uk j ˇ; �; z;R;N � Gamma

 
a� C

X
i

zMuik; b� C
X
i

ˇik

!
(4.5)

ˇik j �; �; z;R;N � Gamma

 
aˇ C

X
u

zMuik; bˇ C
X
u

�uk

!
(4.6)

�uv j �; ˇ; z;R;N � Gamma

 
a� C

X
i

zSuiv; b� C
X
i

rvi

!
: (4.7)

The complete conditional for the auxiliary variables is

zui j �; ˇ; �;R;N � Mult .rui ; �ui/ where

�ui /

�
�u1ˇi1; � � � ; �uKˇiK ; �u1r1i ; � � � ; �uV rV i

�
: (4.8)

(Intuitively, these variables allocate the data to one of the factors or one of the friends.) Each
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variational factor is set to the same family as its corresponding complete conditional.

Given these conditionals, the algorithm sets each parameter to the expected conditional

parameter under the variational distribution. (Thanks to the mean field assumption, this

expectation will not involve the parameter being updated.) Note that under a gamma distri-

bution, EŒ�� D �a=�b; where �a and �b are shape and rate parameters. For the auxiliary

variables, the expectation of the indicator is the probability, EŒzui � D rui � �ui .

Algorithm 5 shows our variational inference algorithm. It is O.N.K C V // per iteration,

where N is the number of recorded user-item interactions (click counts, ratings, etc.). K

is the number of latent factors, and V is the maximum user degree. (Note that both K and

V are usually small relative to N .) In Section 4.4 we empirically compare the runtime of

SPF with competing methods. We can modify the algorithm to sample users and update the

variables stochastically (Hoffman et al., 2013); this approach scales to much larger datasets

than competing methods.

To assess convergence, we use the change in the average click log likelihood of a validation

set.

Source code for Algorithm 5 is available at https://github.com/ajbc/spf. We now turn

to an empirical study of SPF.

4.4 Empirical Study

In this section we study the performance of SPF. We compared SPF to five competing

methods that involve a social network in recommendation (Guo et al., 2015; Jamali and

Ester, 2010; Ma et al., 2009, 2008; Yang et al., 2013) as well as two traditional factorization

approaches (Gopalan et al., 2015; Salakhutdinov and Mnih, 2007). Across six real-world

datasets, our methods outperformed all of the competing methods (Figure 4.3). We also

demonstrate how to use SPF to explore the data, characterizing it in terms of latent factors
65
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Algorithm 5:Mean field variational inference SPF
Initialize EŒ� �;EŒˇ� randomly
for each user u do

for each friend v 2 N.u/ do
Set ��;bu;v D prior b� C

P
i rvi [eq. (4.7)]

end
end
while Model has not converged, � logL > ı do

Initialize global �ˇ;a to prior aˇ for all items and all factors
for each user u do

while User parameters have not converged, �Œ�u�C�Œ�u� > ı0 do
Initialize local �ˇ;a to 0 for all items and factors Initialize preferences ��;au to prior a�
for all factors Set ��;bu D prior b� C

P
i EŒˇi � [eq. (4.5)]

Initialize influence ��;auser to prior a� for all friends
for each (item i , click count r) 2 clicksu do

Set �ui from EŒ�u�, EŒˇi �, EŒ�u�, and ri [eq. (4.8)]
Set EŒzui � D r � �ui

Update ��;au CD EŒzMui � [eq. (4.5)]
Update ��;au CD EŒzSui � [eq. (4.7)]
Update local �ˇ;ai CD EŒzMui � [eq. (4.6)]

end
Set EŒ�u� D �

�;a
u =�

�;b
u

Set EŒ�u� D �
�;a
u =�

�;b
u

end
Update global �ˇ;a CD local �ˇ;a

end
Set �ˇ;b D prior bˇ C

P
u EŒ�u� [eq. (4.6)]

Set EŒˇ� D �ˇ;a=�ˇ;b

end

and social influence. Finally, we assess sensitivity to the number of latent factors and discuss

how to set hyper-parameters on the prior distributions.

4.4.1 Datasets, Methods, and Metrics

Datasets and preprocessing. We studied six datasets. Table 4.1 summarizes their attributes.

The datasets are:

� Ciao (ciao.co.uk) is a consumer review website with an underlying social network.
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Figure 4.3: Performance of various methods on all six datasets, measured as NCRR averaged
over users with held-out data. The Poisson-based factor models (PF and SPF) use K D 40
on Ciao, K D 125 on Epinions, K D 100 on Etsy, and K D 50 on Flixster, Douban, and
Social Reader. Similar K values are used for competing models, but some perform best
with lower K, in which case those settings are used. Models are sorted by performance.
RSTE was omitted on Etsy data due to long run time and TrustSVD was omitted on Social
Reader data due to difficulty in finding appropriate parameter settings. SPF outperforms all
competing methods, except on Etsy, where our alternate model SF achieves top performance.
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Guo et al. (2014) crawled DVD ratings and trust values for a small dataset of 7K users

and 98K items.

� Epinions (epinions.com) is another consumer reviews website where users rate items

and mark users as trustworthy. Our data source was Massa and Avesani (2007) and

consists of 39K users and 131K items.

� Flixster (flixster.com) is a social movie review website crawled by Jamali and Ester

(2010). We binarized ratings, thresholding at 3 or above, resulting in 132K users and

42K items.

� Douban (douban.com) is a Chinese social service where users record ratings for music,

movies, and books; it was crawled by Ma et al. (2011). It contains 129K users and

57K items.

� Etsy (etsy.com) is a marketplace for handmade and vintage items, as well as art and

craft supplies. Users may follow each other and mark items as favorites. This data was

provided directly by Etsy, and culled to users who have favorited at least 10 items and

have at least 25% of their items in common with their friends; we omitted any items

with fewer than 5 favorites. This is a large dataset of 40K users and 5.2M items.

� Social Reader is a dataset from a large media company that deployed a reader applica-

tion on a popular online social network. The data contains a friendship network and a

table of article clicks. We analyzed data from April 2-6, 2012, only including users

who read at least 3 articles during that time. It contains 122K users and 6K items.

These datasets include both explicit ratings on a star scale and binary data. Content con-

sumption is binary when the data is implicit (a news article was viewed) or when the system

only provides a binary flag (favoriting). With implicit data, non-Poisson models require us to

subsample 0’s so as to differentiate between items; in these instances, we randomly sampled

negative examples such that each user has the same number of positive and negative ratings.
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Ciao Epinions Flixster Douban S. Reader Etsy
# of users 7,375 39,307 131,542 129,097 121,950 39,862
# of items 97,540 130,786 41,878 56,862 6,153 5,201,879

# interactions 270,427 639,775 6,740,332 16,207,151 489,735 18,650,632
% interactions 0.038% 0.012% 0.122% 0.221% 0.065% 0.009%
interaction type 5-star 5-star binary 5-star binary binary
network type directed directed undirected undirected undirected directed

# network edges 56,267 176,337 488,869 1,323,828 100,175 4,761,437
network density 0.103% 0.011% 0.006% 0.016% 0.001% 0.300%

% shared 25.0% 36.0% 62.3% 51.0% 50.1% 30.8%

Table 4.1: Attributes of each data source, post-curation. User-item interactions are non-zero
clicks, favorites, or ratings. Percent shared is the average percentage of items users have in
common with their friends. Data sources were chosen for their diversity of attributes.

Note that Poisson-based models implicitly analyze the full matrix without needing to pay

the computational cost of analyzing the zeros (Gopalan et al., 2015).

For each dataset, we preprocessed the network. We removed network connections where

the users have no items in common. Note this advantages both SPF and comparison models

(though SPF can learn the relative influence of the neighbors).

Our studies divided the data into three groups: approximately 10% of 1000 users’ data are

held-out for post-inference testing, 1% of all users’ data are used to assess convergence of

the inference algorithm, and the rest is used to train. One exception is Ciao, where we used

10% of all users’ data to test.

Competing methods. We compared SPF to five competing models that involve a social

network in recommendation: RSTE (Ma et al., 2009), TrustSVD (Guo et al., 2015), So-

cialMF (Jamali and Ester, 2010), SoRec (Ma et al., 2008), and TrustMF (Yang et al., 2013).5

We also include probabilistic Gaussian matrix factorization (PMF) (Salakhutdinov and Mnih,

2007), because it is a widely used recommendation method. For each of these, we used the

parameter settings that achieved best performance according to the example fits published

on the LibRec website.
5We used the LibRec library (librec.net) for all competing methods.
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We can think of SPF having two parts: a Poisson factorization component and a social

component (see Equation (4.1)). Thus we also compared SPF to each of these components

in isolation, Poisson factorization (Gopalan et al., 2015) (PF) and social factorization (SF).

SF is the influence model without the factorization model.6 We note that SF is a contribution

of this work as well.

Finally we compare to two baselines, ordering items randomly and ordering items by their

universal popularity.

Metrics. We evaluate these methods on a per-user basis. For each user, we predict clicks

for both held-out and truly unclicked items, and we rank these items according to their

predictions. We denote the user-specific rank to be rankui for item i and user u. A better

model will place the held-out items higher in the ranking (giving smaller rankui values on

held-out items). We now introduce the normalized cumulative reciprocal rank (NCRR)

metric to gauge this performance.

Reciprocal rank (RR) is an information retrieval measure; given a query, it is the reciprocal

of the rank at which the first relevant document was retrieved. (Larger numbers are better.)

Users “query” a recommender system similarly, except that each user only has one query

(e.g., “what books should I read?”) and they care not just about the first item that’s relevant,

but about finding as many relevant items as possible.

Suppose user u has held out items Du.7 We define the cumulative reciprocal rank to be:

CRRu D
X
i2Du

1

rankui
:

CRR can be interpreted as the ease of finding all held-out items, as higher numbers indicate
6Social factorization has a technical problem when none of a user’s friends has clicked on an item; the

resulting Poisson cannot have a rate of zero. Thus we add a small constant � D 10�10 to the rate in social
factorization’s model of clicks.

7With binary data this is simply the full set of heldout items. When items have non-binary ratings, we
threshold the set such to include only highly rated items (4 or 5 in a 5-star system).
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that the held-out items are higher in the list. For example, a CRR of 0.75 means that the

second and fourth items are in the held-out set, or are relevant to the user.

CRR behaves similarly to discounted cumulative gain (DCG), except it places a higher

priority on high-rank items by omitting the log factor—it can be thought of as a harsher

variant of DCG. Like DCG, it can be also be normalized. The normalized cumulative

reciprocal rank (NCRR) is

NCRRu D
CRRu

ideal CRRu
;

where the ideal variant in the denominator is the value of the metric if the ranking was perfect.

To evaluate an entire model, we can compute average NCRR over all users, 1
U

P
uNCRRu.

We will use this metric throughout this section.

Performance measured by NCRR is consistent with performance measured by NDCG, but

NCRR is more interpretable. Simple reciprocals are easier to understand than the reciprocal

of the log.

Note we omit root-mean-square error (RMSE) as a metric. Improvements in RMSE often do

not translate into accuracy improvements for ranked lists (Amatriain et al., 2012; Cremonesi

et al., 2010; Loiacono et al., 2014; Singh et al., 2014), especially with binary or implicit data.

Our end goal here is item recommendation and not rating prediction—“which movie should

I watch next?” is inherently a ranking problem—thus we treat the predictions as means to an

end.

4.4.2 Performance and Exploration

We evaluate SPF by considering overall performance and performance as a function of user

degree. We also show how to explore the data using the algorithm.

Performance. Figure 4.3 shows the performance of SPF against the competing methods:

the previous methods that account for the social network, social factorization (SF), Poisson
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factorization (PF), and the popularity baseline. (We do not illustrate the random baseline

because it is far below all of the other methods.) SPF achieves top performance on five of

the datasets. On the one remaining dataset, Etsy, the social-only variant of our model (SF)

performs best.

Notice the strong performance of ranking by popularity. This highlights the importance of

social factorization. It is only social Poisson factorization that consistently outperforms this

baseline.

RSTE (Ma, 2009)

TrustSVD (Guo, 2015)

SPF (this work)

PF (Gopalan, 2015)

TrustMF (Yang, 2013)

SocialMF (Jamali, 2010)

SoRec (Ma, 2008)

10^3 10^4 10^5
time (s)

Figure 4.4: Training and testing runtimes for multiple models on Ciao data, with the number
of latent factors K ranging from 1 to 500. Each dot represents a full cycle of training and
evaluating. SPF performs with average runtime.

We measured runtime with the Ciao data set to get a sense for the relative computational

costs. Figure 4.4 shows the runtime for all of the methods at various values of K. The

Poisson models are average in terms of runtime.

Finally, using the Ciao and Epinions data, we break down the performance of SPF, SF, and

PF as a function of the degree of each user; the results are shown in Figure 4.5.8 All models

perform better on high-degree users, presumably because these are higher activity users as

well. Overall, SPF performs better than SF because of its advantage on the large number of

low-degree users.

Interpretability. It is important to be able to explain the origins of recommendations to
8Smoothed with GAM. http://www.inside-r.org/r-doc/mgcv/gam
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Figure 4.5: Performance on Ciao and Epinions broken down as a function of degree; grey
in background indicates density of users. SPF and SF perform similarly, with SPF doing
slightly better on a large number of low-degree users and SF doing better on a low number
of high-degree users.

users (Herlocker et al., 2000). Items recommended with SPF have the advantage of inter-

pretability. In particular, we use auxiliary variables (see Sections 2.4.1 and 4.3) to attribute

each recommendation to friends or general preferences; we then use these attributions to

explore data.

When items are recommended because of social influence, the system may indicate a friend

as the source of the recommendation. Similarly, when items are recommended because

of general preferences, the system may indicate already clicked items that exhibit that

preference. On the Etsy data, learned item factors included coherent groupings of items

such as mugs, sparkly nail polish, children’s toys, handmade cards, and doll clothes. Thus,

SPF explains the recommended the handmade soap in Figure 4.1 as coming from general

preferences and the others items as coming from social influence. The social and preference

signals will not always be cleanly separated; SPF attributes recommendations to sources

probabilistically.

Figure 4.6 shows how the proportion of social attribution (as opposed to general preference

attribution) changes as a function of user degree on Ciao and Epinions. We observe that
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Epinions attributes a larger portion of behavior to social influence, controlled for user degree.

Similarly, we can compute the contribution of users to their friends’ behavior. 4.7 shows

social contribution as a function of indegree; here we see that Epinions users with higher

indegree have lower social contribution than low-indegree users.
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Figure 4.6: The proportion of social attribution (vs. general preference attribution) as
a function of user degree. Attributions are calculated on all training data from Ciao and
Epinions. Epinions attributes a larger portion of rating to social influence.
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Figure 4.7: Contribution to friends’ behavior as a function of indegree, calculated on all
Epinions training data. Users with higher indegree have lower social contribution.
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4.4.3 Experimental Details

The details of our methods requires some decisions: we must choose the number of latent

factors K and set the hyper-parameters.

Choosing the number of latent factorsK. All factorization models, including SPF, require

the investigator to select of the number of latent factors K used to represent users and items.

We evaluated the sensitivity to this choice for the Ciao dataset. (We chose this dataset because

of its smaller size; ranking millions of items for every user is computationally expensive for

any model.) Figure 4.8 shows per-user average NCRRK varies from 1 to 500; SPF performs

best on the Ciao dataset with K D 40, though is less sensitive to this choice than some other

methods (such as PF).

Hyperparameters. We also must set the hyper-parameters to the gamma priors on the

latent variables. The gamma is parameterized by a shape and a rate. We followed Gopalan

et al. (2015) and set them to 0.3 for the priors on latent preferences and attributes. We set the

hyper-parameters for the prior on user influences to .2; 5/ in order to encourage the model to

explore explanation by social influence. In a pilot study, we found that the model was not

sensitive to these settings.

Does learning influence matter? We can easily fix each user-friend influence at 1, giving

us local popularity among a user’s social connections. We compared fitted influence against

fixed influence on both Ciao and Epinions and found that SPF with fitted influence performs

best on both datasets.

In the case of cold-start users, where we know the user’s social network but not their click

counts on items, SPF will perform equivalently to SF with fixed influence. SPF in this

cold-start user scenario performs better than competing models.
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Figure 4.8: Model performance on Ciao data (measured as NCRR averaged over all users)
as a function of number of latent factors K. The dotted vertical line at K D 40 indicates the
best performance for Poisson family models.

4.5 Discussion

We presented social Poisson factorization, a Bayesian model that incorporates a user’s latent

preferences for items with the latent influences of her friends. We demonstrated that social

Poisson factorization improves recommendations even with noisy online social signals.

Social Poisson factorization has the following properties: (1) It discovers the latent influence

that exists between users in a social network, allowing us to analyze the social dynamics. (2)

It provides a source of explainable serendipity (i.e., pleasant surprise due to novelty). (3) It
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enjoys scalable algorithms that can be fit to large data sets.

We anticipate that social Poisson factorization will perform well on platforms that allow

for and encourage users to share content. Examples include Etsy, Pinterest, Twitter, and

Facebook. We note that our model does not account for time—when two connected users both

enjoy an item, one of them probably consumed it first. Future work includes incorporating

time, hierarchical influence, and topical influence.
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5
ˇ̌

Exploring Latent Variable Models

Too often diagrams rely solely on one type of data

or stay at one level of analysis.

– Edward R. Tufte

The previous two chapters have presented latent variable models of human behavior and their

results on real-world data. In this chapter, we focus on the general process of exploring latent

variable models. Once we have a exploratory model fit to data, investigating the fit allows

researchers to verify that the model constructs are valid, to criticize the model such that it

can be improved, and to understand the underlying data through the lens of the model.

We begin with an overview of visualization concepts, then use these concepts in defining prin-

ciples for exploring latent variable methods. Finally, we present two example visualizations

to demonstrate these principles.

5.1 Visualization Concepts

Whether the goal is to criticize, validate, or understand, the key to exploring a model is

visualization.

There are an abundance of techniques for visualizing observed data (Tukey, 1977; Cleveland,

1993; Telea, 2014; Chen et al., 2007; Fayyad et al., 2002). While some of these consider
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Figure 5.1: Graphical elements, as described by Cleveland and McGill (1984), in approx-
imate order of chances of correct perception by a viewer (top row leads to more accurate
perception).

simple models, little work has been done to specifically address visualization for latent

variable models. Our goal here is to highlight some basic concepts of visualization that

we can use to formulate principles for visualizing latent variable models in the following

section.

We begin with the fundamental graphical elements used to convey information. Cleveland

and McGill (1984) studied ten graphical elements, shown in Figure 5.1, and found that

certain elements conveyed information more accurately to viewers. In order from most to

least accurate, these elements are

1. position along a common scale

2. position along non-aligned scales

3. length, direction, angle

4. area

5. volume, curvature

6. shading, color saturation.

Thus, one should prefer elements higher on this list when generating a visualization.
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Figure 5.2: Two visualizations of a topic. On the left is a word cloud1 with location,
color, and orientation mapped to random attributes, which may be confusing (e.g., “are
words related to trees marked in blue?”). On the right is simple ordered list (truncated for
space) with bars indicating the prominence of each word. While the word cloud is better for
interpretation a quick glance, the ordered list coveys detailed information more clearly—for
example, the word plants is nearly twice as prevalent as any other word, which is clear with
the bar chart but not with the word cloud.

Wilkinson (2005) builds on these elements to construct a “grammar of graphics,” which

describes the process of making a complete graphic. In it, Wilkinson emphasizes how to

transform and map data to these visual elements—the key art in generating visualizations

is selecting which data or model attributes to display and how they should be mapped to

graphical elements. In creating the aesthetic attributes of these mappings, it is essential

to avoid “chartjunk” (Tufte and Graves-Morris, 1983), or unnecessary ornament. As an

example, Figure 5.2 demonstrates two ways of visualizing a topic distribution, one with

aesthetic elements mapped randomly. Ornamentation and arbitrary mappings distract from

the main message of a graphic.

That message may be conveyed in multiple levels of representation, each with its own scope

of detail. Tufte (1991) discusses the importance of including both micro and macro aspects

in a visualization, “[s]implicity of reading derives from the context of detailed and complex

information, properly arranged. A most unconventional strategy is revealed: to clarify, add

detail.” Observers of a visualization should be able to examine both large-scale patterns and

local details.
1Generated by http://www.wordle.net.
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A broader design perspective is that the manner in which one interacts with an object should

be so obvious that the user need not even think about it (Norman, 2013). Visualizations

should be similarly intuitive—an investigator should not need to contemplate if their initial

impression of a visualization is correct.

Above all, it should be remembered that graphics provide evidence for decision making

(Tufte and Robins, 1997). In generating visualizations, the question of interest should be

immediately clear, if not the answer as well.

5.2 Principles for Exploring Latent Variable Models

Building on this foundation of modeling visualization approaches (Sections 2.6.1 and 5.1),

this section defines a set of five principles that help us in constructing models for exploration

and then visualizing the results of those models. The principles are as follows.

1. The questions to be answered must be clear. This principle is applicable to both

developing latent variable models and constructing visualizations based on models. It

involves placing the model (or visualization) in a larger context and defining the function of

the model in that context.

2. Each latent variable must map to an intuitive concept. As interpretation involves the

discovery of relationships, it is impossible to interpret one variable’s relationship with another

variable when of of them is ambiguously or arbitrarily defined. If each latent variable maps to

a meaningful concept, then the relationships between those concepts can be explored.

3. Each graphical element must be meaningful. When graphical elements are mapped

to random values, investigators may question the meaning of these graphical elements, as

shown in Figure 5.2. Additionally, the graphical elements must be chosen with care such

that they successfully convey the intended meaning—mapping to graphical elements such as

text size can be ambiguous: is the viewer supposed to derive meaning from the text height
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or the area the text covers?

4. Model results must be displayed in conjunction with the original data. By portraying

both the learned model parameters and the original data, a visualization creates a two-tiered

view of the problem. The model provides high level summaries of the data, and the original

data provides low-level details. Depending on the model specification, the data can also be

augmented by local parameters of the model.

5. Interactions must be obvious. If there are physical interactions to a visualization (e.g., a

mouse click to display more information), then these interactions should be easy to discover

and not require explanation outside of simple visual cues (e.g., the element changes color

when the cursor hovers over it). This also applies to static visualizations and model output

more generally: it should be clear how to investigate and validate the model results to find

the answers to the questions required by our first principle.

These principles are intentionally broad such that they can be applied to latent variable models

in general. To solidify them with a concrete example, we now apply them in constructing

visualization frameworks for topic models (Section 2.3) and Capsule (Chapter 3).

5.3 Visualizing Topic Models

Probabilistic topic models (Chapter 2) are a set of machine learning tools that discover the

hidden thematic structure in a collection of documents; they find salient themes and represent

each document as a combination of themes. However, topic models are high-level statistical

tools. A user must scrutinize numerical distributions to understand and explore their results;

the raw output of the model is not enough to create an easily explored corpus.

We propose a method for using a fitted topic model to organize, summarize, visualize, and

interact with a corpus. With our method, users can explore the corpus, moving be- tween

high level discovered summaries (the “topics”) and the documents themselves, as Figure 5.3
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illustrates.

Our design is centered around the idea that the model both summarizes and organizes the

collection. Our method translates these representations into a visual system for exploring

a collection, but visualizing this structure is not enough. The discovered structure induces

relationships—between topics and articles, and between articles and articles—which lead to

interactions in the visualization.

Thus, we have three main goals in designing the visualization: summarize the corpus for the

user; reveal the relationships between the content and summaries; and, reveal the relationships

across content. We aim to present these in a ways that are accessible and useful to a spectrum

of users, not just machine learning experts.

Our method can be applied to any collection from a topic model fit to its documents.2 We

describe the details of our method in the rest of the chapter. First, we survey prior work on

corpus browsers. Second, we discuss our interactive visualization method, describing our

design choices for visualizing a corpus with the output of a topic modeling algorithm. Third,

we point to our open source implementation of the method and describe several use cases of

the resulting corpus navigators. Finally, we explore a set of qualitative user reviews from a

pilot study.

5.3.1 Related Work

Simple electronic corpus browsers exist in most operating systems; they allow users to

list, sort, and search documents and their meta-data. However, using these tools can be

unwieldy when a user does not have a specific search query or a good understanding of the

corpus.
2There are many open source implementation of topic modeling algorithms, e.g. http://www.cs.

princeton.edu/~blei/lda-c, http://cran.r-project.org/web/packages/lda/ and http://mallet.cs.
umass.edu/topics.php.
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Figure 5.3: Navigating Wikipedia with a topic model. Beginning at the top, we see a set of
topics, each of which is a theme discovered by a topic modeling algorithm. We click on a
topic about film and television. We choose a document associated with this topic, which is the
article about film director Stanley Kubrick. The page about this article includes its content
and the topics that it is about. We explore a related topic about philosophy and psychology,
and finally view a related article about Existentialism. This browsing structure—the themes
and how the documents are organized according to them—is created by running a topic
modeling algorithm on the raw text of Wikipedia and visualizing its output.
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Researchers have proposed several solutions to the problem of understanding large document

corpora. Examples include Exemplar-based Visualization (Chen et al., 2009), FacetAt-

las (Cao et al., 2010), and ThemeRiver (Havre et al., 2000). These visualizations help users

understand the corpus as a whole, but they do not provide a more detailed exploration of

individual documents.

At the document level, researchers have pursued several methods for visually summarizing

individual documents. Examples include Phrase Nets (Van Ham et al., 2009), Document

Cards (Strobelt et al., 2009), and the Word Tree (Wattenberg and Viégas, 2008). These

visualizations accomplish their goals, but have no mechanism for giving the context of the

analyzed documents within the larger corpus. Our visualization provides both a high-level

summary of the corpus and links between the summary and individual documents.

In some document visualization problems, the structure of the collection is given. There has

beenmuch research on using facets, or meta-data, to innovate the browsing experience (Hearst,

2008; Lee et al., 2009; Thai and Handschuh, 2010). However, many corpora do not contain

meta-data, and it can be difficult to obtain. The approach we present visualizes a discovered

structure in a corpus, without requiring human annotation. Our technique is tailored to the

structure that topic models discover.

Previous topic modeling research has focused on building new topic models to capture

more structure—examples include those that represent time series (Blei and Lafferty, 2006),

authorship (Rosen-Zvi et al., 2004), or citation (Chang and Blei, 2009)—and also on improv-

ing the algorithms for fitting data to a topic model (Newman et al., 2007; Teh et al., 2006;

Hoffman et al., 2010), but topic models are mainly used for exploratory analysis. There has

been little research on how to best visualize and interact with an analyzed collection.

Topic model researchers have typically used topic browsers for exploring the fitted model in

order to evaluate model algorithms (Newman et al., 2006)3; TopicNets (Gretarsson et al.,
3See also: http://bit.ly/browser-blei, http://bit.ly/browser-rexa, and http://bit.ly/
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2012) and the Topic Browser (Gardener et al., 2010) are the most notable of these topic

browsers. These visualizations emphasize topics; the document content is rendered to the side

or as an external link rather than integrated into the browser. Further, these browsers include

little visual representation: they rely mostly on links and numbers to convey meaning.

We present a way of using topic models to help learn about and discover items in a corpus.

With this goal it is important to forgo jargon and difficult-to-interpret numbers, and to

emphasize interaction and visualizations that are meaningful to many types of users. Our

navigator presents the output of a topic model in an interface that illuminates a given corpus

to non-technical users.

5.3.2 Visualizing a Topic Model

How can we visualize a corpus through the lens of a topic model? Our goals are to use

the topic model to summarize the corpus, reveal the relationships between documents and

the discovered summary, and reveal the relationships between the documents themselves.

We applied our visualization to 100,000 articles from Wikipedia, which we will use as a

running example. (We also visualized 3,000 articles from the New York Times and 61,000

US Federal Cases. Others have applied our visualizer to 20,000 articles from the ArXiv,

which is a large repository of scientific preprints.)

LDA decomposes a collection of documents into topics—biased probability distributions

over terms—and represents each document with a (weighted) subset of the topics. When

fit to a set of documents, the topics are interpretable as themes in the collection, and the

document representations indicate which themes each document is about. Thus, the learned

topics summarize the collection, and the document representations organize the corpus into

overlapping groups.

browser-czdml.
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For example, the most frequent words in the topic ffilm, series, showg in Figure 5.3 are film,

series, show, character, play, make, episode, and movie; Wikipedia articles that exhibit this

topic include The X-files, Orson Welles, and History of film. In contrast to machine learning

algorithms for classification and prediction, topic models are an unsupervised method. The

documents are not labeled with meta-data, e.g., “related to film.” Rather, the topics and how

the documents exhibit them are discovered by the algorithm.

In advance of building the visualization, the user must collect the documents and run a topic

modeling algorithm on them. Our visualization uses both the observed data and the inferred

topic model variables.4 The topic model variables are the topics ˇk, each of which is a

distribution over a vocabulary, and the topic proportions �d , one for each document and each

of which is a distribution over the topics.

The latent and observed variables of a topic model are numerous, and their relationships

are complex. Thus, we use multiple views to illuminate the structure. We created a basic

navigator that fully represents a corpus through the lens of an LDA analysis. In this section,

we explain our design choices.

Visualizing the Elements of a Topic Model. The navigator contains two main kinds of

pages: one for displaying the discovered topics and the other for presenting the documents.

There are also overview pages, which illustrate the overall structure of the corpus; they are a

launching point for browsing.5

These pages display the corpus and the discovered structure. But this is not sufficient—we

also use the topic model inferences to present connections between the documents and topics.

With these connections, a user can move between summary and document-level presentations.

Limiting a user to a summary-level presentation of the corpus gives the approach of previous

topic model visualizations; limiting them to document-level is simply viewing the original
4Note that the we use variables to indicate their posterior expectations. This is to make the notation simple.
5Additionally, term pages integrate the topic model with a traditional index of the collection, and are

presented in a similar format to the topic pages.
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corpus.

Hence, in our visualization every element on a page links a user to a new view. With these

links, a user can easily traverse the network of relationships in a given corpus. For example,

from a topic page a user can link to view a specific document. This document might link

to several topics, each of which the user can explore. If we use the topic three words to

represent a topic, we can show an example of this browsing experience.

fson, year, deathg

%

fgod, call, giveg �! Moses �! fgroup, member, jewishg

&

fwar, force, armyg

We illustrated another navigation example in Figure 5.3.

An advantage of our design is that every type of relationship has a representation and

an interaction. This illuminates the structure of corpus to a user and helps her navigate

that structure. Further, note that any individual variable may occur in multiple views; all

relationships are many-to-many. The topic ffood, make, wineg is related to documents titled

Tea and Migraine, and so would appear on both their respective pages.

Topic Pages. Topics summarize the corpus. In the output of an inference algorithm, they

are probability distributions over the vocabulary. But topics tend to be sparse, and so a

good visual representation is as a set of words that have high probability (as opposed to a

traditional view of a distribution, such as a bar graph). Given such a set, users can often

conceive meaning in a topic model (Chang et al., 2009). For example, one can intuitively

glean from the three words fschool, student, universityg (Figure 5.5) that this topic is about

education and academics. (Our visualization might also reveal uninterpretable topics, which

indicates a misfit to the data. Techniques like those of Newman et al. (2010); Mimno and

88



Figure 5.4: Topic pages and document pages from the navigator of Wikipedia. (a) A
view for a topic on diseases and medicine. (b) A document view for the Wikipedia article
titledMigraine. This exhibits the fdisease, patient, cellg topic shown in (a) at a very high
percentage and the topic ffood, make, wineg in (c) at a low percentage. (c) A view for a topic
on food and cooking. (d) A document view for the Wikipedia article titled Tea. This exhibits
the ffood, make, wineg topic in (c) strongly.

Blei. (2011) might be used to prune these topics.)

We illustrate example topic pages in Figures 5.4 and 5.5, (a) and (c). In these pages, the terms

are represented as a list of words in the left column, ordered by their topic-term probability

ˇk;v.6 We chose not to scale the term text by probability because it conveys meaning

imprecisely; most attributes are perceived on non-linear scales (Wilkinson, 2005).

The center column of the view lists documents that exhibit the topic, ordered by inferred

topic proportion �dk. Documents are rendered by their titles on this page and each links to
6Each vocabulary term also links to a term page.
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Figure 5.5: A topic page and document page from the navigator of Wikipedia. We have
labeled howwe compute each component of these pages from the output of the topic modeling
algorithm.

its corresponding document page; this enables a user to move from the high-level topic view

to the low-level document view. We can see that the list of documents related to ffood, make,

wineg are tied to food and eating.

Breakfast

%

ffood, make, wineg �! Korean cuisine.

&

French fries

The topic in Figure 5.5 titled fschool, student, universityg is related to articles on general

concepts such as College and Education in the United States but also to articles on specific

institutions, likeColumbia University andOhio State University. These relationships between

topics and documents were discovered by the topic model.

Finally, related topics are also listed with corresponding links, allowing a user to explore

the high-level topic space. Topic similarity is not inferred directly with LDA, but can be

computed from the topic distributions that it discovers. Related topics are shown in the right
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column of the topic page by pairwise topic dissimilarity score

�ij D

VX
vD1

1R¤0
.ˇi;v/1R¤0

. ǰ;v/
ˇ̌
log.ˇi;v/ � log. ǰ;v/

ˇ̌
(5.1)

where the indicator function is defined as

1A.x/ D

8̂̂<̂
:̂
1 if x 2 A,

0 if x 62 A.
(5.2)

This is related to the average log odds ratio of the probability of each term in the two topics.

This metric finds topics that have similar distributions. Note that there are other ways to define

topic similarity, for example by looking at co-occurrences of topics within documents (Blei

and Lafferty, 2007).

Continuing with our example topic from Figure 5.4 (a), this metric scores the following

topics highly.

fspecie, animal, plantg

%

fdisease, patient, cellg �! fwoman, child, mang

&

ffood, make, wineg

Since the original topic relates to matters of health, it makes sense that the related topics

cover a spectrum of concepts from the natural world to human lifestyles.

Document Pages. Document pages render the original corpus, providing a low-level view.

In the case of the Wikipedia navigator, HTML content is drawn directly from Wikipedia

articles, as shown in Figures 5.4 and 5.5, (b) and (d). The ArXiv navigator discussed in

Section 5.3.3 incorporates meta-data about the articles as well; this is shown in right section

of Figure 5.7.
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We supplement each document by showing the topics that it exhibits, where a topic is rendered

as its top three most probable words. These text-rendered topics are listed in the left column

of each page and ordered by their topic proportions �dk. In addition to this related topics

column, topics are also displayed in a pie chart, showing their respective proportions within

the document. Pie slices highlight the topic titles below on hover and vice-versa, and both

lead to the appropriate topic page when clicked. Since the topic proportions �d sums to one,

this is a depiction of document descriptions � that matches human intuition.

Glancing at the pie chart of the document page in Figure 5.5, one sees that the Juris Doctor

article is roughly a third about academia, a third about law, and a third about other topics.

Any other depiction, such as a bar chart, would require numerical annotation to be as specific.

Every rendering of a topic links to its respective page, allowing a user to shift to a high-level

topic view.

Finally, documents are associated with similar documents. Like topic similarity, document

similarity is not inferred directly with LDA, but is defined by the topic proportions:

�ij D

KX
kD1

1R¤0
.�ik/1R¤0

.�jk/
ˇ̌
log.�ik/ � log.�jk/

ˇ̌
: (5.3)

This metric says that a document is similar to other documents that exhibit a similar combi-

nation of topics.

In the example shown in Figure 5.4 (b), the article is related to other documents as fol-

lows.

List of genetic disorders

%

Migraine �! Diabetes mellitus

&

Prostate cancer
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Related documents, like all other relationships, link to their respective pages, allowing a user

to explore the documents.

Overview Pages. Overview pages are the entry points to exploring the corpus. In the

simplest of these pages, we rank the topics by their relative presence in the corpus and display

each in a bar with width proportional to the topic’s presence score pk: the sum of the topic

proportions for a given topic over all documents,

pk D

DX
dD1

�dk: (5.4)

Examples of this view can be found in Figure 5.6. From this figure, we see that many

documents are related to the topic fhousehold, population, femaleg; this is consistent with

our observations of the corpus, which includes many Wikipedia articles on individual cities,

towns, and townships. Similarly, the high scoring of the ffilm, series, showg topic is likely

due to the number of articles dedicated to particular movies and television shows. One of the

lowest scoring topics by this scale is fwater, park, boatg, which has a narrow scope: outdoor

recreation.

We have created additional overview pages—these give users alternative entry points to

variable pages, which may be found in any of our demonstration navigators.

5.3.3 Implementation and example use

We provide an open source implementation of the topic modeling visualization. There are

three steps in applying our method to visualizing a corpus: (1) run LDA inference on the

corpus to obtain posterior expectations of the latent variables (2) generate a database and (3)

create the web pages to navigate the corpus.

Any open-source LDA package can be used; we used LDA-C.7 (Using an alternative pack-
7http://www.cs.princeton.edu/~blei/lda-c
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Figure 5.6: Topic overviews from a visualization of Wikipedia (top), the New York Times
(center), and US Federal cases (bottom). All of these navigators are online (see the Sec-
tion 5.3.3).

age might require changes to our provided database generator script.) We implemented

the remainder of the pipeline in python. It can be found at https://github.com/ajbc/

tmve-original.

We also created an alternative version that generates pages as requested (or “lazily”) using

Django8 as an alternative, though it excludes some of the similarity links. With this variant,

models can also be viewed as the model runs, meaning that a user can start exploring a

corpus almost immediately with a model like online LDA (Hoffman et al., 2010) which
8https://www.djangoproject.com
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Figure 5.7: A navigator of the arXiv of Physics preprints, generated by Ivan Savov using
our open source implementation of the topic model visualization.

is able to scale to millions of documents. The source for this variant may be found at

https://github.com/ajbc/tmv.

There are three examples of navigators using our visualization.

� 100,000 Wikipedia articles. We analyzed Wikipedia articles with a 50-topic LDA

model; the navigator can be found at http://bit.ly/wiki100. All figures in this

chapter are drawn from this demonstration unless noted otherwise.

� 61,000 US Federal Cases. We created a navigator of US Federal Cases9 with 30 topics

generated with LDA. A page form the resulting navigator can be seen in Figure 5.6; it

can be found in full at http://bit.ly/case-demo.
9Obtained via http://www.infochimps.com/datasets/text-of-us-federal-cases; link no longer active.
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� New York Times. We also applied our method to a corpus of 3,000 New York

Times articles, generating 20 topics with LDA. The resulting navigator can be seen in

Figure 5.6; it can be found in full at http://bit.ly/nyt-demo.

� ArXiv. One week after the source code was released we received links to a navigator

of arXiv (a large archive of scientific preprints) that was generated using our code

with few adaptions. The results can be seen in Figure 5.7; the full browser is no longer

available online.

5.3.4 Preliminary User Study

We conducted a preliminary user study on seven individuals, asking for qualitative feedback

on the Wikipedia navigator. In general, the reviews were positive, all noting the value of

presenting the high-level structure of a corpus in addition its low-level content. One reviewer

claimed that it was organized similarly to his own way of thinking.

Six individuals responded that they discovered connections that would have remained obscure

by using Wikipedia traditionally. For example, one user explored articles about economics

and discovered countries with inflation or deflation problems of which he had previously

been unaware.

All of the reviewers preferred a search when looking for something specific; the negative

feedback we received focused on our lack of integrating search. We acknowledge that

searching is an important feature for browsing a large corpus and that it should be included

to complete the system.

The only other negative feedback was due to the small scope of 100,000 Wikipedia articles:

reviewers were unable to find detailed information on narrow subjects like music synthesizers

or the evolutionary history of cats. This is a problem with the corpus as selected rather than

the browsing structure we implemented.
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While our navigator of 100,000 Wikipedia articles was no replacement for Wikipedia, three

of the individuals stated that they would like to see Wikipedia supplemented with a topical

structure or would use that structure if it existed onWikipedia; the remainder of the reviewers

implied that such a system would be useful in general.

5.4 Visualizing Capsule

Like LDA, Capsule (Chapter 3) also represents topics as distributions over words, and can

use many similar elements to visualize and explore the model.

In constructing a visualization for Capsule, we created overview pages for events (Figure 5.8),

entities (Figure 5.9), and general topics. These pages serve as launching points to investigate

the corpus.

From here, users can investigate specific event, entity, and general topic pages that display

ordered lists of relevant terms and relevant document. For entity and event pages, we

scraped Wikipedia to provide descriptions for the entities and any real-world events that

occurred in a given time interval. Users can also navigate to document pages, as shown in

Figure 5.10).

Source code for this visualization is available at https://github.com/ajbc/capsule-viz

and a live demo is present at http://www.princeton.edu/~achaney/capsule/.

5.5 Discussion

In this chapter, we have proposed five principles for constructing exploratory models and

then visualizing the results of those models. We then demonstrated these principles by

creating navigators for LDA and Capsule that summarize the corpus for the user and reveal
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Figure 5.8: A screen-shot the Capsule visualization of US State Department cables. The
event overview view allows users to select a time interval, which then displays the top
terms, most relevant documents, and real-world events scraped from Wikipedia for that time
interval.
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Figure 5.9: A screen-shot of Capsule visualization of US State Department cables. The
entity overview allows users to select entities on a map, which then displays the top terms.
most relevant documents, and a description scraped from Wikipedia for that entity.

Figure 5.10: A screen-shot of Capsule visualization of US State Department cables. This
view allows users to investigate a given document. For here, one may navigate to event,
entity, or general topic pages that are relevant to the document (right column).
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relationships between and across content and summaries. Overview pages allow users to

understand the corpus as a whole before delving into more specific exploration via individual

variable pages. We have achieved this with navigator designs that illuminates a given corpus

to non-technical users; understanding our navigators do not require an understanding of the

details of the underlying models.

We see potential for our visualizations to have many applications. LDA can be applied to

scientific, historical, web, and news articles, all of which would benefit from an accompanying

navigator. Capsule can similarly be applied to email and blog posts.

These visualizations may be extended and tailored to specific extensions of the models, but

the principles for exploring models apply to any latent variable model.
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6
ˇ̌

Conclusion

End? No, the journey doesn’t end here.

– J. R. R. Tolkien

This dissertation has presented three pieces of work that relate to statistical modeling of

human behavior and the exploration of model results. We developed two additive Poisson

models—Capsule in Chapter 3 and SPF in Chapter 4—for human-centered applications and

described how to attribute observed behavior to sources of influence. We also presented

visualization based on an underlying statistical model as a first-class research problem,

and provided five principles in Section 5.2 to guide the construction of these systems. We

demonstrated these principles with exploratory tools for LDA and Capsule in Chapter 5, and

with static visualizations for SPF in Chapter 4. To conclude, we review the contributions of

this dissertation and point to directions for future work.

6.1 Contributions

In this section, we itemize the contributions presented throughout this dissertation.

� In Chapter 2, we presented latent Dirichlet allocation (Section 2.3) and Poisson factor-

ization (Section 2.4) in a way that enabled us to emphasize the connections between

the models (Section 2.5.1). Our contribution was presenting how these approaches
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can be combined into a hybrid model that draws on the strengths of each model.

� In Chapter 3, we developed the Capsule model for detecting and characterizing events.

� We also derived variation inference algorithm for Capsule and released accompanying

source code.

� In Chapter 4, we developed social Poisson factorization (SPF), another additive Poisson

model like Capsule. SPF incorporates the ratings of friends (and not just friends’

general preferences) in providing personalized recommendations.

� We derived a variational inference algorithm for SPF and released accompanying

source code.

� For additive Poisson models in general, as well as Capsule and SPF in particular, we

outlined how to attribute observations to different latent variables. While we did not

make any causal claims in this dissertation, this additive framework is ripe for causal

inference.

� In Chapter 5, we introduced a set of five principles for model exploration and visual-

ization.

1. The questions to be answered must be clear.

2. Each latent variable must map to an intuitive concept.

3. Each graphical element must be meaningful.

4. Model results must be displayed in conjunction with the original data.

5. Interactions must be obvious.

� In Chapter 5 we presented a visualization pipeline for LDA in keeping with thee

principles, and released accompanying source code and demonstrations.

� To explore the results of Capsule, we also developed a navigator in Chapter 5 and
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released source code for this visualization.

6.2 Future Directions

We have established a foundation of research which can be built on in many ways. Future

work includes both specific tasks and addressing broad questions.

The Capsule model and corresponding visualization can be developed further—the model

can be adapted to include network interactions; for example, one entity’s involvement in an

event could spawn its ally to be involved. The model’s relationship with Poisson processes,

especially excitatory processes, can also be explored.

For social Poisson factorization, the model can be extended to include some notion of time;

when time is observed, it would introduce an order into friends consuming the same content.

This implies directionality to influence which would result in a well-defined joint. This

would open the door to investigators making causal claims with future adaptions of the

model.

In terms of specific tasks for visualizing topic models, visualizations could be adapted to

include topic modeling extensions. Other models incorporate time series of topics (Blei

and Lafferty, 2007), hierarchies of topics (Blei et al., 2010), authorship (Rosen-Zvi et al.,

2004), document impact (Gerrish and Blei, 2010), and models where the data determine the

number of topics (Teh et al., 2007). Visualization should exist to accommodate a variety of

topic models and variables that might be added to the analysis.

More broadly, visualizations can be created for any exploratory latent variable model. We

should ask: how can we include the full posterior in our visualizations and explorations,

not just the expectation of the mean for each parameter? Bayesian models are especially

valuable in cases where estimating the full posterior distribution (or even simply uncertainly

for certain parameters) is important; visualizations can be adapted and developed to reflect
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this importance.

This dissertation lays the groundwork for many directions of future research. One open

avenue is to explore formal notions of causality with scalable machine learning algorithms.

An obvious application of this is understanding the impact of recommender systems; more

broadly, there are many opportunities to understand influences on human behavior using

massive data and latent variable models. The models and exploration approaches presented

in this dissertation are the first steps in this line of research.
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ˇ̌

Prior Publications

Much of the work presented here has been presented and published previously; this appendix

itemizes these prior versions of the work. This dissertation presents these research themes

jointly, providing both a broader context for the work and deeper investigations for each of

the component problems.

Chapter 3: Detecting and Characterizing Events

� Allison J.B. Chaney, HannaWallach, David M. Blei, and Matthew Connelly. Detecting

and Characterizing Events. Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing (EMNLP), 2016. (Also referenced in Chapter 5.)

� Allison J.B. Chaney, Hanna Wallach, and David M. Blei. Who, What, When, Where,

and Why? A Computational Approach to Understanding Historical Events Using

State Department Cables. Sixth Annual New Directions in Analyzing Text as Data

Conference (Text as Data), 2015.

Chapter 4: Social Poisson Factorization

� Allison J.B. Chaney, David M. Blei, and Tina Eliassi-Rad. A Probabilistic Model for

Using Social Networks in Personalized Item Recommendation. Proceedings of the 9th

ACM Conference on Recommender Systems (RecSys), 2015.

� Allison J.B. Chaney, Prem Gopalan, and David M. Blei. Poisson Trust Factorization

for Incorporating Social Networks into Personalized Item Recommendation. NIPS
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Workshop: What Difference Does Personalization Make?, 2013.

Chapter 5: Exploring Latent Variable Models

� Allison J.B. Chaney and David M. Blei. Visualizing Topic Models. Proceedings of the

Sixth Annual International AAAI Conference on Web and Social Media (ICWSM),

2012.
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B
ˇ̌

Complete Conditional Derivations

This appendix contains the derivation of complete conditionals for the topic distributions ˇ

described in Chapter 2 to illustrate the similarities between LDA and PF. Derivations for

document representations � are similar but not shown. Word-specific topic assignments w

are also not shown.

Derivation of LDA ˇ Updates
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