
Incremental Full Correlation Matrix Analysis for
Real-Time fMRI Studies

Yida Wang∗, Bryn Keller†, Mihai Capotă†, Michael J. Anderson†, Narayanan Sundaram†,
Jonathan D. Cohen‡, Kai Li∗, Nicholas B. Turk-Browne‡, Theodore L. Willke†

∗Department of Computer Science, Princeton University,
†Parallel Computing Lab, Intel Corporation,

‡Princeton Neuroscience Institute, Princeton University

Abstract—Real-time functional magnetic resonance
imaging (rtfMRI) is an emerging approach both for
studying the function of the human brain, and for neu-
ral feedback-based training. To date, rtfMRI has relied
exclusively on the real-time analyses that treat activity
in different regions as independent of one another.
However, critical aspects of brain function may depend
on, and be revealed more sensitively by correlations
among regions. An exhaustive analysis of such correla-
tions is substantially more demanding computationally,
so full correlation matrix analysis (FCMA) of the entire
brain has not been carried out in real-time before. This
paper presents the algorithms and an implementation
of the first real-time system to perform whole brain
FCMA in real-time. Our system includes incremental
voxel selection, model training, and real-time classifi-
cation. We have implemented this system on an fMRI
scanner connected to a computer cluster over HTTP.
Experiments show that our system is able to achieve
real-time FCMA analysis of a stream of brain volumes
with neurofeedback with less than 200 ms of lag with
very few exceptions. The incremental FCMA algorithm
running on our real-time fMRI system performs about
1.8x-6.2x faster than using an offline FCMA toolbox in
the real-time context while getting comparable neuro-
feedback results.

Keywords-Real-time fMRI; rtfMRI; fMRI; magnetic
resonance imaging; streaming; machine learning; full
correlation matrix analysis

I. Introduction
Functional magnetic resonance imaging (fMRI) is the

dominant technique for investigating human brain activity
in neuroscience research. Almost all existing fMRI studies
are conducted in an offline fashion — statistical analysis
occurs only after all data have been acquired and sent to
a file server or lab for processing, long after the research
subject has been taken out of the scanner. This offline
approach allows researchers to design an experiment, per-
form it in multiple subjects, and then analyze the reliabil-
ity of the data by examining consistency across subjects.
Although sufficient for many purposes, this approach has
three major limitations: First, the pace of discovery is
very slow, with typical fMRI studies lasting 6-12 months
total, and often at least 2-3 months before even tenta-
tive results are known. Second, it is assumed that the
same exact experiment should be run in each participant,

missing opportunities to tailor the level of difficulty to
an individual’s cognitive abilities and to assess whether
enough or the right kind of data has been collected in
a given session. Third, it misses the opportunity to use
information acquired during scanning as feedback to the
subject, either to enhance participation and/or training
(e.g., on attention [1]).

Recently, it has become possible to conduct online
or real-time fMRI (rtfMRI) studies, in which data are
preprocessed and analyzed as they are collected, keeping
pace with the rate of data acquisition [2], [3], [4]. There
are many forms of rtfMRI: “triggering” involves initiating
experimental trials based on the amount or pattern of
activity in a brain region, allowing for stronger inferences
about the region and behavior [5]; “adaptive design” in-
volves altering experimental parameters such as stimuli
and tasks, in order optimize the experiment to recruit
particular brain regions [6]; and “neurofeedback” involves
returning to subjects some visualization of the amount or
pattern of activity in a brain region, helping them better
engage this neural representation [7], [8]. As an example,
this latter form of rtfMRI with neurofeedback was recently
used to train subjects to better sustain their attention,
by externalizing their internal attentional states such that
they could be better monitored and controlled [1].

Despite the advent of rtfMRI, there still exists a major
gulf between online and offline measures. One critical
constraint concerns the type of analyses that are possible.
Most analyses of fMRI data and, to date, all analyses
used in rtfMRI, treat the activity observed in each voxel
independently of one another. Examining patterns of ac-
tivity in this way has led to considerable progress in brain
research. However, brain function relies not only on the
isolated activity of different areas, but as if not more
critically on interactions between different brain systems,
which can be reflected in correlations of activity among
these. Such correlations, sometimes referred to as func-
tional connectivity analysis, have become an increasingly
important focus of brain imaging research [9]. However,
because of computational constraints, such correlational
analyses have typically been restricted to predefined re-
gions of interest (ROIs). This is problematic not only
because it restricts the extent of analysis, but also biases



it. Typically, correlational analyses have focused on seed
regions identified by their isolated activity. However, this
is blind to effects that reside entirely in patterns of corre-
lation (i.e., without changes in mean activity). To address
this limitation, we recently developed a method for full
correlation matrix analysis (FCMA), allowing unbiased
analysis of patterns of correlations in activity over the
entire human brain. We have shown that this can reveal
aspects of brain function not revealed by traditional,
non-correlational methods [10]. However, because of the
computational demands, to date it has not been possible
to incorporate this method into studies using rtfMRI. In
this paper, we describe a distributed system that addresses
this limitation, and provide proof-of-concept for its use in
rtfMRI.

In implementing this distributed system, we also ad-
dressed another problem that has constrained the use
of rtfMRI — the lack of readily accessible, standardized
tools for implementing it. Nowadays, different research
teams have to set up their own rtfMRI experimental
environments, typically using a standalone machine sitting
beside the scanner to receive and analyze the incoming
data stream. This results in considerable duplication of
effort, and often inefficient solutions, or ones limited by
local resources. To address this problem, we describe a
new, general distributed system for rtfMRI that runs on
a computer cluster that can be deployed in Software as a
Service (SaaS) mode, which will allow neuroscientists from
MRI centers around the world to conduct their own real-
time neurofeedback experiments, leveraging and creating
shared computing resources. We have built the system to
require very minimal resources in the scanner room, and
the back end, which resides on a local computer cluster or
potentially a cloud service provider, has a simple REST
HTTPS API that allows easy integration and fits easily
into existing network administration rules. The REST
server is a gateway to the distributed back end, which
provides a flexible set of processes to handle classifica-
tion, training, and incremental feature selection in various
topologies, with different experimental configurations, and
using a variety of algorithms.

We implement real-time FCMA as a neuroscientific
application to our system (henceforth referred to as rt-
FCMA). Just as this approach has already produced novel
insights when used for offline analysis [10], it may be as,
and perhaps even more, valuable for real-time analysis.
We adapted the fully optimized batch FCMA code by
leveraging the characteristics of real-time data streams
to only process the incoming data. In addition, rtFCMA
is useful for showcasing our general framework, as it
is an especially computationally intensive analysis that
was not possible even in offline analysis until recently,
and represents an upper limit on current computational
demands for brain imaging analysis.

Figure 1 shows the general concept of our rtFCMA
system. An fMRI machine continuously scans the brain

Fig. 1. Conceptual diagram for rtFCMA, an fMRI system with
closed-loop neurofeedback based on real-time FCMA data analysis.

of a human subject while they perform certain tasks to
generate a data stream of 3D brain volumes. The data are
sent to the rtFCMA data analysis that runs on a computer
cluster. rtFCMA processes the brain volumes and produces
feedback to send back to the fMRI scanner in real time to
form a closed data transferring loop. Our system is the first
ever rtfMRI system with low latency closed-loop feedback
running on a computer cluster.

The rtFCMA system requires generating the neuro-
feedback with short latency. As an example, a typical
fMRI scanner spends 1.5 s to produce a brain volume. To
keep pace with the brain data stream from the scanner,
rtFCMA needs to complete its processes for a given volume
(particularly correlation computation and multivariate
classification) before the end of the next volume. The
latency from the completion of a brain volume to its
delivery to rtFCMA can be as high as 780 ms in practice,
which leaves rtFCMA a time budget of about 720 ms.
We adapted the offline batch FCMA algorithm in various
ways to meet this latency requirement. Experiments show
that rtFCMA was able to conduct an FCMA study and
provide neurofeedback with < 200 ms of lag with very few
exceptions. The incremental FCMA algorithms running
on our real-time fMRI system performed 1.8x-6.2x faster
than the offline batch version in a real-time context, while
maintaining the same level of accuracy.

II. Full Correlation Matrix Analysis
In this section, we briefly describe FCMA and its appli-

cability to the rtfMRI studies.
A. Background

fMRI data consists of a series of 3D brain volumes
collected in continuous time, typically one volume per
1.5 s. In the setting of our studies, each brain volume has
about 25,000-35,000 points (called voxels) containing val-
ues depicting the instantaneous amplitude of blood-oxygen
level dependent (BOLD) activity in the corresponding
area. The subject performs cognitive tasks during the
fMRI scanning, each of which corresponds to a continuous
time course called an “epoch of interest”. The epochs of
interest can be labeled based on the types of cognitive
task, for instance a label that classifies the sort of images
being shown to the subject during that epoch.

Unlike traditional approaches to analyzing the neural
patterns of the brain based on the amplitude of the voxel



Fig. 2. The data processing flow of FCMA.

activity during different cognitive tasks, FCMA studies
the fMRI data in terms of correlation between different
brain regions. Figure 2 shows the general data processing
flow of FCMA. The basic unit of operation for FCMA is a
full correlation matrix, i.e., the temporal correlation of the
activity of every voxel in the brain with every other voxel.
A separate full correlation matrix is computed for each
epoch of interest in the scanning session. Based on the task
types of the epochs, the matrices are labeled as different
categories (depicted in figure 2 as dark red and light blue),
e.g., in epoch x, the subject is shown face images, in epoch
y, the subject is shown scene images.

The goal of FCMA is to predict the state of the brain
(e.g., the subject is viewing a series of faces or scenes)
by analyzing full correlation matrices. In order to extract
useful information from the huge and noisy full correlation
matrices, FCMA first performs voxel selection (i.e., feature
selection), which picks a subset of voxels whose correla-
tion vectors are most category selective among all brain
voxels for making predictions. In addition to improving
the results by removing noise, voxel selection also makes
results easier to interpret for neuroscientists and speeds up
computation. Specifically, the voxels are selected based on
the cross-validated prediction accuracy of their individual
correlation vectors (i.e., for each individual voxel we build
and test a linear SVM model).

Once the most relevant voxels have been selected,
FCMA uses them to build correlation matrices of top-
K selected voxels and trains a machine learning model
to classify these correlation matrices of selected voxels in
categories. In both voxel selection and correlation matrices
training phases, FCMA typically deals with only hundreds
of samples (corresponding to the number of epochs of
interest) in tens of thousands of dimensions (corresponding
to the number voxel pairs). Therefore, we build models
using linear SVM to avoid overfitting.

In order to exhaustively study the pairwise correlations
of all brain voxels, FCMA runs as a distributed program
on a computer cluster. It uses different nodes to deal with
different portions of brain voxels in parallel, which greatly

reduces the memory and computation burden of a single
node and accelerates the processing time. After careful
optimization, it takes seconds or minutes to analyze a
typical fMRI data in terms of correlation in batch[11].

B. Real-time FCMA
It is beneficial to incorporate FCMA into rtfMRI studies

to understand subtle changes in brain interactions during
different cognitive tasks as we discussed in Section I. A
closed-loop rtFCMA system can use a pre-trained model
to classify the incoming data in terms of correlation on the
fly, therefore only the classification component of FCMA is
needed in the pipeline, which must return the classification
result as the neurofeedback in a short time. However, in
order to achieve better classification accuracy, it is advan-
tageous to leverage the data collected from the current
scanning subject to incrementally update the model. As
a result, the voxel selection and training components of
FCMA also need to perform efficiently to provide the best
model possible given the data that has arrived so far in
the experiment. Our system can either start with a pre-
trained model loaded from disk, or start from scratch and
use the incoming data to build the model on the fly.

Our rtFCMA system is complex from two perspectives.
First, it is a nested distributed system. In one layer, it
distributes the voxel selection, correlation matrix training,
and classification to different nodes; in the other layer, it
also distributes the voxel selection work to multiple voxel
selection workers. Second, it is a second-order machine
learning system. Unlike most distributed machine learning
systems, it does not directly take the incoming data to
form samples for machine learning training. Instead of
using amplitude of voxel activity directly, it uses the cor-
relation between voxel activities, so it must compute the
correlation based on incoming data. Additionally, using
the correlation data as input for machine learning expands
the data size by roughly three orders of magnitude. In
order to meet the real-time requirement, high performance
computing techniques are critical in this scenario.

III. Architecture for an rtFCMA System
A. Overview

We have built a configurable system, in that the various
processes involved can be assigned to whatever nodes are
desired at launch time, and also in that the communication
and system organization are independent of the machine
learning algorithms and feature selection algorithm used.
In the experiments in this paper, we have configured
the system to use SVM for classification, and FCMA for
voxel selection, but the framework of our system allows
any other algorithms that implemented the interfaces the
system requires.

rtFCMA consists of several cooperating services. A
lightweight daemon process on a machine in the fMRI
scanner room reads brain volume files as they are gen-
erated by the scanner, and uploads them to a web server,



Fig. 3. Architecture diagram

which can be considered the front-end of the system. From
there, the brain volume is dispatched to three separate
processes, which may or may not be on different machines:
the classifier, the trainer, and the selector. Each of these
is described in more detail in Section III-B. Among the
three, the classifier is in the critical path of the closed-
loop system, which must classify the brain volumes using
a machine learning model (in this case, linear SVM) within
a few hundred milliseconds, so that those results can be
used as neurofeedback to direct the adjacent cognitive
task assigned to the subject (e.g. showing which image
to the subject). In most deployments, the classifier service
should be run on a dedicated node in order to prevent
contention with other services that might threaten latency
guarantees.

As an option, the brain volumes are also sent to the
selector for incremental feature (voxel) selection as well
as the trainer for updating the model using the results
from the selector (described in Section IV). The actions
of the selector and the trainer are not under the stringent
time requirements of the classifier, but it is still highly
desirable they should complete in a few seconds or less, so
their outputs (models and voxel lists, respectively) can be
put into use as quickly as possible.

B. Implementation
RtFCMA uses the actor model [12], as implemented in

the Akka [13] toolkit, to distribute computation across
a computer cluster. Figure 3 shows the organization of
the system. The actors in rtFCMA are written in Scala
and are lightweight and focused on communication and
management of the system.

The services rtFCMA provides are accessed using a
RESTful web API. The REST server is written in Scala,
using the Spray framework 1, and does relatively little
processing itself, instead it relies on the distributed actors
in the system.

A process called reaper runs on the fMRI computer. Its
job is to send brain volumes to the REST server (using

1http://spray.io

Fig. 4. Brain volume processing sequence. Note that all commu-
nication is asynchronous, and specifically that classification is not
blocked by any other process.

HTTP POST requests) as they are generated by fMRI
scanner. The intent is that this should be a minimal
daemon process that does not interfere at all with the
normal operation of the fMRI scanner. The reaper is
written in Python, and is borrowed from the SciTran
project [14] with minimal modification.

Requests received by the web server are dispatched to
various actors for processing. Although the actors facilitate
communication in the system, for good performance of an
actor system, it is important to have both small message
sizes (no more than a few kilobytes) and to do all time
consuming work on a different thread. Thus as messages
that require time to process arrive at one of the system’s
actors, the message will be validated and then queued
for processing by a different thread dedicated for that
purpose, so that the actor is free to respond to the next
message. Furthermore, the heavy analytical computation
in the system is delegated via Java Native Interface (JNI)
wrappers to C++ routines that analyze the brain volumes.
As a matter of design, the system is built to be extended to
use many different algorithms, not only FCMA. Therefore
the actors communicate with the algorithm-specific code
via algorithm-agnostic interfaces. In the remainder of this
section we describe the actors.

Experimenter: The Experimenter is the hub of the ex-
periment. It is the coordinator that sees the brain volumes
through their life-cycle. It creates actors to implement the
needed functions, assigning them to remote nodes based on
configuration files. The REST server sends brain volumes
to Experimenter for processing, and also forwards client
requests for the classification results for each brain volume
to it. Figure 4 shows the sequence of actions that happens
as each brain volume in an experiment is processed by the
actor system. Note that there can be multiple experiments
active at the same time, each with its own Experimenter
created on-demand by the REST server when the first
brain volume for the experiment arrives.

Selector: The Selector’s job is to determine which voxels



Fig. 5. FCMA distributed voxel selection sequence.

in the brain volume are category selective. It does this
by delegating to the FCMAMaster actor, which in turn
manages communication with a fleet of FCMAWorker
actors. These are analogous to (and share C++ code with)
the workers in the MPI job of the offline version of FCMA
described in [11]. Even in the original offline C++ version
of FCMA, the communication required between master
and workers is simple and does not use any advanced
features of MPI. With this in mind, we abandoned MPI
and use Akka messages to distribute the work and collect
results, which simplifies the deployment requirements for
the system. Additionally, we believe this will simplify
future work on fault tolerance, as Akka, with its heritage
from Erlang, is better suited to building fault tolerant
systems than MPI. The detailed sequence of how the
selection is managed is shown in Figure 5.

Trainer: The Trainer takes in a brain volume and uses
it to update its classification model. If the Trainer does
in fact generate an updated model (some, such as FCMA,
do not necessarily generate a new model after every brain
volume), it sends the model to the Classifier.

Classifier: The Classifier receives brain volumes and
passes them through a trained machine learning model to
classify them. For this paper, it is configured to use SVM.
Its classification results are sent back to the Experimenter
for storage until a client, such as the subject feedback
system, requests those results.

IV. rtFCMA Algorithms
Based on the system framework described in Section III,

we are able to deploy FCMA as an fMRI data analysis
application to use in real-time fMRI studies. However,
the existing FCMA algorithms process the fMRI data in
batch, which is not suitable for real-time analysis. In the
real-time setting, when a new brain volume comes in,
we need to leverage what we already have from previous
computation and analysis and avoid re-computation as
much as possible. In addition, it is helpful to incorporate
the fresh incoming data to the classification model used
for providing neurofeedback. To implement these ideas,

we modified the optimized offline code to run in an
incremental fashion as described in detail below.

A. Voxel Selection
Voxel selection represents the feature engineering step in

FCMA. It is a voxel-wise screening to pick the most cat-
egory selective voxels in terms of correlation. Specifically,
for each voxel, the selector computes one correlation vector
per epoch which consists of the correlation between the
voxel and every other voxel in the brain; the correlation
vector represents the row of the full correlation matrix
corresponding to the voxel. To assess the prediction po-
tential of voxels, the voxel selector builds for each voxel
a machine learning model using the correlation vectors as
training data. The voxel selector tests the accuracy of each
voxel model using cross validation. It then sorts the voxels
according to the accuracy of their models, which is an
indicator of their category selectivity.

The algorithm can be described as a three-stage pipeline
of correlation computation, correlation normalization and
cross validation. The correlation computation builds the
full correlation matrix, composed of correlation vectors.
The normalization stage brings data from different sub-
jects to the same scale for across-subject analysis. The
cross validation stage uses subjects as folds and trains a
linear SVM classifier to test in each fold for each voxel.
That is, for m subjects, we build m linear SVM classifiers
for each voxel using correlation vectors from m−1 subjects
as training data and test using the mth subject.

Since it needs to exhaustively go through all voxels of
all subjects, voxel selection is the most computationally
intensive component in FCMA. We have already optimized
voxel selection for batch processing by carefully designing
the processing pipeline and organizing the data layout to
use the cache and vector processing units of the proces-
sor efficiently [11]. The SVM linear kernel matrices are
precomputed as well, to reduce the memory usage and
avoid recomputation in the training iterations. The batch
algorithm works in a distributed way by sending different
portions of voxels to different worker nodes via MPI to
process in parallel. A master node will collect results from
the workers to form the voxel list sorted by cross validation
accuracy numbers.

However, the optimization above assumes that the al-
gorithm gets all data in at once, which is not true in
the real-time context. In rtfMRI studies, data come in
brain volume by brain volume. Voxel selection happens
every time an epoch of interest completes. Figure 6 shows
the scenario in a worker node when the data of a new
epoch of interest is completely received. Notice that this
worker node is assigned V voxels by the master node.
At that time, there are already M epochs’ data received
and processed in the memory. When a new voxel selection
takes place after receiving epoch M+1, we do not need to
recompute the correlation and the SVM kernel matrices
over all previous epochs of interest. Instead we only need



Fig. 6. Incremental voxel selection in one selector worker actor.
The worker is assigned to process v voxels of the brain, making
sure all data resides in the memory in the entire process. (a) In the
correlation computation stage, only the data of the newly coming
epoch is computed; (b) In the normalization stage, only the data
related to the newly computed correlation is normalized; (c) In the
cross validation stage, when computing the kernel matrices, only the
similarity values involving the newly normalized data are computed
to expand the kernel matrices.
to compute the correlation over epoch M + 1 which is in
dark red in figure 6a, normalize it using the existing data
of the same subject as depicted in figure 6b, and compute
the corresponding similarities with the existing correlation
samples as shown in in figure 6c. This saves recomputation
overhead and makes it possible to finish one round of voxel
selection faster so that the latest voxel selection result can
be leveraged in the following epochs as soon as possible to
refresh the model used for classification.
B. Training with the Latest Data

Training a precise model for real-time classification is
critical to rtfMRI studies. Traditionally, researchers use
a fixed model trained from previously collected data [1]
because a dynamically updated model cannot be handled
in real-time by a single analysis machine. The fixed model
does not take the latest brain data into consideration, so
it may not reflect the neural status of the current subject,
which therefore harms the classification performance.

In our rtFCMA algorithm, we implement a correlation-
based training pipeline to incorporate the most recent
data into the model. We first compute the correlation
matrices of selected voxels consisting of correlations be-
tween the top-K selected voxels produced by the latest
voxel selection over all existing epochs till now. Then
we serialize the matrices into high dimensional samples,
normalize them within subject, and train a linear SVM
classifier over them using sequential minimal optimization
(SMO) algorithm [15] from a randomly initialized state.
This produces an SVM model reflecting the latest data
and voxel list. Note that since the voxel list will change
between voxel selections, we will have to reconstruct the
correlation matrices of selected voxels accordingly, which
leads to different training samples between different voxel
selections and prevents us from doing an incremental
training to update the model based on the current state.

Although the incremental training may save a number it-
erations in the SMO algorithm compared to training from
a random state, in our case we only have a small number of
training samples (corresponding to the number of epochs
the subjects go through, typically tens to hundreds), so
the difference is not significant.

The training pipeline, together with the incremental
voxel selection, work as independent processes to update
the model asynchronously from classification.

C. Real-time Classification
The voxel selection and training described above are

only auxiliary components that refine the model. The
critical path of closed-loop rtfMRI studies consists of
using the model to classify incoming data and sending
the resulting prediction along with its confidence as neu-
rofeedback back to the fMRI scanner. The classification
must be done in real-time so that the neuroscientists can
use the neurofeedback it produces for the subsequent steps
in the experiment, e.g., adjusting the experimental task
accordingly if the prediction the system makes matches
what the subject is really doing. Typically, an rtfMRI
study requires the neurofeedback of brain volume N to
be produced within the time that brain volume N + 1
is generated so that it can direct the cognitive task the
subject performs when generating brain volume N + 2.

In rtFCMA, unlike the previous rtfMRI studies which
work on the brain’s raw BOLD activity, the classification
is done on the correlation values computed from incoming
brain volumes over each epoch of interest. Because it is
based on correlation, classification is only performed after
several brain volumes within the same epoch of interest are
collected. Once it has accumulated enough brain volumes
of the same epoch, the classifier actor takes the top-K
voxels from the latest voxel list to compute a correlation
matrix of selected voxels, normalizes the values using up-
to-date data from the same subject, and applies the result
to the latest model as a test sample. In order to run
multiple correlation-based classifications for one epoch of
interest, the system applies a sliding window of length
L to the epoch of interest. That is, each time a new
brain volume is received within the epoch of interest, we
drop the volume that was collected L time points ago
and incorporate the new one. When L is equal to the
length of an epoch, we only conduct one correlation-based
classification per epoch. The sliding window does not cross
an epoch, so when a new epoch starts, the sliding window
accumulation also needs to restart.

Using the rtFCMA algorithms, our system is able to
conduct an rtfMRI experiment in terms of full brain
correlation-based analysis. The system takes the fresh
brain data to update the model and the voxel list right
after an epoch of interest on the fly, and always uses the
latest model to classify the correlation computed based
on the current epoch including the newly incoming brain
data.



V. Evaluation
To evaluate the performance of our real-time fMRI

system, we pursued answers to the following questions:
1) What is the overall performance of our real-time

fMRI system? Specifically, can the classification pro-
duce neurofeedback within the time of generating
the next brain volume? Can the incremental voxel
selection and training update the model efficiently?

2) What is the performance gain of incremental voxel
selection comparing to the optimized offline version?

3) Is our incremental voxel selection scalable as we add
more compute nodes?

4) Can the simulated real-time experiments based on
offline data achieve the comparable classification
accuracy as the offline analysis?

A. Experimental setup
In our evaluation, we consider rtFCMA and the original

FCMA toolbox, which we refer to as batchFCMA. We
compare overall performance, as well as per-component
performance.

All testing is done on Metacortex, a 50-node cluster
located at the Princeton Neuroscience Institute (PNI).
All nodes are interconnected by an Arista 10GE switch.
Each node has two Intel Xeon E5-2670 CPUs running at
2.6 GHz, 256 GiB RAM, and eight 3 TB SATA hard disks.
All our C++ code is multithreaded and uses 32 threads
per process and one process per node.

We used two datasets to simulate rtfMRI studies. The
facescene dataset was collected as the localizer runs in
[16] and used as a proof of concept of FCMA in [10]. It
consists of 244 brain volumes per subject from 18 subjects.
The volumes are grouped in 12 epochs per subject, each
corresponding to the subject in the fMRI scanner being
shown either a series of face or scene images. The interval
between the starting points of two epochs is 30 s. The
attention dataset was collected and analyzed in [17]. It
consists of 360 brain volumes per subject from 30 subjects.
The volumes are grouped in 18 epochs per subject, each
corresponding to the subject in the fMRI scanner being
asked to attend the images on the left or right side of the
screen. Like facescene, the interval between the starting
points of two epochs in attention is also 30 s.

B. Full System Performance
We first demonstrate the performance of our system

when all functions of the system, namely, voxel selector,
trainer and classifier, are on. Two datasets mentioned
above were used in this experiment, respectively. In or-
der to fully simulate an rtfMRI experiment, we fed in
our system brain volume by brain volume with a 1.5 s
pause, which is the time interval of a brain volume being
generated in the fMRI scanner; and introduced a 1-minute
pause between subjects. Our system started from scratch,
that is, there is no pre-trained model that can be used,
and our system created the model and updated it using

the incoming data stream while the real-time experiment
was taking place. Like the batchFCMA, in voxel selection,
our system did a leave-one-subject-out cross validation.
The system invoked the voxel selector at the end of each
epoch. In order to ensure the sample balance across cross
validation folds, when receiving the Eth epoch of subject
S, our system used the first E epochs of all S up-to-date
collected subjects to do an S-fold cross validation. The
selector master updated the model using the top voxels
of the newly generated voxel list right after each voxel
selection. In the simulated rtfMRI experiments, we used
top-500 voxels to construct the model since the number
is enough to depict a reasonable brain interaction pattern
according to the accuracy numbers reported in [10], [17].
The classifier took the latest model along with the top-
500 voxels in its corresponding voxel list to classify the
correlation sample computed over a sliding window which
included the newly incoming brain.

Figure 7 shows the classification performance of our
system on two datasets. As we mentioned in Section I,
although the time interval of generating a brain volume
in our experiment is 1.5 s, the time budget left for
classification is less than that considering the latency of
other necessary steps in the real rtfMRI pipeline, e.g.
reconstruction and preprocessing, which in practice took
up to 780 ms. Therefore, we set a hard deadline of 720 ms
to the classification. From the figure we can see that
classification in our system generally finished faster than
200 ms, which is well bellow the deadline, indicating that
our system is able to satisfy the latency requirement of
closed-loop real-time fMRI studies. The only exceptions
are the spike at the end of the attention dataset, and the
ones clustered around epoch 225 of the facescene dataset,
which we suspect were caused by network interference
in the cluster. It should be noted that measured times
do not include network communication overhead between
the scanner and the REST server. Even if we consider
cross-continental links, if we use a conservative estimate
of 200 ms (for instance based on [18]) for each HTTP call,
and assume the feedback system polls the REST server
for results every 100 ms, the overhead should be within
500 ms. Since the classifier completes in less than 200 ms
with very few exceptions, the system meets the 720 ms
deadline. Additional care, such as use of keepalives or
server side events (SSE) could well improve these numbers.

Figure 8 shows model update performance in our sys-
tem. To finish one run of model updates, our system per-
formed an incremental voxel selection and used the latest
top-500 voxels to train a model based on the currently
collected data. The model is updated after every epoch.
From Figure 8 we are able to tell that model updates will
complete before the end of the next epoch (30 s), marked
with a red line, not visible in the facescene dataset which
finishes substantially faster. That is, the classifier is able
to use a fresh model that is updated by the data from the
last epoch. The only two exceptions are the last epochs



attention

facescene

0.00

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

0.4

0 100 200 300 400 500

0 100 200

Epoch

D
u

ra
ti
o

n
/s

Fig. 7. Duration of classification.

attention

facescene

10

20

30

2

4

6

8

0 100 200 300 400 500

0 100 200

Epoch

D
u

ra
ti
o

n
/s

Fig. 8. Duration of voxel selection and model update.

of the last two subjects in the attention dataset, where
the system has accumulated substantial historical data.
According to the scalability feature of our system shown
in Section V-D, we believe that we are able to meet the
time requirement by adding more worker nodes into the
system.

It is also worth noting that although generally the
system takes longer and longer time to finish one round of
voxel selection as the data scale grows, the running time
dropped periodically in the middle of each subject. We
attribute this to the implementation of the sgemm routine
of the Intel MKL library we used in the SVM kernel matrix
computation. Specifically, we invoked sgemm to compute
the similarities between the newly normalized correlation
samples and all the existing correlation samples depicted
in Figure 6c. We consider that the actual implementation
of sgemm changes as we increase of number of rows of
one matrix (corresponding to the number of normalized
correlation samples) in the matrix multiplication, which
affects the overall performance.

attention

facescene

10

20

30

40

5

10

15

15 20 25

3 6 9

Epoch

D
u

ra
ti
o

n
/s

Fig. 9. Voxel selection time for rtFCMA (black) and batchFCMA
(blue, dashed) during the last epoch of each dataset.

C. Performance Gain of Incremental Voxel Selection

We compared the performance gain we achieved using
the incremental voxel selection algorithms. Our incremen-
tal voxel selection took advantage of the characteristics
of data stream by accumulating and processing the data
when they are coming in. On the other hand, the offline
algorithm, although fully optimized, had to read in and
process all the data in every process, which introduced a
lot of overhead in the real-time context.

Figure 9 shows the performance comparison between
the voxel selection of rtFCMA and batchFCMA in the
last subject of both datasets. Notice that in the batch
version, we excluded the time it took to read data in
from disk and broadcast them to all worker nodes. The
incremental voxel selection works 1.8x-6.2x faster than
the batch version at the end of these two datasets. From
the figure we observed a running time drop after some
epochs for rtFCMA, which can be explained by the MKL
implementation issue we discussed in Section V-B. The
facescene dataset was affected more significantly because
the portion it took to compute using MKL is relatively
larger than the attention dataset.

D. Scalability of Incremental Voxel selection

We studied the speedup of the incremental voxel selec-
tion in our system by varying the number of worker nodes
used in the voxel selector.

Figure 10 shows the speedup of the incremental voxel
selection when processing the first 5 subjects in facescene
dataset when using 12, 24 and 48 compute nodes. In av-
erage, we achieved 1.8x and 3.9x speedups using 48 nodes
comparing to using 24 nodes and 12 nodes, respectively.
This shows that as the scale of the real-time experiment
increases, our system is able to process the data in real-
time as long as more compute nodes are involved.



2

4

6

8

0 10 20 30 40

Epoch

D
u

ra
ti
o

n
/s

nodes

12

24

48

Fig. 10. Scalability of rtFCMA using 12, 24, and 48 compute nodes
using the facescene dataset.

FS

AT

0.00 0.25 0.50 0.75

Accuracy

D
a
ta

s
e
t System

rtFCMA

batchFCMA

Fig. 11. Accuracy comparison between rtFCMA and batchFCMA.
Mean of n-fold cross validation. Standard error of the mean error
bars. n =number of subjects, 18 for facescene (FS), 30 for attention
(AT).

E. Effectiveness of rtFCMA System
To verify the effectiveness of our system, we compared

the accuracy results it generated on both datasets with the
results batchFCMA generated using leave-one-subject-out
cross validation. In rtFCMA pipeline, we sent the data
brain volume by brain volume to the system to select
voxels and train a model using N−1 subjects (where N is
the number of subjects in a dataset) and use this model to
test on the last subject. We did this for N times to allow
all subjects to be tested. In batchFCMA, we replicated the
pipeline used in [10]. The top-500 voxels were used in both
cases.

Figure 11 shows the accuracy results of both datasets
produced by rtFCMA and batchFCMA. We can see that
our rtFCMA system got very similar results in both
datasets to batchFCMA, which verifies the correctness
of the rtFCMA system. The results are slightly different
because in the correlation normalization steps, rtFCMA
can only normalize the data based on what it received
so far, while batchFCMA used all data within the same
subject to do the normalization.

VI. Related work
In this section, we discuss some of the important related

work on real-time processing of fMRI data for neuro-
science, distributed stream processing, and parallel and
distributed machine learning.

Though modern rtfMRI systems are capable of produc-
ing full brain scans every 1-2 seconds, analysis of these

scans is typically performed offline. Incremental analysis
of real-time functional magnetic resonance imaging is a
very recent advancement, motivated in part by a surge
in neurofeedback research [8]. In one recent study [1], a
whole brain-classifier was trained on single-subject voxel
activity patterns by batch processing the data (on a single
machine) between experimental runs while the subject was
in the scanner. The classifier was used to predict whether
a subject was attending to a face or a scene within a
composite image presented to them and to reinforce the
desired attentional behavior by changing the mixture of
the composite stimulus. rtFCMA extends the features con-
sidered by the classifier to full-brain correlation patterns
(O(n2) features instead of O(n)), automatically selects
the voxels that are most predictive, and adds the ability
to incrementally train the classifier so that runs proceed
faster with less down time. None of this would be possible
without a parallel and distributed implementation of the
algorithms.

Of course, many frameworks for stream-based parallel
and distributed machine learning exist. These are largely
memory-based systems that are efficient at iterative pro-
cessing on streams. Apache Spark supports Spark Stream-
ing as a means of joining stream data with historical data
or performing window-based operations on the stream. It
chops a data stream up into mini-batches and processes
these. Recently, the Spark machine learning library, ML-
lib, was extended with streaming versions of linear regres-
sion and the k-means clustering algorithm [19]. Spark’s
primarily abstraction is the Resilient Distributed Dataset
(RDD), an immutable collection that provides fault tol-
erance but is inefficient at dealing with small changes to
large data structures (e.g., updates to a small number of
vectors in the correlation matrix). Distributed stream pro-
cessing engines (DSPEs), like Apache Storm [20], S4 [21],
and Samza [22], have emerged that are designed from
the ground up for stream processing data in a reactive
manner, one update at time. The Apache incubator project
SAMOA (Scalable Advanced Massive Online Analysis)
provides a machine learning framework and library that
utilizes DSPEs but abstracts away the execution engine.

Like some modern DSPEs, rtFCMA uses the highly
concurrent and resilient Akka runtime [13] to distribute
messages (Akka is largely based on and inspired by Er-
lang [23]), and like SAMOA we represent our algorithms
with a directed graph of nodes that communicate using
messages. But, to the best of our knowledge, rtFCMA is
the first to implement any form of stream-based machine
learning training on functional MRI data and the first
streaming implementation of full correlation matrix-based
classification for any application.

The incremental voxel selection algorithm that we de-
scribe is more generally a form of feature selection. Feature
selection is a very common technique in machine learning,
often used to increase model accuracy, improve general-
ization of the model, and to speed up model training.



For incremental training, the focus is on accuracy and
generalization. Clustering techniques, component analysis,
spectral transforms, and other methods are used broadly
for fMRI data classification [24]. Though typically im-
plemented as offline algorithms, many have incremen-
tal versions that can scale with parallel and distributed
computing resources. However, data-driven feature selec-
tion using pairwise voxel correlations over the entire full
brain is unique to FCMA [10] and more computationally
challenging to implement incrementally than the classic
techniques due to the large amount of memory and number
of SVM models involved. As far as we know, our 50-
machine cluster instantiation of the pipeline is the most
parallelized feature selection model ever applied to fMRI
data and the first use of incremental classifiers on this
data.

This paper is concerned with the processing stages, al-
gorithm design, and aspects of the parallel and distributed
system architecture. It does not consider other important
considerations for the construction of a practical real-time
cloud system, such as the programming model, application
isolation, dynamic resource allocation, and fault tolerance.

VII. Conclusion
In this paper, we propose a distributed system for the

real-time analysis of fMRI data and provide a proof-of-
concept of an important, computationally-intensive neu-
roimaging application. Our system implements the first
incremental version of full correlation matrix analysis,
allowing real-time analysis of patterns of correlations in
brain activity and neurofeedback that is driven by this
analysis. It is able to update a full-correlation model in
a few seconds and classify in hundreds of milliseconds to
keep pace with rtfMRI scanners, without sacrificing the
classification accuracy of offline approaches. Our system
can be deployed as a cloud service, which will allow neu-
roscientists around the world to conduct their own real-
time experiments involving incremental full-brain feature
selection, model training, and classification. As ours is the
first known effort to build such a system, there remains a
great detail of future work, including the construction of
additional real-time pipelines for other types of analyses
that are not currently possible. From a systems perspec-
tive, we will focus on making the system more robust by
introducing fault tolerance and fine-grained resource allo-
cation. In the end, we believe this distributed incremental
learning system will help accelerate the pace of discovery
in fMRI-based neuroscience research.

References
[1] M. T. deBettencourt, J. D. Cohen, R. F. Lee, K. A. Norman, and

N. B. Turk-Browne, “Closed-loop Training of Attention with
Real-time Brain Imaging,” Nature Neuroscience, vol. 18, no. 3,
pp. 470–475, 2015.

[2] N. Weiskopf, K. Mathiak, S. W. Bock, F. Scharnowski, R. Veit,
W. Grodd, R. Goebel, and N. Birbaumer, “Principles of a
brain-computer interface (BCI) based on real-time functional
magnetic resonance imaging (fMRI),” Biomedical Engineering,
IEEE Transactions on, vol. 51, no. 6, pp. 966–970, 2004.

[3] R. Christopher deCharms, “Applications of real-time fMRI,”
Nature Reviews Neuroscience, vol. 9, no. 9, pp. 720–729, 2008.

[4] S. M. LaConte, “Decoding fMRI brain states in real-time,”
Neuroimage, vol. 56, no. 2, pp. 440–454, 2011.

[5] J. J. Yoo, O. Hinds, N. Ofen, T. W. Thompson, S. Whitfield-
Gabrieli, C. Triantafyllou, and J. D. Gabrieli, “When the brain
is prepared to learn: enhancing human learning using real-time
fMRI,” Neuroimage, vol. 59, no. 1, pp. 846–852, 2012.

[6] D. D. Leeds, J. A. Pyles, and M. J. Tarr, “Exploration of
complex visual feature spaces for object perception,” Frontiers
in computational neuroscience, vol. 8, 2014.

[7] K. Shibata, T. Watanabe, Y. Sasaki, and M. Kawato, “Percep-
tual learning incepted by decoded fMRI neurofeedback without
stimulus presentation,” science, vol. 334, no. 6061, pp. 1413–
1415, 2011.

[8] J. Sulzer, S. Haller, F. Scharnowski, N. Weiskopf, N. Birbaumer,
M. L. Blefari, A. Bruehl, L. Cohen, R. Gassert, R. Goebel
et al., “Real-time fMRI neurofeedback: progress and challenges,”
NeuroImage, vol. 76, pp. 386–399, 2013.

[9] N. B. Turk-Browne, “Functional interactions as big data in the
human brain,” Science, vol. 342, no. 6158, pp. 580–584, 2013.

[10] Y. Wang, J. D. Cohen, K. Li, and N. B. Turk-Browne, “Full
correlation matrix analysis (FCMA): An unbiased method for
task-related functional connectivity,” Journal of neuroscience
methods, vol. 251, pp. 108–119, 2015.

[11] Y. Wang, M. J. Anderson, J. D. Cohen, A. Heinecke, K. Li,
N. Satish, N. Sundaram, N. B. Turk-Browne, and T. L. Willke,
“Full Correlation Matrix Analsis of fMRI Data on Intel® Xeon
Phi™ Coprocessors,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’15, Nov 2015.

[12] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular
ACTOR Formalism for Artificial Intelligence,” in Proceedings of
the 3rd International Joint Conference on Artificial Intelligence,
ser. IJCAI’73. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1973, pp. 235–245.

[13] J. Bonér et al., “Akka,” http://akka.io.
[14] G. Schaefer et al., “Scientific Transparency,”

https://github.com/scitran.
[15] J. Platt, “Sequential Minimal Optimization: A Fast Algorithm

for Training Support Vector Machines,” Microsoft Research,
Tech. Rep. MSR-TR-98-14, Apr 1998.

[16] N. Al-Aidroos, C. P. Said, and N. B. Turk-Browne, “Top-
down attention switches coupling between low-level and high-
level areas of human visual cortex,” Proceedings of the National
Academy of Sciences, vol. 109, no. 36, pp. 14 675–14 680, 2012.

[17] J. Hutchinson, Y. Wang, and N. Turk-Browne, “Decoding the
locus of attention from the full correlation matrix of the human
brain,” in Society for Neuroscience, ser. SfN ’14, Nov 2014.

[18] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing
storm in cloud gaming: A measurement study on cloud to
end-user latency,” in Network and Systems Support for Games
(NetGames), 2012 11th Annual Workshop on, Nov 2012, pp.
1–6.

[19] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkatara-
man, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen et al.,
“MLlib: Machine Learning in Apache Spark,” arXiv preprint
arXiv:1505.06807, 2015.

[20] “Apache storm,” http://storm.apache.org.
[21] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Dis-

tributed stream computing platform,” in Data Mining Work-
shops (ICDMW), 2010 IEEE International Conference on.
IEEE, 2010, pp. 170–177.

[22] “Apache Samza,” http://samza.apache.org.
[23] J. Armstrong, R. Virding, C. Wikström, and M. Williams,

“Concurrent programming in erlang,” 1993.
[24] C. Wu, “Feature selection for fmri classification,” Project report,

Carnegie Mellon Unversity, 2006.


