
The Impact of Transaction Fees on

Bitcoin Mining Strategies

Miles Carlsten

Master’s Thesis

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Master of Science in Engineering

Recommended for Acceptance

by the Department of Computer Science

Princeton University

Adviser: Arvind Narayanan

June 2016

c© Copyright by Miles Carlsten, 2016.

All rights reserved.

Abstract

There are two incentives for Bitcoin miners to mine Bitcoin blocks. The miners

are rewarded both from the minting reward of creating a new block and from the

transaction fees on the transactions included in the block. Traditionally, the minting

reward has always been significantly larger than the transaction fees, but as time goes

on the minting fee is designed to diminish, and it is expected that the transaction

fees will take its place. We look into the unverified claim that once incentives shift to

mostly transaction fees, the security of the system will be the same as it was when

it was based on minting rewards. We show that this change can lead to very uneven

blocks, which can give rational miners an incentive to intentionally try to fork the

blockchain. Additionally, we reexamine a previously known alternate mining strategy,

known as Selfish Mining, and show that in a transaction fee based environment, it will

become profitable for any miner (regardless of their hash power) to utilize a modified

version of this strategy.

iii

Acknowledgements

This research was performed at Princeton University under the oversight of Arvind

Narayanan. Matt Weinberg has also contributed to the theoretical understanding

presented in this work. We are hoping to publish this material in the near future.

iv

Contents

Abstract . iii

Acknowledgements . iv

List of Figures . vi

1 Introduction 1

2 Model, methods, and simulator 4

2.1 Formalized description of a mining strategy 4

2.2 Bitcoin mining strategy simulator . 6

3 Sequence of undercutting strategies 9

3.1 Petty compliant miner . 9

3.2 Forking . 10

4 Selfish mining with transaction fees 16

4.1 Selfish mining in a transaction fee system 16

4.2 Implementing a block size cutoff . 23

4.3 Simplification justification . 30

4.4 Analysis of selfish mining with cutoff 31

5 Future Work 32

6 Impact for Bitcoin 34

v

List of Figures

2.1 Diagram of the process inside the mining simulator. Each game con-

sists of rounds, and in each round, miners make decisions on where

to mine, how much of the available transaction fees to include in their

block, and whether or not to publish any unpublished blocks they have.

A miner’s responses to these three decisions defines the strategy that

they are using. 7

3.1 Normalized weights of different linear coefficient function forking

strategies over a series of games. Strategies that are slightly more

aggressive than the most common strategy perform the best and have

their normalized weights increase. This trend continues until we get

to f(x) = x
256

which is the smallest function forking strategy run in

this simulation. 13

3.2 The function f(x), described by equations 3.5-3.7, that leads to an

equilibrium of function fork miners. The expected block size has been

normalized to 1. 14

4.1 We see simulation matching the theory for selfish mining in a transac-

tion based model for γ = 0, 0.5, and 1. 21

vi

4.2 We show a comparison of the theory between selfish mining in a block

based model and in a transaction based model, for γ = 0, 0.5, and 1.

The theory ends up being very close. 22

4.3 State machine for selfish mining with a cutoff, introducing state 0′′. . 25

4.4 Theory matching simulation for a variety of cutoff thresholds for selfish

mining, all with γ = 0. The smaller cutoffs do better for a miner with

a smaller hash-power (α) and the larger cutoffs do better with a larger

hash-power. Intuitively, this makes sense as a more powerful miner

should be willing to risk a larger block to try to selfishly mine. 29

4.5 On the right, we show the ideal cutoff factor, β, for a selfish miner with

mining power α, and γ = 0. On the left we show that a selfish miner

using the optimal cutoff outperforms both the original selfish mining

protocol and default mining for all values of α, with γ = 0. 31

vii

Chapter 1

Introduction

Bitcoin is an electronic peer-to-peer cryptographic currency system [1]. The system

relies on a public ledger, known as the blockchain, containing a list of every transaction

that has ever occurred in the Bitcoin system. Sets of transactions are added to the

blockchain in groups known as blocks. Most users don’t participate in adding these

blocks to the blockchain, but the ones who do are referred to as miners and the process

of adding the blocks to the blockchain is referred to as mining [4]. The miners are all

constantly trying to solve a cryptographic hash puzzle in order to be allowed to add

the next Bitcoin block to the blockchain. The difficulty of this hash puzzle is what

brings security to the system. If a user posts an illegitimate block to the blockchain,

the other users can choose to ignore the block (this is known as forking the chain) and

continue the chain off of the parent block. If the majority of the miners (weighted by

their computational hash-power) side with the fork, then the original block becomes

orphaned and is meaningless. As long as at least half of the users are acting with the

default protocol (again, weighted by computational power) then an adversary who

posts illegitimate blocks to the blockchain will eventually be beaten out by the rest of

the network. Forking does not only happen with illegitimate blocks. Network latency

is a real concern for Bitcoin miners, and frequently, there are forks in the blockchain

1

due to multiple miners finding perfectly legitimate blocks and posting their blocks

before they hear about the other block [3].

The miners are incentivized through Bitcoin rewards to act according to the de-

fault mining protocol (which will be clearly defined in chapter 2). The rewards come

from two sources:

• Minting rewards

• Transaction fees

The minting reward is a Bitcoin incentive that a miner can claim just by adding

a block to the blockchain. The transaction fee reward allows a miner to claim all of

the fees attached to the transactions that they included in their block. Currently, the

vast majority of a miner’s rewards comes from the minting reward as opposed to the

transaction fees. Bitcoin is designed, however, so that the minting reward diminishes

over time. At specific intervals, the minting reward halves, and it is anticipated

that the rewards miners can get from transaction fees will increase to compensate

(from larger fees on each transaction, and/or more transactions and associated fees).

There is an relatively unexamined belief that the incentives after the system shifts

to transaction fees will lead to the same security the system has with a block based

minting reward.

We find that a transaction fee dominated system does not offer the same incentives

for miners as a minting reward. The key intuition is that immediately after a block

is mined, the value of mining the next block is small because there are not enough

unclaimed transaction fees remaining in the system. If the reward for mining a block

changes over time, it can incentivize miners to behave deviantly when the default

compliant behavior would have them mining a near valueless block. For example,

miners could consider refusing to mine at all if a block is not valuable enough to mine

(running the mining hardware has costs like electricity and cooling). If we assume

miners have to mine all the time, it can lead to miners instead spending the time

2

when a block is small trying to reclaim the transactions in the current head of the

blockchain by forking, encouraging other miners to support their side in the fork by

leaving some of the reclaimed transactions fees to be taken by the next miner.

3

Chapter 2

Model, methods, and simulator

The model of the Bitcoin system that we analyze is after the minting reward has

dropped to zero. We consider transaction fees to be the only revenue for miners,

and we model the transaction fees arriving to the Bitcoin system at a constant rate.

Additionally, we assume that the miners can claim all unclaimed transaction fees that

they have heard of in their block (this would be equivalent to an infinite block size,

but is similar to an environment where the average number of transactions per block

is well under the allowed block size). We model the network having no latency (once

a miner decides to publish a block, all other miners immediately gain knowledge of

the block). Finally, for this work, the assume the Bitcoin miners constantly mine.

2.1 Formalized description of a mining strategy

We consider a variety of existing and new Bitcoin mining strategies. All of the mining

strategies that we consider can be formalized into the same general structure. In each

instant, every miner will need to make several distinct decisions about the block they

are currently mining and each of our strategies are defined by exactly how miners

make these decisions. The decisions a miner will make on an instantaneous basis are

the following:

4

• Where they are mining

• How much of the available transaction fees they are including in their block

• Whether or not to publish any found blocks

The first decision they will make is where they are going to mine. As an example,

consider the default compliant miner: they will choose to mine on the longest chain

that they are aware of, and in the case of multiple blocks that are tied for the longest

chain, they will favor mining on the older block in the fork. This decision forms the

basis for how a mining strategy will determine which side of a fork it wants to support,

or, alternatively, if the miner wants to create a new fork. The next decision a miner

will make is to decide how many of the available transaction fees they should claim

in their block. Again, as an example, consider the default compliant miner: they will

include all of the available transaction fees that can be claimed in their block. The

final decision is when to publish blocks. When a miner mines a block, only they are

aware of its existence. At each moment, miners can choose whether or not to alert

the other miners of the block that they have found. This allows for mining strategies

where miners intentionally choose to not reveal their blocks (such as selfish mining).

Fully writing out the default compliant mining strategy in this formalized definition

would be:

• Where: Mine off the highest block. In the case of a tie, if one of the blocks is

yours, mine on that. Otherwise, mine on the oldest block.

• How much: Include all available transaction fees.

• Publish?: Always and as soon as a block is found.

Realistically, in most of these strategies, it best to add another rule on where to

mine: in the case of a fork, if one of the blocks is your own, you should always mine

on that block. No one should rationally try to fork their own block.

5

2.2 Bitcoin mining strategy simulator

In order to fully analyze what the game theoretic landscape will look like once the

Bitcoin mining incentive becomes transaction fee based instead of block reward based,

we have developed a versatile Bitcoin mining strategy simulator. The simulator runs

games, and a simulation of a strategy could involve running a single game, or many

consecutive games where results in past games determine parameters in future games.

The simulation is time driven, and each game is composed of rounds which represent

a fixed amount of time in the game. For all of our analysis, the rounds have a length

of one second. We have chosen one second as the basic time unit in our simulations

because realistically in the Bitcoin ecosystem, anything happening on a timescale

smaller than a second is not going to be interesting because it is smaller than the

timescale for blocks and transactions being relayed across the Bitcoin peer-to-peer

network and much smaller than the timescale on which blocks are found. This basic

time unit does represent a limitation on the simulator, but it is configurable, and

could be adjusted to observe time steps smaller than one second. We have chosen

to use a time driven simulation as opposed to an event driven simulation for several

reasons. The most important of which is that in an event driven simulation, it is

hard to clearly define all of the possible events in the game. In particular, when a

new strategy is added to the simulator, it almost certainly will require adding new

things to the list of possible events. One of the goals of the simulator is to make

it easy to introduce new strategies, which wouldn’t be possible if new events need

to be added to the list of possible events constantly. Another reason to use a time

based simulation was the simplicity of the implementation. We found an event driven

simulator to be much more difficult to implement.

In each game, every miner is using a specific strategy. During each round, they will

make decisions based on the strategy they have selected to play with. These decisions

are characterized by the formal definition of a strategy that we defined earlier in this

6

Figure 2.1: Diagram of the process inside the mining simulator. Each game consists of
rounds, and in each round, miners make decisions on where to mine, how much of the
available transaction fees to include in their block, and whether or not to publish any
unpublished blocks they have. A miner’s responses to these three decisions defines the
strategy that they are using.

chapter. We separate out the first two decisions regarding where to mine and how

much to mine from the final decision of what to publish into a mining phase and a

publishing phase. Between these two phases in the simulator, a miner determines if

they find a block.

For several of our simulations, we want miners to utilize the strategies that are

doing the best. In order to accomplish this, we run several games, with hundreds

of miners in each game. Miners chose strategies proportional to the weights of the

strategies. We adjust the weights of the strategies from game to game, depending

on how well the strategies are doing. After every game, and for every strategy, we

take the profits earned by every miner using that strategy and average them, giving

7

us an average profit for every strategy being used. For each strategy k in game i, we

calculate the weight to be the following:

wik = wi−1k (
1

2
)
(1−

profitsi−1
k

maxProfitsi−1) (2.1)

where wi−1k was the k strategy’s weight in game i− 1, profitsi−1k are the average

profits earned by the strategy k in game i − 1, and maxProfitsi−1 is the maximal

average profit of any strategy in game i−1. This is meant to follow the multiplicative

weight update algorithm [2] with an ε value of 1
2

to encourage the exploration of new

strategies.

8

Chapter 3

Sequence of undercutting strategies

We define a transaction fee pool to be all of the transaction fees in the network that a

block could potentially claim. Different mining locations for a block on the blockchain

will naturally have different transaction fee pools because the chain being mined off

of will have already claimed a different set of transactions.

3.1 Petty compliant miner

Consider the case where there is a fork: two blocks are tied for longest chain. The

default compliant mining protocol would have the miner select the older of the two

potential block heads and mine to support that one. However, the miner could

potentially mine in either place, and if the miner is using a strategy that claims all

of the transaction fees left in the transaction fee pool, it would be in the rational

interest of the miner to not mine on the older block, but instead the block that

leaves the largest transaction fee pool. We will use the term wealth to describe how

many transaction fees a given block has claimed, with a large wealth indicating that

a block has claimed many transaction fees. The less wealthy block will have left

more transaction fees unclaimed in the transaction fee pool, which can be used by

the next miner to create a more valuable block. A rational miner would want to mine

9

on the less wealthy block as opposed to the older block. We call this strategy petty

compliant, and it’s definition is the following based on the strategy formalization

presented in chapter 2:

• Where: Mine off the highest block. In the case of a tie, if it exists, mine off

your own block. Otherwise, mine on the block with the least wealth.

• How much: Include all available transaction fees.

• Publish?: Always and as soon as a block is found.

The petty compliant miner is strictly better than the default compliant miner.

The two are identical except for the case where the miner is required to choose

between two equal height blocks to mine on. In this case the petty compliant miner

will always make the decision to mine in a location to maximize their rewards, and

a default compliant miner might not. In our mining strategy simulator, we compare

the default compliant strategy to the petty compliant strategy and do in fact see that

the petty compliant miner outperforms the default compliant.

3.2 Forking

Although not very harmful itself, the existence of the petty compliant mining strat-

egy paves the way for other more aggressive strategies because these strategies can

encourage other miners to build on their side of a fork in a tie, incentivized via the

extra transaction fees they will leave in the transaction fee pool for the next miner to

claim. If the current head of the blockchain is wealthy, and the transaction fee pool it

leaves is dry, then a miner could opt to try to fork the current head of the blockchain,

and undercut their block with a less wealthy block, thus claiming a larger block for

themselves than they could have gotten from default mining, and incentivizing the

next miner to support their block because they leave a larger transaction fee pool for

them to claim.

10

If miners begin undercutting blocks when the blocks contain more transactions

than what’s left in the transaction fee pool, then rational miners will stop claiming

all of the transaction fees available in the pool and leave a buffer in order to reduce

the chance that their block gets forked. We call miners who employ strategies that

take some fraction of the available pool function forkers. We define these strategies

so that when they are presented with a transaction fee pool of size x, they will claim

f(x) of that pool, where f(x) is bounded between 0 and x for all x. The goal of

these strategies will be to balance maximizing the wealth of the blocks they mine,

and minimizing the chance that their block will be undercut by the other miners in

the system.

If the current maximum public height of the blockchain is h, we restrict the func-

tion forking miners to only mine a block at height h or h + 1 (this is the height of

the block mined – mining off of the tallest block, or forking 1 block back). We make

this restriction because mining anywhere else will leave the miner in a position where

they need an additional block mined on top of their first in order for it to be even tied

for the longest chain. The function forking miner will look at all the potential blocks

at height h that they could mine on top of, and they will select the least wealthy

block at this height because it leaves the largest available transaction fee pool. Let

this be known as the continuing pool. They will also consider all the potential blocks

to mine on top of at height h − 1, selecting the least wealthy block that leaves the

largest value available in the transaction fee pool. Let this be known as the forking

pool. The function fork miner will then compute f(x) for both of these pools. If

the miner was to fork the chain, they would need to make sure that the block they

fork with undercuts the current best head (least wealthy block) at height h. Let the

wealth of this block be Bh.

V aluecontinue = f(poolcontinue) (3.1)

11

V aluefork = min(f(poolfork), Bh) (3.2)

If V aluecontinue > V aluefork, fork the chain by mining with access to poolfork.

Otherwise continue and mine with access to poolcontinue. This gives the following

formalized definition for the function forking mining strategy:

• Where: If you have a block at height h, mine off that block. Otherwise,

consider forking or continuing. If V aluecontinue > V aluefork, continue the chain

in the location of the poolcontinue. Otherwise fork in the location of poolfork.

• How much: Include V aluecontinue if continuing, or V aluefork if forking.

• Publish?: Always and as soon as a block is found.

The function fork miner will mine in the location that allows them to mine the

most valuable block. If we make the assumption that any reasonable choice for

f(x) is monotonically increasing, then f(poolfork) is always going to be larger than

f(poolcontinue), so the decision to fork will come down to a comparison of Bh and

f(poolcontinue).

We have most closely examined the linear coefficient family of function fork miners.

In these strategies, we consider

f(x) = kx (3.3)

for some k between 0 and 1. If we take a group of these strategies, and run them

in the simulator with multiplicative weights discussed in the previous chapter, what

we find is that it is always best to be slightly more aggressive at forking than the

majority of the other miners in the system.

Strategies that take less and less wealthy blocks and are more aggressive when it

comes to forking other miners become more successful. Because miners will always

mine on their own block if it is a competitor in a fork, we see that if the current

12

Figure 3.1: Normalized weights of different linear coefficient function forking strategies
over a series of games. Strategies that are slightly more aggressive than the most common
strategy perform the best and have their normalized weights increase. This trend continues
until we get to f(x) = x

256 which is the smallest function forking strategy run in this
simulation.

dominant coefficient gets small enough, the larger coefficient function forking strate-

gies start to do well again. What is happening here is the transaction fee pool grows

so large that if one of the strategies with a large coefficient can get lucky and mine

two blocks in a row (making it so none of the other miners, who are limited in their

ability to fork more than one block back, are able to fork), the block that they mine

is so large that even if this happens only once in a game, they out perform the other

strategies. Once the larger coefficient strategies start to gain weight, we see the same

sequence of slightly more aggressive strategies doing better and better again, until

the next reset when the coefficient gets small enough.

In order to find an equilibrium, we consider all function fork miners mining with

the same function f(x). When the function fork miner mines a block, they are

interested in maximizing the value of the blocks times the chance that the block

makes it into the final chain and isn’t undercut. Consider the expected profit for a

miner of a block. Let this be R, given by

R = Bρ (3.4)

13

Figure 3.2: The function f(x), described by equations 3.5-3.7, that leads to an equilibrium
of function fork miners. The expected block size has been normalized to 1.

where B is the value of the block mined, and ρ is the chance that that block makes

it into the final longest chain. If we make the assumption that the f(x) leading to

an equilibrium is monotonically increasing, then the other miners will try to fork a

block of value B until f(poolcontinue) > B. The chance that the block of value B is

forked is equal to the chance that another block is found in the time period where

f(poolcontinue) ≤ B. By maximizing equation 3.4 with regards to f(x), we find that

there exists an equilibrium where f(x) is the following piecewise function, with the

expected block size normalized to 1:

f(x) = x ∀ x <= c (3.5)

f(x) = −W0(−cex−2c) ∀ c < x < 2c− log(c)− 1 (3.6)

f(x) = 1 ∀ x ≥ 2c− log(c)− 1 (3.7)

where W0 is the zero branch of the Lambert function, and c is some constant such

that 2c− log(c)− 1 ≥ 1.

14

When run in our simulator, we verify that this is, in fact, an equilibrium. However,

this equilibrium has a caveat: it is only in equilibrium if the function fork miners

decide to fork blocks in the case of a tie instead of continuing. If the miners decide

to continue in the case of a tie, we have not been able to find an equilibrium.

15

Chapter 4

Selfish mining with transaction fees

Selfish mining is an already known alternate mining strategy detailed in [5]. With our

mining strategy simulator, we wanted to investigate how this strategy might change

in an environment with transaction fees being much more important than the block

reward. We consider this strategy operating in the model that we’ve been working

with, where the transaction fees accumulate in the network at a constant rate and

the block reward is 0.

4.1 Selfish mining in a transaction fee system

The goal of a miner employing the selfish mining strategy is to essentially trick the

other miners in the Bitcoin network to mine on top of a block that is guaranteed

to not make it into the final longest chain. By having other miners not mine in a

useful position, the selfish miner is capable of exaggerating their own portion of the

overall network hash-rate. Selfish miners do this by trying to create a chain in private

that only they know about. When the selfish miner initially finds a block, they will

not announce their block to the rest of the network. They will continue to mine on

their private block, hoping to find a second block before the rest of the network finds

a block (leading to two cases– one in which the rest of the network finds the next

16

block, and the other in which the selfish miner finds the next block). In the first case,

if the rest of the network finds a block, the selfish miner will immediately publish

their private block to establish a race between their block and the block just found

to see which will end up being selected to be in the longest chain. In the second

case, where the selfish miner finds the next block, the selfish miner will also keep this

block private. At this point, however, the selfish miner has a private chain that is

long enough that after the rest of the network finds a block, the selfish miner can

immediately publish their entire private chain and have that instantly be accepted as

the longest chain. The selfish miner will continue to mine on their own private chain,

trying to increase its length, while the other miners will mine on what they believe to

be the longest chain– in a place where any block they find will not make it into the

longest chain. As soon as the rest of the network finds enough blocks that the selfish

miner has a lead of only 1 block, the selfish miner will immediately publish, securing

all of their private blocks into the final block chain, and ensuring that all blocks in

the opposing fork are orphaned.

Assuming the selfish miner has less than half of the overall hash power of the

network, they will eventually need to publish their private chain. We assume in our

model that the selfish strategy will include all claimable transaction fees in every

block that they mine. We model the system with one selfish miner, and we define

α to be the fraction of the overall hash-rate possessed by the selfish miner, and γ to

be the fraction of the mining network that will support the selfish miner’s block in

the case of a tie and race condition. If we consider the longest public chain to have

length h, this gives the following according to our formal definition of a strategy:

• Where: Mine off of the last block you mined, unless that block is less than

height h. Then mine on the highest block, and in the case of a tie, the oldest

block.

• How much: Include all available transaction fees.

17

• Publish?: If there exists a private block at height h, publish it. If there exists

a public block at height h that is not your own, and you have a public block at

height h, and you have a private block at height h+ 1, but not at h+ 2, publish

the block at height h+ 1.

Let the fraction of the total profits that the selfish miner earns be denoted as

Rselfish. The expected Rselfish can be expressed as the following:

Rselfish =
∑

pifi (4.1)

where pi is the probability for the system to be in state i, and fi is the probability

that a transaction arriving to the system while it is in state i eventually winds up in

a block mined by the selfish miner. The possible states can be defined as the lead

the selfish miner has in blocks on the rest of the network. We will define state 0 to

be the state in which there are no private blocks. Similarly, state 1 will be defined as

the state where the selfish miners have mined a private chain whose length is 1 longer

than that of the rest of the network. State 2 will be defined as the state where the

selfish miners have mined a private chain whose length is 2 longer than that of the

rest of the network, and so on. Additionally, we must define state 0′ where the selfish

miner has found a block, but has a lead of 0 (the case where the selfish miner finds a

block, but then the rest of the network finds the next block and there is a fork with

equal length sides). Let the probabilities of these states happening be defined as p0,

p0′ , p1, p2, ...etc. Following the analysis in [5], it can be shown that the values for the

probabilities of being in each state of the system are the following:

p0 =
1− 2α

2α3 − 4α2 + 1
(4.2)

p0′ =
(1− α)(α− 2α2)

2α3 − 4α2 + 1
(4.3)

18

pi = (
α

1− α
)i−1

α− 2α2

2α3 − 4α2 + 1
(4.4)

In order to calculate the associated fi’s, consider the chance of a transaction

arriving in each of the states ending up in a block mined by the selfish miner. Let

us start by calculating f0. In state 0, there are no hidden blocks, only the main

chain. If a transaction arrives at this time, there are several possible outcomes.

First, the rest of the network could mine the next block before the selfish miner. In

this case, the transaction will be in this block, and this block will make it into the

longest chain. This happens with probability (1−α). Alternatively, the selfish miner

could find the next block. If the selfish miner finds the next block, they will include

the transaction in their block, but they keep this block private after they find it.

This block is not guaranteed to make it into the final chain, yet, and happens with

probability α. Now there are two possible outcomes: the selfish miner finds the next

block after that as well (another probability of α), or the rest of the network finds

the next block (probability (1 − α)). If the selfish miner finds the next block, then

it is guaranteed that their block holding the transaction we are considering makes

it into the final chain. If the rest of the network finds the next block, then a race

condition is triggered between the selfish miner’s block with the transaction and a

different block with the transaction. In this case, whoever wins the race will collect

this transaction. The selfish miner will win the race if they find a block, or if the

fraction of the network that will mine on the selfish miner’s block in the case of a tie

finds a block. This happens with a probability α + (1− α)γ. Thus, the chance that

the selfish miner will eventually claim a transaction arriving when the system is in

state 0 is given by

f0 = α2 + α(1− α)(α + (1− α)γ) (4.5)

19

Next, consider the chance of the selfish miner claiming a transaction arriving when

the system is in state 0′. In this state of the system, a race is currently happening

between the selfish fork and the default fork. The next block mined (regardless if it

is mined by the selfish miner, or the rest of the network) will contain the transaction

that just arrived, and it is guaranteed to make it into the final longest chain. Thus,

the chance that a transaction arriving to the system when it is in state 0′ being

claimed by the selfish miner is equal to the chance that the selfish miner finds the

next block (which has probability α).

f0′ = α (4.6)

Now, consider the selfish miner claiming a transaction arriving to the system when

it is in state 1. In state 1, the selfish miner has found a single block, which is hidden.

If the selfish miner finds the next block, they will have a private chain of length

2, in which case both blocks are guaranteed to make it into the final block chain,

hence securing the transaction in a block the selfish miner owns (this happens with

probability α). Alternatively, the rest of the network could find the next block (with

probability (1 − α)). This triggers the race condition between the selfish miner’s

block and the default block that we have seen before, however, this time, the selfish

miner’s racing block does not contain the transaction we are considering, but the

default racing block does. If the default block wins, the transaction is guaranteed to

not be claimed by the selfish miner. Thus, the only way for the selfish miner to claim

this transaction fee is to mine with tie winning block (which itself will include the

transaction fee, and is guaranteed to make it into the final longest chain). This has

a probability of α. This gives the chance for the selfish miner to claim a transaction

arriving to the system in state 1 to be:

f1 = α + (1− α)α (4.7)

20

Figure 4.1: We see simulation matching the theory for selfish mining in a transaction based
model for γ = 0, 0.5, and 1.

Finally, consider a transaction arriving to the system in any state i, i > 1. In

these states, perhaps it is easier to consider what must happen for the transaction to

not end up in a block the selfish miner owns. For the rest of the network to be able

to claim the transaction, they will need to mine enough blocks to trigger the selfish

miner to release their entire private chain (all blocks that they mine in this process

will be discarded when the selfish miner reveals their chain). This has a probability

of (1 − α)i−1 because the default miners must mine i − 1 blocks to cause the selfish

miner to publish their private chain. This now brings us back to state 0. We have

solved this state and know that the chance of the default miner being able to claim

the transaction is 1 − f0. Considering that the transaction must either end up in a

block that the selfish miner owns or not, the chance that the selfish miner claims a

transaction arriving to the system in state i, i > 1 is given by:

fi = 1− ((1− α)i−1(1− f0)) (4.8)

21

Figure 4.2: We show a comparison of the theory between selfish mining in a block based
model and in a transaction based model, for γ = 0, 0.5, and 1. The theory ends up being
very close.

Using all of these expressions for the chance that a transaction makes it into a

selfish miner’s block given a state of the system when the transaction arrives, and the

associated probabilities of these states, we can utilize equation 4.1 to calculate the

total fraction of the rewards that the selfish miner is expected to earn. We are also

able to use our simulator running the selfish mining strategy on blocks that have a

transaction based reward system in order to verify this theory.

In the model where the rewards are from transaction fees, we find that the selfish

mining strategy performs very similarly to how it performs in the block reward based

model, however, there is one critical and important difference. With traditional selfish

mining, the selfish miner does not immediately make additional profits– in fact, on an

immediate time scale, they make less. They claim a larger fraction of the blocks than

they normally would have been able to claim, but the rate at which they claim blocks

is equal to, or less than (due to the lost blocks), the rate at which they could claim

22

blocks as a default miner. The benefit for them is not that they find more blocks,

it is that they cause many of the other blocks in the system to be wasted, and on

the next difficulty readjustment, the difficulty threshold will drop accordingly. Only

then can the selfish miner mine blocks faster, and earn more profits. The difficulty

readjustment only happens every 2 weeks, so the selfish miner will need to selfishly

mine at no additional profits for this period before the strategy starts to benefit them.

An additional problem from this waiting period is that the selfish miner’s fraction

of the network hash-rate could easily change over the span of 2 weeks, especially

if there is a drop in difficulty because it is quite plausible that miners who have

retired equipment that cannot turn a profit at the current difficulty, but could at

the lessened difficulty, turn back on these mining rigs. In a transaction fee based

system, however, it is immediately profitable to selfishly mine. When the selfish

mining strategy is working, many of the blocks mined by the network will become

orphaned, and because of this, on average, the inter-arrival times between blocks in

the final longest chain will be larger. Because the transaction fees come into the

system at a constant rate, this means that these blocks will be larger on average than

blocks found with the default inter-arrival time. The immediate responsiveness of the

strategy makes it significantly more tantalizing for miners to utilize.

4.2 Implementing a block size cutoff

The transaction fee model also allows for an additional optimization: the selfish miner

can institute a cutoff value. For blocks that have grown above this cutoff value the

selfish miner will instead choose to use the default mining strategy to mine the block

instead of selfishly mining the block. The intuition is that the selfish miner wants the

rest of the network to mine in the wrong location, but in order to do this, they have

to hide their blocks, and specifically, risk losing the first hidden block if it comes to a

23

race condition (the system described by state 0′). If the blocks are not all the same

size (as they are in the block reward model), miners can now decide that some blocks

are too valuable to not publish and risk losing.

We modify the selfish mining strategy so that if the system is in state 0, the selfish

miner will immediately publish any block they find like a default miner if the size

factor of the block (denoted β) is above a certain threshold. We define the size factor

to be the the size of the block compared to the size of a block found at the average

block arrival time. For example, say the inter-arrival time of the blocks is 600 seconds.

If the rate at which transaction fees accrue in the network is 25/600 BTC, then the

average size of a block is 25 BTC. A size factor of β = 0.5 would indicate a 12.5 BTC

block. Similarly, a size factor of β = 2 would be a 50 BTC block. This tweaks the

formal definition of the selfish miner to the following (recall the height of the highest

public block is h):

• Where: Mine off of the last block you mined, unless that block is less than

height h. Then mine on the highest block, and in the case of a tie, the oldest

block.

• How much: Include all available transaction fees.

• Publish?:If there exists a private block at height h, publish it. If there exists

a public block at height h that is not your own, and you have a public block at

height h, if you have a private block at height h + 1, but not at h + 2, publish

the block at height h+ 1. Also, if you have a private block at height h+ 1, but

not at height h+ 2, and the value of the block at h+ 1 is larger than β, publish

it.

In order to repeat a similar analysis on this strategy to what we’ve done above, we

choose to rework the possible states of the system. We add a state to the system, state

0′′. In this state, it is identical to state 0, except from this state, if the selfish miner

mines the next block, they will always mine it as a default block (meaning they will

24

Figure 4.3: State machine for selfish mining with a cutoff, introducing state 0′′.

publish immediately). This represents the case when a block is too valuable to risk

losing by employing selfish mining. We make an additional simplifying assumption

that if the selfish miner has just been forced to publish their entire hidden chain, they

will transition into state 0′′ instead of state 0. This is a simplification we have made to

the strategy to make the mathematical analysis cleaner. In the next section, we will

show why this simplification is needed and justify that this simplifying assumption is

acceptable.

In order to calculate the selfish miner’s expected revenue, we must again calculate

the probability of the system being in any given state, and the chance that a transac-

tion arriving to the system while in one of these states eventually ends up in a block

mined by the selfish miner. From looking at the state transitions in figure 4.3, we can

derive the following formulas relating the probabilities of being in each state:

piα = pi+1(1− α) (4.9)

=⇒ pi = (
α

1− α
)i−1p1 (4.10)

p0′′ = (1− α)p2 = αp1 (4.11)

25

p0′ = (1− α)p1 (4.12)

p0 =
p1

α(1− e−β)
(4.13)

We also know that the system is guaranteed to be in some state, which means the

following.

p0 + p0′ + p0′′ +
i=∞∑
i=1

pi = 1 (4.14)

Which can be used to show that

p1 =
α(2α− 1)(eβ − 1)

3α2(eβ − 1) + 2α− eβ
(4.15)

With equations 4.10-4.13, this gives expressions for the probabilities of all the

possible states the system could be in. In state p0, it also matters how long the system

has already been in this state when the transaction arrives (because it shifts to state

p0′′ after a fixed time), so we must expand this expression to give the probability to

be in this state, having had been here for all possible values of x units of time. We

will denote this as p0(x). The probability that the system has been in state 0 for x

units of time is equivalent to the time since the last block was found, which is given

by a decaying exponential. This allows us to write the following:

p0(x) = p0e
−xdx (4.16)

We must now calculate the associated fi values in order to calculate the expected

fraction of the rewards claimed by the selfish miner. If we consider state 0, the chance

that a transaction arriving to the system in this state ending up in a block owned by

the selfish miner is dependent on how long it has been since the last block was found

26

(let this time be x). Also, let the expected block arrival time be normalized to 1 to

simplify the derivation. If x ≥ β, then the miner will immediately switch into state

0′′, and if they find a block, they will not hide it, so it is guaranteed to end up in the

final longest chain (this happens with probability α). If, on the other hand, x < β,

there are several possible outcomes. For all cases, the selfish miner must win the next

block, which happens with probability α. If the selfish miner was not able to mine

this block quickly (explicitly, longer than β−x time, so that the miner transitions to

state 0′′), then this is very similar to the last case, and this block will certainly make

it into the final longest chain and the selfish miner will claim the transaction fee. The

probability of this happening is the probability that enough time passes for the state

transition to happen (which has probability e−β+x) times the probability of the selfish

miner finding a block (α). Alternatively, if the selfish miner is able to mine the block

quickly enough that they will attempt to hide the block (mining the block in less than

β − x time, which happens with probability (1− e−β+x)), then the selfish miner will

be left with a hidden block, and this block (which contains the transaction) making

it into the longest final change depends on who mines the next block. If the selfish

miner mines a second block in a row, then both of these blocks will definitely make it

into the longest final chain and the selfish miner will claim the transaction fee. The

additional probability of this happening is α. If the rest of the network finds the next

block instead, then it will trigger a race condition between the selfish block, and the

newly found default block. Whoever wins the race will claim the transaction fee. The

race happening has a total probability of α(1−e−β+x)(1−α), and the probability that

the selfish block is selected as the winner of the race is (α + (1 − α)γ). Considering

27

the case where x ≥ β and the 3 cases when x < β, we get the following expression

for f0(x):

f0(x) = α(e−β+x + (1− e−β+x)(α + (1− α)(α + (1− α)γ))),∀x < β (4.17)

f0(x) = α, ∀x ≥ β (4.18)

If the system is in state 0′ when the transaction arrives, we can calculate the

chance that the transaction fee is claimed by the selfish miner, f0′ . In this state,

there is a selfish miner block racing against a default block. The next block mined

will determine the outcome of the race and will both guarantee the transaction fee,

and make it into the longest final chain. The chance that the selfish miner mines this

block is α. This gives:

f0′ = α (4.19)

If a transaction arrives at the system in state 0′′, the next block that is mined will

make it into the final chain (if the selfish miner mines the block in this state, they will

immediately publish). Thus, the chance of the selfish miner claiming the transaction

fee is equal to the chance that they mine with next block, which is α.

f0′′ = α (4.20)

The logic for a transaction arriving to the system in state 1 is identical to the case

without the block size cutoff, giving the following for f1:

f1 = α + (1− α)α (4.21)

28

Figure 4.4: Theory matching simulation for a variety of cutoff thresholds for selfish mining,
all with γ = 0. The smaller cutoffs do better for a miner with a smaller hash-power (α)
and the larger cutoffs do better with a larger hash-power. Intuitively, this makes sense as
a more powerful miner should be willing to risk a larger block to try to selfishly mine.

Our final case is if a transaction arrives to the system when it is in state i, i > 1.

Because of our simplifying assumption and addition of state 0′′, in order for the

transaction to not end up in a block mined by the selfish miner, the rest of the

network must successfully mine (i − 1) blocks to cause the selfish miner to publish

their entire hidden chain, and then (now that the system is in state 0′′) mine the next

block. Thus, the chance that the selfish miner claims this transaction is given by:

fi = 1− (1− α)i (4.22)

The total rewards earned by the selfish miner, in a transaction based system, using

a cutoff is now given by the following:

Rselfish =

∫ ∞
0

p0(x)f0(x) + p0′f0′ + p0′′f0′′ +
i=∞∑
i=1

pifi (4.23)

29

4.3 Simplification justification

Our simplifying assumption is that a selfish miner will default mine the next block

after publishing their private chain of length 2 or more. This assumption is rooted

in the fact that it takes finding many blocks in order to force the selfish miner to

publish the private chain. Consider the system in state i (the selfish chain has i more

blocks in its hidden fork than the default miners have in their fork, and i is at least

2). Say the last selfish block (the one bringing the system to state i) was found a

time t0. Also say that this is the last block the selfish miner finds before they are

forced to publish their private chain (every time the selfish miner has to publish their

chain, which is inevitable with α < 1
2
, there will always exist a last block found by

the selfish miner before the publishing). If the selfish miner is to publish their chain,

it means that the rest of the network will need to find i − 1 consecutive blocks. Let

these blocks be found at times t1, t2, ..., ti−1. Finally, after publishing their private

chain and at time ti, the selfish miner finds a block (this is the case this simplification

exists for). All of the transaction fees that have accumulated in the network since

time t0 will be included in this block. Because there have been i blocks found in the

time ti−t0, the chances that the block found at ti has a size factor less than the cutoff

β (which is typically less than 1) is small. So, while this assumption requires that the

next block is default mined, it is extremely likely that the selfish miner would make

this decision anyway based on the size factor of the block.

This simplification drastically simplifies the analysis for fi. In order to do the full

analysis, one would need to treat fi as fi(y) where y represents some time value that

has passed since the last block in the private chain was found. When we simulate

this strategy using our Bitcoin mining simulator, we implement the full version of the

strategy that will consider selfish mining a block, even after publishing. As we can

see from figure 4.4, even with this simplification in the theory, it very closely predicts

the results of the simulation.

30

(a) (b)

Figure 4.5: On the right, we show the ideal cutoff factor, β, for a selfish miner with mining
power α, and γ = 0. On the left we show that a selfish miner using the optimal cutoff
outperforms both the original selfish mining protocol and default mining for all values of α,
with γ = 0.

4.4 Analysis of selfish mining with cutoff

The optimal cutoff β for a selfish miner to use is dependent on α and γ because both

of these parameters are important to describe the risk of losing a hidden block mined

with the selfish mining strategy before a hidden chain of length 2 or more can be

found. We focus mainly on the case where γ = 0, as this is a worst case for the selfish

miner, but this could easily be generalized to other values of gamma.

As can be seen in figure 4.5a, the selfish mining strategy with a cutoff is better

than the selfish mining without a cutoff for all α. Additionally, the selfish mining

with a cutoff is better than default mining for all α as well. As γ increases from 0, the

margin by which the selfish mining with cutoff outperforms selfish mining without

a cutoff decreases. At the point were γ = 1, the selfish mining with cutoff and the

traditional selfish mining align, because with γ equalling 1, the risk of losing the

first hidden block drops to 0, the optimal cutoff jumps to infinity, and the strategies

become identical.

31

Chapter 5

Future Work

There is a lot more work that needs to be done in this area of Bitcoin. All of this

analysis relies on miners acting rationally with regards to earning as many profits as

possible (in Bitcoin). Certainly, some Bitcoin miners will refuse to deviate from the

default compliant strategy, even if this strategy is inferior to other potential strategies.

Work that we are currently pursuing investigates how the forking strategies evolve in

the presence of a variable fraction of the network that refuses to abandon the default

mining strategy. Also worth considering are forking strategies that are not limited

to just forking the most recent block, but can fork multiple blocks back if necessary.

It could be very revealing to consider what will happen if miners are using these

strategies and the difficulty readjusts. Finally, relaxing the model to be only mostly

transaction fee based, and including a small block reward would be worth looking at.

There is much that can still be done with regards to selfish mining and Bitcoin

transaction fees. An avenue that needs to be explored is the combination of selfish

mining with the other forking strategies. The advantage for the selfish miner changes

if much of the rest of the network is utilizing the forking strategies (which would make

it much easier for the selfish miner to get a longer private chain), and this needs to

be explored. Additionally, because selfish mining could be done profitably by miners

32

of any size in a transaction fee environment, it would be valuable to thoroughly

investigate how multiple selfish miners would interact in a system with each other.

Finally, it would be interesting to consider how other modifications to selfish mining

(such as stubborn mining strategies presented in [6]) would be affected by the switch

to transaction fees.

Analysis on where miners chose to mine in a fork is also an important area to look

at. Petty compliant mining should beat the default strategy in the system today, but

the margins would be small because so little of a miner’s profits come from transaction

fees, and the circumstance that causes the petty behavior to deviate from the default

behavior is relatively uncommon. Looking to see if miners are already choosing the

less wealthy side in a fork as opposed to the oldest side could lead to interesting

results, especially if it reveals a fraction of the network that has switched off the

default strategy.

33

Chapter 6

Impact for Bitcoin

There are several results here that important for the Bitcoin system. Let us first con-

sider the forking strategies that we introduced in section 3. If miners are aggressively

forking each other, then the number of orphaned blocks increases substantially. This

has several impacts, many of which are already known to be bad. The difficulty will

drop because the longest chain over a period of two weeks will be missing a large

portion of the blocks it should have, given the network hash-rate. Also, because so

many blocks will become orphaned, a dedicated attacker trying to perform a 51%

attack will have a much easier time executing the attack because the longest chain

created by the rest of the network will be shorter than it should be. If all miners act

rationally with regards to profits, and we do, in fact, see miners utilizing function

forking with smaller and smaller coefficients, then there are very serious concerns

for the usability of the system. If miners are only including a very small portion of

the possible transactions in their blocks, a user who broadcasts a transaction to the

network will have to wait, on average, a very long time for a miner to actually include

their transaction in a block. Additionally, they cannot expedite the process by adding

a larger fee to their transaction (thus making a transaction market), because a more

34

valuable transaction fee is not any more appealing to a miner who is only trying to

take a small fraction of the fees (by total value, not by number of transactions).

The root of all these problems is that the value to a miner for mining a block

must not change with time. One of the assumptions of the model made in chapter

2 was that miners have the capability of claiming all possible transactions available

in their next block. This closely relates to the block size debate that is ongoing at

the time of writing. This assumption does not hold if the block size is small and

there is a backlog of transactions. In this case, immediately after a block is found, all

miners searching for the next block can immediately fill the block with transactions,

making the system more similar to how it is with a block reward. A backlog, however,

significantly impacts the usability of the system. In order to solve the problem, the

backlog must contain a significant volume of value in transaction fees, not just a

large number of transactions (if there is mostly dust in the backlog, miners will fill

their blocks with dust and await larger transaction fees to arrive on the network, and

swap out dust in their block for these fees. In this case, it would be very similar

to a mostly transaction based system with a small minting reward). The backlog

must also be large enough that it rarely, if ever, empties. This means that users

who submit transactions to be published may need to wait potentially unbounded

amounts of time for their transactions to make it into the blockchain.

Many of the arguments about block size (potentially even infinitely large blocks)

focus on the impact the size of the block has on the value of transaction fees [7]. This

work goes beyond that to show that even if we assume that the transaction fees are

large enough in magnitude to completely replace the minting reward, other problems

can arise if the value to a miner of mining a block changes over the timescale of the

block, as it does in the case of transaction fees and large blocks.

35

Bibliography

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[2] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The Multiplicative Weights Up-
date Method: a Meta-Algorithm and Applications.” In: Theory of Computing 8.1
(2012), pp. 121–164.

[3] Christian Decker and Roger Wattenhofer. “Information propagation in the bit-
coin network”. In: Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth Inter-
national Conference on. IEEE. 2013, pp. 1–10.

[4] Michael Bedford Taylor. “Bitcoin and the age of bespoke silicon”. In: Proceedings
of the 2013 International Conference on Compilers, Architectures and Synthesis
for Embedded Systems. IEEE Press. 2013, p. 16.

[5] Ittay Eyal and Emin Gün Sirer. “Majority is not enough: Bitcoin mining is vul-
nerable”. In: Financial Cryptography and Data Security. Springer, 2014, pp. 436–
454.

[6] Kartik Nayak et al. Stubborn mining: Generalizing selfish mining and combining
with an eclipse attack. Tech. rep. IACR Cryptology ePrint Archive 2015, 2015.

[7] R Peter. “A Transaction Fee Market Exists Without a Block Size Limit”. In:
(2015).

36

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	2 Model, methods, and simulator
	2.1 Formalized description of a mining strategy
	2.2 Bitcoin mining strategy simulator

	3 Sequence of undercutting strategies
	3.1 Petty compliant miner
	3.2 Forking

	4 Selfish mining with transaction fees
	4.1 Selfish mining in a transaction fee system
	4.2 Implementing a block size cutoff
	4.3 Simplification justification
	4.4 Analysis of selfish mining with cutoff

	5 Future Work
	6 Impact for Bitcoin

