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Abstract

Internet Exchange Points (IXPs) with Software-Defined Networking (SDN) capabili-

ties are a promising way of shaping the future of interdomain traffic delivery on the

Internet—allowing IXP participants to express flexible SDN policies on interdomain

traffic. Unfortunately, it has proven difficult to compile interdomain traffic policies

into forward table sizes reasonable for available commodity switches, and indeed this

shows in state-of-the-art Software-Defined IXP implementations. To compile inter-

domain traffic SDN policies, available prefix routes must be factored in to ensure

correctness, resulting in an explosion in the size that a policy requires in the for-

warding plane. To combat this scalabilty challenge, new compression techniques of

forwarding table entries are required. In this work, we discuss the design and analysis

of such a technique, which allows near-optimal compression of SDN policies for IXPs

with large numbers of participants.
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Chapter 1

Introduction

Software-Defined Networking (SDN) is a promising advancement in networking, al-

lowing users to continuously describe complex and flexible policies for forwarding

traffic on their networks. Although it has mainly been considered in the Local Area

Network (LAN) setting, there is a desire to see it applied to the Wide Area Network

(WAN) setting as well. A natural way to introduce SDN to the wide area setting is

by adding SDN support to Internet Exchange Points (IXPs). At an IXP, tens to hun-

dreds of Autonomous Systems (ASes) come together at a single location to exchange

routing information via BGP and interdomain traffic via layer 2 forwarding. Because

of this relatively simple centralized structure, IXPs can provide a way to quickly add

the power of SDN to significant portions of interdomain traffic.

Unfortunately, it has proven difficult to add SDN capabilities to an IXP in a

scalable way. There are many challenges that must be addressed, including how to

compile together the policies of multiple participants, how to ensure BGP routing

is not violated, and how to incrementally deploy such a system. One of the most

challenging obstacles has been preventing the violation of BGP routing by participant

policies, and it is this obstacle that we will focus on.
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Figure 1.1: An example of a Software-Defined IXP. Pictured are 5 participant Autonomous
Systems connected to the IXP’s fabric and controller. Participants relay the policies they
wish to install to the controller, which then installs it on their behalf on the fabric.

1.1 Software-Defined IXP

Before we dive into the problem, we will give a brief description of an exchange point.

An IXP consists a route server, traffic fabric, and participant AS border routers.

An example is shown in figure 1.1. Each border router connects to both the route

server and the traffic fabric. Border routers send IP prefix route announcements and

withdrawals to the route server via BGP messages, and the route server relays this

information to the other participants’ border routers. Each border router decides

upon a default next-hop for each prefix based upon the advertised routes it receives,

and then sends traffic to those next-hops via the IXP fabric.

In a Software-Defined IXP, the setup is similar but enhanced. There are still

border routers connected to a fabric and a route server, but the route server now

doubles as an SDN controller, connecting directly to the fabric to install forward-

2



ing table entries. The fabric now supports these SDN forwarding table entries, and

can communicate with the controller via some SDN protocol such as OpenFlow [1].

Participants that wish to express SDN policies relay their policies to the controller,

and the controller installs the policies into the fabric on their behalf. The controller

determines how best to combine all the participants’ policies to prevent conflict.

Participants can express two kinds of policies at a Software-Defined IXP: outbound

policies and inbound policies. Outbound policies are forwarding actions applied to

traffic which a participant sends to the exchange point, and overrides the participants’

default next-hop preferences when applied. Inbound policies are forwarding actions

applied to traffic which a participant receives from the exchange point, and is useful

for dropping unwanted traffic or for when a participant has multiple connections to

the exchange and wishes to apply some form of load balancing.

Inbound policies are relatively straightforward to install at the exchange point,

because all ports for a single participant lead to the same set of destinations and thus

policies are not conditional upon available routes. Outbound policies, however, have

proven difficult to correctly implement in the limited space of the forwarding plane.

Throughout this work, we will be focusing on the compression of outbound policies

and thus we will use the terms “outbound policy” and “policy” interchangeably.
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Chapter 2

The Path Encoding Problem

We have mentioned that outbound has proven difficult to install without violating

BGP routing. To understand the problem, let us consider a simple example. Say

that some IXP participant AS S wishes to apply an outbound forwarding policy to

all traffic it sends through the IXP fabric. Suppose that one rule in S’s outbound

policy is dPort=80→ fwd(D)

In plain english, S wishes to reroute all HTTP traffic to IXP participant D, overriding

the default BGP forwarding behavior for every matching flow. Left alone, this rule is

incorrect, because participant D may not advertise routes to all destination prefixes.

If D only advertises prefixes [p2, p3, p4, p5], only the HTTP traffic from S destined for

these four prefixes should be rerouted to D. If S generates HTTP traffic destined for

p1, it would be incorrect to send this traffic to D.

2.1 Naive Encoding

In order to correctly apply S’s outbound forwarding policies to outbound packets, the

flow rules placed in the IXP fabric which realize S’s policy must take into account the

paths available for each packet. We will refer to the list of IXP participants which

have advertised routes to some prefix p as the valid next-hops for p. In this context,

4



a correct implementation of a policy which forwards to participant D is a set of flow

rules that always checks for whether D is in the valid next-hops before rerouting.

Consider the naive case for encoding correctness into a policy. Recall the rule

dPort=80→ fwd(D)

for forwarding HTTP traffic to D. If D only advertises prefixes [p2, p3, p4, p5], then,

to ensure correct routing, this rule can be modified into the flow rules

dPrefix=p2 ∧ dPort=40→ fwd(D)

dPrefix=p3 ∧ dPort=40→ fwd(D)

dPrefix=p4 ∧ dPort=40→ fwd(D)

dPrefix=p5 ∧ dPort=40→ fwd(D)

Now this policy will only be applied to flows which can reach their destination via D.

In this case, the simple HTTP policy was inflated by the number of prefixes which D

advertised. If each participant advertises x prefixes, the forwarding policy is subject

to an inflation factor of x in order to ensure correct routing. This factor can be quite

large in practice, so this motivates our new approach.

2.2 Superset Encoding

For the sake of explanation, assume that it is possible to attach an arbitrary amount

of metadata to each packet as it enters the IXP fabric, and that flow rules are able

to read and write to this metadata arbitrarily. We can easily use this hypothetical

metadata to correctly realize a participant’s outbound policy. If there are N partici-

pants advertising routes at the exchange point, we can write N bits to the metadata:

the ith bit corresponds to the ith participant. The moment the packet enters the

exchange point, the ith bit is set to 1 if the ith participant has advertised a route to

that packets destination, and 0 if they have not. As a result, if we wish to reroute a
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packet to participant D, we need only check that D’s bit is 1 in the metadata before

rerouting, rather than testing for every prefix which D advertises.

In our example, if N is 5 and bit 4 is assigned to D, then the flow rule for

forwarding HTTP traffic to D becomes

metadata=XXX1X ∧ dPort=40→ fwd(D)

where X denotes a “don’t care” match, so this checks only the 4th bit of the 5-bit

metadata bitmask.

2.3 MAC as Metadata

Of course, we cannot actually attach an arbitrary amount of metadata to each packet

as it enters the fabric, but we can use the same idea as the original SDX paper [2],

where the destination MAC address field was repurposed for tagging. Before sending

outbound traffic for some destination prefix p, a participant asks the exchange point,

via ARP requests, for the next-hop MAC address. If we pad the metadata to 48 bits

and send it as the reply, then every packet will arrive at the exchange point with

metadata in the destination MAC field, effectively repurposing the field as metadata!

We are able to do the required masked matching on this field using flow rules due to

recent updates to the OpenFlow standard, which allowed arbitrary masked matching

when reading the MAC address, permitting the reading of individual bits [3].

But, if we use the destination address as our metadata field, we lose knowledge of

which direction the packet was originally headed if it does not match on any policy

rule. This is simple enough to fix: if there are N nodes in the layer-2 network,

we can reserve log2N bits in the metadata field to serve as a “mini MAC”. If we

assign each node in the network a log2N -bit identifier and place it at the end of

the metadata, we can simply do masked matching on that field to maintain layer-2
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forwarding functionality. If we use x bits for the identifier, our approach will still

work so long as our encoding needs less than 48− x bits.

2.4 Optimizations

We must point out that by constraining ourselves to using only at most 48 bits of a

MAC address field, we run into scalability issues. As our scheme currently stands,

we are assigning a single bit of the metadata bitmask to every participant at the

exchange point. If we have more than 48 participants, this approach immediately

fails. To remedy this, we apply three optimizations:

1. We advertise different bitmasks to each participant.

2. We only reserve a bit in X’s bitmasks for a next-hop participant Y if X has

flow rules which forward Y .

3. The metadata field need not contain the full bitmask.

Disjoint Announcements For each list of next-hops which advertise a prefix,

there is a corresponding bitmask. Following the model of the original SDX, it is up to

the IXP controller to generate these bitmasks for every participant and convey them

to participant’s edge routers via gratuitous ARP replies. The participant routers

will treat these bitmasks as normal MAC addresses and place them in every packet

which is sent to the exchange point. If the IXP controller sends targeted gratuitous

ARP replies rather than broadcasting, we can present different bitmasks for the same

prefix to different participants. By itself, this has no effect on scalability, but it opens

the door for further optimizations. Each participant may have a bitmask tailored to

their policies, independent of all other participants. As we will soon see, this greatly

improves the compression possible.
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Active Set Masking Each participant S will have some set of policies which for-

ward to some set of next-hops. If S has no policy which forwards to a participant

T , then there is no need to reserve a bit in the bitmask for T , as S’s flow rules will

never check that T is a valid next-hop. Since S does not need to share their bitmask

with any other participants due to our previous optimization, this is independent of

all other participant policies.

We refer to the list of participants for which S has outbound flow rules as S’s

active set. As a result of this optimization, the amount of bits required for S’s

bitmask directly depends upon the size of S’s active set, which can be thought of as

the complexity of S’s outbound policy. This allows the scheme to work on exchange

points with an arbitrary number of participants, as long as no participant has an

active set of size 48 or more. This still does not support larger policies, however, and

so we must make one final optimization.

Multiple Masked Sets The purpose of the metadata bitmask attached to each

packet is to concisely convey whether each participant is a valid next-hop for that

packet or not. The bitmask can be thought of as recovering the desired list of next-

hops by masking some superset which contains all the next-hops. Before our active

set optimization, the superset which was being masked was the set of all participants.

We noted that it was sufficient for the superset to be only the active set. This still

does not scale enough, because the active set may be too large for a mask of it to fit

in the metadata.

Consider the example in figure 2.1(a), where the left matrix contain the lists of

next-hops that we wish to recover, and the right matrix shows the bitmasks we would

currently generate. Figure 2.1(b) shows that the next-hops can be broken up into

two categories: those which can be generated by masking over the superset [A,B,C],

and those which can be generated by masking over [C,D,E]. If we can attach to
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Subsets of 
[A,B,C,D,E]

ABCDE
P1 11000

P2 11100
P3 00100

P4 00110
P5 00111

Announced By
P1 A B
P2 A B C

P3 C
P4 C D

P5 C D E

ABC CDE
P1 110 X
P2 111 X
P3 001 100
P4 X 110
P5 X 111

Subsets of 
[A,B,C]

Subsets of  
[C,D,E]

Announced By
P1 A B
P2 A B C

P3 C
P4 C D

P5 C D E

(a)

(b)

ABC CDE
P1 110 X
P2 111 X
P3 001 100
P4 X 110
P5 X 111

1 1 1 0
ID C D E

Prefix P4 
Metadata

(c)

Figure 2.1: This figure demonstrates two different ways to recover a list of valid next-hops
for each prefix. In (a), the next-hops are recovered by masking over [A,B,C,D,E]. In (b),
the next-hops are recovered by masking over either set [A,B,C] or set [C,D,E]. An X
denotes that the list of next-hops cannot be fully recovered by masking over the given set.
(c) shows how, if each set is identified by a binary integer, each entry can be converted to
metadata consisting of an identifier and a mask.

our metadata an identifier of the superset over which we are masking, we can have

a reduced mask size! As shown in figure 2.1(c), if superset [A,B,C] is identified as

superset 0, and [C,D,E] is identified as superset 1, then the metadata for a prefix
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p4 which is advertised by [C,D] becomes 1110, which is shorter than simply masking

over the complete active set.

Now, if a policy wishes to forward port 80 traffic to D, it must be augmented to

simultaneously check (1) the column identifier for the set that contains D and (2) the

bit in the bitmask which corresponds to D. Thus, the rule that would be generated

is

metadata=1X1X ∧ dPort=80→ fwd(D)

Where the first bit in the metadata match is for the superset identifier, and the

remainder is for the mask.

However, looking again at figure 2.1(b), the case of policies which forward to C

is not so simple. Since C appears in both supersets, we must have rules which check

whether C’s bit is 1 in either superset mask. For example, if we had the policy

dPort=443→ fwd(C)

This would be augmented under our scheme to become

metadata=0XX1 ∧ dPort=443→ fwd(C)

metadata=11XX ∧ dPort=443→ fwd(C)

Therefore, depending upon the matrix construction, there may still be some policy

inflation. If no superset is too large to fit into the mask, it is feasible to merge columns

of the matrix to create new, larger supersets which can decrease the inflation factor.

However, this can only be performed until the supersets of each column become too

large to fit into the available bit space. For example, in figure 2.1(b), the two columns

could be merged into [A,B,C,D,E] to eliminate the inflation of C rules. This would

decrease the identifier size from 1 to 0 bits and increase the mask size from 3 to 5 bits.

There is a balance to consider between the size of the superset identifier, the mask

size, and the inflation factor, and when considered formally an optimization problem

arises.
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Chapter 3

Problem and Optimization

Let P = {p1, p2, . . . , pN} bet a set of subsets of the ground set U = {1, 2, . . . ,M} (i.e.

pi ⊆ U∀pi ∈ P ) Associated with each element j of the ground set U is a weight term

wj

Goal: Partition P into Z groups and union each group to create supersets

{s1, s2, . . . , sZ} = S such that the following function is minimized:

min
∑
j∈U

wj · aj

Subject to

log2 Z + max
si∈S
{si} ≤ B

Where aj is the number of supersets that element j ∈ U belongs to.

In the context of a softward-defined IXP, the ground set U is the active set of

participants for the current outbound policy. Each set pi ∈ P is the list of valid

next-hops for the ith prefix. The weight term wj on each element j ∈ U is the

number of flow rules which forward to next-hop j. The objective function reflects the

number of rules required by a policy combined with a superset matrix. For every rule
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which forwards to a participant T , if T appears in aj supersets, then our approach

requires that the rule be replicated aj times. If wj is the number of such rules, then

the objective function becomes clear. The constraint shows that a categorization is

feasible if the identifier size plus the mask size is less than the bit constraint, B. The

identifier size is log2 Z if Z is the number of supersets, and the mask size required is

the maximum superset size, or maxsi∈S{si}.

We suspect that this problem is NP-Complete for M > B, but a proof of the claim

is left as future work.

3.1 Inflation Optimization

Now that we understand the problem, we will give a greedy heuristic for constructing a

locally optimal solution. But, it is necessary to note that this is not a static problem.

The key property which defines a feasible solution is that for every prefix and the

set of participants that advertise that prefix, there is a superset which contains that

set. After computing our solution, this set may expand or contract as participants

announce and withdraw routes. Not only must we have an algorithm for the initial

construction, we must also have a procedure for handling updates to sets of next-hops.

3.1.1 A Greedy Algorithm

We begin with N supersets, where superset i is the list of valid next-hops for prefix pi.

This solution is, by construction, able to generate every required next-hop list, but it

may not be feasible. N may be so large that the superset identifier will dominate the

metadata and exceed the bit limit. This solution will also certainly have large rule

inflation, as no sets have yet been combined into supersets.

In the first step of the algorithm, we delete any supersets which are subsets of

other supersets. If superset si is [A,B,C], and superset sj is [B,C], then there is
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no use for sj and it may be deleted. Deletion strictly improves the solution because

any subset of sj can still be recovered from si, and the superset identifier decreases

in size as the number of supersets decreases. In practice, this reduces the number of

sets down from hundreds of thousands to less than one hundred.

In step two, we attempt to greedily decrease the number of bits required by our

feasible solution by merging pairs of small supersets together that do not increase the

maximum mask size when unioned. The idea is that this will decrease the number of

sets and thus the size of the superset identifier will decrease. This step repeats until

every feasible merging action would increase the number of bits required.

In step three, we improve the remaining supersets in an iterative greedy fashion.

We consider all feasible mergings of pairs of supersets, where a feasible merge is a

union of the two supersets which does not result in the new mask size exceeding the

bit limit. The benefit of a merging is the decrease in the number of flow rules which

will result from the merge. The decrease is the sum of the weights of each participant

which appears in the intersection of the two supersets, where the weight is the number

of flow rules in which the participant appears. This is because after a merging of two

sets, every participant which appeared in the intersection now appears one less time

across the supersets, and thus every rule they appear in can be replicated one less

time.

With these definitions in mind, the full algorithm is as follows:

The loops consider all pairs of supersets in each iteration in the worst case, so they

have a quadratic running time. Fortunately, the removal of subset supersets in the

first step, which runs linearly on lists of supersets with high redundancy, reduces the

number of supersets in practice to a small constant, so the running time is reasonable.
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Data: feasible supersets S = {s1, s2, . . . , sM}
Result: a list of supersets with maximally decreased rule inflation
remove subsets from S;
let A = the set of merge pairs which don’t increase bits required;
while A is nonempty do

choose pair (si, sj) = a ∈ A with smallest union;
merge sets si and sj;
update A;

end
let A = the set of feasible merge pairs;
remove any subsets from while A is nonempty do

choose (si, sj) = a ∈ A with greatest benefit;
merge sets si and sj;
update A;

end

3.1.2 Handling Updates

We have given an algorithm for computing a static solution, but BGP routing is far

from static. Routes are announced and withdrawn continuously, meaning the list of

valid next-hops for many prefixes are constantly changing. Therefore, we must give

a procedure for handling dynamic updates to the matrix.

We begin with a feasible solution as output by our algorithm, which is a collection

of supersets and a mask for each prefix. Each time a prefix is announced or withdrawn

by a participant, we consider that prefix’s new list of valid next-hops. If it is still a

subset of some superset, we need only update the mask.

If it is no longer a subset of any superset, we create a new superset solely for that

new list, which is equal to the list. We then attempt to merge the new superset with

an existing superset via the same greedy procedure we applied to the static context.

If no merging is possible, we leave it as its own superset. If the introduction of the

new superset causes the bit limit to be exceeded, we recompute the static solution

entirely as a worst-case scenario. This worst-case may seem impractical, but in the

iSDX [4] paper it is shown that this is never necessary. In fact, it was shown that the

merging step almost never occurs as well, as every updated list of next-hops is almost
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always a subset of a superset in the existing solution. These procedures almost need

only be defined for the purpose of correctness.
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Chapter 4

Evaluation

We will now demonstrate the scalability of the supersets encoding scheme table size

for a real exchange point.

4.1 Experimental Setup

We used a data set from the AMS-IX exchange point [5], which gave us access to 63

participants advertising over 600,000 prefixes. Although not on the scale of complete

data sets of the largest exchange points, the data set is large enough that the partial

masks optimization is required to fit masks into the MAC field. Our experiments

were run on a laptop with a 4-core CPU running at 2.4GHz and 16GB of RAM.

The exchange point considered does not yet have support for SDN forwarding

rules, so instead we simulate the number of forwarding entries required by the out-

bound policy of a hypothetical participant which is able to see all available route

announcements. The participant was given 1000 uniformly random forwarding en-

tries to a uniformly random subset of participants, with each subset size corresponding

to a different experiment.

16



4 6 8 10 12 14 16 18 20 22

Minimum Bits Required

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

12 participants
25 participants
37 participants
50 participants

Figure 4.1: Minimum number of bits required by a feasible solution for a random policy
which forwards to a random subset of participants.

4.2 Performance

We run our evaluations against a RIB dump of AMS-IX retrieved on May 1st, 2016

from the RIPE Routing Information Service raw data webpage [6].

In order for our encoding scheme to successfully work, it must compress the infor-

mation to the point that it fits into the MAC address field, which is restricted to 48

bits if no other information is encoded alongside reachability. Figure 4.1 shows the

number of bits required by our reachability encoding with uniformly randomly chosen

active sets, repeated 500 times for each active set size. In the worst case, 18 bits were

required when considering all 63 participants. The graphs appear to show that the

number of bits required scales linearly with the number of participants present in the

active set. However, we believe that the number of bits required actually scales sub-

linearly with the size of the active set, and that the appearance of linear scaling is a
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Figure 4.2: Number of rules required after encoding for a random policy of 1000 rules to
random subsets of participants.

consequence of our simulation method. In order for the bits required to scale linearly,

the number of participants that simultaneously advertise a single precept would have

to also increase linearly in the size of the IXP, but we suspect this is not the case.

Even if the number of bits required were indeed to scale linearly, extrapolating out

the graph yields that, in the worst case, a participant’s active set could contain over

100 participants, allowing very complex forwarding policies.

Figure 4.2 shows the number of rules required by our encoding scheme after run-

ning the greedy algorithm with a bit limit of 37, allowing 11 bits for the “mini-MAC”.

In this experiment, we began with a baseline policy of 1000 rules, with each rule for-

warding to a participant chosen uniformly at random from a random active set. The

experiment was repeated 500 times for each active set size, and the number of rules

required after applying our encoding was plotted. When the active set is of size 37 or

fewer, all participants can fit into a single mask, resulting in zero rule inflation. For
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Figure 4.3: Ratio of flow rules required by our encoding algorithm versus the uncompressed
case on random policies involving random subsets of participants.

active sets of size greater than 37, we can see that the inflation factor is at most 2 in

the average case and 3 in the worst case for all active sets.

Figure 4.3 shows how the number of flow rules generated by our approach compares

to the naive case of zero compression. The compression ratio of our approach versus

the naive approach is 20,000 to 1 in the worst case for all active set sizes, and 50,000

to 1 in the median case.

Figure 4.4 compares our approach to the uncompressed case, as well as to the

previous state-of-the-art, the MDS algorithm used in the original SDX system [2].

The comparisons were made using the same approach of generating 1000 random

rules, except for the MDS simulation. The MDS algorithm requires each prefix’s

default next-hop as part of the input, so in each trial we chose next-hops uniformly

at random from the list of available next-hops. The graph shows that our approach

consistently compresses the number of flow rules by two orders of mangitude greater
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Figure 4.4: Comparison of the number of flow rules required by our encoding algorithm
to the previous state-of-the-art MDS encoding algorithm and the uncompressed case for a
random policy involving all participants.

than the MDS algorithm, which itself compressed the number of flow rules required

by the naive case by three orders of magnitude.
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Chapter 5

Related Work

Software-Defined IXPs have been gaining attention recently [7][8], with exchange

point operators seeking testbeds and real deployments. Google’s Cardigan project

was deployed in a live internet exchange [9], but Cardigan does not appear to use

any compression techniques and thus we assume that the inflation factor of their for-

warding tables is comparable to the “naive” case we discuss, implying the number

of forwarding entries would be far too large for available commodity switches when

given reasonably-sized policies. The original SDX [2] paper introduced the concept of

compression of routing information into the forwarding plane with the MDS algorithm

for labeling packets which are subject to equivalent forwarding rules. It also intro-

duced the idea of using the MAC address to store metadata, by advertising metadata

as next-hop addresses. Despite these improvements, the project was unable to meet

the scale or speed requirements of even moderately-sized IXPs. The recent iSDX [4]

paper presents the full system which uses the compression technique detailed in this

paper. In addition to a brief description of the technique, the work also discusses

partitioning of outbound and inbound flow rules to avoid additional inflation, as well

as tagging of packets to ensure participant flows are processed disjointly.
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Chapter 6

Future Use

We will end with speculation about applications of the encoding scheme. In our

problem setting at a high level, some actor attaches a list of boolean statements

to each packet before it enters a layer-2 network. Once the packet has entered the

network, forwarding table entries are able to quickly check for and react to the truth

of any specific statement with only a small number of entries.

In our context, the actor which attaches the list of true statements is the SDN

controller (indirectly), by relaying the metadata to be attached as a MAC to the

participant border routers. The list of boolean statements is the list of valid routes,

as advertised by BGP. If a bit is 0 or not present in the metadata, the statement is

assumed to be false, or in other words the route is assumed to be invalid.

There are several properties that must be present for this scheme to work well. In

order for the scheme to function at all, no list of statements must be too large, and

there must be a large amount of redundancy in the possible lists of statements: many

lists must be improper subsets of other lists. This is true in our setting because each

list corresponds to participants which advertise some prefix, and many prefixes are

announced by identical small sets of participants.
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An additional property that is worth note is that OpenFlow does not yet support

masked writing, only masked reading. Because of this, the list of statements cannot

be partially modified as it traverses the network. Instead, it must be either be fully

overwritten or left unmodified while in the core. However, end hosts are of course

able to modify the set one bit at a time, so long as they are able to modify individual,

arbitrary bits of the ethernet fields.

We also cannot forget that the metadata is composed of a column identifier, mask,

and “mini MAC”. The number of bits which must be allocated for the mini MAC is

logarithmic in the number of nodes in order for each node to have a unique address.

Formally, for the scheme to work, if you have X non-subset statement lists where the

largest list is length Y, and you have Z nodes in your network, then it must be the

case that log2X + Y + log2 Z ≤ 48

One example to which our scheme could apply would be selective anycast in a local

network. If a flow could be accepted by any single host in a specified set of hosts, the

set could be encoded with our scheme. Switches in the network could check this set

and choose any output port which leads to one of the hosts in the set.

Another example is encoding an unordered list of network functions which a flow

should traverse before it reaches its destination. If a switch sees that a boolean in

the metadata is true for a nearby network function, it could forward the flow to that

function. Once the function has processed the flow, it could then flip the boolean

to false. This is only possible for network functions implemented as hosts which can

modify arbitrary bits in the header; the network functions could not be on current

switches or hardware routers.

Although maybe without real motivation, these are just examples showing that

any problem which fits the mold of encoding a set can be solved by our encoding

scheme, if the required properties hold.
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Chapter 7

Conclusion

Our reachability encoding scheme has shown the ability to compress a large amount

of routing information into a small number of bits. Although our experiments were

only for the RIPE-available information on 63 participants, in the full iSDX paper

the encoding scheme was able to represent subsets of over 500 participants in only 33

bits [4]. We have yet to find an example of an exchange point where this technique

breaks down, and so it seems that this approach will allow real software-defined

exchange points to be deployed in the near future.

Since this technique is completed, any future work would be in finding new uses for

the technique. However, it would be interesting to explore how this technique could

be expanded or modified when additional capabilities are added to SDN switches.
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