
New Abstractions for Mobile

Connectivity and Resource

Management

Robert Randolph Kiefer

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor Michael Freedman

May 2016

c© Copyright by Robert Randolph Kiefer, 2016.

All rights reserved.

Abstract

Mobile devices have become an important—and for many, primary—means of con-

necting to the Internet. They offer great flexibility in how and where they are used,

even with constraints like battery life and data caps. However, their network stack

and operating system are lacking when it comes to network mobility and managing

their limited resources. First, mobility, if even addressed by devices and apps, is

done in an ad-hoc manner to “hide” connectivity issues rather than fix underlying

shortcomings. Second, resource management is dealt with in broad strokes, scattered

among various app and device settings pages.

In this thesis, we provide new abstractions addressing these issues. To better

handle mobility in the network stack, we need to remove the overloading of IP/port

as both app-level connection identifiers and network addresses, thereby allowing apps

to maintain a connection even when addresses change. To that end, we present

ECCP, a protocol that splits the current transport layer into two: one for connection

management (e.g., startup, teardown, migration) and one for data delivery seman-

tics (e.g., reliable, best-effort, etc). ECCP is part of a larger network architecture,

Serval, which addresses several pain points with today’s networked systems, con-

sisting of replicated backend services and mobile, multi-homed clients. We derive a

state machine for ECCP supporting migration and multipath, and through Serval, we

demonstrate ECCP’s value in scenarios utilizing mobility (e.g., VM migration) while

achieving par performance with TCP.

To utilize better mobility support, devices need a more expressive resource man-

agement system. Currently, network choice and resource management is limited to

broad decisions (e.g., if cellular network usage is allowed). Users must either choose

“good enough” settings or else micromanage their device and apps, e.g., turning WiFi

on/off while streaming music between hotspots. Instead, we introduce Tango, a pro-

grammatic, policy-based network resource management platform, that works at the

iii

device and app levels to offer more flexiblity. Users and apps define policies that

dynamically monitor device state to adjust resource usage on their behalf. Using

Tango, a user can, e.g., minimize cellular data while streaming music (using it only

to prevent playback pauses), saving up to 60-95%.

iv

Bibliographic Notes

The research presented in this thesis is based on work performed in collaboration

with my adviser Michael Freedman, as well as Erik Nordström, David Shue, Prem

Gopalan, Matvey Arye, Steven Y. Ko, and Jennifer Rexford. The protocol for in-

coporating mobility and multipath into the network stack introduced in Chapter 3

appears in a paper co-authored with Matvey Arye, Erik Nordström, Jennifer Rexford,

and Michael Freedman [2]. The implementation of that protocol as part of a larger

network architecture that is introduced in Chapter 3 and evaluated in Chapter 4

appears in a paper co-authored with Erik Nordström, David Shue, Prem Gopalan,

Matvey Arye, Steven Y. Ko, Jennifer Rexford, and Michael Freedman [24]. The pol-

icy platform for resource management introduced in Chapter 5 appears in a paper

co-authored with Erik Nordström and Michael Freedman [19].

v

Acknowledgements

I would like to thank my adviser, Professor Michael Freedman, for his invaluable

guidance. He was always able to focus me on my best ideas and on the core contri-

butions and benefits of my work. His insight into a variety of problem spaces and

never-ending ability to ask just the right question helped me refine my work to what

it is today. I have learned a great deal on approaching complex problem spaces and

zeroing in on the important parts, and for that I have him to thank for that. However

little I knew before has been greatly expanded under his guidance.

My committee members—Jen Rexford, Nick Feamster, David August, and Mar-

garet Martonosi—have also been valuable in molding this thesis into its final form by

giving me new questions to consider and ideas to flesh out. I appreciate the time they

took to review my work and give me their thoughtful considerations at its various

stages.

Many thanks also to my undergraduate adviser, Professor Bobby Bhattacharjee,

and members of his lab, especially Dave Levin. They took me in when I was not sure

what I wanted to do with my career and got me interested in doing research. Many

late nights working on projects helped give me a taste of what graduate school was

about.

Huge thanks to my colleagues, collaborators, and fellow graduate students at

Princeton. Whether it was debating how to best present our work, seeing who could

best throw magnets at a white board, or just enjoying lunch, a beer, or some simple

down time, it was a great pleasure and filled with memories. In particular, I want to

recognize Erik Nordstrom, a collaborator on all my publications, who spent plenty of

anxious hours before a deadline helping make our ideas come across more elegantly.

Other special thanks to Dave Shue, Logan Stafman, Wyatt Lloyd, Matvey Arye, Jude

Nelson, and many others for all the laughs and good times that helped take us away

from our work.

vi

Finally, thank you to my friends and family. All the road trips back and forth

from Maryland were worth it to see you. My parents, Randy and Lynn, thank you

for believing in me and encouraging me to always be my best. My siblings, Beth and

Matt, thank you for enjoyable trips home and for sending me photos of my niece and

my dogs, which never failed to make me smile. Thank you to all my friends, who

even though I lived somewhat far away, still invited me to everything like I was still

in town. And a special thank you to my girlfriend, Tessy, who has been incredibly

encouraging and enthusiastic as I neared the finish line. Her unflinching willingness

to help made all of this much easier.

The research in this thesis was funded by Office of Naval Research N00014-09-

1-0910: Towards a Service-Centric Network Architecture for Fault Tolerance, Mi-

gration, and Mobility; National Science Foundation CNS-0904729: ARRA: NeTS

Medium: A SCAFFOLD for Service-Centric Networking; National Science Foun-

dation CNS-1040708: FIA: Collaborative Research: NEBULA: A Future Internet

That supports Trustworthy Cloud Computing; and National Science Foundation IIS-

1250990: BIGDATA: Small: DCM: JetStream: A Flexible Distributed System for

Online and In-Place Data Analysis.

vii

To my friends and family.

viii

Contents

Abstract . iii

Bibliographic Notes . v

Acknowledgements . vi

List of Tables . xii

List of Figures . xiv

List of Pseudocodes . xvii

1 Introduction 1

1.1 Mobility and the Network . 2

1.2 Device Resource Management . 4

2 Background 8

2.1 Supporting Network Mobility . 8

2.2 Handling Limited Resources . 11

3 Supporting Mobility 15

3.1 Protocol Requirements and Related Work 16

3.1.1 Protocol Requirements . 16

3.1.2 Related Work . 17

3.2 The ECCP Protocol . 20

3.2.1 Establishing a New Connection With a Single Flow 21

3.2.2 Adding Flows to an Existing Connection 23

ix

3.2.3 Changing the IP Addresses of Existing Flows 25

3.3 Other Concerns . 28

3.3.1 Verification . 28

3.3.2 Security . 29

3.3.3 Simultaneous Movement . 30

3.4 Bigger Picture: Serval . 31

3.4.1 Naming Abstractions . 32

3.4.2 The Serval Network Stack . 35

4 ECCP/Serval Evaluation 42

4.1 Serval Prototype . 42

4.1.1 Lessons From the Serval Prototype 42

4.1.2 Performance Microbenchmarks 44

4.1.3 Application Portability . 45

4.2 Experimental Case Studies . 46

4.3 Incremental Deployment . 49

5 Managing Limited Resources with Tango 52

5.1 Motivation and Challenges . 54

5.1.1 Balancing Costs, Caps, and Battery 55

5.1.2 Ensuring Good User Experience 56

5.1.3 Managing Conflicting Interests 57

5.2 Tango Design . 58

5.2.1 The Controller and Policy Execution 60

5.2.2 A Programmatic Approach to Policy 63

5.2.3 Discussion: Policy in Practice 67

5.3 Tango Related Work . 69

x

6 Tango Evaluation 72

6.1 Tango Prototype . 72

6.2 Case Study Evaluation . 74

6.2.1 Experimental Setup . 74

6.2.2 Case Study 1: Music Streaming 79

6.2.3 Case Study 2: Policy Across Apps 85

7 Conclusion 90

7.1 Future Work . 91

Bibliography 93

xi

List of Tables

3.1 Comparison of ECCP with alternative approaches 17

3.2 State stored by ECCP for connections and flows 22

3.3 Comparison of BSD socket protocol families: INET sockets (e.g.,

TCP/IP) use both IP address and port number, while Serval simply

uses a serviceID. 37

4.1 TCP throughput of the native TCP/IP stack, the Serval stack, and the

two stacks connected through a translator. UDP routing throughput

of native IP forwarding and the Serval stack. 44

4.2 Applications currently ported to Serval. Codebase size and Serval

changes measured in lines of code. 46

5.1 Application settings available for managing resource usage. 53

5.2 Device state sources and metrics. 60

5.3 Actions on interfaces and flows. App policy can only perform flow

actions and only on their flows. 66

6.1 WiFi connectivity quality statistics across many traces of the same

path. “Good” signifies both upstream and downstream had drop rates

≤10%. 77

6.2 Evaluated policies. 79

xii

6.3 Unl and Rate keep cellular active and drain battery faster, while App

is able to reduce the drain. 85

xiii

List of Figures

1.1 The TCP/IP transport layer broken up into two sublayers, with ECCP

operating below data delivery. 3

3.1 The ECCP state machine. Double lines indicate transitions that create

a new subflow and associated control block (state). Asterisks indicate

that the receiving state must be able to handle getting duplicate mes-

sages in an idempotent manner. 20

3.2 A conceptual view of a packet, showing the location and composition of

ECCP headers. The data delivery header is typically a regular trans-

port header (e.g., TCP), although used only to provide data delivery

functionality. 21

3.3 The ECCP protocol for establishing a new connection, using a three-

way handshake similar to TCP. However, ECCP endpoints also share

which interfaces they allow flows on and use flowIDs instead of IP/port. 23

3.4 Adding a new flow to an existing connection in ECCP. 24

3.5 Choosing a different interface for a new flow in ECCP. 25

3.6 The ECCP protocol for changing the address associated with an al-

ready established flow. FlowIdm and FlowIds are the IDs for the flow,

while A5 is the new address and (A5,A6) is the new interface list. . . 27

3.7 An example of a misbehaving protocol trace when using implicit ACKs

to confirm migration. 28

xiv

3.8 New Serval identifiers visible in packets, between the network and

transport headers. Some additional header fields (e.g., checksum,

length, etc.) are omitted for readability. 33

3.9 Serval network stack with service-level control/data plane split. . . . 36

3.10 Serval forwarding between two end-points through an intermediate ser-

vice router (SR). 38

3.11 Schematic showing relationship between sockets, flowIDs, interfaces,

addresses, and paths. 41

4.1 A Serval-enabled host migrates one of the flows sharing a GigE interface

to a second interface, yielding higher throughput for both. 47

4.2 A VM migrates across subnets, causing a short interruption in the data

flow. 48

4.3 The thesis author uses a Serval-enabled phone to stream music while

walking across campus. The phone migrates the connection between

available WiFi (red) and cellular 4G (gray) networks, without loss of

playback quality. The opacity of each data point is an indicator of the

throughput (normalized within network type) achieved at that location. 49

5.1 The Tango architecture. Device state is continuously collected from

sources in the device kernel, packaged by the controller (center gray

box), and evaluated by all registered policies. Each policy outputs a

list of actions (e.g., rate limit) called plans, which are carried out by

the controller using tools provided by the kernel and operating system. 58

6.1 Emulations of a campus walk. Both CBR traffic (a) and TCP traffic

(b) emulations reproduce the real world patterns with high fidelity. . 76

xv

6.2 Interactions between TCP timers and changing connectivity. In (a), a

lost TCP ACK packet (just before 350s) causes a 80s TCP timeout,

leading to a missed opportunity to use good connectivity. In (b) some

packets get through prior to 350s, causing a shorter timeout that allows

use of the connectivity. 77

6.3 Distribution of durations of low TCP throughput, Android versus

Tango switching. CBR UDP traffic serves as a baseline showing

connectivity. 78

6.4 Effect of aggressive WiFi offloading on playback buffers. Android’s

tendency to persist on WiFi, despite no TCP progress, leaves little

room for policy to play a role in improving the application experience. 80

6.5 Buffer usage of different Tango policies. All avoid any pauses during

playback. 82

6.6 Network usage showing how Tango policies (Rate and App) can dras-

tically reduce cellular usage compared to unlimited usage (Unl). . . . 83

6.7 Unl and Rate drain battery faster due to keeping the cell link active,

while App is able to reduce the drain. 84

6.8 App-level fairness at link level, while app policy optimizing perfor-

mance given constraints. 86

6.9 Providing priority dynamically to foreground traffic for better user ex-

perience. 87

6.10 Insufficent resource isolation in today’s phones: background music re-

duces web performance. 88

6.11 Providing dynamic priority between music and web. The music app

hints at its need for the network to provide improved page load times

when its buffer is healthy (dark gray) and minimal disruption when its

buffer needs replenishing (light gray). 89

xvi

List of Pseudocodes

1 Tango Control Loop . 59

2 App policy with hints . 64

3 User policy with app hints . 64

4 Avoid poor WiFi . 66

5 Prioritize foreground app . 68

xvii

Chapter 1

Introduction

Today’s most common computing devices increasingly are mobile devices. These

devices — smartphones, tablets, and laptops — offer nearly ubiquitous connectivity

for users on the move. Yet, the experience can be lackluster because the network stack

and the operating systems they run are not fine-tuned for mobile use cases. Because

of this, these devices’ greatest strengths (e.g., mobility and being multi-homed) are

diminished, and their greatest weaknesses (i.e., limited resources such as battery life

and data caps) are exacerbated.

The typical TCP/IP network stack used by mobile devices was designed without

mobility and multiplicity in mind. When it was designed, devices were stationary and

usually single-homed, and without the expectation a device would change its network

mid-communication. But for mobile devices, changing networks is not a rarity; users

often pass through multiple WiFi access points and/or cell networks when on the

move. Unfortunately, the current network stack overloads network identifiers (e.g.,

IP addresses and ports) as not only a network identifier, but also as part of the “five-

tuple” that hosts use to demux and identify a connection. Despite having multiple

networks to utilize, these devices’ utilization of the these networks is subpar. Typically

devices prefer WiFi to other networks; eagerly switching off cellular even if the WiFi

1

network signal is poor, while also continuing to use WiFi even when signal quality

has degraded significantly.

Additionally, mobile operating systems fail to appropriately provide the flexibil-

ity and diversity of resource management these devices require given the conditions

and environments under which these devices operate. Unlike stationary hosts such

as desktops and servers, mobile devices are often limited on several axes: battery

life, network data usage, and more. Also, not all users have the same preferences;

resource usage is dependent on many factors including network and workload, and

may be required to managed over epochs of varying lengths (e.g., hours for battery,

days/weeks for network data). Furthermore, adding improved mobility to the network

stack makes this issue even more pertinent. Being able to move between networks

or use multiple ones simultaneously will require management to make sure limited

resources are not spent wastefully.

1.1 Mobility and the Network

Incorporating mobility and multihoming into a network stack not designed for either

has been difficult. Some attempts [32, 12] try to retrofit mobility into single transport

protocols like TCP. However, due to constraints of working within the confines of the

existing protocol, they produce subtle failure cases. Additionally, the work is not

extensible to other transport protocols. Other mobility solutions do not work end-to-

end [27, 42, 10], but rather redirect traffic through middleboxes (like home agents in

Mobile IP), requiring network support and potentially inefficient “triangle routing.”

While these network layer solutions require minimal changes to end-hosts, they inter-

act poorly with existing transport protocols (e.g., TCP cannot distinguish congestion

from loss during mobility) and do not have proper support for multihoming (e.g.,

individual data flows cannot migrate between network interfaces). Other solutions,

2

Applica'on*

Transport*

Network*

Applica'on*

Data*Delivery*
TCPin“ESTABLISHED”$state$

Connec'on*Control*
ECCP$

Network*

Figure 1.1: The TCP/IP transport layer broken up into two sublayers, with ECCP
operating below data delivery.

like placing multiple wireless access points in the same virtual LAN (VLAN), sup-

port limited mobility only in certain cases; this solution does not let a device switch

between different network providers (e.g., between cellular and WiFi).

In this thesis, we argue for an transport-agnostic, end-to-end solution that changes

the end-host network stack. The network stack should support path multiplicity

(where a single connection may be spread over multiple interfaces or paths) and

location dynamism (where hosts can change locations without breaking ongoing con-

nections) for all transport protocols, i.e., TCP, UDP, etc. To accomplish this, we

argue for separating out the functionality of the current transport layer into two

sublayers: (i) connection control (e.g., starting and stopping connections and their

constituent flows, and changing their associated addresses) and (ii) data delivery

functionality (e.g., best-effort versus reliable delivery, congestion control, flow con-

trol, etc), as shown in Figure 1.1. Decoupling the functionality of these two sublayers

allows us to engineer a new end-to-end connection control protocol (ECCP) that sits

above the network layer and works for multiple data delivery protocols.

The sublayer functionality offered by ECCP is markedly different from typical

“layer 3.5” designs, like HIP [23] and LISP [10], which define new host/endpoint

name layers to hide address changes from the stack rather than actively dealing

with them through connection control. ECCP does not need invariant host/endpoint

names; once a connection is established hosts can then, using end-to-end connection

control, track changes to their addresses on-the-fly and inform all of their peer hosts

3

of the changes. Path multiplicity is supported by allowing a single connection to

consist of one or more flows, each associated with an interface or path, similar to

MPTCP [38]. Unlike MPTCP, however, the base functionality is reusable by any

data delivery protocol, and flows can further change interfaces or addresses over

time, without breaking the associated connection. Most existing solutions for mobility

either do not handle path multiplicity or work on a per-interface instead of a per-flow

basis, limiting the flexibility with which multipath and multihoming protocols can

respond to mobility. Conversely, ECCP allows for the migration of individual flows

independently, allowing better load balancing and more expressive policy for different

types of flows.

Yet end-to-end control protocols like ECCP are notoriously hard to get right.

This is exacerbated by subtle corner cases inherent to communication in an unreli-

able medium and the dynamism caused by device mobility and VM migration. In

Chapter 3, we look at requirements for designing such a protocol including evaluation

of other approaches, as well as the ECCP protocol in-depth, including how separating

connection control and data delivery actually simplifies the design, engineering, and

verification of the protocol.

From ECCP we were able to create a detailed state-transition diagram for the pro-

tocol, which guarantees that connectivity is preserved in the face of location dynamism

and path multiplicity. This model and state diagram also formed the foundation of

our implementation of ECCP in a larger network architecture called Serval [24]. Serval

is presented in §3.4 and using a Serval prototype, ECCP is evaluated in Chapter 4.

1.2 Device Resource Management

Even though resource management is a principle task of operating systems (OSes),

mobile OSes have been slow to tackle the unique resource challenges facing mobile

4

devices. These devices are restricted by a myriad factors, including energy, comput-

ing, and network data limits. Utilizing the network tends to trade off these (usu-

ally) limited resources. Some of these—such as battery life or monthly network data

limits—must be managed over epochs many orders of magnitude greater than those

relevant to traditional packet scheduling. The mismanagement of the network can be

costly and provide subpar performance.

Unfortunately, today’s mobile OSes offer only a limited set of mechanisms to man-

age resources across users, operating conditions and longer time horizons, typically

in the form of hard limits. Some OSes, e.g., Apple’s iOS and Windows Phone, limit

which apps can run in the background and their network usage to improve battery life.

Others, like the default Android OS, support setting simple hard data limits on the

device; some manufacturers also introduce power-saving modes [1] that aggressively

shut off background tasks and network usage, even if it hurts app functionality. Apps

may also include additional settings to manage resource usage. These approaches

lack sufficient flexibility and ease-of-use, as they are either too restrictive or require

users to constantly micro-manage their device.

Even if third-party applications are well behaved and expose options to manage

network usage, an application’s behavior may not always align with its user’s interests.

Apps commonly focus on high performance to ensure a good user experience, rather

than minimizing network usage and without concern of their impact on concurrently

running apps. On the other hand, while some apps allow users to disable cellular usage

or downgrade to lower bitrates, these degraded user experiences may be unnecessary

given a device’s current data usage.

In Chapter 5, we introduce Tango, a system for managing network usage via a

flexible, programmatic policy model, designed to simplify and better align a user’s

interests with their device’s network management. Tango centralizes network man-

agement in a controller process, which handles monitoring device state, soliciting

5

interested parties (users and apps) for their preferences (encoded as programs called

policies), and adjusting usage as applicable. This controller has user preferences codi-

fied into a single user policy, and acts as the mediator between user and app interests.

A policy is a program that uses the current device state (and for apps, usage

constraints) as input, and returns a list of actions (e.g., move connection X to network

Y, rate limit connection X to 500kbps, etc) to be executed on its behalf as output.

Because of the level of dynamism in mobile devices, the device state is comprised of

metrics for various sources including the kernel, network, and battery. For example, if

the current state is the device is connected to a cellular network, a policy could then

ask for a rate limit to be set in order to save data against a cap. But a policy can

be even more expressive: when deciding on a network, a policy can consider the load

on the network (e.g., number of apps using it), any priority (e.g., foreground) usage,

and more. Thus, Tango’s model is richer and more flexible than what is currently

available.

We recognize that these devices ultimately belong to the user, so their preferences

must trump those of any app. Yet, we also recognize that apps can improve their

resource usage in valuable ways when given guidance by the user. Tango’s approach

to conflict resolution is proactive. That is, the user policy states upfront constraints

on usage for apps. This allows app policies to be helpful and offer viable actions to

the controller to execute on their behalf, while uncooperative or legacy apps simply

are subjected to the constraints generated. Reactive policy conflict, such as changing

or ignoring invalid policies, would limit how effective apps could be in optimizing

usage since they do not know what bounds to stay within and whether their actions

are being executed. Further, Tango allows app policies to “hint” about their desired

usage, which user policies can use as part of subsequent evaluations.

Taken together, ECCP (and by extension Serval) and Tango provide new abstrac-

tions for addressing shortcomings in today’s devices when it comes to mobility. In

6

Chapter 2, we first provide a look at the existing solutions for dealing with network

mobility and resource management. Chapter 3 then introduce our mobility protocol

ECCP and its place in the Serval architecture, followed by evaluation of the two in

Chapter 4. In Chapter 5 then introduces our resource management platform Tango

with evaluation of our prototype in several case studies in Chapter 6. The thesis

concludes in Chapter 7 with directions for future work and contributions.

7

Chapter 2

Background

In this chapter we look at the problems—and attempted solutions—with using mobile

devices today caused by a network stack that does not account for mobility and

operating systems that do not offer users enough flexibility to effectively manage

their resources.

2.1 Supporting Network Mobility

Mobile devices, e.g., smartphones and tablets, have made network mobility a com-

mon occurrence, especially compared to previous computing devices, e.g., desktops,

servers, and mainframes. Today, devices are not always connected to a single net-

work, but rather they can connect to multiple networks as a user commutes from

work to home, walking from their dorm to their class, or strolling down a city street

past WiFi hotspots at every coffee shop. Meanwhile, the user is trying to browse

the web, stream music, or watch the latest viral video. The last thing they want is

for the connection to break and their apps to stop working while the device tries to

reconnect.

Yet that is what happens with today’s network stack. The network stack currently

used by mobile devices is a poor match for mobility due to overloading the meaning of

8

addresses (to identify interfaces, demultiplex packets, and identify sockets) and port

numbers (to demultiplex packets, differentiate service end-points, and identify appli-

cation protocols). Traditionally network connections are identified and demultiplexed

on a “five-tuple” consisting of the protocol (e.g., TCP, UDP), source IP and port,

and destination IP and port. Unfortunately, by doing this each endpoint is identified

its port and IP, which prevents it from changing networks (where it would get a new,

different IP).

To overcome this, previous solutions can be roughly divided into two broad cate-

gories. The first is work that provides a transport-protocol agnostic solution at the

network layer (or below), and the second is work that aim to support such function-

ality in specific transport protocols.

The canonical approach for providing mobility regardless of transport protocol is

to rely on encapsulation [27, 28, 23, 42, 10], where packets carry two pairs of addresses;

a pair of unchanging (invariant) addresses that identifies the host/endpoint of the

connection, and a location-dependent address pair. The invariant addresses identify

peers in the network and facilitate demultiplexing across location dynamism, while the

other address pair directs packets across the network. The main differences between

each encapsulation scheme lie in how they initially setup encapsulation and how they

signal changes when hosts move or migrate flows between interfaces. For instance,

HIP [23] uses an end-to-end protocol to setup encapsulation, while LISP [10] and

Mobile IP [27] rely on in-network infrastructure to handle this in a more transparent

way to the endpoints.

By separating the addresses that are used for identifying the connection and lo-

cating the endpoints, the locations are able to change while connection is maintained.

However, these solutions are not without their downsides. Using encapsulation adds

an extra layer of complexity to the problem, and these methods of indirection can have

performance implications. For instance, Mobile IP relies on an in-network infrastruc-

9

ture solution that introduces a “home agent” that tracks the mobile client and acts

as a proxy. Because of this, Mobile IP uses “triangle-routing”: packets from a mobile

client go directly to its destination, but packets on the reverse path go through the

home agent (incurring extra latency) in order to reach the mobile client. Given that

mobile clients are becoming the norm, supporting mobility should be something the

network stack provides natively, not something added on via encapsulation, especially

if it comes at a performance cost.

Other prior work has taken a different approach, instead providing mobility sup-

port by modifying individual transport protocols [32, 12, 38]. These solutions extend

the transport protocol’s (typically TCP) signaling to handle address changes, which

allows the transport protocol to be aware of mobility events. In contrast, encap-

sulation schemes in general handle signaling in another layer (or outside the stack

altogether), which leaves the transport protocol to recover on its own during mobil-

ity events. This can have detrimental effects on performance. For instance, TCP

would confuse mobility events for spikes in round-trip times or a significant drop in

bandwidth and incorrectly adjust its retransmission timers and congestion windows.

Modifying the transport protocol allows for those protocols to deal with those cases

more gracefully, but with one obvious downside: only adding support for mobility to

one protocol. The solutions also tend to repurpose parts of the protocol (e.g., TCP

options) in ways that can be brittle if other modifications are in place.

Additionally, while several of these transport modifications have been proposed,

these solutions can have unacceptable results (Chapter 3), including losing connec-

tivity. For example, protocols like TCP Migrate [32] and HIP [23] can get “stuck”

(i.e., not be able to continue sending data) when a client migrates between networks

multiple times in quick succession; for other solutions, such as those that require

in-network middleboxes [27, 10, 42], rapid migration may not even be possible. This

is unacceptable for today’s devices, which are often used in environments (e.g., city

10

blocks or college campuses) with several hotspots—with fluctuating signal levels—to

choose from. Attempting to use the best one or falling back to cellular can cause

multiple network switches to occur quickly. Another protocol based on TCP, Multi-

path TCP (MPTCP) [38] defines a modification that can stripe a data stream across

multiple TCP subflows, using different network paths. MPTCP supports mobility

by simply starting additional subflows on new addresses, tearing down subflows on

obsolete ones. While this masks changes in connectivity (and used in limited capac-

ity on Apple’s iOS [34], it also imposes performance penalties because each new flow

requires establishing new state and re-entering TCP slow start.

In summary, while there are solutions for mobility today, they are not without

their problems. There are performance implications either by introducing new layers

of complexity/encapsulation, forcing traffic through inefficient routes, or confusing

other protocols that are not aware of the added mobility functionality (e.g., TCP not

being aware that something is a migration event rather than a connection problem).

Further, for a feature as common as mobility, many of these solutions introduce

it as an add-on or afterthought to legacy protocols. Instead, mobility should be

performant, always correct, and integrated with the network stack.

2.2 Handling Limited Resources

Mobile devices offer more flexibility to users, but also force users into making trade-

offs while using them, e.g., connectivity vs data caps or performance vs battery life.

Also, while adding network mobility could address some pain points of mobile devices,

it would still need a framework to manage when to use different networks and how

much usage to put on that network. Since mismanaging network costs can turn into

real world costs (e.g., overage charges with regards to data caps), users should be

able to express their preferences and have the device manage that for them.

11

Even without seamless network mobility, there has been work has been on deciding

which network to use, given the rise of multi-homed mobile devices. These works use a

variety of approaches, from rule-based decision engines [37, 41] to evaluating based on

different utility functions [25], these systems attempt to decide which network is best

given the current workload. However, these systems often bake in assumptions about

what the user wants and what they are using the system for, offering little room for

different preferences. Further, network choice alone is only one part of the resource

management problem. It is fairly easy to pick the right network to stay connected,

but end up misusing it to burn through a data cap or battery (Chapter 6). Using

the network responsibly so as not unnecessarily run up data costs or drain battery is

important as well.

As mobile device platforms—particularly smartphone operating systems (OS)—

have matured, manufacturers, app creators, and those building the OS have recog-

nized the need for tools to better control resource usage. Some platforms integrate

limitations into the platform itself, by limiting the capabilities of third-party apps,

e.g., which apps can run in the background. The goal of these limitations are usu-

ally to preserve the most limited of resources such as battery life and cellular data

use [16, 18]. Long-running background usage is only available to apps in certain

classes (e.g., playing audio), otherwise apps can hand off short-lived tasks (e.g., fin-

ishing a download) to the OS to finish. Such restrictions may be useful for lengthening

a device’s battery life, but takes away control from the user. A user who has plentiful

charging opportunities and WiFi would find these restrictions unnecessary and limits

what they can do with their device. Ideally, a resource management solution would

not have these artificial limits.

Other platforms, notably Android OS, do not impose such restrictions, but offer

other mechanisms to manage resource usage. By default, Android includes tools like

a Data Usage settings pane for managing how much usage “metered” (e.g., cellu-

12

lar) networks are allowed. Recent versions and other manufacturers have introduced

special modes to conserve battery, e.g., Sony’s STAMINA mode [1] or the Doze [17]

feature in Android 6.0. A user can opt-in to use these modes, which determine when

a phone is no longer in active use and then limit network and CPU usage. Further,

app creators sometimes take it upon themselves to include settings to help manage

their usage (e.g., only stream music on WiFi). All of these options are helpful, but

have two main downsides. First, they are typically rather limited, offering “on or off”

behavior or only a handful of levels. A user may be fine with limited cellular usage,

but it can be tough to decide what that means, e.g., “low” versus “medium” quality

for media streaming. Second, getting all these settings right can be a management

nightmare for users (Chapter 5). Users not only have to monitor that the usage is

actually fitting with their preferences—by checking several system menus—but also

keep up to date if apps change, remove, or add new settings to configure.

Other work has been proposed to specifically tackle arguably the two most lim-

ited resources on mobile—battery and network data—by opportunistically using the

cheapest network (usually WiFi). Several systems [3, 22, 30] try to use past data and

network conditions to make predictions about whether a network is useful for saving

either data or battery. These systems batch network requests while on cellular and

wait for WiFi if possible, usually having some upper limit on the amount of delay.

These strategies are certainly useful, but only for certain kinds of traffic (e.g., email,

background syncing). How reliably they could classify traffic and their effectiveness

from other app types (e.g., browsing, streaming, etc) is unknown.

The network resource management problem for mobile devices is certainly multi-

faceted, with different parties (e.g., users, platform owners, app creators) attempting

to influence the process. Context information from the device is starting to be useful

to influence resource management (e.g., Doze, STAMINA, the WiFi offloading works),

but those tools also lack sufficient flexibility without micromanaging. The situation is

13

improving, but there is still more to be done to make network resource management

flexible and effective.

With these problems and attempted solutions in mind, the following chapters

present our approaches for improving mobility and managing network resources in

today’s devices.

14

Chapter 3

Supporting Mobility

As we have seen in the previous chapters, the need for network mobility has become

paramount. Multiple network technologies (e.g., 4G and WiFi) and multiple path

choices per technology (e.g., WiFi access points) offer choice, if only the devices

could take advantage of it. While changes could be made to the network to facilitate

this [27], it is not strictly necessary. Instead, reorganizing parts of the network stack to

better delineate responsibilities and remove overloading terms can make this possible

on end-hosts themselves. In this chapter we introduce ECCP, a protocol designed to

do that, as well as Serval, a network architecture redesign that uses ECCP as a key

component.

First, in §3.1, we introduce the goals of the protocol and related efforts. §3.2

describes our design of ECCP, including how we address mobility and multihoming.

§3.3 covers a few extra aspects of the protocol including its formal verification, secu-

rity, and extensions. Finally, §3.4 introduces Serval which uses ECCP and will serve

as an evaluation platform in Chapter 4.

15

3.1 Protocol Requirements and Related Work

In this section, we define requirements to be met by an end-to-end connection control

protocol to correctly handle both location dynamism and path multiplicity. We also

discuss past works and why they do not meet our requirements.

3.1.1 Protocol Requirements

In today’s network stack, the transport layer is responsible for establishing a connec-

tion to another endpoint, and then taking an application stream and dividing it into

packets to send over the connection. On the receiving side, the transport layer demul-

tiplexes packets based on a five tuple (IP addresses, ports and protocol number) and

reassembles the application stream (while correcting for packet loss and reordering

when necessary, e.g., for TCP). This conflates data delivery and connection control

functionality. In this work, we treat connection control and data delivery as logically

separate, focusing on the requirements of connection control.

Traditionally, connection control happens at the beginning and the end of a con-

nection, i.e., when establishing and tearing down a flow. However, to support mobility,

connection control should fulfill the following requirement: two communicating hosts

are guaranteed continued connectivity even when the network addresses of either host

changes or some (but not all) of its interfaces go down.

Support for this requirement is frustrated today by the overloading of IP addresses

to indicate both the location and identity of a host. This overloading means that

every location change is also an identity change, which leads to broken connections

whenever hosts move and change their addresses or move flows to a different interface.

A change in address (i) invalidates the five tuple used to identify the communication

context in the network stack, and (ii) obsoletes the address used by a remote endpoint

to send packets. A mobility solution must address both these issues; i.e., ensure that

16

Feature ECCP HIP Mobile IP LISP ROAM MPTCP TCP-Migr TCP-R

Formally verified yes incorrect no no no no incorrect no
Per-flow migration yes no no no no no yes yes
Rapid migration yes no no no no n/a no no
End-to-end yes yes no no no yes yes yes
Multipath capable yes yes no no no yes no no
Trans. protocol agnostic yes yes yes yes yes no no no
Avoids encapsulation yes no no no no yes yes yes

Table 3.1: Comparison of ECCP with alternative approaches

the demultiplexing key remains valid and that all communication peers are informed

of address changes, even during frequent mobility and migration. We develop a

connection control protocol that allows hosts to signal address changes in the middle

of a connection. This protocol must operate correctly even when control packets are

lost, reordered, duplicated, or arbitrarily delayed, and must ensure connectivity in

both directions.

It is important to note that no end-to-end signaling protocol can handle the case

of simultaneous movement, as rare as that may be. However, the system as a whole

should ensure continued connectivity in such a case; we propose a simple, lightweight

in-network mechanism to handle this special case in §3.3.3.

3.1.2 Related Work

We divide prior work on protocols for location dynamism and path multiplicity into

two classes: (i) those that provide a transport-protocol agnostic solution at the net-

work layer (or below), and (ii) those that aim to support such functionality in specific

transport protocols. Table 3.1 gives an overview of the most relevant prior works,

along with correctness properties and features, as discussed below.

As covered in the previous chapter, for a transport-agnostic solution, much of

the work has focused on using encapsulation [27, 28, 23, 42, 10]. Packets will have

two pairs of addresses, where one pair identifies the connection endpoints and never

changes and the other is a pair of (possibly-changing) location-dependent addresses.

Most differences between them are between how they setup encapsulation and how

17

they signal changes in host locations, e.g., HIP [23] using an end-to-end protocol to

setup encapsulation versus LISP [10] and Mobile IP [27] using in-network infrastruc-

ture.

In contrast, ECCP does not rely on encapsulation, invariant host/endpoint identi-

fiers, or in-network support. Instead, ECCP’s in-stack end-to-end connection control

only requires an up-to-date address of a peer to initiate communication (typically

acquired through DNS or some alternative service resolution mechanism [24]). Once

communication state has been established, ECCP assigns this state a local ephemeral

identifier (a flowID), which is used to signal changes in addresses on a per-flow basis.

As a result, ECCP does not rely on semantically overloaded IP addresses and ports

for demultiplexing, thus sidestepping the five-tuple issue. While ECCP addresses the

identifier overloading in the stack, the downside is that both endpoints must be modi-

fied, which is not the case for most encapsulation schemes (HIP being the exception).

On the other hand, ECCP requires no network support and simplifies the implemen-

tation of transport protocols. Further, ECCP has proper multihoming support by

allowing per-flow migration between network interfaces, while encapsulation moves

all flows associated with a particular host identifier, giving less fine-grain control over

which interface a particular data flow uses.

In addition to the numerous encapsulation schemes, a number of prior works aim

to provide mobility support by modifying individual transport protocols [32, 12, 38].

These solutions typically extend the transport protocol’s signaling to handle address

changes, but doing so in a backwards compatible way can lead to incorrect results,

as discussed below. In contrast, encapsulation schemes in general handle signaling

outside the endpoint stack, which leaves the transport protocol to recover on its

own during mobility events. This can have detrimental effects on performance, e.g.,

if TCP is in a long retransmission timeout. Due to ECCP’s new division of labor

in the network stack, it has both transport-agnostic signaling and good integration

18

across multiple transport protocols, allowing retransmission timers to be frozen during

mobility events. Ford and Iyengar [11] have proposed a similar division of labor,

although not for the purpose of mobility.

TCP-R [12] was the first proposal for a modification to TCP to handle mobility,

but did not offer any details about protocol operation such as sequencing or retrans-

mission. TCP Migrate [32] specified a protocol for migration by allowing IP addresses

to change, similar to ECCP. However, as shown in §3.2.3, TCP Migrate has misbe-

having corner cases that can cause incorrect behavior during rapid migrations (for

instance, moving a flow from one interface to another and back in quick succession).

Other end-to-end signaling solutions, like HIP [23], share similar problems by rely-

ing on sequence numbers instead of version numbers for address updates, forcing the

migration protocol to wait for out-of-date migration updates that may never arrive

(§3.2.2). Protocols that rely on in-network middleboxes for migration [27, 10, 42] do

not suffer incorrect behavior during rapid migrations (due to signaling/forwarding

through a fixed rendezvous point), but are not “rapid” due to slower updates. In

contrast, ECCP correctly supports rapid flow migrations in one round trip, by using

an in-stack control protocol with version numbers.

Multipath TCP (MPTCP) [38] defines a modification to TCP that can stripe a

data stream across multiple TCP subflows, using different network paths. MPTCP

supports mobility by simply starting additional subflows on new addresses, tearing

down subflows on obsolete ones. Although ECCP shares similarities with MPTCP’s

control protocol, ECCP does not rely on TCP options. Instead, ECCP defines a new

end-to-end control protocol underneath the transport layer, thus benefiting multiple

transports. Hence, MPTCP’s data delivery functionality, such as congestion control

and data segmentation, could run on top of ECCP.

19

CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

NOADDRESS

RSYN RCVD RSYN SENTRSYN SENT RCVD

NOADDRESS RSYN RCVD

Passive open Close

RECV(SYN)*
SND(SYN+ACK)

RECV(SYN)
SND(NACK)

SND(SYN)

Timeout
SND(RST)

Close

Active open
SND(SYN)

RECV(SYN)*

SND(SYN+ACK)

RECV(NACK)
SND(SYN)

RECV(ACK)
RECV(SYN)*SND(SYN+ACK)

RECV
(SYN

+ACK
)

SND(A
CK)

SND(S
YN)

Lose address

Lose address
Lose address

L
o
se

ad
d
re
ss

N
ew

ad
d
re
ss

S
N
D
(R

S
Y
N
)

New address)
SND(RSYN)

RE
CV

(R
SY
N)
*

SN
D(
RS
YN

+
AC

K)

RECV(RSYN)*

SND(RSYN+ACK)

R
E
C
V
(R

S
Y
N
)*

S
N
D
(R

S
Y
N
+
A
C
K
)

RECV(RSYN)
SND(RSYN+ACK)

RECV(RSYN)
SND(RSYN+ACK)

RECV(RSYN
+
ACK

)*

SN
D
(ACK

)

RECV(RSYN+ACK)*

SND(ACK)

RECV(ACK)

RECV(ACK)

Figure 3.1: The ECCP state machine. Double lines indicate transitions that create a
new subflow and associated control block (state). Asterisks indicate that the receiving
state must be able to handle getting duplicate messages in an idempotent manner.

In summary, ECCP is the first end-to-end connection control protocol that simul-

taneously integrates mobility and multipath support. To our knowledge, ECCP is also

the only such protocol that has been formally verified to have correct behavior [2].

3.2 The ECCP Protocol

The design of ECCP consists of three main parts. First, endpoints perform a hand-

shake to establish a connection with a single flow. Second, the endpoints can add

additional flows to the existing connection to use additional interfaces or paths. Third,

the endpoints can change the addresses associated with ongoing flows as attachment

points change or interfaces fail. All of these parts are captured in ECCP’s state ma-

20

ECCP	 Base	 Header	 Data	 Delivery	

Src	
FlowID	

Dst	
FlowID	

Trans	
Prot	 Flags	

ECCP	 Extension	 Header	 Network	

Src	
Addr	

Dst	
Addr	

Ver	
No	

Control	
Data	

Ack	
No	

Hash	
Chain	
ID	

Figure 3.2: A conceptual view of a packet, showing the location and composition of
ECCP headers. The data delivery header is typically a regular transport header (e.g.,
TCP), although used only to provide data delivery functionality.

chine, shown in Figure 3.1. In this section, we describe the protocol and highlight

the design decisions we made.

3.2.1 Establishing a New Connection With a Single Flow

ECCP establishes connections and their constituent flows, and creates the state nec-

essary to map between flows and the underlying interfaces used for transmission. An

established connection needs to demultiplex packets to flows and be robust to mobility

events.

Decoupling demultiplexing keys from addresses. Each flow is assigned its

own identifier, called a flowID, which is essentially an opaque demultiplexing key that

maps packets to socket state. The usage of flowIDs avoids coupling demultiplexing

with specific addresses, as in the traditional “five tuple”, so that mobility does not

affect demultiplexing. FlowIDs are put in an ECCP header in-between the network

and data delivery headers, as shown in Figure 3.2. All data packets must carry at least

the ECCP base header in order for the receiving endpoint to be able to demultiplex

the packet, while ECCP control packets need not carry data. Note that the flowIDs

replace the transport header ports for the purpose of demultiplexing, except for the

first SYN packet when the destination flowID is not yet known, as we explain below.

Using separate demultiplexing keys on each host. ECCP uses explicit

flowIDs that uniquely identify the flow. Each flow has two flowIDs, one for each host,

rather than a single shared identifier. Each host demultiplexes incoming packets

21

Abstraction State

Connection local connection version #, remote connection version #
list of flows, remote interface list (IList)

Flow local flowID, remote flowID
local flow version #, remote flow version #
local Address, remote Address

Table 3.2: State stored by ECCP for connections and flows

using only its local flowID, but includes the remote flowID in outgoing packets so the

receiving host can demultiplex on its own identifier. This allows hosts to change their

own flowIDs when migrating, which is useful for NATs [2] and ensures the uniqueness

of the demultiplexing key on each host.

Exchanging alternate interface addresses for connection resilience. Dur-

ing connection establishment, the communicating end-hosts exchange a list of peer

interfaces (IList) that can be used for establishing new flows. ILists are placed in

an ECCP extension header and increase connection resilience by enabling flow es-

tablishment on alternative interfaces if the interfaces used by active flows become

unavailable.

Confirming reverse connectivity. Network paths can exhibit asymmetric con-

nectivity, where host A can reach B but B cannot reach A. In ECCP, we only allow

connections along paths on which each host is able to reach its peer; its three-way syn-

chronization handshake confirms reverse connectivity with its final acknowledgment

(ACK). Like TCP, this handshake protocol is used during connection establishment;

additionally, the handshake protocol is used when an established flow changes ad-

dresses (which TCP does not support), as discussed in §3.2.3.

Connection establishment is shown in Figure 3.3. This handshake initializes the

state of the connection and a single initial flow, as enumerated in Table 3.2. The first

SYN packet does not carry a known destination flowID, so this packet is demultiplexed

to a listening socket based on its service, typically represented by a port number or

22

Client

Addresses: A1, A2

Server

Addresses: A3, A4

1.  Demul8plex on service S

2.  Start state for new connec8on

3.  Record: flowID‐C, A1, IList‐C

4.  Generate new flow id: FlowID‐S
5.  Pick address A3 for flow

6.  Calculate IList‐S=(A3, A4)

1.  Demul8plex packet on FlowID‐C
2.  Record: FlowID‐S, A3, and IList‐S

1.  Connec8ng to service on address (A3) and Service (S)

2.  Generate new flow id: FlowID‐C

3.  Pick address A1 for flow

4.  Calculate IList‐C=(A1, A2)

SYN | SRC A1 | DST A3 (S)

FlowID‐C ; IList‐C

SYN‐ACK | SRC A3 | DST A1

FlowID‐C

FlowID‐S ; IList‐S

ACK | SRC A1 | DST A3

FlowID‐C
FlowID‐S

Time Time

Figure 3.3: The ECCP protocol for establishing a new connection, using a three-way
handshake similar to TCP. However, ECCP endpoints also share which interfaces
they allow flows on and use flowIDs instead of IP/port.

other service identifier [24] carried in the packet. After establishing a connection,

ECCP places the appropriate IP addresses and flowIDs in outgoing packets, and

future packets are demultiplexed based on the destination flowID only.

3.2.2 Adding Flows to an Existing Connection

Either endpoint can add flows to an existing connection, in order to spread traffic

over multiple interfaces or paths. Figure 3.4 shows how a client adds a flow between

local address A2 and server address A4; the steps for the server to add a flow are

analogous.

Supporting flexible policies for interface selection. To establish a new flow,

the two endpoints must agree on which pair of interfaces to use. Each host may have

its own policies for selecting interfaces, based on performance, reliability, and cost.

For example, a smartphone user may prefer to use a low-cost, high-performing WiFi

23

1.  Generate new flow id: FlowID’‐C
2.  Pick an address A2 for flow

3.  Choose exis8ng FlowID‐S on connec8on
4.  Choose DST address A4 from IList‐S

1.  Demul8plex to connec8on on FlowID‐S

2.  Add new flow to the connec8on state

3.  Record: FlowID’‐C, A2

4.  Generate new flow id: FlowID’‐S

5.  Pick an address A4 for new flow

1.  Demul8plex packet on FlowID’‐C
2.  Record: FlowID’‐S, A4

SYN | SRC A2 | DST A4

FlowID’‐C

FlowID‐S

SYN‐ACK | SRC A4 | DST A2

FlowID’‐C

FlowID’‐S

ACK | SRC A2 | DST A4

FlowID’‐C
FlowID’‐S

Time Time

Client

Addresses: A1, A2

Server

Addresses: A3, A4

Figure 3.4: Adding a new flow to an existing connection in ECCP.

interface for high-bandwidth applications, instead of the more reliable (but more

expensive) cellular interface. (If the WiFi connectivity is no longer available, the

endpoint could migrate the flow to the cellular interface to continue the connection.)

To support flexible local policies, ECCP allows each endpoint to select its own

interface. The initiating host selects a local interface (and associated IP address)

for the new flow, and sends a SYN packet to one of the interfaces in the IList of

the remote endpoint. Upon receiving the SYN, the remote endpoint either agrees to

establish a new flow on the interface it received the SYN packet on, or it responds

with a NACK packet, as shown in Figure 3.5. An alternative to using a NACK would

be for the peer to simply respond with a SYN-ACK from the interface it prefers

to use, but this approach fails to test connectivity from the initiating host to the

preferred interface prior to establishing the connection. Note that while the initiating

endpoint may influence the decision (e.g., by picking a remote interface based on past

performance), the remote endpoint has the final say on which of its local interfaces

to use.

24

1.  Generate new flow id: FlowID’‐C
2.  Pick an address A2 for flow

3.  Choose exis8ng FlowID‐S on connec8on
4.  Choose DST address A4 from IList‐S

1.  Demul8plex to connec8on on FlowID‐S

2.  Server prefers A3 to A4

SYN | SRC A2 | DST A4

FlowID’‐C

FlowID‐S

NACK | SRC A4 | DST A2

FlowID’‐C

FlowID‐S

Prefer A3

Time Time

Client

Addresses: A1, A2

Server

Addresses: A3, A4

1.  Demul8plex packet on FlowID’‐C

2.  Update peer address to A3

SYN | SRC A2 | DST A3

FlowID’‐C

FlowID‐S

Protocol con)nues as in Figure 5

Figure 3.5: Choosing a different interface for a new flow in ECCP.

3.2.3 Changing the IP Addresses of Existing Flows

When a host changes location due to device mobility, VM migration, or failover,

it needs to preserve flow connectivity by notifying its peers of its new network ad-

dress(es). We present the ReSYNchronize protocol used to update the peers in Fig-

ure 3.6, where the mobile host changes its address and notifies the stationary host.

The mobile host can optionally change its own flowID during migration (see section

on NATs in [2]). Once a mobile host establishes a new address for one of its interfaces,

it runs this protocol on every flow using that interface.

Protocol for updating ILists. This resynchronization protocol is also used

to update the IList, even if the address on active flows does not change (e.g., an

alternative interface established connectivity). In that case, the new address on the

flow simply remains the same as the old one; only the IList changes. The IList

is always updated as a single entity with the new list overriding the old one. No

incremental update protocol is provided, in order to avoid introducing convergence

issues where the two communicating end-hosts disagree on the contents of the IList.

25

Because the IList is not very large, the amount of communication overhead saved

with an incremental update protocol is not worth the added protocol complexity.

Use of version numbers. Upon receiving an RSYN packet, a host needs to

determine that the change of address does not reflect a past event. For example, if

a client moves from address A1 to A2 to A3, the server may receive the migration

request for A3 before A2, and should therefore ignore the migration to A2 since it

is no longer valid. To avoid acting on past events, ECCP uses version numbers,

which are separate from any sequence numbers used by the data delivery protocol

to, for example, implement a reliable data stream on top of ECCP. This allows

ECCP to support different data delivery protocols. Version numbers semantics are

also markedly different than the familiar semantics of TCP-style sequence numbers:

while sequence numbers require processing all packets up to N−1 before processing

packet N , ECCP’s version numbers simply require that the packet being received

has a greater version number than any packet seen previously. Any packets that

arrive with a version number less than the largest version number a host has seen are

ignored. These semantics are necessary for correctness: migration message processing

should not be delayed waiting for stale migration messages, as they may not be

deliverable. (And even if they are, stale information is not useful anyway, as the

interface address has subsequently changed.) These semantics are also robust in the

face of rapid migrations: previous migration attempts do not need to complete before

later ones. Notably, protocols such as HIP [23], which use sequence numbers for

migration messages, can break under rapid migration because a new migration may

occur before an older migration has been acknowledged. Finally, ECCP employs two

separate types of version numbers: (i) one for each flow, used to order the migration

requests of each flow, and (ii) one for each connection that orders updates to the

IList.

26

1.  Get A5, a new network address

2.  Take non‐migrated flow (with FlowID‐M)

3.  (Op8onally) Change the flowID to FlowID’‐M

4.  Calculate an updated IList’‐M=(A5, A6).

5.  Increments Version #‐M

1.  Demul8plex to flow on FlowID‐S

2.  Check that Version #‐M is greater

than previously seen peer Version #

3.  Record: A5. IList’‐M in flow state.

1.  Demul8plex on FlowID’‐M

2.  Record the flow as migrated.

Mobile

Addresses: A5, A6

Sta8onary

Addresses: A3, A4

RSYN | SRC A5 | DST A3

Version #‐M

FlowID’‐M | Ilist’‐M

FlowID‐S

SYN‐ACK | SRC A3 | DST A5

Version #‐M

FlowID’‐M

FlowID‐S

ACK | SRC A5 | DST A3

Version #

FlowID’‐M

FlowID‐S

Time Time

1.  Change peer flowID to flowID’‐M

and peer address to A5.

Figure 3.6: The ECCP protocol for changing the address associated with an already
established flow. FlowIdm and FlowIds are the IDs for the flow, while A5 is the new
address and (A5,A6) is the new interface list.

Explicit acknowledgments. The ECCP protocol requires a migration acknowl-

edgment to explicitly include the version number of the flow’s migration. Alterna-

tively, TCP Migrate uses the fact that it received data packets on the new address

as a de facto acknowledgment that a migration message was received. We found this

method of implicit acknowledgments to have incorrect corner-cases. We illustrate one

such incorrect case in Figure 3.7, in which the packet sent at time T1 is delayed and

received at time T3, where it is assumed (incorrectly) to acknowledge the packet sent

at time T2 (which is lost). At the end of this trace, the stationary host believes that

the mobile host is at address A12, while its real address is A11. At the same time,

the mobile host believes that its migration protocol has completed successfully. In

ECCP, ACK packets carry the version number of the flow migration and thus avoid

this issue, but they can still be piggy-backed on data packets.

27

Last Data Seq # sent is 101

Address change: A10‐>A11

Address change: A11‐>A12

Mobile

Addresses: A10

Sta8onary

Addresses: A9

RSYN | SRC A11 | DST A9

Time Time

RSYN | SRC A12 | DST A9

ACK 101 | SRC A9 | DST A11

ACK 101 | SRC A9 | DST A12

Address change: A12‐>A11

RSYN | SRC A11 | DST A9

T1

T2

T3

Figure 3.7: An example of a misbehaving protocol trace when using implicit ACKs
to confirm migration.

3.3 Other Concerns

3.3.1 Verification

Because of the edge cases and general difficulty of designing a network protocol that

supports migration (Table 3.1), the original ECCP work [2] formally verifies the

protocol. While not directly related to the work of this thesis, it is nonetheless

important since ECCP is used as a major feature of Serval, which in turn is used in

our evaluation of Tango.

The formal verification explored in the original paper uses SPIN [14] to model

the protocol. The formal verification checks the correctness of ECCP by checking

that it is safe (i.e., free from deadlocks) and liveness. Using novel techniques to

model an unreliable network and to reduce the search space that needs to be checked,

we verified that ECCP was free from deadlocks and livelocks through at least 6

migrations. Further details about this process can be found in the original paper [2].

28

3.3.2 Security

ECCP, like other connection-based network protocols, is potentially vulnerable to two

main classes of malicious attacks: denial of service (DoS) and hijacking. A protocol is

particularly vulnerable to a DoS attack if a request from an unverified party can cause

a host to spend an asymmetric amount of resources. The classic example of a DoS

attack is SYN flooding, where cheaply crafted (and typically spoofed) SYN packets

cause a server to allocate kernel memory buffers. Nothing in the ECCP protocol

requires excessive memory or computation to process the initial handshake or the

migration protocol. SYN cookies [5] can also be used to prevent the allocation of

kernel state to a new connection before return reachability is tested.

Protocol support for migration introduces new potential threats from attackers,

who may try to (i) hijack ongoing connections by inserting control messages into the

communication stream, or (ii) disrupt connections by sending fake migration mes-

sages. Some protocols [32] rely on using public-key cryptography to secure control

packets to reduce risks of both off-path and on-path attackers. However, this is typi-

cally a computationally expensive operation.

Instead, in ECCP, we use hash chains [20] to address hijacking attempts 1. When

beginning a connection, both ends derive a nonce, M, and apply a one-way hash

function for N iterations. N should be larger than the number of control messages

expected in a connection (e.g., 100). Each side stores the chain locally and exchanges

the final result when creating the connection. Each control message thereafter will

then send an intermediate value of the hash chain that is X-1 iterations from the

end result, where X is the version number of the control packet. This other side will

perform the hash function for X-1 iterations to confirm that the final result is the

initial value exchanged.

1Originally in [2] we only used a nonce to prevent off-path attackers but not on-path attackers.

29

This will prevent both off-path attackers as well as on-path attackers who cannot

modify packets but can inject their own packets. Neither type of attacker will be

able to guess the correct intermediate hash value since the hash function is one way,

so even having the end result (e.g., the on-path attacker) is not useful. These hash

functions are typically very fast—the latest candidates for SHA-3 can do thousands of

Mbps [31]—so they will be better than doing public-key cryptography. Further, the

hash is only needed when verifying control messages and not data messages, which

are comparatively infrequent (i.e., only on migration events).

3.3.3 Simultaneous Movement

Although not a usual occurrence, an ECCP connection is robust to simultaneous

movement as long as both endpoints do not move before receiving the other endpoint’s

address update (RSYN). In other words, the protocol can survive an incomplete three-

way handshake and simply requires that one packet gets through to a peer before

the peer itself can move. Note that no end-to-end signaling protocol can, by itself,

handle the rare case when both hosts send address updates to each other and then

simultaneously move before either receives the other’s update.

However, we can handle this rare case by adding an optional, lightweight redi-

rection cache in the local network of either communicating host. This cache keeps

short-lived redirection state pointing to the new locations of hosts that have recently

migrated out of its network. The address of the in-network box responsible for the

cache can be learned by a mobile host when joining the network (e.g., through DHCP).

When a mobile host moves, it sends a message to the redirection box of its old net-

work to add a pointer to its new location. Upon getting a new cache entry, the

redirection box takes over the now migrated host’s old address for the duration of the

cache entry (via gratuitous ARP-flooding or a similar mechanism). In this way, the

redirection box will receive all messages meant for the migrating host, including the

30

RSYNs sent by peers that have moved simultaneously. Upon getting such an RSYN,

the redirection box simply redirects the packet (through, e.g., encapsulation or ad-

dress rewriting) toward the host’s new address. All packets other than RSYNs can

be dropped by the redirection box. Upon getting a redirected RSYN, the migrated

host learns the new address of its peer that moved simultaneously and initiates its

own RSYN handshake targeting this address.2

Note that the redirection cache only needs to keep its cache entries for short

durations (e.g., seconds), as it only needs to redirect a single RSYN to a migrated

host. Further, it is sufficient that only one of the migrated hosts have a redirection

cache in its old network for this approach to be effective.

This scheme’s use of ephemeral redirection also benefits privacy. While triangle

routing solutions such as Mobile IP [27, 28] (see §3.1) require an authoritative mid-

dlebox for each client that sees the full history of a client’s movements, a host in our

setting only needs to notify the redirection box of its last visited network.

3.4 Bigger Picture: Serval

The splitting of the transport layer makes ECCP useful not only for mobility of

client devices, but also for backend services which are increasingly run in VMs or

containers on platforms like Amazon Web Services [15]. To that end, we used ECCP

as a key component of a network architecture called Serval, which was designed to

be better suited to handle the multiplicity and dynamism seen in today’s networks.

This includes being able to handle mobility (e.g., mobile clients, migrating backend

services), but Serval also addresses naming and managing backend services. For this

thesis, we focus on how the areas of Serval that make use of ECCP and help improve

the mobility of devices. Our Serval prototype also serves as our evaluation platform

2The migrated host does not send an RSYN-ACK in response to a redirected RSYN, because
such an RSYN did not take the direct path that the handshake aims to verify for bidirectional
connectivity.

31

for ECCP through various case studies in the next chapter. The Serval prototype

also lets us consider when and how to use mobility in real-world scenarios, which we

utilize in Chapters 5 and 6. For more details on the Serval architecture, including

aspects not directly related to mobility, see the original paper [24].

3.4.1 Naming Abstractions

Serval uses two naming abstractions to reduce the overloading of identifiers within

and across layers of the network stack. First, a host-local identifier that is an imple-

mentation of the flowID abstraction from ECCP (and also uses the flowID moniker).

The second is a serviceID, which are used to name groups of processes offering the

same backend service. Using these two identifiers in upper layers of the network stack,

instead of the traditional IP/port, improve mobility for clients and backend services

and reduce unnecessary coupling of functionality to IP/port.

Explicit Host-Local Flow Naming

As previously discussed (§3.2), ECCP splits the transport layer into two layers: one

controlling the connection management and the other for data-delivery (e.g., TCP

in the ESTABLISHED state). In Serval, flowIDs are the identifiers used by ECCP

to name a connection on each host, replacing the traditional five-tuple. Figure 3.8

shows what packet headers look like in Serval; you will notice it is the same as ECCP’s

headers (Figure 3.2) with slight modifications. Serval benefits from using ECCP in

the following ways:

Network-layer oblivious: By forgoing the traditional five-tuple, Serval can

identify flows without knowing the network-layer addressing scheme. This allows

Serval to transparently support both IPv4 and IPv6, without the need to expose

alternative APIs for each address family.

32

Service	 Access	 Transport	

App	
Prot	

…	 Source	
FlowID	

Dest	
FlowID	

Trans	
Prot	 Flags	

Service	 Access	 Extension	 Network	

Src	
Addr	

Dst	
Addr	

Ver	
No	 ServiceID	 Ack	

No	

Hash	
Chain	
ID	

Figure 3.8: New Serval identifiers visible in packets, between the network and trans-
port headers. Some additional header fields (e.g., checksum, length, etc.) are omitted
for readability.

Mobility and multiple paths: FlowIDs help identify flows across a variety of

dynamic events. Such events include flows being directed to alternate interfaces or

the change of an interface’s address (even from IPv4 to IPv6, or vice versa), which

may occur to either flow end-point. Serval can also associate multiple flows with each

socket in order to stripe connections across multiple paths.

Middleboxes and NAT: FlowIDs help when interacting with middleboxes. For

instance, a Serval-aware network-address translator (NAT) rewrites the local sender’s

network address and flowID. But because the remote destination identifies a flow

solely based on its own flowID, the Serval sender can migrate between NAT’d networks

(or vice versa), and the destination host can still correctly demultiplex packets.

No transport port numbers: Unlike port numbers, flowIDs do not encode

the application protocol; instead, application protocols are optionally specified in

transport headers. This identifier particularly aids third-party networks and service-

oblivious middleboxes, such as directing HTTP traffic to transparent web caches

unfamiliar with the serviceID, while avoiding on-path deep-packet inspection. Appli-

cation end-points are free to elide or misrepresent this identifier, however.

Format and security: The security benefits presented in §3.3.2 allow Serval to

be protected from off-path attackers as well as certain on-path attacks.

33

Group-Based Service Naming

A Serval service name, called a serviceID, corresponds to a group of one or more

(possibly changing) processes offering the same service (e.g., a web app, FTP, email,

etc). ServiceIDs are carried in network packets, as illustrated in Figure 3.8. This

allows for service-level routing and forwarding, enables late binding, and reduces the

need for deep-packet inspection in load balancers and other middleboxes. A service

instance listens on a serviceID for accepting incoming connections, without exposing

addresses and ports to applications. When used in conjunction with ECCP’s concept

of flowIDs, it efficiently solves issues of mobility and virtual hosting. While not

directly related to ECCP, we briefly cover the benefits of serviceIDs here to give

context to larger Serval design:

Service granularity: Service names do not dictate the granularity of service

offered by the named group of processes. A serviceID could name services ranging

from a single SSH daemon to an entire distributed web service. This group abstraction

hides the service granularity from clients and gives service providers control over server

selection. Individual instances of a service group that must be referenced directly

should use a distinct serviceID (e.g., a sensor in a particular location). This allows

Serval to forgo host identifiers entirely, avoiding an additional name space while still

making it possible to pass references to third parties.

Format of serviceIDs: Ultimately, system designers and operators decide what

functionality to name and what structure to encode into service names. For the fed-

erated Internet, however, we imagine the need for a congruent naming scheme. For

flexibility, in our prototype we use a large 256-bit serviceID namespace, although

other forms are possible (e.g., reusing the IPv6 format could allow reuse of its exist-

ing socket API). A large serviceID namespace is attractive because a central issuing

authority (e.g., IANA) could allocate blocks of serviceIDs to different administrative

entities, for scalable and authoritative service resolution. The block allocation ensures

34

that a service provider can be identified by a serviceID prefix, allowing aggregation

and control over service resolution. The prefix is followed by a number of bits that

the delegatee can further subdivide to build service-resolution hierarchies or provide

security features. Other schemes are discussed further in [24].

Learning service names: Serval does not dictate how serviceIDs are learned.

We envision that serviceIDs are sent or copied between applications, much like URIs.

We purposefully do not specify how to map human-readable names to serviceIDs,

to avoid the legal tussle over naming [8, 35]. Users may, based on their own trust

relationships, turn to directory services (e.g., DNS), search engines, or social net-

works to resolve higher-level or human-readable names to serviceIDs, and services

may advertise their serviceIDs via many such avenues.

3.4.2 The Serval Network Stack

We now introduce the Serval network stack, shown in Figure 3.9. The stack offers

a clean service-level control/data plane split: the user-space service controller can

manage service resolution based on policies, listen for service-related events, moni-

tor service performance, and communicate with other controllers; the Service Access

Layer (SAL), which is ECCP’s connection management layer with some extra features,

provides a service-level data plane responsible for connecting to services through for-

warding over service tables. Once connected, the SAL maps the new flow to its socket

in the flow table, ensuring incoming packets can be demultiplexed. Using in-band sig-

naling via ECCP, additional flows can be added to a connection and connectivity can

be maintained across physical mobility and virtual migrations. Applications interact

with the stack via active sockets that tie socket calls (e.g., bind and connect) directly

to service-related events in the stack. These events cause updates to data-plane state

and are also passed up to the control plane (which subsequently may use them to

update resolution and registration systems).

35

Transport	

Kernel	
Network	
Stack	

User	
Space	

Applica5on	
Socket	

Service	
Controller	

FlowID	 Socket	

Flow	 Table	

Data	 Delivery	

Service	
Control	 API	

ServiceID	 Ac7on	 Sock/Addr	

Service	 Table	

Ac5ve	
Sockets	

bind()	 	 	 	 	 close()	

Remote	
Service	

Controller	

Connected	
Flow	

SYN	
Datagram	

Service	
Access	

Network	
Dest	 Address	 Next	 Hop	

IP	 Forwarding	 Table	

Figure 3.9: Serval network stack with service-level control/data plane split.

In the rest of this section, we first describe how applications interact with the

stack through active sockets, and then continue with detailing the SAL. We end the

section with describing how the SAL uses ECCP as an in-band signaling protocol.

Active Sockets

By communicating directly on serviceIDs, Serval increases the visibility into (and

control over) services in the end-host stack. Through active sockets, stack events

that influence service availability can be tied to a control framework that reconfigures

the forwarding state, while retaining a familiar application interface.

Active sockets retain the standard BSD socket interface, and simply define a new

sockaddr address family, as shown in Table 3.3. More importantly, Serval generates

service-related events when applications invoke API calls. A serviceID is automat-

ically registered on a call to bind, and unregistered on close, process termination,

or timeout. Although such hooks could be added to today’s network stack, they

would make little sense because the stack cannot distinguish one service from an-

other. Because servers can bind on serviceID prefixes, they need not listen on

36

PF INET PF SERVAL

s = socket(PF INET) s = socket(PF SERVAL)

bind(s,locIP:port) bind(s,locSrvID)

// Datagram: // Unconnected datagram:

sendto(s,IP:port,data) sendto(s,srvID,data)

// Stream: // Connection:

connect(s,IP:port) connect(s,srvID)

accept(s,&IP:port) accept(s,&srvID)

send(s,data) send(s,data)

Table 3.3: Comparison of BSD socket protocol families: INET sockets (e.g., TCP/IP)
use both IP address and port number, while Serval simply uses a serviceID.

multiple sockets when they provide multiple services or serve content items named

from a common prefix. While a new address family does require minimal changes

to applications, porting applications is straightforward (§4.1.3), and a transport-level

Serval translator can support unmodified applications (§4.3).

On a local service registration event, the stack updates the local service table

and notifies the service controller, which may, in turn, notify upstream service con-

trollers. Similarly, a local unregistration event triggers the removal of local rules and

notification of the service controller. This eliminates the need for manual updates

to name-resolution systems or load balancers, enabling faster failover. On the client,

resolving a serviceID to network addresses is delegated to the SAL—applications just

call the socket interface using serviceIDs and never see network addresses. This allows

the stack to “late bind” to an address on a connect or sendto call, ensuring resolu-

tion is based on up-to-date information about the instances providing the service. By

hiding addresses from applications, the stack can freely change addresses when either

end-point moves, without disrupting ongoing connectivity.

A Service-Level Data Plane

The SAL is responsible for late binding connections to services and maintaining them

across changes in network addresses. Packets enter the SAL via the network layer, or

37

IP	 Forwarding	 Table	

Client	 App	

ServID	 Ac6on	 State	

*	 FORW	 Addr	 b	
FlowID	 Sock	

1	 sC	

Socket	 sC	 	

IP	 Forwarding	 Table	

ServID	 Ac6on	 State	

X	 FORW	 Addr	 g	

IP	 Forwarding	 Table	

ServID	 Ac6on	 State	

X	 DEMUX	 Sock	 sx	

FlowID	 Sock	

Server	
Instance	

Socket	 sX	 	

Addr	 b	 	 Addr	 g	 	

Figure 3.10: Serval forwarding between two end-points through an intermediate ser-
vice router (SR).

as part of traffic generated by an application. The first packet of a new connection (or

an unconnected datagram) includes a serviceID, as shown in the header in Figure 3.8.

The stack performs longest prefix matching (LPM) on the serviceID to select a rule

from the service table. ServiceID prefixes allow an online service provider to host

multiple services (each with its own serviceID) with more scalable service discovery,

or even use a prefix to represent different parts of the same service. More generally,

the use of prefixes reduces the state and frequency of service routing updates towards

the core of the network. The rules are used by the service table are similar to an

IP routing table, where packets can be forwarded (i.e., a FORWARD rule), sent to a

local process (i.e., a DEMUX rule), and more [24].

Events at the service controller, or interface up/down events, trigger changes in

service table rules. A “default” FORWARD rule, which matches any serviceID, is

automatically installed when an interface comes up on a host (and removed when

it goes down), pointing to the interface’s broadcast address. This rule can be used

for “ad hoc” service communication on the local segment or for bootstrapping into a

wider resolution network (e.g., by finding a local SR).

Figure 3.10 shows the use of the service table during connection establishment

or connection-less datagram communication. A client application initiates communi-

cation on serviceID X, which is matched in the client’s service table to a next-hop

38

destination address. The address could be a local broadcast address (for ad hoc com-

munication) or a unicast address (either the final destination or the next-hop SR, as

illustrated). Upon receiving a packet, the SR looks up the serviceID in its own ser-

vice table; given a FORWARD rule, it readdresses the packet to the selected address.

At the ultimate destination, a DEMUX rule delivers the packet to the socket of the

listening application.

Service-level anycast forwarding: Serval’s late-binding resolution and active

sockets provide advantages for replicated backend services. A replicated backend

service would have a SR that has rules for each instance of the service, and incoming

SYN packets would first hit the SR, and then be be balanced to the services to spread

the load. Unlike current systems, however, the SYN packet is the only one that

needs to go through this step, as future packets could simply communicate directly

to their service instance. Since the SR lives near the service instances (e.g., the

same datacenter), and its rules are updated via Serval’s active sockets, it knows when

services go down and can direct new connections appropriately.

The indirection of the SYN may increase its delay, but the data packets, which

make up the vast majority of the connection traffic, are unaffected. In comparison,

the lack of indirection support in today’s stack requires putting load balancers on

data paths, or tunneling all packets from the one location to another when hosts

move.

End-Host Signaling for Multiple Flows and Migration

Serval utilizes ECCP as its in-band signaling protocol to support multiplicity and

dynamism. With the SAL functioning as ECCP’s connection managment layer, it

can establish multiple flows (over different interfaces or paths) to a remote end-point,

and seamlessly migrate flows over time. As mentioned in §3.4.1, Serval uses flowIDs

instead of ports as a host-local demux key, and because we use ECCP, control mes-

39

sages (e.g., for creating and tearing down flows) are separate from the data stream

and have their own message (i.e., version) numbers.

Multi-homing and multi-pathing: Serval can split a socket’s data stream

across multiple flows established and maintained by the SAL on different paths. Con-

sider the example in Figure 3.11, where two multi-homed hosts have a socket that

consists of two flows. The first flow, created when the client C first connects to the

server S, uses local interface a1 and flowID fC1 (and interface a3 and flowID fS1 on

S). Using ECCP’s ILists, hosts can send a list of other available interfaces (e.g., a2

for C, and a4 for S) in a SAL extension header, to enable the other host to create

additional flows using a similar three-way handshake. For example, if S’s SYN-ACK

packet piggybacks information about interface address a4, C could initiate a second

flow from a2 to a4.

Connection affinity across migration: By ECCP’s design, the transport layer

in Serval is unaware of flow identifiers and interface addresses. Therefore, the SAL

can freely migrate a flow from one address, interface, or path to another. This allows

Serval to support client mobility, interface failover, and virtual machine migration

with a single simple flow-resynchronization primitive. Obviously, these changes would

affect the round-trip time and available bandwidth between the two end-points, which,

in turn, affect congestion control. Yet, this is no different to TCP than any other

sudden change in path properties. Further, the SAL can notify transport protocols

on migration events to ensure quick recovery. For example, a connection using TCP

could temporarily freeze timers until the migration is complete to reduce the effect

of lost packets during migrations on TCP state or TCP could re-enter slow start to

more gracefully handle the path change.

Returning to Figure 3.11, suppose the interface with address a3 at server S fails.

Then, then server’s stack can move the ongoing flow to another interface (e.g., the

interface with address a4). To migrate the flow, S sends C an RSYN packet (for

40

sC	 sS	
fS2	

fS1	 fC1	

fC2	

a1	

a2	

a3	

Host	 C	 Host	 S	

a4	

Figure 3.11: Schematic showing relationship between sockets, flowIDs, interfaces,
addresses, and paths.

“resynchronize”) with flowIDs 〈fS1, fC1〉 and the new address a4. The client returns

an RSYN-ACK, while waiting for a final acknowledgment to confirm the change. Se-

quence numbers in the resynchronization messages ensure that the remote end-points

track changes in the identifiers correctly across multiple changes, even if RSYN and

RSYN-ACK messages arrive out of order.

Additionally, since Serval is built on-top of ECCP, the stack has the same char-

acteristics when it comes to simultaneous migration, security, NATs, etc (§3.3).

41

Chapter 4

ECCP/Serval Evaluation

4.1 Serval Prototype

For this thesis, we focus on evaluating ECCP as part of a Serval prototype and

the insights gained from that experience. Through prototyping, we have (i) learned

valuable lessons about our design, its performance, and scalability, (ii) explored

incremental-deployment strategies, and (iii) ported applications to study how Ser-

val’s (and ECCP’s) abstractions benefit them. In this section, we describe our Serval

prototype and expand on these three aspects.

4.1.1 Lessons From the Serval Prototype

Our Serval stack consists of about 28,000 lines of C code, excluding support libraries,

test applications, and daemons. The stack runs natively in the Linux kernel as a

module, which can be loaded into an unmodified and running kernel. The module can

run on Android, enabling us to easily bring connection migration to mobile devices.

The prototype supports most features—migration, SAL forwarding, etc.—with the

notable exception of multi-path, which is left as future work. The SAL implements

the service table (with FORWARD and DEMUX rules), service resolution, and end-

42

point signaling. The service controller interacts with the stack via a Netlink socket,

installing service table rules and reacting on socket calls (bind, connect, etc.). The

stack supports TCP and UDP equivalents, where UDP can operate in both connected

mode (with service instance affinity) and unconnected mode (with every packet routed

through the service table).

The introduction of the SAL inevitably had implications for the transport layer,

as a goal was to be able to late bind connections to services. That is, apps bind

on serviceIDs and the particular service instance’s network address is determined by

resolving through successive service controllers. Although we could have modified

each transport protocol separately, providing a standard solution in the SAL made

more sense. Further, since today’s transport protocols need to read network-layer ad-

dresses for demultiplexing purposes, changes are necessary to fully support migration

and mobility. Another limitation of today’s transport layer is the limited signaling

they allow. TCP extensions (e.g., MPTCP and TCP Migrate) typically implement

their signaling protocols in TCP options for compatibility reasons. However, these

options are protocol specific, can only be piggybacked on packets in the data stream,

and cannot consume sequence space themselves. Options are also unreliable, since

they can be stripped or packets resegmented by middleboxes. To side-step these

difficulties, the SAL uses its own sequence numbers for control messages.

We were presented with two approaches for rewiring the stack: using UDP as a

base for the SAL (as advocated in [11]), or using our own “layer-3.5” protocol head-

ers. The former approach would make our changes more transparent to middleboxes

and allow reuse of an established header format (e.g., port fields would hold flowIDs).

However, this solution requires “tricks” to be able to demultiplex both legacy UDP

packets and SAL packets when both look the same. Defining our own SAL headers

therefore presented us with a cleaner approach. We also offer optional UDP encapsu-

lation for traversing legacy NATs and other middleboxes, which otherwise might drop

43

TCP Mean Stdev UDP Tput Pkts Loss

Stack Mbit/s Mbit/s Router Mbit/s Kpkt/s Loss %

TCP/IP 934.5 2.6 IP Forwarding 957 388.4 0.79
Serval 933.8 0.03 Serval 872 142.8 0.40
Translator 932.1 1.5

Table 4.1: TCP throughput of the native TCP/IP stack, the Serval stack, and the
two stacks connected through a translator. UDP routing throughput of native IP
forwarding and the Serval stack.

or mishandle unfamiliar protocols. Recording addresses in a SAL extension headers

also helps comply with ingress filtering (§4.3).

Since Serval uses ECCP in the SAL, the transport layer does not perform connec-

tion establishment, management, and demultiplexing. Despite this seemingly radical

change, we could adapt the Linux TCP code with few changes. Serval only uses the

TCP functionality that corresponds to the ESTABLISHED state, which fortunately is

mostly independent from the connection handling. In the Serval stack, packets in an

established data stream are simply passed up from the SAL to a largely unmodified

transport layer. If anything, transport protocols are less complex in Serval, by having

shared connection logic in the SAL. Our stack coexists with the standard TCP/IP

stack, which can be accessed simultaneously via PF INET sockets.

4.1.2 Performance Microbenchmarks

The first part of Table 4.1 compares the TCP performance of our Serval prototype,

utilizing ECCP, to the regular Linux TCP/IP stack. The numbers reflect the aver-

age of ten 10-second TCP transfers using iperf between two nodes, each with two

2.4 GHz Intel E5620 quad-core CPUs and GigE interfaces, running Ubuntu 11.04.

Serval TCP is very close to regular TCP performance and the difference is likely ex-

plained by our implementation’s lack of some optimizations. For instance, we do not

support hardware checksumming and segmentation offloading due to the new SAL

44

headers. Furthermore, we omitted several features, such as SACK, FACK, DSACK,

and timestamps, to simplify the porting of TCP, but can be included in the future.

We speculate that the lack of optimizations may also explain Serval’s lower stdev,

since the system does not drive the link to very high utilization, where even modest

variations in cross traffic would lead to packet loss and delay. The table also includes

numbers for our translator (§4.3), which allows legacy hosts to communicate with

Serval hosts. The translator (in this case running on a third intermediate host) uses

Linux’s splice system call to zero-copy data between a legacy TCP socket and a

Serval TCP socket, achieving high performance. As such, the overhead of translation

is minimal.

The second part of Table 4.1 depicts the relative performance of a Serval service

router versus native IP forwarding. Here, two hosts run iperf in unconnected UDP

mode, with all packets forwarded over an intermediate host through either the SAL

or just plain IP. Throughput was measured using full MSS packets, while packet rate

was tested with 48-byte payloads (equating to a Serval SYN header) to represent

resolution throughput. Serval achieves decent throughput (91% of IP), but suffers

significant degradation in its packet rate due to the overhead of its service table

lookups. Our current implementation uses a bitwise trie structure for LPM. With

further optimizations, like a full level-compressed trie and caching (or even TCAMs

in dedicated service routers), we expect to bridge the performance gap considerably.

4.1.3 Application Portability

We have added Serval support to a range of network applications to demonstrate

the ease of adoption. Modifications typically involve adding support for a new

sockaddr sv socket address to be passed to BSD socket calls. Most applications

already have abstractions for multiple address types (e.g., IPv4/v6), which makes

adding another one straightforward.

45

Application Version Codebase Size Serval Changes

Iperf 2.0.0 5,934 240
TFTP 5.0 3,452 90
Wget 1.12 87,164 207
Elinks browser 0.11.7 115,224 234
Firefox browser 3.6.9 4,615,324 70
Mongoose webserver 2.10 8,831 425
Apache Bench / APR 1.4.2 55,609 244

Table 4.2: Applications currently ported to Serval. Codebase size and Serval changes
measured in lines of code.

Table 4.2 overviews the applications we have ported and the lines of code changed.

Running the stack in user-space mode necessitates renaming API functions (e.g., bind

becomes bind sv). Therefore, our modifications are larger than strictly necessary for

kernel-only operation. In our experience, adding Serval support typically takes a few

hours to a day, depending on application complexity.

4.2 Experimental Case Studies

While Serval provides many benefits to both backends and clients, in this section we

focus on case studies pertaining to this thesis, i.e., those utilizing ECCP’s support for

mobility. Other evaluation case studies involving replicated web services and scalable

backend services are evaluated in the Serval paper [24].

In a cloud setting, webservers may run in virtual machines that can be migrated

between hosts to distribute load. This is particularly attractive to “public” cloud

providers, such as Amazon (EC2) or Rackspace (Mosso), which do not have visibility

into or control over service internals. Traditionally, however, VMs can be migrated

only within a layer-2 subnet, of which large datacenters have many, since network

connections are bound to fixed IP addresses and migration relies on ARP tricks.

Further, this (limited) mobility is only supported for the backends; clients cannot

migrate between networks even when in would be useful, such as a student crossing

46

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (s)

Flow 1
Flow 2

Figure 4.1: A Serval-enabled host migrates one of the flows sharing a GigE interface
to a second interface, yielding higher throughput for both.

a campus with spotty WiFi while trying to stream media to their phone. To that

end, we show how Serval can be used to balance network load, enable VM migration

across IP subnets, and allow a phone to switch networks seamlessly.

Interface load balancing: Modern devices, including smartphones on the client

side and commodity servers in datacenters, have multiple physical network interfaces.

Because of ECCP, a Serval-enabled device can accept or connect using one interface,

and then migrate the flow to a different interface (possibly on a different layer-3

subnet) without breaking connectivity. To demonstrate this functionality, we ran an

iperf server on a host with two GigE interfaces. Two iperf clients then connected

to the server and began transfers to measure maximum throughput, as shown in

Figure 4.1. Given TCP’s congestion control, each connection achieves a throughput

of approximately 500 Mbps when connected to the same server interface. Six seconds

into the experiment, the server’s service controller signals the SAL to migrate one flow

to its second interface. TCP’s congestion control adapts to this change in capacity,

and both connections quickly rise to their full link capacity approaching 1 Gbps.

Given the right conditions—i.e., plenty of battery and a need for high throughput—

mobile devices would find this ability useful as well, which we explore more in §6.2.3.

47

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (s)

Flow 1

Figure 4.2: A VM migrates across subnets, causing a short interruption in the data
flow.

Virtual machine migration: Cloud providers can also use Serval’s migration

capabilities to migrate virtual machines across layer-3 (i.e., the network/IP layer)

domains. Figure 4.2 illustrates such a live VM migration that maintains a data flow

across a migration from one physical host to another, each on a different subnet. Once

again we use iperf where a client is connected measuring the bandwidth. After the

VM migration completes (just after 3s), TCP stalls for a short period, during which

the VM is assigned a new address as it gets a new address from DHCP on the new

network 1. Afterwards it performs an RSYN handshake and the connection continues

as before.

Mobile clients: Serval’s use of ECCP for its migration underpinnings makes it

a useful fit for mobile devices. For example, seamless music streaming, with oppor-

tunistic WiFi off-loading, on a single, continuous flow is very convenient for data cap

conscious users. Figure 4.3 shows a map of network usage for a mobile user who is

walking across a college campus. A single music stream is migrated back and forth

between cellular (gray spots) and WiFi (red spots), offloading some data usage while

not losing connectivity.

1If the VM had statically assigned IPs on both networks, this gap could be reduced and perhaps
eliminated.

48

Figure 4.3: The thesis author uses a Serval-enabled phone to stream music while
walking across campus. The phone migrates the connection between available WiFi
(red) and cellular 4G (gray) networks, without loss of playback quality. The opacity
of each data point is an indicator of the throughput (normalized within network type)
achieved at that location.

4.3 Incremental Deployment

This section discusses how Serval can be used by unmodified clients and servers

through the use of TCP-to-Serval (or Serval-to-TCP) translators. This allows us to

support unmodified applications and/or end-hosts. For both, the application uses a

standard PF INET socket, and we map legacy IP addresses and ports to serviceIDs

and flowIDs.

Supporting unmodified applications: If the end-host installs a Serval stack,

translation between legacy and Serval packets can be done on-the-fly without ter-

minating a connection: A virtual network interface can capture legacy packets to

particular address blocks, then translate the legacy IP addresses and ports to Serval

identifiers.

Supporting unmodified end-hosts: A TCP-to-Serval translator can translate

legacy connections from unmodified end-hosts to Serval connections. To accomplish

this on the client-side, the translator needs to (i) know which service a client desires to

access and (ii) receive the packets of all associated flows. Several different deployment

scenarios can be supported.

49

To deploy this translator as a client-side middlebox, one approach has the client

use domain names for service names, which the translator will then transparently map

to a private IP address, as a surrogate for the serviceID. In particular, to address (i),

the translator inserts itself as a recursive DNS resolver in between the client and an

upstream resolver (by static configuration in /etc/resolv.conf or by DHCP). Non-

Serval-related DNS queries and replies are handled as normal. If a DNS response holds

a Serval record, however, the serviceID and FORWARD rule are cached in a table

alongside a new private IP address. The translator allocates this private address as a

local traffic sink for (ii)—hence subsequently responding to ARP requests for it—and

returns it to the client as an A record.

Alternatively, large service providers like Google or Yahoo!, spanning many data-

centers, could deploy translators in their many Points-of-Presence (PoP). This would

place service-side translators nearer to clients—similar to the practice of deploying

TCP normalization and HTTP caching. The translators could identify each of the

provider’s services with a unique public IP:port. The client could resolve the appro-

priate public IP address (and thus translator) through DNS.

As mentioned in §4.1.2, we implemented such a service-side TCP-to-Serval trans-

lator [29]. When receiving a new client connection, the translator looks up the ap-

propriate serviceID, and initiates a new Serval connection. It then transfers data

back-and-forth between each socket, much like a TCP proxy. As shown in our bench-

marks, the translator has very little overhead.

A Serval-to-TCP/UDP translator for unmodified servers looks similar, where the

translator converts a Serval connection into a legacy transport connection with the

server’s legacy stack. A separate liveness monitor can poll the server for service

(un)registration events.

In fact, both translators can be employed simultaneously, e.g., to allow smart-

phones to transparently migrate the connections of legacy applications between cellu-

50

lar and WiFi networks. On an Android device, iptables rules can direct the traffic

to any specified TCP port to a locally-running TCP-to-Serval translator, which con-

nects to a remote Serval-to-TCP translator,2 which in turn communicates with the

original, unmodified destination. This is the approach we used for Figure 4.3.

Handling legacy middleboxes: Legacy middleboxes can drop packets with

headers they do not recognize, thus frustrating the deployment of Serval. To conform

to middlebox processing, Serval can optionally encapsulate SAL headers in shim UDP

headers, as described in §4.1. The SAL records the addresses of traversed hosts in

a “source” extension of the first packet, allowing subsequent (response) packets to

traverse middleboxes in the reverse order, if necessary.

2In our current implementation of such two-sided proxying, the client’s destination is inserted at
the beginning of the Serval TCP stream and parsed by the remote translator.

51

Chapter 5

Managing Limited Resources with

Tango

Mobile devices come with more limitations on resources than previous devices. Since

these devices are used on the go, battery life has to support long periods of time away

from charging opportunities (i.e., hours or most of a day) and having ubiquitous

network connectivity necessitates wide-range technologies like cellular, which often

come with a data plan that must be rationed throughout a month. Failing to do so

leaves a user with a device that cannot be fully utilized, or worse, utilized at all.

The current state of affairs, as seen in Table 5.1, shows users have a variety

of knobs they can tune to try to manage these resources. But this is a problem

itself—users must micromanage each new app to make sure it conforms to whatever

resource preferences the user has. How well each app conforms depends on the settings

exposed, which can be added, changed, and removed with app updates. Further, the

options usually offer limited level of control (e.g., whether to use mobile networks

fully or not at all) whereas users’ preferences are likely more fluid (e.g., use mobile

if not near data cap). Managing all these settings over varying epoch lengths (i.e.,

hours for battery, days for data caps) quickly because burdensome and instead users

52

App class App name Settings

Social

Facebook
Refresh rate: None / 30m / 1h / 2h / 4h
Sync photos: Any network / WiFi only

Google+

Sync photos: Any network / WiFi only
Sync videos: Any network / WiFi only
Sync while roaming: On / Off
Sync only while charging: On / Off

Audio
Streaming

Pandora
High-quality on cell: On / Off
Conserve battery: On / Off

Google
Play Music

Cache during playback: Yes / No
Auto cache while charging + Wifi: Yes / No
Pin songs on WiFi only: Yes / No
Stream on WiFi only: Yes / No
Cell stream quality: Low / Normal / High

Video
Streaming

Youtube

HD on cell: Yes / No
Uploads: Any network / WiFi only
Preload WiFi + Charging:

None / Subscriptions / Watch Later / Both
Netflix Playback on WiFi only: Yes / No

Table 5.1: Application settings available for managing resource usage.

settle for suboptimal usage. Finally, with the introduction of ECCP/Serval or other

systems that improve mobility in today’s networks [38, 27, 42, 10], a more expressive

system of deciding which networks to use and when to use them is necessary.

A better management experience would be for the user to be able to express pref-

erences they have over device-level resources (i.e., a policy of resource management),

and then have the operating system manage resources according to those preferences.

The preferences, or policy, could dictate the level of usage of different resources,

including which networks to use, which rates to use on those networks, and/or priori-

tization of different types of traffic. Apps could hook into these preferences, and tune

their settings to match a user’s preference. Since apps also have domain knowledge of

how they are using the network, they can use that to further optimize network usage.

To that end, we introduce Tango. Tango centralizes network management in a

controller process that monitors device state and executes dynamically-generated ac-

tions that incorporate both user and app-specific needs. This controller both distills

ad-hoc user configuration into a single user policy and provides a means of resolving

53

conflicts between user and app policies. In Tango, user interests trump app interests,

and a constraint mechanism is used that enforces limits (even for legacy or uncooper-

ative apps) while encouraging apps to align. The constraint system proactively deals

with policy conflicts, informing apps of their limits so they can adjust. Alternative

reactive solutions, such as discarding or changing outputs of conflicting policies, would

leave apps either uninformed if their policy was carried out or unable to know what

policies are acceptable in the first place. Meanwhile, cooperative apps can leverage

the constraints and local knowledge (e.g., about buffers or counters) to optimize their

usage. Additionally, Tango allows apps to “hint” about their needs (e.g., priority,

data rate) that become part of device state. These hints can be incorporated by

the user policy, allowing apps to provide feedback while still maintaining user policy

preference.

A Tango policy is a program that, given the device state and constraints, outputs

a list of actions to take on an entity’s behalf (i.e., a user or an app). Because mobile

devices’ operating conditions are quite dynamic, Tango collects information from a

variety sources—including the kernel, network stack, and battery—to be used as input

to policies. For example, a user may prefer using WiFi over 4G, except when WiFi

provides unacceptable performance. When considering whether to use WiFi or 4G,

a policy can consider the number of apps using the network, whether there is any

foreground activity, and the current traffic demands on the network. This model is

considerably richer and more flexible that the options currently available.

5.1 Motivation and Challenges

Today, music streaming services, like Pandora, Rdio, Spotify, Google Play Music,

and iTunes Radio, are popular alternatives to preloading devices with large music

libraries. In fact, a 2011 study [39] found that media streaming (including music) is

54

one of the major sources of cellular data usage, accounting for 5-15% of data, and is

typically the largest single category. Using music streaming as a motivating example,

we next highlight some areas in which current network management does not afford

a good user experience. We also discuss challenges in aligning the interests of users,

device vendors, and app developers.

5.1.1 Balancing Costs, Caps, and Battery

With unlimited data plans a thing of the past, the increased flexibility of streaming

comes with the risk of inflating cellular data usage and power consumption. Prefetch-

ing upcoming songs to provide a seamless playback experience users expect inevitably

leads to trade-offs, where the data limited and power hungry cellular link must be

used.

Previously, table 5.1 showed that apps try to address managing these trade-offs

by providing many knobs for the user to tune. However, this forces the user to choose

reduced functionality or constant micro-management. The level of control exposed is

left up to app developers, making it inconsistent even across apps of the same class

(e.g., Pandora vs. Google Play Music). Further, some app settings assume a certain

level of understanding of the inner workings of the app, and settings may come and go

as the app is updated. Finally, a user’s interests can change over the course of a billing

cycle depending on their data use, or over the course of the day as their battery drains.

Trying to balance all these concerns, via numerous, redundant, inconsistent settings

and over an entire billing cycle, becomes an insurmountable problem for many users.

With Tango, many of these settings are distilled into policies that are configurable

from a single location via the user policy. Still, Tango supports app-specific settings,

but may override them if they conflict with the user policy.

55

5.1.2 Ensuring Good User Experience

Smartphones automatically switch between networks (e.g., 4G and WiFi), but this

can be disruptive to the user experience. Network switching is done with little regard

to its effect on apps, which typically experience failed TCP connections when IP

addresses change. For streaming music, this manifests as pauses in playback at best;

other apps can see broken webpages, disconnects from a game, or other failures.

While every app could deploy its own failure handling, this leads to little economy of

mechanism and places an undue burden on developers. Further, efficient recovery is

not always supported by remote servers (e.g., only about 39% of the top ten thousand

Alexa websites supports HTTP range requests [26]). In the worst case, we found some

popular streaming apps that simply fail and tell the user to try again.

This problem is exacerbated by the aggressive WiFi offloading performed by to-

day’s smartphones, even when performance on WiFi is worse than cellular. Examples

of this include public hotspots that are overloaded with too many users, networks

with weak signal, or networks with a low-bandwidth backhaul link. Without a way

to seamlessly switch between networks and an effective policy for when to switch,

the user is left to either manually manage their connectivity, live with the poor per-

formance, or inflate cellular usage by never using WiFi. Tango improves the user

experience by allowing data streams (e.g., music playback) to continue seamlessly

across network changes (e.g., by adopting Serval [24] or MPTCP [38]) and having

policies dynamically pick the best network according to user interests. Tango’s moni-

toring of device state, including how networks are performing, can help migrate from

poor networks that are not meeting user requirements (e.g., not enough bandwidth for

music streaming) more precisely; users do not have to make ad-hoc decisions about

whether a network feels “slow.”

56

5.1.3 Managing Conflicting Interests

Conflicting user and app interests are a another source of tension on mobile devices.

Apps typically focus on ensuring they perform well, even at the expense of wasted data

usage. This is particularly a problem with streaming apps, e.g., where prefetched con-

tent may be discarded when the user skips songs or stops playing, or is unnecessarily

prefetched because the user reaches WiFi before it is needed. Apps may offer options

to disable functionality under certain conditions—or try to do so automatically—but

these are usually coarse-grain options without the ability for finer tuning.

Interest conflicts also occur among concurrently running apps. Some mobile OSes

limit the types of background apps (e.g., media, location tracking) in an attempt to

minimize these conflicts. Yet such coarse-grain policy inhibits non-whitelisted apps,

while still failing to provide sufficient resource isolation. For example, streaming apps

will prefetch songs even if their need is not imminent, slowing down interactive fore-

ground tasks such as web browsing. Also, because an app’s usage may be spread over

many flows—e.g., one for streaming media and another for prefetching—traditional

resource-management policies like per-flow fairness may be insufficient. Further, re-

source prioritization can be more nuanced than a mere differentiation between fore-

ground and background apps. For instance, the data usage of a music streaming app

in the background is as important as the foreground task when the amount of music

buffered is low since playback could stop.

Tango supports the restriction and prioritization of resources on a per-app ba-

sis. By considering apps rather than flows, it prevents any “strength-in-numbers”

attempts by apps to gain an unwarranted portion of network resources. User policy

can dynamically prioritize apps on their execution status, as well as consider hints

from apps about when to re-prioritize their usage (e.g., when a background music

app signals the need for higher priority because its buffer has fallen below a low

watermark). Additionally, Tango’s constraint system lets apps know how to not in-

57

	

Kernel

Measure Control

Gather plans

Execute

Controller

User
Policy

	

	

	
	

Apps

State

Plans

Figure 5.1: The Tango architecture. Device state is continuously collected from
sources in the device kernel, packaged by the controller (center gray box), and evalu-
ated by all registered policies. Each policy outputs a list of actions (e.g., rate limit)
called plans, which are carried out by the controller using tools provided by the kernel
and operating system.

terfere with user preferences, so apps can fine tune their usage without sacrificing

performance unnecessarily.

5.2 Tango Design

This section details Tango’s design and how it manages network usage. Figure 5.1

shows a high-level overview of Tango’s architecture. At the heart of Tango is a

controller that runs as a privileged process, used to centralize network control and

to handle the dynamic nature of mobile devices. The controller is responsible for

monitoring and packaging device state into a common API used by policies. A policy

in Tango refers to a programmatic instantiation of an entity’s interests. Policies use

58

Pseudocode 1 Tango Control Loop

1: A: applications
2: for every epoch do
3: S ← MeasureDeviceState
4: C ← DetermineConstraints(S)
5: Enforce(C)
6: for a ∈ A do
7: SolicitPlan(a, C)
8: end for
9: P ← GatherPlans(A)

10: for p ∈ P do
11: if not Valid(p, C) then
12: p ← GetDefaultPlan
13: end if
14: Execute(p)
15: end for
16: end for

device state to derive a plan, a list of actions to be carried out on the entity’s behalf.

These plans are vetted by the controller to make sure they are valid. Valid plans do

not contain incompatible actions (e.g., setting two different rate limits), do not act

outside an entity’s scope (e.g., an app policy trying to migrate another app’s flow),

and obey constraints set by a higher-priority policy (i.e., from the user). Constraints

serve as a mechanism to proactively resolve interest conflicts between a user and an

app (or between apps) by providing limitations on usage by an app (e.g., “rate limit

of 200 kbps on 4G”). In the rest of this section, we detail the responsibilities and

benefits of the controller, the role of user and app policies, and look at policy in

practice. Throughout this section we include pseudocode examples to give a sense of

what policies look like and how simply many of these concepts can be expressed in

our framework. While we use pseudocode here, the actual policies are very similar in

terms of complexity and length; the pseudocode is just more terse than the language

in which are prototype policies are written (Java, see §6.1).

59

Network stack

Transport # of retransmissions, RTTs, congestion window, etc.
Network (IP) addresses, routing rules, etc.
Physical link type, signal quality, bit errors, etc.

Other sensors

Battery plugged in, charge percent, current draw, etc.
GPS location, speed

Table 5.2: Device state sources and metrics.

5.2.1 The Controller and Policy Execution

The controller process is at the heart of Tango, designed to be a central point for net-

work management. The controller’s control loop is presented in Pseudocode 1. This

loop is run once per control epoch, which is configurable and typically on the order of

seconds. Alternatively the loop could run in an event-based manner, responding to

device state changes like new interfaces becoming available, particular apps opening,

etc.

Monitoring device state. The control loop starts with the controller compiling

a current view of the device state, which it exposes as a high-level API to policies.

This provides apps with a common way to access device state, rather than leaving

the implementation up to each app. The device state is composed of metrics from

numerous sources including the OS, the network stack, battery, apps, and optionally

other available sensors, as shown in Table 5.2. Reading some of these sources may

require elevated privileges, so by centralizing this process we also remove the need for

apps to request additional permissions. Further, Tango enforces information protec-

tion by only sharing relevant state with an app, e.g., the transport-layer statistics for

its flows.

This device monitoring stage is important for handling the dynamic environments

in which mobile devices are used, as it allows the controller to stay up-to-date with

60

operating conditions. While current network management mechanisms recognize the

importance of certain state (e.g., WiFi signal strength), Tango increases the scope

of monitored state; bandwidth, latency, app foreground status, etc., provide a more

complete picture of the current environment. For example, in the case of overcrowded

public hotspots, available bandwidth is a much more important metric for quality

than signal strength. The information supplied by Tango allows for more versatile

and useful policies.

Enforcing constraints. One task of the user policy is to specify constraints to

the system. Constraints are limits on system resources that are enforced on entities

such as interfaces and apps. For example, to reduce data usage, a user policy could

constrain the 4G interface to 500 kbps, which the controller applies using system tools

and APIs (§6.1). The controller rejects actions generated by policies attempting to

violate this, e.g., an app trying to set its limit to 1Mbps. In this manner, a user’s

interests are enforced even in the presence of misbehaving apps.

Tango uses this constraint mechanism to proactively resolve conflicts between

competing interests. In Tango, user interests trump those of apps, which is why

the user policy determines these constraints. Constraints are intended to allow app

policies to cooperate with user policy, but are also always enforced by the controller,

even if a malicious app policy tries to skirt them. By telling app policies of constraints

upfront, apps can optimize their usage within those limits. For example, a user may

rate limit a streaming app to marginally above its playback rate; the app adjusts

by de-prioritizing non-critical flows (i.e., prefetching) in favor of critical ones (i.e.,

streaming). If a user’s constraints cause the app to perform poorly, either the user

policy needs to be refined to be less restrictive, or the app’s interests are too divergent.

We imagine that frequently conflicting policies can hurt an app’s online feedback,

incentivizing apps to include policies that work well across operating conditions.

61

We preferred this proactive approach, with its straightforward controller task of

approving app plans, over attempting to resolve conflicts after app policies had been

evaluated. To do that, conflicting plans would need to be modified by the controller

or use a feedback loop that involves reevaluating app policies. The former leaves apps

optimizing for conditions that may not happen, while the latter also need a constraint

mechanism to avoid the repeating conflicts in subsequent rounds. Additionally, we

chose to make user policy trump app policy because the device belongs to the user and

they will ultimately “pay” the consequences of resource mismanagement (e.g., data

overage costs, the battery dying before the end of the day). From this standpoint,

apps that fail to comply with user policy can be thought of as violating correctness.

App hints and policies allow some room for compromise, however, within the confines

specified by the user policy’s constraints.

Policy conflicts also occur across different apps. In such situations, constraints

are useful for expressing prioritization and how usage should be shared amongst the

conflicting apps. Since a constraint applies on a per-app basis, rather than per-flow,

it is not possible for apps to game the system by a “strength in numbers” approach.

That is, creating multiple flows to gain more bandwidth is futile. App priority can

be specified by allocating larger resource shares to high-priority apps, or by limiting

lower-priority apps while leaving others unrestricted.

Supporting app policies. Tango allows apps to specify their own policies. During

each epoch (lines 6-8 in Pseudocode 1), the controller disperses appropriate device

state and constraints to apps registered with the controller. The app policy responds

with a plan, which the controller validates (lines 9-12), ensuring the app only manages

its own flows or other approved resources and obeys its given constraints. The user

policy provides a default plan for apps without one or an invalid one.

62

App policies allows apps to refine their network usage based on local information

that a user policy would not know. For example, if a user policy restricts an app’s data

limit, the app policy can respond by asking the controller to re-prioritize certain flows

higher (e.g., those downloading a social network feed) than others (e.g., background

syncs). In this way, apps are given more insight into what is happening to their

network usage and given a way to respond in useful ways. Should an app not provide

a policy, the typical default plan by user policies would be a bare minimum approach.

That is, enforce the constraints on that app, but little else.

In addition to actions to take on its behalf, apps can provide hints to the controller

about its needs. For example, when a music app’s playback buffer is low, it can send

a hint that it wants higher priority for its traffic. This information is stored as part

of the device state for the next control epoch, which can be used by the user policy

as part of its constraint generation process. Pseudocode 2 and 3 are examples of app

and user policies using app hints. The app policy sets hintPriority in its plan. In

the next epoch, the user policy uses AllowPriority() to decide if the app’s request

is allowable, e.g., by matching against a list of apps and their acceptable priority

levels. Apps therefore can provide feedback to the user policy, which still has the

final approval of what hints to use. We look more at the usefulness of app hints when

it comes to app conflicts in §6.2.3.

5.2.2 A Programmatic Approach to Policy

User policies reflect the overall desires of the device owner, which may reflect high-

level interests such as “preserve battery,” “minimize cellular usage,” or “ensure high

throughput for video.” Management of a device’s interfaces, and how usage is shared

or prioritized across different (classes of) apps, are expressed by the user policy. User

policies can naturally be written with classes of apps (e.g., music streaming apps)

in mind; the class of each app can be prepopulated by the policy writer, configured

63

Pseudocode 2 App policy with hints

1: PS: music player state
2: urgent: urgent need for data
3: function Evaluate(S, C)
4: P: plan
5: // Rest of policy elided for space.

6: P.hintPriority ← NORMAL
7: if PS.getBufferTime() >30 then
8: urgent ← false
9: else if PS.getBufferTime() <20 —— urgent then

10: urgent ← true
11: P.hintPriority ← HIGH
12: end if
13: return P
14: end function

Pseudocode 3 User policy with app hints

1: function DetermineConstraints(S)
2: C: constraints
3: for A in S.apps() do
4: if AllowPriority(A, A.hintPriority) then
5: C ← NewAppConstraint(A, A.hintPriority)
6: else
7: C ← NewAppConstraint(A, NORMAL)
8: end if
9: end for

10: return C
11: end function

by the user in settings, or suggested by the app developer. This allows common

constraints and goals (e.g., reduce data usage) to be set once for several apps, and

reduces the complexity of policies by not focusing on individual apps. There is only

one user policy running at a time, and it cannot be changed by third-party apps.

We imagine there are a few ways for users to select a policy. Device manufacturers,

or even tech-savvy users themselves, could write user policies, which can then be

configured and activated in the device settings. Policies could be shared by uploading

them to a “policy store,” where other users could download and review them. When

a user loads a policy, it can expose configuration options that users can tune to fit

their needs (e.g., monthly data budget, desired music quality, etc.).

App policies, on the other hand, allow the system to reflect the needs to currently

executing applications. They may use information only visible or semantically mean-

64

ingful to the app, e.g., a streaming app’s policy examines the playback buffer when

expressing “do not buffer when above X seconds.” By soliciting plans from apps, the

controller can account for such app-specific information in its control loop, provided

it does not violate the constraints set by the user policy. Apps can only specify policy

which affects their usage; they can not manipulate usage of other apps or set the

user policy. In our experience (§6.2), adding policy to apps was straightforward and

a matter of exposing the pertinent information (e.g., buffer levels) to the app policy

via shared state. Also, since the actions are handled by the controller, there were less

permissions and code needed for the app itself.

Implementing and expressing policies. Policies are programs that implement

a simple interface. This interface consists of an evaluate() function that constructs

a plan (a list of actions) given (1) the current device state, e.g., network metrics,

available interfaces, battery life, (2) constraints such as bandwidth limits, and (3) a list

of controllables. Additionally, the user policy’s determineConstraints() function

returns interface and app constraints based on the current device state.

A plan is a list of actions that a policy would like executed. Tango currently

exposes two types of controllable entities: interfaces and flows. Actions on interfaces

include turning interfaces on and off, selecting access points (APs), and setting queue

and rate limits. Interface actions are only available to the user policy, as they affect

all apps on the device. Actions on (sub)flows include adding/removing flows and

migrating them across interfaces. These actions are available to both user and app

policies, though app policies are restricted to acting only on their own flows. Table 5.3

summarizes these actions.

Tango’s programmatic approach provides sufficient flexibility. It allows for sim-

ple, rule-based approaches (like current techniques), as well as more complicated

approaches that use past behavior to predict future usage. An example policy snip-

65

Action Interface Flow Description

ENABLE X X Enable interface/subflow
RATELIMIT X X Limit bandwidth

LOG X X Write information to file
MANAGE X Change access point, queue size, etc
MIGRATE X Move flow to different interfaces

Table 5.3: Actions on interfaces and flows. App policy can only perform flow actions
and only on their flows.

Pseudocode 4 Avoid poor WiFi

1: sigs: list of WiFi signals
2: slowNets: map networks to time added
3: function Evaluate(S, C)
4: P: plan
5: wifi ← GetWifiInterface(S)
6: cell ← GetCellInterface(S)
7: if wifi.isAssociated() then
8: sigs.push(wifi.signal())
9: if BadSignal()then

10: P.add(MANAGE, DISCONNECT, wifi)
11: P.add(MANAGE, CONNECT, cell)
12: else if wifi.speed() <100000 then
13: slowNets.put(wifi.network(), S.now())
14: P.add(MANAGE, DISCONNECT, wifi)
15: P.add(MANAGE, CONNECT, cell)
16: end if
17: end if
18: // Other cases elided for space.

19: return P
20: end function

pet for WiFi-connected devices is given by Pseudocode 4. Two conditions cause the

policy to return a plan that fails over to 4G: (1) if BadSignal() return true or (2) if

the measured speed of WiFi is below 100 kbps. There are many possible implemen-

tations for BadSignal(), including tracking a list of past signal readings to monitor

trends instead of instantaneous readings (see §6.2.2). Condition (2) helps address

several scenarios mentioned earlier, such as overcrowded hotspots. This is just one

sample implementation; others could integrate information about the mix of apps

using the network, location, battery life, and more.

66

5.2.3 Discussion: Policy in Practice

We now revisit the discussion of use cases from §5.1, and expand on how policy

improves usage in practice.

From incidental to intentional device behavior. Today’s mobile device net-

work management, with settings spread across apps, has at best an incidental effect

on resource usage. Users are not certain whether their combination of settings will

translate into what they want. In contrast, Tango allows users to load and run poli-

cies that have intentional effects on the way a device behaves. Unlike today’s myriad

settings, policies express what the user wants, not how it is achieved. Tango allows

control of device behavior from a single location, and settings are structured into

global and class-specific ones. Global settings apply to all classes, while class settings

could generate constraints for all apps of that class, such as a slider for streaming

quality on cellular for all media apps. Apps may still have settings to further tune

their usage, but they are subject to global constraints ensuring they are aligned with

the user policy.

Improved user experience. Mobile OSes have many sensors and control surfaces

that govern device behavior, but no effective way to translate that flexibility into an

improved user experience. For instance, OSes that support seamless flow migration

(e.g., iOS7 with MPTCP [34]) have the ability to switch networks without inter-

rupting individual flows. However, as we have pointed out, many available networks

are overloaded or experience weak signals. Unless flow migration is governed by an

effective policy, this feature may have limited practical effect on user experience. Pro-

grammatic policy allows for solutions like building profiles of networks and usage over

extended periods, to later inform a decision on whether to use a particular network.

67

Pseudocode 5 Prioritize foreground app

1: function DetermineConstraints(S)
2: C: constraints
3: for A in S.apps() do
4: if A.isForeground() then
5: C ← NewAppConstraint(A, HIGH)
6: end if
7: end for
8: return C
9: end function

Living within one’s means. Tango’s constraint mechanism is useful for reigning

in cellular usage. For data-heavy apps such as media streaming, the user policy could

restrict those (classes of) apps, either with a static rate limit or by allotting them an

amount of usage over a time interval. A static rate limit is useful for curtailing usage

in the case of apps that do not have an app policy, but can cause poor performance if

cellular service disappears (depleting the buffer) or if the rate is set too low. Assigning

an allotment is similar to a rate limit, but provides apps with greater flexibility to

optimize their usage. For example, an app with a sufficient media buffer can save

its allotment until hitting a low watermark or for unexpected future events that

necessitate a fast response, such as the user skipping the current song.

Prioritization and fair network usage. Tango makes supporting priority and

fairness in network usage straightforward with constraints and the controller’s state

monitoring. A common example of network usage to prioritize would be that

of the foreground app (changes of which are learned quickly by the controller).

Achieving this prioritization in Tango can done by implementing the user policy’s

DetermineConstraints() per Pseudocode 5. It also takes care of managing the

kernel traffic queues for the user and ensures it does not cause unintended side effects

with other settings. Since constraints apply on a per-app basis, Tango can effectively

reign in greedy or buggy apps that would otherwise drain resources, e.g., by having

many open TCP connections.

68

5.3 Tango Related Work

The advent of mobile computing has led to the development of several approaches to

incorporating “context” into programming for richer application models. JCAF [4]

is a context framework for Java applications consisting of “entities” that both make

up context and respond to changes in other entities. It is not tailored for mobile and

does not focus on resource management, but rather getting entities to respond in the

presence of other entities. Tango instead focuses on the mobile platform and managing

resources which can be quite scarce. JCAF’s somewhat open-ended nature would be

make it difficult to handle things that Tango does, like the user and app policy split

and our constraint model. CASS [9] is another context framework that uses nearby

sensors and a remote server to create a context view to supply to apps. It abstracts

away details to simplify policy writing (e.g., converting a temperature reading into a

state list of “cold,” “normal,” and “hot”). Tango is instead completely local to the

device, both in terms of sensing data and compiling the resultant state. Tango also

leaves the level of abstraction up to policy writers by providing mostly raw metrics.

CARISMA [7] is a context framework that attempts to resolve conflicts not only on-

device but also amongst multiple devices using the same app. It uses utility functions

and a sealed bid auction as its conflict resolution mechanism. Tango does not attempt

to coordinate policies amongst multiple devices, but instead focuses on dealing with

conflicts between policies on the same device. Further, our constraint mechanism

helps deal with these conflicts proactively, rather than use utility functions, which

are hard to define for the potentially large policy space.

Several earlier projects focus on selecting between multiple wireless networks.

Ormond et al. [25] uses a utility-based approach to minimize costs when uploading

files by choosing between multiple networks with varying costs and bandwidth, subject

to time constraints. Wilson et al. [37] uses a fuzzy-logic inference engine that takes

input from both user and apps and, based on pre-defined QoS metrics and rules,

69

decides on the preferred network. Ylitalo et al. [41] presents an interface selection

framework where flows can be moved between several networks. It requires some

changes to the socket API and uses a rule-based approach for selection. Tango’s

flexible programmatic model supports these rule- and utility-based approaches, as

well as considerably richer policies. Further, Tango’s app policy and hints allow

for broader app input, yet still avoids OS or socket API modifications. Finally,

beyond network choice, Tango addresses deeper control of the network by exposing

management control of traffic queues.

Other prior work focuses specifically on reducing cellular usage through WiFi of-

floading. One body of research has tried to generalize application-specific prefetching

strategies by providing middleware that batches data for download during periods of

WiFi connectivity. Lee et al. [21] describes a simulated batching strategy that de-

lays transfers in anticipation of future WiFi connectivity. Wiffler [3] employs another

batching strategy that adds prediction of WiFi throughput to determine whether

transfers would complete within a WiFi connectivity window. This requires prior

knowledge of data sizes and accurate WiFi prediction. IMP [13] also performs batch-

ing on WiFi, but may also (pre)fetch on cellular if allowed by budget constraints that

take into account battery and data usage. BreadCrumbs [22] tracks user mobility and

network conditions to forecast network connectivity, and the authors discuss its use

to inform prefetching and batching strategies. SALSA [30] employs similar forecast-

ing, using an energy-delay trade-off algorithm to select the energy-minimizing link

for a data transfer. These techniques are complementary to Tango’s general frame-

work, and similar batching strategies may be adopted by specific delay-tolerant apps

running on Tango to optimize their resource usage.

In contrast to this prior work, Tango can continue data transfers despite chang-

ing connectivity, relying on ECCP [2] for migrating TCP connections. Although no

batching is done, the bulk of data transfers may be moved to WiFi by rate limiting

70

cellular links, in anticipation of future WiFi connectivity. This ensures transparent

support for interactive or latency-sensitive applications (e.g., live video streaming),

even if initiated while on cellular. Prefetching and excessive buffering on cellular is

also avoided, which could otherwise deplete a user’s data cap or battery resources.

Even so, the prior work on forecasting and link estimation could help inform Tango

polices for more accurate rate limiting and migration decisions.

Recent work [26, 40, 2] has explored seamless use of heterogeneous networks us-

ing migration techniques, based on MPTCP [38] and OpenVSwitch. Tango could

adopt those or alternative migration techniques, including Mobile IP [27], HIP [23],

LISP [10], or TCP Migrate [32]. Unlike such work, we use flow migration as just

one of many techniques that, in combination, enable interesting control plane and

policy control to better utilize available networks, while simultaneously accounting

for device and user needs.

71

Chapter 6

Tango Evaluation

In order to get a deeper understanding of the factors to consider when creating policy

for devices, we built a prototype of Tango for Android and explored creating policy

to deal with common resource management problems for smartphones. First, we

explore how Tango can be used to express policy to improve network choice and

how the interplay between user and app policies can combine to save a user precious

cellular data. We use our canonical example of music streaming for a user who wants

to minimize cellular data usage using WiFi offloading without micromanaging their

device. Following that, we look at several examples of policy where multiple apps are

competing for resources and how to achieve different goals (e.g., app equally sharing

bandwidth, app prioritization) in a dynamic way using Tango.

6.1 Tango Prototype

Our Tango protoype for Android is written in Java and consists of three parts: (i) the

main library with code for generating device state and APIs for policies, constraints,

and actions; (ii) a client library that provides app policy support; and (iii) a controller

with most of the previously described functionality.

72

Our prototype includes support for flow migration on Android via ECCP [2], as

implemented by Serval [24] (described in Chapter 3). Serval has support for getting

flow-level metrics from the transport layer, such as RTT and congestion window.

While we chose this particular implementation of flow migration to use with our

prototype, Tango is not dependent on it. Other methods for gathering flow-level

metrics [36] and flow migration [32, 38, 40] would work as well.

Our prototype leverages many resource management mechanisms already avail-

able in Linux and Android, and thus did not require any OS modifications. The

Linux traffic control tool, tc, provides rate limit actions and constraints; we use the

hierarchical token bucket (HTB) queue extensively for enforcing constraints. Each

interface starts with an overall bucket which can be rate limited via constraints or

actions. Buckets are attached to interfaces for each app that needs per-app rate lim-

iting or prioritization. Then, we use filtering rules to put all of an app’s flows on an

interface into the appropriate bucket. Additional buckets can be attached to these

queues to do finer-grain QoS, e.g., at the flow level. Other functionality for managing

networks are done with standard Linux tools (e.g., ip, iptables, etc), or via APIs

in the Android SDK (e.g., WifiManager).

Along with Tango, we have implemented several user policies and a few test apps

that use our client library. Our Tango policies are written as Java classes that easily

interface with our prototype and, in the case of app policies, the apps they belong

to. One particular app we have implemented is a music streaming app that we use

extensively in our evaluation. The app downloads MP3 files over HTTP using a native

Serval socket,1 supporting near instantaneous playback of partially downloaded files.

Playback starts with 30 seconds of content buffered and pauses if the buffer runs too

low; play resumes when the buffer again reaches 30 seconds. This functionality is

1Serval has a proxying solution that allow for unmodified apps to be included in Tango’s planning.

73

based on the behavior we observed in other popular music streaming apps, such as

Pandora and Google Play Music.

6.2 Case Study Evaluation

In this section, we perform two case studies that aim to address the following ques-

tions: First, how can Tango help improve the experience of using a single phone app?

With music streaming as our example, we perform comparative studies of both user-

and app-level policies in the face of changing environment conditions. Second, how

can Tango help provide a good user experience across concurrently-running apps? In

particular, we explore how policies enable us to provide dynamic fairness and/or QoS

based on changing device conditions.

6.2.1 Experimental Setup

We use a Galaxy Nexus (GSM) phone running Android 4.3 for our case studies, with

T-Mobile as our 4G data provider. Tango, Serval [24], and our music streaming app

are installed on the phone.

To evaluate music streaming, we wanted to use the scenario of a student walking

across a college campus, attempting to use WiFi to save data. However, as is typical

with a wireless environment, our field measurements observed highly variable coverage

and quality, even on back-to-back walks. Thus, to make meaningful comparisons

across policies, we set up an emulation environment created from traces of our walks

and replayed on our phone. This allowed for repeatable experiments of different

policies for the same walk. The traces we use are from walks where Android chose

WiFi over cellular between 75-95% of the time; however, our results show only about

20% of that time is the link able to carry data. The trace covers roughly a mile

across campus that took 12 minutes to walk. We connected to the campus WiFi,

74

which uses the same SSID across many access points. Overall, WiFi coverage was

mostly continuous in the middle of the walk and more spotty towards the ends. The

traces were collected in the afternoon during the school year, so congestion levels were

typical.

Emulation environment. We implemented the emulation using the standard

Linux tc tool to recreate WiFi network conditions vis-a-vis packet loss and delay.

The emulation leaves the portions of cellular connectivity in our traces unregulated,

as we generally had no problems with cellular coverage.

To capture the variable WiFi network conditions during real walks, we used a

ping-like application sending packets at a constant bit rate (CBR) to a server (one

packet every 20 ms) with packet sizes to emulate TCP (1472-byte echo packets with

64-byte replies). We measured the received signal strength indicator (RSSI), upstream

and downstream loss rates, and delay for every second of the walk. During emulation,

the loss rates and delays were parameters for tc, while the RSSI readings replaced

the readings from the actual WiFi driver.

We validated the accuracy of our emulation with two types of traffic: CBR and

TCP. We used the CBR traffic to assess the connectivity and drop rates and the

results are shown in Figure 6.1a. Since tc drops packets probabilistically, we ran five

emulations. There was low variance in the cumulative bytes downloaded on WiFi

during these emulations (one gray line per trial). The 6% difference between the real-

world and the emulations are from delays going from cellular to WiFi, i.e., DHCP and

cellular teardown.2 Most notably, the “shape” of the bandwidth usage is consistent

across trials.

To access the emulation’s accuracy involving TCP’s congestion and flow control,

we used our music streaming app. The results are shown in Figure 6.1b, encompassing

15 emulated trials. Due to TCP’s congestion control and reliable transfer mechanism,

2The emulator reacts to logged network switching events, which in the real world are initiated
1-2 seconds prior to being logged.

75

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700

W
iF

i
B

y
te

s
 (

M
B

)

Time (s)

Emulation
Real world

(a) CBR traffic

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700

W
iF

i
B

y
te

s
 (

M
B

)

Time (s)

Emulation
Real world

(b) TCP traffic

Figure 6.1: Emulations of a campus walk. Both CBR traffic (a) and TCP traffic (b)
emulations reproduce the real world patterns with high fidelity.

there is much greater variance in the results. Yet, the emulated trials still capture the

overall “shape” of the connectivity well, i.e., they mostly share the same increases

(good WiFi) and flat areas (bad WiFi). One notable difference between trials is

around 350s where roughly half the trials download a significant amount of data,

while the others (and real world) do not. The real world trace shows good signal

quality with low drop rates and small delays in that period, but long TCP timeouts

started just before good connectivity cause it to be missed during some emulations.

Since a lengthy timeout starts just before good connectivity, the connectivity is wasted

as no data will transmit until the timer expires. We illustrate this phenomenon in

Figure 6.2. Apart from some trials having “luck” in how their TCP timers fire, all

trials otherwise experience similar behavior.

76

 0

 2.5e+06

 5e+06

 7.5e+06

 1e+07

 260 280 300 320 340 360 380 400

T
C

P
 S

e
q

 #
 (

re
la

ti
v
e

)

Time (s)

Poor connectivity

ACK dropped
Timeout = 80s

(a) Retransmission timer fires before good
connectivity

 0

 2.5e+06

 5e+06

 7.5e+06

 1e+07

 260 280 300 320 340 360 380 400

T
C

P
 S

e
q

 #
 (

re
la

ti
v
e

)

Time (s)

Poor connectivity

(b) Retransmission timer fires after good
connectivity

Figure 6.2: Interactions between TCP timers and changing connectivity. In (a), a lost
TCP ACK packet (just before 350s) causes a 80s TCP timeout, leading to a missed
opportunity to use good connectivity. In (b) some packets get through prior to 350s,
causing a shorter timeout that allows use of the connectivity.

Number of Upstream Downstream
RSSI Intervals Time % Drop % Drop % Good %

(-90, -85] 54 3.88 63.56 56.97 11.11
(-85, -80] 283 20.36 55.85 55.57 9.19
(-80, -75] 367 26.40 45.00 45.67 15.80
(-75, -70] 267 19.21 33.05 31.90 34.08
(-70, -65] 180 12.95 21.06 22.68 47.22
(-65, -60] 155 11.15 10.91 10.50 75.48
(-60, -55] 60 4.32 2.54 1.12 95.00

>-55 24 1.73 2.29 0.83 100.00

Table 6.1: WiFi connectivity quality statistics across many traces of the same path.
“Good” signifies both upstream and downstream had drop rates ≤10%.

Network switching. The periods of poor WiFi connectivity that cause long TCP

timeouts highlight a problem with Android’s default network switching: it prioritizes

WiFi too much. To this end, we developed a network switching scheme to reduce

the duration on unusable WiFi. By default, Android uses WiFi whenever the RSSI

is greater than or equal to -100. Rather than using an instantaneous measure, our

Tango user policy tracks the last 10 seconds worth of RSSI values (one per second)

and uses two heuristics to determine if the signal is degrading sufficiently to switch:

(i) all 10 RSSI values have been below -75, and (ii) whether the last five were all below

-80. We chose these heuristics after analyzing multiple traces at different signal levels

(see Table 6.1) and testing them around campus. The measurements in Table 6.1 also

77

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256

C
D

F

Period of poor throughput (<320kbps) (secs)

Android (TCP)
Tango (TCP)

Android (UDP)

Figure 6.3: Distribution of durations of low TCP throughput, Android versus Tango
switching. CBR UDP traffic serves as a baseline showing connectivity.

show that default Android’s threshold of -100 is too aggressive; more often that not, a

signal strength that low is mostly unusable. While heuristics help determine when to

move off WiFi, the move from cellular to WiFi relies on instantaneous readings based

on regular WiFi scans. For this, we chose an instantaneous RSSI of -70 or greater as

our threshold; -70 nearly doubles the amount of usable WiFi (30.15% vs 17.20%) and

has an acceptable drop rate.

Figure 6.3 shows a CDF of the duration of “poor connectivity” zones on WiFi

using the Android connectivity manager, our Tango switching based on the above

heuristics, and the CBR baseline. “Poor connectivity” is any WiFi interval where the

download rate was less than the playback rate. The CBR traffic should represent the

ideal distribution since it is not subject to TCP’s timeout effects. Android’s switching

has a very long tail, showing the extremely long periods of no data transfer caused

by TCP timeouts. The bumps in the distribution appear to roughly correspond with

when TCP timeout retries would re-establish transfer. Conversely, Tango only briefly

diverges from CBR between 5 and 10s, most likely due to its heuristic to switch off

WiFi after 10 seconds of poor RSSI. Tango’s pre-emptive switching prevents long

TCP timeouts by moving the flow to cellular where it can continue transferring or at

78

Tango switching Constraints App policy

Unl X
Rate X X
App X X X

Table 6.2: Evaluated policies.

least respond to probes. Aside for §6.2.2, our subsequent evaluation will use Tango’s

switching scheme.

Configurations and policies. In the case studies, we use our emulator with the

music streaming app playing at 320 kbps. The trace we use typifies a walk through

our campus in terms of its connectivity and WiFi coverage.

To evaluate Tango’s use of multi-level policy, we compare both user and app poli-

cies against a baseline that allows unlimited data usage by apps, highlighting the

effect of different levels of constraints and policies. The policy configurations evalu-

ated are summarized in Table 6.2, where Unl allows unlimited rates (no constraints),

Rate applies a rate-limiting constraint of 640 kbps (double playback rate), and App

includes both user- and app-level policy. With App, the user policy allows the appli-

cation to use some allotment of data over a given time frame. This constraint allows

for bursts of traffic (for application buffering), rather than a constant limit. The app

performs flow control using high and low watermarks; when the buffer goes below the

low watermark, the app downloads until above the high watermark.

6.2.2 Case Study 1: Music Streaming

As discussed in §5.1, music streaming on mobile devices needs to balance data caps,

costs, and battery life against the ability to provide a seamless and high-quality

listening experience. WiFi offloading is a natural way to reduce cellular usage and

avoid hitting data caps. Yet streaming has time requirements that do not always

allow network usage to be deferred (i.e., the user wants to listen now, not wait until

79

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700

B
u

ff
e

r
(s

e
c
s
)

Time (secs)

WiFi
Cell

(a) Android sticks to poor quality WiFi
(shaded) for extended periods, yet also
needlessly downloads on cellular at times.

 0

 100

 200

 300

 0 100 200 300 400 500 600 700

B
u

ff
e

r
(s

e
c
s
)

Time (secs)

Pause

WiFi
Cell

(b) With lower cellular usage, even large
buffers cannot mitigate long periods of no
connectivity, leading to multiple playback
pauses.

Figure 6.4: Effect of aggressive WiFi offloading on playback buffers. Android’s ten-
dency to persist on WiFi, despite no TCP progress, leaves little room for policy to
play a role in improving the application experience.

a WiFi hotspot). Thus, users are often confronted with an unfortunate trade-off

between user experience and economics.

In contrast, with Tango’s seamless migration of flows, phones can switch networks

when appropriate, as well as defer downloading some content until when the condi-

tions are right on WiFi. This also works with apps that do not have their own failure

and recovery mechanisms. Even with failure-handling apps, the ability to put con-

straints on cellular usage helps reduce costs for users, and network load for wireless

providers.

Effect of Aggressive WiFi Offloading

Although WiFi offloading is desirable, it does little good unless governed by a policy

that determines a good time to switch interfaces. To illustrate the (negative) effect

of aggressive WiFi offloading, we first show results with Android’s default network

switching, but with added flow-migration functionality. With this setup, flows are

seamlessly migrated to the active interface.

Figure 6.4a shows the app’s buffer size (in seconds) during the emulated walk.

While the app is able to play music without pauses, it does so with excessive cell

usage, e.g., at time 527s. The buffers are well filled at this point, but because there

80

are no limits in place the app downloads indiscriminately. On this particular walk, we

calculated 12MB of excess data, which can add up quickly (e.g., up to 500MB monthly

if part of a twice daily walk to the office). Moreover, there are long periods of poor

WiFi with no TCP progress (shaded in the graph). This is worrisome for two reasons.

First, apps that cannot buffer as aggressively, such as live streaming, would likely fail

many times on this walk. Second, when there is clean signal in the emulation, the

client and server are on the same network, which allows more buffering than in real

life over more congested wide-area links.3 Thus, with Android’s default behavior,

network usage is disproportional to need on cellular, and WiFi is used inefficiently.

Unfortunately, clinging to WiFi leaves little room for reducing the cellular excess

as the margin of error is small. To illustrate this, we applied a rate limit to cellular

that should allow continuous playback of 640 kbps (2X playback rate). Cellular usage

is reduced by almost 15 MB—a median of 19.8 MB down to 5.0 MB—but introduces

playback pauses, as seen in Figure 6.4b. Because of these problems, for the rest of

our experiments, we use our heuristics-based switching scheme to significantly reduce

the times spent on poor-quality WiFi.

Finding a Good Policy for Music Streaming

A good policy for music streaming identifies the right “knobs” to turn, and to what

extent they should be turned, in order to accommodate three goals: (i) avoid any

pauses in playback, (ii) avoid needlessly using cellular bandwidth and instead use

buffered content whenever possible, and (iii) avoid a significant reduction in battery

life. Our study shows that the key to achieving these goals is making use of Tango’s

support for multi-level policy, i.e., using input from both user and app. Further,

constraints are particularly useful for reducing cellular usage by protecting against

“overeager” apps.

3We had the server and client on the same network for a more controlled experience across
emulations.

81

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800
B

u
ff

e
r

(s
e

c
s
)

Time (secs)

WiFi
Cell

(a) Unl: Buffer increases at full rate, irrespective of connectivity.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

B
u
ff
e
r

(s
e
c
s
)

Time (secs)

WiFi
Cell

(b) Rate: Buffer increases at full rate on WiFi, slower rate on cellular.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800

B
u
ff
e
r

(s
e
c
s
)

Time (secs)

WiFi
Cell

(c) App: Buffer increases only when necessary according to app policy.

Figure 6.5: Buffer usage of different Tango policies. All avoid any pauses during
playback.

82

 0

 50

 100

 150

 200

 250

Unl Rate App

D
a

ta
 (

M
B

)

Policy

WiFi
Cell

Total

Figure 6.6: Network usage showing how Tango policies (Rate and App) can drastically
reduce cellular usage compared to unlimited usage (Unl).

Data reductions on cellular. When evaluating our first two goals, Unl serves

as our baseline, while Rate and App introduce user policy and multi-level policy,

respectively. We can compare the buffer graphs for these configurations in Figure 6.5

with those for plain Android (Figure 6.4). These configurations all avoid any pauses,

and their buffer decreases on WiFi (red) are less frequent and shorter, meaning that

with this switching method data is buffering when plain Android is blocked on non-

working WiFi. However, as Figure 6.6 shows, a consequence of moving off WiFi

is more cellular usage—up to 6-7x compared to plain Android for this trace. This

behavior, i.e., prefetching indiscriminately, is not unique to our app. We based our

app’s behavior on popular music streaming apps (e.g., Google Play Music), which

often buffered several songs ahead even on cellular.

Better connectivity is in general a good thing, but it is contrary to our goal of

reducing cellular usage. Applying Rate and App policies drastically reduces cellular

usage while maintaining a pause-free playback. However, only App has the right

combination of user-policy constraints and app-policy knowledge to reduce cellular

usage to 30% of that of plain Android (i.e., from 19.8MB down to 6.1MB), which

already has “artificially” low cellular usage due to clinging to WiFi.

83

 0

 25

 50

 75

 100

 0 2 4 6 8 10

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (hours)

Unl
Rate
App

Figure 6.7: Unl and Rate drain battery faster due to keeping the cell link active,
while App is able to reduce the drain.

Battery usage. In light of our third goal for Tango policies, we sought to under-

stand how cellular-reducing policies affect the smartphone’s battery life. To evaluate

this, we ran the music streaming app while our emulation trace looped until the bat-

tery ran out, recording the battery percentage at every second, with the results shown

in figure 6.7. Also, table 6.3 breaks down the rates of decline and total life of each

policy. With 25% of battery left, the drain rate appears to speed up, possibly due

to OS or the firmware attempting to avoid a complete drainage, so we segment the

decline rates for the first 75% and the last 25%. We see that Unl and Rate experience

similar battery life—about 7.2 hours—losing ∼13% an hour for the first 75% and

∼19% for the remainder. This suggests that battery life is dependent on the amount

of time the cellular network is active, regardless of transmission rate.4 On the other

hand, App provides over 2 hours additional battery life, for a total of 9.7 hours. App

lets the cellular radio transition to a low power idle state during times when the buffer

is sufficiently full, saving power over Unl and Rate.

4We believe the higher drain for Rate is mostly noise due to external factors, i.e., the load on the
cell network.

84

First 75% batt. Last 25% batt. Battery Life

drain (% / hr) drain (% / hr) (hrs)

Unl -12.6 -19.2 7.25
Rate -12.7 -19.5 7.21
App -9.5 -13.9 9.70

Table 6.3: Unl and Rate keep cellular active and drain battery faster, while App is
able to reduce the drain.

6.2.3 Case Study 2: Policy Across Apps

We now consider how Tango can provide fairness and prioritization across apps com-

peting for resources.

App-level Fairness

On mobile devices, apps that open up many flows can gain a higher share of band-

width, since TCP only provides fairness on a flow level. For example, an app down-

loading several songs concurrently for future listening would drown out a single-flow

video stream. Since users typically think in terms of apps rather than flows, fair-

ness at the app level can be a more natural fit for expressing a user’s needs. We

can achieve this in Tango with a user policy that gives each (active) app an equal

share of available bandwidth by setting a constraint on each app to have 1/N of the

bandwidth.

We implemented this policy in a scenario with multiple networks available

simultaneously—giving apps a choice of which to use—but enforcing equal sharing of

each link between apps. In our scenario, the user policy rate limits the 4G network to

640 kbps after 30 seconds to discourage its use, with the constraint removed after 30

seconds of being idle. We have two apps: a multi-flow app (MFA) with five flows that

always uses the 2 Mbps WiFi link, and a single-flow app (SFA) with an app policy

to migrate to the network where it gets the best performance. When simultaneous

85

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (secs)

Multi on WiFi
Single on cell

Multi on WiFi
Single on celllBoth on WiFi

Cell constraint: 640kbps

Multi-flow App
Single-flow App

Figure 6.8: App-level fairness at link level, while app policy optimizing performance
given constraints.

interface usage is acceptable, Tango helps reduce costs and/or optimizes performance

by scheduling flows more intelligently.

Figure 6.8 shows these results. For the first 30 seconds, SFA uses cellular as its

measured speed is better than its WiFi constraint (∼1 Mbps). When the user policy

constrains cellular to 640 kbps, however, SFA migrates to WiFi, equally sharing

the WiFi bandwidth with MFA, despite the latter’s 5 flows. Once the constraint on

cellular is lifted, SFA moves back to cellular. Not only have we achieved fairness when

sharing a link, but app policy enables the single app to achieve better performance

by responding to the constraints.

Dynamic App Prioritization

In some cases, prioritizing certain app network usage is more desirable for a user than

equally sharing resources. Congested or slower cellular links may not have enough

bandwidth for simultaneously syncing photographs with the cloud (background) and

web browsing (foreground). With Tango, a user policy can dynamically prioritize

available bandwidth to the foreground app, demonstrated in Figure 6.9. At time 30s,

the user opens an app in the foreground. The policy strictly prioritizes the foreground

app, giving it the full link rate until the app closes at 60s.

86

 0

 0.4

 0.8

 1.2

 1.6

 2

 0 10 20 30 40 50 60 70

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (secs)

Background App
Foreground App

Figure 6.9: Providing priority dynamically to foreground traffic for better user expe-
rience.

Fairness, Priority, and App Hints

Tango allows app policies to send hints to the user policy, which provides a powerful

way to improve prioritization across apps. The previous example’s policy works on

the assumption that the foreground app is always more important than the back-

ground app to the user. However, this is not always true, e.g., music streaming in

the background. When the music app’s playback buffer gets low, its network usage

becomes important to prevent a user from experiencing playback pauses (and thus a

poor experience). This is a prime opportunity to use Tango’s app hints.

To demonstrate this, we combine the app-level fairness (i.e., equal bandwidth

when both apps are active) and prioritization from the previous examples with app

hints. We have two apps competing for a 550 kbps WiFi link: a web app that

continually downloads yahoo.com’s frontpage (including any embedded or Javascript-

initiated content) and our music streaming app. Figure 6.10 shows how this situation

performs on today’s smartphones. The page load times, as measured by Android’s

WebView, are low until the music app begins in the background. Once that happens,

the page load times and variability increase, while the music indiscriminately adds to

its playback buffer. The long-running music app is able to fill kernel queues, hindering

the burstier web app from getting its fair share, e.g., due to losses and delays in TCP

slow start. This lack of resource isolation makes using multiple apps on the phone a

poor experience.

87

 0

 2

 4

 6

 8

 0 20 40 60 80 100 120
 0

 10

 20

 30

 40

 50

P
a

g
e

 l
o

a
d

 t
im

e
 (

s
)

P
la

y
b

a
c
k
 b

u
ff

e
r

(s
)

Time (secs)

Music app
Web app

Figure 6.10: Insufficent resource isolation in today’s phones: background music re-
duces web performance.

Tango can address this problem with its policy enforcement. We implemented

a user policy that has two priority classes—high and normal—and equally shares

network resources between apps of the same class. Since its in the foreground, the web

app always runs at high priority to provide a low-delay experience while browsing. The

music app policy sends a hint to the controller that it wants high priority whenever

its playback buffer falls below 20s; once the buffer is above 30s, the app sends a hint

for normal priority, as its network needs are less urgent. The user policy uses these

hints to set the priority constraints for the music app.

Figure 6.11 shows the result of running both apps with this policy. The white

area is when the web app runs alone, lightly shaded areas have both apps are running

at high priority, and darker shaded areas have the music app is running at normal

priority. When the web app runs alone or the music app runs at normal priority, the

page load times remain low, as the web app is strictly prioritized over the music app.

Page load times only increase when the music app needs to replenish its buffer, hints

for a higher priority, and is granted high priority by the user policy. But the load time

increase is more modest and less variable than in Figure 6.10, as the equal sharing

between the two high-priority apps gives each their own queue, reducing packet loss

for the web app. Given the work-conserving nature of the HTB setup, the music

app also improves its download rate when the web app stops at time 360s. In short,

Tango’s hints allows apps to intelligently cooperate in order to improve overall user

experience.

88

 0

 2

 4

 6

 8

 0 50 100 150 200 250 300 350
 0

 10

 20

 30

 40

 50

P
a

g
e

 l
o

a
d

 t
im

e
 (

s
)

P
la

y
b

a
c
k
 b

u
ff

e
r

(s
)

Time (secs)

Music app
Web app

Figure 6.11: Providing dynamic priority between music and web. The music app hints
at its need for the network to provide improved page load times when its buffer is
healthy (dark gray) and minimal disruption when its buffer needs replenishing (light
gray).

These exemplify just a few policy decisions that are useful across apps. Tango’s

constraint mechanism allows limits to be adjusted on a per-interface basis as well,

enabling users to set different management strategies based on the network type.

These techniques generalize: user policies can also deal with classes of apps and fore-

ground/background status. Further, apps can optimize in the presence of constraints

that restrict their network usage. Non-critical flows can be deferred or given the low-

est priority within the app, so that they only consume network resources after other

flows complete.

89

Chapter 7

Conclusion

This thesis provides solutions to updating mobile devices to make network mobility

seamless and well-supported, and for improving managing their limited resources.

Through our work on ECCP and Serval, we show that mobility can be achieved

with some better separation on network layers and improved naming abstractions.

Instead of overloading IP and ports, we introduce serviceIDs for naming applications,

flowIDs for naming network flows, and allow IPs to return to their initial purpose of

naming physical endpoints. Separating the transport layer into a control and data

plane, operating with their own sequence spaces, allows connection control more flex-

ibility to support mobility and multipath. The ECCP protocol has been formally

verified [2] to be free of deadlocks and livelocks, and our working Serval implementa-

tion has been tested in a variety of mobility use cases to demonstrate its effectiveness

and performance (on-par with legacy TCP/IP).

Tango addresses the challenges that come with resource-constrained devices that

are exposed to a diversity of network and operating conditions. Tango provides a

platform for the many actors (i.e., users and apps) of a device to contribute and

shape its resource usage. A global user policy helps device usage in broad strokes

and provide the constraints in which app policies can further refine and improve

90

their usage to align with user expectations. While important for devices today, it is

particularly important for devices that make mobility and multipath seamless (e.g.,

ECCP/Serval-enabled devices), where choice of network can drastically change usage

profiles. Our prototype showed improved resource usage in a variety of situations,

including saving data for users and improving performance when running multiple

apps. Taken altogether, ECCP/Serval and Tango provide a powerful two-pronged

approach to improving today’s mobile devices.

7.1 Future Work

While ECCP/Serval and Tango provide strong improvements for dealing with mobil-

ity today, several open questions remain.

Multipath support: ECCP supports multipath as part of its protocol, but

we did not implement it in our Serval prototype. Adding and removing subflows

are possible additional actions to be utilized in Tango, but again, these were not

implemented in our first prototype. Multipath would add a new aspect for Tango

policy writers to consider. In the context of mobile devices, utilizing multiple networks

in the common case may not make sense due to the increased power consumption.

But, it could be used effectively in short bursts when network switches are expected.

For example, establishing a subflow on a cellular network before shutting down the

WiFi could improve handoff times. Both interfaces would only be up for a short time

(e.g., when a user policy determines it may need to switch), thereby minimizing the

battery hit. There is precedent for this kind of use case, given Apple’s use of MPTCP

for its services, e.g., for Siri a user does not have to repeat their request because of a

network switch [34].

Other resource management: In Tango we focused on managing network

resource usage, mainly looking at things like battery and network data. We would

91

like to incorporate other resources on the device, such as CPU and memory, into

the policy platform as well. Integrating techniques like Linux cgroups and CPU

Governors [6] into Tango could prove useful in giving users more control over the

performance of apps on their devices.

Policy building: While we examined several different approaches to writing

Tango policies and targeted several different aspects, the policy space is still quite

vast. With new sensors and sources of input to policies being added all the time, the

potential policies that could be written also increases. For example, integrating input

from devices like wearables (e.g., the Apple Watch, Android Wearables) or dedicated,

low-power hardware [33] can help determine what a user is currently doing. This can

influence device policy: users who are moving quickly (running, biking, driving) can

not easily connect to WiFi points so the phone should be more conservative and have

a higher threshold for signal strength.

92

Bibliography

[1] Anna Aleryd. How Sony’s Battery STAMINA Mode works. http://developer.
sonymobile.com/2013/04/03/how-sonys-battery-stamina-mode-works/,
April 2016.

[2] Matvey Arye, Erik Nordström, Robert Kiefer, Jennifer Rexford, and Michael J.
Freedman. A Formally-Verified Migration Protocol For Mobile, Multi-Homed
Hosts. In IEEE International Conference on Network Protocols, October 2012.

[3] Aruna Balasubramanian, Ratul Mahajan, and Arun Venkataramani. Augment-
ing Mobile 3G Using WiFi. In MobiSys, June 2010.

[4] Jakob E. Bardram. The Java Context Awareness Framework (JCAF) - A service
infrastructure and programming framework for context-aware applications. In
Pervasive Computing, May 2005.

[5] D. J. Bernstein. Syn cookies. http://cr.yp.to/syncookies.html.

[6] Dominik Brodowski. Linux CPUFreq: CPUFreq Governors. https://www.

kernel.org/doc/Documentation/cpu-freq/governors.txt, April 2016.

[7] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. CARISMA: Context-
aware reflective middleware system for mobile applications. In IEEE Transac-
tions on Software Engineering, October 2003.

[8] David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden. Tussle
in Cyberspace: Defining Tomorrow’s Internet. IEEE/ACM Trans. Netw., 13(3),
June 2005.

[9] Patrick Fahy and Siobhan Clarke. CASS - A middleware for mobile context-aware
applications. In Workshop on Context Awareness at MobiSys, June 2004.

[10] Dino Farinacci, Vince Fuller, Dave Meyer, and Darrel Lewis. RFC 6830: The
Locator/ID Separation Protocol (LISP), January 2013.

[11] Bryan Ford and Janardhan Iyengar. Breaking up the transport logjam. In
HotNets, October 2008.

[12] D. Funato, K. Yasuda, and H. Tokuda. TCP-R: TCP mobility support for
continuous operation. In IEEE International Conference on Network Protocols,
October 1997.

93

http://developer.sonymobile.com/2013/04/03/how-sonys-battery-stamina-mode-works/
http://developer.sonymobile.com/2013/04/03/how-sonys-battery-stamina-mode-works/
http://cr.yp.to/syncookies.html
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

[13] Brett Higgins, Jason Flinn, T.J. Giuli, Brian Noble, Christopher Peplin, and
David Watson. Informed Mobile Prefetching. In MobiSys, June 2012.

[14] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, May 1997.

[15] Amazon Inc. Amazon Web Services (AWS). https://aws.amazon.com/, De-
cember 2015.

[16] Apple Inc. Background Execution. https://developer.apple.com/library/

ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/

BackgroundExecution/BackgroundExecution.html, April 2016.

[17] Google Inc. Optimizing for Doze and App Standby. http://developer.

android.com/training/monitoring-device-state/doze-standby.html,
April 2016.

[18] Microsoft Inc. Background agents for Windows Phone 8. https://msdn.

microsoft.com/en-us/library/windows/apps/hh202942(v=vs.105).aspx,
April 2016.

[19] Robert Kiefer, Erik Nordström, and Michael J. Freedman. From feast to famine:
Managing mobile network resources across environments and preferences. In
2014 Conference on Timely Results in Operating Systems (TRIOS 14), October
2014.

[20] Leslie Lamport. Password Authentication with Insecure Communication. In
Communications of ACM, November 1981.

[21] Kyunghan Lee, Injong Rhee, Joohyun Lee, Song Chong, and Yung Yi. Mobile
Data Offloading: How Much Can WiFi Deliver? In CoNEXT, November 2010.

[22] Anthony J. Nicholson and Brian D. Noble. BreadCrumbs: Forecasting mobile
connectivity. In MOBICOM, September 2008.

[23] Pekka Nikander, Andrei Gurtov, and Thomas R. Henderson. Host Identity Pro-
tocol (HIP): Connectivity, Mobility, Multi-Homing, Security, and Privacy over
IPv4 and IPv6 Networks. IEEE Comm. Surveys, 12(2), April 2010.

[24] Erik Nordström, David Shue, Prem Gopalan, Robert Kiefer, Matvey Arye,
Steven Ko, Jennifer Rexford, and Michael J. Freedman. Serval: An End-Host
Stack for Service-Centric Networking. In NSDI, April 2012.

[25] Olga Ormond, John Murphy, and Gabriel-Miro Muntean. Utility-based Intelli-
gent Network Selection in Beyond 3G Systems. In IEEE ICC, June 2006.

[26] Christophe Paasch, Gregory Detal, Fabien Duchene, Costin Raiciu, and Olivier
Bonaventure. Exploring Mobile/WiFi Handover with Multipath TCP. In Cell-
Net, August 2012.

94

https://aws.amazon.com/
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
http://developer.android.com/training/monitoring-device-state/doze-standby.html
http://developer.android.com/training/monitoring-device-state/doze-standby.html
https://msdn.microsoft.com/en-us/library/windows/apps/hh202942(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh202942(v=vs.105).aspx

[27] Charles E. Perkins. RFC 3344: IP mobility support for IPv4, August 2002.

[28] Charles E. Perkins and David B. Johnson. Mobility support in IPv6. In MOBI-
COM, November 1996.

[29] Brandon Podmayersky. An incremental deployment strategy for Serval. Technical
Report TR-903-11, Princeton CS, June 2011.

[30] Moo-Ryong Ra, Jeongyeup Paek, Abhishek B. Sharma, Ramesh Govindan, Mar-
tin H. Krieger, and Michael J. Neely. Energy-Delay Tradeoffs in Smartphone
Applications. In MobiSys, June 2010.

[31] Zhijie Shi, Chujiao Ma, Jordan Cote, and Bing Wang. Hardware Implementa-
tion of Hash Functions. In Mohammad Tehranipoor and Cliff Wang, editors,
Introduction to Hardware Security and Trust. Springer-Verlag New York, 2012.

[32] Alex C. Snoeren and Hari Balakrishnan. An end-to-end approach to host mobil-
ity. In MOBICOM, August 2000.

[33] Andrew Tarantola. Google’s Android Sensor Hub knows how your Nexus is mov-
ing. http://www.engadget.com/2015/09/29/google-android-sensor-hub/,
April 2016.

[34] Iljitsch van Beijnum. Multipath TCP lets Siri seamlessly switch be-
tween Wi-Fi and 3G/LTE. http://arstechnica.com/apple/2013/09/

multipath-tcp-lets-siri-seamlessly-switch-between-wi-fi-and-3glte/,
April 2016.

[35] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the Web from DNS.
In NSDI, March 2004.

[36] http://web10g.org/, April 2016.

[37] Ashton L. Wilson, Andrew Lenaghan, and Ron Malyan. Optimising Wireless
Access Network Selection to Maintain QoS in Heterogeneous Wireless Environ-
ments. In WPMC, September 2005.

[38] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design,
implementation and evaluation of congestion control for multipath TCP. In
NSDI, March 2011.

[39] Qiang Xu, Jeffrey Erman, Alexandre Gerber, Z. Morley Mao, Jeffrey Pang,
and Shobha Venkataraman. Identifying Diverse Usage Behaviors of Smartphone
Apps. In IMC, November 2011.

[40] Kok-Kiong Yap, Te-Yuan Huang, Masayoshi Kobayashi, Yiannis Yiakoumis,
Nick McKeown, Sachin Katti, and Guru Parulkar. Making Use of All the Net-
works Around Us: A Case Study on Android. In CellNet, August 2012.

95

http://www.engadget.com/2015/09/29/google-android-sensor-hub/
http://arstechnica.com/apple/2013/09/multipath-tcp-lets-siri-seamlessly-switch-between-wi-fi-and-3glte/
http://arstechnica.com/apple/2013/09/multipath-tcp-lets-siri-seamlessly-switch-between-wi-fi-and-3glte/
http://web10g.org/

[41] Jukka Ylitalo, Tony Jokikyyny, Tero Kauppinen, Antti J. Tuominen, and Jaakko
Laine. Dynamic network interface selection in multihomed mobile hosts. In
HICSS, January 2003.

[42] Shelley Zhuang, Kevin Lai, Ion Stoica, Randy Katz, and Scott Shenker. Host
mobility using an internet indirection infrastructure. In MobiSys, May 2003.

96

	Abstract
	Bibliographic Notes
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Pseudocodes
	1 Introduction
	1.1 Mobility and the Network
	1.2 Device Resource Management

	2 Background
	2.1 Supporting Network Mobility
	2.2 Handling Limited Resources

	3 Supporting Mobility
	3.1 Protocol Requirements and Related Work
	3.1.1 Protocol Requirements
	3.1.2 Related Work

	3.2 The ECCP Protocol
	3.2.1 Establishing a New Connection With a Single Flow
	3.2.2 Adding Flows to an Existing Connection
	3.2.3 Changing the IP Addresses of Existing Flows

	3.3 Other Concerns
	3.3.1 Verification
	3.3.2 Security
	3.3.3 Simultaneous Movement

	3.4 Bigger Picture: Serval
	3.4.1 Naming Abstractions
	3.4.2 The Serval Network Stack

	4 ECCP/Serval Evaluation
	4.1 Serval Prototype
	4.1.1 Lessons From the Serval Prototype
	4.1.2 Performance Microbenchmarks
	4.1.3 Application Portability

	4.2 Experimental Case Studies
	4.3 Incremental Deployment

	5 Managing Limited Resources with Tango
	5.1 Motivation and Challenges
	5.1.1 Balancing Costs, Caps, and Battery
	5.1.2 Ensuring Good User Experience
	5.1.3 Managing Conflicting Interests

	5.2 Tango Design
	5.2.1 The Controller and Policy Execution
	5.2.2 A Programmatic Approach to Policy
	5.2.3 Discussion: Policy in Practice

	5.3 Tango Related Work

	6 Tango Evaluation
	6.1 Tango Prototype
	6.2 Case Study Evaluation
	6.2.1 Experimental Setup
	6.2.2 Case Study 1: Music Streaming
	6.2.3 Case Study 2: Policy Across Apps

	7 Conclusion
	7.1 Future Work

	Bibliography

