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Abstract
Wireless sensing, tracking, and drawing technologies are enabling exciting new possibilities for human-mobile interaction.
They primarily rely on measurements of backscattered phase, amplitude, and Doppler signal distortions, and often require
many measurements of these quantities—in time, or from multiple antennas. In this paper we present the design and imple-
mentation of PolarDraw, the first system for pen motion tracking that sends differentially-polarized wireless signals to glean
more information from the environment. Leveraging information received from each polarization angle, our novel algorithms
infer orientation and position of an RFID-tagged pen using just two antennas, writing in the air or on a whiteboard. An ex-
perimental comparison in a cluttered indoor office environment compares two-antenna PolarDraw with recent state-of-the-art
object tracking systems that use double the number of antennas, demonstrating comparable centimeter-level tracking accuracy
and character recognition rates (88–94%), thus making a case for the use of polarization in many other tracking systems.

1. Introduction
We are rapidly moving toward a pervasively-sensed wireless world where most of our interactions with machines will be
accomplished via gestures [3, 25] and writing in the air [32], and machines will be able to recognize our activities and pinpoint
our location [1, 2, 13, 38]. On the industrial side, recent efforts include both short-range [9] and medium-range [8] indoor radar
technologies, as well as more mature electronic whiteboard technologies based on ultrasound/infrared [20] and laser curtains
[19].

While the basic technology is compelling, the real-world utility of passive wireless sensing systems depends on several
factors, all of which must be addressed:

1. Infrastructure requirements— Systems that use angle-of-arrival information generally require a significant number of
physically-separated antennas [3, 41], reducing deployability. Other systems require the simultaneous use of multiple widely-
separated carrier frequencies [33], requiring simultaneous or added communication on these frequencies.

2. Pointing equipment— Some systems achieve millimeter accuracy, but require expensive ($100) styluses in order to interact
with ultrasound and infrared receivers [20].

3. Location and orientation estimation— In many cases, estimating the orientation of an object or person helps improve
accuracy or activity recognition.

Electromagnetic wave polarization is a fundamental property of a wireless transmission, and refers to the orientation of the
electrical field in the plane transverse to the wave’s propagation, as shown in Figure 1. In the context of mobile devices,
polarization has received the most attention in recent years as increasing smartphone usage in an orientation facing the user
(roughly level with the ground) has resulted in a loss of signal strength from a vertically-polarized transmissions, both indoors
and outdoors [27]. Outdoors, the horizontally- and vertically-polarized paths from base station to mobile (of length ca. 2 mi.)
are very different [16] due to differing reflectors. Indoors, for smaller Wi-Fi cell sizes, the same is true for longer non-line-
of-sight paths, but shorter paths tend to share similar reflectors (and a more dominant line-of-sight path) when viewed from
orthogonal polarizations [28].

Our key observation in this paper is that this similarity between horizontally- and vertically-polarized paths at modest ranges
presents a unique opportunity for wireless motion tracking systems to leverage a new source of information: polarization. We
use a simple RFID reader as a test case, but replace the reader’s standard circularly polarized antennas with linearly polarized
antennas as shown in Figure 1, resulting in the linearly polarized transmission shown.

In this paper, we present the design and implementation of PolarDraw, the first motion tracking system that can accurately
reproduce handwritten letters in the air or on a whiteboard with just two nearby antennas. With two antennas, PolarDraw sets a
new standard for minimal supporting infrastructure. PolarDraw estimates both the position and orientation of an RFID-tagged
whiteboard pen, adding just pennies to the cost of each item to be used as a stylus. Thus PolarDraw meets each of the three
preceding objectives for a practical and highly-deployable motion tracking system.

In brief, PolarDraw works as follows. Our system uses RFID antennas to measure the phase and amplitude of an RFID tag
at a rate of ca. 100 Hz. Variations in the angle between tag and reader antenna result in fluctuations of power received from the
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Figure 2— Recovered trajectory: WoW, M, C, W, Z.

tag, but as our feasibility study next (§2) shows, symmetry properties result in equal power changes when the tag rotates left or
right. PolarDraw uses a second, linearly-polarized antenna to view the rotation from a 30° shift in perspective, thus overcoming
this rotational ambiguity problem (§3.2). Rotation is just part of what determines the pen’s true trajectory, however. PolarDraw

also estimates the displacement of the pen on the whiteboard using phase difference readings across both time and space (§3.3).
Since they do not attempt to discriminate polarization, current trajectory tracing systems have not yet explored how best to fuse
the above phase readings (which estimate pen displacement) with power readings (which estimate pen rotation), and doing so
carefully is key to getting highly accurate results. We describe our novel algorithm, which incorporates a simple Viterbi-based
probabilistic search (§3.4), to complete the design of PolarDraw.

Contributions. PolarDraw is the first system we are aware of that uses differentially-polarized radio transmissions to estimate
an object’s orientation. The techniques introduced here introduce a new source of position information, and thus have the
potential to be applied to many other indoor radar and indoor localization systems to enhance their accuracy. PolarDraw is also
the first radio-based system we are aware of that simultaneously models changes in the pen’s displacement and orientation. As
our experimental evaluation shows, PolarDraw benefits from the pen orientation estimation.

Roadmap. The rest of this paper is organized as follows: §2 presents initial microbenchmark-style measurements in a cluttered
office environment to establish the basic experimental possibility of measuring orientation through polarized transmissions. §3
presents the design of PolarDraw, after which we describe our implementation (§4). Our experimental evaluation (§5) tests
PolarDraw’s performance against the two leading motion tracking systems in the research literature mentioned above, RF-
IDraw and Tagoram, with all three systems running in the same experimental environment. Our results in this cluttered,
real-world office environment demonstrate motion tracking accuracy that is competitive with the above two systems (median
10 cm for two-antenna PolarDraw, 8 cm for four-antenna RF-IDraw and Tagoram), but with just two antennas, making Polar-

Draw significantly more deployable. Further microbenchmark experiments justify parameter choices and test the experimental
limits of our system. In the remainder of the paper, we discuss related (§6) and future (§7) work before concluding (§8).

2. Feasibility: Measuring polarization
To determine whether we can measure polarization in a real indoor environment where multipath is prevalent, we have con-
ducted an emprical feasibility study, using the hardware setup shown in Figure 3(a). We situate an ImpinJ RFID reader
connected to a linearly polarized antenna 2.5 m above an RFID tag placed on a turntable below, as shown in the picture.1 The
RFID reader interrogates the tag at a rate of approximately 100 Hz. In the first experiment, the tag rotates at a constant angular
velocity on the turntable. In the second experiment, we manually translate the tag back and forth, keeping its orientation fixed.

Figure 3(b) shows the received signal strength (RSS) and phase measured at the RFID reader during the tag’s rotation. As
expected, RSS changes periodically during the tag’s rotation. It peaks at −24 dBm when the tag and the reader antennas are
1Our hardware setup is more completely described below in §4.1.
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(c)— Moving a tag. (Case 2)

Figure 3— An initial feasibility study experimental setup and experimental results.

Non-magnetic 
whiteboard

Linearly polarized antenna

UHF RFID Reader

UHF Passive RFID tag

Figure 4— PolarDraw’s high-level design. Two linearly-polarized antennas are mounted above a whiteboard. Users draw with
standard whiteboard pens, RFID-tagged.
aligned, and drops gradually as the polarization mismatch angle between the two increases. Finally, the tag fails to acquire
any power and there is no RSS reading when the orientation of the tag is perpendicular to the polarization angle of the reader
antenna. On the other hand, since the tag-to-antenna distance does not change during the tag’s rotation, the phase reading
keeps around a constant value. Interestingly, we can see that the phase reading jumps when the polarization mismatch angle
is around 90◦ and 270◦. This is because the tag fails to acquire energy from the line-of-sight path due to the polarization
mismatch. Nonetheless, it acquires energy along non-line-of-sight signal propagation paths, where the signal bounces off
nearby objects, changing its polarization angles. PolarDraw is designed to cope with and overcome the spurious data that these
differently-polarized reflection paths convey to the reader antenna.

Figure 3(c) shows RSS and phase during the tag’s movement over a distance of 8 cm. As the result indicates, the RSS value
stays more or less constant, which is expected since RSS is insensitive to small changes in distance over the tag-to-antenna
link. In contrast, we can see the phase reading increases when the tag moves in one direction, remains stable when the tag
stands still, and decreases when the tag moves back.

We conclude from the above empirical results:
1. At moderate distances in our line-of-sight indoor environment, RSS is sensitive to the polarization mismatch, yet it is

insensitive to small changes in the length of the tag-to-antenna link.

2. With the exception of a “corner” case when the tag antenna and reader antenna are orthogonal to each other, phase mea-
surements are insensitive to polarization mismatch, yet are extremely sensitive to small changes in the length of the tag-to-
antenna link.

Combining these two findings, we can conclude that in our experimental setup, separate measurements of RSS and pha-se can
respectively estimate rotational and translational mov-ement of the pen, with a reasonable degree of reliability. In the next
section, we describe a design that extracts a high degree of reliability from these two signals.

3. Design
In this section we detail PolarDraw’s design, starting with a simple model of pen rotation and translation (§3.1). Leveraging this
model, we next present a method for estimating the direction (§3.2) and amount (§3.3) of the pen’s movement. We conclude
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Figure 5— Modeling pen movement during writing.

the section with the entire pen trajectory tracking algorithm (§3.4).

Design overview. PolarDraw comprises a UHF RFID reader connected to two linearly-polarized antennas mounted above
a whiteboard as shown in Figure 4, or simply tracking a “virtual whiteboard” in the air. Users draw below with standard
whiteboard pens, to which we attach low-cost RFID tags. The RFID reader works on the 902–928 MHz ISM band, interrogating
the RFID tag at a rate of 100 Hz (10 milliseconds between each reading).

3.1 Modeling pen movement
A pen trajectory is composed of a set of discrete trajectory fragments, each of which can be characterized by a movement
direction and distance on the (virtual or real) whiteboard. When a user is writing on a whiteboard, wrist movements tend to
cause azimuthal rotations clockwise when the pen moves to the right, and counterclockwise when the pen moves to the left.
The pen is of course free to rotate in three-space, and so we define angular measurements of the pen’s elevation from the X–Z

plane and azimuthal rotation measured from the X-axis and projected onto the X–Z plane:

αe: Pen elevation angle, from the X–Z plane,
αr: Pen rotation angle, as projected on the X–Y plane,
αa: Pen azimuthal angle, as projected on the X–Z plane.

Table 1— Pen angle as illustrated in Figure 5(a).

as shown in Figure 5(a). Consequently, if the rotation angle of the pen αr is determined, then the direction of the movement of
the pen, which is in perpendicular to αr, can be estimated.

Pen movement direction. PolarDraw relies on the phenomenon of polarization angle mismatch to infer changes in the rotation
angle of the pen. As noted above, the tag reflects the most energy when its physical orientation is aligned with the polarization
angle of the interrogating antenna. In contrast, the tag reflects negligible energy when its rotation angle αr is 90° from the
polarization angle of the reader antenna above.

As Figure 5(a) shows, once the polarization mismatch angle αa−90◦ is determined (detailed in Section 3.2), we can deduce
αa and estimate pen rotation angle αr as follows:

αr = π− arctan
(
− sinαe

cosαe · cosαa

)
(1)

αe ∈ (−90◦,90◦) indicates the pen elevation angle when wri-ting on the whiteboard. We set αe to be a constant determined
by experiments described in 5.4.1. There we also show that recognition accuracy is insensitive to PolarDraw’s choice of αe.
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PolarDraw continuously estimates αr and the moving distance along the arc formed by change in αr at each time point, and
inherently recoveries the trajectory of the pen on the whiteboard, as shown in Figure 5(b). One thing need to be noticed that
when αa = 90◦, αr = 0◦. Hence we do not take αa = 90◦ into Eq. 1 in this case.

Pen moving distance. The RF phase reading depicts the traveling distance of the backscatter signal. PolarDraw uses RF
phase readings to estimate the tag moving distance due to the following two reasons. First, as our empirical feasibility study
shows, the polarization mismatch has little impact on the phase readings. Second, the COTS RFID reader provides fine-grained
resolution of phase readings.

3.2 Estimating the pen’s moving direction
As noted above, once the azimuthal angle αa is estimated, we can infer the pen rotation angle αr by Equation 1 and deduce
the pen direction of movement. PolarDraw exploits both the RSS trend and the phase trend to estimate and track pen direction
of movement. The basic workflow of the algorithm is as follows: at each timestamp, PolarDraw first examines the RSS trend.
If there is no significant change in RSS, i.e., RSS change remains below some threshold δ 2, PolarDraw then exploits the phase
trend to determine the pen’s coarse-grained direction of movement (detailed in §3.2.2). Otherwise, PolarDraw tracks the pen
azimuthal angle αa bas-ed on its continuous azimuthal angle tracking algorithm (detailed in §3.2.1), and translates αa to the
pen rotation angle αr using Equation 1. With αr, PolarDraw further infers the pen moving direction at each timestamp.

3.2.1 Azimuthal angle estimation

In designing PolarDraw’s αa estimation algorithm, we face the following two challenges. Firstly, as Figure 6(a) shows, both a
clockwise and a counterclockwise rotation could result in an identical polarization mismatch angle β , hence the same end RSS.
Consequently, we are unable to differentiate the rotation direction by simply observing the end RSS value alone. We term this
challenge the rotation direction ambiguity. Secondly, as Figure 6(b) shows, within the range [0,180◦], there are always two
azimuthal angles that result in the same RSS value. Therefore, we are also unable to estimate the azimuthal angle based on
RSS alone. We term this challenge the azimuthal angle ambiguity.

Breaking ambiguities. PolarDraw addresses the above challenges by leveraging the RSS trend acquired from its two linearly
polarized antennas. As Figure 6(c) shows, we assume the angles between the Z-axis and the polarization angle of these two
antennas are the same, denoting them as γ . Let β

j
i be the polarization mismatch angle between the tag and antenna j at time

i. Then, the lines along the polarization angles of these two antennas together with perpendicular lines drawn across each
2We test various threshold, and empirically set δ =2 dBm, which optimizes the overall performance

6



Table 2— RSS trend. (“–” means don’t care.)

Area Direction RSS trend RSS Changing rate

Sector 1
⇒ s1

i ↑ s2
i ↑ |∆s1

i |< |∆s2
i |

⇐ s1
i ↓ s2

i ↓ |∆s1
i |< |∆s2

i |

Sector 2
⇒ s1

i ↓ s2
i ↑ –

⇐ s1
i ↑ s2

i ↓ –

Sector 3
⇒ s1

i ↓ s2
i ↓ |∆s1

i |> |∆s2
i |

⇐ s1
i ↑ s2

i ↑ |∆s1
i |> |∆s2

i |

naturally separate the rotation plane into three sectors, as shown in Figure 6(c). The pen does not rotate azimuthally too much
when a user writes on the whiteboard, and so we assume the azimuthal angle αa is within the range of the union of these three
sectors. Therefore, if we can determine in which sector the current αa is, then we can break the azimuthal angle ambiguity.

Figure 7 shows RSS trends reported by different antennas when a user is writing on a whiteboard. Let s j
i be the RSS reading

reported by antenna j at time i, ∆s j
i = s j

i+1− s j
i . As indicated in this figure, when the pen rotates in different direction within

different sectors, the polarization mismatch angle β 1
i and β 2

i changes in a different way, which leads to a different direction
of change in RSS as well as a different rate of change of RSS: Table 2 summarizes the result. From this table we find that by
jointly considering RSS trends and changing rates, we can successfully determine the moving direction of the pen as well as
the range of the current azimuthal angle αa that the pen points to, thereby breaking both the rotation direction ambiguity and
the azimuthal angle ambiguity.

Continuous azimuthal angle tracking. Let α i
a be the azimuthal angle of the pen at time i. When the user begins writing,

PolarDraw estimates in which sector the pen points and in which direction the pen orients. Based on these, PolarDraw assigns
an initial azimuthal angle as follows:

α
0
a =



π− γ, if clockwise and in Sector 1,
π

2 + γ, if clockwise and in Sector 2,
π

2 − γ, if clockwise and in Sector 3,
π

2 + γ, if counterclockwise and in Sector 1,
π

2 − γ, if counterclockwise and in Sector 2,
γ, if counterclockwise and in Sector 3.

(2)

PolarDraw then tracks α i
a at each time i as follows:

α
i
a =

{
α i−1

a −∆β , if clockwise rotation,
α i−1

a +∆β , if counterclockwise rotation.
(3)

where ∆β is a variable, indicating the average changing rate of the azimuthal angle when human writes on the whiteboard. The
assignment of ∆β is as follows:

∆β =

{
π

30 , if |∆s1
i |> δ and |∆s2

i |> δ ,

0, otherwise.
(4)

We test various thresholds and empirically set δ to 1.5 dBm, which optimizes the overall detection accuracy.

Initial azimuthal angle correction. In the tracking process, the initial azimuthal angle we assigned will likely deviate from
its true value by some amount α̃a. Consequently, later azimuthal angle estimates suffer from this error α̃a as well, resulting in
an inaccurate tracking result.
PolarDraw corrects α̃a based on detecting when the azimuthal angle of the pen crosses over the boundary of two sectors.
Suppose at time i PolarDraw detects that the pen crosses over the boundary of two neighboring sectors based on the principle
shown in Table 2. The azimuthal angle of the pen at time i should be approximately equal to the azimuthal boundary angle of
these two sectors, denoted as α̂ i

a. Hence the difference between α̂ i
a and α i

a (the estimated azimuthal angle) indicates the initial
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Figure 8— The recovered pen trajectory before and after azimuthal angle correction.
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azimuthal angle error α̃a. PolarDraw corrects the estimated azimuthal angles by subtracting α̃a from all α i
a, thus achieving a

more accurate result. Figure 8 shows a snapshot of our system’s output before and after azimuthal angle error correction.

3.2.2 Estimating moving direction via phase trend

Writing styles vary and some people may write on the whiteboard without pen rotation, as shown in Figure 9(a). Consequently,
the azimuthal angle αa fails to reflect the true moving direction of the pen. To solve this problem, PolarDraw further exploits
phase changes to estimate the pen’s direction of movement. Specifically, we denote the distance between reader antenna j and
the tag at time i as l j

i . Let θ
j

i be the phase reading reported by the antenna j at time i. As Figure 9(b) shows, when the pen
moves up, both l1

i and l2
i decrease, resulting in θ 1

i ↓ and θ 2
i ↓. Conversely, when the pen moves down, both l1

i and l2
i increase,

leading to θ 1
i ↑ and θ 2

i ↑. Table 3 shows phase trends when the pen moves to different directions. Hence we leverage phase
trends to determine a coarse-grained moving direction of the pen.

3.3 Estimating the pen’s moving distance
PolarDraw again exploits phase trends to estimate the moving distance of the pen. Our approach is based on an assumption
that the moving distance during consecutive tag readings is within the half wavelength (≈16 cm). This assumption holds in
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Table 3— Phase changing trends during movement.

Moving direction Phase trends

Up θ 1
i ↓ θ 2

i ↓
Down θ 1

i ↑ θ 2
i ↑

Left θ 1
i ↓ θ 2

i ↑
Right θ 1

i ↑ θ 2
i ↓

practice since the sampling rate of the COST RFID reader is around 100 Hz, yielding a maximum differentiable speed of
16 m/s, significantly larger than human writing speed.
Moving distance lower bound. Let di be the moving distance of the pen at time period i, and l j

i be the distance between the
pen and reader antenna j at time i. ∆l j

i = l j
i+1− l j

i and can be computed as follows:

∆l j
i =


(θ j

i+1−θ
j

i ) ·λ/(4π), if |θ j
i+1−θ

j
i |< π

(θ j
i+1−θ

j
i −2π) ·λ/(4π), if θ

j
i+1−θ

j
i ≥ π

(θ j
i+1−θ

j
i +2π) ·λ/(4π), if θ

j
i+1−θ

j
i ≤−π

(5)

According to the triangle inequity we have di ≥max{|∆l1
i |, |∆l2

i |}.
Moving distance upper bound. We denote the maximum moving speed of the pen as vmax. Then the upper bound of the
displacement is vmax∆t, where ∆t is the time period between two consecutive tag readings. Based on above analysis, we know
the pen moving distance di should be within an annulus: max{|∆l1

i |, |∆l2
i |} ≤ di ≤ vmax∆t (as shown in Figure 10(a)), which

we term the feasible region. Within the feasible region, the ligature between the current location and each block forms the
displacement candidate set. Since the pen’s next location should be aligned with the pen’s current moving direction, we can
eliminate a large portion of infeasible locations in the feasible region, as shown in Figure 10(b). However, a large moving
distance uncertainty still remains as many blocks are aligned with the pen moving direction.
Minimizing the moving distance uncertainty. PolarDraw further exploits the inter-antenna phase difference θ 2

i − θ 1
i to

minimize the pen moving distance uncertainty. The relationship between phase readings and the tag-to-antenna distance can
be formulated as follows: {

θ 1
i +2k1π = 4πl1

i /λ

θ 2
i +2k2π = 4πl2

i /λ
(6)

Subtracting the above equations and dropping subscripts:

∆l2,1
i =

λ

4π
(∆θ

2,1
i +2kπ) (7)

where k is an unknown integer, ∆θ
2,1
i = θ 2

i −θ 1
i and ∆l2,1

i = l2
i − l1

i . Let (x1,y1) and (x2,y2) be the location of two antennas,
∆l2,1

i be the distance difference of these two antenna-to-tag links, we can construct a hyperbola with the two foci at the location
(x1,y1) and (x2,y2) as our location estimation. Due to the phase ambiguity, we acquire multiple hyperbolas. Therefore, the
next location of the pen may locate on all these hyperbolas. We minimize the displacement uncertainty by intersecting the
hyperbolas with the location candidates already acquired, as shown in Figure 10(c).

3.4 Tracking pen trajectory
The design so far focuses on how to track the moving direction and the moving distance of the pen, separately. Now we put
them together and show how to leverage the moving direction and the moving distance to infer the pen’s trajectory fragment at
each time interval.

We approach pen trajectory tracking problem as a discrete-time state estimation problem, where the state of the system at
time t, Xt , is the location of the pen at that time. The measurement at time t, Yt , is the phase and RSS readings reported by the
two antennas. PolarDraw employs a Hidden Markov Model (HMM) to find the most likely sequence of pen trajectory segments.
HMM Prior. The HMM consists of a set of interconnected states, each of which emits an observable output. Each state is
characterized by two probabilities: the transition probability over states and the emission probability over the output symbol.
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The moving trajectory of an object described by HMM generates a sequence of output symbols according to the highest
emission probability of the current state, transitioning to the next state based on the highest transition probability.

Modeling the state transition probability. Without loss of generality, we divide the whiteboard into equal-length blocks,
denoted Bi, j. Then the state space of HMM consists of all blocks on the whiteboard. We consider the transitions between
consecutive states with equal probability 3. The state transition probability Pr(Xt+1 = Bi, j|Xt = Bk,l) is defined as:{

1
M , if max{|∆l1

t |, |∆l2
t |} ≤ d(Bi, j,Bk,l)≤ vmax∆t,

0, otherwise.
(8)

where M is the the number of blocks within the feasible region. d(Bi, j,Bk,l) is the distance between Bi, j and Bk,l .

Modeling emission probability. At time t, the observation Yt is represented as a quad: [θ 1
t ,θ

2
t ,s

1
t ,s

2
t ]. The emission probability

for a given state represents the likelihood of seeing the pen located at the block conditioned on the observation, i.e., RSS and
phase readings. In PolarDraw, we model the emission probability by jointly considering both the moving direction constraint
and the hyperbola constraint. Let Bk,l and α t−1

r be the location and the rotation angle of the pen at time t− 1, respectively.
Consequently, we use a linear function f (Bk,l , tan(α t−1

r + π

2 )), which passes through Bk,l and has a slope 4 of tan(α t−1
r + π

2 ),
to describe the approximate trajectory of the pen. The pen location at the next timestamp t should be on this trajectory.
On the other hand, the pen’s next location should be on the hyperbolas we acquired based on the inter-phase difference of
two antennas ∆θ

1,2
t . Thus, by jointly considering the moving direction and the hyperbola constraint, we define the emission

probability Pr(Xt = Bi, j|Yt = θ 1
t ,θ

2
t ,s

1
t ,s

2
t ) as follows:

Pr(Xt = Bi, j|Yt) =
4π−|∆θ

1,2
t −θ

1,2
Bi, j
|

4π

·
dmax−d(Bi, j, f (Bk,l , tan(α t−1

r + π

2 )))

dmax
(9)

where ∆θ
1,2
Bi, j

is the theoretical inter-phase difference of two antennas on block Bi, j. dmax is the maximum moving distance of the
pen within the feasible region. In this equation, the first factor describes the likelihood that the block Bi, j is on the hyperbolas
computed from ∆θ

1,2
i ; the second factor indicates the likelihood that the block Bi, j is on the pen trajectory.

Trajectory Rotation. PolarDraw leverages Viterbi decoding to find the most likely pen trajectory. As mentioned in §3.2, the
initial azimuthal angle may have an error α̃a. Hence after the trajectory tracking, PolarDraw corrects the azimuthal angle error
to acquire a more accurate pen trajectory. Let P= {Px1,y1 ,Px2,y2,...,PxT ,yT

} be pen’s trajectory recovered by the Viterbi algorithm,
where Pxt ,yt is the location of the pen on time t. PolarDraw eliminates the impact of α̃a on pen’s trajectory as follows:

3We leave more sophisticated motion modeling, such as Kalman filter and particle filter for future work.
4tan(αt−1

r − π

2 ) when π

2 ≤ αt−1
r ≤ π .
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P̂= P ·

[
cos α̃r −sin α̃r

sin α̃r cos α̃r

]
(10)

where P̂ is the new trajectory of the pen; α̃r is the rotational angle error induced by the azimuthal angle error.

4. Implementation
This section details the implementation of PolarDraw.

4.1 Frontend software and Backend Software

RF sensing module. The front-end hardware of PolarDraw consists of an ImpinJ Speedway R420 RFID reader [12]; two
LAIRD PA912 (LP) linearly polarized antennas [15], and an Avery Dennison AD-227m5 UHF passive RFID tag [6]. The
passive tag is attached on a standard whiteboard pen.

Software processing module. The two main tasks of PolarDraw are to control the RFID reader to interrogate RFID tag and
process the tag readings for pen trajectory tracking. The tag interrogation module is implemented in Java, and runs on a Lenovo
ThinkCentre PC equipped with an i5-4590 CPU and 4 GB RAM. It collects tag readings (e.g., RSS, phase, timestamp etc.)
through the Low Level Reader Protocol (LLRP) [18] and stores them in Comma separated value (CSV) files. The pen trajectory
tracking module is implemented in Matlab. It fetches data from the stored CSV files and processes them for pen trajectory
tracking.

4.2 Implementation issues
We face two issues when implementing PolarDraw.

Modulation scheme selection. A typical EPC GEN 2 reader supports a set of pre-configured Gen2 modes of tag interrogation.
These modes differ in the modulation scheme, hence each mode has a different reading rate and a different level of sensitivity
to RF interference. In PolarDraw, a higher reading rate is beneficial to the fine-grained pen trajectory tracking. However, the
low SNR would lead to severe phase noises. So it is crucial to balance the reading rate and the capability of resistance to noise.
PolarDraw round-robins all the selectable modulation schemes in an order from the highest reading rate to the lowest. The first
scheme with the standard phase variances Var(θ) ≤ δ is selected for tag interrogation. We conduct extensive experiments to
test various thresholds, and set δ = 0.1, which optimizes the system performance.

Data smoothing. Data smoothing aims to improve the stability of RSS and phase samples by mitigating the phase and RSS
noises of the raw data. The noise sources could be RFID hardware, multipath signal propagation etc.. To mitigate these nosies.
PolarDraw first segments the RSS and phase series into windows. The window size is set to 50 ms. Within each window,
PolarDraw further averages the RSS and phase readings. These averaged data form the new RSS and phase series. Finally,
PolarDraw performs moving average smoothing on these new RSS and phase series.

5. Evaluation
In this section, we begin with experimental methodology (§5.1), after which we conduct end-to-end experiments in a laboratory
environment to evaluate PolarDraw’s performance (§5.2). Then we compare PolarDraw with two state-of-the-art motion track-
ing systems, Tagoram and RF-IDraw. Finally, we present micro-benchmark experiments to provide insights into PolarDraw,
particularly to understand which fa-ctors impact PolarDraw’s performance (§5.4).

5.1 Experimental methodology
To determine the groundtruth, we photograph the user’s writing on the whiteboard and leverage edge detection algorithm-s to
extract writing trajectories. We use LipiTk [10] for hand writing recognition.

Metric. We use the following metrics:

• Recognition Accuracy: the fraction of successful character recognitions over the total number of characters.
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Figure 11— PolarDraw’s letter recognition accuracy.
• Similarity: the procrustes distance between the recovered trajectory and the groundtruth trajectory. The procrustes distance

determines a linear transformation (translation, rotation, and scaling) of the points in trajectory A to best conform them to
the points in Trajectory B. The goodness-of-fit criterion is the sum of squared errors.

• Confusion matrix: each row shows the actual character and each column shows the recovered character.

Compared schemes. We compare PolarDraw with two oth-er tracking algorithms: RF-IDraw [37] and Tagoram [42]. RF-
IDraw adopts eight spatially separated antennas for RFI-D tag localization and tracking. Most COTS RFID reader support four
antennas a piece, so we compare four-antenna version of RF-IDraw with PolarDraw, for equal hardware resources. Tagoram
adopts four antennas to locate and track an RFID tag based on the phase readings. Similarly, we implement Tagoram using
four omnidirectional antennas.

5.2 End-to-end performance

We first take field studies to evaluate PolarDraw. The algorithm parameters are set according to the result in §5.4.

5.2.1 Recognition accuracy over different character

We first look at the recognition accuracy over 26 characters. In these experiments, we invite a volunteer to write all 26 characters
100 times. The result is shown in Figure 11. PolarDraw achieves 93.6% recognition accuracy on average. Specifically, 15 out
of 26 characters are correctly recognized with a probability higher than 90%. 21 out of 26 characters are correctly recognized
with a probability higher than 85%. The remaining 5 characters have a much lower recognition accuracy. However, their
recognition accuracies are still above 80%. We believe by applying natural language processing techniques, we can further
increase the recognition accuracy.

ABCDEFGH I JKLMNOPQRSTUVWXYZ
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Figure 12— PolarDraw’s letter confusion matrix.
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Figure 13— Writing in air vs. on the whiteboard.

5.2.2 Confusion matrix over different character

To better understand why PolarDraw performs poorly in som-e characters, we further show the confusion matrix in Figure 12.
The darker areas represents higher rate of recognitions. We observe from this figure that the number of misclassified characters
vary for different characters. A large portion of false negatives or positives usually correspond to those characters that share
the similar writing style. For example, The character L and V are prone to be incorrectly recognized as I and U . Besides, the
recognition accuracy also varies with the complexity of character writing. For example, those characters that can be written in
a single stroke usually achieve a higher recognition accuracy.

5.2.3 Performance of writing in the air

We further remove the whiteboard and let the user write in the air. We conduct four groups of experiments here. In each group,
we randomly choose 10 letters and let the user write each letter 10 times in air. For comparison, this user is also required to
repeat these experiments but write on the whiteboard. Figure 13 shows the resulting recognition accuracy. As the result shows,
PolarDraw performs consistently when the user is writing on the whiteboard, achieving a recognition accuracy around 91% on
average. In contrast, PolarDraw’s performance declines about 8% when the user writes in the air. The reason is that without
the whiteboard, human writings will not be confined to 2D space, which leads to errors in the pen moving distance inference.
However, PolarDraw still achieves over 80% recognition accuracy in this case.

5.3 Comparison vs. RF-IDraw and Tagoram
We then compare PolarDraw with other two state-of-the-arts: Tagoaram and RF-IDraw. The setup is in Figure 14.

56 cm

8
6

.5
 cm

Writing block

Antenna

Figure 14— Hardware setups of Tagoram and RF-IDraw.

5.3.1 Recognition accuracy over writing words

We first compare these three algorithms’ ability on written words tracking. We divide the testing words into four groups accord-
ing to the word length. Within in each group, we randomly select 10 words from the Oxford English Dictionary (O.E.D) [22].
Figure 15 shows the word recognition accuracy of PolarDraw, Tagoram and RF-IDraw. When the word contains two characters,
PolarDraw achieves a similar performance with both RF-IDraw and Tagoram, with a recognition accuracy over 91%. As the
number of characters in the word increases, the performance of all these three algorithms drops slightly. The performance of
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Figure 15— Recognition accuracy for various words.
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Figure 16— Recognition accuracy over different users. User 2
writes with a "stiff" style, rotating the pen slightly.

PolarDraw degrades much significantly than other two algorithms. However, with just two antennas, the minimum recognition
accuracy of PolarDraw is still above 75%. With nature language processing techniques, we believe the recognition accuracy
can be improved further. Besides, we find that the recognition accuracy of RF-IDraw here is lower than that in [37]. This is
due to the less number of antennas used in this experiments (four antennas here and eight antennas in [37]).

5.3.2 Recognition accuracy over different users

In this experiment we examine the recognition accuracy over different users. Figure 16 shows the resulting recognition accu-
racy. As the result shows, both PinIt and Tagoram achieve consistent performance for all these four users. While PolarDraw’s

performance varies due to the different user writing style. This is as expected since PolarDraw uses two antennas and relies on
the pen rotation to determine the pen moving direction, while some user may not rotate when writing.

5.3.3 Trajectory similarity

We further examine the trajectory similarity of handwritten letters recovered by these three algorithms. Here we randomly
choose 5 characters and invite one volunteer to write each character 10 times. The font size is set to 20cm. Figure 17 shows
the cumulative distribution function (CDF) of the Procrustes distance between the recovered trajectories and the groundtruth.
Tagoram and RF-IDraw achieves similar performance, with a 90th percentile of 11.3 cm and 10.2 cm, respectively. PolarDraw’s

performance decreases slightly. However, the 90th percentile is constrained to 13.8 cm, which is not too large than other two
algorithms.

We further show a snapshot of the pen trajectory recovered by these three algorithms in Figure 18. Compared with the
groundtruth, we can see that all the recovered trajectories are stretched or rotated due to the localization and tracking errors.
Comparing the trajectories recovered by these three algorithms, we find that these trajectories are distinct from each other,
especially at the beginning and the ending part of the pen trajectory. Nevertheless, all of them preserve the basis profile of the
handwritten letters.
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Figure 17— The CDF of the procrustes distance between the
groundtruth and the trajectory recovered by algorithms.

TagoramRF-IDrawPolarDrawGroundtruth
2-antenna 4-antenna 4-antenna

Figure 18— Pen trajectory recovered by three algorithms.
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Figure 19— PolarDraw’s recognition accuracy over αe.
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Figure 20— PolarDraw’s recognition accuracy over γ .

5.4 Microbenchmarks

We then conduct microbenchmarks to give insight into PolarDraw’s performance. In particular, we seek to understand which
factors will most affect tracking performance as we turn various operating parameters, and understand how polarization angle
mismatch helps to improve the pen trajectory tracking accuracy. The hardware setup of our microben-chmarks is shown in
Figure 4 on page 4. In the following experiments, we randomly choose 10 letters from the English alphabet and invite a
volunteer to write each letter 10 times under different parameter settings.

5.4.1 Choosing elevation angle

We first examine how the elevation angle (§3.1) αe affects the trajectory tracking performance. Figure 19 shows the resulting
recognition accuracy over different elevation angles. As the result shows, PolarDraw achieves similar performance under
different αe settings. Suggested by this result, we set αe = 30◦ as our default settings in all experiments.

5.4.2 Choosing inter-antenna angle

We then examine how the inter-antenna angle (§3.2) γ affects the trajectory tracking performance. Figure 20 shows the resulting
recognition accuracy under different γ settings. PolarDraw achieves similar recognition accuracy when γ is relatively small (e.g.,
γ = 15◦,30◦,45◦). This is because the pen is prone to cross over the boarder of neighbouring sectors (as shown in Figure 6 on
page 6) when the user writes on the whiteboard. As expected, when γ increases, the probability that the pen crosses over the
border of neighboring sectors decreases, resulting in a lower recognition accuracy. Suggested by the experiment result, we set
γ = 15◦ as our default settings in all experiments.

0 0.2 0.4 0.6 0.8 1
PolarDraw recognition accuracy

100
90
80
70

S
am

pl
in

g 
ra

te
 (

H
z)

Figure 21— Recognition accuracy over sampling rates.
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Figure 22— Recognition accuracy over different font size.

5.4.3 Impact of the sampling rate

We then evaluate the tracking performance of PolarDraw under different sampling rate settings. Figure 21 shows the resulting
accuracy. PolarDraw achieves 92% recognition accuracy when the sampling rate is 100 Hz. The recognition accuracy decreases
slightly as we reduce the sampling rate. This is as expected since the lower sampling rate lead to a much coarse-grained pen
trajectory which is difficult to be recognized. Nevertheless, recognition accuracy still exceeds 82% at the lowest sampling rate.
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Figure 23— PolarDraw’s recognition accuracy over different tag-to-reader distance settings.

5.4.4 Impact of the writing character size

We examine the trajectory tracking performance under different font size of human writings. In these experiments, we manually
split the writing area into different blocks, ranging from 12 cm to 6 cm, hence covering the normal size of human writings
on the whiteboard. Figure 22 shows the resulting recognition accuracy. The recognition accuracy maintains in a high level
(around 92%) when the font size is relatively large (e.g., 12cm and 10cm). It then drops slightly to 88% when the font size is
8 cm, and further to 82% when the font size is 6 cm. This is because the pen rotation is less significant when the user writes in
small font size. Such a minor change in the polarization mismatch angle leads to a small and even undetectable RSS change.
Hence, PolarDraw fails to correctly estimate the pen moving direction.

5.4.5 Impact of the tag-to-reader distance

We further examine the impact of the tag-to-reader distance on the trajectory tracking performance. In these experiments, we
vary the tag-to-reader distance from 20 cm to 140 cm, with a step of 20 cm. Figure 23 shows the recognition accuracy at each
distance. The recognition accuracy is relatively low (around 78%) when the tag is close to the reader antenna (e.g., 20 cm
spacing). This is because both the polarization angle mismatch and the tag movement contribute to the RSS change. Hence
PolarDraw fails to correctly estimate the pen moving direction. As we expand the spacing between the tag and the reader, the
RSS tends to be less sensitive to the pen movement. Hence, PolarDraw could accurately estimate the pen moving direction,
which results in an increased recognition accuracy, as shown in the experimental result. The recognition accuracy drops as we
further expand the tag-to-reader distance from 100 cm to 120 cm and further to 140 cm. A possible explanation may be that the
backscatter signal bounces off nearby objects and changes the polarization angle, which leads to an unusual RSS trend during
human writing. We plan to investigate that use of more directional antennas to increase range in futhre work.

5.4.6 Gain of using polarization

To examine how polarization benefits the pen trajectory trac-king, we implement a version of PolarDraw that tracks pen trajec-
tory based solely on the phase readings. Figure 24 shows a snapshot of the pen trajectory of the word Cow, as reconstructed
by PolarDraw and this new version of PolarDraw. PolarDraw could successfully reconstruct the profile of the word by tracking
both the moving direction and the moving distance of the pen. In contrast, without polarization, PolarDraw is unable to acquire
the pen moving direction hence fails to recover any meaningful trajectory.
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Figure 24— Pen trajectory recovered by PolarDraw with and without polarization information.
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6. Related work
Our system draws on prior works in multiple areas, chiefly gesture recognition, Wi-Fi sensing and RFID positioning.

6.1 Gesture recognition
Human gesture recognition plays a key role in mobile computing and human-computer interaction systems. A rich bod-y
of works, however, have focused on computer-vision based methods [11], which are sensitive to light conditions. With the
prosperity of smart phone market and widely accessible WiFi networks, researchers begin to address the gesture recognition
problem using smartphone and Wi-Fi signals.

Based on inertial sensors: E-Gesture [24] employs gyroscope and accelerometer to characterize eight kinds of predefined
hand gestures and designs a HMM-based classification model to better fit multiple mobility situations. Simiarly, RisQ [23]
recognizes smoking gestures by using the accelerometer and gyroscope readings from the smart wristband. However, both
these two systems only recognize simple and pre-defined hand gestures like throw, draw and smoking etc., and they fail to
characterize the fine-grained finger motion and hand writings. PhonePoint Pen [4] enables in-air human writing by tracking the
hand-hold smart phone’s motion trail with the accelerometer. MoLe [35] designs a inference algorithm to detect and identify
the human typing input through the smart watch accelerometer readings. However, since the moving distance error propagates
significantly after twice integration of noisy accelerometer readings, these systems fail to precisely recover the written words.

Based on acoustic/Wi-Fi signals: WiDraw [32] enables in-air writing by exploiting the change in the AoA spectrum caused by
human arm motions. However, WiDraw requires many antennas’ support and sizable human writings. AAMouse [44] designs
a acoustic-ranging based method to track the smart phone’s trajectory with an median error of around 1.4 cm. However, it
may works in problem due to the acoustic noises. mTrack [40] leverages the highly-directional 60 GHz millimeter wave to
pinpoint and track the target with 90-percentile error below 8 mm. However, it requires costly infrastructures and only works in
near-field. RF-IDraw [37] designs a multi-resolution positioning scheme for virtual input recognition by leveraging the power
of spatially deploye-d antenna arrays. However, it requires a significant number of physically-separated antennas and rigid
calibration of antenna locations, reducing deploybility. In contrast, PolarDraw requires minimal supporting infrastructures yet
achiev-es high tracking accuracy.

6.2 Wi-Fi sensing
Researchers model the impact of human body on Wi-Fi signals to infer the human location and human activities.

Localization and Tracking: There are a surge of works focusing on human/device localization and tracking based on the
analysis of WiFi signal patterns. However, most of these proposals achieve an order of several meters localization accuracy [7,
21, 26, 43], hence they are unable to characterize the fine-grained human writing. Although some Time-of-flight(ToF) or Angle-
of-arrival (AoA)-based localization schemes could achieve decimeter-level or even centimeter-level localization accuracy [2,
13, 14, 29, 30, 41, 45], they either rely on dedicated hardware for signal processing (like USRP) or require densely deployed
infrastructures, which may infeasible in many mobile application cases.

Human activity recognition: There are also extensive wor-ks in decoding human activities based on Wi-Fi signals. E-eyes [39]
detects and classifies different kinds of coarse-grained human activities (washing, sleeping, cooking etc.) at home through the
use of commercial Wi-Fi access pints. WiHear [34] recognizes human speakings by analyzing the CSI pattern of Wi-Fi signals
reflected by human lips. WiKey [5] decodes user input on keyboards by matching the Wi-Fi signal patterns to the fingerprint.
However, all these works are fingerprinting-based and only work for predefined coarse-grained activities. Hence they cannot
be directly applied to fine-grained motion tracking and human writing recognition since the writing style varies from people to
people.

6.3 RFID positioning
Initial attempts in RFID positioning are using RSS to characterize the distance between the reader and the tag. Later on
researchers exploit fine-grained phase information of the backscatter signal for more accurate tag localization. BackPos [17]
designs a hyperbolic-based positioning system with multiple RFID reader (≥ 3) antennas. However, the localization accuracy

17



of BackPos is around 13 cm, which is still unsuitable for fine-grained hand writing tracking. Tagoram [42] introduces a
holography-based tag tracking algorithm, which achieves an accuracy of around 1 cm based on four reader antennas. In
contrast, PolarDraw requires only two antennas hence sets a new standard for minimal supporting infrastructure. PinIt [36]
localize RFID tags in Non-line-of-sight (NLOS) environment by exploiting the multipath profile of each tag. STPP [31] adopts
the mobile RFID reader to acquire the spatial order of tags without localizing them. However, the localization error of these
two systems retain in a relatively high level (around 12 cm for PinIt, and 8 cm for STPP), hence they may fail in hand motion
tracking.

7. Limitations and future works
We discuss limitations and opportunities for improvement.

Confined to separated words. The tag attached on the pen responses to the reader all the time, hence PolarDraw is unable to
distinguish the words from a sentence. However, we believe with light-weighted inertial sensors on the tag (e.g., WISP), it is
possible to detect whether the pen is touching the whiteboard or not by examining the accelerometer readings. We leave this
problem for our future work.

Limited performance for stiff users. As shown in Figure 16 on page 14 in our experimental results, PolarDraw achi-eves
best performance when the user writes naturally, with a small rotation during writing, and high but sub-optimal when the user
writes in an unnatural way, not rotating the pen at all when writing on the whiteboard. But we have found early evidence that
the accelerometer readings on the RFID tags offer valuable hints on the moving direction of the pen, which we leave for future
work.

Phase jumping correction. As shown in Figure 3(b) on page 4, the phase reading jumps when the polarization angle of the
tag and the reader antenna are totally mismatched. Although this boarder case seldom occurs when the user is writing on the
whiteboard where the pen rotation is usually confined to a small angle, it may occurs frequently when the user writes in the
air. We leave this as our future work and plan to detect and drop these irregular data and use the remaining for pen trajectory
tracking.

8. Conclusion
In this paper we present the design and implementation of PolarDraw, the first motion tracking system that can accurately
reproduce and recognize handwritten letters in the air or on a whiteboard with just two nearby antennas. PolarDraw tracks the
tag moving direction and the distance by leveraging the polarization mismatch-induced power loss and the tag displacement-
induced phase changing, based on which it carefully crafts the tag motion trail. The experimental comparison with other
state-of-the-art multi-antenna tracking systems demonstrates that PolarDraw could achieve competitive tracking performance
yet requires significantly lower hardware support.
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European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 279976.
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