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Abstract

Genome-scale experiments provide an overwhelming amount of molecular informa-

tion for biologist. New computational methods are needed for specific analysis and

interpretation of such high-dimensional data. Here we take advantage of the massive

public repositories to quantify the tissue-specific signals in gene expression profiles,

characterize distinctive molecular features of human diseases, deconvolve the latent

cell-type-specific factors in mixed clinical samples, and automatically integrate het-

erogeneous data sources in the context of a specific genome-wide dataset. First, we

describe URSA (Unveiling RNA Sample Annotation) that incorporates the known

tissue/cell-type relationships to better estimate the specific signal in any given gene

expression profile. Our ontology-aware method combines independent discriminative

classifiers in a Bayesian framework, outperforming other machine learning methods.

We provide a molecular interpretation for the tissue and cell-type models learned

by URSA, enabling a data-driven view of molecular processes specific to particular

tissues and cell types. Then, we extend this work for human diseases. We use thou-

sands of clinical disease-specific expression profiles in public repositories to quantify

distinctive functional and anatomical characteristics of human diseases. Through our

data-driven analysis, we explore the complexity of the human disease landscape and

propose exploratory hypothesis for drug repurposing even for rare disease with no

prior genetic knowledge. Lastly, we describe YETI (Your Evidence Tailored Integra-

tion) for targeted integration of heterogeneous genome-wide data sources. Biomedi-

cal researchers generate genome-wide datasets for data-driven exploration of specific

questions but such analyses are disconnect from big public data collections. YETI is

the first automatic integration method that effectively constructs functional networks

specific to a genome-scale dataset. We show that the resulting integration reflect the

biological context of the user-provided dataset while providing accurate prediction

for functional interactions.
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Chapter 1

Introduction

The amount of data is growing and has grown to a point where we now call it ’big’

data. This ’big’ data is greeted by both the academic and commercial sectors with

much optimism and hope in that all our questions may be solved in a robust data-

driven manner. Very large data collections such as 1000 Genome Project, the Ency-

clopedia of DNA Elements (ENCODE), Genotype-Tissue Expression (GTEx), Gene

Expression Omnibus (GEO), the Human Protein Atlas, and the Cancer Cell Line En-

cyclopedia (CCLE) survey the biological variation at a molecular and genome-wide

level in hopes to elucidate the complete molecular map of the human cell [20, 21, 86,

28, 142, 6]. To meet such need, new infrastructures such as data centers and cloud-

ing computing platforms are being developed to handle the storage and analysis of

these large data collections [119, 135]. However, the accessibility and interpretation of

these databases have been more of a catalog of experimental results much like Ama-

zon.com and eBay are for commercial products. It’s left for the biologist to detect

relevant patterns of biological significance of this overwhelming amount of molecu-

lar information. New computational methods are needed to better utilize these very

large genome-wide data collections in a ”targeted” manner that uncovers patterns of

biological relevance.

1



The work presented here are three examples of targeted analysis of very large

genome-wide data collection that is only made possible via the joint analysis of pub-

licly available data collections. No single laboratory or institution is able to generate

such vast data collections, and new biological guidance and insights are provided by

applying these novel computational approaches. Here I enumerate specific computa-

tional challenges for each example such as handling batch effects and accounting for

spurious correlations in these data collections. Then, I show how these new compu-

tational methods take advantage of the high-dimensionalty and heterogeneity of the

data collections to: (1) quantify and detect tissue-specific signals, (2) characterize the

human disease landscape and (3) infer functional gene-gene interactions tailored for

a specific biological question.

1.1 Background

All living organism begin with one cell and one DNA sequence. That single cell be-

comes two and then four cells ultimately leading to a multi-cellular unit with distinct

functional anatomical part such as the heart, kidney and brain. That is, all through

an intricate molecular process. Malfunction of this molecular process leads to various

human diseases such as cardiac arrhythmia, neuroblastoma, and Alzheimer’s disease.

Understanding the underlying molecular mechanism of tissue-specific function and

disease is key to better diagnosis and targeted treatment.

The central dogma of molecular biology states that DNA sequence replicates to

preserve molecular information and DNA transcribes to RNA which are used as tem-

plates for translation to protein. A gene is a region of the DNA that encodes a

functional RNA, and the genome is the set of hereditary molecules in living organ-

isms and is often used interchangeably with the DNA sequence. The Human Genome
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Project revealed more than 20, 000 human genes, and yet the function of most genes

are still unknown [72].

Thousands of genes interact in a dynamic molecular network and enable response

to external stimulus and tissue-specific function of complex biological processes. High-

throughput experiments such as microarrays or mass spectrometry provide a genome-

wide snapshot of this molecular network in action. In particular, DNA microarrays are

used to simultaneously measure the amount of expression (i.e. amount of transcripts)

of thousands of genes [16]. Such transcriptional profiling provides a genome-wide per-

spective of the molecular activity across different tissue and cell-types and functional

abnormalities in human disease samples.

In detail, a DNA microarray is a lab-on-a-chip with a designated collection of DNA

spots (also known as probes). Each probe consist of picomoles of specific DNA se-

quences that correspond to 100-1000 bases long sections of the genome - often unique

sections of a gene. Purified RNA from the sample of interest is converted to comple-

mentary DNA (cDNA) and then labelled with fluorescence dyes. When these labelled

cDNAs are exposed to the DNA microarray, complementary sequences between cD-

NAs and probes bind (i.e. hybridize). The dye intensity of each spot represents the

amount of the corresponding RNA in that original sample. Multiple microarray ex-

periments thus provide a genome-wide perspective of a particular dynamic system

such as response to external stimulus, different phases of the cell-cycle, heterogeneity

of tumor samples [67, 141, 129].

More recently, next-generation sequencing (NGS) technology termed RNAseq has

been used to directly sequence the RNA and explicitly count the number of RNA tran-

scripts for each gene as oppose to infer abundance based on dye intensity [94, 144]. No

predefined collection of probes are needed for RNAseq. While the number of publicly

available sequence-based datasets are limited compared to the well-established mi-
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croarray datasets, efforts to develop platform-independent methods are needed with

such advancement of high-throughput experiments.

1.2 Challenges

1.2.1 High dimensional genome-wide data

The curse of dimensionality refers to the challenges of visualization and computa-

tional analysis of data in high-dimensional space. As the dimensionality of the data

increases, the volumne of the data-space increases exponentially. As a consequence,

the amount of data needed for statistically robust multivariate analysis grows ex-

ponentially. In genome-wide data, the dimensionality of the data is in the order of

thousands, and genome-wide microarrays measure ten thousands of genes simultane-

ously. Dimension reduction methods such as Principal Component Analysis (PCA)

or Factor Analysis have been used for quality control and exploratory data analy-

sis [107]. Incorporating prior biological knowledge is needed to coupe with this high

dimensionality of genome-wide data.

1.2.2 Unknown technical batch effects

Genome-wide profiling such as microarrays or RNAseq experiments is subject to tech-

nical noise or batch effects [79]. That is, the data clusters better by the date or author

of the experiment instead of the sample type such as its tissue type or even organism.

The clustering of mouse data against human data have been shown to be merely due

to batch effects in the data [34]. Data normalization methods have been developed

to address such concern but most effective for when those batch variables are known

and available [12, 53, 78]. These batch variables are not always available in public

data repositories. When analyzing genome-wide data collection, additional care must

be taken to not over-estimate the method’s performance due to batch effects.
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1.2.3 Spurious genome-wide relationships

Spurious relationships are common in high dimensional data with batch effects. Thou-

sands of genes are found statistically significant in a standard differential gene ex-

pression analysis, even after multiple hypothesis correction. To mitigate such phe-

nomenon, independent positive and negative controls (i.e. gold standards) are need

to evaluate and develop better methods. Identifying reproducible relationships (i.e.

data redundancy) by integrating multiple datasets is another approach to account for

spurious relationships in individual data.

1.3 Contributions

Leveraging gene expression data through large-scale integrative analyses for multi-

cellular organisms is challenging because most samples are not fully annotated to

their tissue/cell-type of origin. A computational method to classify samples using

their entire gene expression profiles is needed. Such a method must be applicable

across thousands of independent studies, hundreds of gene expression technologies

and hundreds of diverse human tissues and cell-types. In Chapter 2, we present URSA

(Unveiling RNA Sample Annotation) that leverages the complex tissue/cell-type re-

lationships and simultaneously estimates the probabilities associated with hundreds

of tissues/cell-types for any given gene expression profile. URSA provides accurate

and intuitive probability values for expression profiles across independent studies and

outperforms other methods, irrespective of data preprocessing techniques. Moreover,

without re-training, URSA can be used to classify samples from diverse microarray

platforms and even from next-generation sequencing technology. Finally, we provide

a molecular interpretation for the tissue and cell-type models as the biological basis

for URSA’s classifications. This work has been published in Bioinformatics [77].
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Complex diseases are driven by multiple genetic changes and characterized by

genome-wide perturbations of cellular pathways and functions. Gene expression pro-

filing experiments have been potent in shedding light on the molecular pathology of

diseases. Most studies typically focus on a single disease and contrast disease samples

to their normal controls. However, such one disease at a time approaches disregard

similarities and differences in pathological deregulations underlying different complex

diseases and are thus unable to identify attributes unique to each particular disease,

which is critical for developing targeted therapy. In Chapter 3, We have developed

a unified probabilistic framework URSAHD (URSA for Human Diseases) to identify

and quantify distinctive disease signals based on gene expression profiles of clinical

samples. Leveraging thousands of disease-specific profiles from public repositories,

this data-driven approach identified distinctive molecular-level characteristics of each

disease from both the functional and anatomical perspectives. Our framework can

be used to distinguish between closely-related diseases, identify discerning genes and

processes, associate rare-diseases to the nearest well-studied disease, and track the ef-

fectiveness of therapy. No curated set of genes were used in our data-driven approach,

and so it can easily be extended to any human disease for which high-throughput ex-

pression data can be generated. We found that the most predictive genes identified

by our method are significantly under-studied in the biomedical literature, demon-

strating that many key biological processes underlying human pathophysiology are

in fact in critical need of further investigation. This work has been submitted for

publication and is currently under review.

Integration of heterogeneous genome-wide data sources has been used to generate

functional networks, predict gene function, and study human disease. Most biomedi-

cal researchers have specific questions they want to answer with such integration, and

these questions are usually accompanied by a user-produced genome-scale dataset.

However, no computational approach exists to enable such user’s dataset-guided inte-
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gration of large genome-wide data collections. In Chapter 4, we develop an automatic

integration method YETI (Your Evidence Tailored Integration) that constructs func-

tional networks specific to a genome-scale dataset. We show that the resulting inte-

grations reflect the biological context of the user-provided dataset while also providing

accurate functional predictions. YETI’s dataset-specific networks are unbias to the

size of the dataset and reproducible across biological replicates. As such, YETI’s net-

works revealed putative functional network modules regulated by distal eQTLs hidden

in co-expression networks. YETI’s integration framework streamlines the integration

process for biologists to easily access and take advantage of very large genome-wide

data collections in the context of their specific but genome-wide question. A version

of this work will be submitted for publication.
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Chapter 2

Ontology-aware classification of

tissue and cell-type signals in gene

expression profiles across platforms

and technologies

This chapter describes work done with critical support and comments from Arjun

Krishnan and Qian Zhu.

2.1 Introduction

Genome-scale expression profiling is an invaluable technique for quantifying gene-level

activity under different experimental conditions. For more than a decade, researchers

and clinicians have submitted their experimental data to public repositories such as

NCBI’s Gene Expression Omnibus (GEO) [7] and EBI’s ArrayExpress [115]. These

repositories now include almost half a million human expression profiles from multiple

laboratories and hospitalsonly to further grow with the advent of next-generation se-
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quencing technologies. Large but independent microarray datasets have been used to

discover tissue-specific patterns [87, 125], establish breast cancer subtypes [99, 24] and

delineate the transcriptome response to candidate drugs [45, 71]. Previous integra-

tive studies have leveraged these independent datasets and have developed methods

based on correlation [46], differential expression [29], supervised learning [40] and

data integration [146]. However, directly dealing with multicellularity is paramount

for precisely defining human homeostasis, disease manifestation and pharmacokinet-

ics/pharmacodynamics. To some effect, few studies have focused on certain sample

characteristics such as disease or phenotype [47, 120]. Yet, to take full advantage of

the entire compendia in all the above contexts, we must explicitly uncover tissue/cell-

type-specific signals in genome-wide expression data.

The current exponential rate of data submission nevertheless makes manual an-

notation impractical, leaving a curated annotation index for only a small fraction of

samples 2.1. Text-mining sample descriptions are often unreliable due to the lack of

standardized nomenclature and structured descriptive information [68]. Furthermore,

textual information may not reflect the potential specificity and heterogeneity that are

concealed in the molecular-level expression measurements of these samples. Therefore,

we need a scalable and robust computational method to discover the tissue/cell-type

signals in each gene expression profile deposited in these large heterogeneous data

compendia.

In practice, tissue/cell-type annotation of gene expression profiles relies on the ex-

pression of known biomarker genes. Although pervasive, this approach is limited by

the number of sufficient (or often any) known discriminative expression biomarkers

and ignores potential specific signals in the entire transcriptome. Machine learn-

ing methods that model genome-wide expression have emerged as promising alter-

natives [82], but so far have only been applied in the context of classifying tumor

subtypes (e.g. ALL versus AML) in single datasets [57, 108, 137]. Applying such

9



Figure 2.1: Manual curation is unable to keep up with the number of submissions.
The line plot shows the number of submitted and curated human genome-scale exper-
iments publicly available in GEO over time. Sample submissions have been growing
exponentially in contrast to their manual annotation.
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methods across a large collection of datasets is impeded by the dataset, platform

and technology biases [79, 113]. The only successful attempt at addressing dataset

biases is a nearest -neighbor (NN) classification method based on the barcode algo-

rithm [92, 151].

The task of indexing these large heterogeneous data collections by tissues/cell-

types presents substantial challenges. First, a successful method for this task should

be able to classify the variety of human tissues/cell-types, not just the better-studied

large tissue classes. For example, classifying blood from brain is a relatively easy

problem, but discriminating among different subtypes of blood is a much harder

one. Second, the method should maintain consistency with the developmental and

anatomical relationships between these tissues and cell-types. Third, the method

must be robust across independent datasets to overcome study/laboratory biases.

Finally, with emerging profiling technologies, the method should be readily applicable

to novel platforms/technologies. No existing approach, to our knowledge, addresses

all these challenges.

Here, we present a computational algorithm Unveiling RNA Sample Annotation

(URSA) that is the first to leverage the relationships between tissues and cell-types

(based on a tissue ontology) and accurately identifies specific tissue/cell-type signals

present in a given gene expression profile. URSA constructs individual tissue/cell-

type classifiers based on ontology-aware sample labels and uses Bayesian Network

Correction (BNC) [10] to integrate these individual classifiers. We demonstrate that

URSA substantially outperforms barcode-based NN classification (the only prior ap-

proach to this problem) [151], as well as independent classifiers that do not use the

tissue ontology. Furthermore, although URSA is trained on data from the single most

popular microarray platform, it is able to make tissue/cell-type predictions (without

re-training) for samples measured by other microarray platforms and even by next-

generation RNA sequencing.
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In the process of classification, our approach learns tissue/cell-type signals without

the use of any tissue-specific gene database such as the human protein reference

database [105]. Thus, by examining the biological pathways enriched among the

feature-weights in each tissue/cell-type classifier, we are able to provide a molecular-

level interpretation of URSA’s predictions.

2.2 Methods

Figure 2.2: The full hematopoietic system sub-ontology used in URSA. URSA incor-
porates this complexity to provide meaningful, associative probability values for all
terms.

We setup the tissue/cell-type signal classification problem as a hierarchical mul-

tilabel classification problem. From a curated collection of samples, we first label

samples into positives and negatives based on the tissue ontology to train an individ-

ual classifier for each tissue/cell-type. We then aggregate these individual classifiers

(in a Bayesian framework) based on their ontological relationships (Figure 2.2) [41].

Each individual classifier identifies indicative features (i.e. genes) for that tissue or

cell-type, and the Bayesian network models the probabilistic relationship between

classifiers to refine those individual predictions. We have previously demonstrated

that such BNC improves classification accuracy in other settings, including gene
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function prediction and geometric shape classification [9, 10, 44, 100]. URSA uses

the BNC approach to tackle the challenges in tissue and cell-type prediction: limited

gold standards for many general (e.g. leukocyte) and specific (e.g. T-cell acute lym-

phoblastic leukemia cell and monocyte-derived dendritic cell) tissues/cell-types, and

heterogeneity and diversity in large expression compendia.

2.2.1 Gold standard generation by manual sample annota-

tion

GEO provides a structured sample description with dedicated entries such as Title,

Source name, and Characteristics but enforces no controlled vocabulary. As a re-

sult, authors can freely use their nomenclatures or acronyms to fill-in any of these

structured entries. For example, sometimes patient’s ethnicity would be included

in the Source name instead of the tissue/cell-type information. Often patient infor-

mation would be included in the sample description with no structural distinction

between patient and sample information. Excluding patient cancer-type information

in free-text is difficult: peripheral blood mononuclear cell samples from patients with

gastrointestinal and/or brain cancer, for example. Thus relying solely on text-mining

methods is prone to many mis-annotations and requires post-manual curation.

In order to utilize the tissue relationships, hgu133plus2 gene expression exper-

iments were annotated to a term or terms in the Brenda Tissue Ontology. After

an initial substring text-mining of sample descriptions in GEO, term-to-experiment

pairs were manually curated based on their sample descriptions and associated pub-

lication(s) to exclude incorrect or ambiguous pairs. Mixed tissue samples and non-

human samples were excluded. An effort was made to annotate experiments to their

most specific term in the ontology, although wasn’t systematically enforced. Sam-

ples of specific tissue/cell-type not included in the tissue ontology were annotated

to a higher-level term; for example, CD4+ T cell samples were annotated to T-
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lymphocyte. The associated publication (i.e. original paper) was examined when the

sample descriptions were ambiguous. Sample annotations were then propagated to

more general terms based on the tissue ontology.

The scope and depth of our analysis is defined and hence limited by the com-

pleteness of the tissue ontology and extent of manual curation of public hgu133plus2

microarray experiments. Gene expression experiments were only annotated to

tissue/cell-type terms included in the tissue ontology as the ontology terms were

used as a controlled vocabulary. As a result, terms absent in the ontology (such as

CD4+ T cell) were not used in manual curation. In addition, only tissue/cell-types

with experiments available from at least three independent studies were modeled and

evaluated to avoid overestimating the performance due to dataset bias. Our manual

annotations are available on our website: ursa.princeton.edu

A set of high-quality tissue and cell-type annotations is needed for training accu-

rate classifiers within the URSA framework. To this end, we manually annotated the

cell-type(s) of ¿14 000 microarray experiments ranging over 500 GEO series/datasets

from the hgu133plus2 platform. These annotations are based on the sample descrip-

tions and other textual information available in GEO as well as the associated pub-

lications. Tissue and cell-type terms in the BRENDA Tissue Ontology (BTO) were

used as the controlled vocabulary for sample annotation [41]. Detailed description of

the manual sample annotation process is provided in the Supplementary Information.

In our manual annotations, 71 tissue/cell-type terms were represented by at least 3

GEO series and 95 terms were represented in at least 2 GEO series. We excluded the

term connective tissue from the ontology because it had many children terms, and

thus appeared unresolved.

With an ontology of tissues, these manually curated annotations can be hierarchi-

cally propagated: e.g. monocyte samples can also annotated to leukocyte and blood

(Figure 2.2). The minimal subgraph (i.e. directed acyclic graph) that is rooted at the
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whole body term and includes all cell-type terms covered in our manual annotations

was identified, and our manual annotations for 95 tissues/cell-types were then prop-

agated up to their ancestors based on the tissue ontology, hence providing examples

for over 244 different tissue/cell-type terms.

2.2.2 Expression data preparation

The Supplementary raw CEL files of gene expression samples were downloaded from

GEO, and their probes were mapped to Entrez GeneIDs using the BrainArray Custom

CDF [7, 25]. To compare methods across different preprocessing techniques, expres-

sion data were processed using each of the three alternative preprocessing algorithms:

MAS5.0, fRMA and Barcode [48, 91, 92]. Default parameters and subroutines were

used for each preprocessing approach. Additionally, the absolute expression values

from the standard MAS5.0 were log transformed. As our method aims at classify-

ing single expression profiles, series-based preprocessing techniques (i.e. RMA) were

excluded from our study [53]. The Illumina Human Bodymap 2.0 RNA-seq data

(GSE30611) was downloaded from GEO and mapped to NCBI’s transcript reference

using the Bowtie and Tophat alignment algorithms with default parameters [73, 138].

For tissue/cell-type prediction, FPKM transcript expression values were given as in-

put to our hgu133plus2-trained method. Data transformation and significance test

for RNA-seq (and cross platform) experiments are explained later in this section.

2.2.3 Individual tissue and cell-type classifiers

Labeling positive and negative samples correctly is essential for any accurate classifier.

Conventional multilabel classification assumes that all labels are mutually exclusive.

For example in our study, macrophage samples would be considered negative exam-

ples when classifying for leukocytes, ignoring the fact that macrophages are merely

a specific type of leukocytes (Figure 2.3a). Using the tissue ontology, we thus re-
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Figure 2.3: Leveraging the complex relationship between tissues and cell-types. (a)
A small sub-tree of the BTO. The full hematopoietic system sub-ontology is shown
in Figure 2.2. This complexity has yet been incorporated in tissue and cell-type-
specific studies. (b) Our aggregation method uses this ontological structure to model
the potential dependencies between individual cell-type models. The double circles
indicate the noisy individual model predictions ŷi, and the single circles indicate the
latent calibrated predictions yi
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consider the positive and negative samples for each individual tissue and cell-type

classifier. For a given tissue term, samples annotated directly to that term or any of

its descendant terms (i.e. cell-types) are now considered positive; samples annotated

to only its ancestor terms are excluded from training; and the remaining samples

annotated to other term in the ontology including sibling terms are considered

negative. Now, macrophage samples would be considered positive examples for the

leukocyte classifier. This re-labeling is based on the very design of the tissue ontology,

and consequently expands the number of positive examples and removes ambiguous

examples.

Each individual tissue or cell-type is first classified using an independent one-

versus-all support vector machine (SVM) classifier using the ontology-aware training

standard. SVM maximizes the margin between positive (i.e. yi = 1) and negative (i.e.

yi = 1) examples and finds a linear decision boundary without any assumptions of the

probability distributions [17]. Given l pairs (i.e. samples) of expression data xi and

its label yi, we use the L2 linear SVM (with the default cost parameter) implemented

in the LIBLINEAR software [30]:

min
w

1

2
wTw + C

l∑
i=1

max(1− yiwTxi, 0)2 (2.1)

where C ¿ 0 is the cost parameter, and w the linear decision boundary (i.e. feature

weight vector). Bayesian correction (explained later in text) is trained and applied

using the SVM outputs ŷ1, . . . , ŷN of these N cell-type-specific models.

2.2.4 Bayesian network correction

We use the structure of the tissue ontology as a framework of the Bayesian network

(Figure 2.3a). We model each term’s SVM output as a random event ŷi and treat it

as a noisy observation of a latent binary event yi representing the true label (i.e. cell-
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type) of a given sample (Figure 2.3b). The edges from y to ŷ impose the independence

of the noisy random variable ŷi to all other noisy variables ŷj (i 6= j) given its true

label yi. This allows us to calculate the likelihood:

P(ŷ1, . . . , ŷN |y1, . . . , yN) =
N∏
i=1

P(ŷi|yi) (2.2)

The distribution of positive and negative unthresholded SVM outputs varies across

different terms (i.e. cell-types), and so the output values were dynamically binned

based on the number of positive examples and their range. These empirical distri-

butions represent the conditional probabilities P(ŷi|yi = 0) and P(ŷi|yi = 1). The

conditional probability table for each term was estimated based on a 2-fold cross-

validation that never split datasets between folds to mitigate potential batch effects.

Laplace smoothing was applied for robustness.

The parentchild conditional probability tables were defined as in the original

Bayesian correction method [10]. Intuitively, constant priors of 0.5 were assigned

to leaf nodes, and the whole-body root node was assigned a probability of 1. This

root assignment allows potential dependencies between every latent variable. This

allows us to calculate the prior:

P(y1, . . . , yN) =
N∏
i=1

P(yi|ch(yi)) (2.3)

where ch(yi) is child labels of yi.

Finally, we infer the posterior probabilities P(yi|ŷ1, . . . , ŷN) for each term i using

the Lauritzen algorithm as implemented in the SMILE library [27, 75]. These pos-

terior probabilities for each term (i.e. cell-type) are the estimated probabilities that

our method uses to annotate gene expression samples.
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2.2.5 Method training and testing

Genomic experiments are known to suffer from potential laboratory and dataset bi-

ases [79, 151]. Not controlling for this bias (during evaluation of any method applied

to these data) may result in an overestimation of performance and overfitting to

dataset-specific biases at the expense of the desired signals. Therefore, for each cell-

type, the series/datasets of the manually annotated samples were partitioned into

three sets with each set containing roughly the same number of samples. Two parti-

tions were used as the training set and the other as the testing set. Never splitting a

single series/dataset between training and test sample sets ensures that our approach

does not identify signals specific to particular studies, but rather those reflective of

cell-types and tissues.

2.2.6 Cross-platform prediction

The individual classifiers in URSA were trained on samples only from the most pop-

ular Affymetrix Human Genome U133 Plus 2.0 platform (hgu133plus2). URSA has

not been explicitly modified or tuned for predicting across other platforms. As input

to our method, a gene expression profile from other array-based and sequence-based

platforms were quantile transformed to generate a hgu133plus2-like expression profile.

Additionally, a permutation test was performed to correct for potential biases from

gene coverage differences across platforms.

Quantile transformation

The individual cell-type models in URSA have been trained on one microarray plat-

form (hgu133plus2). To detect cell-type-specific information from other gene ex-

pression platforms, we must first transform those expression values to a comparable

expression space. If we can effectively transform those values, our method with-

out any modifications or retraining may be able to measure cell-type-specific signals
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in these cross-platform experiments. The individual expression values xi may not

be comparable across different platform technologies (especially between array-based

and sequence-based platforms), but signals based on the relative abundance between

genes should be more or less preserved irrespective of the technology used. Therefore,

we quantile transform these cross-platform samples to preserved their relative gene

abundances (or gene order) and compute hgu133plus2-like expression values based

on a hgu133plus2 reference distribution. This reference distribution was constructed

by averaging the expression value of each quantile across 1000 random hgu133plus2

arrays.

The most crucial bottleneck for cross-platform annotation is the bias in gene

coverage across platforms. The hgu95v2 microarray platform (covering 12 000 genes),

for example, covers about two-thirds the genes covered by hgu133plus2 ( 18 000

genes). Classification is handicapped by thousands of missing values, and hence, the

mean expression value of the reference distribution was used to impute missing gene

values [139].

Permutation test

A simple permutation test was performed to select significant predictions. The in-

put data xj consist of real and imputed gene values. Introducing noise to the actual

data will blur any real signal and decrease its associated probability value. Thus,

we permute only the sample data π1(xj), . . . , πK(xj) to generate a null distribution

of SVM outputs π(ŷi) = (πk(ŷ1), . . . , πk(ŷN)), where πk(ŷi) = wT
i · πk(xj). This

null distribution is then used to call out questionable annotations: any tissue an-

notation P(yi|ŷ1, . . . , ŷN) with a value lower than even a single random annotation

P (yi|πk(ŷ1), . . . , πk(ŷN)) is considered insignificant and assigned a value of 0.
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2.2.7 Double-blind evaluation of sample annotations

In addition to the evaluation based on our manual sample annotations, we conducted

a rigorous double-blind literature-based study to evaluate the quality of URSA’s novel

predictions. To control for any subjective bias, we must also evaluate a random group

of predictions in the same literature-based study. First, 120 hgu133plus2 array exper-

iments from GEO that were not in our manual annotation were randomly selected.

These experiments were partitioned into three groups. URSA annotations were made

for all samples, but only group 1 predictions were retained and group 2 samples were

assigned predictions from group 3. This procedure provides random annotations

while ensuring the same apparent behavior of predictions as true predicted annota-

tions. We use this conservative background to completely blind the evaluator from

distinguishing original from random annotations.

The quality of predicted annotations should be judged based on retrieval of both

the most precise tissue term and more general terms consistent with the precise term.

For example, an acute lymphocytic leukemia (ALL) sample predicted to ALL but

also other non-blood related terms such as urinary bladder and colon is precise but

not consistent, whereas the same sample predicted to blood cancer cell or leukocyte

in addition to ALL is both precise and consistent. Estimated annotations in group

1 (i.e. original) and group 2 (i.e. random) were evaluated as precise and/or con-

sistent based on associated publications and textual sample descriptions. We also

repeated this double-blind study for other microarray platforms: hgu133a, hgu95v2

and hugene1.0st.

2.3 Results

We address the cell-type prediction challenge as a multilabel classification problem

with hierarchical constraints to account for the diverse nature of biological samples.

21



We assess the impact of incorporating the tissue ontology in our method and the

method’s robustness across different microarray preprocessing methods. Although

our method can be readily retrained to any additional expression technologies given

manually curated samples, we find that our method is capable of precisely annotating

samples across platforms (including next-generation sequencing-based assays) without

any modifications to the original method or its parameters. We finally show that

our tissue/cell-type predictions are interpretable based on the biological processes

enriched among learned informative genes.

2.3.1 URSA uses the tissue ontology to accurately predict

tissue/cell-type signals

To address the challenge of limited gold standards and high noise levels in the

tissue/cell-type classification problem, URSA incorporates the BTO to better pre-

dict tissue/cell-type signals in a given gene expression sample. BTO systematically

defines parent-to-child relationships between tissue and cell-type terms [41]. URSA

wields the complexity of this ontology to both systematically label samples to train

tissue/cell-type SVM classifiers and also apply BNC to make consistent predictions.

To measure the impact of incorporating the ontology, we compare URSA with in-

dividual (i.e. independent) one-versus-all SVM classifiers whose outputs are converted

to estimate probability values using logistic regression [104]. For these one-versus-all

SVMs, whole blood samples are considered as negatives in a leukocyte classifier, for

example. Both methods were trained on ∼ 9000 samples and tested on 5000 inde-

pendent samples (Fig. 2a). The top-predicted term for each sample was evaluated

and automatically considered incorrect if the estimated probability value was below

a cutoff. Multiple cutoffs from 0 (i.e. no cutoff) to 0.9 (i.e. high-confidence cutoff)

were tested (Fig. 2a). This setup simulates the user experience with a predefined

cutoff and penalizes correct top predictions with a low probability value.
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Figure 2.4: Prediction accuracy improves after integrating the tissue ontology. MAS5
was used for preprocessing. (a) Accuracy of the most probable estimation above a
range of probability cutoffs. Estimations below the probability cutoff are discarded.
The Bayesian framework corrects many of the mistakes made by individual SVMs and
provides meaningful probability values. (b) Scatter plot comparison between URSA
and individual SVM classifiers. Each point represents a unique tissue/cell-type with
direct sample annotations, and the size of the point represents the number of samples
curated to that particular tissue or cell-type. Points above the diagonal correspond to
improvements by our method. URSA’s improvements are independent of term size.
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Across the entire range of probability cutoffs, URSA offers accurate top predictions

for more samples in the holdout set. Without a cutoff on the estimated probabili-

ties, both ná’ive SVM and ontology-aware URSA show considerable accuracy of the

top-predicted term over the heterogeneous evaluation set (Figure 2.4a, leftmost bar).

However, URSA accurately predicts an additional ∼ 550 samples misclassified by the

independent SVMs. Furthermore, URSA conveniently computes a probability value

for each predicted tissue/cell-type annotation that provides a natural intuition about

the strength of the predicted tissue/cell-type signal present in a given sample. Al-

though probabilities can also be obtained for the individual SVMs, URSA’s Bayesian

framework provides a unified probabilistic model that enforces potential dependencies

between distant and close tissues. This abstraction consequently computes consistent

parameter estimations: e.g. if the probability for leukocyte is high, then the probabil-

ity for blood should also be high, but not necessarily vice versa. Lending import to the

calibrated probability values calculated by BNC, the proportion of URSA’s accurate

corrections of SVM’s mis-annotations increases with higher probability cutoffs (Fig-

ure 2.4a). In case of high confidence predictions (0.9 cutoff), URSA provides accurate

annotations for 94% of the test samples, 45% (> 2200) of which were misclassified by

the individual SVMs.

The performance over different probability cut-offs was shown to access the qual-

ity of the estimated probability values. Figure 2.4a represents the accuracy for the

top-predicted term for each sample across all holdout samples (i.e. gene expression

experiments). The white bar represents the proportion of holdout samples that both

individual SVMs and URSA predicted accurately. The light gray bar represents the

proportion of holdout samples that only URSA predicted accurately; the dark gray

bar represents the proportion of holdout samples that only individual SVMs predicted

accurately. The black bar is the proportion of samples that neither URSA nor the

individual SVMs predicted accurately. In other words, URSA accurately predicted
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more than 94% of the holdout samples (white + light gray), whereas the individual

SVM predicted 86% correctly (white + dark gray). Neither URSA nor SVM were able

to accurately predict the remaining 3% of holdout samples. As shown in Figure 2.4a,

the number of samples correctly predicted only by URSA increases with higher prob-

ability cut-offs and so highlights URSA’s ability to make accurate predictions with

meaningful probability values.

Figure 2.5: URSA’s improvements of ranking accuracy over individual SVMs is
greater for specific leaf nodes/terms in the tissue ontology. Each point on the scatter
plot represents log-fold improvement for one unique cell-type. Points above the grey
horizontal line correspond to improvements by our method. The greater improvement
for small, leaf nodes demonstrates the need of our ontology-ware aggregation of leaf
and non-leaf classifiers to detect subtle tissue/cell-type signals.

In addition to the overall performance evaluation, it is important to consider how

annotation accuracy depends on the number of expression profiles available for train-

ing for each tissue term (namely ’term size’). Term size also serves as an appropriate

estimation of the term’s specificity in the tissue ontology, as sample annotations were

propagated based on the same ontology. URSA’s ontology-aware Bayesian frame-
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work aggregates multiple individual classifiers so that classifiers for large terms (such

as blood) could help classify related specific small terms (such as T-cell acute lym-

phoblastic leukemia cell). Using area under the precision-recall curve (AUPRC), we

compare the entire ranking accuracy of URSA and the individual SVM classifiers

across tissues/cell-types. URSA provides increased performance for 65 of the 71 tis-

sue terms spanning both large general terms (such as B-lymphocyte > 0.98, breast

> 0.89 and lung > 0.95) and small specific terms (such as T-cell acute lymphoblastic

leukemia cell = 1, HeLa cell > 0.91 and bronchial epithelial cell > 0.83) (Figure 2.4b).

Decreased performance for a few terms could be attributed to the incompleteness of

the tissue ontology (e.g. the missing parental relationship between hepatocyte and

hepatoma cell). URSA’s improvements over individual SVMs are greater for leaf

nodes than non-leaf nodes (Figure 2.5). The observed inverse relationship and larger

improvements for leaf nodes than for non-leaf nodes highlights the need for URSA

especially for the specific terms where individual classifiers often perform poorly due

to the lack of training data. Thus, although the number of training samples affects

the quality of individual models, our results show that exploiting the known cell-type

associations enables URSA to be reasonably immune to this effect.

We examine the performance of the leaf nodes/terms in URSA’s subgraph. URSA

provides increased performance compared to independent SVMs for 43 of the 48 leaf

terms including cell lines (such as HeLa cell > 0.91, T-47D cell = 1, and MCF-7 cell

> 0.85), cancer types (such as cervical carcinoma cell > 0.98, chronic lymphocytic

leukemia cell > 0.87, and renal cell carcinoma cell > 0.83), and stem cells (such as

embryonic stem cell line > 0.73 and mesenchymal stem cell > 0.60). This greater im-

provement for small and specific terms is common across a wide range of tissues and

thus highlights the need for our method especially for specific leaf terms (Figure 2.5).

In essence, the additional intermediate (i.e. non-leaf) classifiers help improve the pre-

dictions for specific leaf nodes/terms over individual SVMs. It is worth emphasizing
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that our approach is completely oblivious of known biomarker genes, but only relies

on known ontological tissue relationships to delineate specific signals unique to each

tissue/cell-type. It is not surprising that 48 of the 71 terms we evaluated are leaf

nodes because the comparisons between URSA and individual SVMs were made for

only terms with direct sample annotations. Also, missing associations between terms

contribute to having related terms end up as leaf nodes. For example, both breast

epithelial cell and MCF-10A cell are leaf nodes because the current tissue ontology

is missing the parent-child relationship between breast epithelial cell and mammary

epithelial cell. Often branch length is used to estimate the specificity of a term in a

hierarchy. Unfortunately, branch length is not a good estimate of specificity in the

tissue ontology used in URSA. For example, branch length for embryonic stem cell

line is 4 while that for BJ cell is 8.

Figure 2.6: Scatter plot comparison between URSA and individual SVMs with dif-
ferent preprocessing algorithms. Each point represents a unique cell-type, and the
size of the point represents the number of samples curated to that particular cell-
type. Points above the diagonal correspond to improvements by our method. URSA
consistently outperforms individual (i.e. independent) SVMs across many cell-types
independent of term size and preprocessing methods.
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Even without the use of the tissue ontology, independent SVMs perform reason-

ably well for easy problems such as discriminating blood samples, and so the im-

provement of our approach is relatively small (AUPRC of 0.9072 for individual SVMs

versus AUPRC of 0.9823 for URSA). However, independent SVMs are unable to effec-

tively discriminate more specific cell-type samples such as T-cell acute lymphoblastic

leukemia cell samples (SVM AUPRC 0.0034), whereas our ontology-aware approach

accurately classifies holdout samples of this specific blood cancer subtype (URSA

AUPRC 1.0). This improvement of URSA can be attributed to the effective incor-

poration of the ontological complexity (Figure 2.2). Notice this improvement also

holds true across a wide range of non-blood cell-types such as prostate gland (0.0317

vs. 0.9906), bronchial epithelial cell (0.0174 vs. 0.8333) and mesenchymal stem cell

(MSC) (0.0017 vs. 0.6093) (Figure 2.4b). The fact that these signals were learned

in a completely data-driven approach not from known biomarkers indicates that

our method can provide a data-driven estimation of specific blood (and non-blood)

cell-type signals.

2.3.2 URSA’s performance is robust to expression data pre-

processing

Data preprocessing and normalization can have a significant impact on downstream

analysis, including prediction of tissues/cell-type signals [151]. MAS5.0 and fRMA are

the two most well-known algorithms for preprocessing single arrays [48, 91]. Addition-

ally, the barcode preprocessing algorithm was shown to accurately estimate whether

a gene is expressed in a given microarray experiment and in specific tissues [92, 151].

We test the robustness of URSA’s ranking accuracy to different preprocessing

methods. Our first evaluation (using AUPRC) shows that URSA improves perfor-

mance over individual SVMs across all three data processing methods: MAS5.0 (Fig-

ure 2.4b), fRMA and Barcode (Figure 2.6). Next, we compare URSA with a NN

28



Figure 2.7: URSA’s performance is robust across different preprocessing techniques.
(a) We compare the accuracy of the most probable estimation from NN upon Barcode
and URSA upon different preprocessing techniques. URSA outperforms the compet-
ing method across different preprocessing techniques. (b) Scatter plot comparison
between URSA and NN upon Barcode preprocessing. Each point represents a unique
tissue or cell-type, and the size of the point represents the number of samples cu-
rated to that particular tissue or cell-type. Points above the diagonal correspond to
improvements by our method.
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classifier after barcode processing, which is, to our knowledge, the only previous ap-

proach shown to predict cell-type [151]. It is important to note that the overall

accuracy of the NN classifier relies on the accuracy of the barcode preprocessing al-

gorithm. URSA correctly annotates ∼ 95% of the test samples independent of the

preprocessing algorithm used, with > 650 samples being correctly predicted exclu-

sively using URSA (Figure 2.7a). Furthermore, our method returns better ranking

accuracy for at least 50 of the 71 tissues/cell-types than the NN classifier (Figure 2.7b

and 2.8). Again, the performance improvements appear to be robust to term size.

Figure 2.8: Scatter plot comparison between NN upon Barcode and URSA with
different preprocessing algorithms. Each point represents a unique cell-type, and the
size of the point represents the number of samples curated to that particular cell-
type. Points above the diagonal correspond to improvements by our method. URSA
consistently outperforms NN upon Barcode across many cell-types independent of
term size and preprocessing methods.

These analyses show that URSA can adapt to both generic (e.g. MAS5.0) and

specific (e.g. Barcode) preprocessing methods to discover tissue/cell-type-specific in-

formation in genome-scale experiments. Moreover, robustness to preprocessing sug-

gests that URSA is modeling biological signals rather than systematic biases or data

processing artifacts present in these large compendia. We focus our remaining analy-
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ses using the most commonly used MAS5.0, chosen for its simplicity and application

to many array platforms.

2.3.3 URSA is precise for experiments from other expression

platforms

URSA is trained using data from the most popular gene expression microarray

platform HG-U133 Plus 2.0 (hgu133plus2) with ∼ 70000 samples (from 2500

datasets/series) in GEO. We have shown that URSA performs well for samples

from this platform, but there exist many other expression datasets that use other

platforms, with new ones emerging continuously. The Affymetrix Human Genome

U133A (hgu133a), for example, is arguably the second most common microarray

platform, associated with ∼ 1000 studies in GEO. Other genome-wide array plat-

forms such as HG-U95Av2 (hgu95av2) and HuGene 1.0 ST (hugene1st) have been

used for their focused gene coverage. As hundreds of such platforms have been used

for human gene expression measurements, re-training classifiers for each platform

is impractical. Instead, the challenge is to overcome technical differences across

platforms and predict tissue/cell-type signals in a platform-independent manner.

We test URSA’s potential to measure the tissue-specific signatures in profiles from

other array-based platforms without re-training its parameters. For this, we quantile-

transform input data from cross-platform samples and filter final predictions by using

a permutation test (see Methods). To evaluate these predictions in a manner that

best emulates an end-user’s experience, we conduct a double-blind literature study on

original and random annotations. The evaluation shows that the majority of URSA’s

predicted annotations are both precise and consistent regardless of the microarray

platform (Figure 2.9). Despite missing expression values for > 10000 genes (due to

limited gene coverage), our method is still able to provide high-quality annotations

even for hgu95av2 samples. These consistent trends illustrate URSA’s potential to

31



Figure 2.9: Consistent and precise original annotations for different array-based plat-
forms. Original annotations were evaluated based on their associated sample descrip-
tions. Random annotations were made on real expression data but evaluated based on
random sample descriptions. The number of shared genes is denoted in parentheses.
See Methods for more details.
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detect cell-type-specific signals across microarray platforms rising above technical

biases and even substantial gene coverage differences.

Next-generation sequencing is another rapidly growing technology for transcrip-

tome profiling. A sample annotation method that can be applied to this burgeoning

technology is also of great interest, and yet the current number of available tissue/cell-

type-specific experiments limits the prospect of effectively training classifiers specifi-

cally for RNA-seq experiments. To address this problem, we test URSA’s ability to

detect tissue-specific signatures in RNA-seq experiments using the model trained on

microarray data. At the outset, this is a challenging task due to the substantial tech-

nical differences between microarrays and RNA-seq. We challenge URSA to annotate

RNA-seq experiments in the Illumina Bodymap 2.0 reference dataset (GSE30611),

which consists of a diverse set of samples from 16 different tissues, generated with

both single-end and pair-end sequencing methods. URSA correctly predicts the tissue

of origin for all single-end and pair-end samples, except for adrenal gland and adipose

tissue samples (Figure 2.10). For adrenal gland, URSA ranked adrenal gland as the

second most significant tissue signal for adrenal gland samples (and not for any of

the other tissue types such as kidney or thyroid gland). Although URSA can eventu-

ally be re-trained to better fit growing next-generation sequencing data, its robustness

across platforms and technologies demonstrates URSA’s promise to remain applicable

and relevant to emerging experimental approaches and data processing methods.

2.3.4 URSA’s tissue and cell-type-specific models are biolog-

ically interpretable

With accurate models constructed from > 14000 diverse samples representing over

244 tissue/cell-type terms, URSA’s discriminative features (i.e. genes) could paint a

molecular portrait of tissue/cell-type-specific gene expression. To test this hypothe-

sis, we use the PAGE algorithm [64] to examine the Gene Ontology (GO) biological
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Figure 2.10: Accurate prediction of tissue of origin for RNA-seq samples. Heatmap
of URSA’s estimated tissue probabilities of 32 RNA-seq experiments (16 different
tissues) in the Illumina Bodymap dataset. The rows are the individual samples,
either single-end (s) or pair-end (p), and the columns are the estimated cell-types.
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processes [4] represented in each tissue/cell-type model. In effect, the analysis sum-

marizes the gene weights and offers a rich description of the models. Testing all 244

cell-type models, we find that many of the processes enriched among most informative

genes in these models appear to be the relevant cell-type-specific GO terms. For ex-

ample, the top GO term for the B-lymphocyte model is B cell activation (adjusted P

< 0.001), whereas the top GO term for the B-cell lymphoma cell model is regulation

of inflammatory response (adjusted P < 0.001). GO terms astrocyte differentiation,

regulation of synaptic transmission and behavior are enriched in the brain model

(adjusted P < 0.001).

Certain associations are not necessarily obvious. The top GO terms in the MSC

model include mesenchymal-specific developmental processes such as skeletal system

development, cartilage condensation and muscle organ morphogenesis. The enrich-

ment of glycosaminoglycan biosynthetic process in the MSC model has some support

in that glycosaminoglycans regulate osteoblast differentiation of bone marrow-derived

human MSCs and chondrogenesis in mouse MSCs [63, 90]. The top specific GO

terms in the embryonic stem cell (ESC) model include calcium-dependent cellcell ad-

hesion, positive regulation of Wnt receptor signaling pathway and glutamine family

amino acid metabolic process. During mouse embryogenesis, inner mass formation

and cell surface polarization is regulated by the calcium-dependent cellcell adhesion

system [124]. Highly conserved Wnt family proteins play a key role in embryogenesis

and oncogenesis, but moreover the positive regulation (i.e. activation) of Wnt signal-

ing maintains the pluripotency in human ESCs [85, 103, 118]. L-glutamine is needed

for the culture and maintenance of human ESCs and is shown to inhibit mouse em-

bryogenesis in high concentrations [2, 60, 97]. The enrichment of these non-trivial and

specific biological processes demonstrates the expressive (and accurate) interpretation

of URSA’s predictions.
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Figure 2.11: Tissue-specific biological processes enriched in URSA’s skeletal muscle
and heart models. Barplot of enrichment z-scores of top GO terms in the two mod-
els are shown. Both skeletal muscle and heart are primarily populated by muscle
cells; yet, the heart tissue model selects genes specifically involved in cardiac muscle
processes.

Based on the enriched biological processes (i.e. GO terms), we examine whether

the models are specific enough to distinguish even closely related cell-types such

as skeletal muscle cells and heart cells (Figure 2.11). Skeletal muscle and heart

are among the most studied human tissues, and thus are appropriate examples to

test the specificity of our models, which are based solely on genome-wide expression

experiments. Both skeletal muscle and heart are comprised of muscle cells, and so

one might expect that the top GO terms for both tissue models would be general

muscle-related GO terms such as actin-mediated cell contraction. Instead, we find

that although all top enriched processes for skeletal muscle are general muscle GO

terms as expected, the top processes for heart (e.g. ventricular cardiac muscle tissue

development and heart contraction) are specific to heart cells (Figure 2.11). Thus,

without prior knowledge of tissue and cell-type-specific genes, URSA’s models identify

genes involved in corresponding cell-type-specific biological processes. This approach
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could be extended for understanding poorly characterized cell-types including specific

cancer subtypes. Our analysis altogether provides biological intuition and credence

to the basis for URSA’s tissue and cell-type annotations.

2.4 Discussion

In multicellular organisms, integrative analysis leveraging large gene expression com-

pendia requires accurate annotations of samples to their tissue and cell-type of ori-

gin. In this article, we present a scalable computational method URSA that predicts

tissue/cell-type signals in expression profiles across platforms and technologies. Key

to its performance is the incorporation of the tissue ontology. Much of URSA’s im-

proved performance can be attributed to the construction of more than one hundred

additional intermediate (i.e. non-leaf) classifiers, which are then integrated using a

Bayesian framework.

URSA can be used to automatically annotate samples in public gene expression

repositories where most samples are currently lacking tissue/cell-type-specific infor-

mation. Researchers can discover specific signals in their own samples via our inter-

active interface at ursa.princeton.edu. Others interested in integrative studies can

download the URSA C++ software and annotate samples on a large scale.

Despite URSA’s current applicability to a wide variety of tissues/cell-types, its

predictions can be further improved as the ontology used for integration adds addi-

tional terms and associations. For example, immunologists may be interested in the

signal of specific T-lymphocytes such as CD4+ T cells, Th17 cells, germinal B cells,

and so forth. Unfortunately, the current BRENDA ontology (which was used as a

controlled vocabulary and the ontology structure of our method) does not include

such terms. Nonetheless, URSA’s ability to delineate tissue/cell-type signals without

known biomarker genes makes it naturally extendable to such specific cell-types as
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the BRENDA ontology is extended with more terms and associations. We plan to

regularly maintain and update the software with new tissue and cell-type annotations

and the latest version of the BRENDA ontology.

Both the strength and the limitation of our method across platforms and tech-

nologies depend on the amount of tissue signal in the gene order and the number

of missing values. For a given gene expression profile from a different platform,

quantile transformation is applied to compute hg133plus2-like expression values. In

consequence, our method is robust to different normalization techniques used because

only the information of relative gene abundance is transferred. However, specific sig-

nals associated with the particular gene expression value may be lost, and properly

incorporating such signals may provide greater prediction accuracy. Furthermore,

expression values for genes not measured in hg133plus2 could affect the accuracy of

our method, although simple mean imputation seems to alleviate that effect.

URSA’s tissue and cell-type-specific models provide a biological interpretation

of its predictions. As such, URSA could potentially be used to test and identify

possible sample contaminations, resolve cancer samples of unknown primary origin

and perhaps provide insight into the molecular basis of poorly characterized clinical

subtypes.
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Chapter 3

Genome-wide characterization of

the human disease landscape

This chapter describes work done with critical support and comments from Arjun

Krishnan. Literature curation and feedback were provided by Chandra Theesfeld,

Christie Chang, Rose Oughtred, and Jennifer Rust.

3.1 Introduction

Gene expression profiling has been used for two decades now to capture the genome-

wide dysregulation in a number of human diseases. A typical gene-expression study

for a particular disease is carried out first by profiling a group of disease samples and

a comparable group of normal control samples, and then contrasting disease samples

against controls. The resulting differential mRNA abundance of thousands of genes

is valuable in capturing the genome-wide perturbations of genes and pathways that

underlie the disease of interest. However, complex diseases fall along a continuous

landscape of molecular phenotypes, sharing with each other several of their underlying

genetic and functional changes. Therefore, from the myriad of observed expression
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changes, it is impossible to tease apart those unique to a disease when the disease

gene expression is analyzed in isolation.

Fortunately, hundreds of disease gene expression datasets created in the last two

decades have been deposited in public repositories like NCBI GEO [7]. Integra-

tion of these individual studies offers a promising path towards better understanding

the characteristics of multiple human diseases [1, 120]. In fact, several efforts have

been made to integrate multiple studies by scaling-up differential expression analy-

sis (comparing disease to healthy samples) to quantify the abnormalities in multiple

diseases [47, 109, 132]. However, by comparing diseases only post-analysis, such

approaches do not explicitly address disease-disease relationships, thereby failing to

identify features distinctive to each disease. For example, multiple diseases are related

to the immune system, but the specific immune component in each disease is poorly

understood [18]. Therefore, a unified framework is needed to tackle the challenge of

understanding the functional and anatomical context of each disease in the context of

all other related diseases. This framework needs to be comprehensive, covering a large

number of diseases, and data-driven, taking advantage of thousands of clinical gene

expression datasets, in order to uncover subtle differences between similar diseases

and highlight identifiable aspects of rare diseases.

Here we present URSAHD (Unveiling RNA Sample Annotation for Human Dis-

eases), a systematic framework that mines hundreds of individual clinical datasets

to explicitly compute the distinctive characteristics of 309 human diseases, includ-

ing 20 rare diseases. Leveraging the hierarchical relationships among human diseases

and thousands of disease-specific gene expression datasets, URSAHD builds individual

disease-specific models and integrates them in a probabilistic framework to provide

hierarchically consistent estimates of disease signals. URSAHD can then accurately

characterize the disease signals in any gene-expression sample, providing a predictive

probability of this sample being associated with each disease. The rigorous processing
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and evaluation settings in URSAHD allow it to overcome potential patient, dataset

and profiling-technology biases, and learn discerning models (i.e. genome-wide weight

vector) even for rare diseases with limited numbers of samples. These disease-specific

models effectively characterize molecular signals specific to each disease in the con-

text of not only associated normal tissues and anatomical regions but also other

human diseases. This completely data-driven approach does not rely on literature-

based disease-gene associations and is solely based on thousands of gene expression

experiments of clinical samples, both normal and disease.

In the rest of the paper, we describe the probabilistic framework behind URSAHD

and systematically show that URSAHD outperforms other approaches of using indi-

vidual disease genes or the typical normal/disease differential expression model in

quantifying disease signals. We reveal how, in addition to accurate sample predic-

tions, URSAHD provides interpretable, molecular models in terms of discerning bio-

logical processes and associated tissues. Finally, we tackle two central problems for

drug development: tracking therapeutic effect by expression profiling and associating

rare diseases to their nearest well-studied human diseases for the purpose of drug

repositioning. We have implemented URSAHD in a publicly available web-server at

ursahd.princeton.edu, where biomedical researchers can submit their gene expres-

sion data to obtain data-driven quantification of disease signals.

3.2 Methods

3.2.1 Documented disease and anatomical genes

Gene2mesh uses curated MeSH annotations of PubMed articles to find genes that are

statistically significantly studied with a particular MeSH term http://gene2mesh.

ncibi.org. We used MeSH terms under the Anatomy MeSH tree structure as

anatomical MeSH terms, and terms under the Diseases MeSH tree structure as disease

41

ursahd.princeton.edu
http://gene2mesh.ncibi.org
http://gene2mesh.ncibi.org


MeSH terms. 396 anatomical MeSH terms and 509 disease MeSH terms had at least

10 associated genes. Disease and anatomical genes were downloaded from gene2mesh

on May 14 2014.

3.2.2 PubMed article gene annotations

Human gene annotations to PubMed articles were downloaded from the National

Center for Biotechnology Information (NCBI) on Oct 31 2014 [106, 134]. The number

of unique PubMed article associations for each gene is used as a proxy to estimate

how well the gene is studied and characterized. 436, 945 PubMed articles had at least

one gene annotation. 33, 454 unique human genes were annotated to at least one

PubMed article. The most studied gene was tumor protein p53 (TP53) with 6, 592

associated PubMed articles.

3.2.3 Genome-wide expression data processing

The Human Genome U133 Plus 2.0 Array (hgu133plus2) raw CEL files were down-

loaded from Gene Expression Omnibus (GEO) [7]. Probes were mapped to Entrez

GeneIDs using the BrainArray Custom CDF ver. 18. MAS5.0 with default param-

eters and subroutines were used for normalization, and then log-transformed [25,

48]. Therapeutic treatment datasets (GEO: GSE10281, GEO: GSE16879, GEO:

GSE28844, GEO: GSE53552) used only for analysis were also pre-processed and nor-

malized using the same pipeline [3, 22, 114, 143]. Clinical information (patient id,

diagnosis, treatment type, response type) were from the author-provided sample de-

scription in GEO.

42



3.2.4 Gold standard construction by manual sample annota-

tion

High-quality sample annotations are needed to accurately compare and evaluate the

performance of different approaches to estimate disease signals in genome-wide ex-

periments. We manually annotated 8, 359 microarray experiments of clinical patient

samples from 139 datasets from the hgu133plus2 platform. Available sample descrip-

tions and other textual information in GEO and their associated publications were

used for this curation step. Disease terms in the MeSH disease category were used as

the controlled vocabulary. Normal or control (non-disease) samples were annotated

as ’other.’ For example, ’unaffected sites’ (GEO: GSM404013) and ’surrounding

noncancerous cells’ (GEO: GSM490997) were annotated as ’other.’ A total of 1996

samples were annotated as ’other.’ Reference, xenograft, cultured, or cell-line samples

were excluded to avoid learning extraneous signals. The manual annotations for 116

disease terms were then propagated based on the MeSH disease hierarchy, resulting

the coverage of 335 disease terms.

3.2.5 Therapeutic chemical disease associations

Chemical disease associations were downloaded from the Comparative Toxicoge-

nomics Database (CTD) on Mar 2 2015 [26]. CTD contains both curated and

inferred chemical-disease interactions. Only curated associations with direct thera-

peutic evidence were used, a total of 27571 associations with 5852 unique chemicals to

2290 diseases. Hypertension (MESH: D006973) had the most associated therapeutic

chemicals (n = 343).

List of rare diseases were downloaded from OrphaData V 0.9 on Nov 17 2014

at http://www.orphadata.org [5]. 20 of our models were for rare diseases. Out

of the 20 rare disease models, 6 rare diseases had no documented therapeutic chem-
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ical associations: Arrhythmogenic Right Ventricular Dysplasia (MESH: D019571),

Enteropathy-Associated T-Cell Lymphoma (MESH: D058527), Collagenous Colitis

(MESH: D046729), Limb-Girdle Muscular Dystrophies (MESH: D049288), Primary

Cutaneous Anaplastic Large Cell Lymphoma (MESH: D054446), Extranodal NK-T-

Cell Lymphoma (MESH: D054391).

3.2.6 Training and testing setup

Method evaluations are often done with a random holdout. However, genome-wide

experiments are prone to laboratory and dataset biases, and so a simple random

holdout might overestimate the performance of these methods [79, 113]. To control

for this bias, the series/datasets of the manually annotated samples were randomly

partitioned into training and testing for each term as done previously [77]. Only

disease terms with at least two positive and negative samples in both the training set

and the testing set were evaluated.

3.2.7 Individual disease prediction methods

Documented gene-based prediction method

A common method to predict disease signals is based on the expression of a docu-

mented disease gene. The documented gene-based method picks a documented disease

gene (from gene2mesh) that best distinguishes the disease samples (positives) from

their normal counterparts (negatives) based on its Area-Under-the-Precision-Recall-

Curve (AUPRC) ranking accuracy. Positive samples are only from direct sample

annotations, and negative samples are other (i.e. control) samples in those datasets

with positive samples. Datasets with only disease samples or other control samples

weren’t included in training. This method represents a typical single gene-based ap-

proach that relies only on documented disease genes. This approach is similar to how
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the sex of the sample can be identified based on the expression of Y-chromosome

genes.

Normality-based prediction method

Genome-wide differential analysis between normal and clinical samples is a common

approach for understanding the molecular abnormality and mechanistic dysregula-

tions in the manifestation of that single disease (Ritchie et al., 2015). The normality-

based prediction method mimics this typical normal vs. disease differential setup and

is a Support-Vector-Machine (SVM) trained on disease samples (as positives) and

normal samples (as negatives) (Burges, 1998). Likewise positive samples are only

from direct sample annotations, and negative samples are other control samples in

those datasets with positive samples. Notice that both normal and disease samples

are needed in at least one dataset to train the disease model for this method.

3.2.8 URSAHD’s unified disease prediction method

We set URSAHD’s unified framework for disease prediction as a hierarchical multi-

label classification problem [10, 77]. Each individual disease classifier characterizes

the distinctive features of those expression profiles of the disease compared to that of

all other control samples and unrelated disease samples. The Bayesian network then

models the probabilistic relationship between those classifiers to calibrate the indi-

vidual predictions and thus provides an interpretable list of disease (both cancerous

and non-cancerous) predictions for a given clinical gene expression profile.

Hierarchy-aware characterization of individual diseases

The choice of positive and negative samples explicitly defines the learning criteria for

the classifier, and so systematically setting the context of a particular disease is cru-

cial for a unified framework. We use the MeSH disease hierarchy to set this context
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and capture the distinctive characteristics of a particular disease. Samples anno-

tated directly to the disease term or any of its descendant terms (i.e. more specific

diseases) are considered positive; samples annotated to only its ancestor terms are ex-

cluded from training; and the remaining samples including those annotated to sibling

terms are considered negative. The control samples (those annotated as emphother)

are negative for all disease terms. A dataset of gene expression profiles across 65

healthy tissues (GEO: GSE3526, 353 samples) was used to ensure a comprehensive

coverage over various tissue-types [111]. As a consequence, any tissue-specific signal

in URSAHD’s disease models represents the over-expression of those tissue-specific

genes in the disease, even over its normal (or healthy) counterpart. Related disease

terms share positive samples (such as between Adenocarcinoma (MESH: D000230)

and Renal Cell Carcinoma (MESH: D002292)), but more specific terms (i.e. renal cell

carcinoma) have a more exclusive set of positive samples. Given l pairs (i.e. samples)

of expression data xi and its label yi, we use the L2 linear SVM (with cost parameter

c = 20) [52, 56]:

min
w

1

2
wTw + C

l∑
i=1

max(1− yiwTxi, 0)2 (3.1)

Notice that this labeling scheme defines the learning criteria for even general

terms (such as Neoplasm (MESH: D009369)) with no direct sample annotations -

including the most general ’Disease’ term. These two hundred additional disease

SVM models are then incorporated in the Bayesian network that combines these

distinctive characteristics in a unified probabilistic framework.

Hierarchy-aware probabilistic aggregation of distinctive classification mod-

els

Each individual model is trained separately, and so the predictions - given an expres-

sion profile - aren’t comparable without explicitly defining the relationships between
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those predictions. We use the structure of the MeSH disease hierarchy and define

these relationships in a Bayesian network [77]. We model each term’s unthresholded

SVM output as a noisy observation ŷi of a latent binary event yi representing the true

label (i.e. disease) of a given sample. The edges from y to ŷ establish conditional

independence of an SVM prediction ŷi to all other SVM predictions ŷi (i 6= j) given

its true label yi. This allows us to easily compute the likelihood:

P(ŷ1, . . . , ŷN |y1, . . . , yN) =
N∏
i=1

P(ŷi|yi) (3.2)

The conditional probability tables P(ŷi|yi) for each term represents the discrimi-

native power of each term’s SVM. Through 2-fold cross-validation, we estimate these

conditional tables by counting the number of negative samples with smaller SVM

outputs than that of a positive SVM output. Laplace smoothing is finally applied for

robustness.

The parent-child conditional probability tables are defined similar to the original

Bayesian correction method and so ensure that a label is true when any one of its

children is true. When none of its children are true (including when it has no children),

a constant prior of 0.1 is assigned. This allows us to compute the prior:

P(y1, . . . , yN) =
N∏
i=1

P(yi|ch(yi)) (3.3)

where ch(yi) is child labels of yi.

We use the loopy belief propagation algorithm implemented in the SMILE library

to infer the posterior probabilities P(yi|ŷ1, . . . , ŷN) for each disease term [27]. These

posterior probabilities are the estimated probabilities that our method uses to anno-

tate gene expression samples.
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3.2.9 TCGA mRNA-Seq sample prediction

URSAHD disease models were trained on hgu133plus2 samples and so have not been

specifically tuned for predicting sequence-based expression profiling experiments. In

order to account for this difference, samples from sequence-based technologies were

quantile transformed as done previously [77]. The approximate maximum expression

value 15 was used to impute missing values in the quantile transformed sample. A

permutation test was performed to filter insignificant predictions that might have

arisen from technical biases. Only the non-imputed values were permuted to compute

random predictions of the null distribution. This conditional permutation controls

for imputation bias. Insignificant predictions were assigned a value of 0.

TCGA’s RNASeq Version 2 IlluminaHiSeq normalized gene expression data (Data

level 3) was downloaded on July 18 2014 [49, 81]. 15 different cancer-types were

covered by both TCGA’s RNASeq Version 2 and the current disease models at the

time. Predictions were made for a total of 6172 RNASeq samples.

3.2.10 Inferred URSAHD disease model and gene set associ-

ations

Each individual URSAHD disease model is a hyperplane that best separates the pos-

itive and negative samples. This hyperplane is a high-dimensional vector with coef-

ficients (or weights) for each dimension (or genes): ~w = {w1, w2, . . . , wm} where m

is the number of genes covered by the gene expression profile assay. The PAGE en-

richment algorithm that is based on the central limit theorem is used to calculate the

association between a given gene set and a gene weight vector [64]. Given a disease

model ~wd and gene set St, the enrichment score ztd for term t and disease d is:

ztd =
x̄td − µd

σd
(3.4)
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where

x̄td =

∑
g∈St

wg

n
(3.5)

where n is the size of St and µd and σd is the population mean and standard

deviation of ~wd. This enrichment score estimates the statistical significance of the

mean weight of genes associated to term t compared to the mean weights of random

genes of the same size. All functional, disease, and anatomical associations are based

on this enrichment score.

3.2.11 Drug repurposing evaluation based on disease model

and disease gene set associations

Curated chemical disease associations from CTD were used to evaluate the utility of

the disease model and its disease gene set associations for drug repurposing. Known

multi-purpose uses of chemicals were used as the gold standard for evaluation. For a

human disease M with an URSAHD model, the expected association score with disease

S that shares a therapeutic chemical is compared with the expected association score

with a random disease. This comparison is similar to the test of independence in

probability: P(A|B) = P(A). The first expectation conditions on the known chemical

association with both disease M and S, and the second expectation is marginalized.

If the first expectation is greater than second, then therapeutic chemicals for diseases

with high association scores statistically will have a therapeutic effect on disease M as

well. It is worth mentioning that our evaluation circumvents the need for ’negative’

chemical disease associations - that the chemical has no therapeutic effects on the

disease.
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Figure 3.1: (a) MeSH disease sub-hierarchy for Breast Neoplasms. Such disease com-
plexity must be accounted for accurate characterization of specific disease signals. (b)
Word cloud of 116 disease terms covered in manual curation of 8359 gene expression
profiles. Size of term corresponds to the number of profiles annotated to the term.
Text color is set arbitrarily for visualization.
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Figure 3.2: (a) URSAHD provides hierarchy-consistent predictive probabilities for 335
disease terms respective of a given gene expression profile. URSAHD integrates 8359
disease and normal clinical samples to quantify distinctive disease signals for 335 dis-
ease terms under the MeSH disease category. Hierarchy-aware annotation is applied
to effectively characterize individual disease models, and these models are later ag-
gregated into a unified Bayesian framework consistent with the known hierarchical
relationships. Note that no feature selection method or known gene sets are used
in our approach. (b) We demonstrate URSAHD’s ability for accurate disease signal
detection, specific functional and anatomical characterization of each individual dis-
ease, tracking therapeutic drug treatments from gene expression experiments, and
repurposing known drugs for the treatment of rare human diseases.
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3.3 Results

3.3.1 Hierarchy-aware characterization of the human dis-

eases from clinical biopsies

Accurate characterization of diverse molecular pathologies underlying human com-

plex diseases requires identification of signals that distinguish both the particular

disease-state from its corresponding healthy condition and its context in the human

disease landscape (Figure 3.1). To identify each human disease, we first model the

distinctive, genome-wide features of each individual disease by contrasting expres-

sion profiles of clinical disease samples to that of all control (or healthy) samples

and unrelated disease samples (Figure 3.2a). URSAHD then integrates 355 individ-

ual disease models into a unified Bayesian network based on the structure of the

MeSH hierarchy to provide hierarchically-consistent estimates of the specific disease

signal (Figure 3.2a). This genome-wide characterization of the human disease land-

scape is achieved by leveraging large public data repositories. Most publicly available

genome-wide datasets are associated with a single disease, sometimes including a

paired control set of normal samples. In order to organize these datasets in a single

compendium, we’ve manually annotated 8359 gene expression experiments across 136

clinical datasets to 116 MeSH disease terms which are organized within the MeSH

hierarchy (Figure 3.2a, Figure 3.1b). These data-driven models implicitly identify

and up-weight genes that are consistently expressed differently in positive profiles

than in negative profiles, and at the same time, shrink weights of non-discriminative

genes (see Methods). This specificity of weighted genes characterizes the distinctive

genome-wide traits of each human disease without the use of any known disease-gene

associations or prior feature selection methods.
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3.3.2 URSAHD accurately detects disease-state solely from

gene expression profile

Figure 3.3: URSAHD accurately detects human disease signals in gene expression
profiles. (a) URSAHD outperforms literature-documented disease gene method across
multiple diseases. Scatterplot of AUPRC of URSAHD (y-axis) and known disease
gene method (x-axis). Each dot represents the comparative performance of a specific
disease. Red line is the identity line, and so dots above the red line indicate diseases
with greater performance. (b) URSAHD outperforms typical normal/disease genome-
wide differential expression approach for disease detection. Scatterplot of AUPRC of
URSAHD (y-axis) and typical differential approach (x-axis). Each dot represents the
comparative performance of a specific disease. Red line is the identity line, and so
dots above the red line indicate diseases with greater performance.

The disease-state of a given clinical sample is often inferred by the expression of

single disease gene. While the expression of these genes hints at abnormal molecular

changes of the underlying tissue/cell-type, many known disease genes aren’t exclu-

sive to individual diseases and thus limit the use of known genes to distinguish a

particular disease from others. Tumor necrosis factor (TNF), for example, is the

most common human disease gene, being documented in literature with 96 human

diseases such as psoriasis, non-Hodgkin lymphoma, and obesity [13, 80, 110, 112].

In contrast, URSAHD uses a data-driven genome-wide approach to generate disease
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Figure 3.4: (a) Documented disease genes (i.e. gene2mesh genes) are more enriched
in URSAHD models over typical normal/disease differential models. Scatterplot com-
parison of documented disease gene set enrichment in URSA models (y-axis) and
normal/disease differential models (x-axis). Red line is the identity line and so dots
above the red line indicate diseases with greater enrichment score. (b) Without re-
training, URSAHD accurately predicts different cancer-type samples from TCGA’s
RNASeq collection. 6172 samples across 15 different cancer-types were predicted.
Mean reciprocal rank of the correct prediction is shown for each cancer-type. Red
line indicates performance of random prediction.

models (i.e. genome-wide weight vector) reflective of the molecular characteristics

that is specific to each disease. As such, these models effectively differentiate among

other human disease-states and healthy-states, outperforming the best documented

(via gene2mesh) single genes for 30 of the 32 diseases with an independent holdout

set (Figure 3.3a). For 75% of these diseases, URSAHD models were over 10 fold more

accurate than the best-performing documented disease gene (Figure 3.3a).

Many human disease studies have used gene expression profiles to systematically

quantify genome-wide changes between healthy samples and disease samples. How-

ever, such definition of control (i.e. healthy samples) restricts our understanding to

the abnormal changes brought by the disease and not its precise manifestation. In-

stead, URSAHD takes the entire set of multiple healthy tissue samples (in addition to

the corresponding healthy samples) and other disease samples to identify its context
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in the human disease landscape (see Methods). Indeed URSAHD outperformed the

typical normal/disease differential analysis for all 32 diseases with an independent

holdout set (Figure 3.3b). This performance difference appears to arise from URSA’s

ability to identify distinctive characteristics of each human disease. For example, both

dilated cardiomyopathy models (AUPRC of URSAHD = 0.9069, AUPRC of typical

differential model = 0.0752) were enriched for heart-related Anatomical MeSH terms

such as ’left ventricular hypertrophy’, ’atrial fibrillation’ and ’heart atria.’ However,

the 30 dilated cardiomyopathy genes documented in the literature were only enriched

in URSAHD model (z = 4.326) and not the typical normal/disease differential model

(z = −0.155). Note that both approaches are data-driven and not based on docu-

mented disease genes. This lack of specificity underlies the limitation of the typical

normal/disease differential approach, and such trend persists across other human dis-

eases including rare diseases (Figure 3.4a). Without retraining the models, URSAHD’s

predictions were also consistent and accurate for TCGA’s RNASeq samples further

demonstrating the biological relevance of URSAHD’s disease models, independent of

profiling platform (Figure 3.3b, see Methods).

3.3.3 URSAHD’s characterization of neuroblastoma and

other diseases of ectodermal origin is distinct and

specific

URSAHD’s disease models identify the distinctive genome-wide characteristics of each

human disease by up-weighting genes with peculiar expressions compared to other

diseases and normal tissue samples (see Methods). Understanding the molecular

basis of human diseases landscape from associated gene(s) is limited as shown by

the significant but ubiquitous disease gene set similarities (Figure 3.5a). In con-

trast, our approach provides a data-driven functional perspective of human diseases,
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Figure 3.5: Skewed distribution of documented disease gene set overlap with doc-
umented neuroblastoma genes. Distribution of p-values of disease terms associated
with at least 10 documented genes. Red line indicates uniform distribution. The
amount of skewness could merely represent our comprehension of generic cancer-
related pathways and relative lack of targeted functional understanding.

Figure 3.6: URSAHD’s top model genes are statistically understudied compared to
documented disease genes. Wilcoxen rank-sum test for each human disease (with at
least 10 documented genes) between the numbers of publications associated with each
top model gene and the numbers of publications associated with each documented
disease gene. Sample sizes were matched. Type 2 diabetes mellitus, breast cancer,
Alzheimer disease, Rheumatoid arthritis were among the top human diseases with
statistically understudied top model genes.
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Figure 3.7: Distinctive functional characterization of neuroblastoma and other dis-
eases of ectodermal origin. Each panel (i.e. heatmap) summarizes the top functional
(i.e. GO biological process) enrichments for one (titled) of URSAHD’s models: neurob-
lastoma, glioblastoma, oligodendroglioma, and melanoma. Each ectodermal disease
is characterized by their distinctive functional associations.

especially in the context of closely-related diseases. Neuroblastoma, glioblastoma,

oligodendroglioma and melanoma all originate from ectodermal tissues and exhibit

similar characteristics of tumor-host interaction at the molecular-level [127]. Nonethe-

less, each ectodermal diseases exhibit unique signs and symptoms used for diagno-

sis, targeted treatment, and prognosis. URSAHD’s disease models for the four ecto-

dermal diseases were enriched with functional characteristics specific and consistent

to known literature for each individual disease (Figure 3.7). URSAHD’s neuroblas-

toma model was enriched with neuron development-related processes and leukocyte

migration-related processes recapitulating its known neural crest-derived origins and

lymphocytic infiltration [148, 74]. URSAHD’s glioblastoma model was specifically

enriched with distinctive pathways relevant to its strong dysregulation of circulat-
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URSA
Top 20 Genes

Descriptions Pubmed IDs

PHOX2B Major susceptibility factor (Orphanet) 15901893
LIN28B Major susceptibility factor (Orphanet) 23042116
GATA3 Prognostic marker 25351211
PHOX2A Biomarker 18949361;15901893;19212675
HAND2-ASI Antisense RNA to HAND2 18171985
NPY Biomarker 20676138;9802408
ISL1 Biomarker 23503646;23417100
NNAT Prognostic marker 17762496
FABP6 Prognostic marker 16989664
STMN2 Biomarker 23333500
TH Biomarker 12507966; 4399798
DLK1 Biomarker 3470797; 8095043; 15798773
CHRNA3 Biomarker 2336208; 9009220; 23417100
PRPH Biomarker 6399022; 8381395
FAM163A (NDSP) Biomarker 19671756
ARHGAP36 Lightly characterized protein None found
LOC1005070194 Uncharacterized lncRNA None found
MAB21L1 (Expressed in neural crest derivatives) (10556287)
MAB21L2 (Expressed in neural crest derivatives) (10495284, 10556287)

Table 3.1: Descriptions and literature evidence for URSAHD’s top 20 Neuroblastoma
genes. Information in parenthesis indicate indirect evidence.

ing immunoglobulin, extracellular matrix structure and angiogenesis to aggressively

invade the brain parenchyma [149, 102, 36, 59]. Note that low enrichment only in-

dicates the relative absence or involvement and not a complete lack of related gene

expression. Interestingly, glucocorticoid metabolism-related biological processes were

most enriched in URSAHD’s oligodendroglioma models. Such association encourages

further investigation of glucocorticoid metabolism and its role in oligodendroglioma,

especially in the context of MYOC (myocilin, trabecular meshwork inducible glu-

cocorticoid response or also known as TIGR) a known mediator of oligodendrocyte

differentiation [70, 19].

The functional and anatomical contexts set by our disease models are primarily

driven by these top model genes (see Methods). Of the top 20 up-weighted genes for

URSAHD’s neuroblastoma model, two (i.e. PHOX2B and LIN28B) are known sus-
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ceptibility genes for neuroblastoma, 13 are highly expressed, serving as biomarkers

for diagnosis and prognosis, and 3 are associated with embryonic and nervous system

development (Table ??). Such specificity warrants further investigation of the re-

maining two uncharacterized genes (ARHGAP36 and LOC100507194) that were also

up-weighted in URSAHD’s neuroblastoma model. Overall, these top model genes were

significantly less studied than documented disease genes but nonetheless associated

with the specific disease, thus providing a data-driven avenue for better understanding

the genetic basis of human diseases (Figure 3.6). It is unlikely that these top model

genes are causal genes, but more likely genes amplified at the end of a deregulated

signaling pathway. Closely studying the function and structure of these genes could

help unravel specific pathogenesis that are distinctive of a particular human disease

such as diabetes, Alzheimer, colorectal cancer, and many others.

3.3.4 Anatomical context of the human disease landscape is

well-summarized using URSAHD models

Understanding the anatomical site of each disease is crucial for accurate diagnosis

and treatment of the disease. A unified human disease framework must account for

such anatomical characteristics while not over-fitting for tissue-specific signals. A

data-driven approach may be over-optimistic and identify the responsible tissue-type

rather than the specific disease signal. In order to control for such bias, corresponding

normal tissue samples are used as negative samples to discourage any discrimination

derived only from the tissue-specific differences between an unrelated disease and

the disease of interest (see Methods). Nonetheless, many tissue-specific associations

are found with both cancerous and noncancerous diseases (Figure 3.8). Figure 3.9

summarizes the disease model associations with T-lymphocyte specific genes. Not

surprisingly, mycosis fungoides (a common form of cutaneous T-cell lymphoma) and

peripheral T-cell lymphoma were exclusively associated with T-lymphocytes and not
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Figure 3.8: Anatomical context defined by URSAHD’s disease models. Bipartite graph
of disease terms (blue squares) and anatomical MeSH terms (grey circles). Associ-
ation based on enrichment score ¿ 5. Heart diseases are connected to heart-related
tissues/cell-types; and tissue-specific cancers are connected to their appropriate tissue
of origin.
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Figure 3.9: Diseases associated with T-lymphocytes and B-lymphocytes (red borders).
Bipartite graph of disease terms (blue squares) and anatomical MeSH terms (black
font). Association based on enrichment score ¿ 5. Both show associations with
multiple immune-related diseases, but not many diseases are associated with both
T-lymphocytes and B-lymphocytes.

B-lymphocytes. The anatomical context from URSA’s inclusion body myositis (IBM)

a type of inflammatory myopathy characterized by the invasion of T cells to muscle

fiber tissue - model was well represented in this local bipartite graph - connecting

T-lymphocyte and skeletal muscle-related anatomical terms. It is worth emphasizing

that no gene selection or prior knowledge of IBM is used to construct URSAHD’s IBM

model. B-lymphocyte genes were instead over-represented with B-cell lymphomas

such as follicular lymphoma and diffuse large B-cell lymphoma (Figure 3.9). Autoim-

mune or immune-mediated pathogen diseases associated with B-lymphocytes were

Sjogren’s syndrome, inflammatory bowel diseases, and respiratory syncytial virus in-

fections. This separate clustering among immune-related diseases shows the distinc-

tive, anatomical context set by URSAHD’s data-driven disease models to characterize

the human disease landscape. See Supp. Table 5 for the complete list of the anatom-

ical enrichment scores for all disease models.
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3.3.5 URSAHD detects molecular disruptions in clinical sam-

ples after effective therapeutic treatment

Accurately quantifying a treatment’s effectiveness is crucial for understanding drug-

specific resistance and developing personalized medicine. However, treatments are

often poorly understood at the molecular level and more so for its patient-specific

outcomes. To our knowledge, no computational method has quantified the efficacy of

therapeutic treatments in gene expression profiles. Here we tested URSAHD’s ability

to recognize the genome-wide disruption caused by therapeutic drugs in gene expres-

sion profiles of post-treatment clinical samples. Note that URSAHD models don’t use

any post-treatment samples for training and so are completely oblivious to their po-

tential outcome and response (see Method). We examined URSAHD’s predictive prob-

ability of an ulcerative colitis dataset with both pre-treatment and post-treatment

samples (GEO: GSE16879) [3]. Complete mucosal healing was clinically accessed 4 -

6 weeks after infliximab treatment. Both pre-treatment and post-treatment samples

in this dataset were not used to learn/train URSAHD’s disease models. We found

that URSAHD predictive probability distribution of the response groups are indis-

tinguishable before treatment but differentiate after treatment, concordant with the

independent clinical assessment (Figure 3.10a). We next examined URSAHD’s pre-

dictive probability for a psoriasis dataset with brodalumab post-treatment samples

(GEO: GSE53552) [114]. Brodalumab is an interleukin-17 antibody that prevents

interleukin-17 ligands from binding to cell receptors. 3 skin biopsies (pre-treatment

lesional, post-treatment lesional, and non-lesional) were collected from 25 patients

with moderate to severe plaque psoriasis. Patients were divided into groups and

treated with a single-dose of brodalumab (n = 4, 140mg subcutaneously; n = 8,

350mg subcutaneously; n = 8, 700mg intravenously; n = 5, placebo). URSAHD’s

estimate for psoriasis signal was low (essentially 0) for non-lesional samples and high

for pre-treatment lesional samples (Figure 3.10b, left). Again, URSAHD is oblivious
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of the effects of brodalumab treatments or any other treatment effect (see Methods).

Nonetheless, we found a significant decrease of URSAHD’s psoriasis signal for post-

treatment samples in a dose-dependent manner (Figure 3.10b). Because URSAHD is

general and not tuned for a specific drug, URSAHD can be used to track the efficacy

of any drug in any treatment setting for which clinical biopsies are available.

3.3.6 Repurposing drugs for the treatment of rare diseases

using URSAHD’s distinctive models.

Understanding the molecular behavior of human diseases leads to a more targeted

development of new medicine. However, the therapeutic drug development process

can often take more than 10 years after drug discovery, pre-clinical trials, clinical

trials, and FDA review. The development process for rare diseases is particularly

challenging as they have been under-characterized compared to other common dis-

eases. Drug repurposing is a common approach to expedite this process. With no

prior knowledge, our unified approach provides a data-driven, genome-wide character-

ization with distinctive functional and anatomical associations even for rare diseases.

We test whether URSAHD’s disease models and its disease associations (based on

known disease genes) could be used to prioritize existing drugs for the treatment of

another disease (Figure 3.11a). We find that the association scores of diseases with

a common therapeutic drug interaction are statistically greater than the scores of

random diseases (paired ranked-sum test, negative log p-value = 23, see Methods). It

is worth mentioning that the random association scores are low between −0.4 and 0.8

and statistically insignificant. Accordingly, therapeutic drugs for a common disease

could be used to treat rare diseases based on the disease associations derived from

URSAHD’s disease models.

’Sideroblastic Anemia’ and ’Refractory Anemia with Excess Blasts’ (RAEB) are

both conditions in which the blood does not have enough healthy red blood cells
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Figure 3.10: (a) URSAHD’s Ulcerative Colitis predictions of ulcerative colitis sam-
ples before and after treatment (GEO: GSE16879). Each panel plots non-responsive,
responsive, and control samples, respectively. URSAHD estimated high predictive
probabilities for both responsive and nonresponsive samples before treatment, but
only the probabilities for the responsive samples decreases after treatment. (b)
URSAHD’s psoriasis predictions of skin biopsy samples before and after treatment
(GEO: GSE53552). (left) URSAHD estimated high predictive probabilities for le-
sional samples before treatment and low probabilities of samples after treatment.
Non-lesional samples are used as a control. (right) The variation of estimated Psori-
asis signal negatively correlates with dose of brodalumab treatment.
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Figure 3.11: (a) Drug repurposing schematic (b,c) Two novel target predictions for
two different anemias.

to carry oxygen [117] and so exhibit similar gene expression profiles (median sam-

ple correlation within 0.891, 0.875 and between 0.875) based on anemia samples in

our curated gene expression compendium. The underlying molecular mechanism for

these diseases are distinct, and their difference is well-characterized by URSAHD’s

sideroblastic anemia and RAEB disease models. RAEB is a myelodysplastic syn-

drome (MDS) that frequently progresses to acute myeloid leukemia [23, 33]. Based

on its statistical association with Wilms tumor, this distinction was recapitulated in

URSAHD’s drug predictions for cancer chemotherapy drugs such as cisplatin, etopo-

side, melphalan, tretinoin, and vincristine (Figure 3.11b). These drugs have pre-

viously been shown to have an effect on RAEB transformation to acute myeloid

leukemia (AML) or on RAEB itself [54, 62, 69, 145]. One of the hallmarks of RAEB

is the aberrant hyper-methylation of gene promoters and such methylation-related

GO terms were enriched in URSAHD’s RAEB model (Figure 3.12) [55]. Cisplatin has

been recommended for treating a variety of cancers including head and neck, bladder,
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Figure 3.12: Enrichments for URSAHD’s Sideroblastic Anemia model and Refractory
Anemia with Excess Blasts (RAEB) model accurately describes the inefficient bind-
ing and/or transportation of the heme molecule in Sideroblastic Anemia, and the
misregulation of hematopoiesis in RAEB.

lung, testicular and ovarian [140]. In particular, it has been shown to reverse hyper-

methylation of target genes in cervical cancer, further warranting the effectiveness of

cisplatin for targeting RAEB or AML [128]. These drug predictions for sideroblastic

anemia and RAEB follow the distinctive GO term enrichments of URSAHD’s data-

driven, integrative analysis of human diseases. Hence, our approach could inform

the development of drug repurposing for the treatment of rare diseases without prior

knowledge and given only a few gene expression profile samples from patients with

the rare disease.

In sideroblasatic anemia, iron in the blood accumulates in the mitochondria due to

the defects in heme biosynthesis, mitochondrial protein biosynthesis, iron metabolism
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or [Fe-S] cluster biosynthesis [88, 123]. This molecular trait is indeed represented in

URSAHD’s sideroblastic anemia model and supports its disease associations and drug

predictions (Figure 3.12). Iron chelators, hematopoiesis stimulants, and anti-oxidants

(such as deferiprone, resveratrol, and mangiferin) were among the top drug treat-

ment predictions for sideroblastic anemia based on its association with -Thalassemia

and Iron Overload (Figure 3.11c). Such drug treatments are consistent with current

therapeutic treatment of iron chelators and anti-oxidants to prevent iron overload

and oxidative stress caused by sideroblastic anemia [14, 89]. In particular, resver-

atrol is especially interesting as it has been shown to have both anti-oxidant and

hemoglobin-activating activity. In cultured human erythroid progenitor cells and

K562 cells, resveratrol has been shown to accelerate erythroid maturation and in-

crease hemoglobin levels [31, 32]. In a mouse model of β-thalassemia, resveratrol

reduces ineffective erythropoiesis and increases red cell survival in the presence of

oxidative damage [32].

3.4 Discussion

The amount of genome-wide experiments in clinical studies is growing and so opening

the possibility of various integrative analysis of complex diseases. There are many

questions that this large compendium of clinical data could answer. Here, we for-

mulate it in a unified framework to identify distinctive characteristics of hundreds of

human diseases. No pre- or post- feature selection method is used for a data-driven

and unbias analysis of the compendium. The most predictive genes identified by our

data-driven approach were significantly under-studied in the biomedical literature

and thus providing a novel perspective for investigating the genetic basis of human

diseases. Understanding the pathogenic role of these highly weighted genes in each

individual disease model may shed insight for targeted detection and treatment.
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Typical genome-wide normal/disease differential analysis have helped us better

understand the abnormality of complex diseases at a molecular level. However, these

complex diseases are similar and different at multiple levels and so an understanding of

the distinctive characteristics of each diseases is need especially for closely-related dis-

eases. We demonstrated here that our integrative method is able to identify this dis-

tinction in a data-driven manner. URSAHD’s disease models map the heterogeneous

landscape of multiple diseases to their proper functional and anatomical context. The

sensitivity and specificity of our method is highlighted by capturing the genome-wide

effect of therapeutic treatments for various clinical samples. Such in-silico sample

evaluation can assist researchers and clinicians uncover subtle patient-specific molec-

ular dysregulations in response to specific treatments.

Extending our approach to other diseases is straightforward and sidesteps the

need for prior knowledge of causal genes or tissue of origin. In fact, URSAHD models

the expression phenotype of the disease and thus is complementary to genotyping

studies. The overall approach incorporates a large collection of healthy tissues and so

automatically accounts for any tissue-specific signals of the disease. This flexibility is

particularly useful for studying rare diseases or diseases of unknown origin. In some

sense, the functional and anatomical characteristics of any of the 7,000 rare diseases

could be identified with an addition of two gene expression profiles.
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Chapter 4

Dataset-specific integration of the

public data compendium

This chapter describes work done with critical support and comments from Christo-

pher Park and Aaron Wong.

4.1 Introduction

Genome-wide databases of physical/genetic interaction, gene expression, and per-

turbation data offer multiple perspectives of the underlying molecular system [130,

61, 83, 93, 28, 131]. Data integration methods combine these vast but complimen-

tary assays to infer the molecular network of the genome [51, 76, 146, 101]. Much

progress have been made to construct both accurate and system-specific networks

taking into account the network dynamics in tissues, immune system and interac-

tion types [37, 39]. Yet, biologists have specific genome-wide questions ranging from

knock-down experiments to disease progression patterns in clinical samples.

Gene expression profiling is one of the most popular genome-wide experiments to

answer these specific genome-wide questions [8]. Gene-gene correlation-based meth-

ods infer the co-expression patterns in the specific gene-gene network but plagued by
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false positives. Functional associations other than co-regulated genes are discounted

as the experiment focuses on the transcriptional change and not other complimentary

assays. A new computational method is needed that both captures the specificity of

the question that also automatically integrates the large, heterogeneous data com-

pendium for accurate network inference.

Here we present YETI (Your Evidence Tailored Integration), an automatic data

integration framework that utilize heterogeneous data sources to infer functional gene-

gene interactions relevant to the biologist’s dataset. Independent of the input dataset,

YETI first constructs context-specific genome networks to survey the landscape of the

dynamic molecular network. Then, YETI identifies dataset-relevent context networks

by recasting it as a regression problem and then builds a single dataset-specific func-

tional network. Through this framework, we demonstrate the YETI networks are not

only accurate but also specific to the original genome-wide question. The selected

contexts for each dataset are distinct and reproducible and can be used as functional

barcodes to link other similar genome-wide datasets.

In the rest of the paper, we describe YETI in detail and the systematic comparison

with previous network inference methods. We show that YETI networks are unbias

to the size of the dataset with wider coverage of the human genome than the input

dataset. In particular, the YETI network based on a brain eQTL study effectively

discounts spurious gene-gene correlations and infers reproducible network modules

regulated by distal eQTLs. We assess the relevance of the distinct context selection

and its robustness over biological replicates.
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4.2 Methods

4.2.1 Heterogeneous genome-wide data source

Gene expression

980 public microarray datasets were collected from NCBI Gene Expression Omnibus

(GEO) consisting more than 22000 experiments [8]. Probes were pre-processed and

normalized as done previously [51, 25, 101]. For each gene pair, pearson correlation

was computed, transformed using Fisher’s transformation and then standard normal-

ized.

Physical and genetic interaction

Physical and genetic interaction data were downloaded from BioGRID, IntAct, MINT,

and MIPS and were encoded based on the support of the gene-gene interaction [130,

61, 83, 93]. Transcriptional regulatory interactions were estimated based on TF

binding site motifs from Jaspar and further processed using FIMO as done previ-

ously [116, 38, 101].

Perturbation data

Curated chemical and genetic perturbation data and motif-based microRNA tar-

get data were downloaded from GSEA and encoded based on the normalized co-

occurrences of gene pairs for each dataset [131].

Protein sequence data

Protein sequence similarity data was downloaded from Biomart, and protein domain

information was downloaded from PfamA and Prosite and then binarized [58, 11, 50].

71



4.2.2 Dataset-specific functional relation network construc-

tion

Context-sensitive data integration and network construction

We integrated heterogeneous genome-wide data in a context-sensitive manner adher-

ing to the functional variation in genome-wide data shown previously in [96, 46, 150].

For each expert-selected fringe GO biological process (n = 237), we applied context-

sensitive Bayesian integration to predict the context-dependent functional relations

of 25825 genes covered by the processed genome-wide data [96, 51]. Regularized

näıve Bayes classifier was used for integration to account for the inter-dependence of

large-scale genome-wide data [51]. For training, gene pairs co-annotated to the fringe

GO biological process were considered as known functional interaction standards (i.e.

positive examples) and those not co-annotated to any terms in BioCyc, the GO fringe,

KEGG, and PID were considered as non-interacting pairs (i.e. negative examples).

See [101] for details in constructing the gold standard used for training the classifier.

Dataset-specific selection of context-specific functional networks

Optimal covariate (i.e. context network) selection is NP-hard and so we approximate

the optimal via lasso [98, 136]. We formulate the dataset-specific selection problem

as a regression problem where the dependent y variable is the genome-wide dataset

and the independent variables x are the context-specific networks. Specifically, we

compute the distance correlation of a genome-wide dataset for every known functional

gene-gene interactions and assume the correlations to be noisy observations of the

dataset-specific functional interactions [133].

For gene A and gene B, let (A1, B1), (A2, B2), (A3, B3) be identically distributed

random variables. The distance correlation between gene A and gene B is:
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dCor(A,B) =
dCov(A,B)√

dVar(A)dVar(B)

dCov2(A,B) = E[ ||A1 − A2|| ||B1 −B2|| ]

+ E[ ||A1 − A2|| ] E[ ||B1 −B2|| ]

− 2E[ ||A1 − A2|| ||B1 −B3|| ]

dVar2(A) = E[ ||A1 − A2||2 ]

+ E2[ ||A1 − A2|| ]

− 2E[ ||A1 − A2|| ||A1 − A3|| ]

where || · || denotes Euclidean norm. While our method is not limited to dis-

tance correlation, we use distance correlation because of its robustness to false posi-

tives [126].

We use lasso to compute a sparse solution of dataset-relevant context networks.

Both the distance correlations y and the networks x were logit-transformed for

dataset-specific selection. Let y = {yi,j} for any gene i and gene j with known

functional gene-gene relationship. Let x be the corresponding functional association

score in those 237 context-specific functional networks. Lasso optimizes the following:

min
|w|

1

2N
||y −Xw||22 + λ||w||1 (4.1)

where N is the number of known functional gene pairs. The λ free parameter is

usually fitted via cross-validation, but here we use the covariance test for lasso to

select significant covariates (i.e. context networks) instead of minimizing least square

error [84]. Covariates with p < 0.01 were selected for 100 lars steps. When less than

20 covariates were selected, covariates up to the minimum p-value between steps 20

and 80 were added for robustness. Finally, selected dataset-relevant context networks

73



were averaged (i.e. edge weights) to construct the final dataset-specific functional

networks.

4.2.3 Systematic evaluation of dataset-specific functional

networks

We evaluated the accuracy of dataset-specific functional networks by computing the

network density of dataset-relevant genes. Genes annotated to disease MeSH terms

that are then associated to the GEO GDS dataset were considered dataset-relevant

genes. Disease MeSH term annotations were obtained from gene2mesh (http://

gene2mesh.ncibi.org/). Disease MeSH terms indexing the associated publication

of the GDS dataset were considered dataset-relevant MeSH terms.

Given a graph (i.e. network) G = {V,E} with vertex set V = {g1, g2, . . . , gn} and

edge set E = {eij} for i, j ∈ V , the density ρ of gene set S = {g1, g2, . . . , gm} in G

were defined as the following:

ρ̂G(S) =
2

m(m− 1)

∑
gi,gj∈S∪V

ei,j (4.2)

ρG(S) =
ρ̂G(S)

ρ̂G(V )
(4.3)

Notice that ρ̂G(V ) is the density (i.e. average edge score) in G. This normalization

is for comparison between networks with different global edge score distributions.

4.2.4 Analysis of distal eQTL associated gene modules

We present a network approach for prioritizing distal eQTLs associated with func-

tional modules over those inevitable distal eQTLs from multiple hypothesis testing

and spurious gene-gene correlations. Network density ρ of distal eQTL-associated
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genes were used to evaluate and distinguish putative functional modules from spuri-

ous modules.

Gene and SNP location (hg19), processed normal brain genotype and expression

data were obtained from seeQTL [147, 95]. Sample covariate data (i.e. gender, age,

PMI) were obtained from the original paper [95]. SNP within a million distance were

considered local gene-SNP pairs. MatrixEQTL was used to test gene-SNP associ-

ations [122]. Local eQTL’s with p < 10−2 and distal eQTL’s with p < 10−5 were

considered significant. A distal eQTL with at least 10 significant gene associations

were considered a module regulating distal eQTL.

Subset of the data (n = 50, 75, 100) were re-analyzed with the same parameters

to assess the reproduciblility of these distal eQTL modules. For each subset, puta-

tive distal eQTL modules were ranked based on its density score ρ in either YETI’s

network or distance correlation network. Accuracy of the ranks were evaluated by

comparing to distal eQTL modules found using all the data.

4.2.5 Statistical robustness of functional inference

We evaluated the robustness of our dataset-specific network inference method by com-

paring the dataset-specific context selection and network density of dataset-relevant

MeSH terms. Dataset-specific networks were constructed via bootstrapping (n = 30)

known functional interaction standards to assess its robustness to known functional in-

teractions. Dataset-specific networks were also constructed via subsampling (n = 30)

biological replicates in the genome-wide dataset to assess its robustness to the avail-

able biological replicates in the experimental study. Of the GEO GDS1733 dataset,

only control samples across 6 time-points with 3 replicates each were used. Repli-

cates from each time-point were subsampled (m = 1, 2) and individual networks

constructed to assess the statistical robustness of the method.
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4.2.6 Relevant public genome-wide datasets based on con-

text network selection

We retrieve dataset-relevant public genome-wide datasets based on similar context

network selection. Dataset-specific network selection was computed for 464 GEO GDS

human datasets. Hypergeometric test was used to calculate the statistical significance

of selection overlap with that of the user’s dataset. GEO GDS datasets with p < 0.001

were considered statistically significant and so dataset-relevant.

4.2.7 Implementation

Software used for public data integration and distance correlation calculation has been

implemented in the open source Sleipnir library available at http://libsleipnir.

bitbucket.org [52]. R packages lars and covTest were used for lasso regression and

significance test [136, 84].

4.3 Results

We developed a general method YETI (Your Evidence Tailored Integration) for

dataset-specific data integration and network prediction. We systematically eval-

uated the functional accuracy and dataset-relevance of our method over hundreds

of public genome-wide expression data across different experimental procedures and

technical platforms. Our method enables experimental study-specific integration of

large and heterogeneous data and genome-wide exploration of the particular func-

tional landscape.
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Figure 4.1: Flowchart for dataset-specific aggregation of context-specific functional in-
teraction networks. YETI’s dataset-specific network construction involves a dataset-
independent integration step followed by a dataset-relevant context selection step.

4.3.1 Dataset-specific integration of the public human data

compendium

YETI uses putative gene-gene functional associations from the genome-wide dataset

to then select predicted functional associations derived from the large heterogeneous

data compendium (i.e. sequence similarity, physical interaction, co-expression, etc)

(Figure 4.1). Diverse contexts of 237 GO fringe biological processes were used to rep-

resent the known functional interaction standards. Based on these standards, YETI

first predicts dataset-independent but context-specific functional network maps to

effectively leverage the context-dependent functional variation in genome-wide data

(Figure 4.2). Of these 237 context-specific networks, the method selects dataset-

relevant contexts by formulating it as a regression-based feature selection problem.

Briefly, the putative, dataset-specific gene associations is modeled as a noisy random

variable manifested by the combination of dataset-relevant context networks. These
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Figure 4.2: Heatmap of edge scores of 237 context-specific networks and subsample of
known functional gene-gene associations. The strength of association for each known
functional gene-gene pair across GO fringe context networks are shown as a heatmap.
The edge score (i.e. posterior probability score) for each gene-gene pair were logit-
transformed for visualization. YETI selects these context networks (in columns) that
represent the dataset-specific functional associations latent in the noisy genome-wide
dataset.
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dataset-relevant context networks are aggregated to estimate the dataset-specific func-

tional network. Notice that no prior gene or pathway information is required to model

the genome-wide functional characteristics of the experimental study.

4.3.2 Dataset-specific networks retrieved dataset-relevant

functional and disease network modules

Figure 4.3: Increased statistical power to detect dataset-relevant network modules.
Improved subgraph density (i.e. expected within edge weight) of dataset-relevant
disease genes in dataset-specific network over global (non-selective) network. Red
line indicates the identity line.

YETI’s dataset-specific functional networks favored the association of dataset-

relevant functional and disease modules. We anticipated the reinforcement of dataset-

specific functional associations with the proper fitting of the human public com-

pendium to the given dataset. We constructed dataset-specific networks from 462

GEO human GDS datasets and evaluated the network association of modules (i.e.

genesets) of dataset-relevant diseases. These GDS datasets were across various biolog-

ical systems and technical platforms. Dataset-relevant diseases were based on pubmed
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Figure 4.4: Whole graph densities of correlation-based networks were heavily biased
by the size (i.e. number of experiments) of the dataset while well-controlled in YETI’s
dataset-specific networks.

(a) Network density of modules (i.e. genesets) as-
sociated with putative distal eQTL in distance cor-
relation network (in red) and YETI network (in
blue)

(b) Reproducibility analysis via subseting the
genotype and expression data

Figure 4.5: YETI’s dataset-specific networks prioritize putative functional modules
regulated by distal eQTL’s. Subgraph densities of distal eQTL modules in correlation-
based network and YETI’s dataset-specific functional network. Prioritizing distal
eQTL modules based on YETI’s dataset-specific network were more likely to be re-
produced in a subsampling statistical analysis.
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annotations and so not used in the construction of dataset-specific networks (see

Methods). Dataset-relevant disease modules were more enriched in YETI’s dataset-

specific networks than in the human global (i.e. non-selective) functional network

(Figure 4.3). Much of this improvement could be attributed to YETI’s effective se-

lection of dataset-specific gene-gene associations and indifference towards systematic

biases. The expected edge weight of the coexpression networks were heavily biased

by the size (i.e. number of experiments) of the dataset as expected, while fairly

consistent in YETI’s dataset-specific networks (Figure 4.4).

YETI’s dataset-specific networks reveal putative functional modules regulated by

distal eQTLs. Distal eQTLs (or putative trans-eQTLs) regulate multiple genes at

large genomic distances or different chromosomes [35]. Large-scale eQTL studies are

popular methods for distal eQTL discovery but often suffer from multiple-testing and

spurious gene-gene correlations of the genome-wide expression dataset. Using YETI,

we tailored the human data compendium to the eQTL expression dataset and found

a few distinctive distal eQTL modules enriched in the dataset-specific network (Fig-

ure 4.5a). We hypothesized these network-enriched modules to be functional modules

regulated by the distal eQTL while others to be risen by spurious associations from

the expression dataset. To confirm this, we conducted a subsampling-based statistical

analysis and evaluated the module prioritization based on YETI and coexpression.

We found that modules prioritized by YETI were more likely to be reproducible

(AUC ≈ 0.62) while the prioritization based on coexpression were close to random

(AUC ≈ 0.5) (Figure 4.5b). In fact, YETI outperformed distance correlation even

with half the number of samples (i.e. gene expression profiles). Such functional accu-

racy illustrates YETI’s effectiveness to incorporate heterogeneous genome-wide data

for dataset-specific functional network inference.
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4.3.3 Selection of dataset-relevant biological context net-

works were distinct and consistent while also shared

among similar genome-wide studies.

Dataset-specific context selections were distinct with consistent preference for specific

biological processes. Diverse context-specific networks were constructed to model the

complex functional interactions across different biological processes. Context-sensitive

Bayesian integration of heterogeneous genome-wide data was used to estimate specific

functional associations of 237 GO fringe terms. These GO fringe terms were not mutu-

ally exclusive but selected for maximal coverage of the diverse functional interactions

(see Methods). Strength of putative functional associations were in fact diversified

across these context networks (Figure 4.2). Of this wide coverage of functional as-

sociations, YETI selects less than 80 context-networks with functional interactions

that in combination mimic those detected in the dataset’s co-expression structure.

YETI’s selections for 464 genome-wide datasets were sparse and fairly uniform across

those 237 context networks (Figure 4.6). Strong preference for particular contexts

were found over subsampling biological replicates (m = 1, 2) in a heat-shock response

time-course dataset (Figure 4.8). In fact, even with 1 of the 3 biological replicates,

YETI selected microtubule anchoring and mitosis over all 30 subsampled datasets

and consistently ignored 71 biological processes such as .

YETI’s dataset-specific selection linked genome-wide datasets with similar

genome-wide functional interactions. The probability of two datasets randomly

sharing a significant number of contexts follows the hypergeometric distribution. In

fact, the actual probability is even smaller given YETI’s dataset-specific selection

preference (as shown above). Nonetheless, statistically significant selection overlaps

between genome-wide datasets were found. The heat-shock time-course dataset

shared 11 contexts with a lesional and non-lesional skin biopsy samples from 13
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Figure 4.6: Dataset-specific selections were distinct and sparse with non-exclusive
selection between genome-wide datasets. Selection (in black) of 237 context networks
(in columns) for 464 genome-wide dataset (in rows) were hierarchically clustered with
the manhattan distance metric.
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Figure 4.7: Selected (in black) context networks (in columns) for the 1-subsampling
run (in rows). 71 context networks were repeatedly not selected for multiple 1-
subsampling runs. Strong selection preference was found despite the uniform random
selection of biological replicates. Such consistent trend suggests proper identification
of dataset-specific functional associations conditioned on known global functional as-
sociations.

psoriatic patients (Fisher’s exact test p-value: 0.000878). Its overlap with other

public datasets (n = 463) were not statistically significant (p-value > 0.01). The

directed differentiation time-course dataset (GEO GSE28191) was significantly

linked (p-value < 0.001) to other cell differentiation datasets: hepatic stellate cells

activation in response to liver damage (GDS3492), epidermal keratinocyte differenti-

ation (GEO GDS2732), transdifferentiation in Barrett’s esophagus (GDS3472), and

chemotherapy resistance (GEO GDS2367, GDS3638). This directed differentiation

dataset was also linked to a large (n = 130) primary squamous cell lung carcinoma

dataset (GDS2373) suggesting potential shared functional modules between the

driving factors of cardiomyocyte differentiation and low-risk vs high-risk prognosis.

Note that the p-value distribution of context overlap was fairly uniform supporting

our usage of the hypergeometric distribution to link genome-wide datasets.

4.4 Discussion

Our understanding of the dynamic functional interactions is incomplete. In fact, just

recently have we been able to tap into the functional rewiring in the immune system

and across different tissues [37, 39]. This has been accomplished by integrating the

heterogeneous data compendium and easily extendable as more molecular data be-
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(a) 1-subsample replicate selection (b) 1-subsample context selection

(c) 2-subsample replicate selection (d) 2-subsample context selection

Figure 4.8: Dataset-specific selections were reproducible across subsamples of biolog-
ical replicates for GDS1733: Time-course heat-shock response in HeLa cells with 3
replicates and 6 time points. Selected (in black) biological replicates (in columns)
for each (1,2)-subsampling run (in row). Selected (in black) context networks among
the those selected using all 3 replicates (in columns) for the (1,2)-subsampling run
(in rows). Selection preference was, nonetheless, found even with 1 sample per time-
point.
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Figure 4.9: Histogram of p-value distribution of context selection overlap between
differentiation dataset GSE28191 and 464 GDS datasets.

comes available. Nonetheless, there’s a gap between broad functional networks and

the biologist’s study-design. These study designs target for specific functional inter-

actions of cellular response to drug treatment or essential gene-gene associations in

multiple tissue or cell lines. While the dataset could be incorporated as part of the

compendium, no existing method tailors the vast compendium specific to the biolo-

gist’s dataset and so most genome-wide studies under-utilize this publicly available

molecular data compendium.

Here we developed an automatic data integration framework YETI that tai-

lors the human data compendium to the input dataset without sacrificing accuracy.

YETI’s dataset-specific networks are more accurate than correlation-based networks

by leveraging genome-wide databases that are complimentary to gene expression data.

YETI’s network accuracy is based on its construction of 237 diverse context (i.e. fringe

GO BP terms) networks that span the dynamic molecular interactions in human cells.

Only the specificity of the experimental study-designed is learned to avoid spurious

gene-gene correlations in the input dataset. Distinct selection of these 237 context via

the input dataset lead to specific network-level interpretation of the dataset and con-

nection to other datasets with similar context selection. The modularity of YETI’s
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”infer-then-select” framework allows easy adaptation to improved context networks

with more data in the future. Extensions for other types of input data such as pro-

teomics or DNA methylation are also worth exploring for complementary data-driven

exploration.

Genome-wide data are mostly organized in a single tab-deliminated spreadsheet

or sql-like database for most genome-wide molecular databases. These organized

databases have grown and will continue to grow. To better use these large data

collections, scalable computational methods such as YETI are needed to bring the

data compendium closer to the lab bench.
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Chapter 5

Conclusion

Much work is needed to draw the complete molecular map of the human cell. This

effort to map the dynamic and multi-faceted human cell cannot be completed with

simple generation of data but coupled with effective analysis of these very large data

collections. In this thesis, I presented three specific genome-wide analysis of molecu-

lar data that offers a data-driven perspective of these data collections. In Chapter 2,

I developed a method to quantify tissue-specific signals in gene expression profiles by

incorporating the tissue ontology. In Chapter 3, I used thousands of clinical samples

deposited in GEO to characterize the human disease landscape. In Chapter 4, I de-

veloped a framework that integrates heterogeneous molecular data to infer functional

gene-gene interactions specific to a particular genome-wide dataset.

More data will become available and so, much thought on how we could consume

this data is needed. Computational methods for transferring information of common

disease to rare diseases would offer a scalable approach to studying the thousands of

rare diseases that is affecting millions of people worldwide. Rare diseases affect about

1 out of 2,000 people, yet more than 30 million people in the US are affected by a rare

disease [65, 42, 15]. More than 5,400 rare diseases are catalogued in the Orphanet

databases [5]. A comprehensive map of the interrelationships of human diseases is
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needed to connect each individual rare disease in the context of the entire biomedical

information. Linking and indexing this information in a semantic ontology allows

for efficient extraction in the vast but unorganized data collections. Much manual,

expert-driven construction of an ontology for human diseases is being made to make

this information more accessible and interpretable [66, 121]. A computational, data-

driven method for this construction is needed - in conjunction with expert curation

- for effective management of the growing ’big’ biomedical data. Such effort would

enable repositioning of treatment for well-known diseases to closely-related rare dis-

eases.

Identifying candidate drugs for repurposing is also an potential area of research

that would benefit with effective analysis of large biomedical data collection. Drugs

effect different parts of the body depending on the medium (oral or intravenous) of

treatment and accurate understanding of the molecular response of human cells is

needed for drug development, targeted treatment and drug repurposing. Yet, little is

known for even the most commonly used drugs such as NSAIDs - the acting chemical

in painkillers [43]. A future goal is to aggregate drug-related genome-wide data collec-

tions and identify the canonical genome-wide response distinctive of a particular drug

treatment. Identifying the canonical response in human cells would be a backbone of

understanding tissue/cell-type specific effects (or side-effects) of the various mediums

of the drug treatment.
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