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Abstract

Recent industry trends towards virtualization of network functions has led to a growing interest
in the problems of placement and configuration of so-called “middleboxes” to perform services on
the network traffic. The goal is to determine: how many middleboxes to run, where to place them,
and how to direct traffic through them. Towards this end, we introduce and study a new class of
multi-commodity flow problems. Here, in addition to demands on flows and capacity constraints on
edges in the network, there is an additional requirement that flows be processed by nodes in the
network.

We study the problems that arise from jointly optimizing the: (1) allocation of middleboxes over
a pool of server resources, (2) steering of traffic through middleboxes, and (3) routing of the traffic
between the servers over efficient network paths. We introduce and study several problems in this
class from the exact and approximation point of view.

We consider the problem of allocating resources within a given network to maximize the processed
flow and show that this can be optimized exactly via an LP formulation, and to arbitrary accuracy
via an efficient combinatorial algorithm. We also study a class of network design problems where
the goal is to purchase processing capacity in order to process and route a given set of demands in
a network. We design approximation algorithms as well as obtain hardness of approximation results
for four natural problems in this class: the minimization problem (minimize purchase cost so as to
process all the demand) and maximization problem (maximize flow processed subject to budget on
purchase cost) for both undirected and directed graphs.



1 Introduction

1.1 Background In addition to delivering data efficiently, today’s computer networks often perform
services on the traffic in flight to enhance security, privacy, or performance, or provide new features.
Network administrators frequently install so-called “middleboxes” such as firewalls, network address
translators, server load balancers, Web caches, video transcoders, and devices that compress or encrypt
the traffic. In fact, many networks have as many middleboxes as they do underlying routers or switches.
Often a single conversation, or connection, must traverse multiple middleboxes, and different connections
may go through different sequences of middleboxes. For example, while Web traffic may go through a
firewall followed by a server load balancer, video traffic may simply go through a transcoder. In some
cases, the traffic volume is so high that an organization needs to run multiple instances of the same
middlebox to keep up with the demand. Deciding how many middleboxes to run, where to place them,
and how to direct traffic through them is a major challenge facing network administrators.

Until recently, each middlebox was a dedicated appliance, consisting of both software and hardware.
Administrators tended to install these appliances at critical locations that naturally see most of the
traffic, such as the gateway connecting a campus or company to the rest of the Internet. A network
could easily have a long chain of these appliances at one location, forcing all connections to traverse
every appliance—whether they need all of the services or not. In addition, placing middleboxes only at
the gateway does not serve the organization’s many internal connections, unless the internal traffic is
routed circuitously through the gateway.

Over the last few years, middleboxes are increasingly virtualized, with the software service
separate from the physical hardware—an industry trend called Network Functions Virtualization
(NFV) [NFV12, OPN]. Middleboxes now run as virtual machines that can easily spin up (or down) on
any physical server, as needed. This has led to a growing interest in good algorithms for optimizing the
(i) allocation of middleboxes over a pool of server resources, (ii) steering of traffic through a suitable
sequence of middleboxes based on a high-level policy, and (iii) routing of the traffic between the servers
over efficient network paths [QTC+13, ABFL15].

1.2 The General Problem Rather than solving these optimization problems separately, we
introduce—and solve—a joint optimization problem. Since server resources are fungible, we argue
that each compute node could subdivide its resources arbitrarily across any of the middlebox functions,
as needed. That is, the allocation problem is more naturally a question of what fraction of each node’s
computational (or memory) resources to allocate to each middlebox function. Similarly, each connection
can have its middlebox processing performed on any node, or set of nodes, that have sufficient resources.
That is, the steering problem is more naturally a question of deciding which nodes should devote a share
of its processing resources to a particular portion of the traffic. Hence, the joint optimization problem
ultimately devolves to a new kind of routing problem, where we must compute paths through the network
based on both the bandwidth and processing requirements of the traffic between each source-sink pair.
That is, a flow from source to sink must be allocated (i) a certain amount of bandwidth on every link
in its path and (ii) a total amount of computation across all of the nodes on its path.

We can formulate the above—the flow with in-network processing model—in the following way:
there is a flow demand with multi-sources and multi-sinks, and each flow requires a certain amount of
in-network processing. The in-network processing required for a flow is proportional to the flow size and,
without losing generality, we assume one unit of flow requires one unit of processing. For a flow from a
source to a sink, we assume it is an aggregate flow of many connections so the routing and in-network
processing for a flow are both divisible. In this model there are two types of constraints: edge capacity
and vertex capacity, which represent bandwidth and node processing capacity, respectively. A feasible
flow pattern satisfies: (i) the sum of flows on each edge is bounded by the edge capacity, (ii) the sum



of in-network processing done at each vertex is bounded by the vertex capacity, and (iii) the processing
done at all vertices for a flow is equal to the flow size. Though ignoring vertex capacity constraints
reduces our class of problems to those of the standard multicommodity flow variety, the introduction
of these constraints yields a new class of problems that (to our knowledge) has not yet been studied in
the literature.

We aim to solve two variants of the problem in this paper: (i) the basic processed flow routing
problem: how to route the flow and steer it through processing nodes; and (ii) a class of network design
problems: where to place the physical server resources in the network, for the best utilization of the
network and server resources. The two problems are natural for the flow with in-network processing
model we introduce, and are both important in their own right: network operators need guidance to
purchase and place server resources to run middlebox functions, and to allocate the deployed resources.
This paper provides a systematic approach to this new class of network problems, in both directed and
undirected graphs.

The main goal of our work is to introduce this interesting class of practically motivated flow problems
to the theory community. We explore several problems in this space and give exact and approximation
algorithms. For some problems we study, there are tantalizing gaps between algorithms and hardness
results (Ω(1/ log(n)) versus constant). Closing these gaps is an interesting challenge for future work.

1.3 Outline of this paper In Section 2, we introduce the processed flow routing class of
problems, in which we discuss how to optimize processed flow routed in a fixed network. Our main result
here is that given a network with edge capacities, node processing capacities, and flow demands, we give
an LP-based algorithm to find a maximum feasible multi-commodity flow with processing assigned to
nodes, and an efficient multiplicative weight update algorithm to compute the maximum flow to within
arbitrary accuracy. Our result shows an equivalence between an exponential size path-based LP and a
polynomial size edge based LP—a generalization of the well known equivalence for max flow. However,
the proof here needs a more careful argument. The LP can be adapted to optimize several other objective
functions, e.g., sum of congestions. We also discuss the case when multiple processing steps are required
before a packet reaches its destination, as may arise in onion routing or while monitoring processed
traffic. In Section 3, we discuss the middlebox node purchase class of problems, in which the goal is
to purchase middlebox nodes in a network optimally (the capacities of edges are fixed). Unless stated
otherwise, we consider problems where each flow needs a single processing step. We study two natural
variants here. (1) Min Middlebox Node Purchase: minimize middlebox node costs so to satisfy
a given set of demands. We show an O(log(n)/δ2) approximation for node costs and an associated
multi-commodity flow that satisfies (1− δ) fraction of the demands and satisfies all edge capacities. We
show that in the directed case, the problem is hard to approximate better than a logarithmic factor,
even if the demand requirements are relaxed. We show that the undirected case is at least as hard as
Vertex Cover. We also show that minimizing node costs for the problem with two processing steps
is Label Cover hard. (2) Budgeted Middlebox Node Purchase: purchase middlebox nodes
within a specified budget so as to maximize the flow that can be processed and routed in the network.
Although it’s tempting to conjecture that the problem is an instance of Budgeted Submodular
Maximization, one can construct instances for both directed and undirected graphs where the amount
of routable processed flow is not submodular in the set of purchased nodes, so black-box submodular
maximization techniques cannot be used here. We show an Ω(1/ log(n)) approximation for this problem.
For the undirected case with a single source-sink pair, we show a constant factor approximation. For the
directed case, we show approximation hardness of 1−1/e and constant factor hardness in the undirected
case.
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Figure 1: The edge capacity is 10 for all edges and the node capacities are denoted in each node. Here, we can send maximum
flow size 5, by routing it along the red arcs, have it processed at the nodes at the top, and then sent to T along the blue arcs. The

capacity of the bottom middle edge forms the bottleneck here, as all flow must pass through it twice before reaching T .

2 Flow Routing with In-Network Processing

2.1 The Basic Problem We begin by introducing the routing problem in the presence of processing
demands. In this problem, we are given a directed graph G = (V,E) along with edge capacities
B : E → R+, vertex capacities C : V → [0,∞), and a collection of demanded integer flows
D = {(s1, t1, k1), (s2, t2, k2), · · · } ⊆ V × V × R+. While the edge capacities are used in a manner
entirely analogous to its uses in standard multicommodity flow problems, we also require that each unit
of flow undergo one unit of processing at an intermediate vertex. In particular, while edge capacities
limit the total amount of flow that may pass through an edge, vertex capacities only bottleneck the
amount of processing that may be done at a given vertex, regardless of the total amount of flow that
uses the vertex as an intermediate node. The goal is then either to route as much flow as possible, or
to satisfy all flow demand subject to a congestion-minimization objective function.

2.2 Flow Maximization We begin by showing how to express the maximization version of the
problem both as an edge-based and as a walk-based linear program. While neither of these constructions
is particularly difficult, it is not obvious that either is enough to solve the flow problem in polynomial
time. In particular, while the walk-based LP requires exponential size, the polynomial-sized edge-based
LP may a-priori not correspond to a valid routing pattern at all. In subsubsection A.1.1, we resolve this
problem by showing that the two linear programs are equivalent, and so the edge-based LP inherits the
correctness of the walk-based program, ensuring that we can indeed find a valid solution in polynomial
time. We summarize this result in the following theorem.

Theorem 2.1. There exists a polynomial-sized linear program solving the Maximum Processed Flow
problem. Further, the full routing pattern can be extracted from the LP solution by decomposing it into
its composing si, ti walks in O(|V | · |E| · |D|) time.

To express the walk-based linear program, we require one variable pvi,π for each walk-vertex-demand
triplet, representing the total amount of flow from si, ti exactly utilizing walk π and processed at v. The
aggregate (si, ti) flow sent along a given walk π is then simply denoted by pi,π, and the set of all walks
is given by P . The linear program is then the standard multicommodity-flow LP augmented with the
new processing capacity constraints.

The edge-based formulation can be thought of as sending two flows for each Di: fi represents
the flow being sent from si to ti and wi is the processing demand of this flow. While fi is absorbed
(non-conserved) only at the terminals, wi is absorbed only at the processing vertices. The variables fi(e)
and wi(e) measure how much of fi and wi passes through edge e. We use the notation δ+(v) and δ−(v)
to denote the edges leaving and entering vertex v, respectively. The two linear programs are given below:



Walk-based formulation:

maximize

|D|∑
i=1

∑
π∈P

pi,π

subject to

pi,π =
∑
v∈π

pvi,π ∀i ∈ [|D|],∀π ∈ P

|D|∑
i=1

∑
π∈P
π3e

pi,π ≤ B(e) ∀e ∈ E

|D|∑
i=1

∑
π∈P

pvi,π ≤ C(v) ∀v ∈ V

pvi,π ≥ 0 ∀i ∈ [|D|],∀π ∈ P,∀v ∈ V

Edge-based formulation:

maximize

|D|∑
i=1

∑
e∈δ+(si)

fi(e)

Subject to∑
e∈δ−(v)

fi(e) =
∑

e∈δ+(v)

fi(e) ∀i ∈ [|D|],∀v ∈ V \ {si, ti}

pi(v) =
∑

e∈δ−(v)

wi(e)−
∑

e∈δ+(v)

wi(e) ∀i ∈ [|D|],∀v ∈ V

[D]∑
i=1

fi(e) ≤ B(e) ∀e ∈ E

|D|∑
i=1

pi(v) ≤ C(v) ∀v ∈ V

wi(e) ≤ fi(e) ∀i ∈ [D],∀e ∈ E
wi(e) = fi(e) ∀i ∈ [D],∀e ∈ δ+(si)

wi(e) = 0 ∀i ∈ [D],∀e ∈ δ−(ti)

wi(e), pi(v) ≥ 0 ∀i ∈ [D],∀e ∈ E

2.3 Multiplicative Weight Update for Flow Maximization Solving LPs can be expensive, and
people have studied applying multiplicative weight update (MWU) [AHK12, PST91] method to more
efficiently compute optimal solutions to the multicommodity flow LP.

We show that the same approach can be used in the presence of processing constraints, giving a
combinatorial (1− ε) approximation to the problem in time O(km log(m) · (m+ n log n)/ε2) (here k is
the number of source sink pairs). Since we have both edge capacities and vertex capacities that behave
differently, our algorithm and analysis differs from the standard application of the multiplicative weights
framework to maximum multicommodity flow. One difference is in the update step, where we could
be limited either by the lowest capacity edge along the path, or the sum of node processing capacities.
This complicates the analysis.

2.3.1 Formulation We use the walk based LP for Multiplicative Weight Updates (MWU). For each
edge e, there is a constraint ∑

π3e
pπ ≤ B(e)

and for each node v, there is a constraint ∑
π3v

pvπ ≤ C(v)

We associate one expert and the corresponding weight for each of the two types of capacity
constraints. For each edge e and for each vertex v, let we and qv respectively denote the weights
of their corresponding experts. We use p to denote a generalized flow, that is, p is the shorthand for all
values of pvπ.

For any p, let P (p) be the amount of flow in p, that is

P (p) =
∑
π

∑
v

pvπ.



For expert e and generalized flow p, let the gain M(e, p) be defined as

M(e, p) =
1

B(e)

∑
π3e

pπ,

we can think this as the fractional utilization of the edge by the flow, and for expert v define the gain
M(v, p) as

M(v, p) =
1

C(v)

∑
π3v

pvπ,

corresponding to the fractional utilization of the node’s processing capacity.
LetD be the distribution over experts where the probability of choosing a given expert is proportional

to its weight. The expected gain over a random sample from D is

M(D, p) =

∑
eweM(e, p) +

∑
v qvM(v, p)∑

ewe +
∑

v qv

Now we simulate the MWU algorithm. At the beginning we start with weight we = 1/δ and qv = 1/δ
with δ = (1 + ε)((1 + ε)m)−1/ε. At each timestep t, given the weights wte and qtv of the experts, we
provide the experts the event

pt = argmin
π∈Π

∑
e∈π

we
B(e)

+ min
v∈π

qv
C(v)

The algorithm for computing such paths is described in Appendix subsubsection A.1.3.

2.3.2 Update Once the path with smallest cost is computed, we break into two cases:
If
∑

v∈πt C(v) ≥ mine∈πt B(e), then let et = argmine∈πt B(e), and let the generalized flow pt be the
one satisfying

pt,vπ =

{
Cv∑

v∈πt Cv
·Bet if π = πt, v ∈ πt

0 o.w.

If
∑

v∈πt C(v) < mine∈πt B(e), let generalized flow pt be the one satisfying

pt,vπ =

{
C(v) if π = πt, v ∈ πt

0 o.w.

Update condition: Given the signal pt, the experts gains are M(e, pt) or M(v, pt), and they
update their weights we or qv to be we(1+ ε)M(e,pt) or qv(1+ ε)M(v,pt), respectively. The algorithm stops
when one of the weights we or qv is larger than 1. Once the algorithm terminates, we scale down the
computed flow pt at each round by dividing it by log1+ε

1+ε
δ = 1− ln δ

ln 1+ε .
Note that at each round, depending on whether or not

∑
v∈πt C(v) ≥ mine∈πt B(e), we either

increase the weight of one we by a factor of (1 + ε), or increase all of the qv’s on a path πt by a factor

of (1 + ε). Since each we and each qv can only be increased by such a factor at most ln 1/(δm)
ε times

before its weight exceeds 1 and the initial weight is 1/δ, T ≤ (m+n) ln 1/(δm)
ε ·Tsp = O(m logm/ε2 ·Tsp),

where Tsp is the time to compute the generalized shortest path for each of the k flows. For each of the k
different (si, ti) flows, we use the algorithm proposed in subsubsection A.1.3, which can be implemented
in time O(m + n log n) time each (so O(k · (m + n log n) ) in total) using Fibonacci heaps. The result
is similar to previous work [GK07] for the maximum multicommodity flow problem without the node
processing requirement. The analysis details are in the Appendix.



2.4 Multiple Types of In-Network Processing as a Chain Sometimes packets need to be
processed in multiple, distinct stages [GJVP+14]. For example, onion routing requires the data to visit
a number of intermediaries, each with its own decryption key, before reaching its ultimate destination.
Further, certain nodes may be fit for only certain types of computations with inter-dependencies, e.g.,
decrypting of files after passing through a firewall, or encrypting a file after being compressed. Thus, it
is natural to attempt to generalize the above formulation into one that can handle multiple tasks.

One common formulation of this problem, which we will call dependency routing, requires a chain of
tasks as an additional input. If there T tasks in the network, for each (si, ti) pair, we are given a chain
of {ki : ki ≤ T} tasks: Chaini = {P 1

i , P
2
i . . . P

ki
i }, with each Pi being a subset of V . We require that

the (si, ti) flow get processed at vertices in the various {P ji } in sequence, so that the processing of the

(j + 1)th task in some vertex of P j+1
i only begins after jth task completed its processing in a member

of P ji . Interestingly, we can encode dependency routing into the above edge-based linear program. To
do so, each vertex v needs to be given T different processing capacities C1(v) · · ·CT (v), one for each
task. A naive approach to ensuring feasibility in a general case requires 2ki = O(2T ) new flows be
created for each (si, ti) pair. However, the linear dependency allows us to encode the problem with just
ki + 1 = O(T + 1) flows. The LP formulation and its analysis is in the Appendix.

3 Middlebox Node Purchase Optimization

In this section, we discuss the problem of how to optimally purchase processing capacity so to satisfy a
given flow demand. Although this can be modeled in multiple ways, we limit our discussion to the case
where each vertex v has a potential processing capacity C, which can only be utilized if v is “purchased”.
Flow processed elsewhere can be routed through v regardless of whether or not v is purchased. As in
the previous section, this yields two general categories of optimization problems

1. The minimization version of the problem (Min Middlebox Node Purchase), where the goal
is to pick the smallest set of vertices such that all flow is routable.

2. The maximization version of the problem (Budgeted Middlebox Node Purchase), where we
try to maximize the amount of routable flow while subject to a budget constraint of k.

Formally, the input to Min Middlebox Node Purchase is a graph G = (V,E), which can be
either directed or undirected, with nonnegative costs qv on its vertices, a potential processing capacity
C : V → [0,∞), and a collection of (si, ti) pairs with demands Ri. The goal is to select a set T ⊆ V
of vertices such that all demands are satisfied. Budgeted Middlebox Node Purchase is given the
same collection of inputs along with a budget integer k, and the goal is to route as much of the demand
as possible.

All four problems (maximization or minimization, directed or undirected), are NP-hard. In this
section, we present approximation algorithms and hardness results for each version of the problem, as
well as for some restricted variants. Due to space constraints, much of the analysis will be relegated to
the appendix. Our results are summarized in Table 1.

Table 1: Network Design Results

Directed Undirected

Budgeted
Approximation Ω(1/ log n) .078(†)

Hardness 1− 1/e− ε .999

Minimization
Approximation O(log n)(∗) O(log n)(∗)

Hardness O(log n) 2− ε
∗ All demands are satisfied only up to an (1− ε) fraction.

† Assuming 1 source-sink pair. For multiple pairs, we adapt the Ω(1/ log n)-approximation digraph algorithm.



3.1 Min Middlebox Node Purchase

3.1.1 Bicriterion Approximation Algorithm for (Un)directed Min Middlebox Node
Purchase We first describe an algorithm for directed Min Middlebox Node Purchase that
satisfies all flow requirements up to a factor of 1−δ fraction with expected cost bounded by O(log n/δ2)
times the optimum.

We begin our approximation algorithm for directed Min Middlebox Node Purchase by
modifying the walk-based LP formulation with additional variables xv corresponding to whether or
not processing capacity at vertex v has been purchased. We further give a polynomial sized edge-based
LP formulation with flow variables f1,v

i (e) and f2,v
i (e) for each commodity i, each vertex v ∈ V and

each edge e ∈ E. The variables f1,v
i (e) correspond to the (processed) commodity i flow that has been

processed by vertex v: these variables describe a flow from v to ti. The variables f2,v
i (e) correspond to

the (unprocessed) commodity i flow that will be processed by vertex v: these variables describe a flow
from si to v.
Walk-based formulation:

minimize
∑
v∈V

qvxv

subject to

xv ≤ 1 ∀v ∈ V

pi,π =
∑
v∈π

pvi,π ∀i ∈ [|D|], π ∈ P∑
π∈P

pi,π ≥ Ri ∀i ∈ [|D|]

|D|∑
i=1

∑
π∈P
π3e

pi,π ≤ B(e) ∀e ∈ E

|D|∑
i=1

∑
π∈P

pvi,π ≤ C(v)xv ∀v ∈ V

|D|∑
i=1

∑
π∈P
π3e

pvi,π ≤ B(e)xv ∀e ∈ E, v ∈ V

∑
π∈P

pvi,π ≤ Rixv ∀i ∈ [|D|], v ∈ V,

pvi,π ≥ 0 ∀i ∈ [|D|], π ∈ P, v ∈ π
xv ≥ 0 ∀v ∈ V

Edge-based formulation:

minimize
∑
v∈V

qvxv

Subject to

xv ≤ 1 ∀v ∈ V∑
e∈δ−(u)

f j,vi (e) =
∑

e∈δ+(u)

f j,vi (e)
∀i ∈ [|D|], j ∈ {1, 2}, v ∈ V,
∀u ∈ V \ {si, ti, v}∑

e∈δ−(v)

f2,vi (e) =
∑

e∈δ+(v)

f1,vi (e) ∀i ∈ [|D|], v ∈ V,

∑
v∈V

∑
e∈δ+(si)

f2,vi (e) ≥ Ri ∀i ∈ [|D|]

|D|∑
i=1

∑
v∈V

(f1,vi (e) + f2,vi (e)) ≤ B(e) ∀e ∈ E

|D|∑
i=1

∑
e∈δ−(v)

f2,vi (e) ≤ C(v)xv ∀v ∈ V

|D|∑
i=1

(f1,vi (e) + f2,vi (e)) ≤ B(e)xv ∀e ∈ E, v ∈ V∑
e∈δ+(si)

f2,vi (e) ≤ Rixv ∀i ∈ [|D|], v ∈ V

f2,vi (e) = 0 ∀i ∈ [|D|], v ∈ V, e ∈ δ−(si)

f1,vi (e) = 0 ∀i ∈ [|D|], v ∈ V, e ∈ δ+(ti)

p1,vi (e), p2,vi (e), xv ≥ 0 ∀i ∈ [|D|], v ∈ V, e ∈ E

Given an optimal solution to this LP, we pick vertices to install processing capacity on by randomized
rounding: pick vertex v with probability xv. if xv is picked, then all flows processed by v are rounded
up in the following way: F̂ j,vi (e) = f j,vi (e)/xv for all i ∈ [|D|], j ∈ {1, 2}, e ∈ E. If v is not picked, then

all flows processed by v are set to zero, i.e. F̂ j,vi (e) = 0.



By design, E[F̂ j,vi (e)] = f j,vi (e). In the solution produced by the rounding algorithm, the total

flow through edge e is
∑
v∈V

|D|∑
i=1

((F̂ 1,v
i (e) + F̂ 2,v

i (e)). This is a random variable whose expectation is at

most B(e), and is the sum of independent random variables, one for each vertex v. The constraints
of the LP ensure that if v is selected, then the total processing done by vertex v is at most C(v).
Further, the total contribution of vertex v to the flow on edge e does not exceed the capacity B(e), i.e.
|D|∑
i=1

(F̂ 1,v
i (e) + F̂ 2,v

i (e)) ≤ B(e). Also, the total contribution of vertex v to the commodity i flow is at

most Ri, i.e.
∑

e∈δ+(si)

F̂ 2,v
i (e) ≤ Ri.

We repeat this randomized rounding process t = O(log(n)/ε2) times. Let gk(e) denote the total flow
along edge e, and hki denote the total amount of commodity i flow in the solution produced by the kth
round of the randomized rounding process. The following lemma follows easily by Chernoff-Hoeffding
bounds:

Lemma 3.1.

Pr

[
t∑

k=1

gk(e) ≥ (1 + ε)t ·B(e)

]
≤ e−tε2/3 ∀e ∈ E (3.5)

Pr

[
t∑

k=1

hki ≤ (1− ε)t ·Ri

]
≤ e−tε2/2 ∀i ∈ [|D|] (3.6)

We set t = O(log(n)/ε2) so that the above probabilities are at most 1/n3 for each edge e ∈ E and
each commodity i. With high probability, none of the associated events occurs. The final solution is
constructed as follows: A vertex is purchased if it is selected in any of the t rounds of randomized
rounding. Thus the expected cost of the solution is at most t = O(log(n)/ε2) times the LP optimum.
We consider the superposition of all flows produced by the t solutions and scale down the sum by t(1+ε).
This ensures that the capacity constraints are satisfied. Note that the vertex processing constraints are
also satisfied by the scaled solution. The total amount of commodity i flow is at least 1−ε

1+εRi ≥ (1−2ε)Ri.
Hence we get the following result:

Theorem 3.1. For directed Min Middlebox Node Purchase, there is a polynomial time randomized
algorithm that satisfies all flow requirements up to factor 1− δ and produces a solution that respects all
capacities, with expected cost bounded by O(log(n)/δ2) times the optimal cost.

We can modify the LP to simulate the inclusion of an undirected edge with capacity B(e) by adding
the constraints for two arcs between its endpoints with capacity B(e) each, as well as an additional
constraint requiring that the sum of flows over these two arcs is bounded by B(e). The analysis done
above carries through line-by-line, giving the following result.

Theorem 3.2. For undirected Min Middlebox Node Purchase, there is a polynomial time
randomized algorithm that satisfies all flow requirements up to factor 1 − δ and produces a solution
that respects all capacities, with expected cost bounded by O(log(n)/δ2) times the optimal cost.

3.1.2 Hardness of Directed Min Middlebox Node Purchase We now prove that directed
Min Middlebox Node Purchase is NP-hard to approximate to a factor better than (1 − ε) lnn
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Figure 2: Approximation-preserving reduction from Set Cover and Max k-Coverage to directed Min Middlebox Node Purchase

and directed Budgeted Middlebox Node Purchase. Solid edges have infinite capacity, dashed edges have capacity 1. vi vertices
have infinite processing potential, at a cost of 1 each.

by showing an approximation-preserving reduction from Set Cover, a problem already known to have
the aforementioned (1− ε) lnn hardness [DS14].

Given a Set Cover instance with set system S = {S1, S2, · · · } and universe of elements U , we create
one vertex vS for each S ∈ S and one vertex wu for each u ∈ U . Further, we create one source vertex s
and one sink vertex t, where t demands |U| units of processed flow from s. We add one capacity-n arc
from s to each vS , and one capacity-1 arc from each wu to t. We then add a capacity-1 arc from each
vS to wu whenever S 3 u. Finally, we give each vS vertex n units of processing capacity at a cost of 1
each.

In order for t to get |U| units of flow, each wu must get at least one unit of processed flow itself. Thus,
at least one of of its incoming vS neighbors must be able to process flow. Therefore, this instance of
directed Min Middlebox Node Purchase can be seen as the problem of purchasing as few of the vS
vertices so that each uW vertex has one (or more) incoming vS vertex. This provides a direct one-to-one
mapping between solutions to our constructed instance and the initial Set Cover instance, and the
values of the solutions are conserved by the mapping. Therefore, we have an approximation-preserving
reduction between the two problems, and directed Min Middlebox Node Purchase acquires the
known (1− ε) lnn inapproximability of Set Cover, summarized in the following result:

Theorem 3.3. For every ε > 0, it is NP-hard to approximate directed Min Middlebox Node
Purchase to within a factor of (1− ε) lnn.

Note that this construction provides the same hardness even when all demands are only to be satisfied
up to a (1− δ) fraction, showing the asymptotic tightness of the approximation factor in Theorem 3.1.

3.1.3 Hardness of Undirected Min Middlebox Node Purchase One can derive an
approximation-preserving reduction from Min Vertex Cover to undirected Min Middlebox Node
Purchase by requiring one unit of flow be sent from every vertex to each of its neighbors on a graph with
edge capacities 2. A complete analysis is presented in subsubsection A.2.3. The result is summarized
below:

Theorem 3.4. Approximating Undirected Min Middlebox Node Purchase is at least as hard as
approximating Min Vertex Cover. In particular, it is NP-hard to approximate within a factor of
1.36 and UGC-hard to approximate within a factor of 2− ε, for any ε > 0.

3.2 Budgeted Middlebox Node Purchase

3.2.1 Algorithms for Budgeted Middlebox Node Purchase Although it’s tempting to conclude
that Budgeted Middlebox Node Purchase is an instance of Budgeted Submodular Maximiza-
tion, one can construct instances where the amount of routable processed flow is not submodular in



the set of purchased nodes, so black-box submodular maximization techniques cannot be used here (an
example non-submodular instance can be found in subsubsection A.3.1). Instead, we show that the
randomized rounding algorithm used above for Min Middlebox Node Purchase can be reworked to
work for Budgeted Middlebox Node Purchase, as well. Using a slightly modified LP, we derive
an Ω(1/ log n) approximation algorithm for Budgeted Middlebox Node Purchase. Analysis is
deferred to subsubsection A.2.1. The results of that section are summarized below:

Theorem 3.5. For both the directed and undirected versions of Budgeted Middlebox Node
Purchase, there is a polynomial-time randomized algorithm producing an Ω(1/ log(n)) approximation
to the optimal solution.

In the case that an undirected Budgeted Middlebox Node Purchase instance has a single
source, we show that the problem admits a constant-factor approximation algorithm by showing how to
find a solution within a (1−1/e)/8 ≈ .078 factor of the optimum. Details are left to subsubsection A.2.2.
The result is summarized below:

Theorem 3.6. For undirected Budgeted Middlebox Node Purchase with a single source, there is
a deterministic polynomial time algorithm that produces a solution that can route at least (1− 1/e)/8 ≈
.078 times the optimal solution.

3.2.2 Hardness of Budgeted Middlebox Node Purchase In subsubsection A.2.4, we provide an
approximation-preserving reduction from Max k-Coverage reminiscient of the Set Cover reduction
from subsubsection 3.1.2. The result is given below:

Theorem 3.7. For every ε > 0, it is NP-hard to approximate Directed Budgeted Middlebox Node
Purchase to within a factor of (1− 1/e+ ε).

NP-hardness of the undirected version of the problem can be shown trivially by reducing
Knapsack to Budgeted Middlebox Node Purchase on a clique with infinite edge capacities. In
subsubsection A.2.5, we show a stronger statement by ruling out the existence of a PTAS for Budgeted
Middlebox Node Purchase by providing a reduction from Max Bisection on 3-uniform graphs.
In particular, we provide a .999 hardness of approximation for the problem. No attempt to optimize
this constant. The result is summarized below:

Theorem 3.8. It is NP-hard to approximate undirected Budgeted Middlebox Node Purchase
to within a factor better than .999.

3.3 Hardness of Dependency Routing The natural extension of Min Middlebox Node
Purchase to dependency routing (as introduced in subsection 2.4) naturally encodes Min Rep as
defined in [Kor01], acquiring its Label-Cover hardness. Details about the construction are given in
??, and the conclusion is summarized as follows:

Theorem 3.9. For every ε > 0, there is no polynomial-time algorithm approximating the Depen-

dency Min Middlebox Node Purchase problem to within an O(2log(1−ε) n) factor unless NP ⊆
DTIME(npolylogn).
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A Appendix

A.1 Flow Routing with In-Network Processing

A.1.1 Proof of Equivalence between Two LPs in subsection 2.2 Proof sketch: we first show
that we can compose an edge-based solution based on a walk-based solution and vice versa for a single
flow, and then show that we can iteratively place multi-commodity flows.

1. show Direction A: If there is a walk-based LP solution, there is an edge-based solution.

2. show Direction B: If there is an edge-based LP solution, there is a walk-based solution using walk
decomposition.

3. show the formulations for multi-commodity flows are also equivalent via extending the above
approach.

https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.opnfv.org/


Walk-based solution → Edge-based solution

Proof. we show that we can easily convert a walk-based solution to an edge-based solution and all the
constraints in the edge-based formulation hold.

For each edge e, fi(e) =
∑

π∈P :e∈π
pi,π.

For each vertex v, wi(e) =
∑

v′∈π,v′≤v
pvi,π (v′ ≤ v means e’ is topologically at or after e on the walk

π).
Flow conservation holds

∑
(u,v)∈E

fi(e)=
∑

π∈P,v∈π
pi,π =

∑
(v,w)∈E

fi(e).

Constraints in terms of B(e), C(v) also hold. (A2d,2e)
Relations between wi(e), fi(e) also hold: wi(e) =

∑
v′∈π,v′≤v

pvi,π ≤
∑
v∈π

pvi,π = fi(e), and wi(s, v) =

fi(s, v) and wi(v, t) = 0 are special cases.(A.2f,2g,2h)

Edge-based solution → Walk-based solution
To prove this; we need to show:

1. We can always construct a walk if there is some residual flow left in the graph.

2. All constraints holds for the updated residual graph.

Setup: For simplicity, we only construct all walks for a flow each time, so notation wise we can
remove i. A directed graph G(V,E) with an edge-based LP solution, where f(e) is the flow for each
edge, w(e) is workload demand at the same edge and p(v) process work done at each vertex v. Build
a new graph G′: all vertices V , and for ∀e ∈ E, if f(e) > 0, we put a direct edge e in the graph. To
help proof, divide a flow into two states, processed and unprocessed f1 and f2; in terms of flow volume
f1 = w and f2 = f − w.

Lemma A.1. loops for flows f1 and f2 respectively can be cancelled via flow cancellation without
affecting (s, t) flow.

Proof. it is similar to flow cancellation in a simple graph model:
(i) for e=(u,v) whereas min(f1) > 0, we can simply cancel the unprocessed flow demand by small

amount ε, and it does not affect the outcome of the flow outside the loop, while we can reduce the flow
load and workload demand in the loop without side effect.

(ii) for e=(u,v) whereas min(f2) > 0, we can cancel the processed flow demand by small amount ε,
and this does not affect the outcome of the flow outside of the loop while we can reduce the flow load
in the loop without side effect.

The intuition behind this is that loop exists due to that some flow needs to borrow some processing
capacity from some node(s), so it would “detour” a flow in an unprocessed state and get back the flow
in a processed state.

Introduce an intermediate variable ρ for each edge e where ρe = w(e)
f(e) = f1

f1+f2
. Run flow loop

cancellation for f1 and f2 respectively in G′.
Note: after loop cancellation we may still have loops for f as a unitiy.

Lemma A.2. ρ has the following property: if there is a cycle for unity flow f , there is always at least
one edge with ρ = 1 and one edge with ρ = 0.

Proof. This can be easily inferred from Lemma A.1.



Algorithm 1 Walk Decomposition

Data: G′(V,E), w(e), f(e) for ∀e ∈ E and p(v) for ∀v ∈ V
Result: f(π), p(π, v) where v ∈ π
Algorithm Walk Construction()

//Construct walk from s→ v and v → t From v run backward traversal, pick an incoming directed

edge with max(ρin) where ρin ≡ w(ein)
f(ein) From v run forward traversal, pick an outgoing directed

edge with min(ρout) where ρout ≡ w(eout)
f(eout)

return π

Algorithm Flow Placement()

while ∃v; p(v) > 0 do
//walk representation π ≡< v1, . . . , vk >≡< e1, . . . , ek−1 > π = Walk Construction()

pπ = min{f1(ea), f2(eb), p(v)}, ea ∈< e1, . . . , u → v >, eb ∈< v → w, . . . , ek−1 > pvπ = pπ
for u ∈ π and u 6= v do

pvπ = 0
end
C(v) = C(v)− pπ p(v) = p(v)− pπ for i← 1 to k − 1 do

f(ei) = f(ei)− pπ B(ei) = B(ei)− pπ
end

end

Lemma A.3. (Walk Construction) algorithm 1 can always generate a walk with non-zero flow from
source to sink if there exists any v where p(v) > 0, and the complexity of the algorithm is O(|V | · |E|)

Proof. First, from Lemma A.2, the walk cannot loop a cycle twice from [Walk Construction]. Since
downstream traversal keeps picking min ρ while upstreaming traversal keeps picking max ρ, so we never
pick the same edge twice. Since p(v) > 0 so at the same node there must be one upstream edge with
ρ > 0 and downstream edge with ρ < 1. Since the same edge is never picked twice so there is no loop in
terms of f1 and f2. The walk consists of two DAGs, one is from source to v and one is from v to sink,
the walk is a DAG as well.

Second we need to show for a certain walk π; pπ > 0. Since pπ = min{f1(ea), f2(eb), p(v)}; at node
v where p(v) > 0, so we have f1(ein) > 0 and f2(eout) > 0 at vertex v. Since we only pick max{ρ} for
upstream traversal, so for ∀ea; f1(ea) > 0. The same reason we have ∀eb; f2(eb) > 0.

For a single flow, after each iteration, we either take out one edge or one vertex, and the runtime
for each iteration is O(|V |) for traversal. As we iterate through O(|V |) vertices and O(|E|) for edges so
the runtime total will be O(|E|+ |V |) · |V |) = O(|V | · |E|).

Lemma A.4. (Flow Placement) algorithm 1 conserves all the constraints for the reduced graph.

Proof. we show that all the constraints are satisfied:
for A.2b: ∀v ∈ π;

∑
in
f(e)−

∑
out
f(e) =

∑
in6=ei

f(e)−
∑

out6=ei+1

f(e) + [f(ei)− pπ]− [f(ei+1)pπ] = 0

A.2d: ∀e ∈ π; f(e) = f(e)− pπ ≤ B(e)− pπ = Bnew(e)
A.2e: ∀v ∈ π; p(v)− pπ ≤ C(v)− pπ = Cnew(v)
A.2f and A.2g are ensured by the algorithm, since v 6= s and v 6= t.
A.2h constraints are satisfied by numerical relations.

Multi-Commodity Flow For MCF, we can use the same approach above. For a graph with K source-
sink paired flows, we iterate i = 1 . . .K, for each flow we genrate a G′ and exhaustively decompose



walks for fi and it is easy to see that all the constraints still hold after flow i has been removed. In
particular, we have : A.2b, A.2c, A.2f and A.2g hold for all the flows left after one flow is removed;

A.2d: ∀i,∀e;
K∑
l=i

fl(e)− fi ≤ B(e)− fi(e);

A.2e: ∀i,∀v;
K∑
l=i

pl(v)− pi(v) ≤ C(v)− pi(v).

A.1.2 Multiplicative Weight Update Analysis To remind you, the definition of D is the
distribution over experts where the probability of choosing a given expert is proportional to its weight.
The expected gain over a random sample from D is

M(D, p) =

∑
eweM(e, p) +

∑
v qvM(v, p)∑

ewe +
∑

v qv

We first make two observations:
Observation 1: For any feasible flow p, then 0 ≤ M(D, p) ≤ 1. This is because M(e, p) ≤ 1 and

M(v, p) ≤ 1.
Observation 2: For any flow p and weights w, q, if π∗ = argminπ

(∑
e∈π we/Be + minv∈π qv/Cv

)
,

then

M(D, p) ≥
P (p)(

∑
e∈π∗ we/Be + minv∈π∗ qv/Cv)∑

ewe +
∑

v qv

The proof is due to the fact that:

M(D, p) =

∑
eweM(e, p) +

∑
v qvM(v, p)∑

ewe +
∑

v qv
=

∑
π

(
pπ(
∑

ewe/Be) +
∑

v∈π p
v
πqv/Cv

)∑
ewe +

∑
v qv

(A.1)

≥
∑

π

(
pπ(
∑

ewe/Be) +
∑

v∈π p
v
π ·minv∈π qv/Cv

)∑
ewe +

∑
v qv

(A.2)

≥
∑

π (pπ(
∑

ewe/Be + minv∈π qv/Cv)∑
ewe +

∑
v qv

(A.3)

≥
∑

π pπ ·minπ(
∑

e∈π we/Be + minv∈π qv/Cv)∑
ewe +

∑
v qv

(A.4)

≥
P (p)(

∑
e∈π∗ we/Be + minv∈π∗ qv/Cv)∑

ewe +
∑

v qv
(A.5)

Where π∗ is the path with the smallest value. This would lead to the objective we compute at each
round — the path π with minimum cost.

Let p̄ =
∑t

t=1 p
t, i.e., the total number of flow placed after t rounds. By the guarantee of MWU

(Theorem 2.5 in [AHK12], or Analysis in Section 3.4.1 in [AHK12]), we have that for any e and any v

T∑
t=1

M(Dt, pt) ≥ ln(1 + ε)

ε
M(e, p̄)− lnm

ε

T∑
t=1

M(Dt, pt) ≥ ln(1 + ε)

ε
M(v, p̄)− lnm

ε

Since at time T , wTe = w0
e(1+ε)M(e,p̄), and qTv = w0

v(1+ε)M(v,p̄), and the stopping rule that at the end

there exists e or v such that wTe ≥ 1 or qTv ≥ 1, we have that there exists e such that M(e, p̄) ≥ ln 1/δ
ln(1+ε)



or there exists v such that M(v, p̄) ≥ ln 1/δ
ln(1+ε) . Therefore we have by guarantee of MWU,

T∑
t=1

M(Dt, pt) ≥ ln 1/δ

ε
− lnm

ε

We bound the LHS of the inequality above now. Note that

M(Dt, pt) =

∑
ew

t
eM(et, pt) +

∑
v q

t
vM(vt, pt)∑

ew
t
e +

∑
v q

t
v

=
P (pt) · (

∑
e∈πt w

t
e/Be + minv∈πt q

t
v/Cv)∑

ew
t
e +

∑
v q

t
v

By the definition of πt and Observation 2, we have

M(Dt, pt) =
P (pt)(

∑
e∈πt w

t
e/Be + minv∈πt q

t
v/Cv)∑

ew
t
e +

∑
v q

t
v

≤ P (popt)−1P (pt)

Therefore we have that

P (popt)−1P (p̄) ≥
T∑
t=1

M(Dt, pt) ≥ ln(δ−1m−1)

ε

Fixing any edge e, it’s initial weight is 1/δ and the final weight is at most 1 + ε, therefore the p̄
has at most Be log1+ε(1 + ε)/δ flow on it. Similarly for the v’s. In other words, scaling down p̄ by
log1+ε(1 + ε)/δ will result in a feasible flow. Let p′ = p̄/ log1+ε

1+ε
δ . Therefore we have

P (popt)−1P (p′) ≥ P (popt)−1P (p̄)/ log1+ε

1 + ε

δ
≥ ln(δ−1m−1)

ε
/ log1+ε

1 + ε

δ

Taking δ = (1 + ε)((1 + ε)m)−1/ε, we have that

P (p′)

P (popt)
≥ (1− ε)

A.1.3 Computing Min-Cost Path To compute the path with minimum cost, we use a dynamic
programming algorithm reminiscent of Dijkstra’s shortest path algorithm. Given a graph G(V,E), with
weights w(e) on edges, weights n(v) on nodes, and some source-sink pair s, t, we are interested in
computing the following quantity

gsp(s, t) = min
p:s→t,v∈p

cost(p, v) (A.6)

where cost(p, v) is defined as

cost(p, v) :=

(∑
e∈p

w(e) + n(v)

)
where w(e) and n(v) are set to we

B(e) and qv
C(v) from the initial problem. We also use the notation

cost(p) to represent the minimum value cost(p, v) takes over all choices of v:

cost(p) := min
v
cost(p, v) =

(∑
e∈p

w(e) + min
v∈p

n(v)

)
We use the following algorithm to calculate gsp(s, t) for a fixed s and all t ∈ V .



Require: Graph G = (V,E) with edge weights w(e), node weights n(v), and a designated source s.
Ensure: r(v) = gsp(s, v) for every v ∈ V .

Calculate d(v), the shortest path between s and v using Dijkstra’s algorithm.
Initialize r(v)← d(v) + n(v) for all v ∈ V . S ← {s}.
while S 6= V do

Let u∗ = argminv∈V \S r(v). Add u∗ to S.
For all neighbors z of u∗ that are not already in S, let r(z)← min{r(u∗) + w(u, z), r(z)}

end while

Proof. First of all, it is not hard to see that the value of r(u) only decreases, and at any time, there
exists a path p from s to u and v ∈ p such that cost(p, v) = r(u). We prove the following statement by
induction:

Claim 1: At the beginning of every while loop, for any node u 6∈ S, and any path p from s to u
with last but one endpoint being z ∈ S, we should have r(u) ≤ cost(p).

Claim 2: After the first line of each while loop, we have r(u∗) = minp:s→u∗ cost(p).
We first prove that if claim 1 is true for loop i and Claim 2 is true for loop 1, 2, . . . , i−1, then Claim

2 is true for loop i as well. Assuming Claim 1 is true, we are going to prove that for any path p from s
to u∗, r(u∗) ≤ cost(p). We divide into three cases. If p has last but one endpoint being z ∈ S, then by
Claim 1, r(u∗) ≤ cost(p). In the second case, if v 6∈ S, we claim r(u∗) ≤ d(v) + n(v) ≤ cost(p, v), where
the first inequality is by the definition of u∗, and the fact that r(v) ≤ d(v)+n(v) for any v. (Note that r is
decreasing and r(v) is initialized as d(v)+n(v). ). Therefore the only cases that are left for consideration
are those cases when p has last but one endpoint z 6∈ S, and v ∈ S. We claim this case never appears by
showing a contradiction. Let v′ be the last point in p that belongs to S, and let z′ be the following node
in p. Under the assumption of this case, such v′ and z′ exist. Consider the subpath p′ of p from s to z′.
Note that v′ ∈ S, and by Claim 2 at previous loops, when v′ was added to S, we have gsp(s, v′) = r(v′)
and then in the same loop, r(z′) was updated with a value that is not greater than r(v′) + w(v′, z′).
Because the value of r never increases, we have r(z′) ≤ gsp(s, v′) + w(v′, z′) = r(v′) + w(v′, z′) at the
loop i. Therefore certainly r(z′) ≤ gsp(s, v′) +w(v′, z′) ≤ cost(p, v′) since v is on the subpath of p from
s to v′.

Then we show that if claim 2 is true for loop i, then claim 1 is true for loop i + 1. This is
straightforward because after the loop i, for any z ∈ S, we have that r(z) = minp:s→z cost(p). Let u∗ be
the newly-added node in S. Therefore, at the beginning of loop i+1, for any node u 6∈ S, and any path p
from s to u with last but one endpoint being z ∈ S, there are two possible cases: a) if z ∈ S \{u∗}, then
Claim 1 at loop i, we know that r(u) ≤ cost(p). b) if z = u∗, then since at loop i, r(u) has been updated
to be the minimum of r(u) and r(u∗) + w(u∗, u). Therefore, r(u) ≤ r(u∗) + w(u∗, u) ≤ cost(p, v)
for any v 6= u, since p passes u∗ and v 6= u∗. On the other hand, for v = u, we also have that
r(u) ≤ d(u) + n(u) ≤ cost(p, u). Therefore, for any v in path p, we have that r(u) ≤ cost(p, v) and
therefore, r(u) ≤ cost(p).

Analysis of Runtime: the algorithm clearly runs in n while loops. At each while loop, we need also
access the smallest value in R and remove it, and update the values in R, where R is the min heap
data structure that stores the r(z) values. The total number of updates is O(m). Therefore, using a
Fibonacci heap to maintain R, the runtim will be O(m + n log n). The analysis is similar to Dijstra’s
algorithm [FT87, Ski90]. If we compute for k different flows, the runtime becomes O(k · (m+ n log n))
since we have to compute k times.

A.1.4 Dependency Routing Analysis We first introduce some notation for the following LP
formulation. For a dependency routing with ki tasks, f ji represents the amount of ith flow that has



passed jth task, pji (v) represents the amount of jth task processed at node v for the ith flow. We have
a total of T tasks and each Ct(v) represents the capacity for tth task at node v. We have a mapping
function mi(j) = t that maps the index of jth task to one of the T tasks.

maximize

|D|∑
i=1

∑
e∈δ+(si)

f0
i (e) (A.7a)

Subject to∑
e∈δ−(v)

∑
0≤j≤k

f ji (e) =
∑

e∈δ+(v)

∑
0≤j≤ki

f ji (e) ∀i ∈ [|D|],∀v ∈ V \ {si, ti} (A.7b)

pji (v) =
∑

j≤l≤ki

(
∑

e∈δ−(v)

f li (e)−
∑

e∈δ+(v)

f li (e)) ∀i ∈ [|D|],∀v ∈ V,∀j ∈ [0, ki] (A.7c)

[D]∑
i=1

∑
0≤j≤ki

f ji (e) ≤ B(e) ∀e ∈ E (A.7d)

|D|∑
i=1

pji (v) ≤ Ct(v) ∀j ∈ [0, ki],∀i ∈ [|D|],mi(j) = t,∀v ∈ V (A.7e)

f ji (e) = 0 ∀i ∈ [|D|], ∀j ∈ [1, ki], e ∈ δ+(v),∀v ∈ V \ {si} (A.7f)

f ji (e) = 0 ∀i ∈ [|D|], ∀j ∈ [0, ki − 1], e ∈ δ−(v), ∀v ∈ V \ {ti} (A.7g)

f ji (e), pji (v) ≥ 0 ∀i ∈ [|D|],∀j ∈ [0, ki], ∀e ∈ E,∀v ∈ V (A.7h)

Proof. To simplify the proof, again, we only focus on a single flow with (s, t); we can easily extend to
the multi-commodity case. We show that we can convert the LP solution to a routing and allocation
solution, where we know the paths and for each path we know how to allocate the processing among
nodes for different tasks.

Round One: We can first focus on the last process (e.g., the kth process during a k staged processing),
and the way to compute the walks for the last process is very analogous to that of a single type of
processing problem, we can think of that there are two types of flows,

∑
0≤j≤k−1 f

j as f̂1 and fk as f̂2.
It is not hard to see that the above LP is exactly the same as the previous problem once we replace
with f̂1 and f̂2. Save the result in the format of (π, pkπ(v)).

Round Two: Once we get routing and processing pattern from Round One, we can compute the
processing and routing pattern from the LP output and Round One output. The allocation is some
variant of single type processing problem in A1. At each node, we know pk−1(v) =

∑
e∈δ−(v) f

k−1(e)−∑
e∈δ+(v) f

k−1(e)+
∑

e∈δ−(v) f
k(e)−

∑
e∈δ+(v) f

k(e) with fk values computed. We again group the flows

in two types,
∑

0≤j≤k−2 f
j as f̂1 and fk + fk−1 as f̂2. We pick a node with pk−1(v) > 0, and pick one

upstream and one downstream link at that node from the Round One result with different f̂1

f̂1+f̂2
values,

allocate processing at node v, based on flow size on the path, and the available flow processing at node
v. Allocate until there is no node v with pk−1(v) > 0. Note at each step, we may have a portion of flow
from Round One path π with node processing. Since we preserve the flow pattern as in Round One, we
consolidate the result as the format of (π, pkπ(v), pk−1

π (v)), and preserve the number of paths from step
one.



...
Round K: We recursively compute the flow and processing allocation for all k stages and get the

final routing and processing pattern. Note every step only relies on the previous step in the algorithm.
Save the result as the format of (π, pkπ(v), pk−1

π (v) . . . p1
π(v)).

A.2 Middlebox Node Purchase Optimization

A.2.1 Directed Maximization Algorithm
The algorithm here proceeds similarly to that in subsubsection 3.1.1. The LPs we use are the natural

maximization variant of those used for the minimization problem, with the added restriction that we
only use a 1/2 fraction of the budget. It is easy to see that this additional restriction does not reduce
the objective value of the optimal LP solution by more than an 1/2-fraction. We also assume (with-
out loss of generality) that no vertex has cost greater than the budget. The LPs are formulated as follows:

Walk-based formulation:

maximize

|D|∑
i=1

∑
π∈P

pi,π

subject to∑
v∈V

cvxv ≤ k/2

xv ≤ 1 ∀v ∈ V

pi,π =
∑
v∈π

pvi,π ∀i ∈ [|D|], π ∈ P∑
π∈P

pi,π ≥ Ri ∀i ∈ [|D|]

|D|∑
i=1

∑
π∈P
π3e

pi,π ≤ B(e) ∀e ∈ E

|D|∑
i=1

∑
π∈P

pvi,π ≤ C(v)xv ∀v ∈ V

|D|∑
i=1

∑
π∈P
π3e

pvi,π ≤ B(e)xv ∀e ∈ E, v ∈ V

∑
π∈P

pvi,π ≤ Rixv ∀i ∈ [|D|], v ∈ V,

pvi,π ≥ 0 ∀i ∈ [|D|], π ∈ P, v ∈ π
0 ≤ xv ≤ 1 ∀v ∈ V

Edge-based formulation:

maximize
∑
v∈V

|D|∑
i=1

∑
e∈δ−(v)

f2,vi (e)

Subject to∑
v∈V

cvxv ≤ k/2

∑
e∈δ−(u)

f j,vi (e) =
∑

e∈δ+(u)

f j,vi (e)
∀i ∈ [|D|], j ∈ {1, 2}, v ∈ V,
∀u ∈ V \ {si, ti, v}∑

e∈δ−(v)

f2,vi (e) =
∑

e∈δ+(v)

f1,vi (e) ∀i ∈ [|D|], v ∈ V,

∑
v∈V

∑
e∈δ+(si)

f2,vi (e) ≥ Ri ∀i ∈ [|D|]

|D|∑
i=1

∑
v∈V

(f1,vi (e) + f2,vi (e)) ≤ B(e) ∀e ∈ E

|D|∑
i=1

∑
e∈δ−(v)

f2,vi (e) ≤ C(v)xv ∀v ∈ V

|D|∑
i=1

(f1,vi (e) + f2,vi (e)) ≤ B(e)xv ∀e ∈ E, v ∈ V∑
e∈δ+(si)

f2,vi (e) ≤ Rixv ∀i ∈ [|D|], v ∈ V

f2,vi (e) = 0 ∀i ∈ [|D|], v ∈ V, e ∈ δ−(si)

f1,vi (e) = 0 ∀i ∈ [|D|], v ∈ V, e ∈ δ+(ti)

p1,vi (e), p2,vi (e), xv ≥ 0 ∀i ∈ [|D|], v ∈ V, e ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

If purchasing a single vertex allows us to route a 1/(2 lnn) fraction of the objective value of the
above LP, we purchase only this vertex. Otherwise, we can remove the potential for processing at each
vertex v with cv ≥ k/ lnn and re-solve the LP to get a solution with objective value at least half as large



as before. Thus, from now on we can assume that no cv exceeds k/ lnn and therefore that the optimal
LP solution puts support on at least a 1/ lnn fraction of the xvs (at a cost of 2 in our approximation
factor). We will call the objective value of this modified linear program OPTLP′ .

Again, we pick the vertices on which to install processing capacity on by randomized rounding: each
vertex v is picked with probability xv. If xv is picked, then all flows processed by v are rounded so that
F̂ j,vi (e) = f j,vi (e)/(4xv lnn) for all i ∈ [|D|], j ∈ {1, 2}, e ∈ E. If v is not picked, then all flows processed

by v are set to zero, i.e. F̂ j,vi (e) = 0.

By design, E[F̂ j,vi (e)] = f j,vi (e)/(4 lnn) and thus the total amount of flow processed, P , satisfies

E[P ] = E

[∑
v∈V

|D|∑
i=1

∑
e∈δ−(v)

F̂ 2,v
i (e)

]
= OPTLP′/(4 lnn). In the solution produced by the rounding

algorithm, the total flow through edge e is
∑
v∈V

|D|∑
i=1

((F̂ 1,v
i (e) + F̂ 2,v

i (e)). This sum of random variables is

B̂(e) = B(e)/(4 lnn) in expectation. Letting g(e) denote the flow along edge e, standard bounds give

Lemma A.5.

Pr
[
g(e) ≥ (4 lg n) · B̂(e)

]
≤ e−4 lnn = n−4 ∀e ∈ E (A.10)

Pr [P ≤ (1/4) · (1/(4 lg n) ·OPTLP′)] ≤ e−4 lnn = n−4 ∀e ∈ E (A.11)

so by the union bound, with probability higher than 1 − 1/n every edge is assigned ≤ B(e) total
flow and the amount of flow processed and routed is within a 1/16 lnn factor of OPTLP′ .

Finally, by Markov’s inequality, the original budget constraint is satisfied with probability at least
1/2. Combining this with lemma A.5, the algorithm fails with probability at most 1/2+1/n. Repeating
the algorithm O(log n) times and taking the best feasible solution therefore provides an Ω(1/ log n)
approximation with probability at least 1− 1/ poly(n). This can be summarized in the following result:

Theorem A.1. For directed Budgeted Middlebox Node Purchase, there is a polynomial-time
randomized algorithm producing an Ω(1/ log(n)) approximation.

We can also apply this algorithm to undirected instances by adding additional constraints the as we
did in subsubsection 3.1.1, with the analysis carrying through as before. Thus, we attain the following:

Theorem A.2. For undirected Budgeted Middlebox Node Purchase, there is a polynomial-time
randomized algorithm producing an Ω(1/ log(n)) approximation.

A.2.2 Undirected Maximization Algorithm

We now show that the undirected Budgeted Middlebox Node Purchase admits a constant-
factor approximation algorithm when restricted to a single source s. Let OPT(G, k) denote the value of
the optimal solution to an instance with graph G and budget k. Our algorithm works by splitting the
problem into both a processing step and a routing step. The algorithm begins by reserving a 1/2 fraction
of each edge for use in the processing step and the remaining 1/2 fraction for use in the routing step.
Calling the reserved-capacity graphs Gproc and Groute, respectively, the algorithm proceeds as follows:



Processing step A well known fact in capacitated network design is that the maximum amount of
flow routable (sans processing) from a set S ⊆ V of source vertices to a single sink forms a monotone,
submodular function in S [CKLN13]. Although this problem is usually defined in the context of sources
that can produce an arbitrary amount of flow (should the network support it), we can bottleneck each
source si into producing at most some ci units of flow by replacing it with a pair of vertices connected
by a capacity ci edge, without changing the submodularity of the routable flow function, fG(S). For
the purpose of this lemma, redefining s as our “sink” and the set P of processing nodes as our source
set S, we immediately attain that the function fG(P ) is submodular, where P ⊂ V is the set of nodes
purchased for processing.

Let H be a copy of Gproc with all edge capacities halved. Because fH is a submodular function,
the problem of using our budget to purchase a set P ⊆ V of processing nodes so to maximize fH(P )
is simply an instance of a monotone, submodular maximization subject to knapsack constraints. Such
problems are known to admit simple (1 − 1/e)-approximation algorithms [Svi04]. Let P (H, k) be the
optimal solution to this processable flow problem on H with budget k and ALG1(H,K) denote the value
of the solution found by our algorithm. Because P (H, k) is an upper bound on OPT(H, k) (indeed, the
former is simply an instance of the former without the need to account for post-processing routing), the
(1− 1/e) approximation we get has value at least equal to (1− 1/e) times the value of OPT(H, k). In
particular

ALG1(H, k) ≥ (1− 1/e)P (H, k)

≥ (1− 1/e)OPT(H, k)

≥ (1− 1/e)(1/2)OPT(Gproc, k)

≥ (1− 1/e)(1/2)(1/2)OPT(G, k) = (1− 1/e)/4 ·OPT(G, k)

Further, because our solution only uses at most half of the capacity of any edge in Gproc, we can
use the remaining, unused half of the capacities to route all flow we managed to process back to s.

Routing Step All flow residing in s after the end of the processing step is already processed,
all of it can be routed directly to the sinks using the 1/2 fraction of edge capacities we reserved for
Groute. Because multiplying all edge capacities by 1/2 reduces the amount of routable flow by the same
(multiplicative) amount, we can route at least (1/2) min(ALG1(H, k),MaxFlowG(s, t)) units of the
processed flow from s to t. As MaxFlowG(s, t) is a (trivial) upper bound on OPT(G, k), this means
we can route at least (1/2)(1− 1/e)/4OPT(G, k) units of the processed flow from s to the sinks, giving
a (1− 1/e)/8 > .078 approximation algorithm.

Thus, we get the following theorem:

Theorem A.3. For undirected Budgeted Middlebox Node Purchase with a single source, there
is a deterministic polynomial time algorithm that produces a solution that can route at least (1−1/e)/8 ≈
.078 times the optimal objective solution.

A.2.3 Undirected Minimization Hardness

We now show an approximation preserving reduction from Min Vertex Cover to undirected
Min Middlebox Node Purchase, proving that the latter problem is UGC-hard to approximate
within a factor of 2−ε for any ε > 0 [KR08], and NP-hard to approximate within a factor of 1.36 [DS05].



The construction is simple. Given a Vertex Cover instance with graph G = (V,E), we create an
identical graph with each vertex v demanding one unit of processed flow from each of its neighbors, and
each edge’s capacity is 2. Further, each vertex has n units of processing potential, at a cost of 1. Because
the total demand equals the sum of all edge capacities, each unit of flow sent must use exactly one unit of
edge capacity, i.e. all flow paths have length exactly one. Thus, the set of solutions exactly corresponds
to vertex covers, with one unit of flow going each way across each edge, from source to sink and either
to or from its point of processing. The unit costs ensure that the objective value equals the number of
vertices picked, and thus that the optimal solution to this undirected Min Middlebox Node Purchase
instance equals that of the original Min Vertex Cover. The conclusion, summarized below, follows.

Theorem A.4. Approximating undirected Min Middlebox Node Purchase is at least as hard as
approximating Min Vertex Cover. In particular, it is NP-hard to approximate within a factor of
1.36 and UGC-hard to approximate within a factor of 2− ε, for any ε > 0.

A.2.4 Hardness of Directed Budgeted Middlebox Node Purchase

We now prove that directed Budgeted Middlebox Node Purchase is NP-hard to approximate
to a factor better than (1− 1/e+ ε). To show this, we reduce from Max k-Cover, which is known to
have the same hardness result [Fei98].

Given a Max k-Cover instance with set system S and universe of elements U , we create one
vertex vS for each S ∈ S and one vertex wu for each u ∈ U . Further, we create one source vertex s and
one sink vertex t, where t demands |U| units of processed flow from s. We add one capacity-n arc from
s to each vS , and one capacity-1 arc from each wu to t. We then add a capacity-1 arc from each vS to
wu whenever S 3 u. Finally, we give each vS vertex n units of processing capacity at a cost of 1 each.
The budget for the instance is k – the same as the budget for the Max-k-Cover instance. A diagram
of the reduction is given in Figure 2.

When flow is routed maximally, each wu contributes 1 unit of flow to the total s− t flow if and only
if it has a neighbor vS that was chosen to be active. Otherwise, this vertex does not help contribute
towards the s− t flow. Thus, this instance of directed Budgeted Middlebox Node Purchase can
be seen as the problem of buying k different vS vertices so to maximize the number of distinct wu
vertices to which they are adjacent. Thus, there is a direct one-to-one mapping between solutions to
our constructed instance and the initial Max k-Cover instance, and the values of the solutions are
conserved by the mapping. Therefore, we have an approximation-preserving reduction between the two
problems, and directed Budgeted Middlebox Node Purchase acquires the known (1 − 1/e + ε)
inapproximability of Max k-Cover.

A.2.5 Undirected Maximization Hardness

We show that for some fixed ε0 > 0, the undirected version of Budgeted Middlebox Node
Purchase is NP-hard to approximate within a factor of 1 − ε, implying that the the problem does
not admit a PTAS unless P = NP. We make no attempt to maximize the value ε0.

We show this hardness by reducing from Max Bisection on degree-3 graphs, shown to be hard
to approximate within a factor of .997 in [BK99]1. Let G = (V,E) be the input to the degree-3 Max

1To be precise, this paper shows the aforementioned hardness for Max Cut. A simple approximation preserving reduction from



Bisection instance. For each vi ∈ V , create two vertices, ui and wi, joined by an edge with capacity
3. We also add a capacity-1 edge between ui and uj whenever vi and vj are adjacent in G. Each wi
vertex demands 3 units of flow from every uj (including when i = j). Further, every ui vertex can be
given 3|V | units of processing capacity (or, equivalently, ∞ units) at a cost of 1, and the instance’s
budget is set to |V |/2.

The intuition behind the construction is as follows. With a budget of |V |/2, we can purchase exactly
half of the ui vertices (and all budget is used up without loss of generality); our bisection will be between
the purchased uis and the unpurchased ones. Let b be the number of edges in any such bisection. Each
wi adjacent to a purchased ui can have 3 units of its demand satisfied by flow originating from and pro-
cessed by ui, and the only edge connecting wi to the rest of the graph ensures wi can never receive more
than 3 units of flow regardless. Thus, such wis are maximally satisfied, and contribute 3|V |/2 units to
our objective value. The remaining wis must have their processed flow routed to them via edge via the b
capacity-1 edges in the bisection (and, indeed, every edge in the bisection will carry 1 unit of flow when
routed optimally, as witnessed by the solution where each unprocessed ui receives flow on each cut-edge
and routes it directly to wi), so the total amount of demand satisfied by the wi adjacent to unpurchased
vertices is exactly b, so the objective value of a solution with b edges in the bisection is exactly 3|V |/2+b.

Letting bOPT denote the number of edges cut by the optimal bisection. It is a well-known fact
that bOPT ≥ |E|/2 = 3|V |/4. By the theorem of [BK99] it is NP-hard to distinguish instances with
3|V |/2 + bOPT units of satisfiable demand from those with only 3|V |/2 + (1 − .003)bOPT, giving an
inapproximability ratio of

3|V |/2 + (1− .003)bOPT

3|V |/2 + bOPT
= 1− .003bOPT

3|V |/2 + bOPT

= 1− .003

3|V |/(2bOPT) + 1

≤ 1− .003

3|V |/(2 · 3|V |/4) + 1

= 1− .003

2 + 1

= .999

This calculation is summarized in the following result:

Theorem A.5. It is NP-hard to approximate undirected Budgeted Middlebox Node Purchase
to within a factor better than .999.

A.3 Hardness of Dependency Min Middlebox Node Purchase We can generalize the Min
Middlebox Node Purchase problem to incorporate dependency routing as described in Section 2.4.
We show that the dependency version of Min Middlebox Node Purchase is Label Cover-Hard,
and thus is unlikely to admit any polylogarithmic approximation algorithm.

Theorem A.6. For every ε > 0, there is no polynomial-time algorithm approximating single-commodity

dependency Min Middlebox Node Purchase to within an O(2log(1−ε) n) factor unless NP ⊆
DTIME(npolylogn).

Max Cut to Max Bisection can be derived by looking at maximum cuts of the graph formed by 2 disjoint copies of the Max Cut
instance graph.



S v
1 r v

3 T

u
1

u
2

Figure 3: Example graph where vertex purchasing is not submodular. White vertices have no processing potential, colored vertices
have 1 potential unit of processing. Solid black edges have capacity 2 while dashed red edges have capacity 1. If the only purchased

vertex is r, no single additional purchase can increase the routable flow at all, yet buying both u1 and u2 simultaneously increases it

to 2.

The input to Min Rep consists of a bipartite graph G = (A;B,E), as well as a partitioning of A
and B into equal-sized subsets, {A1, A2, · · · , Am1} and {B1, B2, · · · , Bm2}, respectively. The goal is to
select as few vertices C ⊆ A ∪ B as possible while ensuring that for every pair of partitions Ai and Bj
with an induced edge between them, there is at least one edge in the graph induced on (Ai ∪Bj) ∩ C.

For each i ∈ 1, 2, · · ·m1, we make one source vertex ai, and similarly make a sink vertex bj for each
j ∈ 1, 2, · · ·m2. For each vertex vj ∈ Ai, we make a node uj with infinite processing capacity and add an
infinite capacity edge from ai to uj . Similarly, for each vj ∈ Bi, we make a wj with infinite processing
capacity and add an infinite-capacity edge from it to bi. The vi and wj are then connected as they were
in the Min Rep instance with capacity 1 edges (directed from vi to wj). For each Ai adjacent to a
Bj in the Min Rep instance, we add one unit of demand from ai to bj , with the corresponding chain
(δ+(ai), δ

−(bj) (δ+ and δ− denoting the set of outgoing and incoming edges, respectively).
We can only route flow from ai to bj if there is an edge between vertices in their neighborhoods

and, if there is an edge, we can always route this flow by buying its endpoints. By setting the cost of
each vi and wj to 1, the optimum solution to our instance has the same cost as the optimum of the
original Min Rep instance, proving our sought result for the problem with multiple sources. To get the
same hardness for a single source, we add a single super-source and super-sink with demand equal to
the number of connected Ai, Bj pairs, with the super-source adjacent via an out-edge to each ai and
the super-sink adjacent to each bj with an in edge. We give each ai and bj node infinite processing
capacity at a cost of 0. For each unit of demand corresponding to an Ai, Bj edge, the chain is now
({ai}, δ−(ai), δ

+(bj), {bj}). Theorem A.6 follows.

A.3.1 Non-submodularity of Budgeted Middlebox Node Purchase As stated in subsubsec-
tion 3.2.1, it is tempting to state that the amount of routable flow is submodular in the collection of
purchased vertices, which would imply that simple greedy algorithms can give a (1−1/e) approximation
algorithm to the problem. As shown in Figure 3, this natural supposition happens to be false, as there
exist configurations where the natural greedy algorithm gets stuck at an infeasible solution.
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