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Abstract

Key-value stores are a fundamental building block for many large web-scale applica-

tions. These applications typically face highly-skewed traffic, i.e. the most popular

keys are requested many orders of magnitude more frequently than the median key.

Schemes that simply balance storage capacity across a cluster are therefore unable

to adequately balance traffic load across cluster nodes. Dynamic load-balancing is

therefore critical to maintaining service-level objectives, and necessitates expensive

over-provisioning if it is imperfect or slow to deal with rapidly changing traffic

distributions. An effective technique to provide load-balancing is to use popularity

based caching. However, existing cache architectures have limitations - querying the

cache before querying the persistent store requires a round-trip to the cache for every

request, and putting a cache on the data path limits the throughput of the system

to that of the cache.

Exoskeleton is a cache architecture which enables the routing of requests for pop-

ular keys directly to cache nodes at line-rate. This architecture leverages the power

and speed of programmable switches to perform content-aware routing. Clients do

not need to maintain any state to take advantage of this architecture, and simply

encode key information directly into request packet headers. Exoskeleton removes

the constraints of previous architectures, which required operators to optimize for

either low latency or scalability, but not both. In addition, Exoskeleton deals with

rapidly-changing workloads through a cache update mechanism designed specifically

for the limitations imposed by switch hardware. Effective load-balancing enables this

system to efficiently deal with modern web workloads using a heterogeneous clus-

ter architecture comprising cheap SSD-based backend nodes and a small number of

powerful cache nodes.
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Chapter 1

Introduction

The simple semantics of key-value stores allow system designers to build high-

performance systems that can scale to hundreds or thousands of nodes, which is

critical to delivering the throughput demanded by web-scale applications. A great

deal of work has been done by the research community and the industry in designing

and implementing scalable key-value systems, each with different characteristics in

terms of throughput, availability, consistency, latency, fault-tolerance and persis-

tence. Key-value systems usually scale-out by partitioning and/or replicating data

across cluster nodes.

Traffic analysis of real-world key-value stores shows that the key popularity com-

monly follows a Zipf distribution [6]. Techniques that simply partition key space

such as striping or consistent hashing are not designed to deal with highly skewed

distributions. Adding replication only partially addresses the issue of load-balancing,

and adds consistency-related complexity. Dynamic load-balancing techniques that

involve migration of data between nodes are complex to implement in terms of in-

dexing, routing, and consistency. More importantly, they are often too slow to deal

with the rapid changes in key popularity that characterize real workload traces [11].

Even if we assume that there are no failures, these rapid changes mean that nodes
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relying on traditional load-balancing techniques must at least temporarily deal with

traffic spikes. Given these constraints, expensive over-provisioning is often necessary

to meet the strict latency SLOs that are critical to a good user experience [8].

Another artifact of real-world traffic distributions is that each node in a typical

homogeneous architecture must be able to serve a small number of requests for a large

number of keys in the long tail, and orders of magnitude more requests for a small

set of hot keys. This indicates that heterogeneous cluster architectures with different

classes of nodes serving these distinct roles are likely to be more efficient. However,

optimized heterogeneous architectures are more sensitive to load-imbalances, and

require fast, effective load balancing to ensure they are being utilized according to

their capacity.

Caching can help provide load-balancing across cluster nodes. However, typical

cache architectures fall into one of two categories:

1. Systems that first request data from the cache, and then send a request to the

backing store in case of a cache miss are very popular [18]. However, unless

cache hit rates are high (which requires that large amounts of data be cached),

a significant fraction of requests incur the additional latency of an unnecessary

round-trip to the cache.

2. Systems that place the cache in the data path for all requests (read-through

cache) improve the latency of cache misses. However, this architecture has

a clear scalability limitation - the overall cluster throughput is bottlenecked

by the cache. The use of modern backend nodes that deliver high throughput

would further exacerbate these scalability issues. Crucially, a cache failure would

render the entire system unavailable.

Our caching architecture removes the need to make trade-offs between latency,

throughput and scalability. We use a content-aware routing scheme in which key
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information is encoded into request packet headers. Commodity OpenFlow-based

switches then route these requests at line rate (and with no additional latency) to

either cache nodes or persistent storage nodes depending on whether the requested

key is present in the cache. Clients of the system are not required keep track of cached

keys and requests are routed transparently. Exploiting fast hardware optimized for

packet processing in this manner has several benefits, but also means that we must

deal with the limited rule-space and slow update rate of switch TCAM or L2 tables.

Commodity OpenFlow switches have space available for only a few hundred thousand

rules each, which in our architecture also functions as the maximum cache size.

A small cache size is not a significant limitation for our use case. Fan et. al [10]

prove that the size of a popularity-based cache required to achieve load-balancing has

a lower bound of O(nlogn), where n is the number of backend nodes. Fan et. al also

use a heterogeneous cluster architecture, however, they use a read-through front-end

cache, which has the significant fault-tolerance and scalability issues we described

earlier. Also, their work does not deal with traffic distributions that change over

time. Our goal is to build a realistic high-performance system that can deal with

rapid changes in skewed real-world traffic distributions.

The key contributions of this paper are:

1. An architecture that allows us to use popularity-based caching as a load-

balancing technique, without the latency, fault-tolerance and scalability

problems associated with previous caching architectures.

2. An efficient cache update mechanism to deal with the limitations imposed by

switches. The algorithm aims to maximize cache utilization, minimize the cache

update rate, and also react quickly to rapidly changing workloads.
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3. Analysis showing that this architecture enables the use of heterogeneous clus-

ters to deal with the traffic characteristics of modern web-applications more

efficiently than traditional systems.
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Chapter 2

Related Work

In this section, we provide an overview of work that we drew upon when designing

and evaluating Exoskeleton.

2.1 Key-value Stores

Key-value stores are considered a fundamental building block of modern web-

applications. As applications demand ever greater performance, it becomes unten-

able to constantly upgrade servers to deal with higher load. Instead, it is more

cost-effective for operators to deploy systems that can scale out to hundreds or even

thousands of nodes. Many key-value stores, including Exoskeleton, offer a simple

API similar to that of a map, i.e. GET, PUT and DELETE. Restricted functionality

allows system designers to more easily build large distributed systems as compared

to traditional relational databases. However, simply enumerating API calls is not

sufficient to capture the semantics of a distributed key-value store. Different systems

offer different characteristics to applications in terms of throughput, availability

[5][9], latency [12], fault-tolerance [9], persistence [19], consistency [15] etc.
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2.1.1 Persistence

Given the performance requirements, many datastores have been built to run com-

pletely in-memory [19], be in-memory and use persistent storage for failure recovery,

or function as an in-memory cache to reduce load on persistent databases [18]. Ex-

oskeleton is designed specifically to provide efficient persistent storage through an

architecture that uses both flash and RAM. This design is driven by the dramatic

price decreases of fast PCIe-based flash storage in recent months, and the increasing

popularity of the NVMe standard. Flash-based designs are usually cheaper up-front

than architectures that store all or most of their data in main memory. Also, SSDs are

also far more power-efficient than large amounts of RAM and are therefore cheaper

to operate as well. These changes have not gone unnoticed by the research commu-

nity (or the industry) and have led to research that addresses and optimizes for the

specific performance and lifetime characteristics of flash storage [20][13].

Our cache nodes are architected similarly to Lim et. al’s MICA [14], which demon-

strates the benefit of a holistic approach to designing partitioned in-memory key-value

stores. We also use fast user-space packet processing via Intel’s Data Plane Develop-

ment Kit (DPDK), and exploit parallelism by partitioning data across cores. DPDK’s

burst packet processing allows us to deal with skewed workloads effectively. This is

critical for our cache nodes, which must deal with extremely skewed workloads.

2.1.2 Consistency

Systems such as Amazon’s Dynamo [9] or Facebook’s Cassandra [12] only offer even-

tual consistency, which makes them suitable for a narrow class of applications. Other

systems, such as COPS [15] and Megastore [5] deliver stronger consistency mod-

els while attempting to retain performance. Exoskeleton offers strong consistency

between the cache nodes and the persistent storage nodes, but does not currently

perform any additional replication for fault-tolerance or availability. Replication is
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supported by the architecture of the system, and would be straightforward to imple-

ment, however we choose to focus on cluster architecture for this work.

2.2 Web Workloads

Atikoglu et al’s work describing an analysis of memcached traffic at Facebook [4]

is perhaps the most detailed look yet at a real key-value store workload. Several

relevant features of realistic traffic distributions are outlined in the paper. One is

the distribution of key and value sizes. Although the distributions are distinct and

complex, for this work we simply note that the majority of key sizes fall below 40

bytes, and a majority of value sizes fall below 600 bytes. We pick our default key and

value sizes while keeping these numbers in mind.

Perhaps most importantly, however, the authors point out the extreme levels of

skew in key popularity that characterize each of the workloads they analyze. For

the most generally-applicable distribution the authors studied, the bottom 50% of

keys ranked by popularity account for only 1% of requests, and the top 10% of keys

account for 90% of requests. By fitting these numbers into a Zipf distribution [21][23],

we arrive at skewness ratio α (alpha)1 of approximately 0.995-0.998, which is similar

to, but somewhat higher than the skewness ratio of 0.99 used by YCSB [7].

Both [4] and [6] address the issue of rapid changes in traffic distributions. Bodik

et al. deal with this issue by examining workload spikes. They point out the critical

distinction between volume spikes [3] that can be handled by adding more stateless

web servers, and data spikes that cause sudden and drastic load imbalances in par-

titioned databases. The authors specifically attempt to characterize and model data

popularity. The datasets analyzed by the authors are heavier-tailed than standard

power-law distributions - the most popular items and the least popular items are each

1i.e. the i-th key constitutes 1/(iαHn,α) of total requests, where Hn,α =
∑n
i=1(1/i

α) and n is
the total number of keys.
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responsible for less traffic than expected. However, the percentage of traffic to the

top 10% of keys is similar to [4], at 85% or higher in most cases. Bodik et al. also hy-

pothesize that the number of hot objects during a spike is an absolute number instead

of a fraction of all objects, as user actions in spike scenarios are likely independent of

the size of the data set. Our system architecture is well-suited to deal with this, as

our small cache is sized independently of the total number of items stored.

2.3 Load-balancing

Work at large web-based service providers [18] shows that typical user activity results

in requests to between 20 and 100 servers, and that tail latency has an adverse

impact on user experience. This impact increases dramatically with the number of

servers contacted [8]. Stateful partitioned distributed services like key-value stores

require effective dynamic load balancing. Unless operators over-provision to deal with

imbalances, overloaded nodes cause system latency and throughput variability that

prevents services from meeting strict service-level objectives (SLOs).

Various replication techniques can help address load imbalance, but each has

different tradeoffs. Mitzenmacher’s power-of-two-choices scheme [17] greatly improves

load-balance, but assumes full replication and requires up-to-date information on

queue length at each replica. Schemes that involve sending requests to multiple

replicas [8] either result in wasted work or are a poor fit for systems like key-value

stores where network round trips dominate total processing time. Full replication

also involves high space overhead.

Dynamic load balancing techniques often involve migration of data between nodes.

To reduce consistency, routing and indexing complexity, such systems usually move

large blocks of data (tablets, vnodes etc.) to less-loaded nodes. This makes migration
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expensive and slow, and often causes significant load imbalances during the migration

process [11].

Caching is an effective load-balancing technique [3]. Fan et. al’s work, ‘Small

Cache, Big Effect: Provable Load Balancing for Randomly Partitioned Cluster Ser-

vices’ [10] most directly inspired ours. The authors point out that a skew in popular-

ity that leads to load imbalance also necessarily improves the effectiveness of caching.

Their proposed solution is a popularity-based front-end cache. They show that even

under adversarial workloads, the lower bound on the size of the cache required to

provide load balancing is just O(nlogn), where n is the number of backend nodes.

However, the authors do not discuss techniques to populate the cache or keep it up-to-

date in the face of changing distributions. We have discussed in the previous section

the importance of reacting quickly to sudden and drastic changes in key popularity.

Fan et al. evaluate the effectiveness of their small cache using a read-through

cache architecture, which has several limitations we alluded to previously. A read-

through cache is one that is placed in the critical path of all requests, which means

that the throughput of the system is limited to the that of the cache. This is not a

significant problem for the system described, which used far slower flash storage and

dual core CPUs as back-end nodes. However, it is apparent that the architecture is

not amenable to easily upgrading or adding back-end nodes. Another major issue

with this architecture is one of fault-tolerance. If the cache fails, the entire cluster

becomes unavailable to serve requests. This problem is further exacerbated by the

fact that the architecture is designed to use a single cache node.
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Chapter 3

System Design

In this section, we will discuss the design of Exoskeleton, a fast caching architecture

used to perform load balancing on clusters running distributed key-value stores.

Modern OpenFlow switches are an integral part of the Exoskeleton architecture, and

are used to perform line-rate forwarding of requests for cached keys to cache nodes,

and un-cached keys to database nodes. This form of highly effective load-balancing

enables the use of specialized hardware to handle the different parts of skewed web

traffic distributions. Database nodes are only required to handle the long-tail of

requests, and cache nodes handle the small set of popular keys. An Exoskeleton

cluster consists of several dozen wimpy database nodes, which are designed to be

cheap and power efficient. The cluster also contains a small number of beefy cache

nodes, outfitted with powerful processors, large L3 caches and fast NICs. Figure

3 shows the architecture of an Exoskeleton cluster. We use consistent hashing to

partition key-space amongst wimpy nodes.

As we have discussed previously, Exoskeleton supports GET, PUT and DELETE oper-

ations. We first briefly describe the infrastructure required to process these requests,

and then describe how each of these operations are processed.
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OpenFlow Switch
`

Client Queries

Controller Cache (beefy) Nodes

Persistent-storage (wimpy) nodes

Figure 3.1: Exoskeleton Architecture

3.1 Client Library

We develop a client library that generates request packets with payloads that contain

the required parameters for each request. The client library is also responsible for

encoding information into packet headers such that our OpenFlow switches are able

to route requests correctly. Exoskeleton uses the destination MAC address field for

this purpose. The library sets the last 40 bits of the destination MAC address to

a hash of the requested key. The first 8 bits are considered a prefix, and are used

to identify the packet as being a request destined for Exoskeleton. Using all 48 bits

may result in collisions between key hashes and actual MAC addresses of cluster node

interfaces. Therefore, we select two distinct prefixes that render the resulting MAC

address ‘locally-administered’. This ensures that there are no collisions with physical

hardware addresses. The prefixes also help the switch differentiate between GET

requests (which use the first prefix) and other kinds of requests (which use the second

prefix). The packet source MAC is always set to be the actual MAC of the interface

used to send the packet, and is used for routing responses back to the client. Using

source MACs to encode information would not pose problems for our cluster, given

that we maintain control of the switch rules. However, other switches (perhaps along
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the path to the cluster) that interpret source MACs as indications of real nodes being

connected to a specific port may cause routing issues.

We use UDP rather than TCP to reduce latency and connection-oriented over-

head. Real-world workload analysis also show that most key-value pairs in practice

[4] are smaller than the maximum payload size for UDP packets. Of course, if the op-

erator controls the network equipment along the path, payloads can be much larger.

Our system natively supports 8KB packets. Our architecture supports fragmenting

response packets, although we do not implement this. The client library re-sends

packets for which responses do not arrive within a specified timeout period, however,

we observe low packet-loss rates in practice.

Clients are not required to keep track of system state at all - they do not need

to know the number of nodes or their addresses, nor do they need to keep track of

whether specific keys are present in the cache nodes or database nodes. The next

section describes how request packets from the client are processed by the switch.

3.2 Switch Rules

Table 3.1 lists the rulesets installed into the switch in order of match priority. For

clarity, the rules described in this table assume that each wimpy node is assigned a

single partition of the key-space (i.e. one vnode per wimpy).

The relative priorities of these rules are critical. Ruleset 1 ensures that packets

destined for specific nodes are always routed to each other. Ruleset 2 has a higher

priority than Ruleset 3, so that packets that contain GET requests for keys that are

present in the cache are first routed to the appropriate beefy node, and all remaining

packets are forwarded to the appropriate wimpy node according to Ruleset 3.
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Table 3.1: Rulesets installed in switch

Ruleset 1 For each node i in the set of beefy, wimpy and client nodes:
{match:dest mac=MACi action:outport=Porti}

Directs packets destined for specific nodes directly to them. Used for internal mes-
sages, and to route responses back to clients directly

Ruleset 2 For each cache node i :
For each cached key j in the cache node i :
{match:dest mac=0xAA:Hashj action:outport=Porti}

Directs GET requests for cached items to the appropriate cache node. This ruleset
must be kept up to date as the cache entries change. 0xAA is Prefix 1

Ruleset 3 For each partition i :
{match:dest mac=Prefix1or2:{Maski} action:outport=Porti}

Directs requests for items that do not match any other rules to the appropriate
database node. These rules should match packets with any of the two 8-bit prefixes
0xAA and 0xBA.

For example, if there were only two wimpy nodes in the cluster, the two wildcard
rules installed would be:
{match:dest mac=101*1010 ******** ******** ******** *******0 action:outport=1}
{match:dest mac=101*1010 ******** ******** ******** *******1 action:outport=2}

3.3 GET Requests

GET requests for a key can be received either by a beefy node (if Ruleset 2 is matched),

or a wimpy node (if Ruleset 2 did not match). Requests received by beefy nodes will

result in a lookup of an in-memory map, while requests received by wimpy nodes

will result in a search of data present on flash storage. In case the data is found

successfully, the subsequent behavior is same for both classes of nodes. They construct

a response message with the key and value requested, and with the same sequence

number as the incoming request. The destination MAC is set to be the source MAC

of the incoming packet, which corresponds to the client’s actual MAC address. The

source MAC is set to be the actual MAC address of the interface on which the
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response is sent out. The switch will forward the response packet directly to the

client by matching on Ruleset 1.

There may be small periods of time where a beefy node receives a request for a

key that cannot be located in its in-memory map. This occurs due to a delay in rule

removal from the switch. In this case, the beefy node needs to forward the packet

to the appropriate wimpy node. However, simply sending the packet out unmodified

will result in a loop, as the switch will again match on Ruleset 2. To prevent this, the

beefy node changes the 8-bit prefix of the packet’s destination MAC from Prefix 1 to

Prefix 2 before sending the packet out. This prevents a match on Ruleset 2 (which

only matches on Prefix 1), and Ruleset 3 (which matches both prefixes) will direct

the packet to the appropriate wimpy node. The wimpy node will respond directly to

the client as we have previously described.

3.4 PUT and DELETE Requests

Clients encode Prefix 2 into PUT and DELETE requests to ensure that requests for both

cached and uncached keys are routed to database nodes rather than cache nodes.

The use of Prefix 2 ensures that Ruleset 2 cannot match, and that Ruleset 3 must

be used instead. This behavior is useful because there is no incremental benefit to

having cache nodes process PUT or DELETE messages, as each such message must in

any case be processed by the database nodes.

3.4.1 Requests for Uncached Keys

Dealing with PUT and DELETE requests destined for keys not present in the cache

is straightforward. The wimpy node simply updates its persistent database, and

responds to the client directly. There are no replication issues, as uncached keys have

no replicas. Note that each wimpy node is required to keep track of which keys in
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its partitions are cached at beefy nodes so that additional measures can be taken to

maintain consistency.

3.4.2 Requests for Cached Keys

PUT and DELETE requests for cached keys are more complex. For both PUT and DELETE

requests, the wimpy node performs a two-phase commit. It sends a query-to-commit

message to the appropriate beefy node, writes the new PUT value or DELETE marker

to its log, and the old value to its undo log. The beefy node also writes the new value

to its log, the old value to its undo log, and responds with an acknowledgement. On

receiving this acknowledgement, the wimpy writes the new PUT value to the database

or performs the delete, and sends a commit message to the beefy node. The beefy

updates its in-memory map, and then sends back an acknowledgement message. If

this is received successfully, the transaction is complete, and the wimpy sends a

confirmation to the client. If not, the transaction is rolled back.

3.5 Cache Update Mechanism

Our goal is that the cache nodes store the hottest keys across the cluster at any

given point in time, so as to take as much load as possible away from the resource-

constrained database nodes. We now discuss our mechanism for estimating the hottest

keys cluster-wide, ensuring that these keys are cached, and rapidly installing rules into

the switch to reflect the contents of the cache. Figure 3.5 provides an overview of the

mechanisms used to keep the cache up-to-date.

3.5.1 Load Reporting

To help determine the hottest keys across the cluster, each wimpy node sends a REPORT

message to the appropriate beefy node at regular intervals, which contains a measure

15



Controller Beefy Node
Wimpy Node

REPORT message (wimpy load, hot keys)

OpenFlow Switch

Figure 3.2: Overview of Cache Update Mechanism

of how much load it is dealing with, along with the estimated frequencies of its most

popular keys. Overall wimpy load is measured by an exponential weighted moving

average of its request throughput. Popular keys are tracked using a heavy-hitter

estimation algorithm proposed by Metwally et al. [16]. To estimate the top-k keys in

a stream, the algorithm only requires O(k) memory. This memory efficiency is critical

when we consider that individual wimpy nodes can store billions of keys. However,

the algorithm is too computationally expensive to run for every incoming request to

a resource-constrained wimpy node. To address this, we only update the heavy-hitter

data structure for a small sample of requests. As we are simply attempting to detect

noticeable skew in wimpy traffic, sampling works remarkably well.

At a high level, the detection algorithm works as follows. If the request is sampled,

the algorithm bumps an existing key to a bucket with a higher count, or adds a new

bucket with the minimum estimated frequency for the key if less than k keys are

currently tracked. If the key is untracked and k keys are already being tracked,

the algorithm will evict the least recently visited key from the bucket that contains

the keys with lowest estimated frequency. The new key is added and the minimum

estimated frequency of the data structure is incremented.

To better take into account rapid changes in distributions, we augment Metwally’s

heavy-hitter detector to prioritize more recently requested keys by using individual

heavy-hitter estimators for each time interval. To report the recent heavy-hitters, the
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database node collects keys and counts from all the time-segment counters in the list,

and uses a weighted average biased towards more recent keys to estimate the current

popularity of each key.

3.5.2 Selection of New Cache Entries

Database nodes send report messages at regular intervals. As discussed previously,

these messages contain the estimated frequencies of the hottest keys on each wimpy

node. Each beefy node maintains an ordered list of the hottest keys across all wimpy

nodes assigned to it. This list is updated as new report messages arrive and are

processed. At short intervals, we take a snapshot of this list. We then traverse this

snapshot and add each element in the list whose load factor is greater than a threshold

to the LRU map. As this is a fixed-size map, this results in the least recently used

keys being evicted. We select the addition threshold to be the load of the item most-

recently evicted from the LRU map. These additions and deletions to the map are also

recorded as entries pushed into add and delete queues, which are used to propagate

change information to the switch. The process of propagating these cache changes

to the switch is described in the Section 3.6. Each addition to the cache requires

that the cache node FETCH the values for the cached keys from the database nodes.

Each cache eviction results in an EVICT message being generated for the appropriate

database node. Actual cache additions and deletions only take place when values

have been obtained from the database nodes.

3.6 Switch Update

Before we describe our update mechanism, it is important to note that the way we

use switches in our architecture is quite different from their intended purpose, and
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this places some important restrictions on update mechanisms. We describe these

limitations and present techniques we use to mitigate their effects.

The first limitation is the size of the L2 table. It is reasonable to expect OpenFlow

switches to support a few hundred thousand entries in this table, although the newest

switches (as of mid-2015) support as many as 1 million entries. In our architecture,

this number also functions as the maximum number of cache entries supported. If

our system relied on caches having high hit-ratios to deliver the required throughput,

this limitation would be crippling. However, the beefy cache has a different role in

our system - it exists solely to balance load across wimpy nodes. For this purpose,

a small cache is completely sufficient. As Fan et al. show, the size of a popularity-

based cache for load-balancing has a lower bound of only O(n log n) [10], where n is

the number of database nodes, and not, as one might expect, the total number of keys

stored. Therefore, hundreds of thousands of rules in the L2 table are quite sufficient

to balance load amongst hundreds of database nodes.

Another significant limitation is the extremely limited rule update rate provided

by typical switches. In most cache algorithms, inserting a new key into a full cache

immediately triggers a cache eviction. For our system, this means for every cache

update, two rule updates (delete-rule, and add-rule) must be pushed to the switch.

Consider a situation in which a rapid distribution change creates a large amount

of cache churn. If our architecture required both adds and deletes to happen consec-

utively, we would be able to add items to our cache at only be half of our (already

meager) switch update rate. This scenario would likely increase the amount of time

our wimpy nodes suffer load imbalance.

Prioritizing additions over deletions would mitigate this issue. However, if we

were using all of our L2 rule-space, prioritization would not help us improve our

cache add rate, as we would have to necessarily delete a rule to make space for a

rule that we wanted to add. To address this, we reserve a small percentage of our L2
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rule space as a fast-add buffer. Our controller-update algorithm can use this buffer

to quickly add rules without having to perform deletes immediately in case of rapid

distribution changes. Temporarily delaying rule deletion has no negative impact on

overall system throughput, but delayed additions of newly-popular keys could result

in dropped packets or latency increases. When the cache churn rate decreases or the

buffer is exhausted, the delete queue will be depleted. The size of the buffer can

be tuned depending on the magnitude of the workload changes we wish to handle

quickly. Algorithm 1 shows how we prioritize cache additions over deletions with a

fast-add buffer.

while True do
while !add queue.empty() and !cache.full() do

controller.push(add queue.pop());
end
if !delete queue.empty() then

controller.push(delete queue.pop());
end

end
Algorithm 1: Cache update algorithm

It is also important to note that we use key popularity to determine the contents

of the cache. LRU is quite effective at identifying the most popular keys, however,

the cache churn rate is far too high for our limited rule update rate. LRU and top-k

have similar hit-rates in practice, but it is clear that a list of the top-k keys in any

real distribution will incur less churn than simply using a list of the most-recently

accessed elements.

3.6.1 Tracking Cached Keys on Database Nodes

Wimpy nodes must keep track of which keys in their partitions are cached in a beefy

node. This information is used to determine whether consistency-related operations
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are to be executed for an incoming PUT and DELETE requests. As REPORT messages

only contain the most popular keys, the beefy node must retrieve the associated values

to place into the cache. The beefy node selects a number of keys to cache from any

given wimpy node, and sends FETCH requests to the wimpy nodes to obtain values for

each of the keys it has decided to cache. FETCH responses have the same format as

GET responses. However, FETCH messages also serve as a way of communicating to a

wimpy node a beefy node’s intention to cache a given key. Once a FETCH message for

a specific key is received, the wimpy node will perform consistency-related operations

for that key going forward.

When items are removed from the cache, the cache node sends an EVICT messages

to the appropriate wimpy node. An EVICT message directs the wimpy node to remove

a specific key from its list of cached keys. Once an EVICT message for a key is

processed, PUT and DELETE messages for that key will be processed solely by the

wimpy node, and no consistency-related operations are required.

3.7 Hardware Requirements

In this section, we will describe the hardware required by an Exoskeleton cluster.

We utilize specific hardware functionality to build our system in a cost-effective and

scalable manner.

3.7.1 Switch

A high-performance OpenFlow-enabled switch is an essential part of our architecture.

A Exoskeleton-compatible OpenFlow switch is required to have a TCAM table that

can store O(num vnodes) (i.e. a few thousand) wildcard rules . Additionally, it must

be able to hold at least O(cache entries) (i.e a few hundred thousand) rules in its L2

table - which is used to perform exact matches on various L2 headers. It must also be
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able to set exact match rules to at a higher priority than wildcard-match rules. Some

switches intelligently decide which tables rules are placed into. These switches are

also compatible with our architecture, as long as our rulesets can be installed with

the specified priority. In our cluster, we run a Ryu-based controller on one of the

cache nodes, although this is not enforced by our architecture. The controller simply

exposes a REST API that allows every cache node to send rule updates to the switch

via HTTP.

3.7.2 Database (wimpy) nodes

The design of our database (wimpy) server was motivated by its expected workload

given our two-tiered architecture. Every node must act as the backing store for billions

of key-value pairs (i.e. hundreds of gigabytes) and serve as many requests as possible

while remaining cheap and power-efficient. We now describe our process for selecting

the appropriate hardware for our wimpy nodes.

To store hundreds of gigabytes of data, in-memory storage would be too expensive

and power hungry. Assuming a majority of queries require require reads from database

rather than CPU or application caches (as the wimpy is handling the long tail of

requests), performance of the database is of paramount importance. Spinning-disk

storage has high random seek times, and is immediately disqualified for this reason.

We therefore explore various flash storage options.

As our intended application is a key-value store, we are primarily concerned with

small-block random read IOPS. Given the inherently parallel architecture of flash

devices, we want to maintain a high queue depth to maximize utilization. SATA

is not well-optimized for parallel operations, and therefore SATA-based SSDs scale

poorly with queue depth [2]. PCIe-based SSDs do not suffer from this issue. In the

interests of reproducibility, we select NVMe; which is fast becoming popular as a

PCIe-based standard. Multiple consumer-focused NVMe SSDs have launched in the
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first half of 2015. NVMe devices are also more CPU efficient (due to a lower-overhead

architecture) than SATA devices.

As NVMe SSD performance scales almost linearly with queue depth, it is in our in-

terest to select multi-core CPUs that can effectively utilize SSD I/O capacity. Batch-

ing could be used to further increase average queue depth. Inexpensive multicore

SoCs have far lower clock speeds than typical high-end server chips, but given that

we expect to spend a significant amount of CPU time waiting on SSD I/O we believe

that the lower clock speed will help us achieve our power-efficiency goals.

3.7.3 Cache (beefy) nodes

Beefy nodes are required to deliver extremely high throughput while storing a small

total amount of data from memory (hundreds of thousands of key-value pairs). We

require a fast CPU for packet processing, a large L3 cache, and a fast modern NIC.

Our small total cache size allows us to rely on the L3 cache to store a large portion of

cache entries, rather than using expensive and power-hungry RAM. Intel Data Plane

Development Kit (DPDK) [1] support for the NIC is not a requirement, but is useful

for high-speed packet processing.

3.8 Software Architecture

In this section we provide a brief overview of the software architecture used for cache

and database nodes, and describe the network stack for both kinds of nodes in detail.

Our cache nodes are required to comfortably support many millions of small-key

value operations per second. To assist with high-speed packet processing, our cache

nodes use Intel DPDK for networking rather than standard system sockets, as DPDK

provides several libraries to assist with fast user-space packet processing. Exoskeleton

uses the provided Poll-Mode Driver to perform low-overhead burst packet process-
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ing, avoiding expensive interrupts. We configure our NIC to improve throughput

by spreading packet processing load across all available system cores. Depending

on hardware capabilities, various flow/packet direction technologies can be used, in-

cluding Intel Flow Director and RSS. Our architecture uses the run-to-completion

model, where each core is responsible for serving a request end-to-end, as opposed to

a pipeline model where one core is dedicated to reading packets and all the remaining

cores performs partial packet processing.

Each cache node maintains a fixed-size in-memory map used to serve incoming

requests. The map uses the LRU algorithm to evict keys that are added when the

map is at capacity. The size of the map is determined by dividing the maximum

number of cached items (usually capped at the size of the switch’s L2 table) by the

number of cache nodes. The map also contains a frequency counter for each cached

item.

Given the resource constraints on our wimpy database nodes, we require low-

overhead and efficient SSD-optimized database software. We use the RocksDB em-

bedded database, as it meets all these requirements. We architect our network stack

in a fashion similar to Facebook’s optimized memcached distribution [22], with one

thread running per-core and no direct inter-core communication. These threads each

block on a shared receive socket, but possess individual send sockets. We utilize Linux

raw sockets, as we want to be able to read and modify IP and Ethernet headers, and

therefore can read and write entire Ethernet frames. Our implementation is designed

to have as little overhead as possible. However, given that single-node key-value store

performance is not the focus of this work, we refrain from modifying the kernel or

RocksDB to further improve performance.
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Chapter 4

Evaluation

4.1 Experimental Setup

4.1.1 Wimpy Emulator

As it was infeasible to build a large cluster of specialized wimpy nodes specifically for

this project, we wrote an evaluation tool that is able to emulate multiple wimpy nodes

on a powerful multicore server. We dedicate one core to each emulated wimpy which

along with receive-side scaling and per-core DPDK receive queues, helps achieve a

measure of isolation. The actual packet processing code for both the wimpy and

emulator is precisely the same with three exceptions:

1. The emulated wimpy uses DPDK rather than raw sockets to interface with NICs

and to provide burst packet I/O.

2. The emulated wimpy nodes do not actually perform disk reads - they simply

return a fixed value for every requested key they receive.

3. Each emulated wimpy is rate-limited to the throughput of the actual wimpy

node.
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4.1.2 Test Cluster

Our test cluster contains four identical nodes in the following configuration:

• 2 x Wimpy Emulator (1-16 emulated nodes each)

• 1 x Beefy Server

• 1 x Test Client

Each server has an Intel Xeon CPU E5-2660 with 20MB of L3 cache, in a dual

socket configuration with 8 physical cores per socket running at 2.20GHz. Each node

is equipped with 32GB of RAM. The servers run Ubuntu 14.04, with Linux kernel

3.13. We use single-port Mellanox ConnectX-3 EN 40GbE QSFP+ PCIe-based NICs

on each server. As the NIC drivers support only 16 RX/TX queues per port, we can

only effectively use 8 physical (16 logical) cores per node with the DPDK run-to-

completion model.

These four servers are connected via QSFP+ to a Pica8 P3922 switch with

48x10GbE ports and 4x40GbE uplink ports. The P3922 is built on a Trident+ ASIC.

We run the Pica8 switch in Open vSwitch (OVS) mode, which enables OpenFlow

1.3 support. The switch supports a maximum of 128K rules in its L2 table, and 1024

rules in TCAM. As of PicOS 2.5, L2 rule update rates are limited to approximately

50 updates/sec. It is important to note that our choice of switch is also conservative

in terms of OpenFlow performance. New switches from vendors like NoviFlow have

8x the rule space and 64x the update rate of the P3922.

4.2 Static Distributions

Our first set of experiments is intended to evaluate the impact of a fast cache on load-

balancing and system performance. In these experiments, we pre-populate our beefy
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caches, and install the required rules into the switch prior to starting the benchmark.

We use 32 emulated wimpy nodes - 16 each on two servers. Each emulated wimpy is

rate-limited to serving a maximum of 72,200 requests per second. For all experiments,

keys are 16 bytes, and values are 512 bytes. Our testing shows that modifying key or

value size has little impact on query throughput, as long as requests and responses

can fit into a single UDP packet. We turn off reliability features for our experiments

in order to avoid the high associated overhead. To make fair comparisons across

different configurations, we control our client send rate to maintain a constant packet

loss of approximately 5% for all experiments. The size of our total database is fixed

at 100 million keys, although our architecture can easily support hundreds of billions

or trillions of keys at the sizes described above.

Figure 4.1 shows the impact of adding a cache with just 1,000 total entries on a

cluster exposed to traffic with different levels of skew. It is clear from the Figure 4.1a

that high levels of skew in un-replicated partitioned databases result in unacceptably

poor average utilization resulting from significant load-imbalances. It is also apparent

from the graph how effective a small, fast cache is in allowing system operators to

maximize utilization for skewed distributions.

We also examine the effects of different levels of skew on the effectiveness of the

cache, and its contribution to aggregate cluster throughput. Figure 4.2 summarizes

our results. We see that at if traffic is skewed with Zipf alpha of 0.995, the addition

of a cache node which serves the 1000 hottest keys increases cluster throughput by

almost 5x. For higher levels of skew (>= 0.996), the single cache node handles more

incoming traffic than the 32 persistent-storage nodes in the cluster.

It is also important to consider the impact of cache size on load-balancing to

understand how many cache nodes and how much switch L2 rule-space is required

to achieve load balancing across a given cluster. Figure 4.3 shows the impact of

different cache sizes on system throughput. This experiment sets the Zipf skew to
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(b) With Cache

Figure 4.1: Throughput of wimpy database nodes for different levels of traffic skew
Node IDs (x-axis) are sorted according to their throughput. A cache with just 1000
entries is extremely effective at load balancing. The more skewed distributions are

also able to utilize close to 100% of wimpy node capacity.

27



uniform zipf-0.9 zipf-0.95 zipf-0.99 zipf-0.995 zipf-0.998
Traffic Distribution

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (m

illi
on

 re
qu

es
ts/

se
c)

32 Wimpy Aggregate (without cache)
32 Wimpy Aggregate (with cache)
Cache

Figure 4.2: Impact of traffic skew on cluster throughput
A cache size of 1000 entries is sufficient to ensure consistent performance of the

wimpy nodes whether the distribution is uniform or highly skewed.

be 0.99. As we have mentioned previously, this is a conservative estimate. Previous

work[4] indicates that skews of > 0.995 are commonly observed. We see that when our

cache contains 15,000 entries, our cluster throughput is below its aggregate capacity,

as the percentage of traffic directed to the cache node has become so high that our

wimpy nodes start to become underutilized. System operators can easily compute

the appropriate cache size to achieve close to 100% utilization on every cluster node

simply by examining the traffic skew.
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Figure 4.3: Impact of cache size on cluster throughput
If traffic skew is known, cache size can be controlled to ensure 100% utilization of

each cluster node. For this setup, cache sizes > 5000 under-utilize wimpy nodes, and
cache sizes < 5000 under-utilize the cache node.

4.3 Dynamic Distributions

In this section, we examine how well Exoskeleton handles changing traffic distri-

butions. Rapidly changing traffic distributions and data spikes are an important

characteristic of web-scale traffic.

We conduct an experiment to measure how fast our Exoskeleton cluster is able to

react to an extreme shift in distribution. For this experiment, we measure how fast

the cluster is able to return to its full capacity when a set of the most popular keys are

instantaneously replaced by some of the least popular keys at regular intervals. This

is accomplished simply by changing the mapping of key indexes. Figure 4.4 shows
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that Exoskeleton is able to rapidly recover from extreme changes in distribution. As

we expect most real key popularity changes to be more gradual, we contend that

Exoskeleton will be able to deal with real workload changes with far smaller impact

on throughput.
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Figure 4.4: Impact of sudden workload changes on cluster throughput
Cluster throughput recovers in an average of 2.5 seconds from instantaneously

replacing the 50 most popular keys with the 50 least popular keys every 50 seconds.
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Chapter 5

Conclusion

5.1 Future Work

Although our results are promising, Exoskeleton is very much a work in progress.

Major functionality, including replication for fault-tolerance, consistency models, al-

ternative cache update strategies etc. need to be implemented and tested. Several

optimizations and improvements must also be implemented and tested. For exam-

ple, our initial experiments have not adequately captured write performance, and we

have not yet tested alternative caching or consistency strategies. An intuitive next

step is to replace our homegrown software with the best existing single-node key-

value storage software from industry and academia. Running our cache architecture

with each node running best-in-class software will allow us to thoroughly evaluate the

performance on a large real-world cluster.

5.2 Conclusion

This paper demonstrates that it is possible and useful to have a cache-based key-

value store cluster architecture designed from the ground up to deal with traffic from

web-scale applications. We describe Exoskeleton, a high-performance prototype im-
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plementation of this architecture. Additionally, we demonstrate that Exoskeleton

is able to effectively deal with the traffic characteristics of modern web-scale ap-

plications, i.e. highly-skewed distributions that change rapidly and unpredictably.

Exoskeleton makes it feasible to cheaply store trillions of items on flash, and to serve

this data with predictable latency and throughput regardless of traffic distributions.
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