
A Novel Domain Adaptation Solution

to the Transductive Transfer Learning

Problem

Jordan Thomas Ash

A Thesis

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Master of Science in Engineering

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Robert Schapire

June 2015

c© Copyright by Jordan Thomas Ash, 2015.

All rights reserved.

Abstract

Most classification algorithms rely on the assumption that training and testing data

come from the same distribution. When this assumption is violated, classification

performance can be seriously affected. Transfer learning, a new and increasingly

popular branch of machine learning, seeks to remedy this potential problem. In this

thesis, we introduce a new transductive transfer learning technique that functions

by leveraging two separate classification hypotheses to geometrically align the source

and target datasets before classification. We show several examples of this technique,

and compare it to other methods commonly used in transfer learning.

iii

Introduction

From the perspective of human intelligence, transfer learning can be thought of as
responsible for why it’s easier to learn to speak French after having learned Spanish,
or to learn to program in C++ after having learned Java. Transfer learning becomes
important any time we want to apply a model obtained from one dataset to a similar
dataset that comes from a different distribution.

In the transfer learning paradigm, rather than having training data and testing
data, we are given source data, from which we want to transfer knowldedge, and
target data, to which we want to transfor knowledge. Transfer learning comes in two
flavors, inductive and transductive, in which we are either given some labels or no
labels on our target data respectively. As one might expect, transductive transfer
learning is generally regarded as significantly more difficult than inductive transfer
learning.

This research was largely motivated by a particular transductive transfer learning
problem that will be discussed in detail later. This problem is an extreme case of
transfer learning because, as we’ll show, none of the sources have any significant geo-
metric overlap. Because of its difficulty, the problem was outsourced as a competition
on a popular data science dataset repository in 2014. We will show that our algorithm
gets results that are superior to what’s been published on this problem [1], and that
even surpass the winners of the online competition.

This thesis is organized in the following way. We first describe transfer learning
in detail, in addition to the assumptions we’ll be making. Next, we will discuss
other transfer learning algorithms that are frequently used. Then, we’ll introduce
our technique at a high level. Finally, we will demonstrate the algorithm in two very
different settings, one of which being the outsourced problem mentioned above. We’ll
compare these results to those produced by other transfer learning algorithms.

1

Transfer Learning and
Assumptions

Let Xj
s be a particular source dataset (of which there may be several), meaning that

we would like to transfer some model trained on Xj
s to our unlabeled target data, Xt.

Further, let D(Xj
s) and D(Xt) be defined as the underlying distributions generating

the jth source and target datasets respectively. The typical machine learning paradigm
assumes that D(Xj

s) = D(Xt). However, in a transfer learning framework, we instead
assume that D(Xj

s) 6= D(Xt), and further that D(Xj
s) 6= D(X i

s) ∀j 6= i. In some
cases, we are given some labels on data points from D(Xt). In that case, the problem
is called inductive. Otherwise, the problem is called transductive. In either case, we
are given Xt before classification. Here, we will assume that sample labels are either
zero or one, y(x) ∈ {0, 1}.

In this thesis, we will be assuming that there exists some transformation, Aj, such
that D(Xj

s) = D(AjXt) for any particular source j. Our goal will be to uncover
this transformation, allowing us to use the classification model trained on Xj

s . Even
stronger, we will be assuming that this transformation, Aj, will capture a translation,
dilation, and rotation. In other words, we are assuming that D(Xt) is translated,
dilated, and rotated with respect to D(Xj

s).

2

Related Work

Covariate Shift

[1] discusses two approaches to solving this problem. One, termed covariate shift,
seeks to show labeled source instances to a learner with a frequency proportional to
the degree with which they look like they may have been emitted from the target
distribution [2]. Accordingly, it weighs the likelihood of the classification algorithm
seeing a labeled source sample during training by

P∼D(Xt)(xs,i, y(xs,i))

P∼D(Xs)(xs,i), y(xs,i)
,

where xs,i is some labeled source datum. Covariate shift makes the assumption that
P∼D(Xt)(Y |Xt) = P∼D(Xs)(Y |Xs), so that

P∼D(Xt)(xs,i, y(xs,i))

P∼D(Xs)(xs,i, y(xs,i))
=
P∼D(Xt)(xs,i)

P∼D(Xs)(xs,i)
.

So, to build a classifier that will hopefully generalize well to target data, one only

needs to show a learner source data with a frequency proportional to
P∼D(Xt)

(xs,i)

P∼D(Xs)(xs,i)

during training.
To approximate these probabilities, the authors suggest using logistic regression,

trained on labels corresponding to whether a sample comes from the source or target
dataset.

Stacked Generalization

Second, [1] employs a technique called stacked generalization [3]. This is a general
ensemble learning procedure in which several classifiers, Ci, i = 1, 2, ..., k, are trained
on different portions of the training data. Then, the hypotheses generated by these
classifiers are used as features for another learner trained with all of the available
training data, G : C1(Xs), C2(Xs), ..., CS(Xs) → y(Xs), where Xs is the set of all
source subjects. The authors of [1] claim that the best way to adapt this method to
fit the transfer learning framework is to make a first-level classifier for each of the
source subjects.

3

We will compare our results to both of these techniques, as well as a combination
of the two. In the latter case, each Ci sees samples from its corresponding X i

s during
training with a frequency computed by the covariate shift algorithm.

4

A Classification Procedure

For any held-out target data, we will leverage two feature spaces in which we could
work. One is the higher-dimensional space that the data already lies in, Xt, while the
other is simply some arbitrary lower-dimensional embedding of this data, X̃t. The
goal of this algorithm is to align the low-dimensional representation of the target data
with that of a particular source, X̃j

s . After this alignment, a classifier learned on the
low-dimensional source should be able to perform well on the low-dimensional target.
The classification procedure outlined in this section will leverage both spaces. We
will use the high-dimensional space to align the low-dimensional X̃t for the actual
classification.

For a fixed target subject, we first train a classification algorithm on all available
source subjects Xj

s , j = 1, 2, ..., S in high-dimensional space. The classifier outputs
some hypothesis, h(Xt), on the target between zero and one, reflecting the learner’s
confidence that the sample corresponds to the true or false class, respectively. We
will use h(Xt) to align the data in the low-dimensional space.

In the low-dimensional space, we fix a particular source subject to which we will
align our target data. This alignment will involve rotating, translating, and dilating
the target data to match it to the source data. Translation and dilation can be
aligned by simply whitening both datasets, which makes the covariance matrices
of both datasets equal to the identity matrix. In practice, this could be achieved by
PCAing the data, then dividing each dimension by the square root of its corresponding
eigenvalue. Across each dimension, whitened data has a mean of zero, making the
source and target centered on the same point, and a standard deviation of one, making
the datasets spread over the same geometric region. Another major advantage of
whitened data, especially in this framework, is that if it is rotated, the resulting data
is still white. From this point forward, X̃t and X̃j

s will refer to a whitened target and
source dataset respectively, rather than their unwhitened counterparts.

The more difficult task is to find the rotation for the target data that best matches
it to the source data. To accomplish this, we first train another classifier on a fixed
low-dimensional source dataset we want to transfer knowledge from, X̃j

s . This will be
yet another classifier, which like the high-dimensional learner, can output classifica-
tions on data between zero and one. We will refer to this low-dimensional classifier
as fj. If we assume that the high-dimensional hypothesis h(Xt) performs better than
guessing, and that fj is the correct shape for a low-dimensional dichotomizer, then
it seems reasonable to rotate the whitened target data until fj(X̃t) best matches

5

h(Xt). So, to find the optimal rotation in low dimensions, we want to minimize the
disagreement between the low and high dimensional classifications.

disagreementj(R) =
N∑
i=1

(h(xi)− fj(Rx̃i))2

where xi is the ith target sample in high-dimensional space, x̃i is the ith whitened
target sample in low-dimensional space, and R is a rotation matrix in the same
number of dimensions as X̃. Once we have found the minimizing rotation matrix,
R∗j = arg minR (disagreementj), we compute a final hypothesis for Xt as⌊

1

S

S∑
j=1

fj(R
∗
jX̃t)

⌉
,

averaging the classifications produced by leveraging all S sources.

6

Experiments and Results

MEG Data I

This problem, which motivated the research in this thesis, was originally presented
by Kaggle as a data science competition. The Kaggle website connects various or-
ganizations with a network of people interested in data science, effectively allowing
large problems to be outsourced. This particular challenge was sponsored by several
companies, including Elekta Oy, MEG International Services, Fondazione, and Besa.

The data consists of 16 training subjects. For each subject, hundreds of samples
were collected where he/she was shown either an image of a face or of a “scrambled
face,” which was essentially just a noisy image with no discernible face-like structures.
Each individual sample was collected by monitoring each subject’s brain activity
with a neuro-imaging technique called Magnetoencephalography (MEG). The goal is
to correctly label, on subjects unseen during training, which samples correspond to
faces and which correspond to noise.

MEG data is created from many sensors, each recording some time-varying signal
at a different part of the skull. For this reason, we chose to represent the MEG data
using the Common Spatial Pattern (CSP) algorithm, which is most frequently used
on electroencephalogram (EEG) because EEG also has this time-varying multivariate
signal property. The CSP algorithm finds a set of components such that, when the
data is spread across them, the variance between the true-labeled data and false-
labeled data is maximized [4].

After constructing this representation, we employed t-distributed Stochastic
Neighbor Embedding (t-SNE) [5] to reduce its dimensionality. The t-SNE algorithm
operates by minimizing the KL divergence between a distribution representing
a high-dimensional datum and a distribution representing its corresponding low-
dimensional embedding. Specifically, t-SNE begins by, for some general fixed data
point Xi, computing the probability that all Xj, j 6= i, would be selected as Xi’s
nearest neighbor according to a distribution. This is done by centering a Gaussian at
Xi and computing the conditional probability of all Xj according to this Gaussian.
The resulting list of probabilities is then normalized to become a distribution over
all neighbors of Xi. An analogous set of normalized probabilities is computed for
the low-dimensional data by using a student’s t-distribution, rather than a Gaussian.
An embedding is found my minimizing the KL divergence between these high and
low-dimensional distributions, summed over all data points. We used t-SNE to
embed our data into two dimensions to create figure 1.

7

-150 -100 -50 0 50 100
-100

-80

-60

-40

-20

0

20

40

60

80

100
Embedding for Subject 1

-100 -50 0 50 100 150
-100

-50

0

50

100

150
Embedding for Subject 2

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100
Embedding for Subject 3

-100 -50 0 50 100 150
-100

-80

-60

-40

-20

0

20

40

60

80

100
Embedding for Subject 4

Figure 1: Four example embeddings from t-SNE. Red and blue respectively corre-
spond to positive and negative examples for training (source) subjects, while Cyan
and Magenta respectively correspond to positive and negative examples for test (tar-
get) subjects.

Figure 1 instantly gives some validation to our assumptions. Indeed, each subject
appears to be rotated, translated, and dilated with respect to every other subject.
Because the data is now embedded into two dimensions, and two-dimensional rotation
matrices have the explicit form

R =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
,

we can find R∗ by just searching over all θ ∈ [0, 2π). Figure 2 shows disagreementj
and target error as a function of θ, demonstrating the strong correlation between the
value of disagreementj and target error. Of course, these plots also show what we’re
really interested in, which is that when the objective function is minimized, target
classification error is minimized as well.

As can be seen in table 1, we are sometimes unable to find a high-quality alignment
for two datasets. This obliterates classification performance, as in the case of subjects
11, 3, 16, and 6. Some of these cases are plotted in figure 3.

The plots in figure 3 are so poor that the high-dimensional classifier actually
outperforms the low-dimensional classifier. In other words, we see no performance

8

0 1 2 3 4 5 6 7
30

40

50

60

70

80

90

100

110
Net Disagreement (Source = 6, Target = 4)

Radians
0 1 2 3 4 5 6 7

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Classification Error (Error After Rotation: 0.1835, HD Net Error: 0.31145)

0 1 2 3 4 5 6 7
40

60

80

100

120

140
Net Disagreement (Source = 7, Target = 14)

Radians
0 1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Classification Error (Error After Rotation: 0.16327, HD Net Error: 0.27041)

0 1 2 3 4 5 6 7
80

90

100

110

120

130

140
Net Disagreement (Source = 13, Target = 7)

Radians
0 1 2 3 4 5 6 7

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Classification Error (Error After Rotation: 0.27381, HD Net Error: 0.44898)

0 1 2 3 4 5 6 7
60

70

80

90

100

110

120

130
Net Disagreement (Source = 16, Target = 10)

Radians
0 1 2 3 4 5 6 7

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Classification Error (Error After Rotation: 0.28136, HD Net Error: 0.35763)

Figure 2: Four source-target pair examples, showing the value of disagreementj
(blue) and the classification error on the target data (red) as a function of θ ∈ [0, 2π).
Each plot also identifies the error after alignment and the error of the naive high-
dimensional classifier h (HD Error).

Classification Error Summary
S01: .22 S02: .32 S03: .37 S04: .19
S05: .25 S06: .33 S07: .31 S08: .20
S09: .16 S10: .29 S11: .41 S12: .25
S13: .28 S14: .17 S15: .22 S16: .37

Overall Error: .27

Table 1: A per-subject breakdown of classification error rate. In this example, h and
fj are both feedforward neural networks with a single hidden layer.

improvement by doing the alignment at all. Still, it’s worth noting that the
disagreementj values remain correlated with the error plots shown below them. As
one might expect, it turns out that alignments that produce high errors tend to

9

0 1 2 3 4 5 6 7
60

70

80

90

100

110

120

130
Net Disagreement (Source = 8, Target = 3)

Radians
0 1 2 3 4 5 6 7

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54
Classification Error (Error After Rotation: 0.40311, HD Net Error: 0.39446)

0 1 2 3 4 5 6 7
25

30

35

40
Net Disagreement (Source = 11, Target = 16)

Radians
0 1 2 3 4 5 6 7

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54
Classification Error (Error After Rotation: 0.41695, HD Net Error: 0.43898)

Figure 3: Two target-pair examples as in figure 2, but with particularly poor classi-
fication error values.

correspond to transferring knowledge from or to low-dimensional clusters that seem
disorderly. Such clusters can be observed in figure 1 as inseparable.

This behavior is very predictable. Figure 4 plots classification error as a function
of the disorder of each target subject in the low-dimensional space. Here we are
defining disorder as the probability that a target point and its nearest neighbor have
the same ground-truth class. We can easily compute this probability as

1

n

n∑
i=1

1{y(x̃i) 6= y(NN(x̃i))}

where n is the number of points in the target subject’s data, NN(x̃i) is the nearest
neighbor to some x̃i, and y(x̃i) is the ground-truth label of x̃i. if a dataset is pure
labeled randomly, then disorder would be .5. If instead it is perfectly separable, and
there’s some space between the true and false samples, disorder would be 0.

Figure 4: A plot showing disorder as a function of classification error for all 16
subjects.

It’s highly possible that the high degree of disorder shown in some subjects, creat-
ing a similarly high classification error, is the result of an imperfect low-dimensional

10

embedding rather than inherently unclassifiable target data. One solution might
be to embed the data into a space higher than two dimensions, but the current
dissimilarityj optimization routine is just an exhaustive search, which becomes
quickly intractable. Even worse, because high-dimensional rotation matrices don’t
necessarily have simple parametrizations like in the two-dimensional case, an exhaus-
tive search over variables can’t even be done most of the time. In the next instan-
tiation of this technique, we will give an example of how to find higher-dimensional
rotation matrices.

MEG Data II

Allowing the data to be embedded in a higher-dimensional space creates several im-
mediate problems. First, high (greater than 3) order rotation matrices don’t have
a known simple parametrized form like in the two-dimensional case. We’d like to
be able to use gradient descent on these parameters to minimize dissimilarity, but
without having a parametrized rotation matrix form that could be generalized to
higher dimensions, this isn’t possible. We could instead perform gradient descent by
just thinking of a rotation matrix R as a point in d2 dimensions, approximating the
gradient as

∇R disagreement '
disagreement(R + δ)− disareement(R− δ)

2δ

for some small δ, but then there would be nothing forcing R to actually be a
rotation matrix. In this section, we will solve this optimization problem by leveraging
a result from a similar problem.

Wahba’s problem [6], which comes up in many computer-vision tasks, aims to find
the rotation matrix that describes one set of points rotated with respect to another.
The problem is to find the R that minimizes

n∑
k=1

‖wk −Rvk‖2,

where wk and vk are vectors rotated with respect to each other in arbitrary di-
mensions. Wahba’s problem has a surprisingly simple solution [7], outlined below.

B =
n∑

k=1

wiv
T
i

By singular value decomposition,

B = USV T .

The optimal rotation matrix R∗ is

R∗ = UMV T ,

11

where M = diag([1, 1, ..., det(U)det(V)]). We will denote this solution to Wahba’s
problem as ω(X1, X2), which we will take to output some matrix R such that
RX2 ' X1. This formulation will allow us to perform gradient descent to mini-
mize disagreementj. As stated before, we would like to be able to just think of the
matrix we’re solving for as a point in d2, but performing gradient descent (or any
optimization procedure for that matter) on disagreementj is unlikely to produce a
rotation matrix (a member of the special orthogonal group SO(d)). To resolve this,
we define

G(A) = ω(AX̃t, X̃t)

Where A is an arbitrary dxd matrix. We could think of this as solving for a
rotation matrix, G(A), that minimizes the squared distance between G(A)X̃t and
AX̃t, taking an arbitrary matrix A and correcting it into a rotation matrix. Using
this formulation, we minimize the function

OPTj(A) =
n∑

i=1

(h(xi)− fj(G(A)x̃i))
2

as an alternative to disagreementj. Because A is an arbitrary dxd matrix, and
doesn’t have to embody any particular properties, we could perform simple gradient
descent to find its optimal value A∗j . Given this A∗j , we are assuming that

R∗j = arg minR {disagreementj(R)} = G(arg minA {OPTj(A)} = G(A∗).

Using this method, we can obtain updated results, shown in table 2. In this
experiment fj and h are, like in the previous example, both feedforward neural net-
works with a single hidden layer. However, unlike in the previous experiment, we are
reducing the dimensionality to five with PCA rather than to two with t-SNE.

Classification Error Summary
S01: .20 S02: .31 S03: .30 S04: .08
S05: .21 S06: .33 S07: .26 S08: .23
S09: .15 S10: .17 S11: .44 S12: .16
S13: .28 S14: .12 S15: .23 S16: .24

Overall Error: .23

Table 2: An updated per-subject breakdown of classification error rate

Spam Classification

In this section, we will apply our algorithm in a more common space - spam classi-
fication. For this problem, we have inboxes from several different people, and want
to use these sources to create a custom spam filter for a user unseen during training.

12

This dataset was obtained from the 2006 European Conference in Machine Learning
meeting, and contains data from 15 different inboxes. Each email sample is repre-
sented according to a bag-of-words and each inbox contains 400 emails. This problem
was selected because, as shown in figure 5, this is not obviously a transfer learning
problem. Indeed, a classifier trained naively of all source subjects (which is exactly
the same as h) in aggregate will perform well, acieving an error rate of .15.

Still, as demonstrated in table 3, our algorithm is able to improve this result to
.12. In this experiment, fj and h are again neural networks, and we are reducing
dimensionality to five using t-SNE.

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150
Embedding for All Subjects

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150
Embedding for All Subjects

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150
Embedding for All Subjects

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150
Embedding for All Subjects

Figure 5: A two-dimensional embedding of the spam dataset as computed by t-SNE.
On the left, samples are colored according to their label. On the right, they’re colored
according to the source from which they come.

Classification Error Summary
I01: .06 S02: .07 I03: .14 I04: .09 I05: .18
I06: .19 S07: .14 I08: .10 I09: .08 I10: .04
I11: .15 S12: .15 I13: .07 I14: .18 I15: .13

Overall Error: .12

Table 3: A per-inbox breakdown of classification error rate

13

Discussion

As mentioned earlier, we will be comparing our technique to covariate shift, stacked
generalization, and a combination of the two, because that is what was used in [1]. For
the MEG experiment, [1], rather than using a representation produced by the CSP
algorithm, just used the high-pass filtered raw data to create a feature space. This
space produces data that is more difficult to classify, but has more overlap between
the subjects. They obtained hold-out classification errors of .38, .35, and .33 for
covariate shift, stacked generalization, and the two combined respectively.

Because the CSP algorithm uses labels from each of the source subjects, it pro-
duces a space that is atypically extreme for transfer learning. Again, as seen in figure
1, there is essentially no geometric overlap of the subjects. Consequently, in this mod-

ified feature space, the covariate shift instance weighting ratio,
P∼D(Xt)

(xs,i)

P∼D(Xs)(xs,i)
, collapses

to near-zero for all xs,i. So, the source instances are weighed almost uniformly, re-
moving any gain we might get from using this method. Using a neural network as our
learner, covariate shift does no better than guessing on this problem. Stacked gener-
alization doesn’t perform better than guessing in this representation either, probably
also because the datasets don’t overlap at all.

One major triumph of our algorithm is its ability to triumph in these particularly
hostile settings. Figure 6 shows three source-target pairs before and after rotational
alignment, demonstrating the algorithm’s ability to reduce disorder even when data
seems initially inseparable.

Both our first and second MEG classification results were superior to what was
published in [1]. The online Kaggle competition first-place winner had an error rate
of .25, which we were able to outperform in our second MEG data classification, but
not our first.

On the spam classification problem, a covariate shift trained neural network can
achieve .14 error, slightly lower than its non-covariate shift counterpart. Stacked
generalization, also using neural networks, is able to produce an error rate of .12
(which is the same as our algorithm), but there is no improvement by combining
stacked generalization with covariate shift.

14

Source = 16, Target = 1
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Before Alignment
P(y(X) NN(y(X))) = 0.34966

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

After Alignment
P(y(X) NN(y(X))) = 0.18243

Source = 5, Target = 8
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Before Alignment
P(y(X) NN(y(X))) = 0.33531

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

After Alignment
P(y(X) NN(y(X))) = 0.18336

Source = 1, Target = 14
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Before Alignment
P(y(X) NN(y(X))) = 0.489

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

After Alignment
P(y(X) NN(y(X))) = 0.16497

Figure 6: Three source-target pairs before and after rotational alignment. This ex-
ample shows the first two principal components of the data as described in the second
MEG experiment.

15

Conclusions

There are several big assumptions made by our algorithm. First, we’re assuming that
the high-dimensional classifier, h, is able to uncover enough global structure in the
data to do better than guessing on the target data. If this is violated, we can’t expect
to be able to align the data well.

The amount of global structure available to h is really a function of the number
of sources available and how similar the datasets are to one another. The MEG data,
for example, has sources that are very dissimilar, but there are enough of them for
h to still uncover some structure. On the other hand, in the spam experiment, the
datasets are similar enough that h would perform better than guessing on a target
even if there was only one source available.

Second, we assume that the low-dimensional classifier trained on a fixed source
subject, fj, is the right shape, meaning that there is some way to orient the target
data such that fj classifies it well. Of course, if this is violated, the algorithm probably
won’t be able to perform.

One advantage to our procedure is the flexibility of the classifiers and dimension-
ality reduction technique used. For example, it might be useful to improve h by
allowing it to be trained according to stacked generalization, covariate shift, or any
other transfer learning procedure.

Our technique lifts out unwanted variance in the data caused by differing datasets
by finding a rotational transformation, which doesn’t disturb the pairwise sample
relationships in either the source or the target data. Overall, the presented algorithm
offers an intuitive and powerful solution to transductive transfer learning.

16

Bibliography

[1] Olivetti E., Kia S.M., and Avesani P. MEG decoding across subjects. In Pattern
Recognition in Neuroimaging, 2014 International Workshop on, pages 1–4, 2014.

[2] H. Shimodaira. Improving predictive inference under covariate shift by weight-
ing the log-likelihood function. Journal of statistical planning and inference,
90(2):227–244, 2000.

[3] D.H. Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

[4] Z.J. Koles, M.S. Lazar, and StevenZ. Zhou. Spatial patterns underlying population
differences in the background eeg. Brain Topography, 2(4):275–284, 1990.

[5] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(2579-2605):85, 2008.

[6] J.L. Crassidis, R. Alonso, and Junkins J.L. Optimal attitude and position de-
termination from line-of-sight measurements. Journal of Astronautical Sciences,
48(2):391–408, 2000.

[7] F.L. Markley. Attitude determination using vector observations and the singular
value decomposition. The Journal of the Astronautical Sciences, 36(3):245–258,
1988.

17

