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Abstract

A separate compiler independently translates a program’s compo-
nents in a way that preserves correctness of the program as a whole.
This dissertation develops techniques and tools for verified (mechani-
cally proved) separate compilation of programs in C.

Specifying and proving separate compilation for C is made chal-
lenging by the coincidence of: compiler optimizations, such as register
spilling, that introduce compiler-managed (private) memory regions
into function stack frames, and C’s stack-allocated addressable local
variables, which may leak portions of stack frames to other modules
when their addresses are passed as arguments to external function
calls. The CompCert compiler, as built/proved by Leroy et al. 2006–
2015 and upon which this dissertation builds, has proofs of correct-
ness for whole programs, but its simulation relations are too weak to
specify or prove separately compiled modules.

The main contributions of the dissertation are:
(i) language-independent linking, a new operational model of mul-

tilanguage module interaction that supports the statement and proof
of cross-language contextual equivalence;

(ii) structured simulations, a program-equivalence proof method
that enables expressive module-local invariants on the state communi-
cated between compilation units at runtime;

(iii) the application of the above techniques to Compositional Comp-
Cert, a verified separate compiler for C. As additional validation, the
dissertation demonstrates the connection of Compositional CompCert
to the Verifiable C program logic.
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Chapter

1
Introduction

C is a language of contradictions. On the one hand, it was designed [KR98]—
and excels at—giving the programmer fine-grained control over byte-level
data representations as they are laid out in memory. Low-level control
simplifies the construction of software components like operating systems,
device drivers, and other resource-constrained systems for which a garbage-
collected language is unsuitable.

At the same time, the C specification [ISO11] fights to maintain a mini-
mum of abstraction, if only to preserve the sanity of C programmers and
compiler writers. This “C-level abstraction” does more than just circum-
scribe control flow (to function call/return and local jumps); it imposes an
abstraction layer over data as well, including:

• the distinction of pointers from integers (in particular, casting pointers
to integers, and vice versa, is only implementation-defined [ISO11,
6.3.2.3]). This distinction runs counter to the intuitions of many C
programmers, who often assume general pointer–integers casts are
portable across implementations.

• the notion of memory object [ISO11, 3.15], as distinct from the underly-
ing bit- or byte-level representation of that object. For example, pointer
arithmetic and comparison in C across memory objects—the run-
time representations of language-level constructs such as (addressed)
variables—is undefined [ISO11, 6.5.6]. Contrast with assembly lan-
guage, in which no such distinction exists.

• (weak) typing, in the form of type tags (e.g., int or float*) ascribed
to memory objects. Compilers require types for register allocation and
stack-frame management, and take advantage in alias analyses of the

1



2 CHAPTER 1. INTRODUCTION

“strict aliasing” condition [ISO11, 6.5], which asserts that two pointers
of incompatible types never alias.

• object lifetime. [ISO11, 6.2.4.6] Certain memory objects have lifetime
that is block-scoped. Block scoping gives compiler writers the free-
dom to, e.g., reuse an object’s storage once the object’s lifetime has
ended. The lifetime of a malloc’d region extends to the point (in
the program execution) at which the region is deallocated, giving the
malloc implementation the freedom to reuse the freed region.

These abstractions—pointers/integers, objects, weak typing, lifetime, and
others—are more than just convenience. They fundamentally enable com-
pilers to do their work. In addition to strict aliasing, which facilitates alias
analysis, the correctness of compiler phases that reorganize memory layout,
such as stack-frame allocation, register allocation/spilling, function inlin-
ing, and stack reuse optimization, depends deeply on whether the program
contexts—in which the compiled code will run—respect the C language
abstraction. I illustrate this point with multiple examples in the second half
of the introduction.

Well-defined C programs are of course valid program contexts (they are,
by definition, C-abstraction-preserving). But a compiler, and its correctness
proof if one exists, should generalize beyond pure C. Real software systems
like operating systems contain components written in multiple languages
(e.g., C and assembly), in order to perform tasks at varying levels of ab-
straction. For example, an OS’s scheduler might be written in C while its
process switcher and interrupt handlers are written in assembly language.
While some assembly-language modules will respect C-level abstractions
(at the points of interaction), others will not. The first question this thesis
answers is,

Under which program contexts (assembly or otherwise) is an optimiz-
ing C compiler guaranteed to preserve program behavior?

Specific related technical questions include:

How to give semantics to open modules (those that call functions de-
fined in other translation units)? Answering this question, and the
related How does one reason about equivalence of open modules? is
necessary to state (and prove) correctness of a separate compiler.

How to achieve language independence? Our compiler-correctness
theorems should apply regardless of the language in which pro-
gram contexts are implemented, assuming some basic semantic
conditions on context behavior.
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Do the techniques scale to the complex features of languages such as
C? For example, can we handle addressed stack-allocated local
variables? Section 1.1 explains why such features do not mix
smoothly with proofs of compiler optimizations that transform
program memory layout.

Do the techniques scale to real systems? Compatibility with exist-
ing verified compilers for C such as CompCert is an important
aspect of this work. Achieving compatibility means significant
proof engineering to validate the techniques against the actual
compiler transformations performed by CompCert.

The solution to the “which program contexts” question (Chapter 6) is
not a new type system or syntactic device, but a set of semantic restrictions
that circumscribe the behaviors of valid program contexts in a manner that
is independent of the particular language in which the contexts are imple-
mented. In the second half of this chapter, I further motivate by presenting
a number of failure cases: what goes wrong when compiled code is linked
with contexts that break C-level abstractions, in sometimes subtle ways.

In order to achieve language independence, it was necessary first to
define what it means for program modules in C and assembly (and per-
haps other languages) to interact. I solve this problem with interaction se-
mantics (Chapter 3), which defines the interface of sequential (and well-
synchronized concurrent) threads in a language-independent manner, and
language-independent linking (Chapter 4), which gives the overall semantics
of linked programs from the interaction semantics of the underlying mod-
ules.

The final contribution of the thesis is the application of interaction se-
mantics, language-independent linking, and the semantic restrictions on
program contexts that I develop in Chapter 6 to Compositional CompCert,
a verified compositional C compiler. [SBCA14] Compositional CompCert ex-
tends the correctness specification/proof of Leroy et al.’s CompCert verified
C compiler—which dealt only with whole programs—to separate compila-
tion. The major additional technical advance in the proof itself is structured
simulations (Chapter 5), an extension of Leroy’s simulation proofs to sup-
port both rely-guarantee reasoning (about the program properties that are
assumed and preserved by compilation) and fine-grained invariants on pro-
gram state that distinguish, e.g., compiler-managed spilled registers from
programmer-managed stack-allocated local variables.
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1.1 Motivation

1.1.1 Verifying Realistic Optimizations

The correctness of common compiler optimizations like constant propaga-
tion, spilling,1 dead-code elimination, and function inlining is sensitive to
the program contexts in which the compiled code is executed. As example,
consider the following C program fragment:

int g(int*);
static int f(void) {

int a = 0;
return g(&a);

}
int main(void) {
return f();

}

Stack
main:main:main:

f:
a=00xbffff99c

The code on the left starts from main, which calls internal function f, which
in turn calls external function g(&a) (declared in this module but defined
by another translation unit), passing the address of the stack-allocated local
variable a as argument. To the right of the code, I give a schematic represen-
tation of the memory state at the point at which g is called: The stack grows
downward; the outlined blocks are the activation records for the calls to
main and f respectively.

So far, so good. But consider for a moment how the picture changes if
the compiler decides to inline f:

int g(int*);
int main(void) {

int a = 0;
return g(&a);

}

Stack
main:
a=00xbffff9ac

0xbffff99c

In the code on the left, the (static) function f has been removed entirely
(it has internal linkage, and therefore could not have been called from an
external translation unit). In main, the body of f has been inlined at what

1Spilling, which is performed after register allocation, moves temporaries that
cannot be allocated in registers into function activation records.
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was previously the call point. The variable a is now declared and initialized
in main rather than f.

In the memory diagram to the right, the two activation records for main
and f have been coalesced into a single, slightly larger stack frame for
main. Because a is stack-allocated at function entry for main, instead of f,
it is placed in memory at a different location than it was previously, before
function inlining was performed.

The problem here is that the function g is now passed a different pointer
than it was before (the pointer references the same memory object, contain-
ing the value of variable a, but the object itself has been allocated at a
different address). A craftily constructed implementation of g, such as the
following (bad) C module:

int g(int* p) {
return ((uintptr_t)p==0xbffff99c);

}

could in principle distinguish the two program fragments, pre- and post-
function inlining, by cleverly choosing the integer 0xbffff99c to equal
the address at which a is allocated before inlining has been performed.
When this implementation of g is linked to the program fragment above,
C compilers such as gcc and CompCert produce programs that generate
different return values, depending on whether function inlining is enabled
or not. This behavior does not indicate the presence of a bug in the com-
pilers. Instead, it is evidence that—from the perspective of the compiler
writers—g is an overly sensitive program context; the result of executing g
depends too much on implementation details of the translation unit(s) it is
linked with.

Constant Propagation. There is not much a compiler writer can do if
program contexts like g have the power to interrogate memory at arbitrary
addresses. Such contexts break all abstraction, and therefore rule out most,
if not all, program optimizations that reorganize memory in nontrivial
ways.

There are more subtle abstraction-breaking behaviors, however. Con-
sider the following C program fragment:

void g(int*);
int f(void) {

int a; int b = 3;
g(&a);
return b;

}
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Function f declares two local integer variables, a and b. It then calls external
function g, passing the address of variable a as argument.

What value does function f return? The answer depends, of course, on
the implementation of g. For example, if g is the following (bad) C program:

void g(int* p) {

*(p + 1) = 4;
}

and we compile and execute with gcc2 at optimization level 0, we get result:

> gcc -O0 f.c g.c; ./a.out; echo $?
> 4

At this optimization level, gcc stack-allocates both a and b, in the fol-
lowing configuration:

Stack

b=3b=3b=3

aaa&b - 1

The write to *(p + 1) in g becomes a write to &a + 1 == &b, which
overwrites the value of b to 4.

But now consider what happens if, viewing f in isolation, we apply a
standard program optimization like constant propagation, resulting in the
new program:

int f’(void) {
int a;
g(&a);
return 3;

}

The optimized f’ clearly has different behavior, when linked with g, than
the original f (it returns 3 instead of 4). This new behavior can be demon-
strated by compiling the original program at optimization level 1:

> gcc -O1 f.c g.c; ./a.out; echo $?
> 3

2Version 4.7.2.
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The problem, again, is not the compiler (soundness of basic optimiza-
tions like constant propagation is uncontroversial) but the context g. By
writing to address &a + 1, g breaks the C-language abstraction. Variables
a and b represent two distinct runtime objects; pointer arithmetic between
them is undefined.

Stack-Reuse Optimization. Compiler optimizations can take advantage
of the C object abstraction in even subtler ways. Consider this C program:

int g(int*, int*);
void f(void) {

int a;
{
int b;
printf("%d,", g(&b,&a));

}
{
int c;
printf("%d\n", g(&c,&a));

}
}

in which f allocates three local variables: a, which has function scope, and
b and c, which have (nonintersecting) block scope. The function g returns
the result of the pointer comparison (p+1)==q:

int g(int* p, int* q) {
return (p+1)==q;

}

This program prints varied results at multiple different optimization levels.
For example, at optimization level 0 the result is “1,0”. At level 1 it is
“1,1”. At levels 2 and 3 it is “0,0”.

At optimization level 0, gcc allocates three stack slots for the three
distinct variables a, b, c, resulting in stack configuration:

Stack

aaa

bbb

ccc

&a - 1

&b - 1
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In this configuration, g(&b,&a)== 1, because &b + 1 == &a, whereas
g(&c,&a)== 0.

At optimization level 1, the compiler reuses b’s stack slot for c (the two
variables have nonintersecting scope), resulting in configuration:

Stack

aaa

b, cb, cb, c&a - 1

in which variables b and c have the same address. The fact that &b==&c
gives result “1,1”. The final output, “0,0”, results from the fact that at
higher optimization levels, a and b,c are allocated on the stack in reverse
order.

The naive solution to these problems is to place limits on the compiler,
e.g., by disallowing compiler optimizations that rearrange memory. But this
is too expensive. Many standard compiler optimizations would be ruled out,
including function inlining, dead-code elimination, frame-pointer optimiza-
tion, constant propagation, stack-reuse optimization, etc. A second potential
solution is to prohibit address-taken local variables (globals, which are typ-
ically not rearranged in memory by compilers, would still be addressable).
But then we no longer have C. Restricting the language is also too syntactic:
it does not easily generalize to other programming languages besides C.

The semantic restrictions on program contexts that I define in this thesis
rule out overly concrete contexts like the gs above, while still enabling
interesting programs. The details of the semantic restrictions are discussed
in Chapter 6. At a very high level, they ensure that programs

• treat pointers abstractly, by not comparing pointers with fixed integers,
as in the first g above;

• respect the C memory and object model, by distinguishing pointers
from integers, and by further distinguishing pointers to distinct mem-
ory regions/objects;

• respect the interaction model imposed by the external function call
protocol (no control flow aside from function call/return across mod-
ule boundaries).

The advantage of stating and enforcing these conditions semantically, as op-
posed to syntactically—e.g., via a type system or by restricting in which lan-
guages program contexts may be implemented—is the flexibility to model
program contexts in a variety of languages: from C (Section 3.2.1) and x86
assembly (Section 3.2.2) to Coq’s Gallina (Section 3.2.3).
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1.1.2 Specifying and Compiling Open Programs

A presumption of the preceding is that we at least have a specification of
multilanguage programs. By multilanguage, I mean programs in which
some components are written in a language like C while others are written
in assembly, or possibly a third language. As Perconti and Ahmed [PA14]
have also observed, multilanguage semantics is useful not only for program
understanding, but also as a mechanism for stating cross-language contex-
tual equivalence—the compiler correctness criterion I employ in this thesis.
What are the difficulties here?

Consider first the whole program case, construed broadly: Imagine PS

is a source program (e.g., in C or some other source language) and PT the
assembly code produced by compiling PS . Then whole-program compiler
correctness states that PS and PT have the same observable behavior.3 How
does one express “same observable behavior”? Because PS and PT are
whole programs, we can prove, e.g., with respect to the big-step semantics
of the source and target languages, that PS ⇓ v ⇐⇒ PT ⇓ v , for all
v . Or, in a small-step semantics, we might show that PS and PT produce
corresponding traces of observable events.

As Benton and Hur [BH10] and Perconti and Ahmed [PA14] have both
remarked, things become more difficult when we move from (closed) whole
programs to consider open modules (those that call functions declared but
not defined in the current translation unit). In this more general setting,
multimodule source programs PS , P ′S are separately compiled to multimod-
ule targets PT , P ′T . To state correctness, we must say that the semantics of
PS and PT correspond in some way, and likewise for P ′S and P ′T . However,
we cannot simply apply the usual notions of program equivalence here,
as we did in the whole-program case. Because the modules are program
fragments and not complete programs, we cannot “execute” them in any
meaningful sense.

The other force at play is the need for compositionality: Correctness
of the translation of one unit should compose with the correctness proofs
of other units to yield correctness of the whole program translation. In
other words, from (independent) proofs that PS

∼= PT and P ′S
∼= P ′T , it

should be possible to deduce PS ./ P ′S
∼= PT ./ P ′T , for some suitable

notion of linking ./ and program equivalence ∼=. In the most general case,
we will support source programs containing multiple compilation units,
each written in a different source language (C, x86 assembly, ML, etc.), each

3Or that every behavior of PT is a possible behavior of PS , if PS is nondeter-
ministic (refinement).
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calling functions defined either in the other compilation units or by external
entities such as an operating system.4

I address these issues in Chapters 3, 4, 5, and 6. Chapters 3 and 4 provide
a solution to the basic problem of how to specify open modules, both in
isolation and in interaction, in the form of interaction and linking semantics,
respectively. Chapter 5, on structured simulations, shows how to specify the
correctness of compiler transformations on single translation units in a mod-
ular way—without reference to the whole program. Chapter 6 proves that
structured simulations compose both vertically (i.e., transitively) and hori-
zontally. By horizontal composition, I mean that the structured simulations
induced by independently compiling the individual translation units of a
multimodule program compose to yield correctness of the whole-program
transformation.

1.2 Contributions and Thesis Scope

In summary, the specific contributions of this dissertation are:
• a semantic characterization of the program contexts for which an

optimizing C compiler is sound (Chapter 6), answering the question
For which contexts is an optimizing C compiler sound?

• interaction and language-independent linking semantics (Chapters 3
and 4), which facilitate the statement and proof of cross-language
program equivalences (Chapter 6), answering the question How to
achieve language-independence?

• structured simulations (Chapter 5), a novel extension of CompCert’s
forward simulation proof method that composes both transitively and
horizontally, across program modules, answering the question How to
reason about equivalence of open modules?

• the application of the above techniques to Compositional CompCert
(Chapter 8 and [SBCA14]), the first verified separate compiler for C,
answering the question Do the techniques scale to languages like C, and
to existing verified C compilers such as CompCert?

To substantiate the utility of my approach, I show (Chapter 7) how to con-
nect the Verifiable C program logic [ADH+14] to Compositional CompCert.
The result is a system in which program properties can be be proved mod-

4A distinct but equally important notion is vertical (i.e., transitive) composi-
tionality of the proofs of distinct compiler phases. Vertical compositionality (cf.
Section 6.1 of Chapter 6) is required to prove correctness of any realistic multi-
phase compiler.
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ularly at the source level, even of multilanguage programs, and yet are
shown to be preserved by separate compilation.

The Coq Proof Development. Except where otherwise indicated in the
text, the theorems in this thesis have been proved and machine-checked in
Coq. The development is divided between two GitHub repositories:

The Compositional CompCert repository contains the bulk of the devel-
opment and proofs (corresponding to Chapters 3–6). It is available at:
https://github.com/PrincetonUniversity/compcomp.

The Verified Software Toolchain (VST) repository contains the proofs that
connect the Verifiable C logic to the compiler (Chapter 7):
https://github.com/PrincetonUniversity/VST.

The thesis text provides pointers into the developments, where appropriate.

1.3 Relation to Previous Work by the Author and
Co-Authors

Much of the material in Chapters 2 through 6 is based on previous work
by myself and co-authors. Interaction semantics and logical simulation
relations (the precursor to the structured simulations of Chapter 5) first
appeared in ESOP’14 [BSDA14]. Lennart Beringer did the initial work on
structured simulations and adapted many of CompCert’s compiler phases.
He also proved that structured simulations compose transitively. Language-
independent linking and structured simulations are the topic of a paper pre-
sented at POPL’15 [SBCA15]. Juicy memories are briefly described in a chap-
ter, which I co-authored, of Program Logics for Certified Compilers [ADH+14].
A second co-authored chapter of the same book gives preliminary advice
on “How to specify a compiler.” Much of the material in Chapter 2 of
this dissertation has appeared before, some of it verbatim, in Chapter 32
of [ADH+14], of which I am a co-author.

1.4 Related Work
Compiler verification is one of the “big problems” of computer science, as
evidenced by the large body of research it has spawned in the 45 years or
so since McCarthy and Painter [MP67]. For a comprehensive survey up to
the year 2003, see [Dav03]. Here I focus on the most closely related work.

https://github.com/PrincetonUniversity/compcomp
https://github.com/PrincetonUniversity/VST


12 CHAPTER 1. INTRODUCTION

1.4.1 Whole-Program Compilation

Moore [Moo89] was one of the first to mechanically verify a programming
language implementation (a compiler for a language called Piton). The most
well-known work in this vein since Moore is Leroy’s CompCert C compiler
in Coq [Ler09], upon which Compositional CompCert is based. Chlipala
has also built verified compilers in Coq—first, from lambda calculus to
idealized assembly language [Chl07], and later for an impure functional
language [Chl10]. But both Chlipala and Leroy’s compilers were limited
to whole programs—they did not provide correctness guarantees, as I do
in this work, about the behavior of separately compiled multimodule pro-
grams. More recently, Dockins [Doc12] completed an in-depth study of
notions of operational refinement for whole programs, with applications to
CompCert and compiler correctness more generally.

1.4.2 Compositional Compilation and Logical Relations

Benton and Hur were two of the first explicitly to do compositional spec-
ification of compilers and low-level code fragments, first for a compiler
from a simply typed functional language to a variant of Landin’s SECD
machine [BH09], then for a functional language with polymorphism [BH10].
This initial work was followed by a string of papers—by Dreyer, Hur, and
collaborators—that resulted in refinements of the basic techniques (step-
indexed logical relations and biorthogonality). The refinements included
extensions to step-indexed Kripke logical relations, for dealing with state in
the context of more realistic ML-like languages [HD11], and more recently,
to relation transition systems (RTSs) [HDNV12] and the related parametric
bisimulations [HNDV13]. RTSs demonstrated that it was possible to do
bisimulation-style reasoning in the possible-worlds style of Kripke logi-
cal relations and state transition systems; parametric bisimulations refined
RTSs by removing some technical restrictions. Both parametric bisimula-
tions and RTSs compose transitively, like our structured simulations but
unlike Kripke logical relations.

Although they focus on typed higher-order functional languages with
only limited forms of shared memory (mutable references), some of the
techniques used by Benton, Dreyer, Hur, and their collaborators draw inter-
esting parallels in our own work. Our “us vs. them” protocol (Chapter 5) is
at least superficially similar to the “local vs. global knowledge” distinction
that’s made in RTSs. One difference is, we distinguish between local and ex-
ternal invariants on the state shared by modules, whereas in RTSs the local
vs. global distinction is really about different notions of term equivalence.
Also, our “them” invariants—which encapsulate one structured simula-
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tion’s view of the memory regions allocated by external functions—are not
quite “global” in the same sense as Hur et al.’s global knowledge. Perhaps
more fruitfully, one can view interaction semantics—and the structured
simulations that are “indexed to” interaction semantics—as an analogue of
the type structure used to index standard logical relations, but here applied
to imperative languages with impoverished type systems: C, x86, and the
other languages of CompCert. As in Kripke logical relations, structured
simulations use Kripke-style possible worlds to model memory allocation.

An alternative to language-independent interaction semantics is multi-
language semantics [AB11], which combines several languages of a compiler
into a single host language via syntactic boundary casts in the style of
Matthews and Findler [MF07]. This makes it possible to state the correct-
ness of a separate compiler as contextual equivalence in the combined
language, as Perconti and Ahmed have recently done for a two-phase com-
piler from System F with existential and recursive types [PA14]. But where
Perconti and Ahmed define contexts syntactically, as one-hole terms in the
combined language, we define contexts semantically, as interaction seman-
tics. McKay’s variation of Perconti and Ahmed’s approach replaces explicit
boundary conversion with programmatic conversion expressed as terms of
the combined language, but considers only a single transformation, closure
conversion [McK14].

1.4.3 Verifying and Compiling Concurrency

Liang et al.’s work [LFF12] on verifying concurrent program transforma-
tions inspired my use of a rely-guarantee discipline, but the complex-
ity of stack frame management, spilling, and block coalescing in Compo-
sitional CompCert made it difficult to apply their ideas directly in our
setting. Ley-Wild and Nanevski’s subjective concurrent separation logic
(SCSL) [LWN13] used subjective rely-guarantee invariants on auxiliary state
to verify coarse-grained concurrent programs, such as parallel increment.
Later work by Nanevski et al. extended the techniques to support verifi-
cation of fine-grained concurrent programs [NLWSD14]. These subjective
invariants made their proofs robust to the thread structure of the environ-
ment. Our “us vs. them” invariants serve a similar purpose—to prevent
module-local structured simulations from being sensitive to the exact com-
position of their environment (other modules).

Also related is verified compilation of concurrent programs. Lochbihler
verified a whole-program compiler for multithreaded Java [Loc12]. Sevcı́k
et al. built CompCertTSO [SVN+13], which adapted CompCert’s correct-
ness proofs to the x86 TSO weak memory model, in order to reason about
compilation of racy C code. Mansky’s PTRANS framework [Man14] models
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optimizations as rewrite operations on parallel control flow graphs, spec-
ified using temporal logic formulae. While all three of these projects are
whole-program, there are some similarities with my work. For example,
both CompCertTSO and PTRANS lift program refinements from individ-
ual threads to whole programs, as I do for interacting modules, under
certain noninterference conditions on shared state. One difference is that
PTRANS and CompCertTSO both state the noninterference conditions in
a “large footprint” way, as global whole-system invariants. My horizontal
composition results instead rely only on a module-local characterization of
noninterference, in the form of reach-closed semantics. That said, it would
be interesting future work to investigate whether the compositional com-
pilation approach I advocate in this thesis could be applied to verified
compilation with weak memory models.

1.4.4 Game Semantics for Interaction

The system-level semantics of Ghica and Tzevelekos [GT12] extended stan-
dard game models of programs to the more general situation in which the
moves of the opponent (environment) are constrained by semantic rather
than combinatorial or syntactic restrictions. The key semantic constraint,
which Ghica and Tzevelekos call “epistemic” (the environment may only
update memory locations it learned about at interaction points), is similar
in some ways to the “reach-closed” restrictions I impose on source modules
in Theorem 5. In this dissertation, the restriction to reach-closed interaction
semantics was a natural side condition of the proof: The kinds of trans-
formations present in Compositional CompCert are just not sound in the
context of “omniscient” program contexts that may write to arbitrary mem-
ory locations, even those—like return addresses and spills in function stack
frames—that are managed by the compiler. One major difference to the
work of Ghica and Tzevelekos is that I apply the techniques to the two-
program setting of compositional compilation; Ghica and Tzevelekos were
concerned primarily with modeling the interactions of a single program
module with its environment.

1.4.5 The Bleeding Edge

A number of research groups have recently begun working on compo-
sitional compilation for realistic languages. Tahina Ramanandro, along
with colleagues at Yale, has proposed a new separate compilation frame-
work [RSW+15] for CompCert that compares favorably in many respects
to the approach I describe in this thesis. For example, in Ramanandro’s
approach, linking is defined semantically on module behaviors, in mixed
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big-step/small-step style—which parallels my small-step semantic linking
operator L (Chapter 4). This approach leads to an elegant specification (and
proof) of soundness of syntactic linking with respect to the semantic linking
semantics, when modules are all implemented in the same language. I do
not yet have such a proof (though see Chapter 9 for further discussion).
One apparent disadvantage of Ramanandro’s approach is that it requires a
stronger notion of memory transformation (essentially, bijection) between
source and target memories over each compiler transformation. To construct
such a bijection for CompCert’s Cminorgen phase, it was necessary to add
“tags” to memory regions, and to update the semantics of the CompCert
languages (e.g. Csharpminor and Cminor). Bijective relations are not neces-
sary in Compositional CompCert. Also, my colleagues and I have verified
a complete compiler (cf. Chapter 8); Ramanandro et al. have so far verified
only a few of CompCert’s (admittedly more difficult) phases.

Very recently, Chung-Kil Hur and Jeehon Kang completed a proof of
separate compilation for the most recent version of CompCert (at the time
of writing, version 2.4) [Com]. The theorem proved is more limited than
that of this thesis; in particular, Hur and Kang’s proof does not say any-
thing about linking with modules that were not compiled by CompCert
from source modules in CompCert C. At the same time, the Hur and Kang
proof is an elegant piece of engineering: it manages to factor the proof to
use many of CompCert’s forward simulations intact. In private communi-
cation, Hur has mentioned that next steps will include the application of
recent (unpublished) work, by Hur and others, on parametric inter-language
simulations [PIL] to CompCert, in order to extend their proof to support
linking with more general program contexts.

Wang, Cuellar, and Chlipala, in recent work at OOPSLA [WCC14], showed
how to connect verified multilanguage programs to a verified compiler for a
small C-like language (Cito). Their approach builds the axiomatic specifica-
tions of external functions, as Hoare-style pre/post-conditions on abstract
data types, into the operational semantics of their source language. Com-
positional CompCert avoids tying axiomatic specifications, and thus the
details of the program logic, to compiler correctness.





Chapter

2
The CompCert Memory
Model

In the semantics of imperative languages, a memory model defines the mean-
ing of the memory-manipulating operations supported by the language,
such as memory load and store. For toy imperative languages, this model
may be as simple as a partial map from locations to values.

mem , loc ⇀ val

In a language like C, the memory model is significantly more complicated.
It must specify, among other things,

• the C object model, in order to define which pointer arithmetic and
comparison operations are valid;

• the byte- vs. word-level representation of data, to handle standard li-
brary functions such as memcpy [ISO11, 7.24.2.1] and their interaction
with normal loads and stores;

• data alignment, e.g., to word boundaries;
• and—for Pthreads-style shared-memory concurrency and certain con-

stant propagation optimizations—permissions on memory values that
restrict or enable access to parts of the memory state.

In this chapter, I give background on CompCert’s memory model [LABS14]
and describe how it handles the above. The first section introduces Comp-
Cert memory-model basics, such as the addressing model and value types.
These aspects are mostly unchanged even from the earliest versions of
CompCert (up to version 1.10, which I collectively call version 1 [LB08]). In
Section 2.2, I describe several enhancements to the memory model which I
contributed to, including the addition of memory permissions. The original

17
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0

2

blocks

Z+

Z−

2 3

(4, 2)

high bound

low bound

6

Figure 2.1: A CompCert memory (version 1). The hatched region (block 2)
has been deallocated. Address (b, z ) = (4, 2) contains an abstract “byte” (in
gray). Block 6 is nextblock, the unreserved region to be returned by the next
allocation operation.

motivation for permissions was shared-memory concurrency; however, the
permissions turned out to be useful in proofs of separate compilation as
well (Chapters 5 and 6). Permissions are also used, in standard CompCert,
to reason about optimization of read-only global variables.

2.1 Memory Model Basics

The CompCert memory model is block- (or region-) structured. Addresses
(b, z ) are pairs of a block/region identifier b (a positive number) and an
integer offset z . In CompCert’s high-level C-like languages (e.g., CompCert
C and Clight), blocks are allocated one per global variable, one per call to
malloc, and—per function invocation—one per addressed local variable.
Pointer arithmetic

(b, z ) + n , (b, z + n)

is then allowed only within, not between blocks. This regime—modeling
globals, addressed locals, and malloc’d regions as distinct blocks—prevents
pointer arithmetic across, e.g., distinct addressed locals or distinct globals,
which is undefined in C.
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Each address (b, z ) specifies an abstract “byte”, at offset z in block b. Off-
sets may be either positive or negative. In the first version of the CompCert
memory model, blocks were bounded above and below by two functions:
low bound m b, which gives the low bound of block b, and high bound m b,
which gives the upper bound of the block. Loads and stores succeeded only
to offsets below the high bound and above the low bound.

Figure 2.1 depicts this situation for a representative CompCert memory.
There are 5 allocated blocks, numbered 1− 5. Block 2 has been allocated
but then freed (indicated by black–white hatching). The CompCert memory
allocation model assumes an infinite number of memory regions; it will
never reuse block 2. The gray box is an (abstract) bytes at address (4, 2),
block 4 at offset 2.

Block 6 is the next free memory region, called nextblock in CompCert.
At the next allocation operation

alloc : mem→ Z → Z → mem× block
alloc m lo hi = (m ′, nextblock m)

the CompCert memory model returns (m ′, nextblock m), where nextblock m
is the block number of the newly allocated region (= 6 in Figure 2.1 above)
and m ′ is the updated memory state that records the allocation (e.g., by
incrementing nextblock). The low–high boundaries of newly allocated mem-
ory regions are given—at block allocation time—by the integers lo, hi .

2.1.1 Values, Loads, and Stores

Values. CompCert’s intermediate languages share a common value type
val, defined by the following inductive data type:

Inductive val : Type ,
| Vundef : val
| Vint : int → val
| Vlong : int64 → val
| Vfloat : float → val
| Vptr : block → int → val.

Vundef is the undefined value, associated to uninitialized local variables.
Vint i is an integer value, with i a 32-bit machine integer. Vlongs represent
64-bit machine integers. Vfloats are floating-point numbers. Vptr b i is a
pointer value, addressing block b and (machine-integer) offset i . To convert
from a Vptr to an actual CompCert memory location, one must convert i
from type int to type Z , a lossless operation. (Converting from Z to int can
overflow, however.)
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Loads. Memory loads in CompCert have the following shape:

load : mem→ memory chunk→ block→ Z → option val
load m ch b z = Some v

Loading from memory m at address (b, z ), with chunk type ch, gives value
v . The chunk types ch : memory chunk specify the size, type, and alignment
constraints that apply to a given load or store operation.

Inductive memory chunk : Type ,
| Mint8signed (∗ 8−bit signed integer ∗)
| Mint8unsigned (∗ 8−bit unsigned integer ∗)
| Mint16signed (∗ 16−bit signed integer ∗)
| Mint16unsigned (∗ 16−bit unsigned integer ∗)
| Mint32 (∗ 32−bit integer, or pointer ∗)
| Mint64 (∗ 64−bit integer ∗)
| Mfloat32 (∗ 32−bit single−precision float ∗)
| Mfloat64 (∗ 64−bit double−precision float ∗)
| Mfloat64al32. (∗ 64−bit double−precision float, 4−aligned ∗)

For example, a load in C from the address of a 32-bit single-precision float
variable, as in the program fragment:

float f; *&f;

is modeled as load with chunk type Mfloat32. Each chunk type has a natural
size |ch | in bytes and a natural alignment 〈ch〉. For example, |Mfloat64al32|
equals 8 while 〈Mfloat64al32〉 equals 4 (4-aligned 64-bit double-precision
float).

A memory load will fail with None (return type option val) when it is
either (i) to a misaligned address (for the given chunk type) or (ii) because
the load violates the bounds of the addressed block. The rules, for a load
(b, z ) at chunk ch, are:

• Alignment: 〈ch〉 divides z ;
• Bounds-Checking: low bound m b ≤ z ∧ z + |ch | ≤ high bound m b.

Stores. Storing value v in memory m at address (b, z ), with chunk type
ch, gives new memory m ′.

store : mem→ memory chunk→ block→ Z → val→ option mem
store m ch b z v = Some m ′
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Stores are partial, like loads. Stores also respect the same alignment and
bounds-checking rules as memory loads (stores must be aligned, with re-
spect to the alignment of the memory chunk, and must be within bounds).

The interactions of loads and stores (as well as loads and allocations and
loads and frees) are governed by a number of rules, described in detail in
Chapter 44 of Appel et al.’s new book [ADH+14]. I briefly summarize them
here.

The common case is load-after-store, in which we load from the same
address (same block and offset) that we previously stored.

store m ch b z v = Some m ′

load m ′ ch ′ b z = Some (convert ch ′ v), if |ch | = |ch ′|

The C standard [ISO11, 6.5] states that load-after-store should succeed only
if chunk ch ′ (representing a C type) is compatible with ch , the chunk type at
which the address was last assigned. Compatibility means that two types
differ only in qualifiers and signedness. CompCert models compatibility
by:

• |ch | = |ch ′|;
• implicitly casting v to type ch at store-time;
• converting v to type ch ′ at loads.

Think of convert as a C cast. For example, if we attempt to load an integer
Vint i at chunk type Mint8signed, convert will return the 8-bit sign extension
of i .

The other load-after-store cases are disjoint load–stores, loads that “over-
lap”, and loads which use incompatible types. These cases are summarized
in the following figure from Chapter 32 of [ADH+14].

Store

Compatible load

Incompatible load

Disjoint loads

Overlapping loads

In the “incompatible” and “overlapping” cases, we attempt to load with an
incompatible chunk type (e.g., of the wrong size) or from a memory region
that only partially overlaps (byte-for-byte) the stored region. Since the first
version of the CompCert memory model did not expose the underlying
byte representation of values, such “bad” loads just returned None.
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2.2 Memory Model, Version 2

Version 2 of the CompCert memory model improved upon version 1 in two
major ways. The first was to expose the byte-level representation of values in
memory, in order to give semantics to operations like memcpy and the over-
lapping loads I described in the previous section. The second innovation
was to add permissions to the memory model, which replaced the low bound
and high bound functions of version 1 and prepared the CompCert compiler
and its memory model for connection to a concurrent separation logic (as
described briefly in Chapter 44 of [ADH+14]). As it turned out, however,
the permissions added in version 2 were also convenient for stating the sep-
arate compilation invariants of Compositional CompCert. In this section, I
briefly describe the version 2 memory model’s support for byte-level data
representations. Then I introduce the permission model.

Byte-Level Data Representation. Version 1 of the CompCert memory
model gave accurate semantics to most memory loads and stores (and
allocations and frees) but hid the underlying byte-level representation of
values. In version 2, each location is mapped to a memval, an abstraction
of a single byte of data. Memory loads (and stores) then decode (encode)
sequences of memvals as values.

The memvals themselves are defined inductively:

Inductive memval : Type ,
| Undef : memval
| Byte : byte → memval
| Pointer : block → int → nat → memval.

Undef memvals represent undefined bytes, as might be associated with
the values of stack-allocated uninitialized local variables (four Undefs
compose a single Vundef).

Bytes are 8-bit machine integers in the range 0. . . 255, which compose larger
values such as integers, floats, or longs, taking aspects like endianness
and the IEEE encoding of floats into account.

Pointer memvals are abstractions of the bytes that compose pointer values.
Pointer b i n is the n-th chunk of a pointer value Vptr b i . The intent
is to encode pointers in a way that does not expose their underly-
ing representation (e.g., as bytes, which would be too concrete), but
still supports operations like memcpy. In the most recent versions
of CompCert (≥ 2.4), Pointers are generalized to memory Fragments,
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which allow uninterpreted encodings of data values other than just
pointers.

Along with the memval interpretation of bytes in memory, CompCert defines
operations that encode/decode values to/from sequences of memvals. More
details are available in [ADH+14].

Permissions. The second innovation in version 2 was to add permissions
to the model, associated with each byte in memory.1 The permissions are:

Freeable top permission: can compare, read, write, and free
Writable can compare, read, and write but not free
Readable can compare and read but not write or free
Nonempty can only compare

“Compare” is the ability to compare a pointer to the given location with
other pointers. We say a pointer Vptr(b, z ) is valid for pointer comparison
if the location (b, z ) has at least Nonempty permission.

Permissions accumulate: having permission p implies having all permis-
sions p ′ < p, where the permission order is defined

Nonempty < Readable < Writable < Freeable

A memory location may have no permission at all. In this case, we say that
the location is empty. This is typically the case for locations that have not
yet been allocated, or which have already been freed.

Every byte location is associated not to one, but to two permissions: the
current permission and the max permission. Throughout an execution, the
current permission is always less than or equal to the max permission. The
max permission evolves predictably over a location’s lifetime: when the
location is allocated, it has max permission Freeable; this permission can
later be lowered by a drop_perm operation;2 finally, freeing the location
removes all its max permissions, making the location empty. The max per-
mission can only decrease once the location has been allocated. In contrast,
the current permission can decrease or increase (without ever exceeding

1The material in this subsection has significant overlap, some of it verbatim,
with [ADH+14, Chapter 32], of which I am a co-author. See that work for further
details.

2drop_perm was added in version 2 and is used to model, e.g., the lowering
of a constant global’s permission from Freeable to Readable.
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the max permission) during the lifetime of the location. For example, in a
(proposed) extension to shared memory concurrency, an unlock operation
temporarily drops current permissions, which can be recovered by a subse-
quent lock operation. The following figure (also from [ADH+14, Chapter
32]) illustrates:

alloc drop unlock read-lock unlock
time

write-lock
none

Nonempty

Readable

Writable

Freeable
Max

Cur

pe
rm

is
si

on
s

The association of permissions to locations is defined by the predicate:

perm : mem→ block→ Z → perm kind→ permission→ Prop

where perm kind is the inductive Max | Cur. The proposition perm m b z k p
means memory state m at location (b, z ) has k -permission at least p. The
cumulativity of permissions, and the fact that current permissions are never
above max permissions, are expressed by the following implications:

perm m b z k p ∧ p ′ ≤ p =⇒ perm m b z k p ′

perm m b z Cur p =⇒ perm m b z Max p

In version 1 of the memory model, load and store operations checked that
offsets were within bounds. In version 2, load and store instead check that
the accessed locations have current permissions at least Readable (Writable
for store). Likewise, free checks that the affected locations have current per-
missions at least Freeable. Defining

range perm (m : mem) (b : block) (lo hi : Z)

(k : perm kind) (p : permission) : Prop ,
∀z . lo ≤ z < hi =⇒ perm m b z k p.

as the predicate that is true iff all offsets between lo and hi have permission
at least p, we get the following access conditions for the various memory
operations:

Operation. . . succeeds if and only if. . .
load m ch b z range perm m b z (z + |ch |) Cur Readable
store m ch b z v range perm m b z (z + |ch |) Cur Writable
free m b l h range perm m b l h Cur Freeable
drop perm m b l h p range perm m b l h Cur Freeable
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In general, permissions are preserved by operations over memory states,
with the following exceptions:

• alloc m l h = (m ′, b) sets Max and Cur to Freeable in range (b, l) to
(b, h − 1).

• free m b l h drops all permissions to empty in (b, l) to (b, h − 1).
• drop perm m b l h p sets Max and Cur in range (l , h − 1) to p.

2.3 Memory Transformations

To be useful in compiler proofs, a C memory model must also support the
memory transformations performed by an optimizing compiler: spilling
and reloading, dead-code elimination, function inlining, etc. Operations
like load and store should be insensitive to the memory transformations per-
formed by these optimizations. Otherwise, the optimizations may change
the observable behavior of the program (by causing, e.g., a store that suc-
ceeded before compilation to fail afterward).

Consider CompCert’s SimplLocals phase, which pulls unaddressed local
variables—such as a in the following C program—out of memory and into
a temporaries (register) environment.

int f(void) {
int a=1; float b;
g(&b);
return a;

}

a=1Block 1

bBlock 2

Before
SimplLocals

In CompCert’s highest-level languages, invoking f will generate a memory
state that contains two blocks for f’s locals, one for a (call it block 1) and an-
other for b (call it block 2). SimplLocals will detect that a is never addressed,
however, which means it can promote a to a register.

a=1

b

Block 1

Block 2

Before m

b Block 1

After tm
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The memory before the transformation is m, the memory after tm. After
SimplLocals, f allocates just one block (for b) instead of two blocks. The
identifiers assigned to blocks have also changed: b’s block (formerly block
2) is renamed block 1.

To model transformations of this form, CompCert uses a generalization
of block renaming called memory injection:

f : block→ option (block×Z)
f b = Some (b ′, δ)

A memory injection f maps a subset of the blocks b ∈ dom(m) to new
blocks b ′ ∈ dom(tm), at offset δ. For example, the SimplLocals transformation
described above is modeled by the memory injection

f (Block 1) = None

f (Block 2) = Some (Block 2, 0)

that maps block 1 to None and block 2 to block 1, at offset 0.

We extend the relation f to memvals as follows:

memval inject f Undef mv
memval inject f (Byte n) (Byte n)
memval inject f (Pointer b z n) (Pointer b ′ z ′ n)

iff f b = Some (b ′, δ) ∧ z ′ = z + δ

The relation
val inject f v v ′

defines the analogous lifting to vals (pointer values are injected; Vundef
values are refined to arbitrary values; otherwise, e.g., on integers, val inject
is the identity relation). We use notation vals inject f ~v ~v ′ to denote the
pairwise application of val inject f to the sequences of values~v and~v ′.

Memory injections support more complicated memory transformations
as well. For example, CompCert’s Cminorgen phase coalesces the multiple
blocks allocated at a given function invocation into a single “Cminor” stack
block, to facilitate the final layout of stack frames in memory in the Stacking
phase. This transformation has the following general form:
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The two blocks on the left are mapped into a single larger block on the right,
with the upper-left block being transposed at a nonzero positive offset into
the block on the right.

Passes like CompCert’s spilling phase may also extend memory blocks,
in order to accommodate, e.g., registers that have been spilling into stack
frames. These transformations have form:

in which the block on the left has been injected into the block at the right
(at a zero or nonzero offset). The block on the right contains fresh locations
(hatched regions) not present in the left block.

Some memory transformations are not expressible as memory injections.
Consider the following two diagrams in which (a) a block is related simul-
taneously to two blocks; and (b) two blocks are simultaneously mapped to
overlapping offsets of a single target region.

(a)

(b)

Memory injections are functions, ruling out (a). CompCert memory injec-
tions prohibit overlap as in (b). Neither (a) nor (b) is needed in CompCert.
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reach : mem→ set block→ list block→ set block

reach m R nil , R

reach m R ((b ′, z ′) :: L) ,
{b |b ′ ∈ reach m R L
∧ perm m b ′ z ′ = Readable
∧ ∃z . m(b ′, z ′) = Vptr (b, z ) }

REACH m R , {b | ∃L. b ∈ reach m R L}

Figure 2.2: Reachability

However, it’s possible that a weakening of memory injections to support (a)
and (b) could be useful for future compiler optimizations.

In general, we say a memory injection f injects memory m to tm , written

inject f m tm

if (1) permissions at locations in m are preserved in tm under the transfor-
mation f ; and (2) each readable byte value mapped by f in m is related by
memval inject to the corresponding byte in tm.

Memory injections—which are key for proving correctness of optimiza-
tions that reorganize memory layout—behave the same in versions 1 and
2 of the CompCert memory model. However, memory injections are not
quite expressive enough to support full separate compilation. Among other
things, they do not cleanly distinguish “private” memory regions (the com-
piler has freedom to optimize these regions more aggressively) from public
regions to which pointers may have been leaked. Structured simulations
(Chapter 5) enrich memory injections with additional structure to support
such fine-grained invariants.

2.4 Validity and Reachability

In addition to structured injections and simulations, which we’ll first present
in Chapter 5, we require a few additional memory-model-related defini-
tions, some of which are not present in standard CompCert.

We say a memory region b is reachable in memory m from a set of root
blocks R (REACH m R b, Figure 2.2) when there is a path L of readable point-
ers starting from a root region in R and ending at b. A pointer Vptr (b, z )
is readable when location (b, z ) has at least Readable permission.

Reachability will play an important role in Chapters 5 and 6. We calcu-
late reachability on memory regions b rather than locations (b, z ) because
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pointer arithmetic is always allowed within (readable) regions. Hence an
entire region is reachable once any location within it is reachable.

The following definitions (already present in standard CompCert) will
also prove useful in later chapters. We say a memory region b is valid in
memory m

valid m b , b < nextblock m

when its index (a natural number) is less than that of the first region in
m’s free list (CompCert models allocation deterministically, via a pointer
nextblock to the next free region in m). Once a region has been allocated,
it remains valid for the duration of an execution, even after the region is
freed.

We say an entire memory m is valid

mem valid m , inject (fid m) m m

when every readable pointer value in m points to a valid (i.e., allocated)
block. The definition mem valid is stated somewhat technically, as the equiv-
alent proposition that all regions in dom(m) are mapped by the identity
injection on m (fid m) to themselves. This, in particular, implies that no
pointer references a region outside the domain of m.

We say a memory m ′ evolves forward, via one or more execution steps,
from an initial memory m when the following holds.

forward m m ′ ,
∀b. valid m b =⇒ valid m ′ b
∧ ∀z . max perm m ′ b z vperm max perm m b z

Forward captures the minimal properties that should hold over any sequence
of execution steps in any language: (1) valid blocks in m should remain
valid in m ′; and (2) execution steps should only decrease max permissions
(e.g., via drop perm operations).

Finally, we say a memory m ′ is unchanged on a set of locations L, with
respect to an original memory m, when the following are true:

unchanged on m m ′ L ,
(1) For all locations in L, m and m ′ agree on permissions.
∀b z k p. (b, z ) ∈ L ∧ valid m b
=⇒ (perm m b z k p ⇐⇒ perm m ′ b z k p)

(2) For all locations in L, m and m ′ agree on contents (memvals).
∧ ∀b z . (b, z ) ∈ L ∧ perm m b z Cur Readable =⇒ m(b, z ) = m ′(b, z )
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2.5 Global Environments
CompCert’s global environments, defined by the following record type:

Record Genv (F V : Type) : Type ,
mkGenv {

genv symb : id → option block;
genv funs : block → option F ;
genv vars : block → option (globvar V );
genv next : block;
(∗ ... properties of the above projections ... ∗)
}

will also make an appearance in later chapters. Each Genv is parameterized
by a type F , of function definitions specific to a particular language (for
example, in Clight, F is instantiated to the type of Clight function defini-
tions; in x86 assembly, to assembly code sequences), and by a type V of
auxiliary information associated to global variables (also language-specific).
Parameterizing Genvs by F and V makes them suitable for use in each of
CompCert’s intermediate languages (a feature of standard CompCert).

The components of a Genv are:

A symbol table genv symb mapping global identifiers to the memory re-
gions in which they are allocated;

A function table genv funs mapping memory blocks to function definitions;

A global variable table genv vars mapping memory blocks to auxiliary data
attached to global variables. globvar V is a record containing a value
of type V , variable initialization data, and variable read-only and
volatility status;

A pointer genv next to the lowest-numbered memory region that does not
contain global data.

We call the domain of a global environment ge the blocks b such that
• there exists an id for which genv symb ge id = Some b, or
• b ∈ dom(genv funs ge), or
• b ∈ dom(genv vars ge).

The Genv dependent record also asserts invariants on the global environ-
ment (not shown) such as “all blocks marked global by the Genv are less
than genv next.”



Chapter

3
Language-Independent
Operational Semantics

Interaction semantics is a language-independent model of sequential and
(well-synchronized) concurrent threads. The core idea is to phrase inter-
action, between modules, threads, or other program fragments, as calls to
external functions. Many kinds of interaction can be modeled in this way,
including linking (Chapter 4) and well-synchronized shared-memory con-
currency (a future application of the results of this thesis).

I use the term external function to describe functions callable but not
defined by a particular program unit (declared but not defined, in C termi-
nology). In a concurrent program, a thread might make calls to the external
functions lock and unlock. In a sequential program composed of multi-
ple translation units, one unit may call external functions defined only by
another unit.

3.1 Interaction Semantics

Imagine a multithread shared-memory execution. One can spawn a new
thread; a thread may yield (or block on a synchronization) and perhaps later
resume; eventually a thread may exit. This protocol models concurrency
but also sequential calls to separately compiled functions (spawn a new
“thread” to run the call, block until it returns) and single threads running
in an operating-system context with system calls. When a thread yields
(or calls a sequential external function), its local state including stack and
registers will be preserved until it resumes, but the state of most of memory
may have changed arbitrarily upon resumption.

31
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Interaction semantics (Figure 3.1) are a general formulation of this thread
protocol. At a high level, an interaction semantics (G , C , M ) is a partitioning
of a thread’s state into a global environment (G), a local part (C ), which we
call the core state, or core, and which typically includes both the control
continuation and local variable environment, and a shared part (M ), which
we typically identify with shared memory. V is the type of values, and F
is the type of external function names. In a (concurrently or sequentially)
multithreaded system, different cores could have different core types (C )
and different corestep relations. This permits interoperation of modules
written in different languages.

With this partitioning comes a step relation (corestep) on core states and
memories that defines the small-step operational model of the interaction
semantics. We will often write the corestep relation as ge ` c, m 7−→ c ′, m ′.
The global environment ge maps functions to their definitions and does not
vary over steps.

We say an interaction semantics sem is deterministic when its underly-
ing core step relation is deterministic.

Definition 1 (deterministic sem).

∀m m ′ m ′′ ge c c ′ c ′′.
ge ` c, m 7−→ c ′, m ′ ∧ ge ` c, m 7−→ c ′′, m ′′ =⇒ c ′ = c ′′ ∧m ′ = m ′′

To enforce the protocol described above, we divide core states into the
five lifetime stages. Initial cores result directly from the creation of the thread
or initialization of the program using initial core. Typically, an initial core
contains an empty local environment, together with a control continuation
consisting of a single function call (the V parameter in the definition, a
function pointer value), with arguments (list V). For a standalone program,
this function is the entry point main (as initialized by the operating sys-
tem/program loader); for a thread, it is the function that was forked; for
a call to a separately compiled module, it is the called function. In gen-
eral, each module entry point corresponds to an initial core, at the point at
which that entry point is called; internal function calls (to functions defined
within the current module) do not call initial core but instead are handled
internally, by the corestep relation of the defining semantics.

At external cores are those initiating an external function call. In C ter-
minology, external functions are just functions that are declared within the
current translation unit or module but which are defined elsewhere (e.g.,
in a module that is later linked to the current one). After external cores re-
sult from resumption of the thread or program after an external call. In
the transition from after external to a running state, a core is expected to
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initial_core running

halted after_external

at_external

interference

initial core : G → V → list V → option C
at external : C → option (F × list V)

after external : option V → C → option C
halted : C → option V

corestep : G → C → M → C → M → Prop

Figure 3.1: Interaction Semantics interface. The types G (global environ-
ment), C (core state), and M (memory) are parameters to the interface. F is
the type of external function identifiers. V is the type of values, and Prop is
Coq’s type of propositions, Prop. By convention, initial core takes a pointer
of type V to the function to be called, rather than a function identifier F .
The names initial core, at external, after external, halted are not constructors,
but are (proved) disjoint predicates.

incorporate the return value (option V) into its local variables (in its own
language-dependent way). Halted cores are just that: threads or programs
that have terminated normally, yielding an optional return value (option V).
Finally, running cores are neither blocked on an external function call nor
halted.

3.2 Examples

3.2.1 CompCert Clight

As an example of an interaction semantics, I show CompCert Clight [BDL06].
This high-level subset of C is the target of CompCert’s first translation phase
(from the full CompCert C language). It serves as a natural interface be-
tween CompCert, user-level program logics, and verified static analyses.

Figures 3.2 and 3.3 give the syntax of Clight. The syntax of expressions
a is standard. In the statement syntax, for and while loops have already
been translated (in an earlier compiler phase) to combinations of the more
primitive Sloop and Sbreak constructs. The details of local control flow (loop,
if, break, continue, switch, goto) are standard CompCert 1.13 Clight, and
not relevant to (or changed by) our work on external interaction.
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Statements

s ::= Sskip no-op
| Sassign a1 a2 lval← rval
| Sset id a temp← rval
| Scall optid a ~a function call
| Sbuiltin optid f ~τ ~a intrinsic
| Ssequence s1 s2 sequence
| Sifthenelse a s1 s2 conditional
| Sloop s1 s2 infinite loop
| Sbreak | Sreturn aopt break/return
| Scontinue s continue statement
| Switch s switch statement
| Slabel l s introduce new label
| Sgoto l unconditional jump

Internal and External Functions

τ ::= int | long | ptr τ | · · · C types
γ ::= · | (id , τ), γ typing environments

fi ::=


return τ function return type
params γ function parameter typing
locals γv local variable typing
temps γt temporary variable typing
body s function body

f ::= Internal fi | External idf ~τ τ

Figure 3.2: Syntax and semantics of Clight (excerpts). optid in Scall and
Sbuiltin statements is the (optional) variable in which to store the return
value of the function (may be None if the function has void return type).
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Continuations

κ ::= Kstop safe termination
| Kseq s κ sequential composition
| Kloop s1 s2 κ loop continuation
| Kswitch κ catch switch break
| Kcall optid fi ρv ρt κ catch function return

Core States

ρv ::= · | (id , (loc × τ)), ρv addressed var. environment
ρt ::= · | (id , v), ρt temporaries environment
c ::= StateCL fi s κ ρv ρt “running” states

| CallState f ~v κ call (internal or external) function f
| ReturnState v κ return from (internal or external) function

Figure 3.3: Syntax and semantics of Clight (continued). Continuations and
core states appear only in the operational semantics.

Functions f are either internal (defined in the current translation unit) or
external (declared here but defined elsewhere). Internal functions comprise
a record containing the function return type, a list of function parameters
with their types, a local variable environment for address-taken variables,
a temporaries environment for the rest of the function variables, and the
function body. External function records contain an external function iden-
tifier idf , a list of argument types ~τ and a return type τ, where τ is a C type
int, long, ptr τ, etc. External functions do not contain a function body. The
interaction semantics for Clight will stop at external calls and yield control
to the execution environment. By convention, I use f and fi to range over
function definitions (Figure 3.2), while idf range over function names.

Semantics. The semantics of Clight depends on continuations κ, described
in the figure, and core states c, which come in three varieties: Normal
states StateCL model the “running” states of a Clight program, during
evaluation of anything but function calls, and consist of the current func-
tion being executed fi , the function body s , the control continuation κ,
and two environments, ρv for mapping address-taken stack variables to
their locations in memory, and ρt for mapping temporary variables to their
values.CallState f ~v κ models Clight programs that are about to call func-
tion f (either internal or external) with arguments ~v and continuation κ.
ReturnState v κ gives the state that results after returning from function



36 CHAPTER 3. LANGUAGE-INDEPENDENT SEMANTICS

ge ` a ⇓ρv ,ρt ,m vf ge ` ~a ⇓ρv ,ρt ,m ~v ge vf = Some f
typeOf f = Tfunction ~τ τ

ge ` (StateCL f0 (Scall idopt a ~a) κ ρv ρt ), m 7−→
(CallState f ~v (Kcall idopt f0 ρv ρt κ)), m

(Scall)

noRepeat (params fi ∪ locals fi )
allocVars ρ∅ m (params fi ∪ locals fi ) = Some (ρv , m1)

bindParams ρv m1 (params fi ) ~v = Some m ′

ge ` (CallState (Internal fi ) ~v κ), m 7−→
(StateCL fi (body fi ) κ ρv (initTempEnv (temps fi ))), m ′

(CallInternal)

Figure 3.4: Call rules from the operational semantics of Clight

calls (either internal or external). v is the value returned by the callee; κ is
the continuation to be executed after the call returns.

Figure 3.4 shows our reformulation of the function call rules of the
Clight operational semantics. The operational semantics is a three-place re-
lation on global environments ge : G , initial configurations 〈c, m〉 and final
configurations 〈c ′, m ′〉. Here c is a core state; m is a CompCert memory.
The relation ge ` a ⇓ρv ,ρt ,m v denotes big-step evaluation of expression a
to value v in global environment ge, local variable environment ρv , tempo-
raries environment ρt , and memory m.

The Scall rule steps a run state StateCL calling function a with argu-
ments~a (Scall idopt a ~a) to a CallState. The result of the call is stored in idopt .
The current function context f0 is pushed into the return continuation Kcall.
f is the function being called, and may be either internal or external.

The CallInternal rule steps into a function body. Function param-
eters and locals are stored in memory: allocVars allocates a new memory
region for each parameter/local, producing variable–location mapping ρv .
bindParams writes the function arguments~v into the parameter locations in
memory. There is no corresponding rule for external function calls (they
are at external).

I define the at external function of interaction semantics as a straightfor-
ward match on a core state c, returning Some (f ,~v) when c is a CallState,
f is external, and the arguments ~v to f are well-defined (not CompCert’s
vundef value), and None otherwise:
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cl at external c : option (F × list V) ,
case c of
| StateCL → None
| Callstate (Internal fi ) ~v κ → None
| Callstate (External f ~τ τ) ~v κ →

if defined ~v then Some (f , ~v) else None
| ReturnState → None

Clight after external injects the return value of an external function into
a Clight core state as follows:

cl after external vopt c : option C ,
case c of
| CallState f ~v κ →

case f of
| Internal → None
| External idf ~τ τ →

case vopt of
| None → Some (ReturnState vundef κ)
| Some v → Some (ReturnState v κ)

| → None

First, we check whether c is a CallState, with continuation κ. If it is, and the
function being called was external, we produce a ReturnState with return
value v (whenever vopt was Some v ) and vundef (whenever vopt was None).
In the vopt = None case, as long as the external function that was called has
void return type, the value vundef will never be used by the caller. In all
other cases, we just return None.

The definition of initial core ge v ~v is also straightforward, since function
arguments are passed not on the stack but abstractly, without reference
to memory: we check that v is a valid pointer to a defined function fi ,
check that the arguments~v are defined and match fi ’s type signature, then
introduce state

CallState (Internal fi ) ~v Kstop

which immediately steps to the body of function fi with the initial local
variable environment ρv that maps the function’s formal parameters to its
arguments ~v . The definitions of initial core in the languages below Clight
follow a similar regime—all the way down to CompCert’s Linear language,
which uses an environment of abstract locations such as incoming parameter
stack slots to represent the state of the stack and registers.
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Readers familiar with CompCert (versions 1.5 through 2.4) will observe
the proximity of our definition to Leroy et al.’s presentation: our adapta-
tion removes the memory components from the state constructors StateCL,
CallState, and ReturnState and adds the definitions of after external and so
on. The operational semantics arises by refactoring the existing definition to
match these state representation changes and by removing the rule for exter-
nal function calls: such calls are handled directly by interaction semantics
at external and after external.

3.2.2 CompCert x86 Assembly

Adapting x86 assembly (Figure 3.5) is a bit trickier, since arguments must
be passed concretely, on the stack. (The same applies to CompCert’s Mach
language.) As we will see in Chapter 4, we use the initial core function of
the interaction semantics interface to model both program initialization (i.e.,
by the loader) and the function calls that occur at cross-module function
invocations. If we knew that all modules in our program were written in
x86 assembly and used, e.g., the standard cdecl calling convention (“C
declaration”, parameters in pushed in reverse order on the stack), then
modeling cross-module invocations would be less of an issue: The shared
calling convention would mean that arguments to one function (say, B .g)
would be placed by a caller A.f on the stack or in registers exactly as
expected by function B .g .

But the restriction to a shared calling convention/ABI is rather limiting.
We want to be able to model, at least abstractly, the interactions of modules
in a variety of languages, at both higher and lower levels of abstraction.
To accomplish this, we apply a “marshalling” transformation to the x86
language: To initialize a new x86 core, calling function bf with arguments~v ,
we produce state Asm CallStateIn bf ~v , which immediately steps to a running
State. The initial core function as well as the operational semantics rule that
steps an Asm CallStateIn to a running StateASM are given in Figure 3.6. As a
side effect of this step we allocate a “dummy” stack frame in memory in
which we store the incoming arguments ~v , in right-to-left cdecl order as
expected by CompCert and gcc. (Asm CallStateOut performs the symmetric
step of marshalling arguments out of memory.)

In initial core, we first check (line 3) that v is a function pointer. If it is,
we look up the function body fi associated with the pointer (line 5), if any,
and then check that the arguments to the function match f ’s type signature
(line 9), the arguments are defined (line 10), and that the arguments are
representable in memory (also line 10). The last check is subtle: it is possible
that the arguments~v overflow the address space, in which case the values
written into the initial stack frame do not directly match ~v . The 2 in this
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Registers

ri ::= EAX | EBX | ECX | EDX integer registers
| ESI | EDI | EBP | ESP

rf ::= XMM0 | · · · | XMM7 floating-point registers
crstate ::= ZF | CF | PF | SF | OF control register state

r ::= PC | IR ri | FR rf collected registers
| ST0 | CR crstate | RA

rs ::= · | (r , v), rs register environments

Instructions

p ::= MOVRR ri ri | MOVRI ri i | · · · moves
| JMPL l | JMPS id | JMPc cond l | · · · jumps
| CALLS id | CALLR ri | RET | · · · calls/return
| · · · moves with conversion, integer arithmetic, etc.

Load Frames
lf ::= mkLoadFrame bf τ0

Core States

d ::= StateASM rs lf normal states
| Asm CallStateIn bf ~v marshall args. in
| Asm CallStateOut (bf , ~τ0, τ0) ~v rs marshall args. out

Figure 3.5: Syntax and semantics of CompCert x86 assembly (excerpts).
Core states appear only in the operational semantics. Int-floatness types τ0
are int, float, long, or single. Load frames (mkLoadFrame bf τ0) store a pointer
bf to a (copied) stack frame containing incoming arguments, as well as the
return type τ0 of the function that was initialized.
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1 asm initial core ge v ~v : option Casm ,
2 case v of
3 | Vptr bf i →
4 if i==0
5 then case find funct ptr ge bf of
6 | None → None
7 | Some (Internal f ) →
8 let tys , sig args (funsig f ) in
9 if vals have types ~v tys

10 && defined ~v && 4∗(2∗length ~v) < max unsigned
11 then Some (Asm CallStateIn b ~v tys)
12 else None
13 | → None

argsLen~v ~τ = Some z alloc m 0 (4 ∗ z ) = (m2, bstk )
storeArgs m2 bstk ~v ~τ = Some m ′

rs0 = empty with {PC := Vptr bf 0}{RA := 0}{ESP := Vptr bstk 0}
ge ` (Asm CallStateIn bf ~v ~τ τ), m 7−→ (StateASM rs0 (mkLoadFrame bstk τ)), m ′

(AsmInit)

Figure 3.6: x86 initialization. Top is x86 initial core. Bottom is the operational
rule that steps an Asm CallStateIn to a running StateASM.

line conservatively approximates value encoding: doubles and long long
integers are encoded in CompCert x86 as two 32-bit words. The 4 specializes
bytes-per-word in (32-bit) x86.

The AsmInit operational rule stores the ~v into a freshly allocated
dummy stack frame. First, we calculate the size of the stack frame (argsLen).
The types ~τ are passed as a second argument to facilitate value encoding.
Then we allocate a block of size 4 ∗ z (because 4-byte words) and store the
arguments (storeArgs) into the allocated block bstk . rs0 is the initial register
state for the module. It sets PC to function pointer Vptr bf 0, return address
register RA to 0, and stack pointer register ESP to Vptr bstk 0, a pointer to
the allocated dummy stack frame. When we step from Asm CallStateIn to
the running state StateASM, we record the block address bstk of the dummy
stack frame and the return type τ of the initial function as a load frame
(mkLoadFrame). We use the load frame (a state component not present in
original CompCert’s x86) to express simulation invariants on the initial
stack frame in the proof of the translation to x86.
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Discussion. For x86 modules that share the same calling convention, the
modeling step I describe above does not occur at runtime (nor does the com-
piler output any “marshalling” or copying code). The advantage of sticking
to the abstract “calling convention” imposed by initial core, in which values
are passed abstractly instead of in memory and registers according to a
particular calling convention, is increased flexibility to model the interac-
tions of modules in a wide variety of languages. By a variety of languages, I
mean not only Clight and x86 but also x86 modules following different call-
ing conventions, such as, e.g., cdecl and Microsoft fastcall (for which
additional code would have to be inserted at linktime).

On the other hand, it is not immediately obvious that the use of a
“dummy” stack frame accurately models the interactions of linked mod-
ules running on a real machine, even when the modules share the same
calling convention. Take, for example, the following C function:

int f(int* p, int x) {
x = 0;

*p = 1;
return x;

}

The function f takes two arguments, an integer pointer p and an integer
x. First, it assigns x the value 0. Then it writes the value 1 to memory at
location p, and returns x. If we compile and link f with the code

extern int f(int* p, int x);
int main(void) {
int a;
return f(&a, 0);

}

in a second translation unit, the resulting x86 program returns 0, as ex-
pected. In fact, f should return 0 regardless of the values of x and p. For
example, it is sound to rewrite this function, by simple constant propaga-
tion, to:

int f(int* p, int x) {

*p = 1;
return 0;

}

The question is: does our x86 semantics adequately model this behavior?
Graphically, at the point of the call to f in main, the stack looks like

this:
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Stack
000

&a&a&a

Arg1

Arg0

...

The arguments have been pushed in right-to-left order. In the body of f,
the write to p corresponds to a write to address &a (as loaded from address
Arg0); the x returned is equal to the value at address Arg1 (equal 0).

The x86 semantic model produces a slightly different runtime state. In
order to handle the call to f, it initializes a new x86 core which immediately
allocates a fresh memory region in which to store copies of the function
arguments. The resulting state is the following:

Stack
000

&a&a&a

Arg1

Arg0

...

000

&a&a&a

Arg1′

Arg0′

Arg1′ and Arg0′ are the addresses of the copied arguments. In this case,
the copying does not change the behavior of the program (x and p have the
same values as before). In general, when the arguments on the stack are not
written to by the callee, the copying semantics simulates the no-copying
semantics, meaning copying is a sound abstraction.

But it is also possible that p aliases the stack location at which the x ar-
gument to f is passed, leading f to inadvertently mutate its first parameter.
For example, the following x86 assembly code, due to Tahina Ramananan-
dro:

main:
pushl 0
pushl %esp
call f
popl %eax
popl %eax
ret
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causes f to mutate x, by first pushing the argument corresponding to pa-
rameter x (equal 0) onto the stack, then pushing %esp—the address at
which 0 was just stored—at the parameter position corresponding to p.1

Graphically, the situation is:

Without copying

Stack
111

Arg1Arg1Arg1

Arg1

Arg0

...

With copying

Stack
111

Arg1Arg1Arg1

Arg1

Arg0

...

000

Arg1Arg1Arg1

Arg1′

Arg0′

The stack layout without copying is on the left. The layout with copying
is on the right. The pointer at address Arg0 still points to the Arg1 mem-
ory location, even after copying. The incoming parameter x resolves to the
memory cell at location Arg1′ with copying, and to Arg1 without, resulting
in two different return values depending on whether copying occurs.

In this case, the no-copying semantics produces the wrong result (as we
mention above, f should return 0 regardless of its parameters). But where
does the fault lie? Is it the compiler? gcc -O0, for example, uses the no-
copying semantics on the left, resulting in return value 1 when linked with
the assembly code implementation of main above. But to further confuse
matters, gcc -O2 turns on constant propagation, resulting in the “correct”
return value 0. Constant propagation should at least be sound for f. At the
same time, the compiler should not be forced to copy in order to produce
correct code, since copying is expensive.

The better answer is that the assembly code implementation of main
is at fault. We just should not pass pointers to stack-allocated parameters
when calling external functions from assembly contexts. Since gcc is the de
facto standard C compiler, and it implicitly requires well-behaved contexts
that do not alias parameter slots, then so should we.

One rationale here is that the outgoing parameters to an external call,
while technically allocated in the caller’s stack frame, are fresh locations in
a sense “owned” by the callee. The caller should not be allowed to gener-
ate and pass pointers to these locations. More pragmatically, the compiler
should not be required to copy in order to produce correct code, and to val-

1pushl %esp pushes the value of %esp as it existed before the stack pointer
is decremented. [Int, Volume 2, Chapter 4 (Instruction Set Reference, N-Z), PUSH]
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idate common optimizations such as constant propagation, in which case
the program context—not the no-copying compiler (gcc)—is at fault.

When implementing modules in C, the issue does not arise quite as
directly: The outgoing arguments of a C external function call are not
laid out concretely, i.e., on the stack, at the level of the C-programming-
language abstraction. A C program cannot manipulate pointers to these
(nonexistent) locations. When compiling from C to assembly, it is possible
to show (though I have not proved this theorem in Coq) that the generated
assembly code follows the no-pointers-to-parameters policy: Because the
parameter stack slots introduced by register allocation are fresh memory
locations (they are not allocated at all until the register allocation phase),
there are no existing pointers in memory to these locations. Nor does the
compiler introduce new pointers to these locations.

3.2.3 Gallina Semantics

The interaction semantics abstraction is suitable for expressing more than
just traditional programming language semantics (e.g., the one for Clight
given in Section 3.2.1, or x86 in Section 3.2.2, or any of the other CompCert
intermediate languages). Interaction semantics are general enough to model
arbitrary relations over values and memories. This section demonstrates by
constructing an interaction semantics of relations in Coq’s specification lan-
guage, Gallina (which is in turn suitable for expressing all of mathematics).

States in the Gallina semantics have type

gallinaState , option (gallinaRel× list V)

where by gallinaRel I mean the type of relations

gallinaRel , ∀(~v : list V)(mpre : M )(mpost : M ). Prop

that map a list of argument values ~v , and pre- and post-memories mpre

and mpost to Coq propositions (type Prop). The option in the definition
of gallinaState is used to indicate whether a Gallina semantics has been
“executed” yet. If the option is None, then the Gallina semantics is halted.

halted (c : gallinaState) : option V ,
case c of
| None → Some 0
| Some → None
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Otherwise, we take a step, provided the following conditions hold.

corestep (ge : G) (c : gallinaState) (m : M ) (c ′ : gallinaState) (m ′ : M ) ,
(∃R : gallinaRel. ∃~v . c = Some (R,~v) ∧ R ~v m m ′) ∧ c ′ = None

In other words, a Gallina semantics steps from configuration c, m to new
configuration c ′, m ′ provided that c is Some (R,~v), for some relation R and
initial arguments ~v , the relation R is satisfied by ~v , m, and m ′ (R ~v m m ′),
and c ′ is halted (c ′ = None). The key point is that the semantics is stuck
whenever the relation R does not hold.

The definitions of the other required functions (at external, after external,
initial core) are straightforward. We simply say that the semantics is never
blocked.

at external (c : gallinaState) : option (ext fun× list V) , None

afterExternal (vopt : option V) (c : gallinaState) : option gallinaState , None

To construct an initial Gallina core, we parameterize by a relation R :
gallinaRel and instantiate the initial core with this relation.

initial core (R : gallinaRel) (ge : G) (v : V) (~v : list V) : option gallinaState

, Some (R,~v)

There are many other ways in which such a semantics can be expressed.
The relation R can enforce that m = m ′, in which case we have a semantics
of (unary) assertions on memory states. It is also possible to parameterize
R not only by the arguments to initial core, but also by the value v (typically
of form Vptr b z ) that identifies the function (e.g., at block address b) that
this core was spawned to handle.

3.2.4 Trace Semantics

Gallina semantics (Section 3.2.3) demonstrated an interaction model of
arbitrary relations on function arguments and memories. But the relations
R which I employed in that section were history independent, in the sense
that they did not predicate over the history, or trace, of external function
call events produced by program executions.

In this section, I demonstrate an interaction semantics that does record
interaction traces. This trace semantics, T , differs from the semantics shown
previously for Clight, x86, and Gallina in that it is an operator, or functor,
over interaction semantics. As input, T takes an interaction semantics sem :
Semantics G C M and an axiomatization, spec, of the external functions that
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may be called by sem; as output, it produces a new interaction semantics
in which core states have been augmented to record the interaction trace.

Core states of the resulting semantics are products of
• C states,
• a program trace trs , and
• an external state (modeling the configuration of the environment).

In the definition of T , we thread external states through the semantics. The
external states themselves are only updated over external function calls.

At external call points, we use spec, which contains pre- and postcondi-
tions for each external function, to specify the pre- and postmemories of
the external function being called, as well as the effect of that function on
the external state (for example, an external call to fopen might change the
state of a model of the filesystem to specify that a particular function is
now open). The details are as follows.

Traces (of finite program executions) are defined as lists of events

trs ∈ trace , list event

where by event I mean a record of the input–output behavior of a call to an
external function:

Record event : Type ,
{ ef : ident;

args : list V ;
retv : option V ;
pre : M ;
post : M }

The field ef is the identifier of the external function that was called. Values
args are the arguments to ef; retv is the optional return value. pre and
post are the memory states at the external function call and return points
respectively.

We define the core states of trace semantics as the type

Ctr , C × list event×Ω

where Ω : Type is the additional parameter to T that gives the type of
external states.

The step relation has two cases. The first is just a congruence rule, in
which we step the core state c and memory m in trace semantics configura-
tion (c, trs , ω) using the step relation of the underlying semantics:

ge ` c, m 7−→ c ′, m ′

ge ` (c, trs , ω), m Z=⇒ (c ′, trs , ω), m ′
(TraceStep)
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The external state and trace are left unchanged (internal steps are not ob-
servable). The second case handles external function calls.

at external c = Some (ef ,−→v ) spec ef = (P , Q)
P(x , ω,−→v , m) Q(x , ω′, vopt , m ′) after external vopt c = Some c ′

ge ` (c, trs , ω), m Z=⇒ (c ′, mkEvent ef −→v vopt m m ′ :: trs , ω′), m ′

(TraceExternal)

Core state c is at external calling external function ef with arguments
−→v . The pre- and postconditions of ef as provided by spec are P and Q
respectively. P is satisfied by−→v , the precall memory m , and external state ω;
m ′, the return value vopt , and new external state ω′ satisfy the postcondition
Q . Injecting the return value vopt into c using after external results in the
new core state c ′. From initial trace semantics state (c, trs , ω), we step to
final state (c ′, mkEvent ef −→v vopt m m ′ :: trs , ω′) in which the new event
mkEvent ef −→v vopt m m ′, signaling a call to external function ef , has been
consed onto the head of the current trace.

The x parameter to both P and Q is a peculiarity of how we define func-
tion specifications (Chapter 7): for each function identifier ef , spec provides
a pre- and postcondition that are parameterized not only by the function
arguments, return value, initial and final memories, etc., but also by a value
x of the (dependent) type spec type ef , where

spec type : ident → Type

is a function from external function identifiers to Type. Using this spec type
convention makes it possible to communicate information, in a function-
specific way, between the precondition P and the postcondition Q . (For
example, requiring x = −→v in P communicates the function arguments to
the postcondition.) Binary postconditions, which parameterize Q by the
initial state m and arguments −→v in addition to m ′ and vopt , serve a similar
purpose.

Trace semantics as presented above assumes that external functions
do not themselves produce observable events, besides the single mkEvent
consed onto the trace above to mark the external call. To lift this restriction,
external function specifications can be augmented to include the function
trace produced for given inputs, via a relation

traceOf : ident → list V → M → trace → Prop

that associates an external function name, the function arguments, and
precall memory to a set of event traces. Assuming trs ′ = traceOf ef −→v m,
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the trace that results in rule TraceExternal is then

mkEvent ef −→v vopt m m ′ :: trs ′ ++ trs

in which trs ′ has been interposed between the mkEvent and the tail trs .
Another limitation is that T does not deal gracefully with nontermina-

tion. The semantics faithfully models programs that may make an arbitrary
finite number of external function calls, but not those that make infinitely
many external function calls (reactive divergent programs). Nor does the
trace model deal adequately with external functions that may diverge.

To deal with the first problem, it is sufficient to model traces coinduc-
tively, i.e. as streams instead of lists. To deal with the second problem, it’s
necessary to alter the specification of external functions to permit other
behaviors (e.g., divergence) in addition to termination in a poststate satis-
fying Q . Extended behaviors of external function must then be propagated
through the trace semantics, e.g., by adding to the core state type Ctr addi-
tional constructors for the additional behaviors and by updating the step
relation Z=⇒ to do the propagation. These variations have not been done in
Coq (yet) but would not be particularly difficult to implement.

3.3 Reach-Closed and Valid Semantics
In addition to the specialized interaction semantics I presented in the previ-
ous section, the results of later chapters (in particular, Chapter 6) will rely
on two further specializations of the basic interface. The first specializa-
tion is to what I call reach-closed semantics. At a high level, a reach-closed
semantics is one that writes only to memory locations leaked to it, e.g., by
following the reach-closure in memory of pointers returned to the module
by external functions. A reach-closed semantics may also write to locations
it allocated itself.

The second specialization I describe here but do not use until Chapter 6
is to valid semantics. A valid semantics is one that does not store invalid
pointers into memory (in the sense of the val valid predicate of Chapter 2).
In the following I present the details.

3.3.1 Reach-Closed Semantics

Reach-closed semantics are defined by an invariantR on states c, memories
m, and block sets B that satisfies the laws given in Figure 3.7.2

2File compcomp/linking/rc semantics.v.
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Reach-Closed Invariant

R : C → mem→ set block→ Prop

Reach-Closed Initial Core

initial core ge v ~v = Some c
=⇒ ∀m. R c m (REACH m (blocksOf ~v))

Reach-Closed Step

roots (ge : G) (B : set block) , globalBlocks ge ∪ B

R c m B ∧ ge ` c, m
E7−→ c ′, m ′

=⇒ (1) E ⊆ REACH m (roots ge B) ∧
(2) R c ′ m ′ (REACH m ′ (freshblks m m ′

∪ REACH m (roots ge B)))

Reach-Closed At External

R c m B ∧ at external c = Some (idf ,~v) =⇒ defined~v

Reach-Closed After External

let B ′ , case vopt of None→ B
| Some v → blocksOf (v :: nil) ∪ B

in R c m B
∧ at external c = Some (idf ,~v)
∧ after external voptc = Some c ′

=⇒ ∀m ′. R c ′ m ′ B ′

Reach-Closed At External

R c m B ∧ halted c = Some vret =⇒ defined (vret :: nil)

Figure 3.7: Reach-Closed Semantics
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Definition 2 (Reach-Closed Semantics (reach closed)). An interaction seman-
tics is reach-closed iff there is an R, specialized to the states and step relation of
that semantics, that satisfies the laws of Figure 3.7.

The definitions are parameterized by types G and C , by a global envi-
ronment ge : G , and by an interaction semantics of type Semantics G C mem
that defines the step relation 7−→ and the functions after external, initial core,
at external, and halted.

The R invariant of reach-closed semantics quantifies over: Core states
of the argument semantics c : C , the memory m : mem, and a set B of
memory regions that records the memory blocks exposed to the semantics
at interaction points (via pointers in the initial argument list, in the return
values of external function calls, and by local allocation).

The roots of a block set B and global environment ge are the union of
the global blocks and B . The operative conditions of reach-closed semantics
are those that characterize the reach-closed step relation (clauses 1 and 2).
Clause (1) instruments the step relation of the underlying semantics with a
restriction on the effects E produced by the step. The judgment

ge ` c, m
E7−→ c ′, m ′

means: configuration c, m steps to c ′, m ′, writing to or freeing exactly the
locations E .3 Locations not contained in this set are guaranteed not to
be modified. E ⊆ REACH m (roots ge B) states that this set of modified
locations E is a subset of the reach-closure (in m) of the current roots.

Clause (2) asserts that the invariant can be reestablished after the step for:
the blocks reachable (in m ′) from newly allocated blocks (freshblks m m ′), if
any, as well as from the blocks that were originally reachable in m (this set
is REACH m (roots ge c)). This last condition ensures that the reachable set
grows monotonically at each step, by not “forgetting” locations that were
previously reachable.

The other interface laws modify B as specified above. For example, the
clause for after external asserts that R can be reestablished for B ′ equal to B
union the blocks exposed by the return values of external calls (blocksOf (v ::
nil)). initial core asserts that the invariant can be established initially, with B
equal to the blocks exposed by the closure of the initial arguments, in the
initial memory. at external and halted (not shown) assert that the arguments
to external calls and return values, respectively, are well-defined.

Reach closure is not an unrealistic proof obligation. One can show, for
example, that all Clight programs satisfy the restrictions imposed in Fig-

3See compcomp/core/effect semantics.v for the formal definition.
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ure 3.7. In the following theorem, CLSem is the Clight interaction semantics
presented in Chapter 3.

Theorem 1 (Clight is Reach-Closed). CLSem is reach closed.

Proof. The proof4 of this (perhaps counterintuitive) theorem takes advan-
tage of the fact that Clight programs never fabricate nonnull pointers, e.g.,
by casting an integer to a pointer and then dereferencing it. (Even in stan-
dard C, casting an integer to a pointer, or vice versa, is only implementation
defined, except when the pointer is null. See, e.g., the C11 standard [ISO11,
6.3.2.3].) Also perhaps counterintuitively, (safe) C pointer arithmetic does
not violate the theorem. The REACH relation that appears Figure 3.7, and
which was first defined in Chapter 2, is closed under intrablock pointer
arithmetic.

The toplevel invariantR c m B holds when either c is the initial core and
B = REACH m (blocksOf ~v), or c, m, and B satisfy the invariant cl core inv,
defined by induction on the structure of c as follows.

R c m B : Prop ,
(∃ v ~v . B = REACH m (blocksOf ~v) ∧ initial core ge v ~v = Some c)
∨ cl core inv c m B

cl core inv c m B ,
case c of
| StateCL f s k e te →

cl state inv c m e te
∧ REACH m (roots ge B) ⊆ roots ge B
∧ cl cont inv c k m

| Callstate f ~v k →
blocksOf ~v ⊆ roots ge B
∧ REACH m (roots ge B) ⊆ roots ge B
∧ cl cont inv c k m

| Returnstate v k →
blocksOf (v :: nil) ⊆ REACH m (roots ge B)
∧ cl cont inv c k m

The key relation above is REACH m (roots ge B) ⊆ roots ge B , which
asserts that roots ge B (a set of blocks, as defined in Figure 3.7) is closed
under reachability in memory m.

In the StateCL case, the subsidiary relation cl state inv:

4File compcomp/linking/safe clight rc.v.
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cl state inv c (m : mem) (B : set block) (e : var env) (te : temp env) ,
∀ x b (ty : Ctypes.type). e(x ) = Some (b,ty) =⇒ b ∈ roots ge B
∧ ∀ x v . te(x ) = Some v =⇒ blocksOf (v :: nil) ⊆ roots ge B

asserts that
1. The memory region associated with every identifier x in the address-

able local variable environment e is reachable; and
2. Every temporary identifier x in the temporaries environment te maps

to a value whose blocks are contained in the current roots.
The cl cont inv invariant applies cl state inv recursively to the call stack:

cl cont inv c (k : cont) m ,
case k of
| Kstop → True
| Kseq s k ′ → cl cont inv c k ′ m
| Kloop s1 s2 k ′ → cl cont inv c k ′ m
| Kswitch k ′ → cl cont inv c k ′ m
| Kcall idopt f e te k ′ → cl state inv c m e te ∧ cl cont inv c k ′ m

It is tedious (but not difficult) to verify that R as defined above satisfies the
laws of Figure 3.7.

3.3.2 Valid Semantics

A semantics is valid5 according to the following definition.

Definition 3 (Valid Semantics). A semantics is valid when there exists an
invariant I , specialized to the core states of the semantics, that satisfies the laws
given in Figure 3.8.

Informally, a valid semantics is one that never stores invalid pointers
into memory. An invalid pointer is one that references a memory region
that has not yet been allocated (freed memory regions are never invalid).

In the Compositional CompCert proofs, we establish that a semantics is
valid by exhibiting an invariant I over core states of the semantics c and
memories m with the properties given in Figure 3.8. As in Chapters 2 and 5,
mem valid m states that the memory m contains no invalid pointers. The
other definitions, such as vals valid m ~v (the values ~v are all valid with re-
spect to m), are similar. In the clauses that mention the global environment
ge, ge is assumed to contain only valid pointers as well.

5File compcomp/core/nucular semantics.v.
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Initially Valid

∀v ~v c. initial core ge v ~v = Some c
∧ vals valid m ~v
∧ mem valid m =⇒ I(c, m)

Corestep Valid

∀c m c ′ m ′. I(c, m)
∧ ge ` c, m 7−→ c ′, m ′ =⇒ I(c ′, m ′)

At External Valid

∀c m idf ~v . I(c, m)
∧ at external c = Some (idf ,~v)

=⇒ vals valid m ~v ∧ mem valid m

After External Valid

∀c m v c ′ m ′. I(c, m)
∧ after external v c = Some c ′

∧ val valid m ′ v
∧ forward m m ′

∧ mem valid m ′ =⇒ I(c ′, m ′)

Halted Valid

∀c m v . halted c = Some v
=⇒ val valid m v ∧ mem valid m

Figure 3.8: Valid semantics maintain an internal invariant I : C → mem→
Prop satisfying the five properties listed above.
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The Initially Valid clause states that initializing c with valid arguments
~v in valid memory m results in a state satisfying I(c, m). One can think of
this as the introduction rule for the invariant. Corestep Valid asserts that core
steps of the underlying semantics preserve I . At External Valid states that
when c is at external, I(c, m) implies that the external function arguments
~v and memory m are valid. After External Valid asserts that it is possible to
reestablish I after an external function call returns, under the assumptions
given in the clause. Halted Valid states that I(c, m) implies that both the
return value v and memory m are valid whenever c is halted.

It is possible to show that CompCert x86 assembly is a valid semantics.

Theorem 2 (CompCert x86 is Valid). AsmSem is valid.

Proof. AsmSem is the x86 assembly semantics given in Chapter 3. To prove6

that AsmSem is valid, we must exhibit an I satisfying the laws in Figure 3.8.
Let I equal:

I c m : Prop ,
mem valid m ∧
case c of
| StateASM rs lf → regset valid m rs ∧ loadframe valid m lf
| Asm CallstateIn bf ~v ~τ τ →

block valid m bf ∧ vals valid m ~v
| Asm CallstateOut ~v rs lf →

regset valid m rs ∧ loadframe valid m lf ∧ vals valid m ~v

with regset valid and loadframe valid defined as follows:

regset valid m (rs : regset) , ∀ r . val valid rs(r) m

loadframe valid m (lf : load frame) ,
case lf of mkLoadFrame bstk τ → block valid m bstk

6File compcomp/backend/Asm nucular.v.



Chapter

4
Language-Independent
Linking

In Chapter 3, I introduced interaction semantics in order to interpret the
behavior of isolated modules. Trace semantics T introduced the notion of
an operator over interaction semantics. In this Chapter, I define a second
operator

L(JS0K, JS1K, . . . , JSN−1K)

over interaction semantics that models the linked behavior of a set of inter-
acting modules, as given by a multimodule program P = S0, S1, · · · , SN−1.
Each Si here ranges over (the syntax of) a program in a language such as
Clight or x86 assembly (though linking semantics as I present it in this
chapter is formally language-independent; one can start directly from se-
mantics). JSiK is the semantics of such a module, as defined by the Modsem
record below.

4.1 Linking Semantics

As input, L takes N interaction semantics, each with (perhaps) a different
global environment and core state type (for example, the modules may be
programmed in perhaps different languages). The global environments of
the modules must have equal domain (map the same set of addresses).1

1Throughout this thesis, L-semantics are assumed to satisfy this property. See
Section 7.3.1, Theorem 9 for further discussion, in particular of why this assumption
is compatible with programs that declare different (but consistent) sets of global
variables.
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The output of L is a new interaction semantics

JPK = L(JS0K, JS1K, . . . , JSN−1K)

that models the linked program execution by maintaining as its own core
state a (heterogeneous) stack of the modules’ core states. Each “frame” on
the stack corresponds to a runtime invocation of one of the modules in the
program. Cross-module function calls result in new cores being pushed
onto the stack (initialized via initial core); returning from such a function
pops the top core from the stack and injects the return value into the state
of the caller, using after external.

The modules Si are written in different languages, whose states may
have different (Coq) types. In order to treat these modules uniformly in
L, we wrap their interaction semantics by existentially quantifying over the
core state types of each module, an operation we encapsulate in the type
Modsem.

Record Modsem : Type ,
mkModsem {

F, V, C : Type;
ge : Genv F V;
sem : Semantics (Genv F C) C mem
}

In this dependently typed record, the types of ge and sem depend on F, V,
and C. This module is written in programming language F (e.g., Clight or
x86), whose global variables have type-specification language V (e.g., Clight
types or unit); and whose core states have type C (e.g., Clight nonaddress-
able locals and control stack, or x86 register bank). We also existentially
bind the global environment ge that was statically initialized for this mod-
ule. It maps addresses to global variables and function-bodies (and global
identifiers to the addresses at which they are defined). All the inputs to L
must have ge functions that map exactly the same global addresses (mod-
ules that fail to declare some unused external global variables or functions
can always be made to do so, by safety monotonicity).

The final component is sem, an interaction semantics. It defines the
interface functions initial core, at external, after external, and halted, as well
as a step relation ge ` c, m 7−→ c ′, m ′. Modules in the same language will
typically have identical · ` · 7−→ · relations, specialized by different ge
components that map disjoint sets of addresses to internal function bodies
(as opposed to external function declarations). In what follows, we use J·K
to refer interchangeably to the interaction semantics of modules and their
Modsem wrappers.
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The output of L is an interaction semantics in the LinkedState “language.”
LinkedState is parameterized by modules, a map from module indices in the
range [0, N ) to module semantics, where N is the (nonzero) number of
translation units in the program.

Record Core (N : pos) (modules : IN → Modsem) ,
mkCore {

idx : IN ;
core : C (modules idx)
}

Core models the runtime state of a sequential execution thread. IN is the
(dependent) type of integers in range [0, N ). The idx of a Core is the index of
the module from which the core was initialized. The core field of the record
(of dependent type C (modules idx) of core states of module idx) gives the
current runtime state of this particular core.

The runtime state of a linked program is then:

Record LinkedState (N : pos) (modules : IN → Modsem) ,
mkLinkedState {

plt : ident → option IN ;
stack : Stack (Core N modules)
}

The two fields of LinkedState are: the procedure linkage table plt—mapping
function names (type ident) to the indices of the modules in which the
functions are defined, if any (option IN )—and a stack of cores. We model
the plt as a field in the LinkedState record, as opposed to deriving it from N
and modules , to retain flexibility to do dynamic linking in the future. The
stack is always nonempty; all cores except the topmost one are at external
(∀c ∈ (pop stack). at external c = Some −).

Figure 4.2 gives the step relation. There are three rules.

The Step rule deals with the case in which the topmost core on the call
stack (c = peek l .stack) takes a normal internal step (gec � c, m 7−→
c ′, m ′). gec is the global environment associated with the module from
which c was initialized.2

2This gec need not have the same type as the linked-program ge , or that of the
global environments of other modules. Since each module may be implemented
in a different language, each ge{c,d ,...} will in general map function addresses to
function bodies of different types. We do require that the individual ges have equal
domain (map the same set of global addresses). Section 7.3.1 of Chapter 7, in which
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Step

Stack
Growth

c0

...

c m

c0

...

c ′ m ′Z=⇒
gec ` c, m 7−→ c ′, m ′

Call

Stack
Growth

c0

...

c m

c ′ m

c0

...

cZ=⇒

at external c =
Some (idf ,−→v )

l .plt idf = Some idx
geidx idf = Some bf
initial core

geidx (modules idx )
(Vptr (bf , 0)) −→v
= Some c ′

Return

Stack
Growth

c0

...

c

c ′ m

c0

...

c ′′ mZ=⇒
halted c ′ = Some v
after external c v
= Some c ′′

Figure 4.1: Cases of the linking corestep relation. Gray dashed boxes are
“stacks-of-cores.” Side conditions for each of the three rules are on the right.
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ge � c, m Z=⇒ c ′, m ′

c = peek l .stack gec � c, m 7−→ c ′, m ′

ge � l , m Z=⇒ l with {stack := push c ′ (pop l .stack)}, m ′
(Step)

c = peek l .stack at external c = Some (idf ,−→v )
l .plt idf = Some idx geidx idf = Some bf

initial core geidx (modules idx ) (Vptr (bf , 0)) −→v = Some c ′

ge � l , m Z=⇒ l with {stack := push c ′ l .stack}, m
(Call)

size l .stack > 1 c = peek l .stack
halted c = Some v c ′ = peek (pop l .stack)

after external (Some v) c ′ = Some c ′′

ge � l , m Z=⇒ l with {stack := push c ′′ (pop (pop l .stack))}, m
(Return)

Figure 4.2: Corestep relation of Linking Semantics L

In this case, we just propagate the new core state c ′ and memory
m ′ to the result state of the overall linking judgment. The notation
l with {stack := push c ′ (pop l .stack)} updates the topmost core state
on the stack. For readability, we elide the operations required to prop-
agate the idx field of Core records.

The second rule, Call, handles the case in which the topmost core on
the stack is at external (at external c = Some (idf ,−→v )) making a cross-
module function call. In this case, we use the initial core function of the
module semantics that defines function idf (l .plt idf = Some idx ) to
initialize a new core state (in the global environment geidx associated
with modules idx ) to handle the function call:

initial core geidx (modules idx ) (Vptr (bf , 0)) −→v = Some c ′

The core c ′ is then pushed onto the stack (l with {stack := push c ′ l .stack})
to become the new running core.

our safety proofs for linking semantics impose a stronger correspondence among
the individual ges, tightens this requirement, while also presenting additional
justification.



60 CHAPTER 4. LANGUAGE-INDEPENDENT LINKING

The Return rule models external function returns. In this case, the core
state c is halted with return value v (l with {stack := push c ′ l .stack}).
To resume execution, we use the after external function exposed by the
caller’s semantics c ′ = peek (pop l .stack) to inject the return value v
(after external (Some v) c ′ = Some c ′′). State c is then popped from the
stack, and c ′ is updated to c ′′:

l with {stack := push c ′′ (pop (pop l .stack))}

The stack is an abstraction of the activation-record stack of a C or assem-
bly program. Internal calls (within one module) do not push on our stack;
they transition from one core (and memory) to another core (and memory)
within the same top stack element. But of course this core/memory may be
the abstraction/implementation of pushing and popping (module-local) ac-
tivation records. Different modules may or may not share a “real” activation
stack.

By case analysis on Z=⇒, we get that if all the modules semantics are
deterministic, then so is the linked semantics L.

Theorem 3 (L-Determinism).

(∀M ∈ {M0, . . . , MN−1}. deterministic M ) =⇒ deterministic L(M0, . . . , MN−1)

Proof. In Coq.3

L’s final ingredient is the definition of the interface functions: initial core,
at external, after external, and halted. In order to reduce the number of ex-
plicit case analyses and to aid comprehension, I present the code in monadic
style.

A linking semantics is initialized (initial core) by spawning a new core
to handle the entry point function that was called.

1 initial core (ge : G) (v : V) (−→v : list V) ,
2 do { Vptr (bf ,0) ← v;
3 idf ← invertSymbol ge bf ;
4 idx ← plt idf ;
5 c ← initial core (modules idx ) (Vptr (bf ,0)) −→v ;
6 return (Some (mkLinkedState plt (singletonStack c))) }

First, we look up the identifier idf associated with function pointer bf , if any
(line 3). Then, we determine the index idx of the module that defines idf

3Lemma linking det in file compcomp/linking/compcert linking.v.



4.1. LINKING SEMANTICS 61

Semantics G (LinkedState N modules) mem

initial core (ge : G) (v : V) (−→v : list V) ,
do { Vptr (bf ,0) ← v;

idf ← invertSymbol ge bf ;
idx ← plt idf ;
c ← initial core (modules idx ) (Vptr (bf ,0)) −→v ;
return (Some (mkLinkedState plt (singletonStack c))) }

at external (l : LinkedState N modules) : option (F × list V) ,
let c , peek l .stack in
do { (idf , −→v ) ← at external c;

case l .plt idf of
None → return (Some (idf , −→v ))
Some → return None }

after external (vopt : option V) (l : LinkedState N modules)

: option (LinkedState N modules) ,
let c , peek l .stack in
do { c ′ ← after external vopt c;

return (Some l with {stack , push c ′ (pop l .stack)}) }

halted (l : LinkedState N modules) : option V ,
let c , peek l .stack in
do { v ← halted c;

if size l .stack = 1 then return (Some v)
else return None }

corestep , Z=⇒

Figure 4.3: Interaction semantics of program linking. G is the type
Genv unit unit. Corestep relation Z=⇒ is as defined in Figure 4.2.
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(line 4) and initialize module idx with function pointer Vptr (bf , 0) and ar-
guments −→v (line 5), producing initial core c. We return the new LinkedState
(mkLinkeState plt (singletonStack c)). The plt used in line 4 is a parameter to
the definition, which is then stored in the linker state.4 I also assume the ex-
istence of a global environment ge : Genv unit unit with the same address set
as the gei of each module in modules. Such a ge can always be constructed
(by mapping global addresses to unit) whenever the gei are consistent (the
linking semantics is undefined otherwise).

A linking semantics is at external when the topmost core on the stack is
at external, calling a function defined by none of the modules (otherwise,
we would have initialized and pushed a new core to handle the function).

at external (l : LinkedState N modules) : option (F × list V) ,
let c , peek l .stack in
do { (idf , −→v ) ← at external c;

case l .plt idf of
None → return (Some (idf , −→v ))
Some → return None }

Line 3 peeks the top core on the stack. (The “callstack nonempty” invariant
maintained by linking semantics ensures that such a core always exists.)

To inject a return value into linker states (after external), we inject the
value into the topmost core state on the stack (after external vopt c = Some c ′,
line 4).

after external (vopt : option V) (l : LinkedState N modules)

: option (LinkedState N modules) ,
let c , peek l .stack in
do { c ′ ← after external vopt c;

return (Some l with {stack , push c ′ (pop l .stack)}) }

The LinkedState we return in this case is the same as l but with the topmost
core c replaced by c ′.

Finally, a linking semantics is halted when the stack contains a singleton
halted core state (halted c and size l .stack = 1), i.e., the topmost core is halted
and has no return context.

4Storing the PLT in LinkedState makes it possible to model operations that
change the PLT, like dynamic linking.
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halted (l : LinkedState N modules) : option V ,
let c , peek l .stack in
do { v ← halted c;

if size l .stack = 1 then return (Some v)
else return None }

4.2 Contextual Equivalence

Linking semantics leads to a natural notion of semantic context: Take pro-
gram contexts C to be arbitrary module semantics Modsem. Then the ap-
plication of a program context to an (open) multimodule program P is
just the semantics that results from linking the program with that context:
L(C , JPK).

We can then define contextual equivalence of two open multimodule
programs PS and PT as equitermination (halted in interaction semantics) in
all contexts:

Definition 4 (Contextual Equivalence).

PS ∼ PT , ∀C . L(C , JPS K)⇓ ⇐⇒ L(C , JPT K)⇓

P⇓ is termination of program P . The context C observes the state of mem-
ory (and the arguments to external calls) when the program interacts with
the environment. To distinguish PS and PT , C can, e.g., get stuck (as op-
posed to safely terminating) at one of these interaction points if the memory
state and arguments fail to satisfy a particular predicate.

The above definition plays a bit fast and loose with the initial arguments
and memory states in which the two programs PS and PT are executed;
these details will be made precise when we present reach-closed contextual
equivalence in Section 6.2.1.

4.3 Gallina Contexts

This notion of context-as-interaction-semantics is quite general: it supports
the definition of program contexts in arbitrary languages, e.g., Clight and
x86, but also Coq’s Gallina. As an example Gallina context, consider the
following Gallina semantics (cf. Section 3.2.3) that enforces the protocol:

The character argument c to external function putchar satisfies
the predicate isLowerAlpha: ‘a’<= c && c <= ‘z’.
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Recall that Gallina semantics are parameterized by a relation R of type
∀(−→v : list V)(mpre : M )(mpost : M ). Prop. The corestep relation of a Gallina
semantics is defined only when this R is satisfied:

corestep (ge : G) (c : gallinaState) (m : M ) (c ′ : gallinaState) (m ′ : M ) ,
(∃R : gallinaRel. ∃−→v . c = Some (R,−→v ) ∧ R −→v m m ′) ∧ c ′ = None

To “check” that isLowerAlpha holds at each call to putchar, we therefore
define R as follows:

R(~v , mpre , mpost ) ,
∃c.~v = (c :: nil) ∧ isLowerAlpha(c) ∧ mpost = mpre

The relation R is undefined (and the corestep relation of the Gallina context
stuck) when either: (1) the arguments ~v to putchar are not of shape (c ::
nil), or (2) c does not satisfy isLowerAlpha.

4.4 Stateful Contexts
The isLowerAlpha protocol above is stateless, in the sense that it does
not predicate over the history of interactions up to a certain point. It is also
possible to define stateful Gallina contexts that do observe properties of the
program trace.

For example, imagine we would like to enforce the protocol:

In every execution of the program, a particular external function
f is always called before a second external function g.

Perhaps f is an initialization routine, or provides access to a particular
resource (e.g., a file), while g accesses this resource.

Why should this specification be preserved by the compiler? Recall that,
while the compiler is allowed to reorder calls to internal functions—as long
as such reorderings are justified semantically—it is never allowed to reorder
calls to external functions, since such calls are observable in interaction
semantics. The order in which calls to external functions are made must be
preserved.

We can construct a context that observes the order in which f and g
are called as follows. First, extend the Gallina semantics of Section 3.2.3 to
predicate over the global environment and function pointer of the called
external function, in addition to the arguments and pre- and postmemories.
That is, R is now a relation of type:

R : ∀(ge : G)(vf : V)(−→v : list V)(mpre : M )(mpost : M ), Prop
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with ge : G the global environment and vf the additional value parameter.
G is the type Genv unit unit (in which function bodies and variable type
annotations are of type unit). The global environment will be used to look up
the memory location associated with a ghost global variable, idhist , storing
context state (explained below; initialized at program startup to 0).

In order to case analyze in R on which external function is called at each
interaction point, we update the initial core function of the Gallina context
to store the vf : V , in addition to R and~v :

initial core (R : gallinaRel)(ge : G)(vf : V)(~v : list V) : option gallinaState

, Some (R, vf , ~v)

with the type gallinaState appropriately extended to:

gallinaState , option (gallinaRel× V × list V)

The corestep relation must be updated as well, to pass the vf to R.
Now we define R as follows:

1 R(ge, vf , ~v , mpre , mpost) ,
2 do { lhist ← ge(idhist );
3 Vint n ← mpre(lhist );
4 Vptr (bf ,0) ← vf ;
5 idf ← invertSymbol ge bf ;
6 if n == 0 then
7 if idf == f then return mpost = mpre [lhist 7→ Vint 1]
8 else if idf == g then return False
9 else return mpost = mpre

10 else return mpost = mpre }

The code is presented in monadic style. Operations that fail do so by re-
turning False. For example, the code on Line 2 desugars to:

case ge(idhist ) of None → False | Some lhist → ...

In lines 2 through 5, we look up the location lhist associated with iden-
tifier idhist , read the value Vint n at that address, case analyze the value vf ,
returning a pointer Vptr (bf , 0), and do a reverse lookup in the ge for the
identifier idf associated with block bf . If any of these operations fails, R
evaluates to False.

Line 6 branches on the value of n. When n = 0 (the initial state at
program startup), we do an inner case analysis on the identifier idf . In
the expected case, in which idf = f, we change state by asserting that the
postmemory mpost equals the prememory with location lhist updated to the
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value Vint 1 (mpre [lhist 7→ Vint 1]). If idf equals g when n = 0, the program
has violated the policy, in which case we return False. When idf is neither f
nor g, or n is no longer 0, we assert that the memory is unchanged.

Discussion. Whether this relation adequately models the specification
presented informally above depends on a number of factors. The most im-
portant is the use of memory to record the integer n. Because the entire
memory is communicated between modules at each intermodule function
call, linking semantics does not directly prevent a function in one module
from overwriting the location lhist used to store the context state. It is pos-
sible, however, to prove that such overwrites do not occur, e.g., by proving
a global invariant on the value in memory at lhist , or by showing that the
program is safe when executed in an initial state that does not contain valid
memory at location lhist (the location can be initialized with read-only or
even empty permission, for example, causing writes to get stuck). Because
the context is “implemented” as a Gallina relation, it can update the value
at lhist regardless of the permissions, by bypassing the memory model inter-
face. The other modules in the program must be implemented in languages
(e.g., Clight or x86) that respect the CompCert permission model.

There is a second way in which to model the f-before-g specification that
bypasses the memory issues, at the cost of increased complexity in linking
semantics. This is to directly record module-local state (nonaddressed file-
scope static variables in C), in the form of a finite map

stateType : IN → Type

mapping module indices to the type of auxiliary state used by each module,
and a second map

moduleStates : ∀idx : IN . stateType idx

recording the current state associated with each module. As opposed to
core states, which are initialized at each module entry, module-local states
would persist across multiple dynamic invocations of each module. For
example, the Call rule of Figure 4.2 would be updated to:

(c, ω) = peek l .stack at external c = Some (idf ,−→v )
l .plt idf = Some idx ge idf = Some bf

initial core (modules idx ) (Vptr (bf , 0)) −→v = Some c ′

moduleStates idx = ω′

ge � l , m Z=⇒ l with {stack := push (c ′, ω′) l .stack}, m
(Call

′)
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to pair the module-local state ω′ (as stored in moduleStates the previous
time module idx returned to its caller) with the new core state c ′ initialized
to handle function idf . The map modules : IN → Modsem would also have
to be updated, to contain interaction semantics that operate on pairs of
core states and module-local states. Returning to a caller would involve an
update to the moduleStates map, at the caller’s module index.





Chapter

5
Compiler Correctness

Interaction and linking semantics (Chapters 3 and 4) provide the machin-
ery with which to state compiler correctness (as cross-language contextual
equivalence; cf. Section 4.2 for the basic definition). We do not yet have a
way to establish such equivalences, however.

This chapter lays the groundwork. First, I present whole-program simula-
tions, which recapitulate standard forward simulation proofs for closed pro-
grams, but adapted to the interaction semantics of Chapter 3. In Chapter 6
I will establish whole-program simulation for open programs by linking
with a closing context, depending on the results here.

The second half of this chapter introduces structured simulations, a new
equivalence method for open programs. Structured simulations are the
compiler correctness relations we establish for each phase in Compositional
CompCert (Chapter 8). As the results of the next chapter demonstrate, if
each pair of modules Si and Ti in a multimodule program is related by
structured simulation, then the overall linked source and target programs
L(S ) and L(T ) are contextually equivalent (Theorem 7 of Chapter 6).

In contrast with standard forward simulations and the logical simula-
tion relations of previous work [BSDA14], the two distinguishing charac-
teristics of structured simulations are their rely–guarantee and ownership
disciplines.

Rely–Guarantee: Structured simulations impose a rely–guarantee disci-
pline on the interactions of program modules. The rely–guarantee
discipline ensures that module compilation preserves the same prop-
erties that modules themselves assume about the behavior of external
functions (those defined in other modules). This, in turn, makes it

69
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possible to implement external functions or libraries with code that is
itself compiled.

Ownership: Structured simulations enrich CompCert’s standard simula-
tion relations with additional “ownership” data, which makes it pos-
sible to distinguish memory regions that are reorganized during com-
pilation of distinct translation units. For example, the portion of the
stack frame reserved for spilling during compilation of a function
A.f can be distinguished from the spill region reserved for a second
function B .g , defined in a distinct translation unit B .

A key insight of Ownership above is that the invariants that apply to dis-
tinct regions of memory—such as the regions reserved by the compiler for
A.f ’s and B .g ’s spilled locals—are subjective: function A.f can write to its
own spilled locals but not to B .g ’s, and vice versa for B .g with respect to
A.f ’s spills. Structured simulations deal with this subjectivity by imposing
an “us vs. them” discipline on compiler correctness invariants: Each struc-
tured simulation distinguishes the parts of the state that it controls (the
“us”) from the parts of the state controlled by the environment (the “them”).
This discipline is reminiscent of Ley-Wild and Nanevski’s subjective concur-
rent separation logic [LWN13], though here it is applied to the two-program
invariants used to prove compiler correctness.

Another ingredient is a “leakage” protocol, which ensures that the views
of the memory state imposed by the compiler invariants for different mod-
ules remain consistent. For example, when A.f calls B .g with arguments
~v , A.f ’s compilation invariant must “give up exclusive control” of all the
memory regions reachable from~v (i.e., following pointer chains rooted in~v ).
This condition represents the guarantee that, while later compilation stages
of A.f can still reorganize parts of the state reachable from~v (e.g., by chang-
ing the order in which memory regions are allocated), they cannot remove
these memory regions entirely (e.g., by dead code/memory analysis): the
existence of the memory regions in question has been leaked irrevocably
to the environment. Similarly, at external function return points, memory
regions reachable from the return value are “leaked in” to the caller’s com-
pilation invariant—representing the rely that these regions will never later
be removed by compilation of the environment. Our language-independent
linking semantics and contextual equivalence proof ensure that these con-
ditions are in rely–guarantee relation.

Interestingly, this leakage protocol bears much in common with the
system-level semantics of Ghica and Tzevelekos [GT12]. There, Ghica and
Tzevelekos define a game semantics for a C-like language that avoids im-
posing so-called combinatorial (i.e., syntactic) restrictions on the moves of
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the environment, by applying what they call “epistemic” restrictions in-
stead. These epistemic conditions, which parallel our leakage conditions,
allow the environment to update the state in nearly any way as long as
the updates are to memory regions leaked to the environment during pre-
vious interactions with the client program. This leads to a strong semantic
notion of program context similar to the one I develop in Section 4.2. While
Ghica and Tzevelekos were interested in modeling open C-like programs
and their environments, not compiler correctness in this setting, I view the
coincidence of our leakage conditions with their system-level semantics as
evidence of the naturalness of our leakage protocol (Section 5.3.2).

5.1 Whole-Program Simulations
Simulation relations (or just simulations), and the related notion of bisimula-
tions, were first used to prove program equivalence by Milner in the early
1970s (cf. [Mil71]). The idea is to define a relation R on the states of two
infinite systems S and T —e.g., two potentially nonterminating programs—
such that R(s , t) implies:

steps of the first system s 7→ s ′ are matched by steps of the second t 7→ t ′;

the relation R(s ′, t ′) can be reestablished after each such pair of steps.

The first system S is generally called the source system in this thesis, while
the second system T is the target, by analogy with the source and target
languages of a compiler.

There are many variations on the basic idea. A bisimulation is a simula-
tion R such that R−1 is also a simulation. A weak simulation (or bisimula-
tion) is one in which the number of steps taken by the two systems is not
one-to-one: for example, R(s , t) and s 7→ s ′ may imply only that t 7→+ t ′

such that R(s ′, t ′), i.e., t takes one or more steps to t ′ in order to reestablish
the relation.

A further useful generalization is stuttering simulation, in which multiple
steps s 7→+ s ′ in the first system correspond to just a single step in the target
system. Stuttering is typically modeled by defining a well-founded order <
on states s , s ′ (i.e., such that there are no infinite descending chains s > s ′ >
s ′′ > . . .) for which s ′ < s holds at each stuttering step. The well-founded
order precludes infinite source sequences s 7→ s ′ 7→ s ′′ 7→ . . . that do not
cause the target to make at least some progress. This is useful for proving,
e.g., preservation of termination behavior from S to T . In Compositional
CompCert, and in the rest of this thesis, I will generally employ simulations
of the stuttering kind, since they present a nice balance between expressivity
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(many kinds of compiler transformations can be proved correct in this way)
and simplicity.

Figure 5.1 presents the clauses of what I call whole-program simulations,1

adapted to the interaction semantics interface of Chapter 3. The simulations
are “whole program” because they do not (yet) relate program modules
that make external function calls (there are no cases for at external and
after external). These will be dealt with in Section 5.3.2.

Whole-program simulations are nevertheless useful. For example, as we
will see in Chapter 6, they can be used to relate the behaviors of source and
target programs linked with a closing context, leading to a proof method
for contextual equivalence. They are also simpler than the structured sim-
ulations I will present next, in Section 5.3.2, in the sense that it is easier
to prove corollaries of whole-program simulation such as termination and
safety preservation (Section 5.2).

There are three main clauses in Figure 5.1. The first, Initial Core, relates
programs at initialization. The second, Core Step, relates programs over core
steps. The third, Halted Core, relates programs at program exit. The main
datatypes are:

• the source/target interaction semantics S and T ;
• the source/target global environments geS and geT ;
• function pointers, arguments, and return values v , ~v1, ~v2, v1, and v2;
• core states c, c ′, d , and d ′ of S and T respectively;
• CompCert memory injections f and f ′; and
• a matching relation 〈c, m〉 ∼f 〈d , tm〉 on source and target core states

and memories, indexed by the memory injection f (the R relation of
the beginning of Section 5.1).

The Initial Core clause says: if initialization of source semantics S succeeds
when passed function pointer v , arguments ~v1, in global environment
geS , to produce a new core state c of the S semantics, then initializing
T to execute the same function v , with related arguments ~v2 in related
global environment geT , results in a state d such that 〈c, m〉 ∼f 〈d , tm〉.
The arguments ~v1, ~v2 and the global environments geS , geT are related
by the following auxiliary relations that parameterize every whole-
program simulation structure:

globals inv geS geT , which relates the global environments geS and
geT . This is typically defined as dom geS = dom geT ; and

init inv f geS ~v1 m geT ~v2 tm, which specifies conditions that hold of
the initial arguments and memories to a pair of programs.

1File compcomp/core/closed simulations.v.
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Initial Core
(1) globals inv geS geT ∧
(2) initial core S geS v ~v1 = Some c ∧
(3) init inv f geS ~v1 m geT ~v2 tm
=⇒ ∃d . (4) initial core T geT v ~v2 = Some d ∧

(5) 〈c, m〉 ∼f 〈d , tm〉

Core Step
(1) globals inv geS geT ∧
(2) 〈c, m〉 ∼f 〈d , tm〉 ∧
(3) geS ` c, m 7−→ c ′, m ′

=⇒ ∃d ′ tm ′ f ′.
(4) 〈c ′, m ′〉 ∼f ′ 〈d ′, tm ′〉
∧ (5) geT ` 〈d , tm〉 7−→+ 〈d ′, tm ′〉 ∨

(6) (geT ` 〈d , tm〉 7−→∗ 〈d ′, tm ′〉 ∧ c ′ < c)

Halted Core
(1) globals inv geS geT ∧
(2) 〈c, m〉 ∼f 〈d , tm〉 ∧
(3) halted S c = Some v1
=⇒ ∃v2. (4) halted T d = Some v2 ∧

(5) halt inv f geS v1 m geT v2 tm

Figure 5.1: Whole-program simulations S ≤ T

In Compositional CompCert, we specialize the init inv relation to:

init inv f geS ~v1 m geT ~v2 tm ,
inject f m tm ∧ vals inject f ~v1 ~v2 ∧ preserves globals geS f ∧
mem valid tm ∧ globals valid geT tm ∧ vals valid ~v2 tm

The inject conditions state that the memories m, tm and initial argu-
ments ~v1 and ~v2 are related by the CompCert injection f , as defined
in Chapter 2. The preserves globals clause states that f at least maps
the blocks in dom geS , and is the identity mapping in this range (i.e.,
global blocks are not removed by f , or translated to new blocks). The
last three conditions (starting with mem valid tm) state that
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the target memory tm does not contain pointers to invalid blocks (re-
call that, as in Chapter 2, an invalid block is one that has not yet
been allocated),

the target global blocks are all valid (globals valid geT tm), and

the initial target arguments do not contain pointers to invalid blocks
either (vals valid ~v2 tm).

These conditions are easily satisfied when a target program is initial-
ized in the memory containing, e.g., just the globals for the program,
with arguments that are either constants (such integers or floats) or
pointers to global variables or functions. Indeed, there is no other
static data to point to at program startup (I am not yet considering
the core initializations that occur, e.g., in linking semantics, at inter-
module external calls).

The Core Step clause is a bit more involved: Assume

1. globals inv holds of geS and geT ,
2. 〈c, m〉 and 〈d , tm〉 are matching source and target configurations

indexed by injection f , and
3. 〈c, m〉 steps to 〈c ′, m ′〉.

Then there exist d ′, tm ′, and f ′ such that

4. 〈d ′, tm ′〉 matches 〈c ′, m ′〉, and either
5. 〈d , tm〉 takes one or more steps to 〈d ′, tm ′〉, or
6. 〈d , tm〉 takes zero or more steps to 〈d ′, tm ′〉 and c ′ descends

the stuttering order (c ′ < c). (Alternatively, one could say that
d = d ′ ∧ tm = tm ′ in this case.)

The final clause, Halted Core, defines what it means for the halted state to
be preserved: Assume

1. globals inv holds of geS and geT ,
2. 〈c, m〉 and 〈d , tm〉 are matching configurations, and
3. c is halted with return value v1.

Then there exists a v2 such that d is also halted, with return value
v2, and v1 and v2 (along with geS , geT , m, and tm) satisfy halt inv, a
predicate parameter chosen by the user who proved the simulation.
In Compositional CompCert, we specialize this relation to:

halt inv f geS v1 m geT v2 tm ,
inject f m tm ∧ val inject f v1 v2 ∧ preserves globals geS f
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The memories m and tm, as well as the return values v1 and v2, are
injected by f . In addition, f is a superset of the identity relation on
dom geS (preserves globals geS f ).

5.2 Corollaries
There is nothing overly novel in the results presented in the previous sec-
tion, beyond the adaptation of standard forward simulations to the interac-
tion semantics interface of Chapter 3. Why focus on simulations for whole
programs at all then?

The results of Chapter 6 will establish soundness for open programs
P by linking with closing contexts C (those that do not themselves call
external functions; they may call back into P ). Section 6.2 constructs—from
the open-program simulations on source PS and target PT to be presented
in Section 5.3.2—a whole-program simulation between L(C , JPS K) and
L(C , JPT K) (source and target open programs linked with closing context
C ). Preservation of behaviors in context C then follows (Theorem 7) from
corollaries of whole-program simulation I present below.

5.2.1 Termination

We say that a program configuration c, m terminates in global environment
ge if it steps, in zero or more steps, to a configuration c ′, m ′ for which c ′ is
halted.

Definition 5 (terminates ge 〈c, m〉).

∃c ′ m ′. ge ` 〈c, m〉 7−→∗ 〈c ′, m ′〉 ∧ ∃v . halted c ′ = Some v

It is not hard to show that whole-program simulation S ≤ T implies
preservation of termination from source program S to target T .2 Recall that
S ≤ T defines a matching relation 〈c, m〉 ∼f 〈d , tm〉, subject to the laws in
Figure 5.1.

Corollary 1 (Termination Preservation). Assume S ≤ T . For source con-
figurations 〈c, m〉 and target configurations 〈d , tm〉, if 〈c, m〉 ∼f 〈d , tm〉 and
terminates geS 〈c, m〉, then terminates geT 〈d , tm〉.

2The definitions, theorems, and proofs in this subsection on termination can be
found in file compcomp/core/closed simulations lemmas.v.
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Proof. Assumption terminates geS 〈c, m〉 unfolds to:

∃c ′ m ′. geS ` 〈c, m〉 7−→∗ 〈c ′, m ′〉 ∧ ∃v . halted c ′ = Some v .

The corollary follows by induction on the multistep relation ge ` 〈c, m〉 7−→∗
〈c ′, m ′〉, using the Core Step and Halted Core cases of the simulation S ≤ T .

The other direction of this corollary, reflection of termination behavior
from T to S , only holds under additional assumptions. In particular, the
target language LT must be deterministic and source configuration 〈c, m〉
must be safe.

Corollary 2 (Termination Reflection). For source configurations 〈c, m〉 and
target configurations 〈d , tm〉, if 〈c, m〉 ∼f 〈d , tm〉, terminates geT 〈d , tm〉, con-
figuration 〈c, m〉 is safe in geS , and language LT is deterministic, then terminates
geS 〈c, m〉.

Proof. Assumption terminates geT 〈d , tm〉 unfolds to:

∃d ′ tm ′ n. geT ` 〈d , tm〉 7−→n 〈d ′, tm ′〉 ∧ ∃v . halted d ′ = Some v .

The corollary follows by well-founded induction on n , using the usual less-
than relation < on the naturals, and relying on Lemmas 1 and 2 below.

Lemma 1 (Split Multistep). If
• LT is deterministic,
• geT ` 〈d , tm〉 7−→n 〈d ′, tm ′〉,
• geT ` 〈d , tm〉 7−→m 〈d ′′, tm ′′〉, and
• n ≤ m

then there exists q such that
• m = n + q , and
• geT ` 〈d ′, tm ′〉 7−→q 〈d ′′, tm ′′〉

Lemma 2 (Match Cases). A state c is halted if there exists return value v such
that halted c = Some v . If 〈c, m〉 ∼f 〈d , tm〉, then either

• halted c ∧ halted d ; or
• ∃f ′ c ′ m ′. geS ` 〈c, m〉 7−→+ 〈c ′, m ′〉 and either

– 〈c ′, m ′〉 ∼f ′ 〈d , tm〉 ∧ halted c ′ ∧ halted d ; or
– ∃d ′ tm ′. geT ` 〈d , tm〉 7−→+ 〈d ′, tm ′〉 ∧ 〈c ′, m ′〉 ∼f ′ 〈d ′, tm ′〉.

Lemma 1 asserts that, for deterministic languages, if we step in n steps
for some n from 〈d , tm〉 to 〈d ′, tm ′〉:
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〈d , tm〉 〈d ′, tm ′〉

and we also step, in m ≥ n steps, from 〈d , tm〉 to 〈d ′′, tm ′′〉:

〈d , tm〉 〈d ′′, tm ′′〉

then the second multistep relation, from 〈d , tm〉 to 〈d ′′, tm ′′〉, can be decom-
posed into two multisteps intersecting at 〈d ′, tm ′〉:

〈d , tm〉 〈d ′, tm ′〉 〈d ′′, tm ′′〉

Lemma 2 is a useful elimination principle for 〈c, m〉 ∼f 〈d , tm〉 that
facilitates reasoning by cases.

Putting everything together, we get that S ≤ T implies equitermination
of matching states, under the additional assumptions required to prove
Corollary 2.

Corollary 3 (Equitermination). For source configurations 〈c, m〉 and target
configurations 〈d , tm〉, if 〈c, m〉 ∼f 〈d , tm〉, configuration 〈c, m〉 is safe in geS ,
and language LT is deterministic, then terminates geS 〈c, m〉 ⇐⇒ terminates
geT 〈d , tm〉.

Proof. By Corollaries 1 and 2.

5.2.2 Safety

Simulations S ≤ T also imply safety preservation from source to target.
When I say a configuration 〈c, m〉 of interaction semantics S is safe, in global
environment ge , I mean, as usual, that the configuration will never get stuck
(it may safely halt or infinite loop). In the context of whole-program simu-
lations, the notion of safety we care about is that of closed programs (those
that do not call external functions). I generalize safety to open programs in
Chapter 6.

We say a configuration 〈c, m〉 is safe in global environment ge for n steps
if it satisfies the following recursive predicate, expressed in Coq notation:

safeN n ge c m : Prop ,
case n of
| 0 → True
| n ′ + 1 →
case halted c of
| None → ∃c ′ m ′. ge ` c, m 7−→ c ′, m ′ ∧ safeN n ′ ge c ′ m ′

| Some v → True
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When n is 0, the predicate evaluates to True (we have given up interrogating
the system). When n is greater than 0, there are two cases. If c is not halted
(None), we assert that there exist a core state c ′ and memory m ′ such that
(a) the systems steps from 〈c, m〉 to 〈c ′, m ′〉 (we make progress) and (b)
the new state 〈c ′, m ′〉 is still safe, for at least n − 1 steps. When c is halted
(Some v ), safeN reduces to True.

Definition 6 (Safety). A configuration 〈c, m〉 is safe in global environment ge
if it is safeN for all n.

safe ge c m , ∀n. safeN n ge c m

If one views safeN as a finite approximation of safety (i.e., for some
number n steps), then safe is the intersection of all such approximations.
This style of definition is quite useful when doing proofs by induction (on
n), especially with respect to step-indexed semantics. Another, equivalent,
definition is the more standard: a configuration 〈c, m〉 is safe if any config-
uration 〈c ′, m ′〉 it can multistep to ge ` 〈c, m〉 7−→∗ 〈c ′, m ′〉 is either halted
or can take at least one step.

Now we can state what it means for safety to be preserved by S ≤ T :

Corollary 4 (Safety Preservation3). If
• 〈c, m〉 ∼f 〈d , tm〉,
• safe geS c m, and
• LS and LT are deterministic

then safe geT d tm.

Proof. safe geT d tm unfolds to: ∀n. safe geT n d tm. The corollary follows
by induction on n, relying on Lemmas 2, 3, 4, and 5.

Lemma 3 (Safe Downward). ∀ge n n ′ c m. n ′ ≤ n ∧ safeN ge n c m =⇒
safeN ge n ′ c m.

Lemma 4 (Safe Forward). ∀ge n n ′ c m . deterministic LS ∧ ge ` 〈c, m〉 7−→n

〈c ′, m ′〉 ∧ safeN ge (n + n ′) c m =⇒ safeN ge n ′ c ′ m ′.

Lemma 5 (Safe Backward). ∀ge n n ′ c m. ge ` 〈c, m〉 7−→n 〈c ′, m ′〉 ∧
safeN ge (n ′ − n) c ′ m ′ =⇒ safeN ge n ′ c m.

Lemma 3 proves safeN is closed under approximation. Lemma 4 states
that, for deterministic languages LS , multistepping from a safe state results

3The Coq proof is in file compcomp/core/closed simulations lemmas.v.
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in a safe state. Lemma 5 is the backward analog of Lemma 4: multistepping
from 〈c, m〉 to a safe state 〈c ′, m ′〉 implies that 〈c, m〉 is also safeN.

To prove termination preservation, we needed only that LT was de-
terministic. Why do we need determinism of LS here, in order to prove
safety preservation? The answer has to do with how the definition of safety
is formulated in Definition 6 and the auxiliary safeN. There, in safeN, we
state only that there exist a c ′ and m ′ such that ge ` c, m 7−→ c ′, m ′ and
safeN n ′ ge c ′ m ′. This is sufficient for deterministic languages (since there
can be only one such pair 〈c ′, m ′〉) but it is not quite strong enough to
capture safety in nondeterministic languages, for which we would like to
know instead that (a) there exist such a c ′ and m ′, but also that (b) for all
such c ′ and m ′ (i.e., for which ge ` c, m 7−→ c ′, m ′), safeN n ′ ge c ′ m ′, along
the lines of:

safeN′ n ge c m : Prop ,
case n of
| 0 → True
| n ′ + 1 →
case halted c of
| None → ∃c ′ m ′. ge ` c, m 7−→ c ′, m ′ ∧

∀c ′ m ′. ge ` c, m 7−→ c ′, m ′ =⇒ safeN′ n ′ ge c ′ m ′

| Some v → True

safe′ ge c m , ∀n. safeN′ n ge c m

Under this second formulation of safety, we have that Corollary 4 holds
even if S is nondeterministic. In addition, we can prove that—assuming S
is deterministic—the first formulation of safety implies the second.

Lemma 6. Assume LS is deterministic. For all ge, c, m, safe ge c m =⇒
safe′ ge c m .

We use the first formulation, as given in Definition 6, because it matches
the definition of safety used in the Verifiable C program logic [ADH+14].
This definition is sufficient in Compositional CompCert because all of the
languages of the compiler, from Clight to CompCert x86 assembly, are de-
terministic. On the other hand, it could be useful in the future to generalize
the definition of safeN used in the Verifiable C logic for nondeterminism.

5.2.3 Behavior Refinement

There is a third corollary of S ≤ T , tying together both termination and
safety preservation: Define the behavior of a configuration by the following
inductive:
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Inductive behavior : Type , Termination | Divergence | Going wrong.

A (closed) program (i.e., one that does not call any external functions) either
terminates, diverges, or goes wrong (gets stuck).

Behavior refinement says that if target configuration 〈d , tm〉 exhibits
some behavior tb, then matching source configurations 〈c, m〉 will exhibit
behaviors b that are refined by tb (b ≥beh tb).

Corollary 5 (Behavior Refinement). If
• 〈c, m〉 ∼f 〈d , tm〉,
• 〈d , tm〉 has behavior tb in environment geT , and
• LT is deterministic

then there exists behavior b such that
• 〈c, m〉 exhibits behavior b in environment geS , and
• b ≥beh tb.

Proof. Proved in Coq.4

Refinement of behaviors b ≥beh tb is defined as in the following table:

Source behavior. . . is refined by target behavior. . .
Termination ≥beh Termination
Divergence ≥beh Divergence
Going wrong ≥beh Termination, Divergence, Going wrong

If the source configuration terminates or diverges, then so must the target
configuration. If the source program goes wrong (gets stuck), then the
target may either terminate, diverge, or itself go wrong.

The relation that ascribes behaviors to programs is given by:

In env. ge, 〈c, m〉 has behavior. . . iff. . .
Termination terminates ge 〈c, m〉
Divergence forever steps or halted ge 〈c, m〉

∧ ¬terminates ge 〈c, m〉
Going wrong ¬safe ge 〈c, m〉

To handle nondeterministic languages, replace safe above with the alter-
nate definition safe′. For deterministic languages, forever steps or halted is
equivalent to safe.

If we know, in addition, that the source configuration 〈c, m〉 is safe, then
we get an even stronger result, namely:

4File compcomp/core/closed simulations lemmas.v.
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Corollary 6 (Behavioral Equivalence). If
• 〈c, m〉 ∼f 〈d , tm〉,
• LT is deterministic, and
• 〈c, m〉 is safe in geS

then for all behaviors b, 〈c, m〉 has behavior b in environment geS iff 〈d , tm〉 has
behavior b in environment geT .

Proof. (=⇒) By Corollaries 3 and 4. (⇐=) By Corollary 5.

5.3 Open Program Simulations

In this section, I extend the whole-program simulations S ≤ T of Section 5.1
to open programs (i.e., those that may call external functions defined in other
translation units), in the form of structured simulations S � T . Structured
simulations are an extension of the related logical simulation relations (LSRs),
which were first described in [BSDA14]. I first give background on LSRs, as
motivation, then present structured simulations.

5.3.1 Logical Simulation Relations

Logical simulation relations (LSRs) established compiler correctness by
showing that compilation preserved the protocol structure of the interaction
semantics of Chapter 3. They used CompCert’s original match relations ∼f ,
with memory injections f , to relate source and target states.

What does “preserving the protocol structure of interaction semantics”
mean? For internal execution steps, that LSRs followed CompCert’s stan-
dard forward simulation proofs: internal steps of the source semantics were
matched by (one or more) internal steps of the target semantics, up to stut-
tering of the source. For external calls, LSRs departed from CompCert by
asserting that related modules:

• called the same function with related arguments; and
• were receptive, at the point at which external function calls returned,

to any related values and memories the environment might provide.
By receptive, I mean the equivalence of related modules could be
re-established at the point of external function call return assuming
related return values and memories.

This last condition was subject to a few constraints on how memory
could evolve over the external calls, the two most crucial of which were:
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1. in the source execution, external calls did not modify any memory
region the compiler wished to remove;5 and that

2. in the target execution, external calls did not modify target memory
locations that did not correspond to readable locations in the source
memory.

Condition (2), in particular, enabled the proof of compiler phases such as
spilling, which introduces new unreachable spill locations into a target
program’s stack frames. A deficiency of CompCert’s simulation proofs and
of LSRs was that they assumed conditions (1) and (2) at external calls, but
did not prove that these properties were preserved by compilation.

Directly imposing constraints (1) and (2) onto the simulation clauses
for internal steps does not work, however. A compiled function should be
allowed to write to its own spill locations—just not to those of its caller.

To capture the difference in perspective between caller and callee, struc-
tured simulations make three adjustments to the LSR framework.

To index the match relation ∼, they use structured injections µ instead of
CompCert’s original injections f . The additional structure in µ main-
tains the block-level ownership information necessary to tell a callee’s
blocks (or other blocks associated with the environment) apart from
blocks associated with the caller.

Structured simulations decorate the internal step relation of interaction
semantics with modification effects E such that locations not contained
in E are guaranteed not to be modified (i.e. written to, or freed) by
the step in question.

Structured simulations impose a restriction axiom on ∼ that ensures that
compilation invariants depend only on memory regions either allo-
cated by the module being compiled, or leaked to it via pointers re-
turned from external calls. The details are as follows.

5.3.2 Structured Simulations

Recall from Chapter 2 that, in CompCert, memory is allocated in regions, or
blocks. Within each block, memory bytes are addressed using integer offsets

5For example, if a source-language variable is represented in memory on the
stack, and in the translation to intermediate language the compiler chooses to use
a register (unaddressable local variable) instead, then I say this memory region is
removed by the compiler.
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(pointer arithmetic is allowed only within blocks). CompCert’s memory
injections

f : block→ option (block×Z)
relate source and target memories. For example, the memory injection that
maps b to Some (b ′, z ) associates source address (b, 8) with target address
(b ′, 8 + z ).

Structured injections µ (Figure 5.2) strengthen CompCert’s memory in-
jection relations with additional ownership structure.6 They have four com-
ponents: Two ownership functions ownS , ownT : block → Ownership, which
map blocks (in the source and target memories, respectively, of a related
pair of program states) to values of an inductive Ownership type; and two
CompCert-style memory injections: fus and fthem. fus records the source–
target mapping of blocks that were allocated by the current module; fthem
maps external blocks (those allocated by other modules).

The Ownership modes are:

Mode. . . applies to. . .
Priv blocks (memory regions) allocated by the module being

compiled but which haven’t been leaked to the environment
Pub allocated blocks that have been leaked at a previous

interaction point
Frgn foreign blocks leaked into µ at external calls
Invis blocks that have been allocated (by another module) but not

leaked in
None blocks that may not yet have been allocated.

A block is (locally) owned by µ in the source or target memory when
ownS (b) (resp. ownT (b)) is either Pub or Priv. External blocks in source and
target are those mapped by own{S ,T} to Frgn or Invis. Likewise, a block is
shared if its ownership is either Pub or Frgn. The visible source blocks of µ

are those in the set visS , ownedS ∪ sharedS (and likewise for visT ). I use
notation foreign{S ,T} and public{S ,T} to denote the blocks with foreign and
public ownership, respectively.

We track ownership of blocks, rather than ownership byte-by-byte, be-
cause the CompCert languages and memory model permit pointer arith-
metic within blocks. Once a location within a block has been made public,
the whole block is made public as well.

6File compcomp/core/structured injections.v.
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Structured Injections

Ownership , Priv | Pub | Frgn | Invis | None

µ ∈ StructuredInjection : Type ,
ownS : block→ Ownership
ownT : block→ Ownership

fus : block→ option (block×Z)
fthem : block→ option (block×Z)

publici , {b | owni (b) ∈ {Pub}}, i ∈ {S , T}
privatei , {b | owni (b) ∈ {Priv}}, i ∈ {S , T}
foreigni , {b | owni (b) ∈ {Frgn}}, i ∈ {S , T}

invisi , {b | owni (b) ∈ {Invis}}, i ∈ {S , T}
ownedi , publici ∪ privatei , i ∈ {S , T}
sharedi , publici ∪ foreigni , i ∈ {S , T}
externi , foreigni ∪ invisi , i ∈ {S , T}

visi , ownedi ∪ foreigni , i ∈ {S , T}

Structured Injection Axioms

ownedi ∩ externi = ∅, i ∈ {S , T}
∀b1 b2 z . fus b1 = Some (b2, z ) =⇒ b1 ∈ ownedS ∧ b2 ∈ ownedT
∀b1 b2 z . fthem b1 = Some (b2, z ) =⇒ b1 ∈ externS ∧ b2 ∈ externT
∀b1. b1 ∈ publicS =⇒ ∃b2 z . fus b1 = Some (b2, z ) ∧ b2 ∈ publicT
∀b1. b1 ∈ foreignS =⇒ ∃b2 z . fthem b1 = Some (b2, z ) ∧ b2 ∈ foreignT

publicT ⊆ ownedT
foreignT ⊆ externT

Injection Restriction

f �X , λb. if b ∈ X then f b else None

µ�X , µ with {fus := fus �X }{fthem := fthem �X }

Figure 5.2: Structured Injections and the axioms they satisfy. In Coq, the
structured injection axioms are imposed via a dependent record type.
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Complementing the data in Figure 5.2 are laws7 that ensure proper
interaction of ownership, leakage, and compilation. These laws, given in
the lower half of Figure 5.2, enforce that fus and fthem (1) operate exclusively
on blocks of appropriate ownership (i.e. fus only maps owned blocks, to
owned blocks, and similarly for fthem and external blocks); and (2) are total
on their portion of shared blocks: fus must map all PubS blocks, and must
map them to PubT blocks, and similarly for fthem and Frgn. The result is that
blocks which have been leaked to/from the environment in one compilation
stage cannot be removed by later stages.

At interaction points between a module and its environment, the struc-
tured injections are adjusted so that (at these points) the shared regions are
closed under pointer arithmetic and dereferencing (there are no pointers
from the shared to the nonshared region). As an additional invariant, struc-
tured simulations maintain that the source visible set visS is always closed
under pointer dereferencing and pointer arithmetic.

Structured Simulation Details. The structured simulation clauses for
initial core, at external, and halted are given in Figure 5.3.8

The Initial Core clause states the conditions under which core initializa-
tion tracks from source to target. For any source memory m, target
memory tm, and CompCert-style memory injection f , and for block
sets domS and domT , if c is the core initialized by initial core to han-
dle function pointer v with arguments ~vS , then there exists a target
core d that results from initializing the target semantics at v with the
related arguments ~vt . The other hypotheses of this clause, such as
those marked by (∗), further constrain f , domS , and domT . For exam-
ple, REACH tm (globalsOf geT ∪ blocksOf ~vt ) ⊆ domT states that the
set of blocks reachable from target globals geT and ~vt is contained in
domT . The hypotheses marked (†) are required to satisfy a technical
invariant of structured simulations, that blocks mentioned by the cur-
rent structured injection were allocated at some point in the past (they
may have been freed in the meantime).

The function µinit constructs a structured injection from components:

7File compcomp/core/structured injections.v.

8File compcomp/core/simulations.v.
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Structured Simulations S � T

Initial Core

∀f m tm v ~vs ~vt domS domT .
initial core S geS v ~vs = Some c ∧
inject f m tm ∧
vals inject f ~vs ~vt ∧
(∗) preserves globals geS f ∧
(∗) (∀b1b2z . f b1 = Some (b2, z ) =⇒ b1 ∈ domS ∧ b2 ∈ domT )∧
(∗) REACH tm (globalsOf geT ∪ blocksOf ~vt ) ⊆ domT ∧
(†) domS ⊆ validBlocks m ∧
(†) domT ⊆ validBlocks tm
=⇒ ∃µ d . initial core T geT v ~vt = Some d

∧ 〈c, m〉 ∼µ 〈d , tm〉
∧ µ = µinit(domS , domT , REACH m (globalsOf geS ∪ blocksOf ~vs),

REACH tm (globalsOf geT ∪ blocksOf ~vt ), f )
At External

〈c, m〉 ∼µ 〈d , tm〉 ∧ at external c = Some (idf , ~vs)
=⇒ ∃~vt . inject µ m tm

∧ vals inject µ�visS µ ~vs ~vt
∧ at external d = Some (idf , ~vt )
∧ 〈c, m〉 ∼leak out(µ, ~vs , ~vt ,m , tm) 〈d , tm〉
∧ vals inject µ�sharedS µ m tm

Halted Core

〈c, m〉 ∼µ 〈d , tm〉 ∧ halted c = Some vs
=⇒ ∃vt . inject µ m tm ∧ val inject µ�visS µ vs vt

∧ halted d = Some vt

Figure 5.3: Structured Simulations: Initial Core, At External, and Halted
Core clauses
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µinit domS domT frgnS frgnT f : StructuredInjection ,
mkStructuredInjection {

owni , λb.
if b ∈ frgni then Frgn
else if b ∈ domi then Invis else None;

fus , λb. None;

fthem , f
}

The owned{S ,T} functions are constructed from the sets domS ,domT ,frgnS ,
and frgnT . The “us” injection fus initially maps no blocks, because a
freshly initialized core has not yet allocated any blocks. The fthem injec-
tion is set equal to the argument injection f . The hypotheses marked
(∗) in the figure ensure that the structured injection we build using
µinit satisfies the axioms of Figure 5.2.

The At External clause asserts that at external can be tracked from source
to target: source states calling an external function only match target
states calling the same external function, with related arguments. The
extra match clause in the conclusion of the rule,

〈c, m〉 ∼leak out(µ, ~vs , ~vt ,m , tm) 〈d , tm〉

enforces that, at external function call points, the match relation ∼
is closed under the “leak out” operation defined later in this chapter.
In other words, ∼ is not invalidated if we mark as public, at external
call points, all those blocks reachable from the arguments ~vs and ~vt .
I explain this property in more detail in the next section, when I
introduce the rule for external function call returns.

The final clause, Halted Core, asserts preservation of termination behav-
ior. It says that halted source states only match target states that are
also halted. In addition, we get that at termination, the source and
target memories m and tm are related by µ, and that the return values
vs and vt are related by the restriction of µ to visible source blocks
visSµ.

Internal and External Steps. Figure 5.4 presents the two core clauses of
structured simulations �, those for internal (i.e. unobservable) steps (In-
ternal Steps) and for external interactions with the environment (External
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Structured Simulations S � T (cont’d)
Internal Steps

〈c, m〉 ∼µ 〈d , tm〉 ∧ geS ` c, m
ES7−→ c ′, m ′ =⇒

∃d ′ tm ′ µ′.
(1) µ vus µ′ ∧
(2) separated µ µ′ m tm ∧
(3) locally allocated µ µ′ m tm m ′ tm ′ ∧
(4) 〈c ′, m ′〉 ∼µ′ 〈d ′, tm ′〉 ∧
(5) ∃ET . geT ` d , tm

ET7−→+ d ′, tm ′ ∧
(6) ES ⊆ visS µ =⇒

(6a) ET ⊆ visT µ ∧
(6b) ∀bt zt . (bt , zt ) ∈ET ∧ ownedT µ bt = false =⇒

∃bs z . fthem(bs) = Some (bt , z ) ∧ (bs , zt − z ) ∈ES

External Steps

(at-external)
〈c, m〉 ∼µ 〈d , tm〉 ∧
vals inject µ ~vs ~vt ∧ inject µ m tm ∧
at external c = Some (idf , ~vs) ∧
at external d = Some (idf , ~vt ) ∧
ν , leak out µ ~vs ~vt m tm

 =⇒

(environment)
∀ν′ vs vt m ′ tm ′.

ν vthem ν′

∧ separated ν ν′ m tm ∧ injection valid ν′ m ′ tm ′

∧ val inject ν′ vs vt ∧ inject ν′ m ′ tm ′

∧ forward m m ′ ∧ forward tm tm ′

∧ unchanged on {(b, z ) | ownS ν b = Priv} m m ′

∧ unchanged on (local out of reach ν m) tm tm ′

∧ µ′ , leak in ν′ vs vt m ′ tm ′

(after-external)
=⇒ ∃c ′ d ′. after external vs c = Some c ′

∧ after external vt d = Some d ′

∧ 〈c ′, m ′〉 ∼µ′ 〈d ′, tm ′〉

Figure 5.4: Structured Simulations: Internal and External Step cases
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separated µ µ′ m tm ,
(∀b1 b2 z . µ b1 = None =⇒ µ′ b1 = Some (b2, z ) =⇒

b1 /∈ domS µ ∧ b2 /∈ domT µ)
∧ (∀b1. b1 /∈ domS µ ∧ b1 ∈ domS µ′ =⇒ ¬valid m b1)
∧ (∀b2. b2 /∈ domT µ ∧ b2 ∈ domT µ′ =⇒ ¬valid tm b2)

locally allocated µ µ′ m tm m ′ tm ′ ,
domS µ′ = domS µ ∪ freshlocs m m ′

∧ domT µ′ = domT µ ∪ freshlocs tm tm ′

∧ ownedS µ′ = ownedS µ ∪ freshlocs m m ′

∧ ownedT µ′ = ownedT µ ∪ freshlocs tm tm ′

∧ externS µ′ = externS µ
∧ externT µ′ = externT µ

local out of reach µ m ,
{(b, z ) | b ∈ ownedT µ ∧
∀ b0 δ. fus µ b0 = Some (b, δ) =⇒
max perm m b0 (z − δ) @perm Nonempty ∨ b0 /∈ publicS µ}

Figure 5.5: Structured simulations: additional definitions

Steps). The structure of the internal diagram is familiar from traditional for-
ward simulation proofs: Assume we are in matching initial states 〈c, m〉 ∼µ

〈d , tm〉 and we take a source step geS ` c, m
ES7−→ c ′, m ′ with effect ES . Then

there exists a matching d ′, tm ′, and Kripke-extended structured injection
µ′ such that geT ` d , tm

ET7−→+ d ′, tm ′ and 〈c ′, m ′〉 ∼µ′ 〈d ′, tm ′〉. Clause (1)
(Kripke extension, µ vus µ′) says that µ′ may map more owned blocks than
µ (in order to deal with allocations) but otherwise is equal to µ. Clauses (2)
and (3) are side conditions, the definitions of which are given in Figure 5.5
(separated and (locally allocated). Separated µ µ′ m tm states, essentially, that
new regions mapped by µ′ but not by µ do not correspond to regions that
already exist in m or tm. Locally allocated µ µ′ m tm m tm ′ states that any
new blocks in µ′ (fresh blocks allocated in this step) are recorded as local.

Clause (6) is the guarantee condition:
• (6a) asserts that the target effects ET are contained in visT µ, assuming

that ES ⊆ visS µ. In other words, the compiler preserves the property
of “writing and freeing only to visible regions.”

• (6b) guarantees that writes to (and frees of) memory locations in the
target that are not owned by µ (ownedT µ bt = false) can be “tracked
back” to corresponding writes and frees in the source (∃bs z . fthem(bs) =
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Some (bt , z ) and (bs , zt − z ) ∈ES ). Writes/frees of locations in blocks
owned by the module being compiled are always permitted, which
enables the compiler to introduce reloading code (for spilled vari-
ables) or to add function prologue/epilogue code that saves/restores
callee-save registers.

The ES and ET that appear in clause (5) and in step judgments are effect

annotations. For example, geS ` c, m
ES7−→ c ′, m ′ means: configuration c, m

steps to c ′, m ′, writing to or freeing exactly the locations ES . Locations not
contained in this set are guaranteed not to be modified. I state these “does
not modify” guarantees intensionally in this way, as effect annotations, in
order to prove vertical composition. The problem with a more extensional
interpretation of effects (e.g., as input–output “unchanged on” conditions)
is that effects no longer “decompose”: If a program takes two steps, from m
to m ′′ with effect set E1 and from m ′′ to m ′ with effect set E2, with overall
extensional effect E , it may be the case that E1 ∪ E2 * E if, for example,
the second step restored a value that was overwritten by the first step.
Decomposition is required to prove transitivity of structured simulations,
as described in Chapter 6.

The external step diagram occupies the bottom half of Figure 5.4. It
relates an at external source–target configuration pair 〈c, m〉 ∼µ 〈d , tm〉
with the after external configuration pair 〈c ′, m ′〉 ∼µ′ 〈d ′, tm ′〉 that results
from making an external call. The basic premise is: For any source–target
return values vs , vt , return memories m ′ and tm ′, and structured injection
ν′ satisfying the listed conditions, it’s possible to inject vs and vt into states
c and d , resulting in the new states c ′ and d ′ which match in µ′, m ′, and tm ′

(〈c ′, m ′〉 ∼µ′ 〈d ′, tm ′〉). The ν vthem ν′ is dual to the vus condition used
in the internal step diagram. It says that ν′ may map more external blocks
than ν—in order to deal with allocations performed by the environment—
but otherwise is equal to ν. The other nonbolded conditions are adapted
from CompCert, and follow in our Coq proofs directly from symmetric
conditions on the match-state relation and the internal step diagram.

The conditions listed in bold together compose the structured simula-
tion rely. The predicate unchanged on U m m ′ specifies that memories m
and m ′ are equal (same contents and permissions) at the locations in set U .
In the source execution, I use unchanged on {(b, z ) | ownS ν b = Priv} m m ′

to ensure that m and m ′ are equal at locations in the private blocks of
the injection ν, which is built from µ by updating leakage information as
described below. The target-execution condition

unchanged on (local out of reach ν m) tm tm ′
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leak-in leak-out

privateprivateprivate

publicpublicpublic

foreignforeignforeign

privateprivateprivate

publicpublicpublic

foreignforeignforeign

privateprivateprivate

publicpublicpublic

foreignforeignforeign

Figure 5.6: Graphical representation of the structured injection leakage
operations. The thick black arrows are pointers in memory. The white
private and light gray public boxes are owned (“us”) blocks. The dark
gray boxes are foreign (“them”) blocks. The striped box is an Invis memory
region that was allocated by another module but not yet leaked in. The leak-
in operation marks the reachable invisible region as foreign. The leak-out
operation marks as public a private region reachable from a public pointer.

says that tm and tm ′ are equal at owned target locations that either (1) do
not correspond to readable source locations, or (2) are mapped from private
source locations. By using unchanged on here, I stipulate the nonmodifica-
tion conditions of the rely extensionally.

The structured injection ν is built from µ—the injection that originally
related at external states 〈c, m〉 ∼µ 〈d , tm〉—using the leak out function de-
picted graphically in Figure 5.6 and defined in Figure 5.7.9 The idea is:
leak out “leaks” to the public (other modules) blocks that are reachable
by following pointer paths either from the arguments ~vi to the external
call (blocksOf ~vi ) or from blocks that were previously shared (sharedi µ).
This is a consistency condition: It says that structured simulations may not
assume anything about the contents of leaked blocks (the unchanged on con-
ditions that form the rely satisfied by the environment apply only to private
blocks). The functions reach and REACH (as defined in Chapter 2) calculate
the transitive closure of the points-to relation on CompCert memories. In
the definition of leak out, I use the auxiliary function export to update the
ownership functions of µ to map blocks in the reachable set to Pub.

The leak in function used to define µ′ at the end of the external step
diagram plays a role analogous to that of leak out, except that here, we are

9File compcomp/core/reach.v.
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exporti µ B : StructuredInjection ,
µ with {owni := λb. if b ∈ B then Pub else owni µ b}, i ∈ {S , T}

importi µ B : StructuredInjection ,
µ with {owni := λb. if b ∈ B then Frgn else owni µ b}, i ∈ {S , T}

leak out µ ~vs ~vt m tm : StructuredInjection ,
let LS , REACH m (blocksOf ~vs ∪ sharedS µ) ∩ ownedS µ

LT , REACH tm (blocksOf ~vt ∪ sharedT µ) ∩ ownedT µ
in exportT (exportS µ LS ) LT

leak in µ vs vt m tm : StructuredInjection ,
let LS , REACH m (blocksOf [vs ] ∪ sharedS µ) ∩ externS µ

LT , REACH tm (blocksOf [vt ] ∪ sharedT µ) ∩ externT µ
in importT (importS µ LS ) LT

Figure 5.7: Block leakage

leaking into µ′ new foreign blocks reachable from the return value vi of
the external call. Likewise, the import function is similar to export , except
that it updates the ownership functions of a structured injection to map the
block set B to Frgn, as opposed to Pub.

Additional Conditions. Structured simulations impose two additional
consistency conditions which I have not yet discussed in detail: (1) the
simulation relation ∼µ is closed under restriction of µ to the visible source
blocks of µ;10 and (2) whenever S � T , the global environment of target
module T is consistent with the globals of S : Any symbol mapped by S ’s
global environment is mapped to the same address by T ’s globals (module
T may declare additional globals).

Restriction, defined in Figure 5.2 as µ�X (with X a block set), just limits
the domain of µ to X . If ∼µ is closed under restriction to the visible blocks,
then it does not distinguish memories that differ only at Invis (or None)
memory regions. All of the compiler invariants of Compositional CompCert
satisfy this property.

10Restriction is in compcomp/core/structured injections.v. The clo-
sure condition on ∼µ is in compcomp/core/simulations.v.
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The more general version of restriction, and the one actually used in
Compositional CompCert, is: µ is closed under restriction to any reach-
closed superset of visS µ, stated as follows:

∀X ⊇ visS µ. REACH closed m X ∧ 〈c, m〉 ∼µ 〈d , tm〉
=⇒ 〈c, m〉 ∼µ�X 〈d , tm〉

A block set X is REACH closed in memory m when it contains its reach
closure, as calculated in m:

Definition 7 (REACH closed).

REACH closed m X , REACH m X ⊆ X

Although the key motivation for restriction is the proof of vertical composi-
tion for structured simulations (Theorem 4, Chapter 6), the condition also
makes intuitive sense: the simulation invariant used to prove correctness
of a particular compilation phase should be independent of those blocks
that were allocated by other modules but not leaked to the module being
compiled. This is one of the ways in which we ensure that compiler phases
can, e.g., remove Invis blocks (for example, during a compilation pass that
removes a dead function call or memory allocation).





Chapter

6
Separate Compilation

The structured simulations of the previous chapter compose both:

vertically in the sense that multiple structured simulations, for the distinct
phases of a compiler, can be composed end-to-end; and

horizontally in the sense that module-local structured simulations for the
individual translation units of a program can be composed to build
an overall simulation relation for linked source and target programs,
as expressed in the linking semantics of Chapter 4.

This chapter presents and explains these two results. I do not give full
LATEXproofs (the mechanized proofs are available in the Coq sources that
accompany this thesis). But I do describe the most important invariants in
detail.

6.1 Vertical Composition
Realistic compilers are composed of multiple translation phases. These
phases are composed transitively, or vertically, to yield a full compiler. For
example, at the time this thesis was written, the most recent release of the
CompCert compiler (version 2.4) included 18 verified compilation phases,
each of which was proved correct indepedently of all the others. CompCert
2.1, upon which Compositional CompCert is based, included 16 verified
phases, also proved correct independently.

There are a number of reasons why it makes sense to structure a com-
piler, whether verified or not, as the transitive composition of a number of

95
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small phases. Decomposing the compiler in this way means each transla-
tion phase does less, simplifying correctness invariants. The various phases
of the compiler can also be used independently. For example, the author of
a compiler for another source language besides C, such as Java or Haskell,
could target just the backend of CompCert.

This section presents the proof that structured simulations, as presented
in Chapter 5, compose transitively. The result is not unexpected—standard
forward simulations are trivially transitive, for example. The proof for struc-
tured simulations is complicated primarily by the external-call clause (lower
half of Figure 5.4), which requires the construction of an interpolating after-
external memory m ′2 during the transitivity proof, in the intermediate ex-
ecution between source and target. As mentioned in Chapter 5, the proof
of transitivity of the internal-step diagram is tightly dependent on our
treatment of effect annotations.

Theorem 4 (Transitivity). Let L1, L2, and L3 be effect-annotated interaction
semantics. If L1 � L2 is a structured simulation from L1 to L2 and L2 � L3
a structured simulation from L2 to L3, then there exists a structured simulation
L1 � L3 from L1 to L3.

Proof. In the Coq code that accompanies this thesis (lemma eff sim trans
in file compcomp/core/simulations trans.v).

The most interesting case of the proof is that for the after external clause.
In order to establish the 〈c ′1, m ′1〉 ∼µ′ 〈c ′3, m ′3〉 relation between the return
states in languages L1 and L3, one would like to appeal to the corresponding
relations that are inductively given for L1 � L2 and L2 � L3. However, in
order for these induction hypotheses to apply, we must provide a suitable
intermediate state 〈c ′2, m ′2〉, and in particular the memory m ′2. Figure 6.1
depicts this situation graphically.

6.1.1 Interpolation

As illustrated in the figure, we require the existence of a post-call memory
m ′2 in L2 such that m ′1 can be injected to m ′2 (via an extension µ′1 of µ1) and
m ′2 can be injected to m ′3 via µ′2, such that µ′ = µ′2 ◦ µ′1 (µ2 ◦ µ1 is injection
composition). This is assuming µ1 injects m1 to m2, µ2 injects m2 to m3, and
µ′ injects m ′1 to m ′3.

Prior to CompCert 2.0, memory injections did not compose, i.e. inject (µ2 ◦
µ1) m1 m3 did not follow from inject µ1 m1 m2 and inject µ2 m2 m3. Because
the simulations did not expose memory, transitive compiler correctness
did not require this property to hold. In CompCert 2.0, Leroy respecified



6.2. HORIZONTAL COMPOSITION 97

m1 m2 m3

m ′1 ∃ m ′2 m ′3

forward,
unchanged on

µ1

forward,
unchanged on

µ2

µ′1

forward,
unchanged on

µ′2

µ′

Figure 6.1: Interpolation lemma for composing injection phases L1 � L2
and L2 � L3. Solid lines represent assumptions; dashed lines represent
constraints that the constructed m ′2 has to satisfy. Composition of simulation
proofs in this diagram is left-to-right (contrary to my use of the term vertical
for phase-by-phase composition of simulations).

injections to facilitate composition, based on a suggestion of Tahina Ra-
mananandro. The interpolation lemma provides the counterpart to this
composition, by guaranteeing that the post-call injection inject µ′ m ′1 m ′3 can
be split into some m ′2, µ′1, and µ′2 with inject µ′1 m ′1 m ′2 and inject µ′2 m ′2 m ′3.
Moreover, these items can be constructed in such a way that the evolution
m2  m ′2 inherits the appropriate forward and unchanged on properties from
the extremal evolutions m1  m ′1 and m3  m ′3.

Our proofs of the interpolation lemmas suggested a handful of addi-
tional alterations to the memory model, which we communicated to Leroy.
These included a subtle refinement to the treatment of permissions across
external calls and a tweak to the definition of unchOn. Leroy installed these
modifications in CompCert 2.0, and we formally validated the interpolation
lemma in Coq. That is, we have proved that intermediate memories m ′2, and
injections µ′1 and µ′2 with the required properties can indeed be constructed.

6.2 Horizontal Composition

The second kind of compositionality is horizontal: We would like to know
that composing the simulation relations established by independently com-
piling the modules in a program results in an overall simulation between
the (linked) multimodule source and target programs. We give the theorem
statement first, then explain some of the subtleties, in particular, the restric-
tion to reach-closed source semantics, which enforces the single-program con-
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ditions corresponding to the structured simulation guarantees of Chapter 5,
and to valid target semantics (a technical property related to the CompCert
memory model, explained below).

Theorem 5 (Linking).
• If PS = S0, S1, · · · , SN−1 is a multimodule program with N translation

units, each of which is reach-closed,
• PS is compiled to PT = T0, T1, · · · , TN−1 (possibly by N different compi-

lation functions) such that JSiK � JTiK for each source–target pair,
• each Ti is valid, and
• the global environments of the Si (resp. Ti ) have equal domain, then
• there is a simulation relation L(JPS K) ≤ L(JPT K) between the source and

target programs that result from linking the Si and independently linking
the Ti .

Proof. In Coq.1 The simulation invariant is described in Section 6.2.2.

The ≤ in the theorem denotes forward simulation on whole programs,
as in Chapter 5. As Corollary 7 will show, establishing ≤ is sufficient to
prove contextual equivalence of open multimodule programs (by linking
with a closing context). Restricting to modules with equal global domain
may seem counterintuitive; linking can, at least in principle, enlarge the
set of global addresses that are visible to any one module in isolation. The
“globals have equal domain” assumption defers this reasoning to the pro-
gram logic (Chapter 7), in which it is necessary either to prove safety mono-
tonicity under global environment extension, or to preprocess modules to
propagate global declarations (the current VST strategy).

A valid semantics, as in Section 3.3, is one that never stores invalid point-
ers into memory. Invalid pointers, in CompCert parlance, are those that
refer to memory regions that have not yet been allocated (freed pointers
are never invalid). This condition is true for all contexts we care about (for
example, it holds of all programs in CompCert’s Clight [Lemma 9] and x86
languages [Theorem 2], which do not permit storing invalid addresses into
memory).

But why is it necessary? The answer is technical. In order to establish,
during the proof of Theorem 5, the

REACH tm (globalsOf geT ∪ blocksOf −→vt ) ⊆ domT

1The theorem statement is in compcomp/linking/linking spec.v. Theo-
rem link in file compcomp/linking/linking proof.v gives the proof.
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condition of the Initial Core clause of structured simulations (Figure 5.3),
it is necessary to know that the target memory tm satisfies mem valid at
each intermodule interaction point. Otherwise, we could not show that the
reach-closure of the set globalsOf geT ∪ blocksOf −→vt is contained in domT

(we instantiate domT , in the proof, to equal the set of valid blocks in tm).
One could imagine a different proof strategy, in which domT is instanti-
ated directly to REACH tm (globalsOf geT ∪ blocksOf −→vt ), for example. But
then we fall afoul of a validity condition required elsewhere in structured
simulations, that domT ⊆ validBlocks tm. Ultimately, these properties are
tied deeply to the specifics of CompCert’s memory model, such as the
CompCert allocation model (Chapter 2), and to the specifics of structured
simulations.

The restriction to reach-closed semantics (Section 3.3) is best motivated
with an example. Consider the following C program, a variation of the
second of the C example programs from Chapter 1:

//Module A
void g(int*);
int f(void) {

int a; int b = 3;
g(&a);
return b;

}

Function A.f calls an external function B.g, passing &a as argument.
Now imagine we link with the following context:

//Module B
void g(int* p) {

*(int*)((uintptr_t)p + 4) = 4;
}

in which B.g writes the value 4 to address &b = p+1 by first casting p to
an integer, adding 4 (the size in bytes of integers on a 32-bit machine), then
casting back to an integer pointer and performing the write. In the context
of this (implementation-defined) g, standard compiler optimizations such
as constant propagation of b in A.f are unsound, as the discussion in
Chapter 1 showed.

The point of a compositional compiler, however, is to enable local mod-
ular compilation, which should depend only on translation-unit-local anal-
yses. Correctness of optimizations like constant propagation, dead-code
elimination, and inlining should not depend on the particulars of the larger



100 CHAPTER 6. SEPARATE COMPILATION

program context in which a module is executed (e.g., the implementation of
B.g), only that the larger context respects the C-level abstractions assumed
by the compiler.

The challenge, then, is coming up with a characterization of the source
modules S0, S1, · · · , SN−1 that does admit linking as in Theorem 5. We do
this in general, for arbitrary interaction semantics, by observing that the
write to &b = (int*)((uintptr_t)p + 4) is ill-formed not because it
goes wrong (the write is safe under certain interpretations of the behavior of
integer–pointer casts), but because it’s a write to a location that the context
B.g shouldn’t have “known about” in the first place.

Put another way, address &b was not reachable via pointer arithmetic2

either from g’s initial arguments (pointer arithmetic across local variable
regions is undefined), from global variables, or from the return values of
external calls g may have made. This condition—no writes or frees to lo-
cations that are not “visible”—is the analogue of the ES ⊆ visS µ in clause
(6) of Figure 5.4, but stated as a single-program property, independent of
any particular structured injection µ. We formalize the notion of a seman-
tics that respects this characterization of visible locations as the reach-closed
semantics of Chapter 3, Section 3.3.

From the perspective of compiler correctness proofs, the restriction to
reach-closed contexts is what enables program transformations: It would be
unsound, for example, to constant-propagate b out of memory if the larger
program context depended on it, as in the example program above.

6.2.1 Reach-Closed Contextual Equivalence

As a corollary of Theorem 5, we get a form of contextual equivalence when
the source modules are reach-closed and the target modules are valid, stated
in terms of a variation of Definition 4 in which contexts satisfy a few ad-
ditional properties. Informally, if each module in multimodule program
PS is compiled to the corresponding module in target PT , then PS and
PT have the same behavior (termination, divergence) when linked with a
well-defined program context C . L(C , PS ) may also go wrong, in which case
we say nothing about the behavior of L(C , PT ).

2When the program context is implemented in a language like x86 assembly,
it might seem strange to say “not reachable via pointer arithmetic” since in most
assembly models the entire address space is “reachable”. Here we mean “not
reachable” in the instrumented semantics of x86 assembly used by CompCert,
in which memory is allocated in blocks, as in CompCert’s Clight, and interblock
pointer arithmetic is disallowed.
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More formally, well-defined contexts are those deterministic C that self-
simulate, and which are both reach-closed and valid.

Definition 8 (Well-Defined Contexts).

well defined C , deterministic C ∧ C � C ∧ reach closed C ∧ valid C

The C � C condition says that C commutes with memory injections:
If C is initialized twice with injected arguments, both executions either
go wrong, nonterminate, or equiterminate with injected results. Although
this condition follows directly from the form of Theorem 5, it is strongly
motivated: We should not allow contexts to distinguish source and target
programs based solely on bijective renamings of memory blocks exposed
to the context (pointer arithmetic is not allowed between blocks, only within
blocks). The consistency conditions on structured injections and simulations
that we described in Chapter 5 mean that in the proof of C � C , the context
may assume that all public blocks leaked by the program are mapped
from source to target (they are never removed during compilation of the
program).

Reach-closed contextual equivalence is then just equitermination, assum-
ing the source linked program is safe, in all well-defined contexts:

Definition 9 (Reach-Closed Contextual Equivalence).

PS ∼rc PT , ∀C j m tm ge v ~vS ~vT .
well defined C ∧ init inv j ge ~vS m ge ~vT tm ∧ safe ge C PS v ~vS m
=⇒ (terminates ge C PS v ~vS m ⇐⇒ terminates ge C PT v ~vT tm)

Invariant init inv is defined as in Section 5.1. Essentially: injection j
relates m to tm and ~vS to ~vT , and is the identity on dom(ge). Also, ~vT and
tm must not contain invalid pointers (to memory regions that have not yet
been allocated).

The global environment ge : Genv unit unit is used solely to ensure that
the global environments of the linked modules have equal domain; hence
we use the same ge in both source and target.3

Predicates safe and terminates are overloaded to operate on whole pro-
grams, instead of configurations, as follows. Say a program P is initializable
at entry point v with arguments~v if initialization succeeds for v at~v .

Definition 10 (initializable ge C P v ~v ). ∃c. initial coreL(C ,JPK) ge v ~v = Some c

3Recall that the global environments used to look up function bodies in L are
language-specific, and therefore the per-module ones.
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A program P has behavior b in context C and memory m, at entry
point v with arguments ~v , if either (i) P is initializable, in linked seman-
tics L(C , JPK), to a configuration 〈c, m〉 that has behavior b, or (ii) b =
Going wrong and P is not initializable (P initially went wrong in context C ).
Program P terminates if it has behavior Termination.

If each of the pairs Si , Ti in a multimodule program is related by struc-
tured simulations JSiK � JTiK, then the linked source and target programs
are reach-closed contextual equivalent.

Corollary 7 (Simulation Implies Contextual Equivalence). Let
• PS = S0, S1, · · · , SN−1; and
• PT = T0, T1, · · · , TN−1

for reach-closed source modules S0, S1, · · · , SN−1 with equal global domains, and
valid deterministic target modules T0, T1, · · · , TN−1. If for each i , JSiK � JTiK,
then PS ∼rc PT .

Proof. The Coq proof is file compcomp/linking/context equiv.v.

In the above, we assume closing contexts C (those that do not themselves
call external functions not defined by any of the modules; callbacks into PS

and PT are permitted). C must also be well-defined (cf. Definition 8). Safety
of the source linked program and determinism of the target modules are
required to prove the backward direction of the equivalence (the forward
direction holds without these assumptions).

We also have a form of contextual refinement.4

Definition 11 (Reach-Closed Contextual Refinement).

PT vrc PS , ∀C j m tm ge v ~vS ~vT .
well defined C ∧ init inv j ge ~vS m ge ~vT tm
=⇒ (C , PT , ge, v , ~vT , tm) ≤beh (C , PS , ge, v , ~vS , m)

In the definition, the ≤beh relation of Section 5.2.3 is overloaded to operate
on programs, in addition to behaviors. The relation

(C , PT , ge, v , ~vT , tm) ≤beh (C , PS , ge, v , ~vS , m)

means: for all behaviors bT of program PT in context C , initialized at v
with arguments ~vT in memory tm, there exists a behavior bS of PS in
context C (initialized at v , . . . ) such that bT is a refinement of bS (bT ≤beh

4Strictly speaking, not derivable from the equivalence shown above (Defini-
tion 9; we will refine divergence as well as termination behavior).
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bS ). Refinement of behaviors is defined as in Section 5.2.3. Up to classical
reasoning, every program has at least one behavior:

Theorem 6 (Behavior Exists). For all programs P , global environments ge , entry
points v , initial arguments ~v , initial memories m, and contexts C , there exists a
behavior b such that (C , P , ge, v ,~v , m) has behavior b.

Proof. In Coq.5

We then get that simulation, as in Corollary 7, implies reach-closed
contextual refinement.

Corollary 8 (Simulation Implies Contextual Refinement). Let
• PS = S0, S1, · · · , SN−1; and
• PT = T0, T1, · · · , TN−1

for reach-closed source modules S0, S1, · · · , SN−1 with equal globals domains, and
valid deterministic target modules T0, T1, · · · , TN−1. If for each i , JSiK � JTiK,
then PT vrc PS .

Proof. The Coq proof is file compcomp/linking/context equiv.v. By
Theorem 5, we have L(C , JPS K) ≤ L(C , JPT K). By assumption and Theo-
rem 3, we have deterministic L(C , JPT K). The theorem follows by Corollary 5
of Chapter 5 (behavior refinement from whole-program simulation).

In the definitions ∼rc and vrc above, it’s important that the definition
of well-defined contexts is not too narrow. Otherwise, we risk ruling out
reasonable programs. At the very least, every C-program context should
be well-defined in the sense of Definition 8. Otherwise, the equivalence ∼rc

would be quite weak (it would not be robust to linked C-language contexts).
As justification, I have proved the following.

Theorem 7 (Clight Programs are Well-Defined Contexts). Take Clight pro-
gram P . The interpretation of JPK as module semantics is well-defined according
to Definition 8.

This theorem lower-bounds the qualification over contexts in ∼rc: C is at
least instantiable by any relation that corresponds to a well-defined Clight
program.

Since C may express arbitrary relations in Coq’s Gallina, up to the
conditions Definition 8, there are contexts C that correspond to no well-
defined Clight program, yet are still well-defined according to Definition 8.

5File compcomp/linking/context equiv.v.
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For example, take C equal the (undecidable) relation that reads as input
the description in memory of a Turing machine (and its input) and returns
Vint 1 if the Turing machine terminates (on that input), and Vint 0 otherwise.
This C is deterministic (no deterministic Turing machine both terminates
and infinite loops), self-simulates (the Turing-machine description is an
array of integers in the heap, pointed to by one of C ’s arguments), and is
both reach-closed and valid (C could be implemented to write only integers
to a sequence of memory regions it allocates itself).

The proof 6 of Theorem 7 relies on a number of auxiliary lemmas, corre-
sponding one-for-one with the conditions of Definition 8.

Lemma 7. Clight programs are deterministic.

Proof. File compcomp/cfrontend/Clight_lemmas.v. Due to a misspec-
ification in original CompCert of certain compiler intrinsics (architecture-
dependent instructions for certain 64-bit operations) the proof of this theo-
rem currently assumes the I64 helpers case.

Lemma 8. For all Clight programs P , JPK � JPK.

Proof. File compcomp/cfrontend/Clight_self_simulates.v.

Lemma 9 (Clight Programs are Valid). Every Clight program is valid, in the
sense of Definition 3.

Proof. File compcomp/linking/clight_nucular.v.

Theorem 1 proved that all Clight programs are reach-closed.

6.2.2 Linking Invariants

The main difficulty in proving Theorem 5 and by extension, Corollaries 7
and 8, is in devising a simulation invariant7 to relate the stacks-of-cores
runtime states of the linked programs PS and PT .

The situation is presented schematically in Figure 6.2. In the source
linked program, we have a stack of core states, growing downwards, with
c in callee position with respect to a (direct or indirect) caller core c0, which
may be implemented in a different language. We must relate this stack of
cores to the corresponding stack in the target linked program. We use µ
to denote the structured simulation that relates the callees c and d , and

6File compcomp/linking/context.v.

7File compcomp/linking/linking inv.v.
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Stack
Growth Source Stack Target Stack
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c0 d0
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c d
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Figure 6.2: Schematic representation of the stacks-of-cores linking invariant.
The white boxes are core states. Source core c and target core d are callees
at the bottom of the LinkedState callstack, related by structured injection µ
(memory is elided). Cores c0 and d0 are caller cores related by ν.

ν to denote the injection that relates callers c0 and d0. In the figure, we
elide the memories (for callers, the memory at the call point is existentially
quantified). A caller core may be a callee with respect to another caller
higher on the callstack.

The key rely–guarantee condition is to ensure that blocks labeled as
foreign, or leaked-in, by callee injections µ are always labeled as public by
caller injections ν:

foreignS µ ∩ ownedS ν ⊆ publicS ν (6.1)

From the fact that source modules are reach-closed

ES ⊆ REACH m (roots ge r) (6.2)

we then can show that the memory effects of the running callee core at
the top of the callstack are confined to callee-allocated (owned) and foreign
blocks. This implies that private caller memory regions in ν, which are
disjoint from the blocks marked as public by ν, remain unmodified.

A difficulty here is how to relate the root sets of source modules to the
visible sets visS used in the simulation relations. We do this by maintaining
the following two invariants:

roots ge r ⊆ visS µ (6.3)
REACH m (visS µ) ⊆ visS µ (6.4)

Invariant (6.3) says that the root set of the source semantics is a subset of
the visible source blocks in µ. This invariant holds initially, when r is first
created, and is maintained at external function calls and returns. Condi-
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tion (6.4), which we maintain as an invariant of all structured simulations,
says that the visible set is closed under reachability. These two conditions,
plus (6.2) and monotonicity of the REACH relation, imply that ES is a subset
of visS µ. This fact, together with condition (6.1) above, is sufficient to prove
the unchanged on relies of Figure 5.4 at the point at which the running core
returns to its calling context.

Linking Invariants: Details. More formally, we define the toplevel simu-
lation invariant ∼µ (called match state below) that relates linked states x1
(in the source) and x2 (in the target) as follows:

1 match state µ (x1 : LinkedState N modulesS ) m

2 (x2 : LinkedState N modulesT ) tm ,
3 let s1 , x1.stack in

4 let s2 , x2.stack in

5 let pf1 , callStack nonempty s1 in

6 let pf2 , callStack nonempty s2 in

7 let c , Stack.head pf1 s1 in

8 let d , Stack.head pf2 s2 in
9 (∃ (pf : c.idx = d .idx) ~p. head inv c d pf µ ~p m tm

10 ∧ tail inv ~µ (pop s1) (pop s2) m tm)
11 ∧ x1.plt = x2.plt
12 ∧ ∀i : IN . valid genv (modulesT i).ge tm

Recall here that the core states of linking semantics are defined (cf. Chap-
ter 4) as records of: a procedure linkage table (plt) and a (heterogeneous)
stack of core states, corresponding to dynamic invocations of the modules
in the program.

Record LinkedState (N : pos) (modules : IN → Modsem) ,
{ plt : ident → option IN ;

stack : Stack (Core N modules) }

The modules map pairs integers in the range 0 to N − 1 with the Modsem
module semantics associated with each module in the program. The invari-
ant is also parameterized by a number of structured simulation relations
∼, one for each compiled module in the program. We index ∼idx to denote
the simulation relation for module number idx .

The first few lines of the match state invariant just introduce new names
for the various parts of the linked states x1 and x2. The let-bound variables
c and d are defined, via Stack.head, as the cores on top of the source and
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target stacks respectively, as in Figure 6.2. The names s1 and s2 are aliases
for the stack component of linked states x1 and x2. pf1 and pf2 are proofs
that stacks s1 and s2 are nonempty (an invariant of linking semantics, as
defined in Chapter 4). These proofs are passed as arguments to Stack.head,
to ensure that Stack.head is total. Line 11 states that source and target linked
states contain equal PLTs. Line 12 asserts that each target module global
environment is valid with respect to tm (the environment does not map
globals to addresses that were never allocated in tm).

The key section of the invariant runs from line 9 to line 10. Line 9 is the
invariant head inv on the topmost cores on the stack—c and d . Line 10 is
the invariant tail inv on the remaining (suspended) cores—pop s1 and pop s2.
Existentially quantified are: a proof pf that that the module index of core c
equals the index of core d , and a list of frame packages~p that relate each pair
of source–target suspended (caller) cores on the source and target stacks.
Frame packages are records

p ∈ frame pkg , mk frame pkg
{ frame µ : StructuredInjection;

frame m : mem;
frame tm : mem;
frame val : valid frame µ frame m frame tm }

that contain:

• frame µ: a structured injection relating two (source–target) suspended
cores;

• frame m: the source memory at which the cores are related;
• frame tm: the target memory at which the cores are related; and
• frame val: a proof that frame µ is valid for frame m and frame tm.

Think of frame m0 and frame tm0 as the source and target memories, respec-
tively, in which this particular pair of source–target (indirect) caller cores
(say c0 and d0 as in Figure 6.2) were suspended, waiting on an external
function call. frame µ is likewise the structured simulation that related the
source–target caller cores c0 and d0 at the point of suspension. We describe
head inv and tail inv in turn.

Running Cores. The invariant head inv that holds of the topmost cores on
the stack—c and d—is defined as follows:
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1 head inv c d pf µ ~p m tm ,
2 let idx , c.idx in

3 〈c, m〉 ∼idx
µ 〈d , tm〉

4 ∧ (∀p ∈~p. callee caller inv m µ p)
5 ∧ (∃B . roots ge B ⊆ visS µ ∧ Ridx c m B)
6 ∧ domT µ = valid blocks tm
7 ∧ Iidx d tm

The parameters of the definition are: c and d , the source and target running
cores respectively; pf , a proof that the modules indices of c and d are equal;
the structured injection µ that relates c and d ; the frame packages ~p that
relate the remaining suspended cores; and the source and target memories
m and tm.

Line 3 asserts that configuration c, m is related to d , tm by ∼idx
µ , the sim-

ulation relation associated with module idx , indexed by structured injection
µ. In line 5, we state that there exists a block set B such that (1) the roots
of B and global environment ge are a subset of the visible source blocks
of µ (this is Condition 6.3 above); and (2) B satisfies the invariant Ridx

maintained by the reach-closed semantics of source module idx . Line 6 is
a technical condition on the target blocks of µ (asserting that domT µ is
always the set of valid blocks in tm). Line 7 maintains the validity invariant
Iidx associated with the semantics of target module idx .

Predicate callee caller inv on line 4 delineates the relation between the
structured injection µ and the frame packages p ∈ ~p that relate the sus-
pended cores on the stack, at memory m. It is defined as follows:

1 callee caller inv m µ p ,
2 let µ0 , p.frame µ in

3 let m0 , p.frame m in

4 let tm0 , p.frame tm in
5 µ0 v µ
6 ∧ separated µ0 µ m0 tm0
7 ∧ ownedS µ0 ∩ ownedS µ = ∅
8 ∧ ownedT µ0 ∩ ownedT µ = ∅
9 ∧ REACH m (visS µ) ∩ (ownedS µ0) ⊆ publicS µ0

The assertion µ0 v µ on line 5 ensures that µ extends µ0 with respect
to the Kripke-order v. This order is similar to vus and vthem: µ may map
more blocks than µ0, in order to deal with allocations, but is otherwise equal
to µ0 (wherever µ0 is defined). The primary difference is that v does not
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distinguish between owned and extern blocks in µ0 and µ, instead treating µ0
and µ as if they were “unstructured” injections, in standard CompCert style
(cf. Chapter 2). Why is the unstructured v appropriate here? µ0 and µ relate
the running states of different source–target module pairs, for example, of
compiled modules idx and idx ′. The blocks labeled owned, or allocated, by
module idx will be labeled extern (not owned) by module idx ′, and vice versa.

Lines 6 to 9 give the other key invariants: µ must be separated from µ0,
with respect to the existentially quantified memories m0 and tm0 associated
with µ0 (see Figure 5.5 for the definition of separated); the source/target
owned blocks of µ0 and µ must be disjoint (Lines 7 and 8); finally, the set of
source-language blocks declared owned by the caller injection µ0 but also
reachable in m from the visible set of the callee injection µ must also be
declared public by µ0.8 In other words, blocks leaked into µ’s visible set at
previous interaction points must be declared public by the (direct or indirect)
caller that owns the blocks in question.

The intuition here is: A well-formed source–target state pair of the linked
program is one in which the simulation relation µ0 (relating cores c0 and
d0) makes no claim, at external calls, on the values contained in blocks
that have been leaked to the cores in callee position with respect to c0, d0.
(Recall that structured simulation proofs may assume that the memory is
unchanged over external calls only at private blocks, as in the External Steps
case of Figure 5.4.) The reason: leaked regions may be modified over the
external call, e.g., by the running cores c and d .

Suspended Cores. The invariant that relates suspended (caller) cores to
one another is defined:

1 tail inv ~p s1 s2 m tm ,
2 all caller callees (λp p0. caller callee inv m (frame µ p) p0) ~p
3 ∧ frame all ~p m tm s1 s2

where all caller callees is given by the following pair of recursive functions:

8We impose an analogous invariant on target blocks (not shown); see the code
repository that accompanies this thesis for details.



110 CHAPTER 6. SEPARATE COMPILATION

all T P (l : list T ) ,
case l of
| nil → True
| a :: l ′ → P a ∧ all P l ′

all caller callees (T : Type) (P : T → T → Prop) (l : list T ) ,
case l of
| nil → True
| a :: l ′ → all (P a) l ′ ∧ all caller callees T P l ′

Line 2 of the tail inv listing above asserts that, for each p ∈~p, the structured
injection given by package p (frame µ p) is related by caller callee inv to each
caller package p0 in the tail of~p at the point at which p appears (i.e., in caller
position with respect to p). This invariant is required in order to re-establish
head inv when the running source–target cores return to their callers.

Line 3 of tail inv asserts an invariant on each source–target pair c0,d0
in the source–target stacks s1 and s2, as defined by the recursive predicate
frame all:

frame all ~p m tm s1 s2 ,
case ~p, s1, s2 of

| mk frame pkg µ0 m0 tm0 :: ~p ′, c0 :: s ′1, d0 :: s ′2 →
∃ (pf : c0.idx = d0.idx).
∃ e1 ~v1.
∃ e2 ~v2.

frame inv c0 d0 pf µ0 m0 m e1 ~v1 tm0 tm e2 ~v2

∧ frame all ~p ′ m tm s ′1 s ′2
| nil, nil, nil → True
| , , → False

In addition to asserting that ~p, s1, and s2 are all the same length, frame all
applies a subsidiary invariant, frame inv, to each pair of cores c0, d0 in s1
and s2. This “per-frame” invariant is defined as follows:
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1 frame inv µ0 m0 m e1 ~v1 tm0 tm e2 ~v2 ,
2 let ν0 , leak out µ0 ~v1 ~v2 in

3 let idx0 , c0.idx in
4

5 (∗ per−frame invariants, on c0, d0, µ0, m0, and tm0 ∗)
6 inject (as inj µ0) m0 tm0
7 ∧ valid µ0 m0 tm0

8 ∧ 〈c0, m0〉 ∼idx0
µ0 〈d0, tm0〉

9 ∧ at external c0 = Some (e1,~v1)
10 ∧ at external d0 = Some (e2,~v2)
11 ∧ inject (as inj µ0 �vis µ0) ~v1 ~v2
12

13 (∗ source visibility ∗)
14 ∧ (∃B . roots ge B ⊆ visS µ0 ∧ Ridx0 c0 m0 B)
15

16 (∗ target validity ∗)
17 ∧ domT µ0 = validBlocks tm0
18 ∧ Iidx0 d0 tm0
19

20 (∗ invariants relating m0, tm0 to m, tm ∗)
21 ∧ forward m0 m
22 ∧ forward tm0 tm
23 ∧ unchanged on {(b, z ) | ownS ν0 b = Priv} m0 m
24 ∧ unchanged on (local out of reach ν0 m0) tm0 tm

Lines 2 and 3 establish local definitions:
• ν0 is the injection that results by “leaking out” into µ0 all blocks

exposed by c0 and d0 to their callers (recall that each pair of cores c0,
d0 is suspended at external on an external function call);

• idx0 is the index of the module from which c0 was spawned (which
happens to be equal to the index of d0, by the existentially quantified
pf on line 4 of frame all).

The other invariants form four natural groups:

Lines 6 to 11 specify “per-frame” invariants on the states c0 and d0, the
memories m0 and tm0, and the structured injection µ0 that relates
them. Configurations c0, m0 and d0, tm0 should be related by ∼idx0

µ0 ,
the simulation invariant of module idx0. In addition, µ0 injects m0 to
tm0 and ~v1 to ~v2, for ~v1 the arguments of c0’s call to external function
e1 (at external c0 = Some (e1, ~v1)) and ~v2 the arguments of d0’s call to
external function e2 (at external d0 = Some (e2, ~v2)).
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Line 14 maintains that invariant that relates the visible source blocks of µ0
to the reach-closed invariant Ridx0 (of source module idx0 associated
with c0).

Lines 17 and 18 parallel lines 6 and 7 of the definition of head inv.

Lines 21 to 24 relate memories m0 and tm0 to the “active” memories m
and tm. For example, m and tm should be forward from m0 and tm0
respectively. But also, m0 and m must be equal in blocks marked
private by ν0, and likewise for tm0 and tm at “out of reach” locations.
These last two conditions directly match the unchanged on conditions
of the External Steps diagram of structured simulations (Figure 5.4).



Chapter

7
Modular Verification

Verifiable C [ADH+14, Chapter 24] is a separation logic for CompCert’s
Clight language that supports higher-order features such as stored function
pointer specifications. This chapter connects the Verifiable C logic to the
compiler correctness results I presented in Chapter 6. In particular, I show
how modular separation logic proofs in Verifiable C can be connected to
the linking semantics of Chapter 4 and in this way, composed with compiler
correctness. At a high level, the result is: independent program-logic proofs
of the Hoare triples

Γ1 `func f1, f2 : Γ

and
Γ2 `func f3, f4, f5 : Γ

in which f1, f2, . . . are function bodies, Γ proved function specifications, and
Γ1, Γ2 assumed, imply partial correctness of the linked target program

L(C , JCompCert(f1, f2)KAsmSem
, JCompCert(f3, f4, f5)KAsmSem

)

that results from independently compiling f1, f2 and f3, f4, f5. The linked C
here is a program context compatible with the Hoare-style specifications of
the external functions called by (but implemented by none of) the compiled
modules, as encapsulated in the Hoare-logic function specifications Γ1 ∪ Γ2.
The remainder of this chapter explains the details.

113
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7.1 Modular C Program Logic

In some ways, Verifiable C is just a conventional Hoare logic. Judgments
have the following familiar form:

∆ ` {P} c {R}

in which ∆ is a type context, P is the precondition of C statement c, and R
is the postcondition.

At the same time, the Verifiable C logic is also quite complex, owing to
the complexity of the C programming language. For example, ∆ does not
just give the types of variables that may appear in free in c (i.e., temporaries).
It also types

• function parameters,
• addressed local variables, and
• global variables

and assigns pre- and postconditions to the functions defined/called by the
program. The postcondition R is really a series of postconditions. Since
C basic blocks may exit in multiple ways (by continue, break, return,
and by falling through a switch), R records multiple postconditions, one
for each possible return case.

7.1.1 Inference Rules

Chapter 24 of [ADH+14] describes the inference rules of the Verifiable C
logic in detail. For the most part, the rules are conventional (if complicated
by the vagaries of C). For example, here is the rule for load from memory:

readable π

∆ ` {.(e π7→ v ∗ P)} x := [e ] {∃vold . x = v ∧ (e
π7→ v ∗ P)[vold/x ]}

(SemaxLoad)

The command x := [e ] assigns to x the value in memory at location e , equal
v as specified by precondition e

π7→ v . e
π7→ v is an instance of the maps-to

predicate of separation logic, asserting a (singleton) heap containing value
v at the location to which expression e evaluates. π is a share, the program-
logic counterpart to the CompCert permissions of Chapter 2. Chapter 41
of [ADH+14] describes how shares are constructed in Verifiable C; Chapter
42, of which I am a co-author, describes how shares are erased to CompCert
permissions. In the rule above, we just need that π is a readable share (giving
at least read permission; π might permit writes as well).
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The precondition .(e
π7→ v ∗ P) is prefixed with the later operator ..

This . highlights another aspect of the Verifiable C logic: in order to reason
about complicated patterns of (mutual) recursion over, e.g., C function point-
ers, the interpretation of the logic is step-indexed [AM01, AMRV07, AAV02,
HDA10]. In the model of the logic, predicates (and states) are paired with
natural numbers k , the number of steps for which the predicate will con-
tinue to make claims on the system. .P says that P holds not at the current
k (e.g., of the state in which the command is executed), but only at k − 1. In
the load rule, we need only that .(e π7→ v ∗ P), as opposed to the stronger
e

π7→ v ∗ P , because the assignment x := [e ] itself takes a step.
Assertion R = ∃vold . x = v ∧ (e

π7→ v ∗ P)[vold/x ] is the strongest
postcondition of the load command. It states that, after the assignment,

• variable x equals v , and
• there exists an old value of x , call it vold , such that the precondition

(e
π7→ v ∗ P) holds with vold substituted for x .

This particular load rule is the most general. In the logic, other special-
ized forms are derived, for loading from arrays, structures, etc., and for the
special case in which x does not appear free in the precondition.

7.1.2 Proving Whole Modules

In addition to the basic Hoare triple, the Verifiable C logic provides a
judgment form, semax func, for composing function body proofs in order to
prove whole modules. This judgment has form:

V , Γ `func ~f : Γ′

in which

varspecs V is an environment mapping (global) variables to their types.

funspecs Γ, Γ′ are lists of function name, function specification (funspec) pairs.
Γ are the function specifications that one may assume (but only later)
when proving functions~f . Γ′ are the specifications that are proved. A
single funspec is defined by the inductive:

Inductive funspec : Type ,
| mk funspec : funsig →
∀ A : Type.
∀ (P : A → environ → mpred)

(Q : A → environ → mpred). funspec
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The first constructor argument (of type funsig) is the function’s (C-type)
signature. environ is a triple of the global environment, the function
temporaries environment (unaddressed locals), and the function vari-
able environment (addressed locals). A is a (universally quantified)
type that is used to relate values (e.g., of program variables) between
pre- and postconditions P and Q . mpred is the type of predicates on
(program logic) memory states. Section 7.2 will describe the relation
of program logic memories (called rmaps) to CompCert’s memories.

fundefs~f is a list of function name, function definition (fundef) pairs. Each
fundef is either an Internal function definition (a C function proved
correct in this module) or an External function declaration:

Inductive fundef : Type ,
| Internal : function → fundef
| External : ident → typelist → type → fundef

Internal functions are defined as in Section 3.2.1. Here is the corre-
sponding Coq definition, which is for the most part self-explanatory:

f ∈ Record function : Type ,
{ fn return : type;

fn params : list (ident ∗ type);
fn vars : list (ident ∗ type);
fn temps : list (ident ∗ type);
fn body : statement }

type is the type of C types. fn body is the actual body of the function
(a C statement). The distinction between fn vars and fn temps is: the
vars are addressed (and therefore stack-allocated), while temps are
nonaddressed (and therefore allocated in registers, or spilled into the
stack by the compiler).

External functions are just function type declarations, as one would
see, e.g., in a C header file.1

The inference rules of the semax func judgment are:

V , Γ `func nil : nil
(SemaxFuncN il)

1This statement is a slight simplification. CompCert’s external function type
also models special-purpose functions such as compiler intrinsics.
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id ∈ map fst Γ id /∈ map fst fs
var sizes ok (fn vars f ) precondition closed f P

V , Γ `body f : (id , mk funspec (fn funsig f ) A P Q) V , Γ `func fs : Γ′

V , Γ `func (id , Internal f ) :: fs : (id , mk funspec (fn funsig f ) A P Q) :: Γ′

(SemaxFuncInternal)

id ∈ map fst Γ id /∈ map fst fs length ids = length ~τ
(∀gx (x : A) (vret : option V) φ. Q x (make ext rval gx vret ) φ =⇒ welltyped τ vret )

O `ext (ids , fid ) : (A, P , Q) V , Γ `func fs : Γ′

V , Γ `func (id , External fid ~τ τ) :: fs : (id , mk funspec (zip ids ~τ), τ) A P Q) :: Γ′

(SemaxFuncExternal)

SemaxFuncN il serves as the base case of a whole-module proof: the
empty list of functions satisfies the empty list of specifications.

SemaxFuncInternal is the rule for verifying an Internal definition—a
function defined in the current module. The key hypothesis is the
subsidiary judgment:

V , Γ `body f : (id , mk funspec (fn funsig f ) A P Q)

called semax body, which states what it means for a function body to
satisfy its specification. semax body is defined in terms of Verifiable
C’s underlying Hoare judgment:

V , Γ `body f : (id , mk funspec sig A P Q) ,
∀x : A. func tycontext f V Γ `

{P x ∗ stackframe of f } fn body f
{function body ret assert (fn return f ) (Q x )
∗ stackframe of f })

func tycontext constructs the appropriate ∆ from f , V , and Γ. The
predicate stackframe of gives the shape of the stack (in memory) for
function f , and is ∗-conjoined in both the pre- and postconditions.
function body ret assert binds the function return value in Q and en-
sures that the function returns properly (as opposed to, e.g., break).

SemaxFuncExternal is the rule for “verifying” external functions. Why
do we need such a rule? External functions are not associated with
definitions (not, at least, in the module currently being verified). It
stands to reason that we should be able to assume their specifications,
e.g., as axioms, at least for purposes of the current module.
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The point is not to verify the functions themselves (that will be done
when we verify the remaining program modules), but instead to en-
sure that the function specifications P , Q assumed in Γ for this module
match those given by an external oracle. This matching is accom-
plished by judgment

O `ext (ids , fid ) : (A, P , Q)

which reads “external oracle O justifies function specification P , Q”
(A is the type of state shared between P and Q). O is only an implicit
argument to the semax func judgment; I do not write it explicitly in the
conclusion of SemaxFuncExternal or the other inference rules.

The oracle is shared among all the modules in the program. In this
way, it ensures that each module verification agrees on shared func-
tion specifications. At the same time, the external specification oracle
is language- and (mostly) program-logic-independent, meaning it can
be reused even in the proofs that connect Verifiable C to linking se-
mantics and Compositional CompCert.

What is the shape of the oracle? Its type is:

O ∈ Record external specification (M E Ω : Type) : Type ,
{ ext spec type : E → Type;

ext spec pre : ∀ ef : E .
ext spec type ef → genviron →
list typ → list V → Ω → M → Prop

ext spec post : ∀ ef : E .
ext spec type ef → genviron →
option typ → option V → Ω → M → Prop;

ext spec exit : option V → Ω → M → Prop }.

The parameters are: M , the type of memory over which the external speci-
fication oracle quantifies; E , the type of external function names/declara-
tions; Ω, the type of external oracle states. In Verifiable C, E is typically
specialized to CompCert’s external function. The M parameter is variously
CompCert’s mem type or the type of juicy memories, which I introduce in
Section 7.2.

The fields of the record are:

ext spec type: A function from external function names to the types of auxil-
iary state shared between their pre- and post-conditions. For an exter-
nal function name ef , ext spec type ef is the analog of A in a Verifiable
C funspec (A, P , Q).
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ext spec pre: A (dependent) map from external function names to precondi-
tions. The parameter of type ext spec type ef is dependent on the par-
ticular ef that is passed. In the interpretation of external specifications,
this second parameter is shared between the pre- and postcondition.
genviron is a map from global identifiers to the blocks at which they are
allocated in memory. list typ are the expected (language-independent)
types of the function arguments.2

ext spec post: A map from external function names to postconditions, anal-
ogous to ext spec pre. The argument of type option V is the (optional)
return value to function ef .

ext spec exit: A predicate that must hold at module exit (i.e., at return from
module entry points).

With external specification oracles, one can extend the definition of safety
given for closed programs (Section 5.2.2) to open programs, those that may
call external functions. Like the definition of 5.2.2, open safeN is still indexed
by a natural number n , which gives the number of steps for which we will
interrogate the system. Unlike that previous definition, which was a pure
safety condition, open safeN also imposes a postcondition (ext spec exit) at
module halt—making open safeN a partial correctness property. The other
major difference is the addition of the SafeN-External case for external
function calls:

safeN 0 ω c m
(SafeN-Zero)

ge ` c, m 7−→ c ′, m ′ safeN n ω c ′ m ′

safeN (n + 1) ω c m
(SafeN-Step)

2We do not use C types here because external specifications are intended to be
language-independent. typs, as opposed to C types, include: int, float, long, single.
The most recent versions of CompCert also include any32 and any64, for typing
unknown data of fixed width.
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at external c = Some (ef ,~v)
ext spec pre O ef x (genv symb ge) (sig args ef ) ~v ω m

(∀vret m ′ ω′ n ′. n ′ ≤ n ∧ R(n ′, m, m ′)
∧ ext spec post O ef x (genv symb ge) (sig res ef ) vret ω′ m ′

=⇒ ∃c ′. after external vret c = Some c ′ ∧ safeN n ′ ω′ c ′ m ′)

safeN (n + 1) ω c m
(SafeN-External)

halted c = Some vret ext spec exit O (Some vret ) ω m

safeN n ω c m
(SafeN-Halted)

The generalized safeN for open programs is a predicate of type N→ Ω→
C → M → Prop. The n : N is the number of steps for which configuration
〈c, m〉 is safe. ω is the external state of the oracle, or outside world.

Most of the rules are self-explanatory, by reference to the definition
of closed safeN in Section 5.2.2. New is the rule for external function calls,
SafeN-External. It handles the case in which a core state c is at external,
calling external function ef with arguments ~v . In this situation, we say
〈c, m〉 is safe for n + 1 steps when:

• ~v , ω, and m satisfy ef ’s precondition (ext spec pre O ef x . . . ); and
• for all return values vret , new memory states m ′, new external states

ω′, and naturals n ′ such that
– n ′ ≤ n,
– n ′ and m ′ are related to m by a particular relation R (which I will

explain in a moment), and
– vret , ω′, and m ′ satisfy ef ’s postcondition,

running after external c to inject the return value vret results in a new
state c ′ that is safe for n ′ steps in ω′ and m ′.

The intuition for SafeN-External is: A configuration 〈c, m〉, calling
external function ef , is safe for n + 1 steps when it is safe for n ′ ≤ n steps
in any state the external world may return after executing ef , as long as
the returned state satisfies the postcondition agreed upon in O. The state
exposed by 〈c, m〉 to the outside world, at the point of the call (the memory
m and the function arguments~v ), must satisfy ef ’s precondition as well.

The relation R used above differs depending on the type M at which
safeN is parameterized. When M equals CompCert’s mem, R is just λn ′ m m ′.
True (meaning we must prove safety, over external calls, for all n ′ ≤ n). I call
this definition “dry safety” (dry safe) as opposed to “juicy safety” (juicy safe),
for reasons that will become apparent in Section 7.2.

When M is the type of juicy memories (upcoming, in Section 7.2), R is
specialized to:
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R n ′ m m ′ ,
n ′ = level m ′ ∧ level m ′ < level m
∧ (∗ ...a relation on the function specifications embedded in m, m ′. ∗)

Safety specialized to this R is called “juicy safety.” The natural n ′ must equal
the step index of juicy memory m ′; also, the step index of m ′ must be strictly
less than that of m. These two conditions are step-index-related: If n ′ (the
number of steps for which we must prove safety in StepN-External)
were greater than level m ′, then it would be possible for level m ′ = 0 (the
“we have given up” state), while n ′ > 0 forces us to continue to prove safety
for some nonzero number of remaining steps n ′.

7.2 Juicy Memories

The semax func judgment I outlined in the previous section gives a proof
theory for C programs. How do we know this theory is sound? When we
prove V , Γ `func ~f : Γ, for funspecs Γ and functions ~f , who guarantees
that the functions~f actually satisfy their specifications? Or that, for a given
f ∈ ~f , if we initialize f in a state satisfying its precondition, it will either
safely run forever3 or halt in a state satisfying its postcondition?

The answer, as Part VI of [ADH+14] demonstrates, is to construct a
semantic model of the Hoare judgment, and then prove soundness with
respect to this model. In this section, I briefly describe enough of the un-
derlying machinery to explain how the semantic model of the Verifiable C
logic is connected to Compositional CompCert (Section 7.3).

Juicy Memories. When reasoning in a program logic, step indexes are un-
problematic: the step indexes can often be hidden via use of the . operator,
and do not often appear explicitly in assertions.

How to connect step-indexed states to CompCert’s memories (Chap-
ter 2), which are not step-indexed? One could simply step-index CompCert.
But this strategy makes it difficult, at least naively, to prove correctness of
compiler phases that may change the number of steps. A better solution
is to stratify the models into two layers: operational states corresponding
to states of the operational semantics, and semantic worlds appearing in
assertions of the program logic. Juicy memories are the specialization of this

3E.g., with respect to the definition of safety just given.
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strategy to Verifiable C rmaps (resource maps, Verifiable C’s step-indexed
model of the state) and CompCert memories.

To a first approximation, a juicy memory jm defines what it means for
an rmap φ to erase to a CompCert memory m. By erasure, we mean the
removal of the “juice” that is unnecessary for execution (as in Curry-style
type erasure of simply typed lambda calculus). The “juice” has several
components: permission shares controlling access to objects in the program
logic; predicates in the heap describing invariants of objects in the program
logic; and the classification of certain addresses as values, locks, function
pointers, etc.

Resource maps, or just rmaps for short, are the program-logic counter-
part to CompCert memories. Their type is abstract (hidden behind a Coq
module interface in file VST/veric/rmaps.v), but to a first approxima-
tion think of rmaps as maps from CompCert addresses (block–offset pairs)
to resources, where resources generalize CompCert memvals (abstract bytes).

φ ∈ rmap ≈ address → resource

I say “only to a first approximation” because rmap resources will contain
assertions (such as function specifications and lock invariants) that may
quantify over the rmap itself. Thus rmaps are not defined directly as above,
but instead using step indexing. Chapter 39 of [ADH+14] gives more detail.
A paper by Hobor, Dockins, and Appel [HDA10] explains the particular
technique used (indirection theory). For purposes of this thesis, the step-
indexed details of the Verifiable C model are not critically important. When
I wish to indicate that rmap φ contains resource res at location l , I will use
syntax φ @ l = res .

The resources themselves are defined inductively as:

res ∈ Inductive resource : Type ,
| NO : resource
| YES : pshare → kind → preds → resource
| PURE : kind → preds → resource.

A NO resource indicates no access to a location. φ @ l = YES π k pp
asserts a resource of kind k with program-logic permission π and (optional)
predicates pp at location l . pshare stands for positive (i.e., nonzero) share.

k ∈ Inductive kind : Type ,
| VAL : memval → kind
| LK : Z → kind
| CT : Z → kind
| FUN : funsig → kind.
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The kinds are either values VAL, for CompCert memval, function specifi-
cations FUN, which specify function pointers, or the special LK/CT kinds,
which indicate that a particular (series of) locations in memory serves as a
semaphore.4

The PURE resource is used primarily to store FUN kinds, with the pred-
icates pp, which may quantify over the rmap itself, storing the function
pre- and postconditions. YES is used primarily to represent actual bytes in
memory.

For example, the program-logic representation of a CompCert memval v
with Freeable permission is:

YES > (VAL v) NoneP

where > is the topmost share in Verifiable C’s permission lattice and NoneP
represents the empty list of predicates.

Juicy Memories: Implementation. In veric/juicy mem.v, we define
juicy memories as pairs of a memory m and an rmap φ. The rmap and
memory must be consistent with each other, in a way we will make precise in
a moment. In the code, we represent this pair with the following inductive
type.

Inductive juicy mem : Type ,
mkJuicyMem : ∀ (m: mem) (φ: rmap)

(JMcontents : contents cohere m φ)
(JMaccess : access cohere m φ)
(JMmax access : max access cohere m φ)
(JMalloc : alloc cohere m φ).

juicy mem.

We equip the type juicy mem with accessor functions of the form

m dry (jm: juicy Mem) , case jm of mkJuicyMem m → m

m phi (jm: juicy Mem) , case jm of mkJuicyMem φ → φ

The four proof objects beginning JM . . . enforce the four consistency re-
quirements:

4LK/CT are used only in the Verifiable C extension to Concurrent Separation
Logic. LK is the resource kind associated with the first byte of a 4-byte lock; the
remaining three bytes of every lock contain CT kinds.
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Contents. If φ @ l = (YES π (VAL v) pp) then m l = v and pp = NoneP.
That is, a VAL in the rmap must have no “predicates in the heap”
associated with it, and the v in the rmap must match the v in the
CompCert memory. Predicates will only occur in PUREs, to give func-
tion specifications, and in locks (YES π (LK k) (SomeP R)) to give
resource invariants.

Access. For all locations l , m l = perm of res (φ @ l). The fractional share
φ @ l must “erase” to that location’s CompCert memory permission.
perm of res is a simple function that erases Verifiable C’s fractional
shares to CompCert-style permissions. Chapter 42 of [ADH+14] pro-
vides additional justification. In particular, it explains why erasing
to coarse-grained permissions when connecting to CompCert makes
sense for Pthreads-style concurrency.

Max Access. For all locations l ,
max access at m l w perm of sh π when φ @ l = YES π
max access at m l w perm of sh ⊥ when φ @ l = NO
fst l < nextblock m when ∃f pp. φ @ l = PURE f pp.

Alloc. For all locations l , if fst l ≥ nextblock m then φ @ l = NO. CompCert
treats addresses whose abstract base pointer is beyond nextblock as
not-yet-allocated. Here we ensure that φ makes no claim to those
addresses.

The juicy-memory consistency requirements are mostly straightforward.
Max Access is a bit more complicated. It does case analysis on the resource
φ@l , ensuring that the maximum permission in m at a given location is
greater than or equal to the permission corresponding to the shares π
or ⊥. As I explained in Chapter 2, maximum permissions are a technical
device used in version 2 of CompCert’s memory model to express invariants
useful for optimizations like constant propagation. The current permission
in m at location l , or just permission, is always less than the maximum
permission. When φ@l contains a PURE resource, Max Access just ensures
that l is a location that was allocated at some point (fst l < nextblock m).
Here nextblock m is the next block in CompCert’s internal free list, as in
Chapter 2.

The consistency requirements together ensure that assertions expressed
in the Hoare logic on the φ portion of the juicy memory actually say some-
thing about the CompCert memory m. For example, suppose we know—
perhaps because φ satisfies the assertion l

π7→ v—that φ contains the value
v with share π at location l . Then, in order to prove that a load from m
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at location l will succeed, we would also like to be able to show that m
contains v at l , with at least readable permission.

To validate that the consistency requirements described above satisfy
laws of this form, we prove such a lemma for each of the basic CompCert
memory operations: load, store, alloc, and free. For example, here is the
lemma for mapsto with writable share.

Lemma mapsto can store :
∀ ch v b z jm v ′.

(address mapsto ch v > (b, z ) ∗ TT) (m phi jm) =⇒
∃m ′, store ch (m dry jm) b z v ′ = Some m ′.

This lemma relies on the consistency requirements to prove that the store in
m dry jm will succeed. The lemmas for the other memory operations differ
in the predicate on m phi jm but are otherwise similar.

In addition to “progress” lemmas of the form mapsto can store, we prove
“preservation” lemmas for juicy memories. That is, we would like to know
that after each CompCert memory operation on m dry jm, yielding a new
memory m ′, it is possible to construct a new juicy memory jm ′ such that
m dry jm ′ = m ′. The intuition here is that memory operations on m dry jm
never touch the hidden parts of m phi jm , e.g., the function specifications and
lock invariants appearing in Hoare logic assertions. Thus it is possible to
construct jm ′ generically from m ′ and m phi jm, by copying hidden data
unchanged from m phi jm to m phi jm ′, and by updating m phi jm ′ at those
locations that were updated by the memory operation.

For example, the function after alloc′ defines the map underlying the
new m phi jm ′ after an allocation alloc (m dry j ) lo hi .

after alloc′ (lo hi : Z) (b: block) (φ: rmap) (H : ∀z . φ @ (b,z ) = NO)

: address → resource , fun l →
if adr range dec (b, lo) (hi − lo) l
then YES > pfullshare (VAL Undef) NoneP
else phi @ l .

Then the lemma

Lemma juicy mem alloc at :
∀jm lo hi jm ′ b. juicy mem alloc jm lo hi = (jm ′,b) =⇒
∀ l . m phi jm ′ @ l = if adr range dec (b, lo) (hi − lo) l

then YES > pfullshare (VAL Undef) NoneP
else m phi jm @ l .
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Semantics G C juicy mem

initial core , initial core sem

at external , at external sem

after external , after external sem

halted , halted sem

corestep ge (c : C ) (jm : juicy mem) (c ′ : C) (jm ′ : juicy mem) : Prop ,
corestep sem ge c (m dry jm) c ′ (m dry jm ′)
∧ resource decay (nextblock (m dry jm)) (m phi jm) (m phi jm ′)
∧ level jm = level jm ′ + 1.

Figure 7.1: Juicy interaction semantics, parameterized by an underlying
semantics sem : Semantics G C mem.

gives an extensional definition of the contents of the juicy memory jm ′

that results. Here juicy mem alloc uses after alloc′ to construct the new juicy
memory jm ′ resulting from the allocation.

Juicy Semantics. It is possible to take the Clight semantics I presented in
Chapter 3, which operated on CompCert memories, and lift it to operate
on juicy memories instead. In fact, this process can be replicated for any
interaction semantics operating on CompCert memories (Figure 7.1). Here
is the generic construction (file VST/veric/juicy extspec.v):

Assume as input an interaction semantics sem : Semantics G C mem
operating on CompCert memories. We will construct a new interaction
semantics, J (sem), by defining the new juicy step relation jstep:

jstep G C (sem : CoreSemantics G C mem) (ge : G)
(c : C ) (jm : juicy mem) (c ′ : C) (jm ′ : juicy mem) : Prop

, corestep sem ge c (m dry jm) c ′ (m dry jm ′)
∧ resource decay (nextblock (m dry jm)) (m phi jm) (m phi jm ′)
∧ level jm = level jm ′ + 1.

The new jstep relation embeds the corestep relation of the underlying se-
mantics, projected to the m dry components of the initial and final juicy
memories jm and jm ′. In addition, it asserts that

• m phi jm ′ is resource decayed from m phi jm ′; and
• the level, or age, of jm ′ is one less than the age of jm (stepping reduces

the step index by one).
The resource decay relation is a bit more complicated:
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resource decay (nextb : block) (φ1 φ2 : rmap) ,
level φ1 ≥ level φ2 ∧
∀ l : address. fst l ≥ nextb =⇒ φ1 @ l = NO ∧

(∗ either no change, up to step indices ∗)
resource fmap (approx (level φ2)) (φ1 @ l) = (φ2 @ l)

(∗ or write at location l ∗)
∨ (∃ v v ′. resource fmap (approx (level φ2)) (φ1 @ l)

= YES > (VAL v) NoneP
∧ φ2 @ l = YES > (VAL v ′) NoneP)

(∗ or l newly allocated in φ2 ∗)
∨ fst l ≥ nextb ∧ ∃ v . φ2 @ l = YES > (VAL v) NoneP

(∗ or l freed in φ2 ∗)
∨ ∃ v pp. φ1 @ l = YES > (VAL v) pp ∧ φ2 @ l = NO.

The relation gives an extensional interpretation of the kinds of memory
effects that may occur over steps from rmap φ1 = m phi jm to φ2 = m phi jm ′.
At every location l , either φ1 @ l = φ2 @ l (up to step-indexing, resource fmap,
etc.), or there was a write at l , or l was newly allocated in φ2, or l was freed.
resource decay is often used, in the construction of the Verifiable C model,
to reason by cases on the Clight jstep relation. Its justification is the fact
that all operational semantics that respect the CompCert memory model’s
interface behave in this way.

Whole-Module Correctness. Now that I’ve introduced open-program safety,
juicy memories, and the J operator for lifting standard CompCert interac-
tion semantics such as the one for Clight to their juicy counterparts, I can
finally state the correctness theorem for single-module proofs in the logic.
It is:



128 CHAPTER 7. MODULAR VERIFICATION

Theorem 8 (Soundness of Judgment V , G `func mod : G).

1 ∀mod V G ω jm f fid fb fbody ~v .

2 let ge , globalenv mod in

3 let O , funspecs of G in

4 let ~τ , sig args f in

5 let τ , sig res f in

6 let sem , J (CLSem) in
7 V , G `func mod : G =⇒
8 fun id f = Some fid =⇒
9 find symbol ge fid = Some fb =⇒

10 find funct ge (Vptr fb Int.zero) = Some fbody =⇒
11 ∀x : ext spec type O f . ext spec pre O f x (genv symb ge) ~τ ~v ω jm
12 =⇒ ∃c. initial core sem ge (Vptr fb Int.zero) ~v = Some c

13 ∧ juicy safe sem (O with {ext spec exit , ext spec post O f })
14 ge ω c jm

Proof. The theorem is a corollary of the interpretation of semax func.5 The
machine-checked proof is still in progress.

Essentially, for each function f ∈ mod , if we initialize mod at entry point f
in a state satisfying f ’s precondition, then the module will either (safely)
infinite loop, under the definition of safety for open programs given in this
chapter, or terminate in a state satisfying f ’s postcondition.

In detail, given
• a program module mod ,
• variable and global function specifications V and G ,
• external state ω,
• juicy memory memory jm,
• function f , and
• arguments~v

if f is defined by module mod (lines 8 to 10), and ~v , ω, and jm satisfy f ’s
precondition as given by the function specification O (which I will explain
in a moment), then initializing the module at entry point f results in an
initial core state c that is (juicy) safe in the specification that updates O to
have ext spec exit predicate equal f ’s postcondition.

How is O defined? Take the empty set of specifications and add to
it the function specifications given in G . For example, if G associates

5File VST/veric/semax prog.v.
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funspec (A, P , Q) with fid , then ext spec pre (funspecs of G) will map f to
P , ext spec post (funspecs of G) will map f to Q , and so on, for the other
function specifiers in G .6

7.3 Composing End-to-End

How do we compose Theorem 8 with the results in Chapter 6, on verified
separate compilation?

Figure 7.2 depicts the general strategy. At the top of the diagram, the
user has proved a number of program-logic semax func judgments of the
form

V , G `func modidx : G

for each module index idx , with respect to the semantics J (CLSem). As I
will prove in this section, these independent proofs, with respect to the
shared function specifiers G , yield (open-program) safety with respect to
the linked semantics

L(Jmod0KJ (CLSem), Jmod1KJ (CLSem), . . . , JmodN−1KJ (CLSem))

L is the linking operator of Chapter 4, made parametric over the type of
memories M shared by the semantics, here juicy memories.7

The linked program L(. . .) may still call external functions—those spec-
ified by the oracle O but not defined by any of the modules 0 to N − 1. The
next step is to close over these external functions, by constructing a Gallina
context J (C ) (cf. Section 4.3) that “executes” the exteral functions, in the
manner of Section 4.3. We must also ensure, for the next step, that J (C ) is
erasable, by which I mean the predicates “checked” by C are erasable to

6See VST/veric/semax ext.v for the details. In that file, funspecs of is called
add funspecs.

7Linking semantics as defined in Chapter 4 was specialized to Comp-
Cert memories, for concreteness. However, CompCert memories were by no
means essential. The definition of parametric linking semantics is given in
file VST/linking/linking.v.
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V,G `func mod0 :G V,G `func mod1 :G . . . V,G `func modN−1 :G

Theorem 8 Theorem 8 . . . Theorem 8
⇓ ⇓ ⇓

safe wrt . O safe wrt . O safe wrt . O
Jmod0KJ (CLSem) Jmod1KJ (CLSem) . . . JmodN−1KJ (CLSem)

Theorem 9
⇓

safe wrt . (O − dom(plt))
L(Jmod0KJ (CLSem), Jmod1KJ (CLSem), . . . , JmodN−1KJ (CLSem))

Closure
⇓

safe L(J (C ), Jmod0KJ (CLSem), Jmod1KJ (CLSem), . . . , JmodN−1KJ (CLSem))

Theorem 10
⇓

safe L(C , Jmod0KCLSem , Jmod1KCLSem , . . . , JmodN−1KCLSem)

Corollary 9
⇓

safe L(C , JCC(mod0)KAsmSem
, JCC(mod1)KAsmSem

, . . . , JCC(modN−1)KAsmSem
)

Figure 7.2: Composing the proofs. CC abbreviates CompCert. O is
funspecs of G . C is a program context compatible with (O − dom(plt)), as
described in the text.
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the m dry component of juicy memories.8 This process gives us safety of

L(J (C ), Jmod0KJ (CLSem), Jmod1KJ (CLSem), . . . , JmodN−1KJ (CLSem))

Finally, we erase the juicy linked semantics, resulting in a proof of safety
for semantics

L(C , Jmod0KCLSem , Jmod1KCLSem , . . . , JmodN−1KCLSem)

in which C is the erasure of context J (C ), and each module mod1 . . . modN
is now interpreted in the “dry” Clight semantics CLSem against which Com-
positional CompCert is proved correct.

As long as C is a well-defined context (Definition 8, Chapter 6), the
results of Chapter 6 give us that C is safe when linked with the (indepen-
dently) compiled assembly modules CompCert(mod1), . . . , CompCert(modN ),
assuming compilation succeeds for each of the mod1 through modN .

7.3.1 Safely Linking

Proving the erasure theorem I described above is relatively easy. Proving
safety of the linked semantics, from the per-module program-logic proofs,
requires a bit more ingenuity. Here is the statement of the main theorem:

8I have not yet implemented closure as a general theorem in Coq. The sim-
plest strategy—and the one supported by the current erasure proofs—is to re-
quire that the specifications of those functions that “escaped” implementation by
mod1 . . .modN be expressible purely on the dry part of the state, i.e. the CompCert
memory. These dry specifications can then be lifted to operate on juicy memories
as was done for juicy semantics. “Juicy” specifications can still be used in the
program logic to prove module specifications. In ongoing work on concurrency, I
have had initial successes with erasure of more complex specifications.
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Theorem 9 (Linking Safety).

1 ∀N plt (mod : IN → ProgCL) ge main idmain V G .

2 let O , funspecs of G in

3 let O′ , O with {ext spec exit , ext spec post O main} in
4 let sems , λidx : IN . mkModsem J (CLSem) (globalenv modidx ) in
5 (∗ Postconditions in O imply return values are well−typed... ∗) =⇒
6 (∗ The plt is well−formed wrt. global environments... ∗) =⇒
7 (∗ Modules contain equal global symbol tables genv symb ∗) =⇒
8 (∀idx : IN . V , G `func modidx : G) =⇒
9 ∀x ω jm idxmain bmain ~v .

10 ext spec type O main = unit =⇒
11 fun id main = idmain =⇒
12 plt idmain = Some idxmain =⇒
13 find symbol (ge (semsidxmain

)) idmain = Some bmain =⇒
14 ext spec pre O main x (genv symb ge) (sig args main) ~v ω jm
15 =⇒ ∃l : LinkedState N sems .
16 initial core ge (Vptr bmain Int.zero) ~v = Some l
17 ∧ safeN (O′ − dom(plt)) ge (level jm) ω l jm.

ProgCL is the type of Clight programs (program Clight.fundef type in the
Coq code). Overall, the theorem states that if we have proved each module
correct in the logic (line 8), then for an entry point main , any juicy memory
state jm (and initial arguments ~v , and external state ω, etc.), if jm satisfies
the precondition for main (line 14), then initializing the linked semantics
at main succeeds (line 16) and the initial state is safe for level-of-jm steps.
Why is safe-for-level-of-jm-steps sufficient, as opposed to safe-for-all-n? We
have proved9 that for any CompCert initial memory m , we can construct a
matching juicy memory jm such that m dry jm = m, with arbitrary initial
level n. Safety is with respect to specification O′ − dom(plt), the function
specificationsO′ minus pre-/post-conditions for the implemented functions
(those in the domain of plt).

The three assumptions I have elided are:

Postconditions imply well-typed return values. For each function f spec-
ified by O, f ’s postcondition implies that the values f returns are
well-typed (with respect to f ’s signature). This property is required
for compiler correctness—e.g., in register allocation, to determine in

9Definition initial jm in file VST/veric/initial world.v.
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which class of registers to stick return values. It shows up here be-
cause the property is built in, operationally, in linking semantics L.

The plt is well-formed. Whenever plt fid = Some idx (that is, the plt claims
that fid is implemented by module idx ), then module idx ’s global
environment contains a binding for f .

Modules contain equal global symbol tables genv symb. Module global en-
vironments contain equal symbol tables (genv symb, mapping global
identifiers to the addresses at which they are allocated).

This assumption is not unrealistic. Assume we have two independent
proofs, in the Verifiable C logic, that modules mod1 and mod2 are safe
with respect to specification oracle O. If mod1 and mod2 declare dif-
ferent (but consistent) sets of global identifiers, we can pre-process
mod1 and mod2 to include the exact same sets of global variable and
function declarations, in the same order, without invalidating the as-
sociated Verifiable C proof scripts (these can be re-run unchanged in
the larger global context).

Proof. The proof10 depends on Theorem 8. The main difficulty, as in the
proofs of the linking theorems of Chapter 6, is in devising an invariant on
the stack-of-cores runtime states of linking semantics that is strong enough
to prove safety of the overall linked program. Unlike in Chapter 6, which
employed binary invariants on source–target linked states, the invariant
here is unary (applies to a single program state). The invariant all safe
(defined in VST/linking/safety.v) has shape:

all safe : Ω→ LinkedState N mod → juicy mem→ Prop
all safe ω l jm

and is defined:

all safe ω (l : LinkedState) jm ,
∃fs : list (ident∗typelist∗type).

last frame main fs ∧ stack safe fs (stack l) ω jm

Existentially quantified is fs , the stack-trace of functions that have been
called up to this point. last frame main, the first conjunct of the invariant,
asserts that the bottom-most function in the stack is main.

10File VST/linking/safety.v states the safety invariant and contains the
majority of the proof; VST/linking/semax linking.v applies the theorem to
the Verifiable C logic.
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last frame main fs ,
case fs of
| nil → True
| f :: nil → f = main
| :: fs ′ → last frame main fs ′

stack safe asserts safety of the current stack of cores s by distinguishing the
head core c (on top of the stack) from the remaining cores s ′, all of which
are at external:

stack safe fs s ω jm : Prop ,
case fs , s of
| nil, nil → True
| f :: fs ′, c :: s ′ →
∃x : ext spec type O f .

head safe f x c ω jm ∧ tail safe f x fs ′ s ′ jm
| , → False

Safety of the topmost core c (head safe) is defined:

head safe f (x : ext spec type O f ) c ω jm ,
let idx , c.idx in

let ge , ge semsidx in

let sem , sem semsidx in

let O′ , O with {ext spec exit , ext spec post O f } in
safeN sem O′ ge (level jm) ω c jm

Recall that each module semantics semsidx defines two projections, ge for the
global environment associated with module idx and sem for the interaction
semantics of idx . head safe states that state c is safe, for level jm steps, with
respect to its associated semantics and global environment.

The predicate tail safe is a bit more involved:
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1 tail safe f x fs s jm , case fs , s of
2 | nil, nil → True
3 | ftop :: fs ′, c :: s ′ →
4 let idx , c.idx in

5 let ge , ge semsidx in

6 let sem , sem semsidx in

7 let O′ , O with {ext spec exit , ext spec post O ftop} in
8 tail safe ftop xtop fs ′ s ′ jm ∧
9 ∃~v ω jm0 (xtop : ext spec type O ftop).

10 R (level jm) jm0 jm
11 ∧ at external sem c = Some (ef , ~v)
12 ∧ ext spec pre O ef x (genv symb ge) (sig args ef ) ~v ω jm0
13 ∧ (∀vret jm ′ ω′.
14 R (level jm ′) jm0 jm ′ =⇒
15 ext spec post O ef x (genv symb ge) (sig res ef ) vret ω′ jm ′ =⇒
16 ∃c ′. after external sem vret c = Some c ′

17 ∧ safeN sem O′ ge (level jm ′) ω′ c ′ jm ′)
18 | , → False

The invariant is defined recursively on fs and s . It states that, for each core
c in s (recall that the s here is the tail of the overall linked-program stack),
(i) c is at external (line 11), and (ii) c is safe for any return value vret and
states jm ′, ω′ with which the environment may return (line 17), assuming
the return values/states are in relation R and satisfy the postcondition of
function ef (lines 14 and 15). The relation R is the same as that defined in
Section 7.1.2 (essentially, level jm < level jm0).

Once the all safe invariant has been defined, the brunt of the work of the
proof is to show the following progress/preservation property:
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Lemma all safe invariant ω (l : LinkedState N mod) jm :
(∗ if invariant holds initially, then ∗)
all safe ω l jm =⇒ level jm > 0 =⇒

(∗ either (i), linked semantics takes a corestep and invariant is reestablished ∗)
∃l ′ jm ′. ge ` l , jm ′ Z=⇒ l ′, jm ′ ∧ all safe ω l ′ jm ′

(∗ or (ii), semantics is halted ∗)
∨ ∃vret . halted l = Some vret

(∗ or (iii), can reestablish invariant over external calls ∗)
∨ ∃ef ~v . at external l = Some (ef , ~v)
∧ ∃x : ext spec type O ef .

ext spec pre O ef x (genv symb ge) (sig args ef ) ~v ω jm
∧ ∀vret jm ′ ω′ n ′′.

n ′′ ≤ level jm ′ =⇒
R (level jm ′) jm jm ′ =⇒
ext spec post O ef x (genv symb ge) (sig res ef ) vret ω′ jm ′ =⇒
∃l ′. after external vret l = Some l ′ ∧ all safe ω′ l ′ jm ′

Assume all safe ω l jm initially. Then either:

the linked semantics takes a corestep, in which case we can reestab-
lish the all safe invariant,

the linked semantics is (safely) halted, or

the linked semantics makes a truly external call, i.e., to a function de-
fined by none of the modules in the program. In this case, we must be
able to reestablish the invariant for any return values and memories
satisfying the function postcondition.

7.3.2 Squeezing the (Princeton) Orange

One can “squeeze the orange”,11 in order to extract the juice from

L(J (C ), Jmod0KJ (CLSem), Jmod1KJ (CLSem), . . . , JmodN−1KJ (CLSem))

11David Walker refined this metaphor. Andrew Appel originally suggested the
name “juicy memories”.



7.3. COMPOSING END-TO-END 137

by proving that the juicy linked semantics is simulated by its “dry” analog

L(C , Jmod0KCLSem , Jmod1KCLSem , . . . , JmodN−1KCLSem)

The general form of the theorem is:

Theorem 10 (Linked Erasure). Let sem0, sem1, . . . , semN−1 be interaction se-
mantics operating on CompCert memories, with J (semi ) the corresponding lifted
juicy semantics. Then there is a whole-program simulation

L(J (sem0),J (sem1), . . . ,J (semN−1))
≤ L(sem0, sem1, . . . , semN−1)

Proof. In Coq.12

As a corollary of Theorem 10 and Corollary 4, we get that erasure is safety-
preserving.

12File VST/linking/erase juice.v.
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8
Application to CompCert

The techniques of this thesis have been applied to the CompCert certified C
compiler (version 2.1). The result is Compositional CompCert, the codebase
of which is open source and freely available on GitHub.1

8.1 Compositional CompCert

The proved-correct phases of the Compositional CompCert compiler are
shown in Figure 8.1, with optimization phases in gray. The main differ-
ences with standard CompCert are: (1) We compile Clight to x86 assem-
bly, whereas standard CompCert compiles a slightly higher-level language
(CompCert C) to multiple assembly targets (x86, PowerPC, and ARM); and
(2) standard CompCert includes three additional RTL-level optimizations
(common subexpression elimination, constant propagation, and function
inlining); the adaptation of their proofs is ongoing work. The toplevel theo-
rems we prove are the following.

Theorem 11 (Compiler Correctness). Let CompCert denote the compilation
function that composes the phases in Figure 8.1. If CompCert(S ) = Some T , for
Clight module S and x86 module T , then JSK � JT K.

1https://github.com/PrincetonUniversity/compcomp
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Clight

Csharpminor

Cminor

CminorSel

RTL

LTL

Linear

Mach

SimplLocals

Cshmgen

Cminorgen

Selection

RTLgen

Tailcall

Renumbering

Allocation

Tunneling

Linearize

CleanupLabels

Stacking

Asmgen

x86 assembly

Figure 8.1: The phases of Compositional CompCert. Boxes in gray are
optimization passes. Outer boxes indicate source languages.

Proof. By transitive composition of the simulation proofs for the individual
phases in Figure 8.1 using Theorem 4.2

Corollary 9 (Compositional Compiler Correctness). Let PS = S0, S1, . . . ,
SN−1 be a set of Clight modules with equal global domains such that CompCert(Si ) =
Some Ti for each i . Let PT abbreviate the target program T0, T1, . . . , TN−1. Then
PS ∼rc PT .

Proof. Theorem 11 establishes the simulations JSiK � JTiK. By Corollary 7,
we get that PS ∼rc PT .3 The side conditions of Corollary 7 are:

• for all i , JSiK is reach-closed (Theorem 1, Clight is reach-closed);
• for all i , JTiK is valid (Theorem 2, x86 is valid); and
• for all deterministic contexts C , the linked semantics L(C , JPT K) is

also deterministic (follows by Theorem 3 and determinism of Comp-
Cert x86 assembly).

We also get the following contextual refinement.

2The Coq proof is file compcomp/driver/CompositionalCompiler.v.

3The Coq proof is file compcomp/linking/CompositionalComplements.v.
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Corollary 10 (Contextual Refinement for CompCert). Let PS = S0, S1, . . . ,
SN−1 be a set of reach-closed Clight modules with equal global domains such that
CompCert(Si ) = Some Ti for each i . Let PT abbreviate the target program T0,
T1, . . . , TN−1. Then PT vrc PS .

Proof. By Theorem 11 and Corollary 8.4 The side conditions are the same
as in Corollary 9.

8.2 Anatomy of a Phase

Converting a CompCert phase to structured simulations typically pro-
ceeded as follows: Refine CompCert’s internal match-state relation ∼f (and
the auxiliary relations for activation records, frame stacks, etc.) to relations
∼µ indexed by structured injections. In particular, because external function
call interactions may introduce memory regions related by memory injec-
tions in Compositional CompCert, the simulation relations of passes that
were previously proved as equality (or extension) phases had to be reformu-
lated as injections. Particular care was needed to assign correct ownership
and visibility information to compiler-introduced memory blocks.

In addition, add to each ∼µ relation the clauses: visµ is closed under
reachability, and the relation ∼µ is closed under restriction to the visible set
(µ�visµ). To ensure that global blocks were always mapped by each compiler
phase, we treated them as Frgn to all modules. While the addition of these
extra invariants proceeded in a mostly uniform manner across all phases,
the refinement of ∼f to ∼µ was phase-by-phase, due to the considerable
internal differences between the various CompCert passes.

In total, porting the CompCert phases in Figure 8.1 to structured sim-
ulations took approximately 10 person-months, though much of this time
was spent at the “boundaries” of the proof, updating the interfaces that
connected, in particular, our linking semantics and proofs to structured
simulations. In general, the porting time decreased as as the project went
on. Adapting the first few phases of the compiler took a few weeks to a
month per phase, whereas the later phases went much more quickly (a day
or two per phase). This was due in part to greater familiarity with Comp-
Cert, but also to the accumulation of a library of general-purpose lemmas
on structured injections and simulations, which will remain useful as we
continue to adapt the last few optimization passes.

4The Coq proof is file compcomp/linking/CompositionalComplements.v.
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8.3 Anatomy of the Proof
As an (albeit imperfect) measure of the amount of effort involved in building
the mechanized development that accompanies this thesis, I report lines-of-
code for selected representative files in the development (Figure 8.2),

For Compositional CompCert, proofs of individual phases (“new”) were
on the order of 5klocs. By contrast, CompCert 2.1’s (“old”) proofs are about
2× smaller. The increase in proof lines is due mostly to the additional invari-
ants we prove. However, we have not yet applied much proof automation
at all, so we believe there is room for improvement.

The increase in specification size is due to the use of duplicate language
definitions: In order to add effects to the CompCert languages we duplicate
the step relation of each semantics (once with, and once without, effects),
then prove that the two semantics coincide. This results in specification
counts that are larger than necessary.

The underlying theories are on the order of 4, 000 lines of specifications
and approximately 32, 000 lines of proofs, spread across more than 1, 400
distinct lemmas. The code and proofs corresponding to Chapter 7 (not
shown in the table) total approximately 3, 500 lines.
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Specs. Proofs Lemmas
Compiler Phases: old new old new old new
SimplLocals 725 979 2168 4670 71 126
Csharpminorgen 1201 1634 1450 3207 65 96
Cminorgen 1619 1635 2796 5041 85 112
Selection 1663 1463 3239 5926 145 248
RTLgen 961 1364 1475 4812 48 97
Tailcall 441 643 628 1713 19 32
Renumbering 441 643 267 1428 13 38
Allocation 765 1273 2197 4390 93 124
Tunneling 324 630 417 1941 14 51
Linearize 606 1359 750 2432 35 73
Cleanup Labels 282 729 372 2067 15 54
Stacking 712 1685 2906 6713 107 182
Asmgen 1326 1970 2863 5370 105 125
Theories:
Interaction Sems. (Chapter 3) 75 167 16
Trace Sems. (Chapter 3) 270 - -
Gallina Sems. (Chapter 3) 58 - -
Linking (Chapters 4 and 6) 2454 8469 481
Whole-Program Sims. (Chapter 5) 118 594 13
Structured Injs. (Chapter 5) 55 2099 182
Structured Sims. (Chapter 5) 349 8056 487
Transitivity (Chapter 6) 105 5285 49
Valid Semantics (Chapter 6) 234 - -
Reach-Closed Semantics (Chapter 6) 270 - -
Well-Defined Contexts (Chapter 6) 89 - -
Clight Well-Defined (Chapter 6) - 7035 181

Figure 8.2: Lines of code for selected parts of the development. “Lemmas”
is number of theorems proved.
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9
Conclusion

9.1 What Has Been Achieved?

This dissertation set out to give a semantic characterization of the program
contexts for which an optimizing C compiler is sound, answering the ques-
tion For which program contexts is an optimizing C compiler correct? In order to
do so, it developed

interaction and linking semantics (Chapters 3 and 4), which made it pos-
sible to state compiler correctness as cross-language contextual equiv-
alence (Section 4.2, refined in Chapter 6), showing how to achieve
language-independence; and

structured simulations (Section 5.3.2), an extension of CompCert’s forward
simulation proof method that composes both transitively, across com-
piler phases (Chapter 6, Theorem 4), and horizontally, across sepa-
rately compiled modules (Chapter 6, Theorem 5), answering the ques-
tion How to reason about equivalence of open modules?

In answer to the question Do the techniques scale to realistic languages like
C and to real systems like the CompCert? the above techniques were applied
to build Compositional CompCert (Chapter 8 and [SBCA14]), a verified
separate compiler for C. In addition, I showed (Chapter 7) how to connect
the Verifiable C program logic [ADH+14] to Compositional CompCert,
yielding a method for modular proving of compiled C/assembly programs.

145
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9.2 Discussion

The techniques of this dissertation have applicability beyond just C/assembly-
language programs, separate compilation, or just CompCert.

Interaction semantics are a natural tool for expressing more complex
modes of interaction than the linking semantics of Chapter 4. For example,
the following code

Record ConcurrentState (threads : thread idx → ThreadSem) ,
mkConcurrentState {

schedule : N→ thread idx ;
permissionOracle : N→ Set location;
threadStates : ∀tid : thread idx . option (CoreState (threads tid))
}

sketches a possible adaptation of the LinkedState record of Chapter 4, which
modeled the state of a linked program, to a collection of concurrent threads.
Thread semantics are defined by a parameter threads that maps thread
indices thread idx to records giving each thread’s interaction semantics.
The components of ConcurrentState might include the schedule, a stream of
thread indices associated with each timestep of the concurrent execution,
a permission oracle (derived from, e.g., a program safety proof in Con-
current Separation Logic) describing the ownership transfers that must
occur at each lock/unlock operation, as well as a map, threadStates, of the
core states associated with each active thread. It is not difficult to imag-
ine an adaptation of the interaction semantics L of program linking to
this (coarse-grained) concurrent setting. An important point is that even in
coarse-grained Pthreads-style concurrency, interactions among threads oc-
cur only at external function call points (lock/unlock are themselves just
external functions). It is likely that most, if not all, “external-function-call-
like” protocols could be modeled in the interaction semantics framework.

My work on separate compilation for C-like languages also exposed
some warts of C. For example, much of the complexity of structured simu-
lations (Chapter 5) was driven by C-language “features” such as addressed
stack-allocated local variables. When pointers to compiler-managed data
such as stack frames escape to external modules, one must keep careful
track, in compiler invariants, of those parts of memory that may be up-
dated by external functions. The invariants and proofs would have been
simpler in a more restrictive language setting, in which compiler-managed
data was instead guaranteed private.

From an engineering standpoint, the adaptation of CompCert 2.1 to
interaction semantics and structured simulations (Chapter 8) could have
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been simplified considerably, in retrospect, if my colleagues and I had first
built a uniform interface to CompCert’s compiler-phase proofs. It is not
immediately obvious that such an interface is possible. However, the proofs
do share many features. For example, CompCert’s simulation invariants
often have three constructors: One for the normal “running state” case, one
for making function calls, and one for returning from calls. Each of these
cases usually decomposes into a predictable set of sub-invariants on, e.g.,
the stack frame and temporaries environment. Spending some engineering
effort up front to expose this structure might have made it possible to adapt
the compiler proofs to the Compositional CompCert framework in a more
uniform fashion.

9.3 Future Directions

Heterogeneous Verified Systems. The verification techniques I described
in Chapter 7—with which modules are proved independently in the Veri-
fiable C logic, against a common specification O, and then proved sound
with respect to the L semantics of Chapter 4—have so far targeted mostly-C
programs. The approach supports more heterogeneous systems, in which
some modules are in C, some are in assembly, and others are in a third
language such as Coq’s Gallina. However, the verification techniques are
not optimized for such highly heterogeneous programs—modules in lan-
guages other than C (e.g., those in CompCert x86 assembly) must be proved
directly from their operational semantics.

It would be convenient to provide support for other program logics,
besides just Verifiable C. For example, one might prove assembly modules
correct in a variant of XCAP [NS06] or in a modified Bedrock [Chl11],
adapted to CompCert x86 assembly. There are no major technical limitations
here. Chapter 7’s semantics preservation proofs were designed to be mostly
independent of the particular program logic used to establish per-module
safety. The major interdependency is the shared specification language O.

More radical is to provably compile programs that include modules
written in a high-level language like Gallina, in addition to C and assembly.
One could use Coq’s current code extraction to compile the Gallina mod-
ules to OCaml, and then further compile with ocamlopt. However, this
process yields an unverified toolchain (Coq extraction, ocamlopt, and the
OCaml runtime must all be trusted).1 Another (better) solution is to build
a verified compiler for Coq itself, a project currently underway at Prince-

1One could argue that, as Coq users, we must trust the latter two already.
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ton. This “CertiCoq” could then be fruitfully combined with Compositional
CompCert to yield a certified compiler for Gallina/C/assembly programs.

The motivation here is efficiency of the program verifier, by which I
mean the human actually guiding the proof assistant. Certain low-level
software components, such as garbage collectors and OS kernels, are more
suited to implementation at the C level of abstraction. However, the cost of
verification is proportionately higher at this level. Other components—such
as the “glue” code that composes large sections of many software systems—
are more conveniently implemented and proved in a purely functional
language like Gallina with a clean proof theory.

Syntactic Linking. The linking operator L first introduced in Chapter 4 is
semantic, in the sense that it takes as arguments not the syntax of its input
modules but instead their associated interaction semantics, and produces a
new interaction semantics as result. There is an alternative kind of syntactic
linking that operates directly on the syntax of modules, e.g., by syntactically
concatenating a number of program fragments, all of which must be in the
same language. In general, semantic linking provides more flexibility; for
instance, it enables linking of modules in a variety of languages, as long as
the domain of interpretation is shared across modules. On the other hand,
cross-language syntactic linking does not make sense (a C module cannot
be concatenated to an assembly module; the types do not match).

Syntactic linking is nevertheless useful. It would support certain cross-
module optimizations such as external function inlining (compile two mod-
ules to a common intermediate language; link syntactically; then do stan-
dard intramodule inlining). A syntactic linking proof at the x86 assembly
level would also provide additional justification—beyond the arguments
already presented in Chapter 3—of Compositional CompCert’s “copying”
x86 interaction semantics. This assembly-level syntactic linking proof might,
in addition, provide a means of integration into projects such as Shao et al.’s
CertiKOS certified microkernel [GVF+11, GKR+15], which currently uses
a modified CompCert compiler to translate C functions to assembly code,
in the context of assembly-level callers. This modified CompCert compiler
does not yet support address-taken local variables—one of the aspects of
C that so complicated the Compositional CompCert proofs (cf. Chapters 1
and 5).

I have done initial experiments with syntactic linking.2 The idea—rather
than reproving syntactic linking for each language—is to define a general
proof infrastructure that depends on (i) a monoid c1 ◦ c2 on corestates of the

2File compcomp/linking/stacking.v.
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language, modeling abstract stack-frame composition in linking semantics
L;3 and (ii) proofs that the corestep relation, at external, after external, etc.
are compatible with the monoid. The simulation that relates the abstract L
activation-record stack s to the actual stack s ′ (of the syntactically linked
whole program) states that s ′ is the fold of the monoid operator ◦ over s
(lifted to option, with unit None).

9.4 Conclusions
Tony Hoare, in 2005, called the verifying compiler one of the “grand chal-
lenges” [HM05] of computer science—on par with Fermat’s last theorem
(in math) and P vs. NP . Such comparisons are perhaps a bit overblown.
Regardless, Leroy’s CompCert, the first verified optimizing compiler for a
realistic language, was a definitive milestone. This thesis, while definitively
not the last word on compiler verification, has advanced the art by a few
(small) steps.

3In a language like C, the monoid is defined, for example, as list append on
activation-record stacks.
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Richards, and Jerôme Vouillon. A very modal model of a
modern, major, general type system. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 109–122, January 2007.

151



152 BIBLIOGRAPHY

[BDL06] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal
verification of a C compiler front-end. In FM 2006: International
Symposium on Formal Methods, volume 4085 of Lecture Notes in
Computer Science, pages 460–475. Springer, 2006.

[BH09] Nick Benton and Chung-Kil Hur. Biorthogonality, Step-
Indexing and Compiler Correctness. In Proceedings of the Inter-
national Conference on Functional Programming, 2009.

[BH10] Nick Benton and Chung-Kil Hur. Realizability and composi-
tional compiler correctness for a polymorphic language. Tech-
nical Report MSR-TR-2010-62, Microsoft Research, 2010.

[BSDA14] Lennart Beringer, Gordon Stewart, Robert Dockins, and An-
drew W. Appel. Verified Compilation for Shared-memory C.
In Proceedings of the European Symposium on Programming, 2014.

[Chl07] Adam Chlipala. A certified type-preserving compiler from
lambda calculus to assembly language. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2007.

[Chl10] Adam Chlipala. A verified compiler for an impure functional
language. In Proceedings of the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, 2010.

[Chl11] Adam Chlipala. Mostly-automated verification of low-level
programs in computational separation logic. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design
and Implementation, June 2011.

[Com] Verification of Separate Compilation for CompCert. URL:
http://sf.snu.ac.kr/compcertsep. Last accessed Jan-
uary 30, 2015.

[Dav03] Maulik A. Dave. Compiler verification: A bibliography. SIG-
SOFT Software Engineeering Notes, 28(6), 2003.

[Doc12] Robert W. Dockins. Operational Refinement for Compiler Correct-
ness. PhD thesis, Princeton University, 2012.

[GKR+15] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong
Shao, Xiongnan Wu, Shu-Chun Weng, Haozhong Zhang, and
Yu Guo. Deep specifications and certified abstraction layers. In
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 595–608. ACM, 2015.

http://sf.snu.ac.kr/compcertsep


BIBLIOGRAPHY 153

[GT12] Dan Ghica and Nikos Tzevelekos. A system-level game seman-
tics. In Proceedings of Mathematical Foundations of Programming
Semantics, 2012.

[GVF+11] Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and
David Costanzo. Certikos: A certified kernel for secure cloud
computing. In Proceedings of the Second Asia-Pacific Workshop
on Systems, page 3. ACM, 2011.

[HD11] Chung-Kil Hur and Derek Dreyer. A Kripke logical relation be-
tween ML and assembly. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
2011.

[HDA10] Aquinas Hobor, Robert Dockins, and Andrew W. Appel. A
theory of indirection via approximation. In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 171–185, January 2010.

[HDNV12] C.K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage
of bisimulations and Kripke logical relations. In Proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2012.

[HM05] Tony Hoare and Robin Milner. Grand Challenges for Comput-
ing Research. The Computer Journal, 48(1):49–52, 2005.

[HNDV13] C.K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. Parametric
bisimulations: A logical step forward. In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 2013.

[Int] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual. URL: http://www.
intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-software-
developer-manual-325462.html. Last accessed Septem-
ber 5, 2014.

[ISO11] ISO. C11 Draft Standard. URL: http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1570.pdf,
April 2011.

[KR98] Brian W Kernighan and Dennis M Ritchie. The C Program-
ming Language, 1998.

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf


154 BIBLIOGRAPHY

[LABS14] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon
Stewart. The CompCert Memory Model. In Andrew W. Appel,
editor, Program Logics for Certified Compilers. Cambridge, 2014.

[LB08] Xavier Leroy and Sandrine Blazy. Formal verification of a C-
like memory model and its uses for verifying program trans-
formations. Journal of Automated Reasoning, 41(1), 2008.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Com-
munications of the ACM, 52(7):107–115, 2009.

[LFF12] Hongjin Liang, Xinyu Feng, and Ming Fu. A rely-guarantee-
based simulation for verifying concurrent program transfor-
mations. In Proceedings of the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, 2012.

[Loc12] Andreas Lochbihler. A Machine-Checked, Type-Safe Model of Java
Concurrency : Language, Virtual Machine, Memory Model, and Ver-
ified Compiler. PhD thesis, Karlsruher Institut für Technologie,
July 2012.

[LWN13] Ruy Ley-Wild and Aleksandar Nanevski. Subjective auxiliary
state for coarse-grained concurrency. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 2013.

[Man14] William E. Mansky. Specifying and Verifying Program Transfor-
mations with PTRANS. PhD thesis, University of Illinois, 2014.

[McK14] Matthew McKay. Compiler correctness via contextual equiva-
lence. Undergraduate thesis, Carnegie Mellon University, May
2014.

[MF07] Jacob Matthews and Robert Bruce Findler. Operational seman-
tics for multi-language programs. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 3–10. ACM, 2007.

[Mil71] Robin Milner. An algebraic definition of simulation between
programs. In 2nd International Joint Conference on Artificial In-
telligence. British Computer Society, 1971.

[Moo89] J. Strother Moore. A mechanically verified language imple-
mentation. Journal of Automated Reasoning, 5(4):461–492, 1989.



BIBLIOGRAPHY 155

[MP67] John McCarthy and James Painter. Correctness of a compiler
for arithmetic expressions. Mathematical Aspects of Computer
Science, 1, 1967.

[NLWSD14] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and
Germán Andrés Delbianco. Communicating state transition
systems for fine-grained concurrent resources. In Proceedings
of the European Symposium on Programming, 2014.

[NS06] Zhaozhong Ni and Zhong Shao. Certified assembly program-
ming with embedded code pointers. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 320–333, 2006.

[PA14] James T. Perconti and Amal Ahmed. Verifying an open com-
piler using multi-language semantics. In Proceedings of the
European Symposium on Programming, 2014.

[PIL] Compositional Compiler Verification via Parametric Simu-
lation. URL: http://www.mpi-sws.org/˜neis/pils/.
Last accessed January 30, 2015.

[RSW+15] Tahina Ramananandro, Zhong Shao, Shu-Chun Weng, Jeremie
Koenig, and Yuchen Fu. A compositional semantics for veri-
fied separate compilation and linking. In Proceedings of the
ACM SIGPLAN Conference on Certified Programs and Proofs,
2015.

[SBCA14] Gordon Stewart, Lennart Beringer, Santiago Cuellar,
and Andrew Appel. The Compositional CompCert
Proof Development. URL: https://github.com/
PrincetonUniversity/compcomp, 2014.

[SBCA15] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and An-
drew W. Appel. Compositional CompCert. In Proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, January 2015.

[SVN+13] Jaroslav Sevcı́k, Viktor Vafeiadis, Francesco Zappa Nardelli,
Suresh Jagannathan, and Peter Sewell. CompCertTSO: A
verified compiler for relaxed-memory concurrency. J. ACM,
60(3):22, 2013.

[WCC14] Peng Wang, Santiago Cuellar, and Adam Chlipala. Compiler
Verification Meets Cross-Language Linking via Data Abstrac-
tion. In Proceedings of OOPSLA, 2014.

http://www.mpi-sws.org/~neis/pils/
https://github.com/PrincetonUniversity/compcomp
https://github.com/PrincetonUniversity/compcomp

	Contents
	List of Figures
	Introduction
	Motivation
	Verifying Realistic Optimizations
	Specifying and Compiling Open Programs

	Contributions and Thesis Scope
	Relation to Previous Work by the Author and Co-Authors
	Related Work
	Whole-Program Compilation
	Compositional Compilation and Logical Relations
	Verifying and Compiling Concurrency
	Game Semantics for Interaction
	The Bleeding Edge


	The CompCert Memory Model
	Memory Model Basics
	Values, Loads, and Stores

	Memory Model, Version 2
	Memory Transformations
	Validity and Reachability
	Global Environments

	Language-Independent Semantics
	Interaction Semantics
	Examples
	CompCert Clight
	CompCert x86 Assembly
	Gallina Semantics
	Trace Semantics

	Reach-Closed and Valid Semantics
	Reach-Closed Semantics
	Valid Semantics


	Language-Independent Linking
	Linking Semantics
	Contextual Equivalence
	Gallina Contexts
	Stateful Contexts

	Compiler Correctness
	Whole-Program Simulations
	Corollaries
	Termination
	Safety
	Behavior Refinement

	Open Program Simulations
	Logical Simulation Relations
	Structured Simulations


	Separate Compilation
	Vertical Composition
	Interpolation

	Horizontal Composition
	Reach-Closed Contextual Equivalence
	Linking Invariants


	Modular Verification
	Modular C Program Logic
	Inference Rules
	Proving Whole Modules 

	Juicy Memories
	Composing End-to-End
	Safely Linking
	Squeezing the (Princeton) Orange


	Application to CompCert
	Compositional CompCert
	Anatomy of a Phase
	Anatomy of the Proof

	Conclusion
	What Has Been Achieved?
	Discussion
	Future Directions
	Conclusions

	Bibliography

