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Abstract

With explosion of 3D geometric data and its increasing usage in many applications, ranging

from computer-aided design to medicine to paleontology, shape analysis is becoming an

important research field. Common to many shape analysis tasks are two sub-problems: 1)

segmenting a shape into meaningful parts and 2) identifying important/salient points on

a shape. Both are easier for humans than for computers. In this thesis, we revisit these

problems, from the angle of using crowdsourced data to learn from humans.

We first investigate the problem of mesh segmentation. By constructing a benchmark of

4300 manually generated segmentations for 380 surface meshes of 19 different object cat-

egories, and developing software to analyze 11 geometric properties of segmentations and

to compute 4 quantitative metrics for comparison of segmentations, we are able to quan-

titatively answer “How do people decompose shapes into meaningful parts” and “How

algorithms do in comparison with humans”. The benchmark is widely adopted for evaluat-

ing new segmentation algorithms and prompts emergence of learning-based algorithms for

mesh segmentation and labeling.

We then visit the problem of identifying salient points on meshes. Rather than defining

saliency bottom-up from low-level geometric features, we start with the social/psychological

essence of saliency by investigating Schelling points [1] on 3D meshes. We designed an

online pure coordination game that asked people to select points on 3D surfaces that they

expect will be selected by other people. We then analyzed properties of the selected points,

finding that Schelling point sets are usually highly symmetric, that local curvature proper-

ties proposed in previous work are most helpful for identifying obvious Schelling points

while global properties (e.g., segment centeredness, proximity to symmetry axis, etc.) are

required to explain more subtle features. Based on these observations, we use regression to

combine multiple properties into an analytical model that predicts where Schelling points

are likely to be on new meshes.
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Shared by these two problems are the desire to transfer properties and distributions col-

lected for known meshes to unseen ones. Finally, we propose MeshMatch, a mesh-based

analogy of the image-based PatchMatch [2] algorithm and a non-parametric multi-resolution

approach to surface property transfer based on this algorithm. This method offers benefits

of both parametrization and texture synthesis approaches to preserving both large- and fine-

scale patterns of the source properties. We show its applications in texture transfer, detail

transfer, texture painting, and transferring Schelling distributions.
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Chapter 1

Introduction

1.1 Motivation

Shape analysis is a field in computer science to provide annotations for 3D data so that 3D

objects could be better represented, recognized, indexed and understood. The research is

driven by the explosion of 3D geometric data due to advances in 3D scanning and 3D mod-

eling technologies, as well as by many application domains that use such data, including

computer-aided design, urban planning, paleontology, entertainment, medicine and many

others.

Two problems fundamental to shape analysis are repetitively seen in many applications

- mesh segmentation and salient feature detection. While there have been great research

efforts developing automatic algorithms, computers are yet to match what humans do. Mo-

tivated by the fact that these tasks are much easier for humans, we try to 1) better under-

stand what people do, and 2) apply what we learn from humans to advance algorithms in

addressing these problems.

It is possible to formulate qualitative “rules” to mimic humans based on observations and/or

psychological studies and there have been successful algorithms developed by encoding
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the rules in a math formula. However, for the problems we consider, the rules can often be

vague by themselves, not to mention the fuzziness in encoding them.

Our approach is data-driven, on assumption that large amount of data from humans could be

a gold mine with “rules” encoded implicitly. Many problems in other fields are addressed

successfully this way, such as natural language translation in machine learning and object

recognition in computer vision. We expect the approach to be applicable to the shape

analysis problems we investigate as well.

Pivotal to our approach is the gathering of large amount of meaningful data from humans.

Traditional lab studies hardly scale to provide the amount of data needed for problems we

consider. Fortunately, we see the rise of online crowd-sourcing markets such as Amazon’s

Mechanical Turk [3]. They provide both easy access to a large pool of human subjects

working in parallel and handy tools to handle transaction details. As a result, we can afford

to collect human inputs in large scale.

Challenges remain to apply crowdsourcing to solve shape analysis problems: 1) how to

design online protocols, incentive structures and interfaces to collect unbiased and high-

quality data; 2) how to analyze and mine the data to better understand what people do; 3)

how to make use of the data.

The thesis demonstrates how we deal with these challenges in investigating problems of

mesh segmentation (Chapter 2) and salient point detection on meshes (Chapter 3). To

apply what is learned/gathered from humans to unseen meshes, we introduce a “transfer”

algorithm in Chapter 4, and shows its application in transferring textures, details, Schelling

distributions and others.
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1.2 Related Work

Shape analysis has been increasing its capability in describing and differentiating 3D shapes.

This capability can come from local, patch-scale properties on surfaces, such as local cur-

vature estimations, discrete variants of the Laplacian-Beltrami operator [4], and spin im-

ages [5] shape descriptors. However, local properties are limited by the smaller support size

to describe an object. Thus many work propose using global, large-scale properties to cap-

ture global structure of shapes, including symmetry analysis [6, 7], spectral methods [8],

histograms of local properties [9, 10] etc.

Global properties are still not powerful enough, especially for problems that relate to

higher-level shape understanding. One of these problems is to decompose shapes into

meaningful parts. This task is often much easier for humans than for computers [11]. An-

other problem is detecting salient features on shapes - many local and global features matter

but they hardly explain all of what humans will denote [1]. For both problems, we think it

is worth learning more from humans and sourcing the wisdom of crowds.

1.2.1 Study of how people do X

Most related to our work are recent studies aiming at understanding how people perform

tasks of interest in computer science. For example, Cole et al. [12, 13] studied where do

people draw lines when making line drawings, Donovan et al. [14] tested color compatibil-

ity theories using color palettes configured by a large number of users, Secord et al. [15]

optimized a general model for viewpoint selection by leveraging results of a large user

study, and Eitz et al. [16] explored how do human sketch objects. In all cases, machine

learning techniques were developed to make use of the valuable insights learned from hu-

mans by training on collected examples, including predicting line drawings for new sur-

faces [12], scoring quality of new color settings [14], selecting best view points for new
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meshes [15], and recognizing objects from sketches [16]. This thesis specifically focuses

on shape analysis problems: mesh segmentation and salient point detection on meshes.

1.2.2 Perceptual Psychology Studies

Also related is research in perceptual psychology to understand how the human cognitive

system perceives things.

Several psychologists have put forth theories to explain how people perceive objects as

collections of parts. Biederman [17] proposed the Recognition by Components theory.

Hoffman and Richards [18, 19] introduced the minima rule, which states that humans tend

to divide 3D shapes into parts along negative minima of the principal curvatures, along their

associated lines of curvature. These theories are widely adopted by many algorithms [20,

21], but it is still ongoing research of how to quantitatively apply these theories.

Many perceptual studies aim to understand how people assign importance to regions of ob-

jects, especially on visual attention. In the image domain, Koch et al. [22] propose a model

that salient points would be ones that are different from their surroundings. Attneave [23]

studies which points are most important for approximation of a contour and his main find-

ing was that most people select points where “the contour is most different from a straight

line”. Privitera et al. [24] use eye fixations measured from eye trackers to evaluate regions

of interest in images. Similarly, Kim et al. [25] study how eye fixations relate to mesh

saliency [26].

1.2.3 Crowdsourcing

Crowdsourcing is a process that involves outsourcing tasks to a distributed and undefined

public. Because humans excel in many tasks that are yet hard for computers, and because

Internet connects humans distributed around the world so they could work in parallel, there
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has been a rapid growth of using crowdsourcing systems in research communities and in

the industry [27, 28].

The massive parallelism of crowdsourcing enables large scale data collection from hu-

mans that are unimaginable before. For example, ImageNet [29] collects and organizes

images according to the WordNet [30] hierarchy, and employs workers from Amazon’s

Mechanical Turk [3] to clean up hundreds of millions of images for all the noun nodes.

reCAPTCHA [31] improves book digitization by sending words that cannot be read confi-

dently by computers to the Web for humans to decipher in the form of CAPTCHAs [32].

These successes motivate our adoption of using crowdsourced data for shape analysis.

Crowdsourcing also motivates crowd-powered systems [33] and human computation tech-

niques [34, 35] of using human efforts to perform tasks that computers can not yet perform

well. Players of Foldit [36] unlock structures of proteins that puzzled academia for years.

Ahn et al. [37] ask people to label images via the ESP game. Gingold et al. [38] demon-

strate micro human computation in solving perception related tasks.

As crowd-powered systems prove to be useful, researchers start to study design principles

for these systems. Mason et al.and Horton et al. [39, 40] studied incentives to humans in

the systems. Huang et al. [41] explored how to design such a system more automatically.

Bernstein et al. [33, 42, 43] developed the Find-Fix-Verify design pattern to improve work

quality [33] and proposed a retainer model to reduce latency of crowd-powered systems for

tasks requiring quick responses [42]. They also studied how to create crowds tailored for

designer’s needs [43].

1.3 Contributions

The thesis makes both research and algorithm contributions in shape analysis.
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Chapter 2 describes a mesh segmentation benchmark to quantitatively answer “How do

people decompose shapes into meaningful parts” and “How algorithms do in comparison

with humans”. The results suggest that people are remarkably consistent in the way that

they segment most 3D surface meshes, that no one automatic segmentation algorithm is

better than the others for all types of objects, and that algorithms based on non-local shape

features seem to produce segmentations that most closely resemble ones made by humans.

The work was previously published in [11], and has been widely used for evaluating new

mesh segmentation algorithms [44, 45, 46], and has helped prompt learning based algo-

rithms [47] for mesh segmentation and labeling.

Chapter 3 investigates “Schelling points” on 3D meshes, feature points selected by people

in a pure coordination game due to their salience. To collect data for this investigation, we

designed an online experiment that asked people to select points on 3D surfaces that they

expect will be selected by other people. We then analyzed properties of the selected points,

finding that: 1) Schelling point sets are usually highly symmetric, and 2) local curvature

properties (e.g., Gauss curvature) are most helpful for identifying obvious Schelling points

(tips of protrusion), but 3) global properties (e.g., segment centeredness, proximity to sym-

metry axis, etc.) are required to explain more subtle features. Based on these observations,

we use regression analysis to combine multiple properties into an analytical model that

predicts where Schelling points are likely to be on new meshes. We find that this model

benefits from a variety of surface properties, particularly when training data comes from

examples in the same object class. This work was also published in [1].

Finally, Chapter 4 describes a system to transfer surface properties between meshes. We

propose MeshMatch [48], a mesh-based analogy of the PatchMatch [2] algorithm and a

non-parametric multi-resolution approach to surface property transfer based on this algo-

rithm. The system offers benefits of both parametrization and texture synthesis approaches,

preserving both large- and fine-scale patterns of the source properties. Computation is ef-
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ficient since we leverage the inherent locality and coherence of properties associated with

the mesh geometry. We show a variety of applications using this system, including texture

transfer, detail transfer, texture painting, and transferring Schelling distributions.
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Chapter 2

Mesh Segmentation

2.1 Introduction

Automatic segmentation of 3D surface meshes into functional parts is a fundamental prob-

lem in computer graphics. A part decomposition not only provides semantic information

about the underlying object, but also can be used to guide several types of mesh process-

ing algorithms, including skeleton extraction [49, 20], modeling [50], morphing [51, 52],

shape-based retrieval [53], and texture mapping [54]. All of these applications benefit from

mesh segmentations that match what humans do.

Perceptual psychologists have proposed theories of how human decompose shapes into

parts, e.g., the “minima rule” [18, 19] and the Recognition by Components theory [17], and

many automatic mesh segmentation algorithms have been developed based on the theories

in the last several years. However, there has been little work on quantitative evaluation of

how well these algorithms match what people do. The main problem has been the lack of

a “gold standard.” There has been no benchmark set of 3D models and no agreed-upon

metrics of success. Rather, most new algorithms are tested on their own set of 3D meshes,

and results are presented only as images with different segments shown in different colors.
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Figure 2.1: Composite images of segment boundaries selected by different people (the
darker the seam the more people have chosen a cut along that edge). One example is
shown for each of the 19 object categories considered in this study.

In a few cases, more than one algorithm have been compared on the same set of meshes

(e.g., [55]), but the evaluation is qualitative (images shown side-by-side).

In this chapter, we present a benchmark to quantitatively study how human segment meshes

and evaluate mesh segmentation algorithms. To build this benchmark, we recruited eighty

people to manually segment surface meshes into functional parts, yielding an average of 11

human-generated segmentations for each of 380 meshes. This data set provides a sampled

distribution over “how humans decompose each mesh into functional parts,” which we treat

as a probabilistic “ground truth” (Figure 2.1). Given this data set, we analyze properties of

the human-generated segmentations to learn about what they have in common with each

other (and with computer-generated segmentations); and we compute metrics that measure

how well the human-generated segmentations match computer-generated ones for the same

mesh, which provide a basis for quantitative comparisons of mesh segmentation algorithms.

The contributions of the chapter are five-fold. First, we describe a procedure for collect-

ing a distribution of mesh segmentations from people around the world. Second, we in-

vestigate four metrics for comparing mesh segmentations, adapting ideas from computer

vision to the domain of 3D meshes. Third, we perform quantitative comparison of seven

automatic mesh segmentation algorithms according to these metrics. Fourth, we analyze

properties of human-generated and computer-generated mesh segmentations, making ob-
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servations about how they are similar and different with respect to one another. Finally, we

provide a publicly available data set and software suite for future analysis and comparison

of mesh segmentations (http://segeval.cs.princeton.edu/).

2.2 Related Work

Segmentation is a classical problem in processing of images, video, audio, surfaces, and

other types of multimedia data. Accordingly, a large number of methods have been pro-

posed for both computing and evaluating segmentations. As methods have matured for each

data type, segmentation benchmarks have been proposed for evaluation and comparison of

methods [56]. Examples include The Berkeley Segmentation Benchmark for images [57],

The TREC Data Set for video [58], The IBNC Corpus for audio [59], and so on. However,

to our knowledge, no analogous segmentation benchmarks have been developed for 3D

surface meshes before us.

Over the last decade, many 3D mesh segmentation algorithms have been proposed, includ-

ing ones based on K-means [60], graph cuts [61, 20], hierarchical clustering [62, 63, 61],

primitive fitting [64], random walks [65], core extraction [66], tubular multi-scale analy-

sis [67], spectral clustering [68], critical point analysis [69] and so on (recent surveys can

be found in [70] and [71]). However, most of these methods have been evaluated only

by visual inspection of results, and rarely are comparisons provided for more than one

algorithm in the same study.

Perhaps the state-of-the-art in 3D mesh segmentation evaluation is the study of Attene et

al. [55]. They compared five segmentation algorithms [64, 66, 20, 67, 72] on eleven 3D sur-

face meshes. Evaluation and comparison was performed by showing side-by-side images

of segmented meshes produced by different algorithms with segments shown in different

colors. Since no “ground truth” was available, readers were asked to evaluate results visu-
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ally, and discussion focused on qualitative characteristics of algorithms (e.g., segmentation

type, suitable inputs, boundary smoothness, whether the method is hierarchical, sensitivity

to pose, computational complexity, and control parameters).

The focus of our work is to provide quantitative metrics for evaluation of mesh segmen-

tation algorithms. We would like to not only show images of example segmentations,

but also provide statistical measures of “how close they are to what a human would do”

for a large set of 3D models. In this sense, we follow the work of LabelMe [73], The

Berkeley Segmentation Benchmark [57], and other image databases that have built sets

of human-generated segmentations and then used them for evaluation of automatic algo-

rithms [74, 75, 76, 77, 78, 79]. We leverage the ideas of this previous work in computer

vision, using related metrics to evaluate the similarities in overall structure and boundaries

of automatically-generated segmentations with respect to human-generated ones.

Concurrent with our work is a project by Benhabiles et al. [80], which has similar goals and

methodology. Our study includes more human subjects, segmentation algorithms, mesh

models, object categories, evaluation metrics, and analysis of human-generated segmenta-

tions.

2.3 Benchmark Design

The focus of this chapter is to investigate the design of a benchmark for 3D mesh seg-

mentation algorithms. In building such a benchmark, several issues have to be addressed,

including “which 3D models to study?,” “how to acquire unbiased segmentations from

humans?,” “how to acquire data from a large variety of people?,” “how to measure the

similarity between two segmentations?,” and “how to present aggregate statistics when

comparing the results of different algorithms?.” These topics are discussed in the following

five subsections.
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2.3.1 Selecting a 3D Model Data Set

The first issue is to select a set of 3D models to include in the segmentation benchmark.

In making our selection, we consider four main criteria: 1) the data set should cover a

broad set of object categories (e.g., furniture, animals, tools, etc.); 2) models should exhibit

shape variability within each category (e.g., articulated figures in different poses); 3) mod-

els should be neither too simple, nor too complex, to segment; and, 4) models should be

represented in a form that most segmentation algorithms are able to take as input. This last

criterion suggests that the models should be represented by manifold triangle meshes with

only one (or a small number of) connected component(s).

While several data sets fit these criteria, and any of them could have been selected for our

study, we chose to work with the 3D meshes from the Watertight Track of the 2007 SHREC

Shape-based Retrieval Contest provided generously by Daniela Giorgi [81]. This data set

contains 400 models spread evenly amongst 20 object categories, including human bodies,

chairs, mechanical CAD parts, hands, fish, pliers, etc. (one example from most categories is

shown in Figure 2.1). It contains two categories where the same object appears in different

poses (armadillo and pliers), another seven categories where different articulated objects of

the same type appear in different poses (human, ant, octopus, teddy bear, hand, bird, four

leg), and three categories where objects have non-zero genus (cup, vase, chair). Several

object categories are fairly easy to segment (teddy, bearing), while others are very chal-

lenging (e.g., buste). Most importantly, every object is represented by a watertight triangle

mesh with a single connected component, the representation supported most commonly by

currently available segmentation algorithms.

While this data set provides a good starting point for a benchmark, it also has some draw-

backs. First, every model was remeshed during the process of making it watertight (e.g.,

the original polygonal model was voxelized, and then an isosurface was extracted). As a

result, the sampling of vertices in the mesh is more uniform and noisier than is typical in
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computer graphics models. Second, it contains a category called Spring, for which seg-

mentation does not really make sense (each object is a single coil of wire), and thus we

excluded it from our study. Over time, we expect the benchmark to include other data

sets with different advantages and drawbacks that can be used to test different aspects of

algorithms. For example, we have produced a segmented version of the Princeton Shape

Benchmark [82]. However, many of its models contain mesh degeneracies, and thus it is

not suitable for this study.

2.3.2 Designing an Interactive Segmentation Tool

The second issue is to design a system for collecting example segmentations from hu-

mans. Since the choice of segments/boundaries is subjective, and there are always vari-

ances among people’s opinions, we needed a mechanism with which we can acquire seg-

mentations from many different people for each polygonal model in the data set. The tool

used to acquire segmentations should be easy to learn, to enable collection of data from

untrained subjects; it should be quick to use (a couple of minutes per model), since thou-

sands of examples are needed to cover the 380 models each with multiple examples; and,

most importantly, it should not bias people towards particular types of segmentations – i.e.,

the results should reflect “what segmentation a person wants,” not “what segmentation is

possible with the tool.”

There are many possible approaches to interactive mesh segmentation. For example, Shape

Annotator [83] supports an interactive interface for combining segments generated by dif-

ferent automatic segmentation algorithms, and thus provides a solution that is easy to learn

and quick to use. However, since the results are limited to contain only segments gen-

erated by automatic algorithms, they are highly constrained and biased towards those al-

gorithms. Alternatively, several system are available that support intelligent scissoring of

3D meshes, using interfaces based on either strokes along cuts [50, 84] or sketches within
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(a) After one click (b) After two clicks

(c) After three clicks (d) After making the cut

Figure 2.2: Using the Interactive Segmentation Tool.

segments [85]. However, then the results would be biased towards the cuts favored by the

system’s “intelligent” scissoring error function.

Our approach is to develop a simple interactive tool with which people can select points

along segment boundaries (cuts) with a simple point and click interface, while the system

connects them with shortest paths [52] (Figure 2.2). The user builds and adjusts the current

cut incrementally by clicking on vertices through which the cut should traverse. For each

click, the system updates the (approximately) shortest closed path through the selected

vertices along edges of the mesh (shown in yellow in Figure 2.2). Vertices can be inserted

into the middle of the cut or removed from it, and cuts can be defined with multiple contours

(e.g., to cut off the handle of a cup). Whenever the user is satisfied with the current cut,

he/she hits a key to partition the mesh, after which the faces on either side of the cut are

shown in different colors. The segmentation process proceeds hierarchically as each cut

makes a binary split.

This approach strikes a balance between user-control and ease-of-use. While the system

provides some assistance to the user when defining cuts (it connects selected vertices with
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shortest paths along edges), it is significantly less than the assistance provided by intelligent

scissoring programs (which also encourage cuts to follow concave seams as defined by an

error function) and significantly more than a brute-force interface where the user selects

every vertex along every cut. In the former case, the system is very easy-to-use, but the

results are biased. In the latter case, the system is impractically tedious to use, but gives the

user absolute control over the placement of cuts. Our approach is somewhere in the middle.

Specifying a desired cut often takes as few as three clicks, but can take more than ten for

complicated cuts. Yet, we expect that connecting the user’s input with shortest paths does

not unfairly bias the results towards any particular segmentation algorithm.

2.3.3 Collecting Segmentations from Many People

The third issue is to design a procedure to acquire segmentations from multiple people for

each 3D model in the data set.

The most obvious way to address this issue is to pay a group of people to come to our lab

and run our interactive segmentation program under close supervision. However, this pro-

cedure is very costly, in both time and money. So, instead we recruited people to segment

models through Amazon’s Mechanical Turk [3]. The Mechanical Turk is an on-line plat-

form that matches workers from around the world with paid tasks. Requesters (us) can post

tasks (hits) to a web site (http://www.mturk.com/), where workers can select them from a

list, follow the instructions, and submit the results on-line. The big advantage of this ap-

proach is that it taps the inexpensive and under-utilized resource of people with idle time

around the world. The challenge is that we must provide instructions and quality assurance

procedures that minimize the risk that acquired data is biased or poor quality.

To minimize bias, we distribute meshes to workers in random order, and we log the IP of

people who access our task and combine it with the worker information from the Mechani-

cal Turk to guarantee that each worker segments each model at most once. We also provide
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very little information about how models should be segmented. Quoting from the web page,

we tell the workers: “Our Motivation is to create a 3D mesh segmentation benchmark that

helps researchers to better understand mesh segmentation algorithms. Our task is to use

an interactive program to manually segment the 3D polygonal model into functional parts.

We evaluate manually segmented 3D polygonal models by comparison to segmentations

provided by experts. They should cut the surface along natural seams into functional parts

with as much as detail as possible.”

We also have a simple set of instructions to describe how to use the interactive segmentation

tool: “An interactive tool for segmenting 3D meshes will start as soon as you accept our

task. The program provides several commands (e.g., ’a’) for creating and editing a path

through vertices of the mesh and a command (’c’) for cutting the mesh into two segments

by separating along the current path. Each ‘cutting path’ partitions a single segment into

two, and thus these simple commands can be applied in sequence to decompose a mesh

into multiple segments. The segmentation result will be saved when the program exits (hit

the ESCAPE key to quit the program). Full list of commands are listed in the tab called

‘Tool Command Handbook.”’

Using this procedure, we received 4,365 submissions during a one month time period, of

which 4,300 were accepted and 65 were rejected (for having no cuts at all). In looking at

the results, we find that 25 are over-segmented in comparison to the others, and 353 have

at least one cut that seems to be an outlier. However, we do not exclude this data from our

analysis so as to avoid bias in the results. As shown in Figure 2.3, we accepted an average

of 11 segmentations for each model. According to Amazon’s Mechanical Turk statistics,

the accepted submissions came from more than 80 participants, and each took an average

of 3 minutes of worker time.
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Figure 2.3: Histogram of the number of segmentations per model.

2.3.4 Computing Evaluation Metrics

The next design decision is to develop a set of metrics that can be used to evaluate how well

computer-generated segmentations match the human-generated ones. Here, we follow prior

work in computer vision, adapting four metrics that have previously been used to evaluate

image segmentations. Generally speaking, the first one is boundary-based (i.e., measures

how close segment boundaries are to one another), and the last three are region-based

(i.e., measure the consistency of segment interiors). Among those, one explicitly considers

segment correspondences in its error calculations, and another accounts for hierarchical

nesting. Rather than selecting one of these metrics, we present results for all four, as each

may provide different information that could be valuable in our study.
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Cut Discrepancy

The first metric, Cut Discrepancy, sums the distances from points along the cuts in the

computed segmentation to the closest cuts in the ground truth segmentation, and vice-versa.

Intuitively, it is a boundary-based method that measures the distances between cuts [76].

Assuming C1 and C2 are sets of all points on the segment boundaries of segmentations S1

and S2, respectively, and dG(p1, p2) measures the geodesic distance between two points on

a mesh, then the geodesic distance from a point p1 ∈ C1 to a set of cuts C2 is defined as:

dG(p1, C2) = min{dG(p1, p2),∀p2 ∈ C2}

and the Directional Cut Discrepancy, DCD(S1 ⇒ S2), of S1 with respect to S2 is defined

as the mean of the distribution of dG(p1, C2) for all points p1 ∈ C1:

DCD(S1 ⇒ S2) = mean{dG(p1, C2),∀p1 ∈ C1}

We define the Cut Discrepancy, CD(S1, S2), to be the mean of the directional functions in

both directions, divided by the average Euclidean distance from a point on the surface to

centroid of the mesh (avgRadius) in order to ensure symmetry of the metric and to avoid

effects due to scale:

CD(S1, S2) =
DCD(S1 ⇒ S2) + DCD(S2 ⇒ S1)

avgRadius

The advantage of the Cut Discrepancy metric is that it provides a simple, intuitive measure

of how well boundaries align. The disadvantage is that it is sensitive to segmentation

granularity. In particular, it is undefined when either model has zero cuts, and it decreases

to zero as more cuts are added to the ground truth segmentation.
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Hamming Distance

A second metric uses Hamming Distance to measure the overall region-based difference be-

tween two segmentation results [76]. Given two mesh segmentation S1 = {S1
1 , S

2
1 , . . . , S

m
1 }

and S2 = {S1
2 , S

2
2 , . . . , S

n
2 }withm and n segments, respectively, the Directional Hamming

Distance is defined as

DH(S1 ⇒ S2) =
∑
i

‖Si2\Sit1 ‖

where “\” is the set difference operator, ‖x‖ is a measure for set x (e.g., the size of set x, or

the total area of all faces in a face set), and it = maxk‖Si2∩Sk1‖. The general idea is to find

a best corresponding segment in S1 for each segment in S2, and sum up the set difference.

Since there are usually few segments per model, we use a brute forceO(N+mn) algorithm

to find the correspondences.

If S2 is regarded as the ground truth, then Directional Hamming Distance can be used to

define the missing rate Rm and false alarm rate Rf as follows:

Rm(S1, S2) =
DH(S1 ⇒ S2)

‖S‖

Rf (S1, S2) =
DH(S2 ⇒ S1)

‖S‖

where ‖S‖ is the total surface area of the polygonal model. The Hamming Distance is

simply defined as the average of missing rate and false alarm rate:

HD(S1, S2) =
1

2
(Rm(S1, S2) +Rf (S1, S2))

Since Rm(S1, S2) = Rf (S2, S1), the Hamming Distance is symmetric. Its main advantage

and disadvantage is that it relies upon finding correspondences between segments. This

process provides a more meaningful evaluation metric when correspondences are “correct,”
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but adds noise to the metric when they are not. It is also somewhat sensitive to differences

in segmentation granularity.

Rand Index

A third metric measures the likelihood that a pair of faces are either in the same segment in

two segmentations, or in different segments in both segmentations [86].

If we denote S1 and S2 as two segmentations, s1i and s2i as the segment IDs of face i in S1

and S2, and N as the number of faces in the polygonal mesh, Cij = 1 iff s1i = s1j , and

Pij = 1 iff s2i = s2j , then we can define Rand Index as:

RI(S1, S2) =

(
2

N

)−1 ∑
i,j,i<j

[CijPij + (1− Cij)(1− Pij)]

CijPij = 1 indicates that face i and j have the same id in both S1 and S2. (1 − Cij)(1 −

Pij) = 1 indicates that face i and j have different IDs in both S1 and S2. Thus RI(S1, S2)

tells the proportion of face pairs that agree or disagree jointly on their segment group iden-

tities in segmentation S1 and S2. As a slight departure from standard practice, we report

1 − RI(S1, S2) in our benchmark to be consistent with the our other metrics that report

dissimilarities rather than similarities (the lower the number, the better the segmentation

result).

The main advantage of this metric is that it models area overlaps of segments without

having to find segment correspondences.

Consistency Error

The fourth metric, Consistency Error, tries to account for nested, hierarchical similari-

ties and differences in segmentations [57]. Based on the theory that human’s perceptual
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organization imposes a hierarchical tree structure on objects, Martin et al. proposed a

region-based consistency error metric that does not penalize differences in hierarchical

granularity [57].

Denoting S1 and S2 as two segmentation results for a model, ti as a mesh face, “\” as the

set difference operator, and ‖x‖ as a measure for set x (as in Section 2.3.4), R(S, fi) as the

segment (a set of connected faces) in segmentation S that contains face fi, and n as the

number of faces in the polygonal model, the local refinement error is defined as:

E(S1, S2, fi) =
‖R(S1, fi)\R(S2, fi)‖

‖R(S1, fi)‖

Given the refinement error for each face, two metrics are defined for the entire 3D mesh,

Global Consistency Error (GCE) and Local Consistency Error (LCE), as follows:

GCE(S1, S2) =
1

n
min{

∑
i

E(S1, S2, fi),
∑
i

E(S2, S1, fi)}

LCE(S1, S2) =
1

n

∑
i

min{E(S1, S2, fi), E(S2, S1, fi)}

Both GCE and LCE are symmetric. The difference between them is that GCE forces all

local refinements to be in the same direction, while LCE allows refinement in different

directions in different parts of the 3D model. As a result, GCE(S1, S2) ≥ LCE(S1, S2).

The advantage of these metrics are that they account for nested, hierarchical differences in

segmentations. The disadvantage is that they tend to provide better scores when two models

have different numbers of segmentations, and they can actually be misleading when either

model is grossly under- or over-segmented with respect to the other. For example, the errors

will always be zero if one of the meshes is not segmented at all (all faces in one segment) or

if every face is in a different segment, since then one segmentation will always be a nested

refinement of the other.
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2.3.5 Comparing Segmentation Algorithms

The final design decision in defining the benchmark is to describe a protocol with which

segmentation algorithms should be executed to produce segmentations suitable for fair

comparisons.

The first issue is how to set parameters. Almost every algorithm provides tunable parame-

ters (e.g., weights on error terms, spacing between seeds, thresholds on segment size, etc.),

which sometimes affect the output segmentations dramatically. However, it would be un-

realistic to search for an optimal set of parameter settings for each model; and, even if we

could do that, the process would be unfair to the algorithms with fewer parameters. Hence,

we utilize a single set of parameter settings for all runs of each algorithm, limiting our

evaluation to the parameter settings recommended by the authors.

The one exception is for algorithms that require the target number of segments as an in-

put parameter (numSegments). The problem is to select a value for this parameter that

does not provide an unfair advantage or disadvantage for these algorithms with respect to

algorithms that do not take such a parameter (i.e., ones that predict the number of segments

automatically). One extreme solution would be to run each algorithm once for each model

with the target number of segments set to some arbitrary value, say 7. Of course, this

would unfairly penalize the algorithms that rely upon this parameter, since typical users

would probably have a better way to select the target number of segments based on visual

inspection of the model or its object category. Another extreme solution would be to run

each algorithm repeatedly, once for each human-generated segmentation H to which it is

being compared, each time setting numSegments to match the number of segments in H

exactly. Of course, this would unfairly benefit the algorithms that take numSegments as a

parameter – they would be given an oracle to predict the number of segments created by ev-

ery individual person. Our solution is somewhere in the middle. We imagine that a typical

user can look at a model and guess the number of target segments approximately. So, mod-
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eling a scenario where a user looks at a model and then runs the segmentation algorithm,

we choose a separate value for numSegments for each model, setting it to be the mode of

the number of segments appearing in segmentations created by people for that model in the

benchmark data set (this design decision is evaluated in Section 2.4.6).

The second issue is remeshing. Some segmentation algorithms change the topology of the

mesh. Yet, most of our evaluation metrics rely upon meshes having the same topology. To

overcome this problem, we provide a step where the segment labels of the modified mesh

are mapped back to the input mesh (this mapping employs an area-weighted voting scheme

to assign a face to a segment if it is split into two in the output, and it eliminates segments

with fewer than 3 faces or less than 0.01% of the total surface area). This process avoids

penalizing algorithms for changing the topology of the mesh.

The final issue we must address is how to aggregate evaluation metrics over multiple seg-

mentations for the same model and multiple models for the same object category. For now,

we simply report averages, both per category and over the entire data set for each algorithm

(averages are computed first within each model, then those results are averaged within each

object category, and then those results are averaged across the entire database to avoid bias-

ing the results towards models and/or categories with more segmentations in the benchmark

data set). However, more sophisticated aggregate statistics could be computed in the future.

2.4 Results

In order to investigate the utility of the proposed benchmark for evaluating segmentations,

we performed six experiments. The first asks “How consistently do different people seg-

ment the same object?” The second two study how effectively the benchmark can be used

to compare the performance of different segmentation algorithms, asking questions like:

“Which algorithms produce outputs that most closely mimic human segmentations?,” and
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“Does any algorithm provide the best results for every type of object?” The next two

investigate properties of human- and computer-generated segmentations, asking “which

geometric properties are consistent in all segmentations by people” and “how do the prop-

erties of automatic segmentations compare to humans’?.” The final study evaluates how our

method for selecting the number of target segments for each model affects the comparison

of algorithms.

While the results of these studies may be interesting in their own right, our main goal is

to investigate whether the data set and evaluation procedures described in the preceding

sections are useful for understanding similarities and differences between segmentations.

It is our intention that other analyses and comparisons will be performed in the future as

the benchmark grows as a public-domain resource for the research community.

2.4.1 Consistency of Human-Generated Segmentations

The benchmark provides segmentations made manually by multiple people for each of 380

models from a variety of different object categories, and thus it provides an opportunity

to study how consistently different people segment the same objects. This question is not

only important for its obvious implications in perceptual psychology, but also for its impli-

cations on our benchmark. Implicit in our choice to use human-generated segmentations as

“ground truth” for our benchmark are the assumptions that people tend to segment objects

in the same ways and that automatic algorithms ought to mimic them. We can validate the

first of these assumptions with visual and statistical analysis of the benchmark data set.

Figures 2.1 and 2.4 show visualizations of the segmentations collected for a sampling of

objects in the benchmark data set. These images show composites of cuts made by different

people, and so darker lines represent edges where people placed segmentation boundaries

more consistently. For example, in the image of the human body on the left of Figure 2.4,

it can be seen that people cut very consistently on edges that separate the arms from the
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body, but less consistently on edges that separate the chest from the stomach. In general,

by visual inspection, it seems that people select the same types of functional parts, possibly

cutting on edges that are parallel and slightly offset from one another (e.g., at the junctions

of the fingers and the palm of the hands), and possibly decomposing objects with different

levels of granularity (e.g., only some people cut at the knuckles in the two images of hands

in Figure 2.4). Although a few exceptions exist (e.g., in the eyeglasses shown in the top-left

image of Figure 2.4, people agree that the two lenses should be separated, but they disagree

whether the bridge between two lenses should be segmented as an independent part), we

conclude that people are remarkably consistent in their decompositions into parts.

This conclusion can be validated quantitatively using the evaluation metrics described in

Section 2.3.4. For each segmentation in the benchmark, we can “hold it out” and then ask

how well it matches the segmentations made by other people for the same model according

to the four evaluation metrics. The results of this analysis are shown in Figure 2.5 – the

bar labeled “Human” on the left side of each of the four plots shows the averages of the

human segmentations evaluated with respect to all the other human segmentations. While

it is difficult to make conclusions from the absolute heights of the bars in these plots, the

bars labeled “Human” are clearly lower (better) than the corresponding bars for computer-

generated segmentations, suggesting that people are more consistent with each other than

algorithms are with people.

2.4.2 Comparison of Segmentation Algorithms

The main purpose of the benchmark is to evaluate and compare the results of automatic

segmentation algorithms. To test its utility for this task, we followed the procedure de-

scribed in Section 2.3.5 to compare seven algorithms recently published in the literature

(listed below). In every case, except one (K-Means), the source code and/or executable

was provided directly by the original inventors, and so each algorithm was tested with its
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Figure 2.4: Composited images of segmentation boundaries selected by multiple people
for four example models (darker lines appear where a larger fraction of people placed a
segmentation boundary).

original implementation and with its default parameters. The following paragraphs provide

a brief description of each algorithm, but please refer to the cited papers for details:

• K-Means: Shlafman et al. [60] describe an algorithm based on K-means clustering

of faces. Given a user-specified number of segments, k, the algorithm first selects a

set of k seed faces to represent clusters by continually selecting the further face from

any previously selected. Then, it iterates between: 1) assigning all faces to the cluster

with the closest representative seed, and 2) adjusting the seed of each cluster to lie at

the center of the faces assigned to it. This iteration continues until the assignment of

faces to clusters converges. In our implementation, which differs from the original by

Shlafman et al., we compute distances on the dual graph of the mesh with a penalty

related to the dihedral angle of each traversed edge using the method in [50].

• Random walks: Lai et al. [65] describe a procedure that proceeds in two phases.

During the first phase, an over-segmentation is computed by assigning each face F to

the segmented associated with the seed face that has highest probability of reaching F

by a random walk on the dual graph of the mesh. During the second phase, segments
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Figure 2.5: Comparison of segmentation algorithms with four evaluation metrics.

are merged hierarchically in an order based on the relative lengths of the intersections

and total perimeters of adjacent segments. The hierarchical clustering terminates

when a user-specified number of segments has been reached.

• Fitting Primitives: Attene et al. [64] propose a hierarchical clustering algorithm

based on fitting primitives. The algorithm starts with every face in a separate seg-

ment. At each iteration, the best fitting geometric primitive (plane, cylinder, or

sphere) is computed to approximate the faces in every pair of adjacent segments,

and the best fitting pair is chosen for merger. The algorithm proceeds bottom-up,

merging segments until a user-specified number of segments has been reached.

• Normalized cuts: Golovinskiy et al. [61] describe a hierarchical clustering algo-

rithm in which every face of the mesh starts in its own segment, and segments are
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hierarchically merged in an order determined by the area-normalized cut cost: the

sum of each segment’s perimeter (weighed by concavity) divided by its area. The

clustering terminates when a user-specified number of segments has been reached.

This algorithm encourages segments to have small boundaries along concave seams

while maintaining segments with roughly similar areas.

• Randomized cuts: Golovinskiy et al. [61] also propose a hierarchical decomposi-

tion procedure that uses a set of randomized minimum cuts to guide placement of

segmentation boundaries. They first decimate the mesh (to 2,000 triangles in this

study), and then proceed top-down hierarchically, starting with all faces in a single

segment and iteratively making binary splits. For each split, they compute a set of

randomized cuts for each segment, and then they identify for each segment which

cut is most consistent with others in the randomized set. Amongst this set of candi-

date cuts, they choose the one that results in the minimal normalized cut cost. The

algorithm terminates when a user-specified number of segments has been reached.

• Core extraction: Katz et al. [66] propose a hierarchical decomposition algorithm

that performs four main steps at each stage: transformation of the mesh vertices

into a pose insensitive representation using multidimensional scaling, extraction of

prominent feature points, extraction of core components using spherical mirroring,

and refinement of boundaries to follow the natural seams of the mesh. The algorithm

partitions segments hierarchically, stopping automatically when the current segment

Si has no feature points or when the fraction of vertices contained in the convex hull

is above a threshold.

• Shape Diameter Function: Shapira et al. [87] describe an algorithm based on the

“Shape Diameter Function” (SDF), a measure of the diameter of an object’s volume

in the neighborhood of a point on the surface. The SDF is computed for the centroid

of every face, and then the segmentation proceeds in two steps. First, a Gaussian
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Mixture Model is used to fit k Gaussians to the histogram of all SDF values in order

to produce a vector of length k for each face indicating its probability to be assigned

to each of the SDF clusters. Second, the alpha expansion graph-cut algorithm is used

to refine the segmentation to minimize an energy function that combines the proba-

bilistic vectors from step one along with boundary smoothness and concaveness. The

algorithm proceeds hierarchically for a given number of “partitioning candidates,”

which determines the output number of segments. We follow the authors’ advice,

setting the number of partitioning candidates to 5, and let the algorithm determine

the number of segments automatically.

Figure 2.5 shows evaluations of these seven algorithms according to the proposed bench-

mark. Each of the four bar charts shows a different evaluation metric computed for all seven

algorithms and averaged across the entire data set as described in Section 2.3.5. Added to

each chart is a bar representing the human-generated segmentations evaluated with respect

to one other (labeled “Human,” on the left) and two bars representing trivial segmentation

algorithms (“None” = all faces in one segment, and “Every”= every face in a separate seg-

ment). These three bars are added to the plots to provide sanity checks and to establish a

working range for the values of each evaluation metric. In all cases, lower bars represent

better results.
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Segmentation Avg Compute
Algorithm Time (s) Rand Index
Human - 0.103
Randomized Cuts 83.8 0.152
Shape Diameter 8.9 0.175
Normalized Cuts 49.4 0.172
Core Extraction 19.5 0.210
Random Walks 1.4 0.214
Fitting Primitives 4.6 0.210
K-Means 2.5 0.251
None 0 0.345
Every 0 0.654

Table 2.1: Analysis of trade-off between compute time and segmentation quality (compute
time is in seconds measured on a 2Ghz PC).

From this data, we see that all four evaluation metrics are remarkably consistent with one

another. Although one of the metrics focuses on boundary errors (Cut Discrepancy), and

the other three focus on region dissimilarities (Hamming Distance, Rand Index, and Con-

sistency Error), all variants of all four metrics suggest almost the same relative performance

of the seven algorithms.

Examining the average timing and performance results in Table 2.1, we see that the set of

algorithms that perform best overall according to the Rand Index metric (Randomized cuts,

Normalized cuts, Shape Diameter Function, and Core Extraction) are the ones that take the

most time to compute.1 This result is not surprising. They are the algorithms that consider

both boundary and region properties of segments and utilize non-local shape properties to

guide segmentation. For example, the algorithms based on Core Extraction and the Shape

Diameter Function both consider volumetric properties of the object in the vicinity of a

point, and the Randomized Cut and Normalized Cut algorithms both evaluate expensive

objective functions that take into account large-scale properties of segment boundaries and

areas. These four algorithms should probably be used for off-line computations, while the

others are nearly fast enough for interactive applications.

1It is important to note that the Shape Diameter Function and Core Extraction algorithms automatically
predict the number of segments to output, while the other algorithms require numSegments as an input pa-
rameter. So, these two algorithms are solving a more difficult problem than the others. The reader should
keep this in mind when comparing results. This issue is investigated further in Section 2.4.6
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2.4.3 Comparisons Within Object Categories

The results shown in the previous subsection provide only averages over all models in the

benchmark, and thus paint broad strokes. Perhaps more important than ranking algorithmic

performance overall is to understand for which types of objects each algorithm performs

best. Then, users can leverage the results of the benchmark to select the algorithm most

appropriate for specific types of objects.

Table 2.2 shows a comparison of the performance of the seven algorithms for each object

category. The entries of this table contain the rank of the algorithm according the Rand

Index evaluation metric averaged over models of each object category: 1 is the best (shown

in red) and 7 is the worst. From these results, we see that no one segmentation algorithm

is best for every category. Interestingly, it seems that some algorithms do not necessarily

work best (relative to others) on the types of objects for which they were designed. For

example, the method designed to fit geometric primitives is among the best for Humans,

but not for the Mech and Bearing classes, which are CAD Models comprised of geometric

primitives. These results suggest that either people do not segment objects in the expected

way, or that there are other cues that reveal the part structures of these objects (e.g., concave

seams).

2.4.4 Properties of Human-Generated Segmentations

The human-generated segmentations acquired for the benchmark are useful not only for

comparisons, but also for studying how people decompose objects into parts. Several psy-

chologists have put forth theories to explain how people perceive objects as collections of

parts (e.g., the Recognition by Components theory of Biederman [17], the Minima Rule

hypothesis of Hoffman and Richards [18, 19], etc.), and several algorithms incorporate

assumptions about what type of segmentations people prefer (e.g., cuts along concave
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Object Rand Shape Norm Core Rand Fit K-
Category Cuts Diam Cuts Extra Walks Prim Median
Human 1 5 2 7 6 3 4
Cup 1 5 2 3 4 6 7
Glasses 1 4 2 6 7 5 3
Airplane 2 1 4 7 6 3 5
Ant 2 1 3 4 5 6 7
Chair 4 2 1 5 3 6 7
Octopus 4 1 3 2 5 7 6
Table 7 4 1 5 2 3 6
Teddy 1 2 4 3 5 6 7
Hand 1 7 3 4 5 6 2
Plier 2 7 4 1 5 3 6
Fish 3 1 5 2 4 7 6
Bird 1 2 4 3 7 6 5
Armadillo 3 1 5 7 4 2 6
Bust 1 3 6 5 2 4 7
Mech 4 3 1 6 2 5 7
Bearing 2 1 3 7 5 4 6
Vase 1 4 3 2 5 6 7
FourLeg 2 1 6 4 7 3 5
Overall 1 3 2 5 6 4 7

Table 2.2: Comparison of segmentation algorithms for each object category. Entries rep-
resent the rank of the algorithm according to the Rand Index evaluation metric (1 is the
best, and 7 is the worst).

seams [20], segments of nearly equal area [60], convex parts [88], etc.). We conjecture

that our benchmark data set could be used to test these theories and assumptions.

As an example, the left column of Figure 2.7 shows five histograms of properties collected

from the 4,300 human-generated segmentations of the benchmark set: a) minimum curva-

ture at vertices on (blue) and off (green) segmentation boundaries; b) convexity, as mea-

sured by the average distance from a segment’s surface to its convex hull [89] normalized

by the average radius of the model; c) the length of a cut between segments normalized by

the average of all cuts for its mesh; d) the area of a segment’s surface normalized by the

average segment area for its mesh; and e) the number of parts in each segmentation. We

also have collected statistics for dihedral angles, maximum curvature, Gaussian curvature,

mean curvature, minimum curvature derivative, and compactness [89], but do not show

them in Figure 2.7 due to space limitations.
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These statistics seem to support many of the shape segmentation theories and assumptions

that are prevalent in the literature. For example, segment boundaries are indeed more likely

along concavities in our data set – i.e., at vertices with negative minimum curvature (Fig-

ure 2.7a). Also, segment surfaces tend to be convex – i.e., having relatively small distances

between the surface of a segment and its convex hull (Figure 2.7b).

However, some of the results are a bit surprising. For example, it seems that cuts between

segments within the same mesh tend to have approximately the same lengths – i.e., the

Normalized Cut Length (length of a cut divided by the average for the mesh) is often close

to one (Figure 2.7c). It seems that this property (or related ones, like symmetry) could be

included in a segmentation error function, but we are not aware of any prior segmentation

algorithm that does so. In contrast, it seems that not all segments have the same area – i.e.,

the Normalized Segment Area (area of a segment divided by the average for the mesh) is

usually not equal to one (Figure 2.7d). Rather, it seems that each mesh has a small number

of large segments (where the Normalized Segment Area is much greater than 1) and a larger

number of small segments (where the Normalized Segment Area is less than 1), probably

corresponding to the “body” and “appendages” of an object. This observation suggests that

algorithms that explicitly aim for equal segment areas (e.g., K-Means) are less likely to

mimic what people do. Of course, these statistics and observations are specific to our data

set, but we conjecture that they are representative because the benchmark includes a wide

variety of object types.

2.4.5 Properties of Computer-Generated Segmentations

We can also study properties of computer-generated segmentations to better understand

how algorithms decompose meshes and how they compare to humans’. Towards this end,

we show histograms of the five properties discussed in the previous section for segmen-

tations computed by the Normalized Cuts, Randomized Cuts, Shape Diameter Function,
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Core Extraction, and K-Means algorithms in Figure 2.7 (from left to right starting in the

second column). By comparing these histograms to the ones in the far left column (labeled

“Human”), we aim to understand not only which computer-generated segmentations most

closely resemble Humans’, but also how are they similar and how are they different.

For example, looking at the histograms in the rightmost column of Figure 2.7 (“K-Means”)

and comparing them to the ones in the leftmost column (“Human”), we see that very few

of the histograms are similar. It seems that the K-Means algorithm does not preferentially

cut along vertices with negative minimum curvature (there is little separation between the

blue and green lines in the top right histogram), but does preferentially decompose each

mesh into segments with nearly equal areas (there is a large peak at ‘1’ in the rightmost

histogram of the bottom row). These properties do not match the Humans’, which may

explain why the evaluation metrics for K-Means were the poorest in Figure 2.5.

In contrast, comparing the first and second columns, we see that the histograms represent-

ing Normalized Cut segmentations (second column) very closely resemble those of the

Humans’ (first column) – i.e., they generally have the same shapes, maxima, and inflec-

tion points. These results corroborate the evaluation metrics presented in Section 2.4.2 –

i.e., since many properties of the Normalized Cut segmentations match the Humans’, it is

not surprising that they also produce the best evaluation metrics. Generally speaking, the

histograms further to the left in Figure 2.7 resemble the Humans’ better than those that are

further to the right, and similarly are ranked better by most evaluation metrics.

2.4.6 Sensitivity to Number of Segments

As a final experiment, we investigate how sensitive our evaluations are to the number of

segments produced by the algorithms in our study. As discussed in Section 2.3.5, several

algorithms (Randomized Cuts, Normalized Cuts, Fitting Primitives, Random Walks, and

K-Means) require a parameter that determines the number of target segments produced by
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the algorithm (numSegments). We set that parameter based on the most frequent number

of segments found in human-generated segmentations of the same model in the benchmark

(the mode for each model). This choice was made to ensure that the algorithms are being

tested on typical input – i.e., it makes sense to evaluate how well an algorithm segments a

coffee mug into two parts, but probably not seventeen. On the other hand, some algorithms

do not take numSegments as a parameter and instead determine the number of segments

to output automatically, and thus are at a disadvantage if the other algorithms are given a

good estimate for the number of parts (note the differences for those two algorithms in the

number of parts per model in the bottom row of Figure 2.7). To investigate the practical

implications of this choice, we tested six alternative ways to set numSegments and study

their effects on the relative performance of all seven segmentation algorithms:

1. By Dataset: numSegments could be set to the same number for all runs of every

algorithm – i.e., to the average number of segments found amongst all examples in

the benchmark data set (which is 7).

2. By Category: numSegments could be set separately for every object category – i.e.,

to the mode of the number of segments observed for that category in the benchmark

data set.

3. By Model: numSegments could be set separately for every model – i.e., to the mode

of the number of segments observed for that model in the benchmark data set.

4. By Segmentation: numSegments could be set separately for each human-generated

segmentation. That is, every algorithm could be run once for every unique number

of segments found in the benchmark, and then evaluations could be performed only

between segmentations with exactly the same numbers of segments. This approach

implies that the algorithm has an oracle that predicts exactly how many segments

each person will produce, even if different people produce different numbers of seg-
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ments – and thus provides a lower-bound on the evaluation metrics with respect to

different selections of numSegments.

5. By Shape Diameter Function: numSegments could be set separately for every

model according to the number of segments predicted by the Shape Diameter Func-

tion (SDF) algorithm. This choice allows investigation of how the relative perfor-

mance of the SDF algorithm is affected by its choice in the number of segments –

i.e., it puts the other algorithms on nearly equal footing.

6. By Core Extraction: numSegments could be set separately for every model accord-

ing to the number of segments predicted by the Core Extraction algorithm. This

choice allows investigation of how the relative performance of the Core Extraction

algorithm is affected by its choice in the number of segments.

We implemented all six alternatives and ran an experiment to test how they affect the bench-

mark results. A plot of Rand Index for this study is shown in Figure 2.6. This plot is similar

to the one in the bottom-left of Figure 2.5 (in fact, the dark blue bars are the same), except

that each algorithm that takes numSegments as an input parameter is represented by six bars

in this plot, one for each alternative for setting numSegments.

Looking at this plot, we observe that the comparisons of algorithms that take numSeg-

ments as input are largely insensitive to the method chosen to set numSegments. The main

difference is that the algorithms that do not take numSegments appear relatively better or

worse depending on how intelligently numSegments is set for the other algorithms. On the

one hand, if the number of segments is chosen “By Dataset” (all models are decomposed

into 7 segments), then the Shape Diameter Function algorithm (which chooses the number

of segments adaptively) performs best. On the other hand, if the number of segments is

chosen “By Segmentation” (green bars), “By Model” (dark blue bars), or “By Category”

(yellow bars), then the Normalized Cuts and Randomized Cuts algorithms perform best.
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Figure 2.6: Plot of Rand Index for six different methods of setting the target number of
segments for algorithms that take it as input.

Otherwise, we observe that the relative performance of algorithms remains remarkably

consistent across different ways of controlling the number of segments.

Interestingly, when numSegments is chosen to match the number of segments predicted by

the Shape Diameter Function algorithm (magenta bars), the performance of that algorithm

is almost equal to the Normalized Cuts’. The same applies for the Core Extraction algo-

rithm when numSegments is chosen to match its prediction (cyan bars). This result suggests

that the performance difference between those two algorithms and the others may largely

be due to differences in the numbers of segments generated, as opposed to differences in the

placement of segments. However, this conjecture must be verified with an implementation

for those two algorithms that allows setting numSegments (no such parameter is available

currently).

Even more interesting is that fact that there is a significant difference between the perfor-

mance of the best algorithms and the performance of the humans, even when the algorithms

are given an oracle to set numSegments to match each human’s exactly (“By Segmenta-

tion”) – i.e., the green bar for “Human” on the far left is much smaller than the green bar
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for any algorithm. This is in contrast to the relatively small differences in performance be-

tween setting numSegments “By Segmentation” vs. “By Model” vs. “By Category.” This

result suggests that the main differences between humans and algorithms are not due to

differences in the number of segments produced by the algorithms.
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Figure 2.7: Properties of human-generated segmentations (left column) compared with
computer-generated segmentations (from second column to sixth) for five algorithms (prop-
erties of Fitting Primitives and Random Walks not shown due to space limitations).
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2.5 Conclusion

This chapter describes a benchmark for mesh segmentation. The benchmark contains 4,300

manual segmentations over 380 polygonal models of 19 object categories. Initial tests have

been performed to study the consistency of human-generated segmentations and to com-

pare seven different automatic segmentation algorithms recently proposed in the literature.

The results suggest that segmentations generated by different people are indeed quite sim-

ilar to one another and that segments boundaries do indeed tend to lie on concave seams

and valleys, as predicted by the minima rule. We find that the benchmark data set is able

to differentiate algorithms, but we do not find one algorithm that is best for all object cate-

gories. Generally speaking, it seems that algorithms that utilize non-local shape properties

tend to out-perform the others. Since the benchmark data set and source code is publicly

available (http://segeval.cs.princeton.edu/), we expect that these results will be amended

and augmented by researchers as more data becomes available, more tests are performed,

and more algorithms are developed in the future.

39



Chapter 3

Schelling Points

3.1 Introduction

Detection of “salient” feature points on 3D surfaces is also a fundamental problem in com-

puter graphics with many applications in shape analysis and related fields, including object

recognition [90], shape matching [91], shape-based retrieval [92], metamorphosis [93],

cross-parameterization [94], texture mapping [95], deformation transfer [96], shape ap-

proximation [26], viewpoint selection [26], symmetry detection [97], and part-based seg-

mentation [66, 98].

Although many definitions have been proposed for what constitutes “salient” feature points

in the computer graphics literature (e.g., maxima of average geodesic distance, maxima of

Gauss curvature, maxima of mean curvature differences at increasing scales, etc.), none of

them captures what people perceive as salience in the social/psychological perspective, as

defined in the Oxford English Dictionary: “the quality or fact of being more prominent in

a person’s awareness or in his memory of past experience” [99]. It is this definition that

captures the semantic essence of a stable feature point, and therefore one that we believe is

useful for applications in computer graphics.

40



Figure 3.1: Schelling points (red). Positions on a surface selected consistently by many
people when trying to match each other without communication.

The goal of this chapter is to develop a model of salience on 3D surface meshes based on

this social/psychological definition. To achieve this goal, we leverage the concept of focal

points as introduced by Schelling in his seminal paper on pure coordination games [100].

In game theory, “a focal point (also called a Schelling point) is a solution that people

will tend to use in the absence of communication, because it seems natural, special or

relevant to them” [101]. To discover focal points, Schelling performed user studies in which

he asked people to make selections that they expect will match other people’s selections.

Since the people were not allowed to communicate in any way, they usually picked the

most conspicuous point, often using semantic information not provided in the input. For

example, if asked to select a time and place in New York City to meet someone without any

prior communication, people tended to choose Grand Central Terminal at noon. This choice

is clearly the result of prior semantic knowledge that makes that choice more prominent

in a person’s awareness or in his memory of past experience (i.e., social/psychological

salience).
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Inspired by Schelling’s work, we designed a user study that asks people to select points on

3D surface meshes that they expect will be selected by other people and used the acquired

data to build a model of mesh saliency. Our primary research contribution is the analysis of

the collected data. We find that: 1) Schelling point sets are usually highly symmetric, and

2) local curvature properties (e.g., absolute value of minimum curvature) are most helpful

for predicting obvious Schelling point features, but 3) global properties (e.g., symmetry

and segment centeredness) are required to explain other features. Our secondary research

contributions are the methods used for acquiring, analyzing, and predicting Schelling points

on 3D meshes. They include: 1) the design of a user study, 2) the analysis of consistency

and properties of Schelling points, 3) a learned model for predicting the distribution of

Schelling points, and 4) an algorithm that uses the learned model to extract Schelling points

on new meshes.

3.2 Related Work

Detection and matching of salient feature points are classical problems in computer vi-

sion, geometric modeling, computer-aided design, computer graphics, and several other

fields [102]. In this section, we cover the most related work, focusing on methods designed

for saliency estimation at a point.

Feature Point Detection: There has been many recent work on automatically extracting

feature points on 3D meshes. Example methods include local maxima of average geodesic

distance (AGD) to other points on the surface [98, 95, 91], local maxima of differences

of Gaussians at multiple scales [103], local maxima of Gaussian curvature [104], proper-

ties of the Heat Kernel Signature [105], scale-space analysis of mean curvature flow [106],

other multiscale analysis [107, 108, 109, 110, 111], points on the convex hull after MDS

embedding [66], leaf nodes of a curve skeleton extraction [112], points with unlikely
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local shape descriptors [113, 90], and points with local shape descriptors distinctive of

an object class [114]. Most methods are based on differential properties of the surface

(e.g., [103]), while others are based on global properties [91] and/or shape descriptor statis-

tics (e.g., [90]). Previous work has analyzed which of these feature points is most stable

under various models of perturbation [115], but none as studied how they relate to semantic

salience in the Schelling sense.

Saliency Estimation: In related work, methods have been proposed to define continuous

measures of “saliency” across a surface for mesh processing applications. Motivated by

perceptual criteria [19], Lee et al. [26] used a center-surround filter of curvature across

multiple scales to select salient regions for mesh simplification and viewpoint selection.

Gal et al. [116] computed the saliency of a region based on its size relative to the whole

object, its curvature, the variance of curvature, and the number of curvature changes within

the region. Shilane et al. [114] defined the “distinction” of a surface region based on its

similarity to objects within the same class and difference to objects in other classes. This

chapter studies how these types of saliency measure relate to human-selected focal points

and provides a new saliency measure learned from examples.

Saliency Evaluation and Comparison: Kim et al. [25] studied how eye fixations relate

to mesh saliency [26], and other studies have evaluated and compared feature point detec-

tion algorithms for images in computer vision [117, 118, 24, 119, 120, 121]. For example,

Schmid et al. [119] and Sebe et al. [122] compare interest point detectors on the basis of

stability, repeatability, and information content. Privitera et al. [24] compare region of in-

terest algorithms based on how well they match eye fixations measured with an eye tracker.

Huang et al. [123] compare algorithms with respect to points collected in a game (Photo-

shoot) that asks people to select points on images that they expect will match a partner’s

selection, much like the ESP game proposed by Ahn et al. [124]. This work is similar to

ours in that it also asks people to match point selections. However, the methodology of
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that study can produce bias in selected points due to training effects of immediate feedback

(it is not a pure coordination game), it considers only 2D points in natural images, it does

not provide any analysis of how image properties correlate with selected points, it does not

suggest new properties correlated with the selected points (e.g., symmetry, segmentations,

etc.), and it does not provide a predictor of points learned from the collected examples.

Perceptual Psychology: There have been many studies in perceptual psychology to under-

stand how people assign importance to regions of images. Most have been based on visual

attention [22, 125, 126, 127, 128, 129]. For example, Koch et al. [22] proposed a model

that salient points would be ones that are different from their surroundings. Other percep-

tual psychology studies have studied which points are most important for approximation of

a contour. For example, Attneave [23] showed 80 subjects a series of 16 shapes drawn as

2D contours and then asked them to select “a pattern of 10 dots which would resemble the

shape as closely as possible.” His main finding was that most people select points where

the “contour is most different from a straight line” – i.e., where the curvature has large

magnitude. While these studies are related to ours, we aim to discover which points have

semantic salience in 3D meshes.

Our work follows the line of research to understand how people perform tasks of interest in

computer graphics [12, 11], focusing on feature point detection. It is novel not only because

it considers a new question: “where do people select feature points?,” but also because it

asks the question in a different way: “where do other people select feature points?” and

because it includes new algorithms for analyzing and extracting feature points based on the

collected data.
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3.3 Approach

The goal of this chapter is to develop a model of semantic salience for 3D surfaces. Our

general approach is to gather a large collection of feature points from people and then to

study what geometric properties distinguish them from others.

Although this general idea may sound straight-forward, it is surprisingly difficult to design

a study to collect useful data on salience. We did not want to simply ask people to “please

click on important points” because different people might have different ideas of what it

means to be important (e.g., functional, structural, social, visual, etc.), and it would be

difficult to ask the question in a way that reveals people’s intentions without leading them

to an answer.

During a pilot study, we tried an approach based on Attneave [23], where we asked people

to select points on a 3D surface from which another person could recognize the object class

by just viewing those points. This approach was a resounding failure. We found that most

people selected points only on a 2D silhouette curve of the surface as seen from a single

canonical view (e.g., the outline of a fish as seen from the side), which does not seem to

match a notion of semantic salience that is useful for 3D applications.

Ultimately, we arrived at an approach based on Schelling’s focal points: we ask people

to select points they think will be selected by others. The concept of focal points was

introduced in pure coordination game theory in the 1960’s [100] (page 57) – Schelling

found that people asked to make selections that match other people’s selections amongst

seemingly equivalent distinct options (segregated Nash equilibrium) often make the same

choices without any communication or feedback. For example, if people were asked to

choose “heads” or “tails” with no other information besides the goal of matching as many

other people as possible, 86% chose heads [100]. If asked to match other people’s selection

on a map, most people agreed on just a few points (e.g., prominent intersections). It was
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conjectured that the commonly selected focal points (later called Schelling points) arise

from a strategy or outcome with properties of “prominence or conspicuousness” [100].

A decade later, Lewis used Schelling’s ideas to introduce the term “salience,” which he

defined, first, as the property of an outcome of “standing out from the rest by its unique-

ness in some conspicuous respect” and, second, as “being unique in some way everyone

will notice, expect the others to notice” [130] (page 35). He used formal game models to

characterize coordination strategies, hypothesizing that people use “common knowledge”

to select amongst distinct Nash equilibrium. It is this “common knowledge” about feature

points on 3D surfaces that we aim to capture and leverage in our work.

Inspired by the ideas of Schelling and Lewis, we have designed a method to study semantic

salience on 3D meshes. Specifically, we first acquire a large number of Schelling points by

asking people to select points on 3D surface meshes that they expect will be selected by

other people (Section 3.4). We then analyze properties of the collected point sets, asking

questions like: “how consistent are Schelling points selected on different meshes within

the same object class?” and “how are the locations of Schelling points associated with

geometric properties of the surface?” (Section 3.5). Next, we train a regression model that

predicts the likelihood that a point on a surface is a Schelling point based on its surface

properties (Section 3.6). Finally, we provide an algorithm to predict a set of Schelling

points for new meshes (Section 3.7).

3.4 Study Design

The first and most difficult issue faced in our investigation is how to design a study to

acquire Schelling points from many people for many types of 3D surfaces. We would like

to collect enough data to analyze how Schelling points relate to surface properties across a

wide variety of meshes and to train a predictive model that can be used to estimate Schelling
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points for new 3D meshes. Of course, this is difficult because it requires recruiting and

supervising many (possibly hundreds or thousands of) human subjects in a user study.

To address this issue, we performed our study on-line. Following the approach of Chen et al. [11]

and Cole et al. [131], we recruited subjects for our study through Amazon’s Mechanical

Turk (AMT) [3], an on-line platform that matches people willing to work with paying tasks.

Alternatively, we could have designed an on-line game to acquire input (as in [123, 124]),

but that approach would have required attracting a player population, which is beyond the

scope of this chapter. Since tasks on the AMT are typically short in duration (a minute or

two), inexpensive (around 10 cents), and accessible on-line (in a web page), it is well-suited

for studies like ours that require a large number of people to do simple, menial tasks (e.g.,

clicking points on a surface).

The challenge with any on-line study is to design a protocol that acquires useful informa-

tion from a diverse population of subjects. Unlike a laboratory study, where a handful of

screened subjects are trained, monitored, and employed for several hours, we have access

to a much larger number of people, but less control over subject selection and less trust

that every individual is motivated to do a good job. As such, our challenge is to design a

study that motivates people to work responsibly and incorporates unbiased mechanisms to

discard data from those that don’t.

We designed an easy-to-learn task in which subjects that provide “better” input get paid

more, and those that do not do a “good” job get paid nothing. Specifically, we presented

each user with a 3D mesh shown in an interactive viewer with a crystal ball camera control

and a simple method for clicking on points with the mouse (one key for adding a point at

the selected position on the mesh and another key for removing a previously added point).

Then, we provided the following instructions: “ select points on the surface of a 3D object

likely to be selected by other people. We will ask many people to do the same task and

see how your selection matches others.” Our reward structure ranked people according to
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a scoring function that provides positive credit for each point also selected by at least 25%

of other people, negative credit for other points, and zero credit if less than ten points were

selected. Based on the ranking, we paid the top scoring 30% of people X, the next 60%

X/2, and the bottom 10% were not paid. This incentive structure was chosen based on the

results of a pilot study, which suggested that it is useful to provide motivation for people to

select more than just the very obvious Schelling points (e.g., the ends of limbs on animals)

and that it is better to acquire too many points from people than too few (if a surface has

fewer Schelling points, then “extra” points will be distributed somewhat randomly).

Data Filtering: Even though our pay structure encourages people to do a good job, we

employ three filters to discard point sets we expect to provide bad data: i.e., when the

user: 1) clicks too few points (less than ten), 2) maintains approximately the same camera

viewpoint for the entire interactive session (the cumulative camera rotation is less than 36

degrees), and 3) clicks too hastily (the average time per click is less than one second).

These filters were chosen on the basis of a pilot study, which showed empirically that

a significant fraction of people provided careful data and that these simple filters were

effective at conservatively discarding the careless data while retaining much of the good

data. In this regard, we designed our filters to favor false-negatives (discarding good data)

over false-positives (accepting careless data), since it is easy to collect data on the AMT.

Mesh Selection: In order to cover a wide variety of object categories, and to leverage data

collected in previous studies, we use the same mesh data set as described in 2.3.1. The data

set is highly tessellated (an average of 10,223 vertices per mesh), so we can limit selected

points to vertices of the mesh. In addition, since it has been used for previous studies of

mesh matching [81] and segmentation [11], it provides an opportunity to investigate how

Schelling points correspond with other types of data.

Protocol Implementation: To reduce bias in the acquired data, we implemented a schedul-

ing program that records the AMT identifier and IP address of every subject doing our task.
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That program ensures that no single AMT identifier or IP address can work on the same

mesh twice, that meshes are distributed in randomized order, and that data is provided by

approximately the same number of subjects for every mesh. The interactive Java Applet

presented to the user for viewing meshes and selecting points is initialized with a random

camera direction and two virtual lights, all that point at the object centroid from a distance

relative to the object bounding box size. As the user rotates the meshes, the lights move

with the camera, staying along the equator at 90 degree angles to the camera. The Applet

records the position, time stamp, and camera parameters for every point added or deleted

from the data set, and sends the data back to our server. No feedback or payments were

made to any subject until all data was collected to avoid training effects.

Data Collection: Using this protocol, we used the AMT to acquire 24,124 point sets from

1,696 unique AMT accounts. Of this raw data, 9,965 point sets (44%) from 1,060 unique

AMT accounts passed all three data filters – 16% had too few points, 14% were entered

with too little camera motion, and 28% were clicked too hastily. The 9,965 point sets in our

final data set contain 201,304 points in total, an average of approximately 10,000 points per

object category, 500 points per mesh, and 20 points per point set. Each of the 380 meshes

was represented by data from on average 25 people, and every mesh had at least 23 point

sets.

Schelling Point Extraction: As a post-process, we extract a discrete set of Schelling Points

from the collected data – i.e., the ones upon which many people agreed. Of course, since

the data is discrete (on vertices of a mesh), and there is spatial noise σ in the point selection

process, some aggregation is required to identify commonly selected points. To address

this issue, we first construct a function on every mesh M that indicates the number of times

every vertex V was selected by different people. Then, to reduce spatial noise, we blur that

function geodesically with a Gaussian filter with maximal value 1 and σ = 0.01R, where

R represents the radius of the mesh (R =
√
SurfaceArea(M)). The result is a smooth
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Schelling distribution function, SD(V ), roughly estimating the probability that each vertex

V will be selected by a person in our study (shown in red in Figures 3.1 and 3.2).

Then, we extract a discrete set of Schelling points, S, from local maxima of SD(V ) and

build an indicator function, SP (V ), that tells whether vertex V is a Schelling point (SP (V )

is one at Schelling points and zero otherwise). To form this set, we select every vertex

V with SD(V ) greater than 12.5% and spatial separation by more than 0.02R from any

other vertex Vk with higher SD(Vk). These choices include at least the vertices that were

selected with spatial error less than σ by at least 25% of the people in our study (the positive

payment threshold in our study). Some examples point sets are shown in blue in Figure 3.2.

Figure 3.2: Schelling points. The saturation of red depicts the estimated fraction of people
selecting a mesh vertex in our study. Extracted Schelling points are shown in blue.
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(a) Consistency of points selected by (b) Consistency of points selected by c) Consistency of points selected by the
different people on the same mesh people on meshes of the same object class same person on symmetric sides of a mesh

Figure 3.3: Consistency of points collected in our study. The plots show cumulative dis-
tributions of normalized distance from each point to the closest point in another point set.
Different colored curves depict averages for different subsets points. The thick black curve
represents the overall average of all points. The thin colored ones separate points based on
the order in which they were selected during an interactive session: the consistency of the
first point selected is shown in the top red curve, points 2-3 are shown in purple, points 4-7
in blue, etc. Note that the average normalized edge length for these meshes is 0.013, and
the normalized distance threshold used to call a point “consistent” in our analysis is 0.05.

3.5 Analysis of Schelling Points

This large data set provides an opportunity to investigate a number of questions of potential

interest in computer graphics and perceptual psychology, including “How consistently do

people select points on the same mesh?,” “How symmetric are the selected point sets?,”

“How are the selected points distributed on the surface?,” and “What geometric proper-

ties of a 3D surface are prominent at selected points?.” This section takes steps towards

addressing these questions.

A. How consistently do people select points on the same mesh? The first and most

basic question is whether people select points consistently in our study.

To address this question, we compute the geodesic distances between points selected by

different people on the same mesh. For the k-th point PM
i,k in every point set PM

i selected

on every mesh M , we compute the geodesic distance dM(PM
i,k , P

M
j ) from that point to the

closest point in every other point set PM
j collected on the same mesh, normalizing for scale

by dividing by square root of the surface area. We then analyze the consistency of the point
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sets by plotting cumulative distributions of dM(PM
i,k , P

M
j ) indicating the fraction of point

sets that are consistent with each selected point for a range of distance thresholds.

For example, Figure 3.3a shows cumulative distributions where the horizontal axis rep-

resents normalized distance thresholds (dM(PM
i,k , P

M
j )) and the vertical axis represents the

fraction of points within that threshold of point sets selected by different people on the same

mesh. The thick black curve represents the overall average of all points in the collected data

set, aggregated first over all points within the same mesh, then over all meshes within the

same object class, and finally over all classes in the data set to avoid over-weighting point

sets or meshes with large numbers of points. The thin solid colored curves depict averages

for different subsets of the points based on the order in which a user selected a point within

his/her interactive session (e.g., the red curve shows distances from the first point selected

in each session, the purple curve shows the same for the second and third point, the blue

curve for points 4-7, etc. These curves tell a more detailed story of how consistency relates

to the order that points were selected.

Looking at the curves in Figure 3.3a, we can readily make two observations. First, different

people tend to pick points fairly consistently with one another on the same mesh. Using a

normalized distance of 0.05R (approximately 3 inches on a human body) as a threshold to

classify whether a point PM
i,k is “consistent” with a point set PM

j , we find that 48.5% of the

selected points are “consistent” with other point sets. This level of consistency is far greater

than 12.8% that would be observed if points were selected randomly. Second, we observe

that points selected earlier in an interactive session tend to be more consistent than ones

selected later (there are higher densities near dM(pi, Pj) = 0 in the curves representing

points selected earlier), which suggests that people choose the most “salient” points first,

and others later. These results, combined with the visualizations in Figure 3.2, suggest that

people selected points in a non-random, consistent way in our study.
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B. How consistently do people select points on different meshes of the same object

category? A second question of potential interest is whether people select semantically

equivalent Schelling points on different meshes within the same object category. For ex-

ample, if they select a particular point (e.g., the knee) when the object is in one pose (e.g.,

a running dog), do they also select that point when the same object is in a different pose

(e.g., a sitting dog)? And, do they select a semantically equivalent point on a different

object within the same general category (e.g., all four-legged animals)?

To address these questions, we produced a semantic mapping between all pairs of the

twenty meshes within each of the twenty object categories and used those mappings to

compute cumulative distributions of normalized distances between selected points. To pro-

duce the mappings, an expert user selected a set of landmark points for every mesh that

is semantically consistent with every other mesh in the same category. For example, in

the four legged animal category, every mesh was marked with landmark points represent-

ing the “tip of the nose,” “tip of right ear,” “middle of the back,” etc. These landmark

points provided a coarse point correspondence from which a dense one-way inter-surface

mapping A→B was established from vertices of A to vertices of B using a simple proce-

dure based on similarities of pairwise geodesic distances (following the strategy outlined

in [132], except maintaining the explicit correspondences between landmark points).

Using these inter-surface mappings, we can study the consistency of points selected by

people on different meshes within the same object class. Specifically, for each point PM
i,k

selected by a person on mesh M , we use the inter-surface mapping M→M to transfer it to

the domain of every other mesh M in the same class to form PM→M
i,k . Then, for every point

set PM
j collected on mesh M , we compute dM(PM→M

i,k , PM
j ), the normalized geodesic

distance from the point PM→M
i,k to the closest point in PM

j , and add it to the cumulative

distributions using the same procedure as described in the previous subsection. The results

are shown in Figures 3.3b.
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Interestingly, we find that the consistency of points selected by different people on different

meshes in the same class is almost, but not quite, as high as the consistency of points

selected by different people on the same mesh. Overall, 39.4% of the points selected on one

mesh are “consistent” with point sets selected on different meshes of the same object class.

Since the local geometry of meshes within the same class are sometimes very different, this

result suggests that the criteria people used for selecting points is not based only on absolute

geometric properties (e.g., Gauss curvature), but rather on relative properties (e.g., extrema

of Gauss curvature) or on semantic features that are consistent across different instances

within the same class.

C. How symmetric are the selected point sets? A third question of interest regards

symmetry: if a person selects a point on a symmetric object, how often do they also select

the its symmetric correspondence(s)? For example, if a person selects the right ear on a

head, how often do they also select the left ear?

To investigate this question, we manually produced a symmetry mapping from every mesh

onto itself to establish dense symmetric point correspondences for each of the 319 meshes

with intrinsic reflective symmetry. This was done by clicking on symmetric pairs of land-

mark points (e.g., right eye to left eye, left elbow to right elbow, etc.) and then interpolating

those pairs to form a dense correspondence over the entire surface using an algorithm based

on Bronstein et al. [132].

Given the symmetric mapping, we analyze the consistency of every point set with its sym-

metric correspondence using the methods described in the previous subsections – i.e., we

build cumulative distributions of the normalized geodesic distance from every point to the

closest point in the same point set after the symmetric mapping has been applied (Fig-

ure 3.3c). Our results reveal that point sets selected by people are highly symmetric –

76.0% of the points are “consistent” with the symmetric mapping. More specifically, com-

paring to the histograms in Figure 3.3, we find that point sets selected by people are far
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more consistent with their symmetric mapping than they are with point sets selected by

different people. As such, we conclude that symmetry is an important cue for selecting

“salient” points in our study.

D. How are the selected points distributed on a surface? A fourth question of interest

is to characterize the spatial distribution of points selected by people. To address this

question, we show the histogram of distances from each point to other points in the same

set for meshes of different object class in Figure 3.4. The plot shows a separate curve for

each of the 19 object classes (dotted lines), along with the overall average (thick red line).

Three interesting observations can be made from these histograms. First, people tend to

spread points fairly evenly on a mesh – i.e., there are few points that are either very close to

or very far from other points. Second, the spacing for different object classes is different.

For example, points on busts (statue heads) tend to be closer to one another (dotted light

blue curve on left), while points on octopi are more widely spaced (light blue curve on

right). Third, the spacing of points appears to be dictated more by the size of the mesh

shown to the person than the physical size of the object in the real world. For example,

the spacing of points on a pair of eyeglasses is the same as for a human body, and also

the same as for an airplane. Similarly, the spacing of points on a human hand is different

if shown alone or as part of an entire body. From these observations, we hypothesize that

people think of the virtual objects at the scale they are shown and select the largest features

available on the screen regardless of their size in the real world.

F. What geometric properties distinguish Schelling points? Finally, it is interesting to

ask whether it is possible to characterize common geometric properties of Schelling points.

For example, are Schelling points commonly at extrema of Gauss curvature? Can Schelling

points be predicted by analysis of average geodesic distance or other geometric properties

commonly used for feature extraction in computer graphics? And, are there other geometric
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Figure 3.4: Histogram of spacings between points collected for different mesh categories.
Distances are listed as fractions the square root of the mesh area. Red line shows average.

properties of meshes that are associated with Shelling points, but have not been used for

point feature extraction before?

To investigate these questions, we compute a number of geometric properties for every

vertex V of every meshM in the data set, and then analyze how these properties explain the

placement of Schelling points based on information theory statistics. The set of properties

considered includes:

• Curvatures: the Gauss, mean, minimum, and maximum curvatures at V , as com-

puted in Rusinkiewicz et al. [133].

• Mesh Saliency: the mesh saliency at V (at scales 0.1, 0.3, 0.5, and 0.7), as computed

with code provided by Lee et al. [26].

56



• Geodesic Distance: the average (AGD), median (MGD), standard deviation (SDGD),

tenth percentile (10GD), ninetieth percentile (90GD), and maximum of geodesic dis-

tance (GGD) from V to all other vertices in M , as estimated by Dijkstra’s algorithm.

• Shape Diameter Function (SDF): the median length of rays traced from V through

the interior of M as described in Shapira et al. [87] using the implementation pro-

vided by Kalogerakis et al. [47].

• Heat Kernel Signature: the amount of heat diffused from V to itself within time t,

for five equally spaced time durations ranging from very small (HKS1) to very large

(HKS101), as computed with the implementation provided by Sun et al. [105].

• Up: the Z coordinate (ZPosition) and normal direction (ZNormal), assuming it is

prescribed by standards in the modeling language.

• Symmetry: the Intrinsic Reflective Intrinsic Symmetry Axis function proposed by

Xu et al. [97], per our implementation.

• Segment Centeredness: the centeredness of the point within its part, as computed

by first decomposing the mesh into segments automatically with the algorithm in

Shapira et al. [87] and then computing the distance from V to the closest segmenta-

tion boundary divided by the maximal distance to the closest segmentation boundary

for all vertices in the segment containing V .

Most of these properties have been used before for characterizing saliency and/or gener-

ating point sets on meshes. However, we consider two new ones that are specifically mo-

tivated by visual inspection of Schelling point sets collected in our study: symmetry and

segment centeredness. We observe that people often select points on symmetry axes and

centers of large convex parts in the absence of other more distinguishing features nearby

(e.g., the center of the lens of the glasses and the belly button of the teddy bear in Fig-

ure 3.2. Thus, we expect that extrema of these functions (e.g., segment centeredness = 1)

will be correlated with locations of selected points. This hypothesis is corroborated by the
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histogram shown in Figure 3.5, which plots frequencies of selected points versus segment

centeredness (for automatic SDF segmentations, as used throughout this chapter: and for

manual segmentations provided by the Benchmark of 3D Mesh Segmentation [11], which

are included only for comparison sake). We find that selected points appear most often at

the center of extract parts – i.e., the rightmost bin of the histogram contains 25% of the

distribution.
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Figure 3.5: Schelling points are most often at centers of segments (far right of plot).

We also consider functions derived from these basic geometric properties. Specifically,

we include the difference between minimum and maximum curvature (CurvDiff), which

is smallest at centers of local rotational symmetry. We include the absolute value of

Gauss, mean, minimum, and maximum curvatures, which are largest at critical points,

peaks/divots, peaks/divots, and ridges/valleys, respectively. We also include blurs at four

levels (σ = 0.01R, σ = 0.02R, σ = 0.04R, and σ = 0.08R) for all properties except HKS,
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CurvRing, and Geodesic Distance, which are already very smooth. Finally, for every prop-

erty, p, and function of that property, f(p), we include a percentile transformation, %(p),

that encodes the percentage of vertices that have a smaller value within the same mesh.

To analyze how Schelling points are associated with these properties, we calculate informa-

tion theory statistics and coverage plots to estimate how well property distributions explain

the Schelling distribution. Results for a representative set of properties and functions on

them are shown in Table 3.1 and Figure 3.6.

Information Gain: The middle two columns of Table 3.1 show the Information Gain,

G(f), for functions f of several properties p. G(f) is the difference between entropy of

the Schelling point indicator function, SP (V ) and its average entropy conditioned on dis-

cretized values of the property f – higher values of Information Gain indicate a stronger

predictor of the Schelling point locations independent of other properties. From these re-

sults, we see that curvature is the strongest single cue for feature point selection – many of

the Schelling points are at the tips of protrusions (fingers and toes), which have large posi-

tive minimum curvature, and a few are at conspicuous saddle points (e.g., between fingers),

which have highly negative Gauss curvature. Other properties commonly used for feature

point detection (e.g., Saliency, HKS, and AGD) also provide fairly good predictors.

Random Forest Importance: The rightmost two columns of Table 3.1 show the impor-

tance of f as computed by the Random Forests of [134], which estimate the importance of

a feature in combinations with others by building a large number of decision trees trained

with different sets of properties and measuring the differences between prediction errors

with and without each property. It suggests that indeed minimum curvature and Gauss cur-

vature are most useful properties for predicting Schelling points. It also suggests that the

added value of AGD, HKS, mean curvature, and other common properties is limited, since

they are redundant with minimum and Gauss curvatures. On the other hand, the importance

of global properties, such as symmetry, SDF, and segment centeredness, is relatively high
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Property Best Filter Info Gain Importance
(p) (f) G(f) G(%(f)) I(f) I(%(f))

MinCurv |(B(p, 1))| 195 203 216 801
GaussCurv |p| 201 211 59 267
Symmetry B(p, 4) 12 25 18 84

SDF p 17 26 31 54
SegCenter B(p, 3) 24 43 15 33
HKS(101) p 104 141 15 31

Saliency(0.3) p 48 85 26 30
MaxCurv B(|p|, 4) 53 99 19 30
ZPosition p 20 51 29 27
ZNormal p 11 14 24 25

MeanCurv B(p, 4) 43 98 11 23
CurvDiff p 29 46 22 21

AGD p 25 85 18 18

Table 3.1: Information gain (x1000) and random forest importance of mesh properties
(rows) for predicting the Schelling point distribution. p represents the property value, f is
the best filter found for p, B(·, σ) is Gaussian blur, %(f ) is its percentile within a mesh,
G(·) is information gain, and I(·) is an estimate of importance by analysis of Random
Forests.

(84, 54, and 33, respectively), which suggests they provide cues that are independent of

other properties.

We note that percentiles (columns 4 and 6) appear more useful for predicting Schelling

points than raw geometric property values: e.g., vertices having curvature higher than oth-

ers on the same surface are more likely to be Schelling points than ones within any specific

range of values.

Coverage plots: Figure 3.6 shows stack plots representing the fraction of Schelling points

in S “explained” by extrema of different mesh properties. To produce this result, we ex-

tracted the K largest local maxima of each property (K = 14, matching the average size of

a point set collected in our study), with maxima spread by at least geodesic distance 0.02R,

using the algorithm described in Section 3.7. Then, for each Schelling point, si ∈ S, we

considered the surface properties in the order from bottom to top, marking the property

with a vote if it is the first to have one of its K largest local maxima within 0.05R of si.

After all votes are cast (one for each Schelling point on each mesh), we average the votes

per mesh, and then average the fractions per class (shown in the first 19 bars in Figure 3.6),
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and finally average those fractions to get a result for the entire data set (shown in the bar

labeled “Overall” on the far right).

These results suggest that extrema of minimum curvature “explain” 56.7% of the Schelling

points (bottom blue region on the rightmost bar). Of the remaining Schelling points, 6.7%

are explained by Gauss curvature (red); and 9.1% of the ones still remaining are explained

by symmetry (IRSA); and so on. Please note that there is variation in the results for dif-

ferent object classes: curvature measures are almost completely sufficient for explaining

Schelling points on airplanes, for example; but symmetry and segment centeredness are

more helpful properties for explaining Schelling points on teddy bears.

Interestingly, approximately 11% of Schelling points are not described by the strongest K

local maxima of any property considered. Examining those points visually, we find that

they tend to reside either at semantic features off-center on smooth surfaces (e.g., the eyes

on the teddy bears) and/or at geometric features that did not appear among the strongest

maxima (e.g., a knee or elbow when the appendage is not bent). Perhaps other geometric

properties could be discovered to explain these remaining points in future work.

3.6 Prediction of Schelling Distributions

In this section, we investigate whether it is possible to predict mesh saliency using the data

collected in our study. That is, for a meshM never seen before, we aim to provide a method

that estimates the probability that a person would have selected each vertex V of the mesh

if it were included in our study – i.e., the predicted Schelling point distribution, ŜD(V ).

Transfer: A simple method to approach this problem would be to transfer the Schelling

points from other similar meshes for which AMT data has been collected. That is, given a

new mesh M , we could select a set of K similar meshes Mi from the collected Schelling

point data set, compute a mapmi(M →Mi) from each vertex Vj ofM to the corresponding
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Figure 3.6: Stackplot showing fractions of Schelling points first “explained” by extrema of
each property considered in the order shown bottom to top.

vertex mi(Vj) in each similar mesh Mi, and then predict the transferred Schelling point

distribution ŜT (V ) for vertices of M by aggregating the Schelling points mapped from

other meshes: ŜT (V ) = 1/K
∑K

i SP (mi(V )). This method is very simple. However, it

will work well only when an accurate map can be computed, and when two meshes have

the same number of Schelling points in the same exact arrangement, neither of which is

often the case.

Regression: A second method is to build a regression model based on geometric properties

of a surface. Given a “training” set of meshes Mi with collected Schelling points, we

compute the geometric properties listed in Section 3.5 (Gauss curvature, etc.) for every

vertex of every meshMi in a training set and then learn a model that relates those properties

to the Schelling point indicator function SP (V ). This model is simple to implement, since

it considers each vertex of the mesh independently, and it can be applied to arbitrary new

surfaces.

62



Our implementation for building the regression model is based on M5P regression trees

as provided by Weka [135]). This model builds a decision tree that takes in a training

set of vertices labeled with the properties described in the previous section along with

the observed value of the Schelling point distribution at that vertex. It analyzes this data

and builds a binary tree that splits feature space into distinct regions and then fits a linear

regression model for Ŝ(V ) for each region independently. It was chosen for our study

because it can fit non-linear relationships between input and output variables (piecewise

linear), and it provides an explanation for how the model operates (the decision tree), which

is much easier to decipher than most other regression models.

As an example, Figure 3.7 shows the top nodes of a M5P regression tree learned by our

system when trained on the sampled data for teddy bears. Examining the tree, it is interest-

ing to note that the top few levels of splits take into account different properties: minimum

curvature, symmetry, segmentation centeredness, shape diameter, saliency, etc. Also, dif-

ferent derived properties are utilized, with percentiles more often chosen for splits in the

decision tree, and values or derivatives more often chosen for linear equations in the leaf

nodes. Overall, this tree suggests that several types of properties can be combined to make

better predictions than any one alone. Of course, nothing in our study is dependent on this

particular choice of regression model, and we believe that several other alternatives could

have been used just as effectively.

Results: To evaluate and compare how effectively the transfer and regression methods

work, we performed a series of leave-one-out experiments where we utilized the Schelling

points collected from people on all but one mesh to predict the Schelling point distribution

on the one held out, and then we evaluated the quality of the prediction by comparison to the

Schelling point data collected for that mesh. Evaluation was performed by computing the

Information Gain between the predicted and actual point set distributions, as in Table 3.1.
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%(Blur(MinCurv,4) <= 65.56
| Symmetry > 35.669
| | SDF > 0.528
| | | Symmetry <= 101.366
| | | | %(GeodesicTenPercentile) <= 44.399
| | | Symmetry > 101.366
| | | | ZNormal <= 0.287
%(Blur(MinCurv4) > 65.56
| SegCenter <= 0.772
| | %(MaxCurv) <= 37.769
| | | %(Saliency0.7) <= 89.877
| | | | %(|Blur(MaxCurve)|,3) <= 33.576
| | | %(Saliency0.7) > 89.877
| | | | %(Blur(|MaxCurv|),3) <= 77.394
| | %(MaxCurv) > 37.769
| | | %(SDF) <= 43.417
| | | | Blur(Symmetry,4) <= 59.815
| SegCenter > 0.772
| | MeanCurv > 5.973
| | | %(ZNormal) <= 92.829
| | | | Blur(Symmetry,4) <= 63.682

Figure 3.7: Top nodes of an M5P regression tree learned from Schelling points on teddy
bears.

For the first tests, we used vertex-to-vertex maps to transfer Schelling points to the held out

mesh M from other meshes in the same object class. Maps were constructed with two dif-

ferent methods: 1) manually by interpolating human-selected landmark correspondences

(TrueMap),1 and 2) automatically using Blended Intrinsic Maps [136] (BlendedMap). In

both cases, we considered cases where points are transferred from just the most similar

mesh as computed with a geodesic D2 shape descriptor (Closest), and where they are trans-

ferred and aggregated from all meshes in the same object class (InClass). Results of these

tests, averaged over all 380 meshes, are shown in the top four rows of Table 3.2. They

suggest that transferring points does not work well, in general, For many classes of objects

(e.g., fish, vase, chair, airplane, bird, etc.), different meshes have different arrangements of

parts, accounting for the failures of even TrueMap. For other classes (e.g., ant, hand, etc.),

computing semantically correct maps between meshes is difficult, accounting for the worse

performance of BlendedMaps.

For the second tests, we used regression trees learned from Schelling points on a subset

of meshes to predict ŜD(V ) for others. We executed two experiments that differ in how

1TrueMaps are considered only for didactic purposes. Since they are entered manually, they could not be
used in an automatic prediction system.
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the training sets were chosen. In the first experiment (InClass), regression trees were built

in leave-one-out style using training data from meshes of the same class – i.e., the model

was trained on 19 out of the 20 meshes in each object class and then tested on the 20th

(as in Kalogerakis et al. [47]). In the second experiment (OutClass), the regression tree

for each mesh was trained only using data from meshes of other object classes. Results of

this study are shown in Table 3.2. They suggest that regression significantly outperforms

transfer algorithms on this data set, even when training is performed only on examples from

different object classes. They also show that the regression model combining many surface

properties outperforms any single property – i.e., the highest Information Gain achieved for

any single property (GaussCurvature) is 0.211 (second row of Table 3.1), in comparison to

0.257 (OutClass) and 0.341 (InClass) achieved with regression.

Prediction Source Best Filter Info
Method (p) Data (f) Gain
PredictMap Closest %(Blur(p, 2)) 70

InClass %(Blur(p, 2)) 105
TrueMap Closest %(Blur(p, 2)) 160

InClass %(Blur(p, 2)) 236
Regression OutClass Blur(p, 1) 257

InClass Blur(p, 1) 341

Table 3.2: Information gain (x1000) of Schelling point predictions.

Visualizations of Schelling point distributions predicted with a regression model trained

InClass are shown in Figure 3.8. The meshes and color scheme are the same as in Fig-

ure 3.1 to facilitate direct visual comparison. From these images (and others provided in

supplemental materials), we see that these learned models are not as precise as the actual

Schelling distributions. However, they predict tips of protrusions well (corners in the air-

plane) as well as some subtle features (e.g., centers of eyeglasses, eyes of the bust, belly

button of the teddy bear, etc.) that are difficult to recognize with a threshold on any single

surface property.
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Figure 3.8: Visualizations of Schelling point distributions predicted by our algorithm after
training on properties of different meshes in the same object class (InClass).

3.7 Prediction of Schelling Points

For many applications, it is important to not only estimate mesh saliency, but also to extract

a discrete set of salient feature points. For example, surface matching algorithms often start

by detecting a set of features and then searching for correspondences between them. To be

successful, these algorithms require a set of feature points that have many of the properties

of Schelling points: stability, spacing, symmetry, etc.

Many algorithms are possible to address this problem, including ones that perform a com-

binatorial optimization over possible candidate sets, choosing the one that maximizes some

objective function. However, for the purposes of this study, we choose a simple greedy al-

gorithm that has been used in several other saliency experiments (e.g., Shilane et al. [114]).

The algorithm aims to select a set of vertices {Vi} that maximizes the sum of Ŝ(Vi) at se-

lected vertices, subject to the constraint that no two vertices in {Vi} are too close to one

another. It does so by sorting vertices from highest Ŝ(V ) to lowest and then repeatedly se-

lecting the next vertex remaining whose position is not closer than a normalized geodesic
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distance threshold, D, to any previously selected vertex (D = 0.05). This process avoids

selecting many points near one another on the mesh and provides an easy way to reduce

the point set size by increasing the distance threshold D or terminating the greedy search

after a given number has been selected.

Results: To investigate how effectively an algorithm can predict Schelling points, we per-

form an analysis of the similarities of the automatically generated point sets to the ones

collected from people. For this analysis, we extract k = 14 points for each mesh (the even

number closest to the median of point sets collected from people) and then follow the gen-

eral methodology described in Section 3.5A. That is, we measure the distance from points

in our automatically extracted point sets to the Schelling points SP on the same mesh and

plot the cumulative distribution with respect to increasing normalized distance thresholds.

For comparison sake, we consider point sets extracted with the same algorithm from max-

ima of every surface property considered in Section 3.5, and we consider point sets trans-

ferred from Schelling points on other meshes within the same class using the mapping

algorithms described in Section 3.6.

Figure 3.9 shows the results. As in Figure 3.3a, the horizontal axis contains increasing

distance thresholds, D, and the vertical axis shows consistency using the cumulative dis-

tribution of point pairs whose normalized geodesic distance is less than D. The red curve

on top represents the consistency between Schelling points SP collected from people with

point sets extracted automatically from the distribution predicted with regression using

InClass training. The lower curves represent the best point sets generated with other meth-

ods. These results suggest that the points selected by our algorithm from the distribution

learned with regression using InClass training are closer to the Schelling points collected

in our study than those predicted with other methods. We also find that they are slightly

more consistent with the Schelling points than the average point set collected from peo-
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ple, suggesting that the regression and point extraction algorithms for predicting Schelling

point sets are effectively relating surface properties to Schelling point locations.

Figure 3.9: Consistency between Schelling points and point sets extracted with different
algorithms.

3.8 Validation with Controlled User Study

As a final test, we investigated the impact of collecting data via the Amazon Mechanical

Turk (AMT) on the main conclusions of our study. Although the AMT is becoming a com-

mon platform for perceptual experiments in computer graphics (e.g., Cole et al. [131]) and

there are several studies validating AMT studies in the laboratory (e.g.,Heer et al. [137]),

it is valuable to ask whether the data we gathered from the AMT is representative of that

which would be collected from a controlled group of participants in a laboratory environ-

ment.
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Of course, it is not practical to duplicate the AMT experiment exactly in the laboratory,

since it would take hundreds (or possibly thousands) of hours to collect an equivalent

amount of data. Instead, we ran a small study in which we recruited 30 volunteers through

email inquiries to acquaintances and students unfamiliar with our project. Of these volun-

teers, 20 were male and 10 were female. They span a range of ages: 6 were≤ 20 years old,

16 (21-30), 2 (31-40), 2 (41-50), 3 (51-60), and 1 (>60). All except four self-evaluate as

having at least “plenty” of experience with computers, but only 9 report having “plenty” of

experience with graphics. Every participant performed the study on a Windows computer

with a 3-button mouse.

We asked each of the participants to select points on 19 meshes (one selected randomly

from each object category) with the exact same instructions and user interface provided

on the AMT (substituting the incentive to gain “points” for selections consistent with oth-

ers’ rather than higher monetary payment). After completion, participants completed an

exit survey, in which 25 responded “yes” or “mostly” to a question asking whether they

completed the task to their satisfaction. We rejected data from the other users, leaving 474

point sets from 25 participants. Of those, 354 (74.7%) passed all three data filters – 66

(13.9%) had too few points, 23 (4.9%) were entered with too little camera motion, and 31

(6.5%) were clicked too hastily. This is a significantly lower rejection rate than for the data

collected on the AMT.

Analyzing the point sets passing all filters, we find that they closely matches the character-

istics of data collected on the AMT. In particular, the distribution of distances indicating the

consistency of points selected by different people on the same mesh (Figure 3.10a) and the

reflective symmetry of points selected by the same user on the same mesh are almost iden-

tical to those collected on the AMT for the same set of meshes (Figure 3.10b). Of course,

there is not enough data to study consistency across different meshes in the same class, or
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to study variations within specific subsets of objects. However, all statistics computed for

this small, controlled data set closely match those of the larger AMT data set.

Figure 3.10: Comparison of consistency and symmetry of point sets collected in a small,
controlled study (left) versus ones collected from people on the Amazon Mechanical Turk
(right). (a) The top row shows the consistency of points selected by different people on the
same mesh (like Figure 3.3a). (b) The bottom row shows the consistency of points selected
by the same person on symmetric sides of a mesh (like Figure 3.3c).

3.9 Conclusion

This chapter described a study of Schelling points on 3D meshes – i.e., points that peo-

ple expect to be selected by other people. With an on-line experiment, 9,965 points sets

containing a total of 201,304 points are gathered. During both qualitative and quantitative

analysis, we find that these points appear mainly at “semantically stable” positions on a 3D

mesh – e.g., extrema of curvature, on axes of symmetry, centers of segments, etc. We also
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find that they are selected fairly consistently by different people on the same mesh, and

slightly less so on different meshes of the same object class. However, they are selected

very consistently on symmetric parts within the same mesh. We have used this data to train

an algorithm for predicting the distribution of Schelling point on new meshes and used it

in algorithms for feature point detection.

The saliency measures produced with our methods could be used in a variety of applica-

tions in computer graphics (e.g., [93, 92, 90, 66, 26, 95]). For example, Figure 3.11 shows

how a predicted Schelling distribution can guide a mesh simplification algorithm to pre-

serve features with higher expected semantic salience (as in Lee et al. [26]). In this case,

quadratic errors used by QSlim [138] were scaled by ŜD
2

learned with regression from

InClass examples. Note how detail is better preserved in salient areas.

Our study is just a first step and thus has several limitations that suggest topics for fu-

ture work. First, it considers only watertight meshes with relatively smooth features, and

therefore some of the findings regarding local geometric features may not generalize to

polygon-soup models commonly found in computer graphics repositories. Second, it con-

siders only point features: studying line and region features would also be valuable. Third,

it studies geometric surface properties of the collected data: future work could study other

aspects of the data, including the time-dependent strategy people used to select feature

points. Finally, it focuses only on applications in computer graphics (mesh saliency and

feature point detection): future work might consider questions in perceptual psychology.
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Figure 3.11: The predicted Schelling distribution ŜD (left) can be used to preserve salient
detail during mesh simplification.
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Chapter 4

MeshMatch

4.1 Introduction

In both chapter 2 and 3, we collected data from humans and built valuable probabilistic

distributions over mesh surfaces that reflect what people tend to do. Thus it is desirable

to “transfer” the known distributions to an unseen mesh. Ideally, the “transfer” should not

only keep the global distribution, but also respect local geometry and maintain local spatial

structures of the original distribution.

In fact, transferring surface properties from one mesh to another is an important problem

for many applications in computer graphics, including texture transfer [139], detail synthe-

sis [140], shape analysis [141], hole filling [142], and surface editing [143].

Perhaps the most well-known instance of the problem is transferring color texture from

one mesh to another. The goal is to produce a pattern on a target mesh that matches the

spatially-varying pattern on a given source mesh, replicating both fine-scale textural details

and large-scale structural elements of the pattern without visible distortion. This problem

has become increasingly important as the demand for textured models in games and movies

has exploded, while the availability of studio artists has not.
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Figure 4.1: Color texture transfer. From left to right: input zebra; output cow, giraffe, and
Cerberus (a three-headed dog).

Two general approaches have been proposed to address this problem. The first aims to

produce a common parametrization that can be used as a mapping from one surface to the

other, usually optimizing for a smooth map that minimizes local distortions as measured by

deviations in lengths and/or angles (e.g., Alexa et al. [144]). This strategy is able to preserve

large-scale patterns in textures, but suffers from noticeable distortion in small-scale details

when the source and target surfaces have significantly different shapes (e.g., two animals

with different length necks). The second approach uses texture synthesis to copy patches

and/or statistics of texture from the source mesh onto the target (Merten et al. [139]). This

strategy is able to reproduce small-scale details of textures, but has difficulty preserving

large-scale patterns (e.g., different width stripes on different body parts of a zebra).

This chapter proposes a surface texture transfer framework that unifies the best features of

surface parametrization and texture synthesis for 3D meshes. The heart of our framework is

a surface correspondence algorithm based on PatchMatch [2] that quickly finds the surface

patch in the source with shape and color properties most similar to each patch in the target.

This algorithm is largely insensitive to the dimensionality of the patch representation and

thus enables association of high-dimensional feature vectors representing shape and color

descriptors with each patch. Using this algorithm in a multi-resolution synthesis strategy

[145, 146] allows our system to efficiently transfer textures preserving both large- and fine-

scale patterns of the source.

The key idea behind PatchMatch is to leverage random search and spatial coherence when

finding patch correspondences. The law of large numbers suggests that some patches are
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likely to find the correct nearest neighbor during a random search, and coherence suggests

that good correspondences can be propagated to adjacent patches, yielding full nearest

neighbor fields in high-dimensional feature spaces faster than is possible with spatial in-

dexing structures like kd-trees. However, PatchMatch was developed for images, where

there is a straightforward parametrization and distances are Euclidean, and the extensions

of its key steps to work for 3D surface meshes are not obvious. Non-trivial methods must be

developed for selecting appropriate shape and color features, representing surface patches,

searching for patch matches at arbitrary orientations, transferring features across resolu-

tions, determining efficient propagation orders, and identifying suitable locations for ran-

dom jumps. Addressing these issues is our main research contribution.

We demonstrate our surface correspondence algorithm – “MeshMatch” – in the context

of a “texture-by-shape” system that uses shape as a guiding layer in the spirit of Image

Analogies [146]. Our approach supports several different shape features depending on the

application: geodesic affinities generated from sparse manually-specified correspondences,

as well as fully-automatic heat kernel signatures. We illustrate the utility of this system

in a variety of applications, including texture transfer, detail transfer, and texture editing.

In each case, our framework is able to automatically produce patterns on the target that

resemble the source’s at multiple scales, even when the source and target have relatively

different shapes. We also apply our system in transferring Schelling distributions, which

acts as an alternative method to predict Schelling distributions on a new mesh.

4.2 Related Work

Understanding how a pattern on one surface can be mapped to another is an important

problem in many disciplines, including biology, paleontology, archaeology, etc. In this

section, we focus on recent related work on texture transfer in computer graphics.
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Parametrization. Perhaps the most obvious approach is consistent mesh parametrization.

Recent work has proposed a number of ways of mapping arbitrary surfaces to canonical

parametrization domains and then establishing a map with minimal distortion in those do-

mains [144]. For example, consistent parametrization have been established on spheres [147,

148], planes [149], template meshes [141], and automatically computed base meshes [150].

These methods have the advantage that they can guarantee properties of the map (e.g.,

smoothness), but are suitable only for surfaces with similar topology and shape, as they

would otherwise introduce distortions and/or seams in the transferred texture.

Mapping. Other methods compute a map between two surfaces directly via optimization

with respect to an analytical distortion measure. For example, Generalized Multidimen-

sional Scaling [151], Heat Kernel Maps [152], Mobius Voting [104], and Blended Intrinsic

Maps [136] all aim to find a map minimizing deviations from isometry. Wang et al. [153]

register human faces with a conformal map and use the dense correspondences for facial

expression transfer. Dinh et al. [154] solve for a mapping between two 3D shapes us-

ing PDEs, but they assume that a smooth transformation between the shapes is already

provided as input. Such methods are applicable only when the differences between two

surfaces are well-approximated by an analytical model of distortion – they do not work

well when different parts of the desired map require significantly different distortions (e.g.,

dragon↔ frog) and/or different numbers and arrangements of parts (e.g., insect with four

legs↔ insect with six legs), which are typical problems of most real-world texture transfer

problems.

Texture Synthesis. Other methods have transferred properties between surfaces by example-

based texture synthesis. For example, Golovinskiy et al. [140] used the parametric synthe-

sis method of Heeger and Bergen [155] to transfer displacement maps from one face to

another. Breckon and Fisher [156] extended the non-parametric approach of Efros and Le-

ung [157] for 3D texture transfer and surface detail in-painting. Bhat et al. [143] performed
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similar synthesis operations in the volumetric domain. These methods can be applied to

arbitrary surfaces, even when the source and target have different numbers of parts. How-

ever, they have only been demonstrated for stochastic textures with highly repetitive pat-

terns. Our work builds on the patch-based optimization approaches introduced to texture

synthesis by Kwatra et al. [158] and Wei et al. [159] and extended to the surface domain by

Han et al. [160].

The works most closely related to ours are Mertens et al. [139] and Lu et al. [161]. Both

papers describe “texture-by-shape” systems that use geometric surface features to guide

example-based texture synthesis. They investigate methods based both on parametric and

non-parametric models, finding that the parametric methods are able to reproduce weather-

ing effects and other small-scale texture features strongly associated with local geometry.

However, the non-parametric methods do not work as well, partially due to the difficulties

of finding nearest neighbors in a high-dimensional search space. A goal of our work is

to overcome this problem, thereby allowing synthesis of highly structured textures using

nonparametric synthesis methods.

4.3 Overview

The objective of this work is to transfer texture/properties from one surface to another while

retaining its geometry-aware characteristics, large-scale structural elements, and small-

scale details.

To address this problem, we have developed a patch-based texture-by-shape synthesis al-

gorithm based on Image Analogies [146] and PatchMatch [2]. As in other algorithms of

this type, we simultaneously solve for the texture of the target mesh MT and the correspon-

dences to vertices of the source mesh MS in a multi-resolution optimization. At each level

of the optimization, the texture of the target mesh is first initialized, either by up-sampling
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from the previous level or at random in the top level, and then an EM algorithm solves for

the texture and correspondences for the next level via interleaved optimization. Specifi-

cally, the E-Step finds a correspondence from every vertex vT of MT to the most similar

vertex vS in the source mesh MS , where similarity is determined by proximity of color and

shape features within patches centered at vT and vS . The M-Step then synthesizes a new

color for every vertex vT by voting with colors found in patches of vS corresponding to

patches of MT overlapping vT . The iteration terminates when correspondences stabilize,

or after a fixed number of iterations in each level.

A major challenge in implementing this patch-based synthesis approach is to find the source

patch(es) most similar to each target patch quickly. If patch similarity is determined by the

proximity of k features (e.g., 3p features for RGB color over a patch with p samples, plus q

features for shape), then the problem is to find nearest neighbors in a k-dimensional feature

space, which is well-known to be difficult when k is large, resulting in slow algorithms,

even when approximate indexing structures are used [162]. In part to avoid this problem,

many previous methods for geometry-guided texture synthesis have utilized parametric

synthesis algorithms, which are faster but do not replicate large-scale structural elements

in synthesized textures.

The key contribution of our work is to leverage the ideas proposed in PatchMatch [2] to

accelerate the search for similar patches during non-parametric texture transfer between

3D meshes. The main idea is to leverage the law of random numbers and the spatial coher-

ence of nearest neighbor field when searching for patch correspondences. Random guesses

are interleaved with propagation to establish approximate correspondences quickly, with-

out the need for a spatial indexing structure. As a result, finding similar patches is faster,

less memory intensive, and less sensitive to the patch size and feature count. These dif-

ferences enable the use of large patches with descriptive geometric features. In turn, such
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informative descriptors help reproduce large-scale structures in transferred textures that are

consistent with the model’s shape.

The following section describes the implementation of our algorithm, paying special at-

tention to the issues unique to 3D meshes. In Section 4.6, we illustrate results for several

possible applications, and we conclude with a brief summary and discussion of topics for

future work in Section 4.8. From now on, we will abuse terminology a bit and use texture

to refer to color textures as well as other surface properties.

4.4 Algorithms

The input to our system is a source texture TS stored on vertices of a source mesh MS and

a target mesh MT ; and, the output is a newly synthesized texture TT stored on vertices of

MT , along with an approximate nearest neighbor field NNF that associates an orientation

and vertex of MS with every vertex of MT .

As shown in Figure 4.2, the system starts by preprocessing the meshes to build efficient

multi-resolution adjacency structures. Given a mesh M , we build L discrete levels via it-

erative mesh decimation using an algorithm similar in spirit to Q-Slim [138]. Edges are

collapsed in shortest-first order, positioning new vertices at the midpoint of the collapsed

edge to preserve good aspect ratio, and retaining the “vertex tree” of parent-child relation-

ships to allow efficient traversal between multi-resolution levels. The mesh at each level,

M i, is decimated in this way until it contains approximately half as many vertices as the

previous level, and the process stops when there are approximately 128 vertices in the

coarsest mesh.

Then, the system performs a multi-resolution optimization of the nearest neighbor field

(NNF) and target texture TT . At each multi-resolution level, proceeding coarse to fine, it

alternates between optimizing the NNF (via propagation and randomization) and optimiz-
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Figure 4.2: Texture-by-shape algorithm overview.

ing the texture (via voting) until they jointly converge. The result is up-sampled to the next

multi-resolution level and the process iterates. The following subsections describe each

step in detail.

4.4.1 Patch Similarity

Before describing steps of the algorithm, we first describe the method used to determine

the similarity of patches centered at vertices vS and vT . On the one hand, this is an imple-

mentation detail, as any distance metric could be used in the context of MeshMatch. On

the other hand, it is an important detail, since the goal of the algorithm is to maximize the

patch similarity S(NNF (vT ), vT ) for every vertex vT of the target mesh MT .

There are several questions that must be addressed: 1) what is the shape of each patch?, 2)

what features are stored with patches?, 3) how are the features represented in patches?, 4)

how are relative orientations determined?, and 5) how is similarity computed? For images,
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answers to these questions are relatively straight-forward (e.g., compute L2 differences

between RGB colors in rectangular patches aligned with regularly sampled pixel locations)

[163, 145, 164, 165]. However, they are significantly more difficult for 3D meshes, which

have irregular vertex sampling and lack obvious local parametrization.

Surface Patches. For every vertex v of every mesh at level M , we find and store the set

of vertices P (v) of M within a given radius r of v via a geodesic walk on vertices of the

mesh. We compute a local tangent polar coordinate frame for v and store vertices of P (v)

in that frame. We call this representation the “patch” associated with v.

Surface Features. For each patch, we store a set of features indicating the distribution of

texture values and geometric properties within the patch. Similarities of these features will

be used to determine the similarity of patches.

In this work, we aim to allow both “true” geometric correspondences between semantically

corresponding locations, as well as “creative” correspondences provided by an artistic user,

that do not necessarily match semantic correspondences — and which also enable manual

override when automatic methods fail. Our system therefore supports both automatic and

interactively-specified shape features depending on the application:

Our automatic shape features must capture both small-scale details of curvature and also

large-scale attributes that place the patch within a broader context of its shape (e.g., features

should distinguish the neck from the back of a zebra, since different width stripes are likely

to appear in those different regions). To achieve this goal, we compute the Heat Kernel

Signature (HKS) [105] at every vertex of the mesh. HKS is a smooth, orientation-invariant,

and isometry-invariant shape descriptor that represents for each point p how much heat

leaves p and then returns back to it in a given time t. At small time scales, it approximates

the local Gauss curvature; and, at large time scales, it approximates the average diffusion

distance to other points on the surface. Thus, it captures both small- and large-scale shape

features in a common continuous framework. It has recently been used successfully for in-
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trinsic symmetry detection and shape matching [166], showing excellent results for finding

similarities between similar semantic regions for many types of objects. We augment the

HKS vector with one more dimension: the dot product of the surface normal with a pre-

scribed up direction. This up vector is helpful in many cases to distinguish similar shape

regions with different semantics (e.g., the back and belly of an animal). Computing it is not

onerous, since the up direction is prescribed in most modeling languages (e.g., positive Y

in VRML), and automatic methods can be used to align the upright orientation of a mesh

in most cases where it is not [167].

For interactive control, we provide an interface allowing a user to specify manual corre-

spondences between points on different models, and compute features using the geodesic

distances from each vertex to these constraint points. Unfortunately, geodesic distances

alone are not very good shape features for two reasons: First, because the models have

different global and local scales, the shape features do not match exactly even at correspon-

dence points. Second, each manually-specified point has global influence across the model,

making local control difficult. To address these problems we convert the geodesic distance

vectors G(v) to geodesic affinities G′(v) using an affine transform and an exponential:

G′(v) = exp(−MT→SG(v)/2σ
2) (4.1)

The affine transform MT→S (applied only to feature vectors on the target model) is com-

puted using all pairs of correspondences (vS, vT ) between source and target models, such

that the L2 distance MT→SG(vT ) = G(vS) exactly at all such pairs. (The resulting linear

system may be under-constrained, and we find the minimum-norm solution using a linear

solver.) The affine transform addresses the first problem with geodesics – meeting the con-

straints exactly at correspondence points – and the exponential term reduces the influence

of correspondences far from v. The choice of σ is not crucial: In all our results we used

σ = maxi,v Gi(v)/3, one third the maximum geodesic distance of any point on the mesh.
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Patch Similarity. We define the dissimilarity, D(vT , vS), of the patch centered at vertex vT

with the patch centered at vS as the integral of the L2 difference of all features at all points

in the patch at the optimal aligning rotation:

D(vS, vT ) = argminθ

∫
p∈P (vT )

‖FT (p)− FS(R(p, vS, θ))‖dp (4.2)

where P (v) is the surface patch centered at v, FT (p) is the feature vector associated with

every surface point p, and R(p, vS, θ) is rotation of p around vS by θ in the tangent plane.

This definition requires a search over orientations and the evaluation of an integral for every

patch comparison, which could be expensive without an appropriate patch representation.

We choose it because it provides a robust dissimilarity measure and avoids the challenge of

establishing a direction field on a surface.

To accelerate computation of Equation 4.2, we represent the distribution of features within

a patch using a geodesic fan (Zelinka et al.[168]), a representation that stores a discrete

sampling of surface features in a geodesically circular structure indexed by polar coordi-

nates (r, θ) centered at v (Figure 4.3). This representation provides the advantages of pre-

patch
geodesic 
fan

M

Figure 4.3: Data structures. Left: 3D mesh (gray) and local patch region (red); Right:
patch mapped into local 2D coordinate frame (red) with geodesic fan samples (blue).
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filtering features at discrete samples for rapid comparison and rapid search over relative

orientations.

In our current implementation, geodesic fans store filtered estimates of the 3 (RGB) color

features at fan samples located at R = 3 discrete radii and A = 18 discrete polar angles in

each fan. The shape features vary more slowly across the surface, so we find it suffices to

use only a single shape vector sampled at the center of the fan (8 dimensions for HKS or

anywhere from 3 to 20 dimensions for geodesic affinities). Thus we typically have up to a

182-dimensional feature vector associated with each vertex. This is not too different from

typical image patch search applications, which often use 147-dimensional color patches.

4.4.2 Optimization

Given this definition of patch dissimilarity, our main task is to find texture values and

nearest neighbors that minimize the dissimilarity measure for every vertex of the target

mesh. Since the patch dissimilarity depends on both the nearest neighbor field (NNF) and

the texture values (TT ), this requires a joint optimization.

Our EM optimization algorithm starts at the coarsest level of the multi-resolution mesh,

initializing the NNF randomly. Then, for each multi-resolution mesh level, from coarse

to fine, it updates the NNF via propagation and randomization in the E-Step, and then

reconstructs an estimate of the target texture from the NNF with a voting algorithm in the

M-Step. After the EM iterations have converged, the NNF is up-sampled to the next finer

resolution, the target texture is reconstructed at the finer level by re-voting, and the process

is repeated until the finest multi-resolution level is reached.

NNF Propagation. During the NNF propagation phase of the E-Step, our goal is to utilize

“good” correspondences found in the previous step (possibly by random chance) to find

others for adjacent vertices. To do this, we visit each vertex vT of MT in order, updating
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NNF(vT ) to be the vertex vS of MS with highest patch similarity to vt amongst a set of

candidates that includes its current nearest neighbor, NNF(vT ), and all vertices adjacent to

nearest neighbors of vertices adjacent to vT . This phase takes advantage of spatial corre-

spondence in the nearest neighbor field to propagate good correspondences from one vertex

to others in its connected component of the mesh.

An issue encountered for 3D meshes in this phase is how to choose a vertex traversal order.

For maximal efficiency, we aim to find an ordering that favors visiting adjacent vertices in

succession, so that recent updates can be leveraged as each vertex is visited. For images, the

natural order is to visit pixels across successive scan-lines. However, no such order exists

for vertices of a mesh. So, we select a start vertex randomly within each connected com-

ponent of MT and visit vertices in breadth-first order from there. In successive iterations

we start from the last vertex in the most recent sequence; this is analogous to alternating

forwards/backwards passes in the image-based PatchMatch algorithm.

Note that some care must be taken to propagate consistently under patch rotations. As

described in Barnes et al. [169], when searching over rotations, propagation neighborhoods

in the target domain must be transformed to the appropriate coordinate frame.

NNF Randomization. During the NNF randomization phase of the E-Step, our goal is

to “explore” the space of possible nearest neighbors. To do this, we visit each vertex vT

of MT , updating NNF(vT ) to be the vertex with highest patch similarity to vt amongst a

set of candidates that includes its current nearest neighbor, NNF(T ), and vertices sampled

from MS at increasing distances from NNF(vT ). Following PatchMatch, the candidate set

includes a random sample within radius r of vT , another within radius 2r, and so on. This

random sample often contains a good correspondence for vT , which is propagated to its

adjacent vertices in the next iteration.

An interesting issue encountered for meshes in this phase is how to sample vertices match-

ing a desired distribution of distances from a given vertex NNF(vT ). This is easy for images,
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since distances are Euclidean. However, for meshes, distances are geodesic, and tracing

geodesic paths for long distances on a mesh is too slow for the inner loop of our algorithm.

To address this issue, we leverage the hierarchy of the multi-resolution mesh. Since every

multi-resolution level covers the same area with half as many vertices as the next, they are

spaced approximately
√
2 times as far apart. Thus, we can randomly sample vertices at

prescribed distances of
√
2
j

from NNF(vT ) by traversing j levels up the multi-resolution

hierarchy from NNF(vT ) and then traversing back down j levels moving to a random vertex

in the next finer level at each step down (Figure 4.4). This provides a fast way to sample

random vertices from uniform distributions over several region sizes.

M 0
T

vT

M 1
T M 2

T

Figure 4.4: Using the multi-resolution mesh hierarchy to sample random vertices at mul-
tiple distances from vT (shown in white): Ancestor vertices (shown in red) are associated
with many descendant vertices (shown in green), allowing for fast random sampling of a
large region by hopping multiple levels in the multi-resolution mesh.

Texture Reconstruction: The M-Step of the optimization updates the target texture based

on the current estimate of the nearest neighbor field. For every vertex vT of MT , the algo-

rithm performs a weighted averaging (voting) of values from the source texture TS using

the correspondences of nearby vertices (Figure 4.5). Specifically, for every vertex vp in

the neighborhood of vT , the location of vT is mapped to a location on MS by NNF(vp),

and then a color estimate is accumulated from the source mesh vertices using a weighted

average, with weights falling off as a Gaussian with the distance from vT to produce the

final reconstruction value.

This Gaussian filter is essential in the inner loop of the algorithm to avoid aliasing, as

otherwise feedback loops can amplify spurious patterns. However, the resulting output
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is somewhat blurrier than the input texture, so as an optional last step, we reconstruct per-

vertex colors at the finest resolution by simply copying the nearest-neighbor color instead of

filtering with a weighted Gaussian. The results in Figure 4.1 and Figure 4.8 were produced

using this nearest-neighbor sampling.

Figure 4.5: Texture Reconstruction. Geodesic fan samples from the NNF vote for the
texture values of each vertex vT .

Upsampling. Finally, after the EM optimization has converged for level i, we upsample

the NNF to the next finer level i + 1. If NNF(viT ) = viS at level i, we must determine the

corresponding vertex vi+1
S and relative coordinate frame for vi+1

T in the next finer level of the

multi-resolution hierarchy. To do this, we project each vertex vi+1
T onto M i

T and determine

the geodesic offset and relative orientation with respect to viT . Then, we use NNF(viT ) to

find viS and reverse the geodesic offset and relative orientation to find the mapped position

of vertex vi+1
T on M i

S . Finally, we map that position and orientation to the finer mesh M i+1
S

and find the closest vertex vi+1
S . This provides the up-sampled value: NNF(vi+1

T ) = vi+1
S .

4.5 Interactivity

The MeshMatch algorithm could be run in an automatic fashion. However, for applications

that human interaction/editing is desired, we provide a user interface allowing the user to

add and remove corresponding points. It supports creation and deletion of both one-to-one
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Figure 4.6: Upsampling. At the end of each iteration, NNFs for vertices in multi-resolution
level i are up-sampled from the NNF of level i+ 1.

and one-to-many constraints, and allows camera motions of source and target views to be

locked, facilitating navigation around the models while identifying corresponding points.

In addition, the computation of the texture transfer is fast enough that we can provide

progressive updates of the transfer in progress in the target view, enabling the user to decide

whether additional correspondences are required to improve the results. Coarse-resolution

results are typically visible within a few seconds after adding new correspondences, and

fine resolutions are computed in under 30 seconds.

4.6 Application and results

In this section, we demonstrate applications of the proposed algorithms.
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4.6.1 Color texture transfer

The most straightforward application of our approach is the transfer of color texture from

one 3D model to another. Figure 4.1 illustrates transfer of textures from a zebra to three

other creatures. Note that when transferring the zebra’s stripes to the other geometry, the

resulting stripes are not uniformly or randomly distributed as one might expect using tex-

ture synthesis approaches. Instead they retain the same spatial variation as seen in the

source model, with widely separated stripes near the hindquarters and thicker, more densely

packed stripes along the neck. However, the texture correspondence is not one-to-one: The

giraffe’s neck has many more stripes than the zebra, and the Cerberus has three noses and

six eyes.

This highlights an advantage of our method: Because it does not assume one-to-one map-

ping between source and destination geometry, it can adapt appropriately to variations in

local shape, synthesizing more texture in stretched areas. Thus, our method demonstrates

the preservation of high level structure like direct mapping techniques, while maintaining

the flexibility of non-parametric texture synthesis approaches.

Even in cases where a one-to-one mapping is possible, it may be extremely deformed and

thus unsuitable for direct texture mapping. In Figure 4.7 we compare our method to cor-

respondences computed using blended intrinsic maps [136]. These correspondences – and

indeed any one-to-one mapping for this model pair – produce severe distortions in order

to match such dramatically different geometry. Our method can use any one-to-one or

one-to-many mapping method as initialization and/or soft constraint, synthesizing locally

consistent and distortion-free texture while retaining global semantic correspondences.

For color transfer we find that models such as the cow and zebra typically require only

about 6 to 10 manual correspondences, and the weights of shape and color features are

set to be equal (after normalizing for dimensionality and variance). In some cases we use

lower shape weighting at finer scales to encourage more flexible transfer.
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Figure 4.7: Left to right: (a) input cow with polka-dot, transferred results of (b) ours, (c)
of using Blended Intrinsic Maps (BIM), and (d) zebra stripes transferred also using BIM.

Figure 4.8 illustrates transfer between more widely differing models. Here there are few

geometric cues because there is no obvious correspondence between shapes. By adjusting

a few correspondence points we can obtain a global correspondence and synthesize a new

spatially-varying texture that is locally similar to the original at those points.

Figure 4.8: Transfer between widely differing models. Left: input mesh and texture. Right:
output texture with correspondences clicked at head, tail, tip of leg and center of back and
belly.

4.6.2 Texture painting power assists

Texture painting in film and game production can require a great deal of manual efforts.

What’s worse, that effort can be for naught if the topology or geometry of a model is

modified after painting, requiring reparameterization and repainting due to distortion. We
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propose two uses of MeshMatch to reduce effort in the texture painting work-flow: Texture

by example and texture update.

Figure 4.9: Texture painting by example. Left to right: (a)input mesh with partial painted
texture; (b)output mesh with texture propagated to unpainted regions using our method;
(c) output mesh by running our algorithm with only shape descriptors (d) output mesh by
using smaller fan size and small scale HKS to mimic Mertens et al. [139]. Notice that (b-d)
all show the opposite side of the bowl from the side shown on (a).

Texture by example: In addition to transfer between models, MeshMatch can also be used

to transfer texture within a model. This can be useful, for example, to propagate painted

textures automatically from regions already painted to regions of a model that have not

yet been touched. Figure 4.9 illustrates some examples. Although textures were manually

created for just one surface region, they are successfully propagated across the rest of the

surface. In this case, the object is globally self-similar, so we use automatically-computed

HKS features rather than requiring manual correspondence. However, note that matching

HKS features alone (Figure 4.9c) cannot properly resolve the differently colored stripes

– only by using local texture patches can we synthesize the proper complex color pattern

seen in the source.

Mertens et al. [139] also use shape features to guide texture synthesis. However, their

method uses smaller texture patches and mostly local shape features. In Figure 4.9d we

demonstrate the impact of patch size and shape feature dimensionality by reducing the fan

radii to R = 2 and using only one dimension of fine-scale HKS. Because of the efficiency

of the MeshMatch matching algorithm, we are able to integrate shape and color features

into a single optimization over a high dimensional space. Although Mertens et al. use

a broader combination of several different features, their method handles only stochastic
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textures with a simple statistical correlation to the underlying shape features, whereas our

method can handle essentially arbitrary relationships by using nearest-neighbor search.

Texture update: Figure 4.10 depicts a creature that has been significantly lengthened after

textures were painted. In this case we re-synthesized the texture map for the entire torso and

copied textures verbatim for other body parts. However, if the geometric modeling package

retains knowledge about the portions of geometry that were edited and those that were not,

we could make finer grained updates by synthesizing new texture only in modified regions.

No explicit reparameterization is required.

Figure 4.10: Reapplying texture after geometry changes. Left to right: input geometry and
texture, modified geometry, texture updated to fit new geometry.

4.6.3 Facial detail transfer

Another possible application is transferring fine-scale surface details from one surface to

another. For example, Figure 4.11 shows how pores, wrinkles, and creases captured in a

highly detailed scan of a face can be used to synthesize plausible details on smooth face

scan. To do this, we separate the detailed face scan into a smooth component and a dis-

placement map, and then use the shape features to guide transfer of the displacement map

onto the target smooth face. Notice that many details have been synthesized plausibly, in-

cluding folds in the eyelids, both crows’ feet around the eyes, and the nasal labial folds
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extending downwards from the nostrils along the cheeks. These results compare favorably

with Golovinskiy et al.[140], who provided the input data for this example – their paramet-

ric synthesis algorithm does not replicate such large scale structures.

Figure 4.11: Face detail transfer. (a) SRC detailed face. (b) Zoom-in on eye(top) and
nose(bottom) of SRC. (c) DST smooth face 1. (d) Face 1 with details transferred. (e) Zoom-
in on eyes(top) and nose(bottom) of face 1. (f) DST smooth face 2. (g) Face 2 with details
transferred.

4.6.4 Schelling distribution transfer

We also use our system to transfer Schelling distribution (Chapter 3) from a collection of

known meshes to a new mesh in the same object category. Input is the mesh geometry and

the Schelling distribution on known meshes and we use no manual correspondences in the

experiments.

We performance a set of leave-one-out experiments on all 19 categories and 380 meshes (20

meshes per category) studied in Chapter 3. Given a mesh M c
j for category c, MeshMatch

transfers Schelling distribution from each meshM c
i ∈ {M c

k , k! = j} of the same category c

toM c
j (denoted as Si−>j). We then take the average of {Si−>j,∀i} as the output forM c

j . To

construct the shape component, we reuse the leave-one-out regression model in Section 3.6

to combine multiple shape features of {M c
k , k! = j}, and apply on both the source mesh

and the target mesh M c
i . As “shape” and “color” have similar magnitude, they are equally

weighted for all experiments. Note that all parameters are kept the same for the thousands
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Figure 4.12: In-class transfer of Schelling distributions. Top row is the groundtruth
schelling distribution; middle row is predicted values from regression models in Sec-
tion 3.6; and bottom row is the average of our in-class transfer results using meshmatch

run of transfers and it is not impossible to get better results if parameters are tuned category

by category.

Figure 4.12 compares Meshmatch results (bottom row) with the ground truth Schelling

distribution (top row) and the predicted values from section 3.6 (middle row). Our results

using MeshMatch have similar redness as the ground truth while the predicted values tend

to amplify the redness. Our results also capture the Schelling distribution peaks at tips, eyes

and some segment centers. However, there are failure cases: e.g, the teddy bear face in (c)

seems to be strongly influenced by the shape component of the features (which is almost

the same as the predicted value).

Table 4.1 shows the L2 distance with respect to the groundtruth Schelling distribution.

Both per category and overall results are presented (the lower the better). For all object cat-

egories, our results (“Transfer.Avg”) have lower L2 distance over the predicted values from

regression 3.6(“Pred.Inclass”), probably because the regression model tends to amplify the

Schelling distribution peaks. We also tried picking the best transfer with the lowest L2 dis-
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tance (“Transfer.Best”) instead of averaging all transfer results per mesh. Unsurprisingly,

the results improve from “Transfer.Avg” but not by much .

Category Pred.Inclass Transfer.Avg Transfer.Best
Human 0.25 0.09 0.08

Cup 0.23 0.15 0.08
Glasses 0.20 0.06 0.05

Airplane 0.20 0.06 0.05
Ant 0.21 0.06 0.06

Chair 0.18 0.06 0.06
Octopus 0.17 0.06 0.05

Table 0.16 0.06 0.05
Teddy 0.22 0.07 0.06
Hand 0.22 0.07 0.05
Plier 0.17 0.06 0.04
Fish 0.15 0.05 0.04
Bird 0.18 0.06 0.05

Armadillo 0.18 0.06 0.05
Bust 0.20 0.09 0.08

Mech 0.11 0.05 0.04
Bearning 0.16 0.10 0.07

Vase 0.20 0.08 0.06
Fourleg 0.20 0.06 0.06

All 0.19 0.07 0.06

Table 4.1: L2 distance of transferred Schelling distribution versus ground truth (the lower
the better)

While the redness distribution of “Transfer.Avg” is visually more similar to the groundtruth,

“Pred.Inclass” still outperforms in the correlation statistics (Table 4.2). We think it is re-

lated to multiple sources that blur signals. First is the averaging of 19 transfer results per

mesh, which looks blurrier than individual transfers. Second is the influence of the shape

component which acts as the guidance. If the shape component is fuzzy for a large region in

the coarser level (e.g., on human faces), then color synthesis will have difficulty recovering

the true pattern in the finer levels with a smaller fan size. It is possible to alleviate this effect

by manual tuning of the shape-to-color weights (as in other examples), but here we stick

to a uniform setting for all runs. The third source of blurring is the texture reconstruction

and color voting process using a Gaussian filter - that process essentially trades blurring for

anti-aliasing.
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Category Pred.Inclass Transfer.Avg Transfer.Best
Human 0.45 0.40 0.42

Cup 0.43 0.46 0.49
Glasses 0.53 0.43 0.45

Airplane 0.66 0.53 0.56
Ant 0.51 0.42 0.45

Chair 0.57 0.43 0.48
Octopus 0.60 0.46 0.50

Table 0.52 0.44 0.48
Teddy 0.47 0.40 0.41
Hand 0.51 0.40 0.43
Plier 0.59 0.49 0.53
Fish 0.66 0.58 0.61
Bird 0.60 0.51 0.54

Armadillo 0.60 0.44 0.48
Bust 0.35 0.35 0.38

Mech 0.60 0.60 0.65
Bearning 0.61 0.60 0.65

Vase 0.45 0.42 0.45
Fourleg 0.53 0.46 0.48

All 0.54 0.46 0.50

Table 4.2: Correlation of transferred Schelling distribution versus ground truth (the higher
the better)

4.7 Speed

Our system runs at interactive rates. The MeshMatch portion of the algorithm takes only

5 iterations and 6.5 seconds to converge for a mesh with 64K vertices, each represented

by a 182-dimensional feature vector. This requires no extra storage for spatial indexing

structures, beyond the nearest neighbor field itself.

The texture transfer system based on MeshMatch employs several mesh processing steps

that are not fast, but can be precomputed offline once and use again and again. Specifically,

for a mesh with 64K vertices, building the multi-resolution data structure takes 120 seconds

and building geodesic fans takes 40 seconds. However, the remainder of the pipeline runs

at near-interactive rates: at the finest scale (64K vertex mesh), finding nearest neighbors

with MeshMatch takes 6.5 seconds per iteration, and reconstructing the texture from the

correspondence field takes 5.5 seconds per iteration. These runtimes scale linearly with
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the number of vertices, so a rough preview at 16K vertices takes only about 3 seconds.

Using five EM iterations at five multi-resolution levels, the total texture transfer time is

approximately 100 seconds.

Several further speed improvements are possible: For example, MeshMatch presently uses

a fast randomized search for vertices but exhaustive search over orientations. Barnes et al. [169]

have demonstrated that image patch search over orientations can also be performed effi-

ciently using randomized search with propagation, so we believe augmenting our method

using a similar technique could result in a possible additional 10x speedup.

4.8 Conclusion and Future Work

This chapter has described a surface correspondence algorithm based on PatchMatch [2]

and demonstrated its use in a variety of applications to transfer texture, details, and Schelling

distribution. The most important advantage of this algorithm is that it enables finding near-

est neighbors between surface points in a high-dimensional feature space encoding large-

scale geometric and color features. As a result, non-parametric texture synthesis algorithms

can be used to replicate large-scale patterns like stripes from a zebra and creases from a

face, in addition to small scale patterns like pores on a face.

Our current implementation is just a first prototype and has several limitations that suggest

directions for future work.

First, our system has some parameters that might need to be adjusted for each example.

The main parameters we have adjusted are the starting scale and the different shape-vs.-

color weights for each level of the multi-resolution hierarchy – these are adjusted based on

the size of patterns in the source texture. While these parameters can be useful for artistic

control, it would be interesting to investigate future methods to set them automatically

based on scale-space analysis of the source data.
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Second, our interactive shape features were designed for efficient computation, and not

quality. In particular, the mapping becomes difficult to control when more than about 15

correspondences are added, as the influence of each point affects a large portion of the

model. In addition, one-to-many correspondences create extreme distortion in the shape

mapping in regions where the one-to-one mapping is split to one-to-many. Although our

method can still synthesize plausible texture in these regions, better methods for both global

and local control are desirable. In addition, better results will achieve if shape features

suitable for the specific application are selected, but this is a separate topic.

Finally, it will be interesting to study which applications can best leverage the types of

surface correspondences found by MeshMatch. Unlike much of the previous work in inter-

surface mapping, our algorithm does not aim to find a smooth, bijective map between

surfaces with low distortion everywhere. Rather, it aims to find correspondences between

points with similar features. We have demonstrated that correspondences of this type are

useful for texture transfer in computer graphics, but it will be interesting to see what other

types of applications can benefit from this approach (e.g., computer vision, archaeology,

art, etc.).
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Chapter 5

Conclusion and Future Work

This thesis studies two classical problems in shape analysis. Motivated by the fact that hu-

mans are superior than computers in addressing these problems, we revisit these problems

from the angle of using crowdsourced data to learn from humans.

First, we investigated the mesh segmentation problem. We designed a benchmark of 4300

manually generated segmentations for 380 surfaces meshes. This data reveals a proba-

bilistic distribution of how people decompose shapes into parts. It also enables us to pro-

pose metrics and software to evaluate performances of mesh segmentation algorithms, and

prompts learning-based mesh segmentation algorithms that achieve the state-of-art quality.

Second, we visited the problem of salient point detection on meshes from a social/psychological

perspective, with Schelling experiments asking people to select points that are most likely

to be selected by other people. The resulting Schelling distribution becomes a base for

a new model of saliency, which predicts saliency on unseen meshes using our regression

models.

Common to these two problems are the desire to transfer properties from existing meshes to

unseen meshes. Hence we propose the MeshMatch algorithm and a non-parametric multi-
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resolution approach based on the algorithm for fast property transfer. We show a variety of

applications including the transfer of textures, details, and Schelling distribution.

Our experience shows that for problems that humans naturally and easily solve but com-

puters do not, it is valuable to understand and mimic what humans do. The data-driven

approach combined with crowdsourced data from well-designed experiments is powerful,

and could possibly advance problems that are even well-researched in the past.

5.1 Future Work

We envision several directions for future work.

First, it is worth identifying more problems in shape analysis and broader domains where

approach in this thesis could be similarly applied. Whereas we focus on problems ana-

lyzing single objects, it might be interesting to analyze scenes and the interaction between

objects. We also see a trend with recent papers [12, 14, 15] applying data-driven approach

to quantitatively address problems related to human semantics and being vague to describe.

Second, it is desirable that generalized principles and tool-kits could be created to ease

the design and implementation of crowdsourcing systems. Crowdsourcing is powerful and

could be widely used, but the design is often ad-hoc to the specific problems. We are

glad to see multi-disciplinary research efforts from HCI, security, systems and economics

emerging [41, 170, 33, 42].

Third, data collection is currently separated from analysis and modeling, but interleaving

all three together might offer benefits. On the one hand, the analysis and data training might

direct the system to collect more data for cases harder to analyze and/or model; on the other

hand, some applications could possibly benefit from “online learning”. Related to this are

human computation systems [36, 34] that integrate algorithms with human decisions.
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In shape analysis, computer graphics and many other fields, algorithms still have a lot to

learn from humans. With ever bigger data crowdsourced, and with analytic and learning

techniques advanced, I believe the gap between algorithms and humans will shrink more.
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cacy of topological skeletons in shape modelling. In: Shape Modeling International.

(2003) 245–256, 297

[50] Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz,

S., Dobkin, D.: Modeling by example. ACM Trans. Graph. 23 (2004) 652–663
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[54] Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for

automatic texture atlas generation. ACM Trans. Graph. 21 (2002) 362–371

[55] Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh seg-

mentation - a comparative study. In: SMI ’06: Proceedings of the IEEE Inter-

national Conference on Shape Modeling and Applications 2006, Washington, DC,

USA, IEEE Computer Society (2006) 7

[56] Over, P., Leung, C., Ip, H., Grubinger, M.: Multimedia retrieval benchmarks. IEEE

MultiMedia 11 (2004) 80–84

107



[57] Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natu-

ral images and its application to evaluating segmentation algorithms and measuring

ecological statistics. In: in Proc. 8th Int’l Conf. Computer Vision. (2001) 416–423

[58] Smeaton, A.F., Kraaij, W., Over, P.: TREC video retrieval evaluation: a case study

and status report. In: Coupling Approaches, Coupling Media and Coupling Lan-

guages for Information Retrieval (RIAO). (2004)

[59] Federico, M., Giordani, D., Coletti, P.: Development and evaluation of an Italian

broadcast news corpus. In: Second International Conference on Language Resources

and Evaluation (LREC). (2000) 921–924

[60] Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decom-

position (2002)

[61] Golovinskiy, A., Funkhouser, T.: Randomized cuts for 3D mesh analysis. ACM

Transactions on Graphics (Proc. SIGGRAPH ASIA) 27 (2008)

[62] Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polyg-

onal surfaces. In: I3D ’01: Proceedings of the 2001 symposium on Interactive 3D

graphics, New York, NY, USA, ACM (2001) 49–58

[63] Gelfand, N., Guibas, L.J.: Shape segmentation using local slippage analysis. In:

SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on

Geometry processing, New York, NY, USA, ACM (2004) 214–223

[64] Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based

on fitting primitives. Vis. Comput. 22 (2006) 181–193

[65] Lai, Y.K., Hu, S.M., Martin, R.R., Rosin, P.L.: Fast mesh segmentation using ran-

dom walks. In: Symposium on Solid and Physical Modeling. (2008) 183–191

108



[66] Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core

extraction. Visual Computer (2005)

[67] Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing

bubbles for the multi-scale analysis and decomposition of triangle meshes. Algo-

rithmica (Special Issues on Shape Algorithms) 38 (2004) 227–248

[68] Liu, R., Zhang, H.: Segmentation of 3d meshes through spectral clustering. In: PG

’04: Proceedings of the Computer Graphics and Applications, 12th Pacific Confer-

ence, Washington, DC, USA, IEEE Computer Society (2004) 298–305

[69] Lin, H.Y.S., Liao, H.Y.M., Lin, J.C.: Visual salience-guided mesh decomposition.

IEEE Transactions on Multimedia 9 (2007) 46–57

[70] Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., Azariadis, P.: 3d mesh seg-

mentation methodologies for cad applications. 4 (2007) 827–841

[71] Shamir, A.: A survey on mesh segmentation techniques. Computer Graphics Forum

28 (2008) 1539–1556
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