
Packet Traceback for Software-Defined Networks

Harvest Zhang
Princeton University

hlzhang@princeton.edu

Joshua Reich
Princeton University

jreich@cs.princeton.edu

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

ABSTRACT
Packet traceback—determining how a packet could have ar-
rived at a point of observation—is useful for network de-
bugging, performance testing, and network forensics. How-
ever, existing mechanisms (e.g., NetSight) require modifica-
tions to switches and introduce additional network overhead.
By providing a centralized representation of the network’s
packet-processing behavior as a policy, Software-Defined
Networking (SDN) makes it possible to compute the trans-
formations that could lead to the observed packet. Our work
leverages higher-level SDN controller languages to perform
packet traceback in a provably-correct manner entirely on
the controller. Using the current policy as input, we pre-
compute a compact symbolic representation of the back pol-
icy, which can then quickly produce all possible predeces-
sors for any input packet. Our prototype is implemented in
the Pyretic language; however, since any policy specified
in low-level OpenFlow rules can be easily converted to a
Pyretic representation, our method is completely general.

1. INTRODUCTION
The goal of packet traceback is to determine how a

packet reached its current location, including the path
through the network and any modifications of the packet
en route. Packet traceback has various practical appli-
cations, ranging from network security to performance
monitoring and network debugging. For example, a
denial-of-service attack might be first detected, then
traced back, and finally blocked at its entry points.
Packet traceback may also help diagnose performance
problems; if network operators discover that certain
traffic flows have poor performance, a traceback can
identify which links to check for congestion. Finally,
knowing the potential paths taken by a packet is useful
for debugging, by determining how behavior apparently
deviating from operator intent (e.g., appearance of a
packet at an unexpected location) could have arisen.

In traditional networks, distributed routing protocols
and local packet-forwarding decisions make it difficult
to determine the path a packet traverses. Active prob-
ing tools like traceroute can measure the forwarding
path, but only with knowledge of—and control over—

the sending host to launch the probes. Traceroute also
only works correctly if the switches treat probes the
same way as regular packets and the path has not changed
in the meantime. Moreover, probe traffic adds load to
an already taxed network, and may interfere with other
network services (e.g., IDS, load balancers).

Alternately, the underlying switches could offer sup-
port for packet tracing. The IP“record route”option [1]
instructs each node in the path to add its identifier
to the packet, so the receiver can learn the end-to-
end path. However, network operators almost always
disable this feature to reduce overhead—and to pre-
vent packets from becoming too large. In more recent
work, NetSight [2] proactively collects history metadata
for all packets and sends the information to a collec-
tor for analysis. However, NetSight requires changes to
the switches (to generate reports) and incurs additional
overhead to monitor each packet at each hop in its path.

In a Software-Defined Network (SDN), the logically
centralized controller has complete knowledge of the
current network policy. This enables a wide range of
techniques that can analyze the policy at the controller,
rather than monitoring in the data plane. Given a static
policy, several existing tools can project how a packet
at a given location would progress through the network,
and check whether the policy violates certain network
invariants (e.g., testing for loops or blackholes) [3, 4,
5]. While clearly very useful for tracing packets for-
ward from a known starting point, these techniques are
not efficient for tracing backwards to understand how a
packet might have reached its current location.

A small traceback example.
Figure 1 shows three example policies that illustrate

the challenges of packet traceback. In all three cases, we
have a packet x whose source IP’s first bit is 1, leaving
switch a via port 1, and we want to trace its path back
through the network.

Policy 1: Packets entering switch d on port 3 are for-
warded to b if the first bit of the source IP address is 1,
and to c otherwise. Switches b and c similarly forward
these packets to a. For example, if c receives a packet

Figure 1: Three policies on the same small topology.
Switches are labeled a-d, with links labeled with port
numbers. Bold arrows indicate the links that packet
traceback should explore when tracing packet x back
from switch a, and the grey arrows indicate the policy.

with an IP whose first bit is 1, that packet would be
dropped. Thus, we can determine that packet x could
not have come from c, and must have traversed the path
d→ b→ a.

Policy 2: Instead of matching on IP prefixes, switches
b and c forward all packets to a. Thus, when tracing
x back from a we must consider the possibility that x
could have come from either b or c. Only when we trace
back another hop do we discover that the path must be
d→ b→ a, since x could not have reached c from d.

Policy 3: With packet modification, we must make
sure to reverse any changes to the packet as we trace
back. Policy 3 is identical to policy 1, except that switch
c now changes the first bit of each packet’s source IP to
1 before forwarding them to a. As a result, we are left
with two possibilities: if the packet originally entered
d with the first source IP bit equal to 0, then the path
was d→ c→ a with modification at c, but if the packet
entered d with a source IP whose first bit was 1, the path
was d → b → a. Only by tracing further back can we
potentially disambiguate between these possibilities1.

These examples illustrate the challenges of perform-
ing traceback on arbitrary policies. We must allow for
multiple possible predecessors for a packet, may need
to trace back multiple hops to resolve ambiguities, and
must consider the effects of packet modifications. Per-
forming these operations from scratch on each observed
packet would be computationally expensive. Instead,
given a policy, we want to compute a symbolic repre-
sentation of the back policy so we can quickly perform a
traceback for any concrete packet. In addition, a sym-
bolic representation would enable a wide range of anal-
ysis of the back policy (e.g., to check certain invariants).

Computing the back policy requires an effective way

1E.g., if switch d can only receive packets whose first source
IP bit is 0, then we know the path is d→ c→ a.

to “invert” the original policy. In this paper, we present
an efficient algorithm for computing the back policy. We
start with OpenFlow policies written in the NetCore [6,
7] domain-specific language—a high-level language that
specifies policies using boolean predicates and simple
composition operators instead of low-level OpenFlow
rules. A runtime system (e.g., Pyretic [7]) can com-
pile these higher-level policies into OpenFlow rules to
install on the switches. Similarly, given any collection
of OpenFlow rules, a trivial linear-time algorithm can
generate an equivalent NetCore policy, making NetCore
an appealing starting point for our traceback work.

After a brief overview of NetCore in Section 2, we
show how to transform a policy into a provably cor-
rect back policy in Section 3. This back policy, when
applied to a packet at a given location, would produce
the set containing all possible immediate predecessor
packets. Applied iteratively, we can obtain all prede-
cessor sequences that could have resulted in the ob-
served packet. Section 4 describes our implementation
of packet traceback in Pyretic. While a computed back
policy is correct, its representation may not be com-
pact. Our implementation applies simplification tech-
niques to transform a back policy into an equivalent—
yet smaller—representation that enables more efficient
traceback. Preliminary experiences with our prototype
demonstrate that efficient packet traceback is a valuable
tool for SDN debugging and management.

2. BACKGROUND ON NETCORE
A NetCore policy is a function from a located packet

(i.e., a packet and its current switch and port) to a
set of located packets [6]. An empty set corresponds
to a dropped packet, a single packet at a new location
corresponds to unicast forwarding, and multiple packets
corresponds to multicast. Figure 2 summarizes the key
elements of NetCore [6, 7], following the syntax of [8].

Fields f ::= f1 | · · · | fk
Filters A,B ::= [1] Identity

| [0] Drop
| [f =v] Match
| A ·B And
| A + B Or
| ¬A Negation

Policies M,N ::= A Filter
| (f←v) Modify
| M ·N Sequential
| M + N Parallel

Figure 2: NetCore syntax.

The building blocks in Figure 2 can be used to con-
struct sophisticated network policies [7, 8, 9]. We briefly
describe the key elements:

2

Filter: A policy [q] passes through all packets that
match a predicate q and drops all other packets. For
example, drop (which always outputs the empty set) is
simply [0], while [f = v] passes through only packets
whose field f has value v, with the packet unchanged.

Modify: A policy f ← v changes the value of header
field f to value v by outputting a set containing a copy
of the input packet whose field f has value v. Net-
Core represents the packet’s location as logical header
fields, so packet forwarding is equivalent to modifying
the switch and/or port fields.

Sequential composition: A · B takes policies A and
B, producing a new policy that first applies policy A
to the input packet and then applies B to each located
packet in the set output by A, and finally takes the
union of these outputs. For example, we might sequen-
tially compose a match and a modify, [f1 =v1]·(f2←v2),
which outputs all packets that originally had a value v1
for field f1, but with the value of f2 changed to v2.

Parallel composition: M + N takes two policies M
and N , producing a new policy that applies M and N
to the same input packet, and outputs the set union of
their individual outputs. For example, we might com-
pose in parallel two match policies, [f = v1] + [f = v2],
which outputs any packets for which field f has a value
of either v1 or v2.

2.1 Network topology as a policy
The network topology can also be represented as a

NetCore policy [8], capturing the forwarding of a packet
across a link. For example, we can encode the link going
from switch b to a in Figure 1 as

Lba := [s=b] · [o=1] · (s←a) · (i←2) · (o←∅) (1)

so that a located packet x at switch b and outport 1 will
have its switch updated to a, its inport updated to 2,
and its outport cleared.

A topology T can then be defined as as the parallel
composition of all (a, b) in the set of links S, denoted
by the summation symbol:

T :=
∑

(a,b)∈S

Lab (2)

For a network with policy P and topology T , we can
represent the forwarding of packets as the application
of P followed by T (i.e., P · T) [8].

2.2 Simplifying NetCore policies
NetCore policies satisfy a family of axioms [8] that

enable provably correct syntactic transformations. For
example, consider the policy (f ← v) · [f = v], which
assigns the packet header field f to the value v and

then tests whether the value of f matches v. Since this
match is always true, the following equivalence holds

(f←v) · [f =v] , (f←v)

Likewise, a policy that first modifies field f1 and then
immediately modifies a different header field f2 is equal
to the policy that makes the same modifications in the
opposite order:

(f1←v1) · (f2←v2) , (f2←v2) · (f1←v1)

In Section 4, we use these kinds of transformations to
reduce the complexity of the back policy.

3. THE BACK POLICY
In a slight abuse of notation, we denote policy P ’s

back policy as P−1. This notation highlights the intu-
ition behind what a back policy is: P takes a packet and
produces an output set, so P−1 should take members
of that output set and map them back to a set con-
taining that original input packet. Applied iteratively,
we can thus generate the predecessors of an observed
packet, their predecessors’ predecessors, and so on until
all possible traces that could have generated the ob-
served packet have been produced.

3.1 Definition of the back policy
Like any other NetCore policy, a back policy maps a

located packet to a set of located packets. However, the
back policy is not intended to be compiled to a set of
rules to install on switches. Instead the back policy is
evaluated on the controller to determine the set of traces
that could have generated an observed packet. Thus,
while in a normal policy an output set with multiple
packets corresponds to multicast (i.e., a single packet
forwarded to multiple locations), the set of output pack-
ets in a back policy instead expresses uncertainty (i.e., a
packet could have come from several possible locations).

Given a network policy P and arbitrary packets x and
y, we define P−1 formally as the policy for which

y ∈ P (x)⇔ x ∈ P−1(y) (3)

In words, for any packet y in the set of packets output
when policy P is applied to input packet x, it must hold
that x is also in the set of packets output when P−1 is
applied to packet y. The reverse also holds true: for
any packet x in the output set of P−1 applied to y, the
packet y must be in the output set of P applied to x.

Intuitively, the forward direction (y ∈ P (x) ⇒ x ∈
P−1(y)) says that the output set of the back policy is
not “too small”: the output set of the back policy will
contain every packet that, when used as input to the
original policy, could have generated the back policy’s
initial input. The reverse direction (x ∈ P−1(y)⇒ y ∈
P (x)) says that the output set of back policy is not “too
large”: there is no packet generated by the back policy

3

that, when used as input to the original policy, will not
generate a set containing the back policy’s initial input.

3.2 Examples of back policies
To illustrate the back policy, we return to the exam-

ples in Figure 1. The first policy in Figure 1 consists of
multiple forwarding policies composed in parallel:2

P1 :=([s=a] · ([i=2] + [i=3]) · (o←1)) (4)

+ ([s=b] · [srcip=1∗] · (o←1)) (5)

+ ([s=c] · [srcip=0∗] · (o←1)) (6)

+ ([s=d] · [srcip=1∗] · (o←1)) (7)

+ ([s=d] · [srcip=0∗] · (o←2)) (8)

The link policy Lba from b to a is given by Eqn. 1.
Thus, a packet x coming into b would be sequentially
evaluated first by P1, which would set x’s outport to
1 if the first bit of x’s source IP was 1 (and drop x
otherwise), and then by Lba, which forwards x out port
1 to switch a.

We have a packet to trace back, x, whose first source
IP bit is 1 and which has just left switch a out of port 1.
Since we don’t know the port on which x entered a, we
must trace back through all three ports: i.e., we begin
with three copies of x, one at each possible inport.

The back of P1 is given by

P1
−1 ,([s=a] · ([i=2] + [i=3]) · [o=1] · (o←∅)) (9)

+([s=b] · [srcip=1∗] · [o=1] · (o←∅)) (10)

+([s=c] · [srcip=0∗] · [o=1] · (o←∅)) (11)

+([s=d] · [srcip=1∗] · [o=1] · (o←∅)) (12)

+([s=d] · [srcip=0∗] · [o=2] · (o←∅)) (13)

Note that applying P−11 keeps the two copies of x
at ports 2 and 3 but drops the copy of x at port 1
immediately.

We first look at the link (b, a), whose back policy

Lba
−1 , [s=a] · [i=2] ·(s←b) ·(o←1) ·((i←1)+(i←2))

sends x from a’s inport 2 back to switch b’s outport
1. Note that L−1ba produces two packets at inports 1
and 2, since this link policy has insufficient information
to determine the port on which x entered b. Similarly,
L−1ca sends x from a’s inport 3 back to c’s outport 1,
producing two packets with inports 1 and 2.

In the next iteration, we apply P1
−1 to the two copies

of x at inports 1 and 2 of b, where both match (and have
their outports stripped); we then apply topology links
Ldb
−1 and Lab

−1, which produces a set of three packets
at d’s outport 1 and a similar set of three packets at a’s
outport 2.

However, when we apply P1
−1 to the two copies of x

at inports 1 and 2 of c, the match [srcip=0∗] fails since

2For illustrative purposes, we use a simple policy that drops
packets entering switch a on port 1.

Name Policy (P) Back policy (P−1)

Filter [q] [q]

Modify (f←v) [f =v] ·
∑

u∈type(f)(f←u)

Sequential M ·N N−1 ·M−1

Parallel M + N M−1 + N−1

Table 1: NetCore primitives and their back policies.
M ,N are policies; q is an abstract predicate.

the first bit of x’s source IP is 1, and both packets are
dropped.

Looking ahead to the next iteration, all the packets
at a will be dropped, but the packets at d are not, so we
continue tracing back from d. Continuing to iterate, we
eventually determine that the only path that x could
have traveled was d→ b→ a.

Packet modification.
The impact of packet modification is illustrated by

policy 3 in Figure 1 at switch c, which can be repre-
sented as a policy by

P3 := [s=c] · [srcip=0∗] · (srcip←1∗) · (o←1) . . .

When we compute its back policy P−13 , we make sure
to reverse the modification:

P3
−1 , [s=c]·[srcip = 1∗]·[o=1]·(srcip←0)·(o←∅) . . .

This ensures that the correct field values for x are being
restored as we trace back; otherwise, if we do not undo
the change, an incorrect version of x would get dropped
at switch d and we would miss a potential path.

3.3 Efficient calculation of the back policy
The compositional structure of NetCore ensures that

the back policy as defined above can always be cal-
culated via a straightforward syntactic transformation.
Specifically, since any given NetCore policy is recur-
sively built from the four basic components shown in
Table 1, we can apply the back for each of these rules
recursively to obtain a representation of the correspond-
ing back policy.

In the rest of this section, we prove and explain each
case in Table 1. Then, induction over the structure of
the syntax of policies proves that our computed back
policy satisfies Eqn. 3 for any NetCore policy.

3.3.1 Filter
Informally, the back of any filter is itself. Formally:

[q]
−1 , [q] (14)

We start our proof with the forward direction of Eqn. 3,
replacing both P and P−1 with [q], as per Eqn. 14:

y ∈ [q](x)⇒ x ∈ [q](y) (15)

4

In other words, for any output packet y produced by
[q](x), it must hold that x is produced by [q](y).

We observe that this is always true, since either [q](x)
outputs the empty set, in which case there is no packet
y and Eqn. 15 is trivially true; or [q](x) outputs the set
containing only x, in which case y = x and thus [q](y)
also outputs the set containing only x.

The proof for the reverse direction is symmetric.

3.3.2 Modify
Informally, the back of modifying field f to value v is
the policy that first tests that field f contains value v
and then generates all possible previous assignments of
f . Formally:

(f←v)
−1 , [f =v] ·

∑
u∈type(f)

(f←u) (16)

For any packet output by (f←v), that packet’s field f
must have value v; the back of modify thus first ensures
([f = v]). However, without additional knowledge, we
do not know what value field f had before, so the back of
modify must subsequently produce one packet for every
valid value that field f could take (e.g., if f is i, one
packet for each inport existing on the switch).

Again, we start our proof with the forward direction
of Eqn. 3, substituting for P and P−1

y ∈ (f←v)(x)⇒ x ∈

[f =v] ·
∑

u∈type(f)

(f←u)

 (y)

(17)
If y ∈ (f←v)(x), then we know that field f of y must

equal v and that this is the only potential way in which
y differs from x. Thus we also know x must be in the
set of packets identical to y with respect to every field,
except possibly f . This is precisely the set output by
applying [f =v] ·

∑
u∈type(f)(f←u) to packet y.

In the reverse direction,

x ∈

[f =v] ·
∑

u∈type(f)

(f←u)

 (y)⇒ y ∈ (f←v)(x)

(18)
either y’s field f equals v or it does not. In the latter
case, Eqn. 18 trivially holds, since there are no packets
in the output set. Thus we only need consider when y’s
field f has value v. In this case, x will be equal to y with
respect to all fields, except possibly f . By definition,
(f←v)(x) will output the single packet equal to y with
respect to all fields other than f , and also equal to y on
field f : that is, y.

3.3.3 Sequential composition
The back of the sequential composition of two policies

is the reverse sequential composition of their individual

backs. Formally:

(M ·N)
−1 , N−1 ·M−1 (19)

Intuitively, this mirrors the logic of true mathematical
inverses3 (i.e., for any two invertible functions g and h
from integers to integers, (g · h)−1 = h−1 · g−1). The
proof of Eqn. 19 is similar in structure and relies on the
formal definition of sequential composition

(M ·N)(x) :=
⋃

z∈M(x)

N(z) (20)

which allows us to prove the forward direction

y ∈ (M ·N)(x)⇒ x ∈ (N−1 ·M−1)(y) (21)

If y is in the output set of (M ·N)(x), by Eqn. 20 there
exists a packet z such that z is in M(x) and y is in N(z).
By Eqn. 3, this means z must also be in N−1(y), and
similarly x must be in M−1(z), which is precisely the
definition of N−1 ·M−1: as seen by substituting N−1

for M , M−1 for N , and y for x into Eqn. 20

(N−1 ·M−1)(y) :=
⋃

z∈N−1(y)

M−1(z)

The proof for the reverse direction is symmetric.

3.3.4 Parallel composition
Finally, the back of two parallel composed policies is

just the parallel composition of their individual backs.
Formally:

(M + N)
−1 , M−1 + N−1 (22)

Intuitively, any packet produced by M + N must have
been produced by either M or N . Therefore, we can be
certain that the initial packet must be in either the set
produced by M−1 or N−1; i.e., their parallel composi-
tion. Using the definition of parallel composition

(M + N)(x) := M(x) ∪N(x) (23)

we prove the forward direction

y ∈ (M + N)(x)⇒ y ∈ (M−1 + N−1)(y) (24)

by noting that if y is in the output set of (M + N)(x),
then y must either be in the output set of M(x) or N(x).
By the definition of back policy (Eqn. 3), x must either
be generated by M−1(y) or N−1(y) to y, so x must also
be in the set of packets generated by (M−1 + N−1)(y).
The proof for the reverse direction is symmetric.

4. PROTOTYPE IMPLEMENTATION
Our implementation of packet traceback runs on the

Pyretic platform [7, 9]. The majority of the logic is
3To see why back and inverse are not always equivalent,
consider the filter [0], which has a well-defined back policy
(itself) but no mathematical inverse: i.e., there is no policy
f such that ([0] · f)(x) = {x}.

5

implemented on top of Pyretic, using Pyretic’s exist-
ing primitives, though we extended the Pyretic runtime
system to support (i) representing the topology as a pol-
icy and (ii) using summations for parallel composition
over a range of values the field being summed over may
take. We used Mininet [10] to test packet traceback on
various policies and topologies.

The general algorithm for computing a packet trace-
back consists of two steps. First, given the policy P , we
compute the back policy P−1 as described in Section 3,
once for each time the policy or topology changes. Sec-
ond, to perform traceback on any concrete located packet
x, we iteratively apply the back policy. We first apply
P−1 to obtain a set of located packets X = P−1(x),
which consists of all packets that could lead to x in one
step. Then, we apply P−1(x′) for each packet x′ ∈ X,
and so on. Eventually, for each packet, we reach a point
where the back policy either (i) drops the packet or (ii)
reaches an ingress link at the edge of the network4. At
termination, we are left with a set of located packets at
ingress points. To see how these packets flow through
the network, we can iteratively apply P on each packet
and record the results.

We compute the back policy using a simple recursive
traversal through the policy. Similarly, applying the
back policy to a packet is relatively simple, using ex-
isting Pyretic mechanisms for policy evaluation. How-
ever, evaluating P−1 can be extremely slow when the
back policy includes a summation over a field with a
large range of values. We can reduce computation time
substantially by reducing P−1 to a simpler form. For
example, consider the policy P := [f = v] · f←w. Re-
calling from Table 1 that the back policy of M · N is
N−1 ·M−1, we we see

P−1 , [f = w] ·
∑

u∈type(f)

f←u · [f = v]

Using the following three axioms [8]:

(f←v) · [f =v] , (f←v)

(f←v′) · [f =v] , [0]

M + [0] , M

we can simplify this expression to use a single modify

P−1 , [f =w] · ((f←v) · [f =v] +
∑
u 6=v

(f←u) · [f =v])

, [f =w] · ((f←v) +
∑
u 6=v

[0])

, [f =w] · (f←v)

This makes sense: the original policy matches packets
where field f has value v and then changes f to w,
4If P has a forwarding loop, this process might not termi-
nate; a safe implementation must either use loop-detection
or require a loop-free policy.

whereas the back policy matches packets where field f
has value w and then changes f back to v.

This simplification easily extends to few-to-one map-
pings, such as

([f =u] + [f =v]) · (f←w)

whose simplified back policy is

[f =w] · ((f←u) + (f←v))

As expected, if several different values of f are both
mapped to value w, the back policy will output a set of
packets containing a packet with each possible predeces-
sor value of f in order to capture this ambiguity. These
and other simplifications typically allow us to produce a
simpler—yet equivalent—representation of P−1, to re-
duce the computational overhead of applying the back
policy to concrete packets.

5. CONCLUSION
In this paper, we design and implement a solution for

packet traceback computed entirely by the controller—
without introducing any data-plane overhead. The core
of this algorithm is the computation of a “back policy”
using a provably correct set of syntactic transforma-
tions on a given policy. This back policy can then be
iteratively applied to packets of interest to determine
all possible paths the packets could have taken through
the network. Furthermore, this algorithm is generaliz-
able to any SDN implementation, since any lower-level
policy (such as OpenFlow rule tables) can be converted
into a NetCore policy.

In our ongoing work, we are exploring three main is-
sues. First, we are designing a general way to resolve
ambiguous tracebacks—where multiple traces could lead
to the observed packet. When the traceback would be
ambiguous, we can extend the policy to tag packets
(e.g., using a VLAN header) to ensure the traceback al-
gorithm can disambiguate between multiple traces. Sec-
ond, while the back policy applies to symbolic packets,
the iterative application of the back policy relies on hav-
ing a concrete packet. We are exploring techniques for
symbolic traceback so we can precompute the iterative
application of the back policy. Third, we are investi-
gating extensions of our traceback techniques to work
across administrative domains, by designing a proto-
col where one autonomous system could “hand off” a
partially complete traceback to the next upstream au-
tonomous system(s). Together, these extensions would
offer a scalable, end-to-end solution for packet trace-
back.

6. REFERENCES
[1] “Internet protocol: DARPA Internet program

protocol specification,” Sept. 1981. RFC 791.

6

[2] N. Handigol, B. Heller, V. Jeyakumar,
D. Mazieres, and N. McKeown, “I know what
your packet did last hop: using packet histories to
troubleshoot networks,” in NSDI, Apr. 2014.

[3] P. Kazemian, G. Varghese, and N. McKeown,
“Header space analysis: Static checking for
networks,” in NSDI, 2012.

[4] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte, “Real time network
policy checking using header space analysis,” in
NSDI, 2013.

[5] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and
P. B. Godfrey, “VeriFlow: Verifying network-wide
invariants in real time,” Apr. 2013.

[6] C. Monsanto, N. Foster, R. Harrison, and
D. Walker, “A compiler and run-time system for
network programming languages,” in Principles of
Programming Languages, vol. 47, pp. 217–230,
Jan. 2012.

[7] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker, “Composing software defined
networks,” in NSDI, Apr. 2013.

[8] C. J. Anderson, N. Foster, A. Guha, J.-B.
Jeannin, D. Kozen, C. Schlesinger, and D. Walker,
“NetKAT: Semantic foundations for networks,” in
Principles of Programming Languages,
pp. 113–126, Jan. 2014.

[9] J. Reich, C. Monsanto, N. Foster, J. Rexford, and
D. Walker, “Modular SDN Programming with
Pyretic,” USENIX ;login, vol. 38, pp. 40–47,
October 2013.

[10] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz,
and N. McKeown, “Reproducible network
experiments using container-based emulation,” in
ACM CoNEXT, pp. 253–264, Dec. 2012.

7

