
RIPQ: Advanced Photo Caching on Flash for Facebook˚

Linpeng Tangˇ, Qi Huang�‹, Wyatt Lloyd�‹, Sanjeev Kumar‹, Kai Liˇ

ˇPrinceton University, �Cornell University, � University of Southern California, ‹Facebook Inc.

Abstract

Facebook uses flash devices extensively in its photo-
caching stack. The key design challenge for an effi-
cient photo cache on flash at Facebook is its work-
load: many small random writes are generated by in-
serting cache-missed content, or updating cache-hit
content for advanced caching algorithms. The Flash
Translation Layer on flash devices performs poorly
with such a workload, lowering throughput and de-
creasing device lifespan. Existing coping strategies
under-utilize the space on flash devices, sacrificing
cache capacity, or are limited to simple caching al-
gorithms like FIFO, sacrificing hit ratios.

We overcome these limitations with the novel
Restricted Insertion Priority Queue (RIPQ) frame-
work that supports advanced caching algorithms
with large cache sizes, high throughput, and long
device lifespan. RIPQ aggregates small random
writes, co-locates similarly prioritized content, and
lazily moves updated content to further reduce de-
vice overhead. We show that two families of ad-
vanced caching algorithms, Segmented-LRU and
Greedy-Dual-Size-Frequency, can be easily imple-
mented with RIPQ. Our evaluation on Facebook’s
photo trace shows that these algorithms running on
RIPQ increase hit ratios up to ~20% over the cur-
rent FIFO system, incur low overhead, and achieve
high throughput.

1 Introduction

Facebook has a deep and distributed photo-caching
stack to decrease photo delivery latency and backend
load. This stack uses flash for its capacity advantage
over DRAM and higher I/O performance than mag-
netic disks.

A recent study [22] shows that Facebook’s photo
caching hit ratios could be significantly improved
with more advanced caching algorithms, i.e., the
Segmented-LRU family of algorithms. However,
naive implementations of these algorithms per-
form poorly on flash. For example, Quadruple-
Segmented-LRU, which achieved ~70% hit ratio,
generates a large number of small random writes for
inserting missed content (~30% misses) and updat-

˚Technical report for the same paper published in
FAST’15.

ing hit content (~70% hits). Such a random write
heavy workload would cause frequent garbage col-
lections at the Flash Translation Layer (FTL) inside
modern NAND flash devices—especially when the
write size is small—resulting in high write amplifi-
cation, decreased throughput, and shortened device
lifespan [37].

Existing approaches to mitigate this problem of-
ten reserve a significant portion of device space for
the FTL (over-provisioning), hence reducing garbage
collection frequency. However, over-provisioning
also decreases available cache capacity. As a re-
sult, Facebook previously only used a FIFO caching
policy that sacrifices the algorithmic advantages to
maximize caching capacity and avoid small random
writes.

Our goal is to design a flash cache that sup-
ports advanced caching algorithms for high hit ra-
tios, uses most of the caching capacity of flash, and
does not cause small random writes. To achieve
this, we design and implement the novel Restricted
Insertion Priority Queue (RIPQ) framework that
efficiently approximates a priority queue on flash.
RIPQ presents programmers with the interface of a
priority queue, which our experience and prior work
show to be a convenient abstraction for implement-
ing advanced caching algorithms [14, 45].

The key challenge and novelty of RIPQ is how
to translate and approximate updates to the (ex-
act) priority queue into a flash-friendly workload.
RIPQ aggregates small random writes in memory,
and only issues aligned large writes through a re-
stricted number of insertion points on flash to pre-
vent FTL garbage collection and excessive memory
buffering. Objects in cache with similar priorities
are co-located among these insertion points. This
largely preserves the fidelity of advanced caching al-
gorithms on top of RIPQ. RIPQ also lazily moves
content with an updated priority only when it is
about to be evicted, further reducing overhead with-
out harming the fidelity. As a result, RIPQ approx-
imates the priority queue abstraction with high fi-
delity, and only performs consolidated large aligned
writes on flash with low write amplification.

We also present the Single Insertion Priority
Queue (SIPQ) framework that approximates a pri-
ority queue with a single insertion point. SIPQ is
designed for memory-constrained environments and

1

enables the use of simple algorithms like LRU, but
is not suited to support more advanced algorithms.

RIPQ and SIPQ have applicability beyond Face-
book’s photo caches. They should enable the use
of advanced caching algorithms for static-content
caching—i.e., read-only caching—on flash in general,
such as in Netflix’s flash-based video caches [38].

We evaluate RIPQ and SIPQ by implement-
ing two families of advanced caching algorithms,
Segmented-LRU (SLRU) [27] and Greedy-Dual-Size-
Frequency (GDSF) [16], with them and testing their
performance on traces obtained from two layers of
Facebook’s photo-caching stack: the Origin cache
co-located with backend storage, and the Edge cache
spread across the world directly serving photos to
the users. Our evaluation shows that both families
of algorithms achieve substantially higher hit ratios
with RIPQ and SIPQ. For example, GDSF algo-
rithms with RIPQ increase hit ratio in the Origin
cache by 17-18%, resulting in a 23-28% reduction in
I/O Operations Per Second (IOPS) to the backend.

The contributions of this paper include:

• A flash performance study that identifies a sig-
nificant increase in the minimum size for max-
throughput random writes and motivates the de-
sign of RIPQ.

• The design and implementation of RIPQ, our pri-
mary contribution. RIPQ is a framework for im-
plementing advanced caching algorithms on flash
with high space utilization, high throughput, and
long device lifespan.

• The design and implementation of SIPQ, an up-
grade from FIFO in memory constrained environ-
ments.

• An evaluation on Facebook photo traces that
demonstrates advanced caching algorithms on
RIPQ (and LRU on SIPQ) can be implemented
with high fidelity, high throughput, and low de-
vice overhead.

2 Background & Motivation
Facebook’s photo-serving stack, shown in Figure 1,
includes two caching layers: an Edge cache layer and
an Origin cache. At each cache site, individual photo
objects are hashed to different caching machines ac-
cording to their URI. Each caching machine then
functions as an independent cache for its subset of
objects.1

The Edge cache layer includes many independent
caches spread around the globe at Internet Points

1Though the stack was originally designed to serve photos,
now it handles videos, attachments, and other static binary
objects as well. We use “objects” to refer to all targets of the
cache in the text.

Web Service w/ Backend

Users on Browsers or Mobile Devices

GET
home Html

GET
X.jpg Photo

CDN

X.jpg

Hash

Flash
Origin Caches

Edge Caches

Cache Detail

Data Center

Figure 1: Facebook photo-serving stack. Re-
quests are directed through two layers of
caches. Each cache hashes objects to a flash
equipped server.

Device Model A Model B Model C
Capacity 670GiB 150GiB ~1.8TiB
Interface PCI-E SATA PCI-E

Seq Write Perf 590MiB/s 160MiB/s 970MiB/s
Rand Write Perf 76MiB/s 19MiB/s 140MiB/s

Read Perf 790MiB/s 260MiB/s 1500MiB/s
Max-Throughput

512MiB 256MiB 512MiB
Write Size

Table 1: Flash performance summary. Read
and write sizes are 128KiB. Max-Throughput
Write Size is the smallest power-of-2 size that
achieves sustained maximum throughput at
maximum capacity.

of Presence (POP). The main objective of the Edge
caching layer—in addition to decreasing latency for
users—is decreasing the traffic sent to Facebook’s
datacenters, so the metric for evaluating its effec-
tiveness is byte-wise hit ratio. The Origin cache is a
single cache distributed across Facebook’s datacen-
ters that sits behind the Edge cache. Its main objec-
tive is decreasing requests to Facebook’s disk-based
storage backends, so the metric for its effectiveness
is object-wise hit ratio. Facing high request rates
for a large set of objects, both the Edge and Origin
caches are equipped with flash drives.

This work is motivated by the finding that SLRU,
an advanced caching algorithm, can increase the
byte-wise and object-wise hit ratios in the Facebook
stack by up to 14% [22]. However, two factors con-
found naive implementations of advanced caching
algorithm on flash. First, the best algorithm for
workloads at different cache sites varies. For ex-
ample, since Huang et al. [22], we have found that
GDSF achieves an even higher object-wise hit ratio
than SLRU in the Origin cache by favoring smaller
objects (see Section 6.2), but SLRU still achieves
the highest byte-wise hit ratio at the Edge cache.
Therefore, a unified framework for many caching

2

algorithms can greatly reduce the engineering ef-
fort and hasten the deployment of new caching poli-
cies. Second, flash-based hardware has unique per-
formance characteristics that often require software
customization. In particular, a naive implementa-
tion of advanced caching algorithms may generate a
large number of small random writes on flash, by in-
serting missed content or updating hit content. The
next section demonstrates that modern flash devices
perform poorly under such workloads.

3 Flash Performance Study

This section presents a study of modern flash de-
vices that motivates our designs. The study fo-
cuses on write workloads that stress the FTL on
the devices because write throughput was the bot-
tleneck that prevented Facebook from deploying ad-
vanced caching algorithms. Even for a read-only
cache, writes are a significant part of the workload
as missed content is inserted with a write. At Face-
book, even with the benefits of advanced caching
algorithms, the maximum hit ratio is ~70%, which
results in at least 30% of accesses being writes.

Previous studies [19, 37] have shown that small
random writes are harmful for flash. In particular,
Min et al. [37] shows that at high space utilization,
i.e., 90%, random write size must be larger than 16
MB or 32 MB to reach peak throughput on three
representative SSDs in 2012, with capacities rang-
ing between 32 GB and 64 GB. To update our un-
derstanding to current flash devices, we study the
performance characteristics on three flash cards, and
their specifications and major metrics are listed in
Table 1. All three devices are recent models from
major vendors,2 and A and C are currently deployed
in Facebook photo caches.

3.1 Random Write Experiments

This subsection presents experiments that explore
the trade-off space between write size and device
over-provisioning on random write performance. In
these experiments we used different sizes to parti-
tion the device and then perform aligned random
writes of that size under varying space utilizations.
We use the flash drive as a raw block device to
avoid filesystem overheads. Before each run we use
blkdiscard to clear the existing data, and then re-
peatedly pick a random aligned location to perform
write/overwrite. We write to the device with 4 times
the data of its total capacity before reporting the fi-
nal stabilized throughput. In each experiment, the
initial throughput is always high, but as the device

2Vendor/model omitted due to confidentiality agreements.

becomes full, the garbage collector kicks in, caus-
ing FTL write amplification and dramatic drop in
throughput.

During garbage collection, the FTL often writes
more data to the physical device than what is issued
by the host, and the byte-wise ratio between these
two write sizes is the FTL write amplification [21].
Figure 2a and Figure 2b show the FTL write ampli-
fication and device throughput for the random write
experiments conducted on the flash drive Model A.
The figures illustrate that as writes become smaller
or space utilization increases, write throughput dra-
matically decreases and FTL write amplification in-
creases. For example, 8 MiB random writes at 90%
device utilization achieve only 160 MiB/s, a ~3.7x
reduction from the maximum 590 MiB/s. We also
experimented with mixed read-write workloads and
the same performance trend holds. Specifically, with
a 50% read and 50% write workload, 8 MiB random
writes at 90% utilization lead to a ~2.3x through-
put reduction. High FTL write amplification also
reduces device lifespan, and as the erasure cycle con-
tinues to decrease for large capacity flash cards, the
effects of small random writes become worse over
time [10, 39].

Similar throughput results on flash drive Model
B are shown in Figure 2c. However, its FTL write
amplification is not available due to the lack of mon-
itoring tools for physical writes on the device. Our
experiments on flash drive Model C (details elided
due to space limitations) agree with Model A and B
results as well. Because of the low throughput un-
der high utilization with small write size, more than
1000 device hours are spent in total to produce the
data points in Figure 2.

While our findings agree with the previous
study [37] in general, we are surprised to find that
under 90% device utilization, the minimum write
size to achieve peak random write throughput has
reached 256 MiB to 512 MiB. This large write size
is necessary because modern flash hardware consists
of many parallel NAND flash chips [8] and the ag-
gregated erase block size across all parallel chips
can add up to hundreds of megabytes. Communica-
tions with vendor engineers confirmed this hypoth-
esis. This constraint informs RIPQ’s design, which
only issues large aligned writes to achieve low write
amplification and high throughput.

3.2 Sequential Write Experiment

A common method to achieve sustained high write
throughput on flash is to issue sequential writes. The
FTL can effectively aggregate sequential writes to
parallel erase blocks [31], and on deletes and over-

3

��

����

��

����

��

����

��

���� ���� ���� ���� ���� ��

�
��
��
��
�
��
��
��
���
�

�����������

����
�����
�����
�����
������
������
������

(a) Write amplification for
Model A

��

����

����

����

����

����

����

���� ���� ���� ���� ���� ��

�
��
��
��
��
��
��
��
��
��
��
��
�

�����������

������
������
������
�����

�
�����
�����
����

(b) Throughput for Model A

��
���
���
���
���
����
����
����
����

���� ���� ���� ���� ���� ��

�
��
��
��
��
��
��
��
��
��
��
��
�

�����������

������
������
�����
�����
�����
����

(c) Throughput for Model B

Figure 2: Random write experiment on Model A and Model B.

writes all the parallel blocks can be erased together
without writing back any still-valid data. As a re-
sult, the FTL write amplification can be low or even
avoided entirely. To confirm this, we also performed
sequential write experiments to the same three flash
devices. We observed sustained high performance
for all write sizes above 128KiB as reported in Ta-
ble 1.3 This result motivates the design of SIPQ,
which only issues sequential writes.

4 RIPQ
This section describes the design and implementa-
tion of the RIPQ framework. We show how it ap-
proximates the priority queue abstraction on flash
devices, present its implementation details, and then
demonstrate that it efficiently supports advanced
caching algorithms.

4.1 Priority Queue Abstraction

Our experience and previous studies [14, 45] have
shown that a Priority Queue is a general abstraction
that naturally supports various advanced caching
policies. RIPQ provides that abstraction by main-
taining content in its internal approximate priority
queue, and allowing cache operations through three
primitives:

• insert.x; p/: insert a new object x with priority
value p.

• increase.x; p/: increase the priority value of x to
p.

• delete-min./: delete the object with the lowest pri-
ority.

The priority value of an object represents its util-
ity to the caching algorithm. On a hit, increase is
called to adjust the priority of the accessed object.
As the name suggests, RIPQ limits priority adjust-
ment to increase only. This constraint simplifies the
design of RIPQ and still allows almost all caching

3Write amplification is low for tiny sequential writes, but
they attain lower throughput as they are bound by IOPS
instead of bandwidth.

algorithms to be implemented. On a miss, insert
is called to add the accessed object. Delete-min is
implicitly called to remove the object with the min-
imum priority value when a cache eviction is trig-
gered by insertion. Figure 3 shows the architecture
of a caching solution implemented with the priority
queue abstraction, where RIPQ’s components are
highlighted in gray. These components are crucial
to avoid a small-random-writes workload, which can
be generated by a naive implementation of priority
queue. RIPQ’s internal mechanisms are further dis-
cussed in Section 4.2.

Absolute/Relative Priority Queue Cache de-
signers using RIPQ can specify the priority of their
content based on access time, access frequency, size,
and many other factors depending on the caching
policy. Although traditional priority queues typi-
cally use absolute priority values that remain fixed
over time, RIPQ operates on a different relative pri-
ority value interface. In a relative priority queue, an
object’s priority is a number in the Œ0; 1� range rep-
resenting the position of the object relative to the
rest of the queue. For example, if an object i has
a relative priority of 0:2, then 20% of the objects
in queue have lower priority values than i and their
positions are closer to the tail.

The relative priority of an object is explicitly
changed when increase is called on it. The relative
priority of an object is also implicitly decreased as
other objects are inserted closer to the head of the
queue. For instance, if an object j is inserted with a
priority of 0:3, then all objects with priorities ď 0:3
will be pushed towards the tail and their priority
value implicitly decreased.

Many algorithms, including the SLRU family, can
be easily implemented with the relative priority
queue interface. Others, including the GDSF fam-
ily, require an absolute priority interface. To sup-
port these algorithms RIPQ translates from abso-
lutes priorities to relative priorities, as we explain in
Section 4.3.

4

Indexing!
Write buffering!
Maintenance!

Aligned block writes!
Random object reads!

B1! B3! Bn!

B2! B4! B2n!

Flash Space!

Priority Queue Abstraction!

Caching Policy (SLRU, GDSF, …)!
insert, increase, delete_min

Memory!

Index Map!
Block Buffer!
Queue Structure!

…!
…!

Figure 3: Advanced caching policies with
RIPQ.

 !

 ! !Active Device Block!
Insert objects till full!

Active / Sealed Virtual Block!
Count virtual-inserted objects!

D! V! D! V! …! D!D! V!D! V!

Head! Tail! Section! Section	 Section!

D!

[pK-1, pK]! [pk-1, pk)! [p0, p1)!

Block Buffer (RAM)! Counter: unfull ! Counter: full!

 !Sealed Device Block!
Store objects on flash !

Header! Store!
Object data!Key/offset!

Figure 4: Overall structure of RIPQ.

4.2 Overall Design

RIPQ is a framework that converts priority queue
operations into a flash-friendly workload with large
writes. Figure 4 gives a detailed illustration of the
RIPQ components highlighted in Figure 3, excluding
the Index Map.

Index Map The Index Map is an in-memory hash
table which associates all objects’ keys with their
metadata, including their locations in RAM or flash,
sizes, and block IDs. The block structure is ex-
plained next.

In our system each entry is ~20 bytes, and RIPQ
adds 2 bytes to store the virtual block ID of an
object. Considering the capacity of the flash card
and the average object size, there are about 50 mil-
lion objects in one caching machine and the index is
~1GiB in total.

Queue Structure The major Queue Structure of
RIPQ is composed of K sections that are in turn
composed of blocks. Sections define the insertion
points into the queue and a block is the unit of data
written to flash. The relative priority value range is
split into the K intervals corresponding to the sec-

tions: Œ1; pK´1�; : : : ; .pk ; pk´1�; : : : ; .p1; 0�.
4 When

an object is inserted into the queue with priority p,
it is placed in the head of the section whose range
contains p. For example, in a queue with sections
corresponding to Œ1; 0:7�, .0:7; 0:3� and .0:1; 0�, an ob-
ject with priority value 0:5 would be inserted to the
head of second section. Similar to relative priority
queues, when an object is inserted to a queue of N
objects, any object in the same or lower sections
with priority q is implicitly demoted from priority
q to qN

NC1
. Implicit demotion captures the dynam-

ics of many caching algorithms, including SLRU and
GDSF: as new objects are inserted to the queue, the
priority of an old object gradually decreases and it is
eventually evicted from the cache when its priority
reaches 0.

RIPQ approximates the priority queue abstrac-
tion because its design restricts where data can be
inserted. The insertion point count, K, represents
the key design trade-off in RIPQ between insertion
accuracy and memory consumption. Each section
has size O. 1

K
/, so larger Ks result in smaller sec-

tions and thus higher insertion accuracy. However,
because each active block is buffered in RAM until
it is full and flushed to flash, the memory consump-
tion of RIPQ is proportional to K. In practice we
set K D 20 and with a 256MiB block size this trans-
lates to a moderate memory footprint of 5GiB. At
the same time, our experiments show K D 20 en-
sures that RIPQ achieves hit ratios similar to the
exact algorithm.

Device and Virtual Blocks As shown in Fig-
ure 4, each section includes one active device block,
one active virtual block, and an ordered list of sealed
device/virtual blocks. An active device block accepts
insertions of new objects and buffers them in mem-
ory, i.e, the Block Buffer. When full it is sealed,
flushed to flash, and transitions into a sealed de-
vice block. To avoid duplicating data on flash RIPQ
lazily updates the location of an object when its
priority is increased, and uses virtual blocks to track
where an object would have been moved. The ac-
tive virtual block at the head of each section ac-
cepts virtually-updated objects with increased pri-
orities. When the active device block for a section
is sealed, RIPQ also transitions the active virtual
block into a sealed virtual block. Virtual update is
an in-memory only operation, which sets the virtual
block ID for the object in the Index Map, increases
the size counter for the target virtual block, and de-
creases the size counter of the object’s original block.

4We have inverted the notation of intervals from
Œlow;high/ to .high;low� to make it consistent with the
priority order in the figures.

5

Algorithm Interface Used On Miss On Hit

Segmented-L LRU Relative Priority Queue insert.x; 1
L
/ increase.x;

min.1;.1Crp¨Ls/

L
//

Greedy-Dual-Size-Frequency L Absolute Priority Queue insert.x;Lowest C
c.x/
s.x/

/ increase.x;Lowest C c.x/min.L;n.x//
s.x/

/

Table 2: SLRU and GDSF with the priority queue interface provided by RIPQ.

All objects associated with a sealed device block
are stored in a contiguous space on flash. Within
each block, a header records all object keys and their
offsets in the data following the header. As men-
tioned earlier, an updated object is marked with its
target virtual block ID within the Index Map. Upon
eviction of a sealed device block, the block header
is examined to determine all objects in the block.
The objects are looked up in the Index Map to see
if their virtual block ID is set, i.e., their priority was
increased after insertion. If so, RIPQ reinserts the
objects to the priorities represented by their virtual
blocks. The objects move into active device blocks
and their corresponding virtual objects are deleted.
Because the updated object will not be written until
the old object is about to be evicted, RIPQ main-
tains at most one copy of each object and duplica-
tion is avoided. In addition, lazy updates also allow
RIPQ to coalesce all the priority updates to an ob-
ject between its insertion and reinsertion.

Device blocks occupy a large buffer in RAM (ac-
tive) or a large contiguous space on flash (sealed).
In contrast, virtual blocks resides only in memory
and are very small. Each virtual block includes only
metadata, e.g., its unique ID, the count of objects
in it, and the total byte size of those objects.

Naive Design One naive design of a priority
queue on flash would be to fix an object’s location on
flash until it is evicted. This design avoids any writes
to flash on priority update but does not align the lo-
cation of an objects with its priority. As a result
the space of evicted objects on flash would be non-
contiguous and the FTL would have to coalesce the
scattered objects by copying them forward to reuse
the space, resulting in significant FTL write ampli-
fication. RIPQ avoids this issue by grouping objects
of similar priorities into large blocks and performing
writes and evictions on the block level, and by using
lazy updates to avoid writes on update.

4.3 Implementing Caching Algo-
rithms

To demonstrate the flexibility of RIPQ, we imple-
mented two families of advanced caching algorithms
for evaluation: Segmented-LRU [27], and Greedy-
Dual-Size-Frequency [16], both of which yield ma-
jor caching performance improvement for Facebook

photo workload. A summary of the implementation
is shown in Table 2.

Segmented-LRU Segmented-L LRU (S-L-LRU)
maintains L LRU caches of equal size. On a miss,
an object is inserted to the head of the L-th LRU
cache. On a hit, an object is promoted to the head
of the previous LRU cache, i.e., if it is in sub-cache
l , it will be promoted to the head of the max.l ´
1; 1/-th LRU cache. An object evicted from the l-th
cache will go to the head of the .lC1/-th cache, and
objects evicted from the last cache are evicted from
the whole cache. This algorithm was demonstrated
to provide significant cache hit ratio improvements
for the Facebook Edge and Origin caches [22].

Implementing this family of caching algorithms is
straightforward with the relative priority queue in-
terface. On a miss, the object is inserted with prior-
ity value 1

L
. On a hit, RIPQ finds the previous prior-

ity, p, of the accessed object, meaning it is currently
in the r.1 ´ p/ ¨ Ls-th queue. It is then promoted
to the head of the next queue, with the new priority

min.1; 1Cr.1´p/¨Ls

L
/. With the relative priority queue

abstraction, the priority of an object is automati-
cally decreased when an object is inserted/updated
to a higher priority. When an object is inserted at
the head of the l-th LRU cache, all objects in l-th
to L-th (the last) caches will be demoted, and the
objects at the end of these caches will be either de-
moted to the next cache or evicted if it is at the end
of the last cache—the dynamics of SLRU are exactly
captured by relative priority queue interface.

Greedy-Dual-Size-Frequency The Greedy-
Dual-Size algorithm [14] provides a principled way
to trade-off increased object-wise hit ratio with
decreased byte-wise hit ratio by favoring smaller
objects. It achieves even higher object-wise hit ratio
for Origin cache than SLRU (Section 2), and is fa-
vored for that use case as the main purpose of Origin
cache is to protect backend storage from excessive
IO requests. Greedy-Dual-Size-Frequency [16]
(GDSF) improves GDS by taking frequency into
consideration. In GDSF, we update the priority of
an object x to be LowestC c.x/ ¨ n

s.x/
upon its n-th

access since it was inserted to the cache, where c.x/
is the programmer-defined penalty for a miss on x,
Lowest is the lowest priority value in the current

6

 Section	 Section	 Section! …!

…

Active! Sealed!insert(x, p)!

[pK-1, pK]! [pk-1, pk)! [p0, p1)!
Head! Tail!…!

pk-1 ≤ p < pk!

D! V! D! V! D! V!

(a) Insertion

…!D! V! D! V!

 Section	 Section	 …!
[pk-1, pk)! [pi-1, pi)!

Head! Tail!……!

D!…!

increase(x, p’)! pi-1 ≤ p ≤ pi!pk-1 ≤ p’< pk!

D! D!

……!

(b) Increase

……!D! V! D! V!

 Section	 Section	 …!
[pk-1, pk)! [p0, p1)!

Head! Tail!……!

delete-min()!

D! D! D!

Evicted1!
Reinsert x delete

D!

(c) Delete-min

Figure 5: Insertion, and increase, and delete-min operations in RIPQ.

priority queue, and s.x/ is the size of the object.
We use a variant of GDSF that caps the maximum
value of the frequency of an object to L. L is similar
to the number of segments in SLRU. It prevents
the priority value of a frequently accessed object
from blowing up and adapts better to dynamic
workloads. The update rule of our variant of GDSF
algorithm is thus p.x/ Ð Lowest C c.x/ ¨ min.L;n/

s.x/
.

Because we are maximizing object-wise hit ratio we
set c.x/ D 1 for all objects. GDSF uses the absolute
priority queue interface.

Limitations RIPQ also supports many other ad-
vanced caching algorithms like LFU, LRFU [29],
LRU-k [40], LIRS [25], SIZE [6], but there are a
few notable exceptions that are not implementable
with a single RIPQ, e.g., MQ [48] and ARC [35].
These algorithms involve multiple queues and thus
cannot be implemented with one RIPQ. Extending
our design to support them with multiple RIPQs co-
existing on the same hardware is one of our future
directions. A harder limitation comes from the up-
date interface, which only allows increasing priority
values. Algorithms that decrease the priority of an
object on its access, such as MRU [17], cannot be im-
plemented with RIPQ. MRU was designed to cope
with scans over large data sets and does not apply
to our use case.

RIPQ does not support delete/overwrite opera-
tion because such operations are not needed for
static content such as photos. But, they are nec-
essary for a general-purpose read-write cache and
adding support for them is also one of our future
directions.

4.4 Implementation of Basic Opera-
tions

RIPQ implements the three operations of a regu-
lar priority queue with the data structures described
above.

Insert.x; p/ RIPQ inserts the object to the ac-
tive device block of section k that contains p, i.e.,

pk ą p ě pk´1.
5 The write will be buffered un-

til that active block is sealed. Figure 5a shows an
insertion.

Increase.x; p/ RIPQ avoids moving object x

that is already resident in a device block in the
queue. Instead, RIPQ virtually inserts x into the
active virtual block of section k that contains p,
i.e., pk ą p ě pk´1, and logically removes it from
its current location. Because we remember the vir-
tual block ID in the object entry in the indexing
hash table, these steps are simply implemented by
setting/resetting the virtual block ID of the object
entry, and updating the size counters of the blocks
and sections accordingly. No read/write to flash is
performed during this operation. Figure 5b shows
an update.

Delete-min./ We maintain a few reserved blocks
on flash for flushing the RAM buffers of device
blocks when they are sealed.6 When the number
of reserved blocks falls below this threshold, the
Delete-min() operation is called implicitly to free
up the space on flash. As shown in Figure 5c, the
lowest-priority block in queue is evicted from queue
during the operation. However, because some of the
objects in that blocks might have been updated to
higher places in the queue, they need to be reinserted
to maintain their correct priorities. The reinsertion
(1) reads out all the keys of the objects in that block
from the block header, (2) queries the index struc-
ture to find whether an object, x, has a virtual lo-
cation, and if it has one, (3) finds the corresponding
section, k, of that virtual block and copies the data
to the active device block of that section in RAM,
and (4) finally sets the virtual block field in the in-
dex entry to be empty. We call this whole process
materialization of the virtual update.

These reinsertions help preserve caching algorithm
fidelity, but cause additional writes to flash. These
additional writes cause implementation write ampli-
fication, which is the byte-wise ratio of host-issued

5A minor modification when k D K is 1 D pk ě p ě
pk´1.

6It is not a critical parameter and we used 10 in our eval-
uation.

7

 20%	 60%!Head! Tail! 20%	

…!D! V! D! V!

Write Buffer!

…! D!…! D! V!

…!D! V! D! V! …! D!D! V!

D! T1!

T2!D! V!

 20%	 Head! Tail! 30%! 20%	 30%!

…!

Split after 30%!

Time!

D!

(a) Section split process

Head! Tail! 41%! 	 30%	

…!D! V! D! V! …!

…!D! V!

D! T3!

T4!D! V!

Head! Tail! 41%! 29%	 30%! Time!

 20%	 9%	

D!

…! D!

Move data!

(b) Section merge process

Figure 6: RIPQ internal operations.

writes to those required to inserted cache misses.
RIPQ can explicitly trade lower caching algorithm
fidelity for lower write amplification by skipping ma-
terialization of the virtual objects whose priority is
smaller than a given threshold, e.g., in the last 5%
of the queue. This threshold is the logical occupancy
parameter � (0 ă � ă 1).

Internal operations RIPQ must have neither too
many nor too few insertion points: too few leads to
low accuracy, and too many leads to high memory
usage. To avoid these situations RIPQ splits a sec-
tion when it grows too large and merges consecu-
tive sections when their total size is too small. This
is similar to how B-tree [12] splits/merges nodes to
control the size of the nodes and the depth of the
tree.

A parameter ˛ controls the number of sections of
RIPQ in a principled way. ˛ is in .0; 1/ and deter-
mines the average size of sections. RIPQ splits a sec-
tion when its relative size—i.e., a ratio based on the
object count or byte size—has reached 2˛. For ex-
ample, if ˛ D 0:3 then a section of Œ0:4; 1:0� would be
split to two sections of Œ0:4; 0:7/ and Œ0:7; 1:0� respec-
tively, shown in Figure 6a. RIPQ merges two con-
secutive sections if the sum of their sizes is smaller
than ˛, shown in Figure 6b. These operations en-
sure there are at most r 2

˛
s sections, and that each

section is no larger than 2˛.

No data is moved on flash for a split or merge.
Splitting a section creates a new active device block
with a write buffer and a new active virtual block.
Merging two sections combines their two active de-
vice blocks: the write buffer of one is copied into
the write buffer of the other. Splitting happens of-
ten and is how new sections are added to queue as
objects in the section at the tail are evicted block-by-
block. Merging is rare because it requires the total
size of two consecutive sections to shrink from 2˛ (˛
is the size of a new section after a split) to ˛ to trig-
ger a merge. The amortized complexity of a merge
per operation provided by the priority queue API is
only O. 1

˛M
/, where M is the number of blocks.

Supporting Absolute Priorities Caching algo-
rithms such as LFU, SIZE [6], and Greedy-Dual-
Size[14] require the use of absolute priority values
when performing insertion and update. RIPQ sup-
ports absolute priorities with a mapping data struc-
ture that translates them to relative priorities. The
data structure maintains a dynamic histogram that
supports insertion/deletion of absolute priority val-
ues, and when given an absolute priorities return ap-
proximate quantiles, which are used as the internal
relative priority values.

The histogram consists of a set of bins, and we
merge/split bins dynamically based on their relative
sizes, similar to the way we merge/split sections in
RIPQ. We can afford to use more bins than sections
for this dynamic histogram and achieve higher ac-
curacy of the translation, e.g., � D 100 bins while
RIPQ only uses K D 20 sections, because the bins
only contains absolute priority values and do not re-
quire a large dedicated RAM buffer as the sections
do. Consistent sampling of keys to insert priority
values to the histogram can be further applied to re-
duce its memory consumption and insertion/update
cost.

4.5 Other Design Considerations

Parameters Table 3 describes the parameters of
RIPQ and the value chosen for our implementation.
The block size B is chosen to surpass the thresh-
old for a sustained high write throughput for ran-
dom writes, and the number of blocks M is calcu-
lated directly based on cache capacity. The number
of blocks affects the memory consumption of RIPQ,
but this is dominated by the size of the write buffers
for active blocks and the indexing structure. The
number of active blocks equals the number of inser-
tion points K in the queue. The average section size
˛ is used by the split and merge operations to bound
the memory consumption and approximation error
of RIPQ.

Durability Durability is not a requirement for our
static-content caching use case, but not having to

8

Parameter Symbol Our Value Description and Goal

Block Size B 256MiB To satisfy the sustained high random write throughput.
Number of Blocks M 2400 Flash caching capacity divided by the block size.

Average Section Size ˛ 0.05
To bound the number of sections ď r2=˛s and the size of each section ď 2˛,
trade-off parameter for insertion accuracy and RAM buffer usage.

Insertion Points K 20 Same as the number of sections, controlled by ˛ and proportional to RAM
buffer usage.

Logical Occupancy � 0 Avoid reinsertion of items that will soon be permanently evicted.

Table 3: Key parameters of RIPQ for a 670GiB flash drive currently deployed in Facebook.

refill the entire cache after a power loss is a plus.
Fortunately, because the keys and locations of the
objects are stored in the headers of the on-flash
device blocks, all objects that have been saved to
flash can be recovered, except for those in the RAM
buffers. The ordering of blocks/sections can be pe-
riodically flushed to flash as well and then used to
recover the priorities of the objects.

4.6 Theoretical Analysis

RIPQ is a practical approximate priority queue for
implementing caching algorithms on flash, but en-
joys some good theoretical properties as well. In
an appendix [44] we omit due to space constraints
we show RIPQ can simulate a LRU cache faithfully
with 4˛ of additional space: if ˛ D 0:05, this would
mean RIPQ-based LRU with 20% additional space
would include all the objects in an exact LRU cache.
In general RIPQ with adjusted insertion points can
simulate a S-L- LRU cache with 4L˛ of additional
space. We also show the number of writes to the
flash is ď I C U , where I is the number of inserts
and U is the number of updates.

Using K sections/insertion points, the complex-
ity of finding the approximate insertion/update
point takes O.K/, and the amortized complexity of
split/merge internal operations is O.1/, so the amor-
tized complexity of RIPQ is only O.K/. If we ar-
range the sections in a red-black tree, it can be fur-
ther reduced to O.logK/. In comparison to this,
with N objects, an exact implementation of prior-
ity queues using red-black tree would take O.logN/
per operation, and a Fibonacci heap takes O.logN/
per delete-min operation. (K ! N , K is typically
20, N is typically 50 million). The computational
complexity of these exact, tree and heap based data
structures are not ideal for a high performance sys-
tem. In contrast, RIPQ hits the sweet spot with
fast operations and high fidelity, in terms of both
theoretical analysis and empirical hit ratios.

5 SIPQ

RIPQ’s buffering for large writes creates a moderate
memory footprint, e.g., 5 GiB DRAM for 20 inser-
tion points with 256 MiB block size in our imple-
mentation. This is not an issue for servers at Face-
book, which are equipped with 144 GiB of RAM,
but limits the use of RIPQ in memory-constrained
environments. To cope with this issue, we propose
the simpler Single Insertion Priority Queue (SIPQ)
framework.

SIPQ uses flash as a cyclic queue and only sequen-
tially writes to the device for high write through-
put with minimal buffering. When the cache is full,
SIPQ reclaims device space following the same se-
quential order. In contrast to RIPQ, SIPQ main-
tains an exact priority queue of the keys of the
cached objects in memory and does not co-locate
similarly prioritized objects physically due to the
single insertion limit on flash. The drawback of this
approach is that reclaiming device space may incur
many reinsertions for SIPQ in order to preserve its
priority accuracy. Similar to RIPQ, these reinser-
tions constitute the implementation write amplifica-
tion of SIPQ.

To reduce the implementation write amplification,
SIPQ only includes the keys of a portion of all the
cached objects in the in-memory priority queue, re-
ferred to as the virtual cache, and will only rein-
sert evicted objects that are in this cache. All on-
flash capacity is referred to as the physical cache
and the ratio between the total byte size of ob-
jects in the virtual cache to the size of the phys-
ical cache is controlled by a logical occupancy pa-
rameter � (0 ă � ă 1). Because only objects in
the virtual cache are reinserted when they are about
to be evicted from the physical cache, � provides a
trade-off between priority fidelity and implementa-
tion write amplification: the larger � , the more ob-
jects are in the virtual cache and the higher fidelity
SIPQ has relative to the exact caching algorithm,
and on the other hand the more likely evicted ob-
jects will need to be reinserted and thus higher write
amplification caused by SIPQ. For � D 1, SIPQ im-

9

plements an exact priority queue for all cached data
on flash, but incurs high write amplification for rein-
sertions. For � D 0, SIPQ deteriorates to FIFO with
no priority enforcement. For � in between, SIPQ
performs additional writes compared to FIFO but
also delivers part of the improvement of more ad-
vanced caching algorithms. In our evaluation, we
find that SIPQ provides a good trade-off point for
Segmented-LRU algorithms with � D 0:5, but does
not perform well for more complex algorithms like
GDSF. Therefore, with limited improvement at al-
most no additional device overhead, SIPQ can serve
as a simple upgrade for FIFO when memory is tight.

6 Evaluation
We compare RIPQ, SIPQ, and Facebook’s current
solution, FIFO, to answer three key questions:

1. What is the impact of RIPQ and SIPQ’s approx-
imations of caching algorithms on hit ratios, i.e.,
what is the effect on algorithm fidelity?

2. What is the write amplification caused by RIPQ
and SIPQ versus FIFO?

3. What throughput can RIPQ and SIPQ achieve?
4. How does the hit-ratio of RIPQ change as we vary

the number of insertion points?

6.1 Experimental Setup

Implementation We implemented RIPQ and
SIPQ with 1600 and 600 lines of C++ code, re-
spectively, using the Intel TBB library [5] for the
object index and the C++11 thread library [1] for
the concurrency mechanisms. Both the relative and
absolute priority interfaces (enabled by an adaptive
histogram translation) are supported in our proto-
types.

Hardware Environment Experiments are run
on servers equipped with a Model A 670GiB flash
device and 144GiB DRAM space. All flash devices
are configured with 90% space utilization, leaving
the remaining 10% for the FTL.

Framework Parameters RIPQ uses a 256MiB
block size to achieve high write throughput based on
our performance study of Model A flash in Section 3.
It uses ˛ D 0:05, i.e., 20 sections, to provide a good
trade-off between the fidelity to the implemented al-
gorithms and the total DRAM space RIPQ uses for
buffering: 256MiB ˆ 20 = 5GiB, which is moderate
for a typical server.

SIPQ also uses the 256MiB block size to keep the
number of blocks on flash the same as RIPQ. Be-
cause SIPQ only issues sequential writes, its buffer-
ing size could be further shrunk without adverse ef-
fects. Two logical occupancy values for SIPQ are

used in evaluation: 0:5, and 0:9, each representing
a different trade-off between the approximation fi-
delity to the exact algorithm and implementation
write amplification. Later, these two settings are
noted as SIPQ-0.5 and SIPQ-0.9, respectively.

Caching Algorithms Two families of advanced
caching algorithms, Segmented-LRU (SLRU) [27]
and Greedy-Dual-Size-Frequency (GDSF) [16], are
evaluated on RIPQ and SIPQ. For Segmented-LRU,
we vary the number of segments from 1 to 3, and
report their results as SLRU-1, SLRU-2, and SLRU-
3, respectively. We similarly set L from 1 to 3

for Greedy-Dual-Size-Frequency, denoted as GDSF-
1, GDSF-2, and GDSF-3. Description of these al-
gorithms and their implementations on top of the
priority queue interface are explained in Section 4.3.
Results of 4 segments or more for SLRU and L ą 4
for GDSF are not included due to their marginal
differences in the caching performance.

Facebook Photo Trace Two sets of 15-day sam-
pled traces collected within the Facebook photo-
serving stack are used for evaluation, one from the
Origin cache, and the other from a large Edge cache
facility. The Origin trace contains over 4 billion re-
quests and 100TB worth of data, and the Edge trace
contains over 600 million requests and 26TB worth
of data. To emulate the effect of different total cache
capacities in Origin/Edge with the same space uti-
lization of the experiment device and thus control-
ling for the effect of FTL, both traces are further
down sampled through hashing: we randomly sam-
ple 1

2
, 1
3
, and 1

4
of the cache key space of the original

trace for each experiment to emulate the effect of in-
creasing the total caching capacity to 2X , 3X , and
4X . We report experimental results at 2X because it
closely matches our production configurations. For
all evaluation runs, we use the first 10-day trace to
warm up the cache and measure performance during
the next 5 days. Because both the working set and
the cache size are very large, it takes hours to fill up
the cache and days for the hit ratio to stabilize.

6.2 Experimental Results

This section presents our experimental results re-
garding the algorithm fidelity, write amplification,
and throughput of RIPQ and SIPQ with the Face-
book photo trace. We also include the hit ra-
tio, write amplification and throughput achieved by
Facebook’s existing FIFO solution as a baseline. For
different cache sites, only their target hit ratio met-
rics are reported, i.e., object-wise hit ratio for the
Origin trace and byte-wise hit ratio for the Edge
trace. Exact algorithm hit ratios are obtained via

10

���
���
���
���
���
���
���
���

� �� �� ��
�
��
��
��
�
��
��
��
��
��
���
��
�
�

����������

����
������
������
������
������
������
������

(a) Object-wise hit ratios on Origin
trace.

���

���

���

���

���

���

� �� �� ��

��
��
��
��
��
��
��
��
���
��
�
�

����������

������
������
������
����

������
������
������

(b) Byte-wise hit ratios on Edge
trace.

Figure 7: Exact algorithm hit ratios on Facebook trace.

simulations as the baseline to judge the approxima-
tion fidelity of implementations on top of RIPQ and
SIPQ.

Performance of Exact Algorithms We first in-
vestigate hit ratios achieved by the exact caching al-
gorithms to determine the gains of a fully accurate
implementation. Results are shown in Figure 7.

For object-wise hit ratio on the Origin trace, Fig-
ure 7a shows that GDSF family outperforms SLRU
and FIFO by a large margin. At 2X cache size,
GDSF-3 increases the hit ratio over FIFO by 17%,
which translates a to a 23% reduction of backend
IOPS. For byte-wise hit ratio on the Edge trace,
Figure 7b shows that SLRU is the best option: at
2X cache size, SLRU-3 improves the hit ratio over
FIFO by 4:5%, which results in a bandwidth re-
duction between Edge and Origin by 10%. GDSF
performs poorly on the byte-wise metric because it
down weights large photos. Because different algo-
rithms perform best at different sites with differ-
ent performance metrics, flexible frameworks such
as RIPQ make it easy to optimize caching policies
with minimal engineering effort.

Approximation Fidelity Exact algorithms yield
considerable gains in our simulation, but are also
challenging to implement on flash. RIPQ and SIPQ
make it simple to implement the algorithms on flash,
but do so by approximating the algorithms. To
quantify the effects of this approximation we ran ex-
periments presented in Figures 8a and 8d. These
figures present the hit ratios of different exact algo-
rithms (in simulations) and their approximate im-
plementations on flash with RIPQ, SIPQ-0.5, and
SIPQ-0.9 (in experiments) at 2X cache size setup
from Figure 7. The implementation of FIFO is the
same as the exact algorithm, so we only report one
number. In general, if the hit ratio of an implemen-
tation is similar to the exact algorithm the frame-
work provides high fidelity.

RIPQ consistently achieves high approximation fi-
delities for the SLRU family, and its hit ratios are

less than 0:2% different for object-wise/byte-wise
metric compared to the exact algorithm results on
Origin/Edge trace. For the GDSF family, RIPQ’s
algorithm fidelity becomes lower as the algorithm
complexity increases. The greatest “infidelity” seen
for RIPQ is a 5% difference on the Edge trace for
GDSF-1. Interestingly, for the GDSF family, the in-
fidelity generated by RIPQ improves byte-wise hit
ratio—the largest infidelity was a 5% improvement
on byte-wise hit-ratio compared to the exact algo-
rithm. The large gain on byte-wise hit ratio can be
explained by the fact that the exact GDSF algorithm
is designed to trade byte-wise hit ratio for object-
wise hit ratio through favoring small objects, and
its RIPQ approximation shifts this trade-off back to-
wards a better byte-wise hit-ratio. Not shown in the
figures (due to space limitation) is that RIPQ-based
GDSF family incurs about 1% reduction in object-
wise hit ratio. Overall, RIPQ achieves high algo-
rithm fidelity on both families of caching algorithms
that perform the best in our evaluation.

SIPQ also has high fidelity when the occupancy
parameter is set to 0:9, which means 90% of the
caching capacity is managed by the exact algorithm.
SIPQ-0.5, despite only half of the cache capacity be-
ing managed by the exact algorithm, still achieves a
relatively high fidelity for SLRU algorithms: it cre-
ates a 0:24%-2:8% object-wise hit ratio reduction on
Origin, and 0:3%-0:9% byte-wise hit ratio reduction
on Edge. These algorithms tend to put new and
recently accessed objects towards the head of the
queue, which is similar to the way SIPQ inserts and
reinserts objects at the head of the cyclic queue on
flash. However, SIPQ-0.5 provides low fidelity for
the GDSF family, causing object-wise hit ratio to de-
crease on Origin and byte-wise hit ratio to increase
on Edge. Within these algorithms, objects may have
diverse priority values due to their size differences
even if they enter the cache at the same time, and
SIPQ’s single insertion point design results in a poor
approximation.

11

���
���
���
���
���
���
���
���
���
���
���

������
������

������
������

������
������

�����
��
��
��
��
��
��
���
��
�
�

����������

����
��������

��������
�����

����

(a) Object-wise hit ratio (Ori-
gin)

��
��
��
��
��
��
��
��
��

������
������

������
������

������
������

����

�
��
��
��
�
��
��
��
���
�

����������

����
��������

��������
����

(b) Write amplification (Ori-
gin)

��
��
���
���
���
���
���
���

������
������

������
������

������
������

����

�
��
��
��
��
��
���
��
�

����������

����
��������

��������
����

(c) IOPS throughput (Origin)

���
���
���
���
���
���
���
���

������
������

������
������

������
������

����

��
��
��
���
��
���
��
�
�

����������

����
��������

��������
�����

����

(d) Byte-wise hit ratio (Edge)

��
��
��
��
��
��
��
��
��

������
������

������
������

������
������

����

�
��
��
��
�
��
��
��
���
�

����������

����
��������

��������
����

(e) Write amplification (Edge)

��
��
���
���
���
���
���
���

������
������

������
������

������
������

����

�
��
��
��
��
��
���
��
�

����������

����
��������

��������
����

(f) IOPS throughput (Edge)

Figure 8: Performance of RIPQ, SIPQ, and FIFO on Origin and Edge.

Write Amplification Figure 8b and 8e further
show the combined write amplification (i.e., F TLˆ
implementation) of different frameworks. RIPQ
consistently achieves the lowest write amplification,
with an exception for SLRU-1 where SIPQ-0.5 has
the lowest value for both traces. This is because
SLRU-1 (LRU) only inserts to one location at the
queue head, which works well with SIPQ, and the
logical occupancy 0:5 further reduces the reinsertion
overhead. Overall, the write amplification of RIPQ
is largely stable regardless of the complexity of the
caching algorithms, ranging from 1:18 to 1:25 for the
SLRU family, and from 1:15 to 1:25 for the GDSF
family.

SIPQ-0.5 achieves moderately low write amplifica-
tions but with lower fidelity for complex algorithms.
Its write amplification also increases with the algo-
rithm complexity. For SLRU, the write implemen-
tation for SIPQ-0.5 rises from 1:08 for SLRU-1 to
1:52 for SLRU-3 on Origin, and from 1:11 to 1:50
on Edge. For GDSF, the value ranges from 1:33

for GDSF-1 to 1:37 to GDSF-3 on Origin, and from
1:36 to 1:39 on Edge. Results for SIPQ-0.9 observe a
similar trend for each family of algorithms, but with
a much higher write amplification value for GDSF
around 5-6.

Cache Throughput Throughput results are
shown in Figure 8c and 8f. RIPQ and SIPQ-0.5
consistently achieve over 20 000 requests per second
(rps) on both traces, but SIPQ-0.9 has considerably
lower throughput, especially for the GDSF family
of algorithms. FIFO has slightly higher through-

put than RIPQ based SLRU, although the latter
has higher byte hit ratio and correspondingly fewer
writes from misses.

This performance is highly related to the write
amplification results because in all three frame-
works (1) workloads are write-heavy with below 63%
hit ratios, and our experiments are mainly write-
bounded with a sustained write-throughput around
530 MiB/sec, (2) write amplification proportionally
consumes the write throughput, which further throt-
tles the overall throughput. This is why SIPQ-
0.9 often with the highest write amplification has
the lowest throughput, and also why RIPQ based
SLRU has lower throughput than FIFO. However,
RIPQ/SIPQ-0.5 still provides high performance for
our use case, with RIPQ paticularly achieving over
24 000 rps on both traces. The less than 3 000 rps
lower throughput comparing to FIFO is well worth
the hit-ratio improvement that results in backend
IOPS reduction and bandwidth reduction between
Edge and Origin.

Sensitivity Analysis on Number of Insertion
Points Figure 9 shows the effect of varying the
number of insertion points in RIPQ on approxima-
tion accuracy. The number of insertion points, K,
is roughly inversely proportional to ˛, so we vary K
to be approximately 2; 4; 8; 16, and 32, by varying
˛ from 1

2
; 1
4
; 1
8
; 1
16

to 1
32

. We measure approxima-
tion accuracy empirically through the object-wise
hit-ratios of RIPQ based SLRU-3 and GDSF-3 on
the origin trace with 2X cache size.

When K « 2 (˛ D
1
2
), a section in RIPQ can

12

���

���

���

���

���

���

� � � �� ���
��
��
��
�
��
��
��
��
��
���
��
�
�

��������������������������������������

����
�

������
������������

�
������

������������

Figure 9: Object-wise hit ratios sensitivity on
approximate number of insertion points.

grow to the size of the entire queue before it splits.
In this case RIPQ effectively degenerates to FIFO
with equivalent hit-ratios. SLRU-3 hit ratio satu-
rates quickly when K Á 4, while GDSF-3 reaches
its highest performance only when K Á 8. GDSF-3
uses many more insertion points in an exact prior-
ity queue than SLRU-3 and RIPQ thus need more
insertion points to effectively colocate content with
similar priorities.

7 Related Work

To the best of our knowledge, there is no exist-
ing work that provides a flexible framework for effi-
ciently implementing advanced caching algorithms
on flash. However, related work can be found
in several heavily-researched fields: Flash-based
Caching, RAM-based Advanced Caching, Flash-
based Storage, Flash Performance Studies, and Pri-
ority Queues.

Flash-based Caching Solutions Flash devices
have been applied in various caching solutions for
their large capacities and high I/O performance
[2, 7, 9, 23, 24, 28, 32, 36, 39, 42, 46]. To avoid
their poor handling of small random write work-
loads, previous studies either use sequential evic-
tion akin to FIFO [7], or only perform coarse-grained
caching policies at the unit of large blocks [23, 32,
46]. Similarly, SIPQ and RIPQ also achieve high
write throughputs and low device overheads on flash
through sequential writes and large aligned writes,
respectively. In addition, they allow efficient imple-
mentations of advanced caching policies at a fine-
grained object unit, and our experience show that
photo caches built on top of RIPQ and SIPQ yield
significant performance gains at Facebook. While
our work mainly focuses on the support of eviction
part of caching operations, techniques like selective
insertions on misses [23, 46] are orthogonal to RIPQ
and can be applied to further reduce the data writ-

ten to flash.7

RAM-based Advanced Caching Caching has
been an important research topic since the early
days of computer science and many algorithms have
been proposed to better capture the characteris-
tics of different workloads. Some well-known fea-
tures include recency (LRU, MRU [17]), frequency
(LFU [34]), inter-reference time (LIRS [25]), and size
(SIZE [6]). There have also been a plethora of more
advanced algorithms that consider multiple fea-
tures, such as Multi-Queue [48] and Segmented LRU
(SLRU) [27] for both recency and frequency, Greedy-
Dual [47] and its variants like Greedy-Dual-Size [14]
and Greedy-Dual-Size-Frequency [16] (GDSF) using
a more general method to compose the expected miss
penalty and minimize it.

While more advanced algorithms can potentially
yield significant performance improvements, such as
SLRU and GDSF for Facebook photo workload, a
gap still remains for efficient implementations on
top of flash devices because most algorithms are
hardware-agnostic: they implicitly assume data can
be moved and overwritten with little overhead. Such
assumptions do not hold on flash due to its asymmet-
ric performance for reads and writes and the perfor-
mance deterioration caused by its internal garbage
collection.

Our work, RIPQ and SIPQ, bridges this gap.
They provide a priority queue interface to allow easy
implementation of many advanced caching algo-
rithms, providing similar caching performance while
generating flash-friendly workloads.

Flash-based Store Many flash-based storage sys-
tems, especially key-value stores have been recently
proposed to work efficiently on flash hardware. Sys-
tems such as FAWN-KV [11], SILT [33], LevelDB [3],
and RocksDB [4] group write operations from an up-
per layer and only flush to the device using sequen-
tial writes. However, they are designed for read-
heavy workloads and other performance/application
metrics such as memory footprints and range-query
efficiencies. As a result, these systems make trade-
offs such as conducting on-flash data sorting and
merges, that yield high device overhead for write-
heavy workloads. We have experimented with us-
ing RocksDB as an on-flash photo store for our
application, but found it to have excessively high
write amplification (~5 even when we allocated 50%
of the flash space to garbage collection). In con-
trast, RIPQ and SIPQ are specifically optimized for

7We tried such techniques on our traces, but found the
hit ratio dropped because of the long-tail accesses for social
network photos.

13

a (random) write-heavy workload and only support
caching-required interfaces, and as a result have low
write amplification.

Study on Flash Performance and Interface
While flash hardware itself is also an important
topic, works that study the application perceived
performance and interface are more related to our
work. For instance, previous research [13, 26, 37, 43]
that reports the random write performance deterio-
ration on flash helps verify our observations in the
flash performance study.

Systematic approaches to mitigate this specific
problem have also been previously proposed at dif-
ferent levels, such as separating the treatment of cold
and hot data in the FTL by LAST [30], and the
similar technique in filesystem by SFS [37]. These
approaches work well for skewed write workloads
where only a small subset of the data is hot and up-
dated often, and thus can be grouped together for
garbage collection with lower overhead. In RIPQ,
cached contents are explicitly tagged with priority
values that indicate their hotness, and are co-located
within the same device block if their priority values
are close. In a sense, such priorities provide a prior
for identifying content hotness.

While RIPQ (and SIPQ) runs on unmodified com-
mercial flash hardware, recent studies [32, 41] which
co-design flash software/hardware could further ben-
efit RIPQ by reducing its memory consumption.

Priority Queue Both RIPQ and SIPQ rely on
the priority queue abstract data type and the de-
sign of priority queues with different performance
characteristics have been a classic topic in theoret-
ical computer science as well [15, 18, 20]. Instead
of building an exact priority queue, RIPQ uses an
approximation to trade algorithm fidelity for flash-
aware optimization.

8 Conclusion

Flash memory, with its large capacity, high IOPS,
and complex performance characteristics, poses new
opportunities and challenges for caching. In this pa-
per we present two frameworks, RIPQ and SIPQ,
that implement approximate priority queues effi-
ciently on flash. On top of them, advanced caching
algorithms can be easily, flexibly, and efficiently im-
plemented, as we demonstrate for the use case of a
flash-based photo cache at Facebook. RIPQ achieves
high fidelity and low write amplification for both
tested SLRU and GDSF algorithms. SIPQ is a sim-
pler design, requires less memory and still achieves
good results for simple algorithms like LRU. Experi-
ments on both the Facebook Edge and Origin traces

show that RIPQ can improve hit ratios by up to
~20% over the current FIFO system, reducing band-
width consumption between the Edge and Origin,
and reducing I/O operations to backend storage.

14

References

[1] C++11 Thread Support Library. http://en.
cppreference.com/w/cpp/thread, 2014.

[2] Flashcache at Facebook: From 2010 to 2013 and
beyond. http://tinyurl.com/oljloxb,
2014.

[3] LevelDB, A fast and lightweight key/value
database library by Google. https://code.
google.com/p/leveldb, 2014.

[4] RocksDB, A persistent key-value store for fast
storage environments. http://rocksdb.
org, 2014.

[5] Intel Thread Building Blocks. https://www.
threadingbuildingblocks.org, 2014.

[6] M. Abrams, C. R. Standridge, G. Abdulla,
E. A. Fox, and S. Williams. Removal policies
in network caches for World-Wide Web docu-
ments. In ACM SIGCOMM Computer Com-
munication Review, 1996.

[7] A. Aghayev and P. Desnoyers. Log-structured
cache: trading hit-rate for storage performance
(and winning) in mobile devices. In Proc. Work-
shop on Interactions of NVM/FLASH with Op-
erating Systems and Workloads, 2013.

[8] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.
Davis, M. S. Manasse, and R. Panigrahy. De-
sign Tradeoffs for SSD Performance. In Proc.
USENIX Annual Technical Conference (ATC),
2008.

[9] C. Albrecht, A. Merchant, M. Stokely, M. Wal-
iji, F. Labelle, N. Coehlo, X. Shi, and
E. Schrock. Janus: Optimal Flash Provisioning
for Cloud Storage Workloads. In Proc. USENIX
Annual Technical Conference (ATC), 2013.

[10] D. G. Andersen and S. Swanson. Rethinking
flash in the data center. IEEE micro, 2010.

[11] D. G. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan.
FAWN: A fast array of wimpy nodes. In Proc.
ACM Symposium on Operating Systems Prin-
ciples (SOSP), 2009.

[12] R. Bayer and E. McCreight. Organization and
maintenance of large ordered indexes. Springer,
2002.

[13] L. Bouganim, B. r Jnsson, and P. Bonnet.
uFLIP: Understanding Flash IO Patterns. In
Proc. Conference on Innovative Data Systems
Research (CIDR), 2009.

[14] P. Cao and S. Irani. Cost-Aware WWW Proxy
Caching Algorithms. In Proc. USENIX Sym-
posium on Internet Technologies and Systems

(USITS), 1997.

[15] B. Chazelle. The soft heap: an approximate
priority queue with optimal error rate. Journal
of the ACM (JACM), 2000.

[16] L. Cherkasova and G. Ciardo. Role of aging,
frequency, and size in web cache replacement
policies. In High-Performance Computing and
Networking, 2001.

[17] H.-T. Chou and D. J. DeWitt. An evaluation
of buffer management strategies for relational
database systems. Algorithmica, 1986.

[18] M. L. Fredman and R. E. Tarjan. Fibonacci
heaps and their uses in improved network op-
timization algorithms. Journal of the ACM
(JACM), 1987.

[19] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a
flash translation layer employing demand-based
selective caching of page-level address map-
pings. In Proc. International Conference on Ar-
chitectural Support for Programming Languages
and Operating Systems (ASPLOS), 2009.

[20] J. E. Hopcroft. Data structures and algorithms.
AddisonWeely, 1983.

[21] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis,
and R. Pletka. Write amplification analysis in
flash-based solid state drives. In Proc. Interna-
tional Systems and Storage Conference (SYS-
TOR), 2009.

[22] Q. Huang, K. Birman, R. van Renesse,
W. Lloyd, S. Kumar, and H. C. Li. An Analy-
sis of Facebook Photo Caching. In Proc. ACM
Symposium on Operating Systems Principles
(SOSP), 2013.

[23] S. Huang, Q. Wei, J. Chen, C. Chen, and
D. Feng. Improving flash-based disk cache with
Lazy Adaptive Replacement. In Proc. IEEE
Symposium on Mass Storage Systems and Tech-
nologies (MSST), 2013.

[24] D. Jiang, Y. Che, J. Xiong, and X. Ma. uCache:
A Utility-Aware Multilevel SSD Cache Manage-
ment Policy. In Proc. IEEE International Con-
ference on Embedded and Ubiquitous Comput-
ing (HPCC EUC), 2013.

[25] S. Jiang and X. Zhang. LIRS: an efficient
low inter-reference recency set replacement pol-
icy to improve buffer cache performance. In
ACM SIGMETRICS Performance Evaluation
Review, 2002.

[26] K. Kant. Data center evolution: A tutorial on
state of the art, issues, and challenges. Com-
puter Networks, 2009.

[27] R. Karedla, J. S. Love, and B. G. Wherry.

15

http://en.cppreference.com/w/cpp/thread
http://en.cppreference.com/w/cpp/thread
http://tinyurl.com/oljloxb
https://code.google.com/p/leveldb
https://code.google.com/p/leveldb
http://rocksdb.org
http://rocksdb.org
https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org

Caching strategies to improve disk system per-
formance. IEEE Computer, 1994.

[28] T. Kgil, D. Roberts, and T. Mudge. Improving
NAND flash based disk caches. In Proc. Inter-
national Symposium on Computer Architecture
(ISCA), 2008.

[29] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim. LRFU: A Spectrum
of Policies That Subsumes the Least Recently
Used and Least Frequently Used Policies. IEEE
Trans. Comput., 2001.

[30] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST:
locality-aware sector translation for NAND
flash memory-based storage systems. ACM
SIGOPS Operating Systems Review, 2008.

[31] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A log buffer-based flash
translation layer using fully-associative sector
translation. ACM Transactions on Embedded
Computing Systems (TECS), 2007.

[32] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smal-
done, and G. Wallace. Nitro: A Capacity-
Optimized SSD Cache for Primary Storage. In
Proc. USENIX Annual Technical Conference
(ATC), 2014.

[33] H. Lim, B. Fan, D. G. Andersen, and
M. Kaminsky. SILT: A memory-efficient, high-
performance key-value store. In Proc. ACM
Symposium on Operating Systems Principles,
2011.

[34] S. Maffeis. Cache management algorithms for
flexible filesystems. ACM SIGMETRICS Per-
formance Evaluation Review, 1993.

[35] N. Megiddo and D. S. Modha. ARC: A Self-
Tuning, Low Overhead Replacement Cache. In
Proc. USENIX Conference on File and Storage
Technologies (FAST), 2003.

[36] F. Meng, L. Zhou, X. Ma, S. Uttamchandani,
and D. Liu. vCacheShare: Automated Server
Flash Cache Space Management in a Virtual-
ization Environment. In Proc. USENIX Confer-
ence on USENIX Annual Technical Conference
(ATC), 2014.

[37] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I.
Eom. SFS: Random write considered harmful in
solid state drives. In Proc. USENIX Conference
on File and Storage Technologies (FAST), 2012.

[38] Netflix. Netflix Open Connect. https://
www.netflix.com/openconnect, 2014.

[39] Y. Oh, J. Choi, D. Lee, and S. H. Noh. Improv-
ing performance and lifetime of the SSD RAID-
based host cache through a log-structured ap-

proach. In Proc. Workshop on Interactions
of NVM/FLASH with Operating Systems and
Workloads, 2013.

[40] E. J. O’Neil, P. E. O’Neil, and G. Weikum.
The LRU-K Page Replacement Algorithm for
Database Disk Buffering. In Proc. ACM SIG-
MOD International Conference on Manage-
ment of Data (SIGMOD), 1993.

[41] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang,
and Y. Wang. SDF: software-defined flash for
web-scale internet storage systems. In Proc.
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS), 2014.

[42] M. Saxena, M. M. Swift, and Y. Zhang.
Flashtier: a lightweight, consistent and durable
storage cache. In Proc. ACM European Confer-
ence on Computer Systems (EuroSys), 2012.

[43] R. Stoica, M. Athanassoulis, R. Johnson, and
A. Ailamaki. Evaluating and repairing write
performance on flash devices. In Proc. Interna-
tional Workshop on Data Management on New
Hardware, 2009.

[44] L. Tang. RIPQ Appendix: Theo-
retical Analysis of RIPQ. http:
//www.cs.princeton.edu/˜linpengt/
publications/ripq-appendix.pdf,
2014.

[45] R. P. Wooster and M. Abrams. Proxy caching
that estimates page load delays. Computer Net-
works and ISDN Systems, 1997.

[46] J. Yang, N. Plasson, G. Gillis, and N. Tala-
gala. Hec: improving endurance of high per-
formance flash-based cache devices. In Proc.
International Systems and Storage Conference
(SYSTOR), 2013.

[47] N. Young. The k-server dual and loose compet-
itiveness for paging. Algorithmica, 1994.

[48] Y. Zhou, J. Philbin, and K. Li. The Multi-
Queue Replacement Algorithm for Second Level
Buffer Caches. In USENIX Annual Technical
Conference (ATC), 2001.

16

https://www.netflix.com/openconnect
https://www.netflix.com/openconnect
http://www.cs.princeton.edu/~linpengt/publications/ripq-appendix.pdf
http://www.cs.princeton.edu/~linpengt/publications/ripq-appendix.pdf
http://www.cs.princeton.edu/~linpengt/publications/ripq-appendix.pdf

A Theoretical Analysis of
RIPQ

Overview and Notations

For simplicity we assume the objects are of unit sizes
and we want to approximate an exact priority queue
cache of size nc with K fixed insertion points. Note
that Segmented LRU-K lies in this class.

Our goal is to construct a RIPQ cache simulating
the exact priority queue cache so at any time the
objects in the exact priority queue cache will always
be a subset of the objects in the approximate RIPQ
cache. Of course we have to pay some price with the
approximation, and this is reflected in the additional
space used by the RIPQ cache. We will bound the
additional space needed by RIPQ and show that it
is proportional to the average section size and the
number of insertion points K.

Object Location Use X to denote the set of all
the objects in the workload, then we define

L.t/.x/ W X ÞÝÑ .´8; nc �

to be the location of object x in the cache at time t .
The object at the queue head will have location nc ,
the next object nc ´ 1, etc. The objects can have
non-positive locations if we use more space than the
exact cache.

Imagine we run an exact priority queue cache (ab-
breviated to exact cache from now on) side by side,
then each object would have a location in the exact
cache as well, we call that its ideal object loca-
tion, denoted as L˚.t/.x/.
Block Location RIPQ consists of a ordered set
of physical/virtual blocks, partitioned into sections,
with a active device block and a active virtual block
at the head of each section. We use b1; b2; ¨ ¨ ¨ ; bm
to denote the chain of blocks in the queue, with b1
the block at the queue tail and bm the block at the
queue head. We overload the notation L and define
the location of block b to be the maximal location
of objects in that block:

L.b/ fi max
xPb

L.x/

We call bj above bi and write bj ą bi if j ą i , and
correspondingly for bi below bj .

Approximation Space Overhead As men-
tioned before our goal is to keep all the objects in the
exact cache in our approximate cache as well, and
we are allowed to use some additional space. Now
the lowest location of the objects in the exact cache
is minxWL˚.t/.x/ě1 L.t/.x/, and if we are going to keep

this object in the approximate cache, the additional
space we use is

max
xWL˚.t/.x/ě1

´L.t/.x/C 1

We will prove it grows linearly with the expected
section size ˛ and the number of insertion points K.

Block Max Ideal Location is the maximal ideal
location of objects in that block, i.e.

 .t/.b/ fi max
xWxP.t/b

L˚.t/.x/

where x P.t/ b means x is in block b at time t .

Insertion Points of the Exact Cache We use
0 ă q1 ă ¨ ¨ ¨ ă qK D nc to denote K insertion points
of the exact cache. If we are running Segmented-
K LRU then qk D rk=K ˆ ncs. Note that we can
only insert or update an object to these locations in
the queue. Inserting x to qk causes the locations of
objects lower than or equal to qk to decrease by 1,
while objects of higher locations retain their current
locations.

L˚.tC1/.y/ D

8̂<̂
:
L˚.t/.y/ if L˚.t/.y/ ą qk
qk if y D x

L˚.t/.y/´ 1 if L˚.t/.y/ ď qk

If we update an object from L1 to L2 (L1 ă L2)
and L2 D qk , then

L˚.tC1/.y/ D

8̂<̂
:
L˚.t/.y/´ 1 if L1 ă L˚.t/.y/ ď L2
qk if y D x

L˚.t/.y/ otherwise

Algorithm

Now we describe the variant of the RIPQ algorithm
that simulates an exact priority queue cache with
provable, bounded space overhead. Define the ad-
justed insertion point Ik D qk ´ 4.K ´ k/˛, find the
section containing Ik and insert/update qk objects
into that section. Or equivalently, find the lowest
active physical/virtual block above or equal to Ik
and insert/update the object there.

Note that the insertion points are adjusted in
RIPQ such that the space between two insertion
points qk´1; qk increases from qk ´ qk´1 to qk ´

qk´1 C 4˛. The additional 4˛ space is needed be-
cause of the approximate insertion error and the er-
ror from materialization of virtual insertions, so the
location of an object in RIPQ might be lower than
its ideal location.

17

If the insertion points are not adjusted to allow for
this error, then we lose any reasonable theoretical
guarantees of approximation error: imagine insert-
ing many new objects to qk , and some object with a
higher ideal location than qk will be pushed towards
the tail of the queue and eventually evicted, while
its ideal location is actually higher than all the ob-
jects newly inserted to qk (there can be qknc such
objects in the exact cache), so the approximation
space overhead will be at least qk .

For simplicity we assume the blocks are all unit-
size for now, so the block seal and section com-
bine/split operations are all no-ops for RIPQ struc-
ture, and we omit the effects of these operations in
the statement of the main theorem and the proof.
We show the additional overhead brought by a larger
block size is actually quite small in the following
text.

Main Theorem

For any block b at any time, the maximal block ideal
location satisfies

k.b/ ď L.b/C 4.K ´ k C 1/˛;

or the ideal location of any k-insertion object
won’t be larger than the location of its block plus
4.K ´ k C 1/˛.

Because 1 ď k ď K, it follows that .b/ ď L.b/C

4K˛. If L.b/ ď ´4K˛, then .b/ ď 0, so all the
objects in that block will already have been evicted
by the exact cache. This means the simulation space
overhead of RIPQ ď 4K˛.

Note that for an exact cache, k.b/ D L.b/, the
additional 4.K´kC1/˛ is from the error of the ap-
proximate insertion and materialization operation.
The maximum section size is 2˛, and both opera-
tions incur an approximation error of O.˛/ per in-
sertion point and it accumulates for each insertion
point from queue head to queue tail.

Analysis and Proof

We prove by induction a stronger version of the main
theorem. At any time t , for any block b and any
object x in b, we are going to show by induction
that

L˚.t/.x/C c.t/.x/ ď L.t/.b/C 4.K ´ k/˛ C M.t/.b/

c.x/ and M.b/ is account variables associated
with x and b respectively, used in amortized analy-
sis. By its definition c.x/ is guaranteed to be non-
negative and we are going to show M.b/ ď 2˛ so
the main theorem follows.

• c.x/: we add 1 to c.x/ when we insert y to
the queue with a higher ideal location than x

but with a lower location than x in RIPQ, and
subtract it by 1 whenever y is later updated to
a higher location in RIPQ. c.x/ by definition is
guaranteed to be non-negative.

• M.b/: it records the number of over-b mate-
rializations: the materializations “flying over”
b since it “crossed” the last insertion point,
i.e. say x is materialized and moved from bi
to bj , then if bi ď b ă bj we add 1 to M.b/.
If later x is updated to a higher location we
subtract M.b/ by 1 as well. And if currently
Ik´1 ă L.b/ ď Ik , then we account for these
operations only since L.b/ ď Ik , and we call
it the Ik-phase for block b. Because the loca-
tion of any block is non-increasing over time, its
phases are well defined.

Lemma The location of any block is non-
increasing over time.

Proof We consider all the different operations on
RIPQ.

1. Insertion. If we insert x to block bi , then for
any b ă bi , its location decreases by 1, while
for any block b ě bi , its location remains the
same.

2. Update. Assume object x is moved from bi to
bj during update. Because we only allow in-
creasing priority, bi ă bj , so for any block b in
between, i.e. bi ď b ă bj , its location decreases
by 1, while for any other block its location re-
mains the same.

3. Materialization. During materialization an ob-
ject is moved to a higehr location in RIPQ, so
the case is similar to update.

Proof of the main theorem by induction As-
sume

L˚.t/.x/C c.t/.x/ ď L.t/.b/C 4.K ´ k/˛ C M.t/.b/

we are going to show it holds for time t C 1 as well
by considering all the operations that can happen at
t C 1.

• Insertion.
Assume x is inserted to qk in the exact cache,
and block bi in RIPQ cache. By the insertion
algorithm and the 2˛-bounded size of each sec-
tion

L.t/.bj /C 4.K ´ k/˛ ´ 2˛ ă qk

ď L.t/.bj /C 4.K ´ k/˛

18

For any block b ą bi , their location remains
the same, while for any object y in those blocks
there are two cases: (1) its ideal location re-
mains the same (2) its ideal location decreases
by 1 while c.y/ increases by 1, so the conclusion
holds.
For any block b ă bi , its location decreases by
1. Assume y P b, (1) if y P Ik1 for some k1 ď k,
then its ideal location is definitely lower than
qk and so decreases by 1, (2) if y P Ik1 for some
k1 ą k, then by induction assumption

L.˚/.y/C c.y/ ď L.b/C 4.K ´ k1/˛ C M.b/

ď L.bi /C 4.K ´ k/˛ ´ 2˛ C M.bi / ď qk

The second inequality holds because M.b/ ď

2˛, and the third inequality holds by definition
of the adjusted insertion location of qk .
In both cases L˚.y/ ă qk , so the ideal location
of y decrease by 1 and the conclusion holds.

• Update.
Assume x is updated to qk in the exact cache
and moved from bi to bj (bi ă bj) in RIPQ
cache.
For any block b above bj , its location remains
the same. For any object y P b, similar to the
insertion case, either its ideal location doesn’t
change, or its ideal location decreases by 1 but
its account c.y/ increases by 1, so the inequality
holds for both cases.
For any block below bi , its location doesn’t
change, and the ideal location of any object in
that block doesn’t increase, so does its account
variable, so the inequality holds as well.
We only need to consider the blocks between
bi and bj . Assume bi ď b ă bj , then its lo-
cation decreases by 1. Assume y P b, there
are two cases (1) L˚.t/.y/ ă L˚.t/.x/, then y’s
ideal location remains the same, but x has pre-
viously added 1 to y’s account variable and we
use it now (decrease c.y/ by 1), (2) L˚.t/.y/ ą
L˚.t/.x/, and this is the same as the insertion
case.

• Materialization.
Assume x is materialized from bi to bj . During
this process no object’s ideal location changes,
and for any block above bj or below bi , its lo-
cation doesn’t change either and the conclusion
holds. For any block b such that bi ď b ă bj ,
its location decreases by 1 while its materializa-
tion account variable M.b/ increases by 1, so
the conclusion still holds. Note we will reduce
c.y/ if L˚.t/.y/ ă L˚.t/.x/ as well, but that’s
OK because x must have previously added 1 to
c.y/.

So far all operations that can happen to RIPQ at
time t C 1, the inequality still holds.

Proof of M.b/ ď 2˛ Recall that M.b/ is the
number of materializations that flew over b and
haven’t been updated and moved out of the section
ever since in its current phase. We further divide b’s
current (Ik) phase into two parts:

• Since the beginning of the phase, and all the
time while its section hasn’t crossed Ik , i.e.
L.s.b// ě Ik . We define the number of over-
b materializations in this period to be M0.b/.

• Since its section has crossed Ik . We define the
number of over-b materializations in this period
to be M1.b/.

So M.b/ D M0.b/C M1.b/.
We further divide M0.b/ into two parts: (1)

M1
0.b/: number of over-b materializations before its

section crossed Ik that hadn’t been separated from
b’s section when it had just crossed Ik . (2) M2

0.b/:
M0.b/ ´ M1

0.b/, i.e., the subset of M0.b/ that
has been separated from b’s section (resulting from
splits) when it just crossed Ik .

Let’s focus on the state of of RIPQ when b’s sec-
tion has just crossed Ik . This event can take place
for two reasons (1) a downward split for b’s section
(2) insertion/update of objects to higher locations
in the queue. Define “past” to be the number of
objects above b but below Ik

past D |fx W L.x/ ą L.b/^ L.x/ ď Ikg| :

Define “below” to be the number of objects in the
same section but with a lower location than b

below D |fx W x P s.b/^ L.x/ ď L.b/g| :

Because just before b’s section crossed Ik , its size
was smaller than 2˛, and it was intersecting with
Ik ,

past C below ď |s.b/|C 1 ď 2˛:

The following claims also hold true during b’s cur-
rent phase:

• The number over-b materializations before its
section crossed Ik is at most past:

M0.b/ ď past:

Proof: Each over-b materialization will decrease
b’s location by 1, so M0.b/ ď Ik ´ L.b/ ď
past.

• If there are merges for b’s section after it crossed
Ik , then

M1
0.b/C M1.b/ ď ˛:

19

Proof: at the time of the merge the size of b’s
section is ˛, and until Ik´1 starts to insert new
objects into b’s section its size will be no larger
than ˛. M1

0.b/CM1.b/ together is the number
of over-b materializations that has remained in
the same section after its section crossed Ik , and
the total number will be bounded by the section
size until new objects are inserted to the section.
When the section starts intersecting with Ik´1,
the new objects will be inserted/updated to
higher locations than b directly, so won’t tran-
sit to over-b materializations. If another split
happens then the section might merge in new
objects and thus have new over-b materializa-
tions. However, for the split to happen at least
˛ new objects need to be inserted to the sec-
tion such that its size can reach 2˛. By then
b would have crossed Ik´1, so the next phase
would have started.

• If there is no merge for b’s section after it
crossed Ik , then

M1.b/ ď below:

Proof: if there is no merge, then the over-b ma-
terializations can only come from objects in the
same section but below b.

Now we show M.b/ ď 2˛ in two cases:

• Case 1: past C below ď ˛.
If there is no merge after b’s section crossed
Ik , then M1.b/ ď below, and we also have
M0.b/ ď past, so

M.b/ D M0.b/CM1.b/ ď pastCbelow ď ˛

If there are merges, then M1.b/ ď M1
0.b/ C

M1.b/ ď ˛, and M0.b/ ď past ď ˛, so

M.b/ D M0.b/C M1.b/ ď 2˛

• Case 2: ˛ ă past C below ď 2˛.
If there is no merge after b’s section crossed Ik ,
then by the same argument as in Case 1

M.b/ D M0.b/CM1.b/ ď pastCbelow ď 2˛:

If there are merges, then M1
0.b/C M1.b/ ď ˛.

And because the size of b’s section just before
it crossed Ik is at least past C below ą ˛,
there is at most one previous downward split for
that section since b’s current phase began: each
downward split would decrease the location of a
section by ˛, so if there are two then b’s section
would have crossed Ik at that time. Each split
will separate out ˛ objects from the section, so
M2

0.b/ ď ˛, and

M.b/ D M2
0.b/C M1

0.b/C M1.b/ ď 2˛:

Larger block sizes

If the block size is larger than 1, then the structure
of RIPQ would change in (1) block seal (2) section
merge operations.

When we seal a block, its location will decrease by
at most B, the maximum block size. Note that each
block can only be sealed once before it is evicted.

When we merge two sections siC1; si (siC1 above
si), we move the objects in the active device block of
si to the head of siC1, so the location of any block in
siC1 decreases by at most B. We call such merge a
”downward merge” for siC1 and our goal is to bound
the decrease in block location resulting from these
downward merges.

Consider a stable state of RIPQ (no pending merg-
ing/splitting/sealing operations) and three consecu-
tive sections si ; si´1; si´2. Then si´1 C si´2 ě ˛,
otherwise the two sections would have merged. For
si to perform two downward merges, it would have
at least merged to si´2, and thus its minimal object
location would decrease by at least ˛. Meanwhile
the decrease of block location from merging ď 2B.
The ratio between the two is 2B=˛.

In conclusion, the additional space amplification
between two insertion points from a larger block size
is bounded by nI ˆ 2B=˛ C B (nI is the number of
objects between two consecutive insertion points).

For TB-scale flash, we expect to have thousands
of blocks while only tens of sections for one RIPQ
instance, so the space overhead brought by block
size is on the order of 1/100 and relatively small
compared to the overhead brought by approximate
insertion and materialization.

20

	Introduction
	Background & Motivation
	Flash Performance Study
	Random Write Experiments
	Sequential Write Experiment

	RIPQ
	Priority Queue Abstraction
	Overall Design
	Implementing Caching Algorithms
	Implementation of Basic Operations
	Other Design Considerations
	Theoretical Analysis

	SIPQ
	Evaluation
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion
	Theoretical Analysis of RIPQ
	Overview and Notations
	Algorithm
	Main Theorem
	Analysis and Proof
	Larger block sizes

