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Abstract

Recent years have seen explosive growth in data, models and computation. Massive data sets and

sophisticated probabilistic models are increasingly used in the fields of high-energy physics, biology,

genetics and in personalization applications; however, many statistical algorithms remain inefficient,

impeding scientific progress.

In this thesis, we present several efficient statistical algorithms for learning from massive discrete

data sets. We focus on discrete data because complex and structured activity such as chromosome

folding in three dimensions, human genetic variation, social network interactions and product ratings

are often encoded as simple matrices of discrete numerical observations. Our algorithms derive

from a Bayesian perspective and lie in the framework of directed graphical models and mean-field

variational inference. Situated in this framework, we gain computational and statistical efficiency

through modeling insights and through subsampling informative data during inference.

We begin with additive Poisson factorization models for recommending items to users based on

user consumption or ratings. These models provide sparse latent representations of users and items,

and capture the long-tailed distributions of user consumption. We use them as building blocks

for article recommendation models by sharing latent spaces across readership and article text. We

demonstrate that our algorithms scale to massive data sets, are easy to implement and provide

competitive user recommendations. Then, we develop a Bayesian nonparametric model in which the

latent representations of users and items grow to accommodate new data.

In the second part of the thesis, we develop novel algorithms for discovering overlapping com-

munities in large networks. These algorithms interleave non-uniform subsampling of the network

with model estimation. Our network models capture the basic ways in which nodes connect to each

other, through similarity and popularity, using mixed-memberships representations and generalized

linear model formulation.

Finally, we present the TeraStructure algorithm to fit Bayesian models of genetic variation in

human populations on tera-sample-sized data sets (1012 observed genotypes, e.g, 1M individuals

at 1M SNPs). On real genomic data collected from thousands of individuals, TeraStructure is

faster than existing methods and recovers the latent population structure with equal accuracy. On

genomic data simulated at the tera-sample-size scales, TeraStructure is highly accurate and is the

only method that can complete its analysis.
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Chapter 1

Introduction

Computational advances have made collecting massive numerical data practical. Complex and

structured activity such as chromosome folding in three dimensions, interaction of proteins with

other proteins, social interactions, human genetic variation and product ratings are often encoded

as matrices of numerical data. The eager scientist is then able to download these matrices to her

computer, often within minutes. From these matrices, the scientist seeks to reveal latent structure

such as functionally similar chromosomes, ancestral populations that mixed to generate observed

genotypes, overlapping online communities and user preferences for products. In this thesis, we

will take a Bayesian approach to such scientific data analysis using the framework of latent variable

models.

Latent variable models encode the hidden structure in the data in a directed graphical frame-

work (Blei, 2014). We can compute and explore the hidden structure through the posterior—the

conditional distribution of the latent variables given the observations. Statistical conclusions drawn

in this manner are Bayesian – they are probability statements that are conditional on the observed

data. Thus, a Bayesian statistician frames her problem as one of updating her uncertainty about how

the data was generated, given the observed data. This is a natural approach. Since scientific data

is often measured in the context of significant prior knowledge, it can be used to develop improved

models or treated as priors in Bayesian inference.

Bayesian data analysis is also a natural approach for analyzing massive or streaming data. Writ-

ing in 2011, Michael Jordan notes its advantage over traditional statistical analysis. ”In analysis

of Big Data one is rarely concerned with quantities such as population means; rather one is con-

cerned with small sub-populations, and concerned with the tails of the distributions” (Jordan, 2011).
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Bayesian hierarchical modeling, which exploits the sharing of statistical strength, is well-suited to

address this problem.

Further, the data may be too large to fit in memory, or the data may be streaming. Selecting the

appropriate model from a class of models becomes difficult in these settings. The growing field of

Bayesian nonparametrics addresses this very problem. The scientist’s uncertainty about the data can

be updated in a principled manner as more data arrives, and new phenomena can be accommodated.

In this thesis, we develop probabilistic models and scalable approximate posterior inference al-

gorithms for several models of discrete data: user consumption and preference for products, articles

and their readership, network interactions and human genetic variation. We posit and learn latent

variable models which discover hidden structure in these data sets of discrete numerical observa-

tions. The hidden structure, computed through the posterior distribution, is useful in prediction

and exploratory analysis.

The algorithms in this thesis lie in the framework of variational inference. Variational inference

is an approach to approximate posterior inference that has been adapted to a variety of probabilis-

tic models (Jordan et al., 1999). Recent innovations combine variational inference with stochastic

optimization (Robbins and Monro, 1951) to improve the scalability of inference algorithms. These

stochastic variational inference (SVI) algorithms (Hoffman et al., 2013) repeatedly analyze subsam-

ples of the data and form noisy gradients of the variational objective while updating an estimate of

the hidden structure. Prior research work has typically used uniform subsamples of the data.

Despite these advances, for many of the probabilistic models in this thesis a straightforward appli-

cation of these approximate posterior inference methods fails to scale them to large data sets. There

are several challenges that arise. First, the statistical algorithms that subsample data for efficiency,

need to exploit the structure of dependencies between the random variables in the model. Two

examples we will encounter in this thesis are the mixed-membership stochastic blockmodel (Airoldi

et al., 2008) of network communities (Chapter 6) and the PSD model of human genetic varia-

tion (Pritchard et al., 2000) (Chapter 8). These models have become important tools for exploring

hypotheses in their domains, but each model faces serious scalability challenges. We will develop

novel data subsampling methods for these models.

Further challenges arise in models that are not easily amenable to variational inference. We

develop scalable algorithms for such nonconjugate models in Chapter 5, Chapter 6, and Chapter 8

using model-specific approximations to bring them into the realm of classic methods. Finally, we

propose new models in Chapter 3, Chapter 5 and Chapter 6 with characteristics that enable fast,

efficient inference algorithms and good predictive performance. In particular, the models of Chap-
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ter 3 and Chapter 5 exploit the data sparsity and the presence of long-tailed distributions, such as

user activity in preference data sets.

We study a variety of data sets. The network and user behavior data sets are sparse; they often

have less than 0.01% of entries as non-zero. In contrast, the human genetic variation data sets in

Chapter 8 are dense: depending on the encoding, less than 50% of the data are zeros. Our algorithms

often extend to other, similar types of data. For example, the additive Poisson factorization models

of Chapter 3 can capture word frequencies in natural languages, user activity in rating products,

or a network of linked web-pages. They are all known to demonstrate characteristics of long-tailed

distributions (Sato and Nakagawa, 2010; Paquet and Koenigstein, 2013; Clauset et al., 2009).

In summary, we develop scalable inference for a range of sophisticated models, Bayesian nonpara-

metric models (Section 5.1), generalized linear models (Section 6.1.2), Bayesian hierarchical models

(Section 3.3.2). On massive data sets, we demonstrate that Bayesian analysis yields high predictive

performance and provides an exploratory tool for the hidden structure in the data.

The document is organized as follows. In Chapter 2, we review directed graphical models, expo-

nential family, mixed-membership models, conditional conjugacy, approximate posterior inference,

variational inference and stochastic variational inference. We discuss model selection and model

checking.

Learning from user behavior and text. In Chapter 3 and Chapter 4, we present additive

Poisson factorization (APF) models for recommending items to users based on sparse consumption

or preference matrices. We demonstrate that by capturing the long-tailed distribution of user activity

APF models make accurate recommendations on massive data sets. We use them as building blocks

for article recommendation, and present the CTPF model that shares latent spaces across readership

and article text.

In Chapter 5, we develop a Bayesian nonparametric model that draws user weights from the

Gamma process to accommodate new data. This model adapts the latent dimensionality of user

preferences and item attributes to the data. Inference under this infinite model is as fast as inference

under the finite Poisson factorization model.

Learning from network interactions. In Chapter 6, we present network models that capture

basic ways in which nodes form links—nodes connecting to similar nodes, and nodes connecting

to popular nodes. We present the assortative MMSB model and the AMP; the AMP extends the

assortative MMSB with node popularities. We develop scalable SVI algorithms for both models
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while overcoming the nonconjugacy of the AMP. In Chapter 7, we study our network algorithms on

large synthetic and real networks, and show that capturing network degree distributions is important

for link prediction.

Learning from genetic variation. Population genetics is concerned with understanding the

variation of genetic polymorphism in populations of organisms. With a million individuals having

been densely genotyped to date, the scale of data on which one can fit population genetic models

is orders of magnitude beyond current capabilities. In Chapter 8, we develop a SVI algorithm for

the PSD model (Pritchard et al., 2000) of population structure. The algorithm can simultaneously

analyze one million individuals, who have been densely genotyped at one million loci, on a single

computer. We study our algorithms on both real and synthetic data sets, and demonstrate that we

recover the ancestral populations with high accuracy.
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Chapter 2

Background

Statistical inference methods play a key role in the development of practical learning algorithms.

In this background chapter, we review latent variable models and approximate posterior inference

methods upon which our later contributions are based. Our contributions lie in the posited models

and in the development of scalable algorithms for learning from massive data sets.

We begin in Section 2.1 by describing latent variable models. Section 2.2 addresses the core

computational problem in learning with these models, that of approximate posterior inference. Our

review emphasizes the role of conjugacy in tractable inference in Section 2.2.3 and subsampling for

computational efficiency in Section 2.2.4. We end with a discussion on model checking and model

selection in Section 2.3.

2.1 Latent variable models

The statistical applications in this thesis often involve one or more unobserved quantities for each

entity in a massive real-world data set, resulting in a large number of variables. These variables are

related to each other, constrained by the assumed structure of the problem. As an example, consider

the problem from Chapter 7 of discovering overlapping communities in real-world networks. We can

model each user in a social network with a parameter governing their distribution over memberships

in multiple communities. Similarly, the presence or absence of a link between two users may be

governed by the community memberships of users involved. For example, two graduate students who

both attend Princeton University and have children attending the same schools, may be more likely

to be linked to each other on Facebook. Such assumptions about the user memberships in hidden

communities and the observed connections between them can be captured by a probabilistic model
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Figure 2.1: A general graphical model with observations x1:N , local hidden variables z1:N , global
hidden variables β and hyperparameters α. Nodes are random variables, arrows denote dependency
and plates denote replication. The unshaded nodes β and zn are hidden, while the shaded xn are
observed. Using the N data points observed, learning the latent structure involves computing the
posterior distribution over hidden variables p(β, z|x).

of the social network. In particular, a latent variable model posits a joint probability distribution of

the hidden and observed variables.

In this thesis, we will develop and study latent variables models of networks, human genetic

variation and user behavior. In each application, we will posit probabilistic models that are roughly

similar to the one shown in Figure 2.1. The figure shows a graphical model representation of a latent

variable model with N observations x = x1:N , N hidden variables z = z1:N , a vector of hidden

variables β and a vector of fixed hyperparameters α. A graphical model is a specification for a

family of distributions that conform to the independencies in the graph. We study models whose

network structure is a directed acyclic graph.

In Figure 2.1, the β are global variables and the z1:N are local variables. This distinction arises

from conditional dependencies in the model. Given β, the nth observation xn and the nth local

hidden variables zn are conditionally independent of all other observations and other local hidden

variables.

The graphical model in Figure 2.1 is a joint distribution of the observed data and the hidden

variables that formally describes their interactions. The joint probability distribution is

p(x1:N , z1:N , β|α) = p(β|α)
N∏
i=1

p(zi|β)p(xi|β, zi). (2.1)

The joint distribution in Equation 2.1 factorizes into a global term and a product of local terms.

The global variables β have a prior p(β|α), and the local variables zn encode the hidden structure

governing the nth observation.
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For descriptive tasks, we seek the conditional distribution of the hidden variables given the

observed data x1:N and the fixed hyperparameter α,

p(β, z1:N |x1:N , α) =
p(x1:N , z1:N , β|α)

p(x1:N |α)
. (2.2)

The posterior distribution p(β, z1:N |x1:N , α) provides a way to explore the data and interpret the

hidden structure. For example, in Chapter 7 we use an approximation to the posterior to discover

the overlapping communities in large real-world networks and identify nodes that bridge these com-

munities; in Chapter 8, we use it to study the ancestral populations underlying an individual’s

genotype variations.

For predictive tasks we seek the predictive distribution which marginalizes out the hidden struc-

ture via the posterior distribution,

p(xN+1|x1:N , α) =

∫
p(xN+1|zN+1, β) p(zN+1|β) p(β|x1:N , α) dzN+1dβ. (2.3)

The distribution over future data xN+1 in Equation 2.3 can be used to make predictions. For exam-

ple, we use the predictive distribution in recommendation tasks in Chapter 4 and in link prediction

tasks in Chapter 7. In Equation 2.3, the p(β|x1:N , α) is the marginalized posterior distribution where

the z1:N are integrated out.

In this thesis we will focus on latent variable models where the hyperparameters are assumed to

be fixed. The standard approach to estimating the hyperparameters from data is to use empirical

Bayes (Efron, 2013). This is an important area of future work for the methods presented here.

2.1.1 Latent Dirichlet allocation

We now give an example using a latent variable model of document collections, the Latent Dirichlet

allocation (Blei et al., 2003). Latent Dirichlet allocation (LDA) models an observed collection of

documents w = w1:D where each document d of length N is a bag of words wd,1:N . LDA assumes

that the documents are generated by a set of K latent topics β1, · · · , βk, where each βi parameterizes

a distribution over a vocabulary of size V . In particular, each document is a mixture θd of K topics.

The generative process for the LDA is

1. Draw topics βk ∼ Dirichlet(η) for k ∈ {1 · · ·K}.

2. For each document d ∈ {1 · · ·D}:
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(a) Draw topic proportions θd ∼ Dirichlet(α).

(b) For each word w ∈ {1 · · ·N}:

i. Draw topic indicator zd,n ∼ Mult(θd).

ii. Draw word wd,n ∼ Mult(βzd,n).

The joint distribution that corresponds to the above generative process and the LDA graphical

model in Figure 2.2 is

p(β, θ, w|α, η) =
K∏
k=1

p(βk|ηk)
D∏
d=1

p(θd|α)
D∏
d=1

N∏
n=1

p(zd,n|θd)p(wd,n|zd,n, βzd,n). (2.4)

We note that the global variables are the topics β1:K , while the local variables are the per-document

topic proportions θd and the per-word topic indicators z = zd,n. We analyze documents by computing

the posterior distribution p(β, θ, z|w). Given the documents, the posterior distribution reveals the

latent topics β1:K that describe the documents, in what proportions each document exhibits those

topics θ1:D, and which topic best explains each word zd,n. We can use the posterior to study a

massive corpus.

A note on global variables

The LDA model of Section 2.1.1 is more computationally tractable than some of the models we will

study in this thesis. For example, in the mixed-membership stochastic blockmodel (MMSB) (Airoldi

et al., 2008) of networks in Chapter 7, the Markov blanket of each node’s community membership is

much larger than that of a document, and includes the memberships of all other nodes. The Markov

blanket for a node z in a directed graphical model is the set of nodes consisting of z’s parents,

its children, and the other parents of its children. In other words, while the per-entity mixed-

membership variables θd are local in the LDA, they are global in the MMSB. These model-wide

dependencies introduce new challenges in scalable approximate posterior inference.

2.2 Approximate posterior inference

We have described the motivation behind latent variable models, their representations and provided

an example through Latent Dirichlet allocation. We now address the core computing problem

in learning with latent variable models. As for most interesting Bayesian models the marginal

probability of the data, and consequently the posterior distribution, are intractable to compute
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Figure 2.2: The graphical model for Latent Dirichlet allocation (Blei et al., 2003).

(see Equation 2.2). For example, to compute the posterior in the LDA model of Section 2.1.1 we

must marginalize over all possible assignments of words to topics, and there are exponential such

combinations. For this reason, the posterior distribution is often approximated.

The foremost methods for approximate posterior inference include Markov Chain Monte Carlo

(MCMC) (Robert and Casella, 2004) and variational inference (Wainwright and Jordan, 2008).

MCMC sampling methods such as Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) and

Gibbs sampling (Geman and Geman, 1984) form a Markov chain over the latent variables. The

stationary distribution of this chain is the posterior distribution we seek. After a burn-in phase,

samples from the simulated chain are used to compose an empirical distribution that approximates

the posterior. MCMC can be slow on massive data sets due to its dependence on sampling. MCMC

is still a powerful tool for Bayesian inference (Neal, 1993; Robert and Casella, 2004).

The algorithms in this thesis lie in the framework of variational inference. Variational infer-

ence provides a deterministic alternative to approximate posterior inference in complex probabilistic

models (Wainwright and Jordan, 2008; Jordan et al., 1999). It has been adapted to a variety of

probabilistic models, though its roots are in the statistical physics literature (Feynman, 1972).

Variational inference algorithms approximate the posterior by defining a parameterized family

of distributions over the hidden variables and then fitting the parameters to find a distribution that

is close to the posterior. Thus the problem of posterior inference becomes an optimization problem.

Using stochastic optimization (Robbins and Monro, 1951), variational inference scales to massive

data sets (Hoffman et al., 2013).

In this section, we will focus on two strategies for approximate posterior inference: mean field

variational inference and stochastic variational inference. Our algorithms use one of these methods
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under latent variable models that can broadly be divided into conditionally conjugate models and

nonconjugate models. Conditional conjugacy is an important property of latent variable models that

makes mean-field variational inference algorithms simple to derive.

2.2.1 Conditionally conjugate models

We first describe conditionally conjugate models, a class of models for which mean-field variational

inference is simple to derive, and has closed-form updates. Conditionally conjugate models make

assumptions about the complete conditionals in a model. A complete conditional is the conditional

distribution of a latent variable given all other latent variables and observations (Ghahramani and

Beal, 2001). We assume that each complete conditional is in the exponential family, a family that

includes common distributions such as the Gaussian, Poisson, multinomial and the Dirichlet. Our

presentation and notation in this section follows Hoffman et al. (2013).

The distribution of a variable β is in the exponential family if its density has the form,

p(β|η) = h(β) exp{ηT t(β)− a(η)}. (2.5)

In Equation 2.5, the vector function t(β) is the sufficient statistic, the scalar function h(β) is the base

measure, and η is the natural parameter vector and a(η) is the scalar log normalizer. If the complete

conditional of each latent variable is in the same exponential family as its prior distribution, then

the model is conditionally conjugate.

We now write down the complete conditionals for our general model of Figure 2.1. The complete

conditional for the global variable is

p(β|x, z) = h(β) exp{ηg(x, z)T t(β)− a(ηg(x, z))}. (2.6)

The complete conditional for the local variable is

p(zn,j |xn, zn,−j , β) = h(zn,j) exp{ηl,j(xn, zn,−j , β)T t(zn)− a(ηl,j(xn, β))} (2.7)

The natural parameters in Equation 2.6 and Equation 2.7 are functions of the variables that are

conditioned on. The subscripts on the natural parameter η indicate conditionals for the local or

global variables. Following the dependencies induced by the graphical model in Figure 2.1, the local

conditional for zn,j in Equation 2.7 conditions only on the observation xn, other local variables that

11



govern xn, the zn,−j and the global variables β; it is independent of all other observations and local

variables. Following Blei (2014), we use the same notation for the base measure, sufficient statistic

and log normalizer even though, for example, one set of complete conditionals may be Gaussian,

and the other Dirichlet. Finally, there may be multiple vectors of global variables.

The conditionally conjugate models that we study include matrix factorization models of user

behavior in Chapter 3 and Chapter 4, and mixed-membership models of networks in Chapter 6 and

Chapter 7. We will also develop variational inference algorithms for nonconjugate user behavior,

networks and genotype variation models in Chapter 5, Chapter 6 and Chapter 8.

2.2.2 Mean-field variational inference

In mean-field variational inference, we specify a variational family over the latent variables where

we independently consider each hidden variable with a different parameterized distribution. The

mean-field variational family for the model of Figure 2.1 can be written as

q(z, β) = q(β|λ)
N∏
n=1

q(zn|φn). (2.8)

The global parameters λ govern the global variables; the local parameters φn govern the variables

local to the nth observation. We then maximize the evidence lower bound (ELBO), a lower bound

on the logarithm of the marginal probability of the observations, log p(x). We then optimize the

variational parameters to find the member of the family that is closest to the posterior. Closeness

is measured with Kullback-Leibler divergence (Kullback and Leibler, 1951). The ELBO, denoted as

L(q), is equal to the negative KL divergence up to an additive constant.

KL(q(z, β)||p(z, β|x)) = Eq[log q(z, β)]− Eq[p(z, β|x)]

= Eq[log q(z, β)]− Eq[p(x, z, β)] + log p(x)

= −L(q) + const. (2.9)

The optimized variational distribution q∗(z, β), which maximizes the ELBO while minimizing the

KL-divergence, is a proxy for the true posterior.

To fully specify the variational family in Equation 2.8, we set each variational factor to be in

the same family as the complete conditional in the model. For example, if p(β|x, z) is a Dirichlet,

then λ are Dirichlet parameters. Specifying the variational family in this manner for a conditionally

conjugate model results in the simple coordinate ascent variational inference algorithm.
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A note on specifying the variational family

In Chapter 5, we present a variant to the classic method, where we posit a mean-field variational

family conditional on observed network data sets. This allows for flexible parameterization, accom-

modating different considerations for links and non-links. In particular, we specify a variational

parameter governing each node’s hidden interaction variable underlying a link, resulting in two

parameters per link. For the non-links, we specify a variational parameter governing the joint dis-

tribution of the pair of hidden interaction variables underlying the non-link between two nodes.

2.2.3 Coordinate ascent variational inference

Given a conditionally conjugate model and the mean field variational family, coordinate ascent

inference guarantees a local optimum through iterative closed-form updates. In each iteration, a

variational parameter is updated while holding all other parameters fixed. Further, the closed-

form update is the expected natural parameter of the complete conditional. The global variational

parameter of Equation 2.8 is updated using

λ = Eφ[ηg(z, x)]. (2.10)

Due to the mean field assumptions, the Eφ[ηg(z, x)] is an expectation over the local variational

parameters φ and does not depend on λ. Similarly, the local parameter update is,

φn,j = Eλ,φn,−j [ηl(xn, zn,−j , β)]. (2.11)

In summary, the parameter to each complete conditional is a function of the other latent variables

and the mean-field family sets all the variables to be independent. This ensures that the parameter

we are optimizing will not appear in the expected parameter.

It can be shown that the global natural parameter vector has the following form,

ηg(x, z, α) = (α1 +
N∑
n=1

t(zn, xn), α2 +N), (2.12)

where t(.) are the sufficient statistics, and (α1, α2) are the components of the hyperparameter α.

The first component α1 is a vector of the same dimension as β; the second component α2 is a scalar.

We refer the reader to Hoffman et al. (2013) for the details.

With a similar closed-form local update in hand, the coordinate ascent algorithm is simply to
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iterate between updating each local parameter and the global parameters. This algorithm finds a

stationary point of the ELBO.

2.2.4 Stochastic variational inference

The coordinate ascent algorithm of Section 2.2.3 often fails to scale to the massive data set sizes

we study in this thesis. This is because coordinate ascent is a batch algorithm; the variational

parameters corresponding to all latent variables are updated in each iteration. The algorithm must

analyze every observation (using the initialized values of variational parameters) before any progress

in inference can be made.

As we discuss in Chapter 6 on scalable inference of network data, the simple coordinate ascent

algorithm requires time quadratic in the number of nodes in the network. This makes inference

computationally intractable on even moderately-sized networks. With N nodes in a network, the

computational problem is that there are O(N2) terms in the ELBO and O(N2) variational param-

eters. Coordinate ascent inference must consider each pair of nodes at each iteration (Airoldi et al.,

2008), but even a single pass through a large network can be prohibitive. (Note that the sparsity of

the network does not help; for the models we study in Chapter 6, we need to optimize parameters

for all pairs of nodes regardless of whether they are connected in the observed network.)

Stochastic variational inference (SVI) (Hoffman et al., 2013) overcomes this problem, and it

allows handling of massive and streaming data sets. Using SVI, in Chapter 6, we analyze networks

with millions of nodes; and in Chapter 8 we analyze a “tera-scale” data set with 1012 observations

corresponding to genotype variations.

Stochastic variational inference uses stochastic optimization to fit the global variational param-

eters, and repeatedly subsamples the data and fits the local parameters only to that subsample, in

each iteration. Stochastic optimization algorithms follow noisy estimates of the gradient of an objec-

tive with a decreasing step-size. In their classic paper, Robbins and Monro showed that with certain

step-size schedules, such algorithms provably lead to the optimum of a convex function (Robbins

and Monro, 1951). In our case, they provably lead to a local optimum. Since the fifties, stochastic

optimization has blossomed into a field of its own (Spall, 2003; Kushner and Yin, 1997). It plays

an important role in scaling machine learning algorithms up to very large data sets (Bottou and

LeCun, 2004).

Stochastic optimization is particularly efficient when the objective (and gradient) are a sum of

terms, as is the case for the variational objective of the models we study in this thesis. In these
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settings, we cheaply compute a stochastic gradient by first subsampling a subset of terms and

then forming an appropriately scaled gradient. The scaled gradient is a random variable whose

expectation is the true gradient.

We can derive a general form of this scaled gradient in the case when a single observation xn

is subsampled uniformly at random, and the scaling factor is simply the number of data points

N . Using the complete conditional from Equation 2.10, we can compute the conditional natural

parameter for the global parameter β given N replicates of xn,

ηg(x, z, α) = (α1 +N(t(zn, xn)), α2 +N), (2.13)

where t(.) are the sufficient statistics, and (α1, α2) are the components of the hyperparameter α (see

Equation 2.12). We again refer the reader to Hoffman et al. (2013) for the details.

An important assumption underlying Equation 2.13 is that the N data points can be indepen-

dently sampled. This assumption is natural for the LDA model of a collection of documents, but

does not extend to network models such as those studied in Chapter 6. We develop sampling meth-

ods appropriate for models of massive networks, where the Markov blanket of each node includes

the variables associated with all other nodes. These methods work by non-uniformly subsampling

the more informative observations in the network.

Stochastic variational inference uses natural gradients instead of the standard “Euclidean” gradi-

ents. The classical gradient method for ELBO maximization tries to find a maximum of the ELBO

L(λ) by taking a series of steps of size ρ in the direction of the steepest ascent

λ(t+1) = λ(t) + ρ5λ L(λ). (2.14)

The gradient direction implicitly depends on the Euclidean distance metric associated with the vector

λ, a parameter to a probability distribution. A better measure of dissimilarity between probability

distributions is the symmetrized KL divergence (Hoffman et al., 2013). The natural gradient points

in the direction of steepest ascent in the Riemannian space, where the local distance is defined

by KL divergence. We can find the natural gradient by premultiplying the gradient by the Fisher

information matrix G (Amari, 2001),

G(λ) = Eλ[(5λ log q(β|λ))(5λ log q(β|λ))T ]. (2.15)

When q(β|λ) is in the exponential family, the metric is the second derivative of the log normal-
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izer (Hoffman et al., 2013),

G(λ) = 52
λa(λ). (2.16)

This results in a simple form for the natural gradient because the premultiplying the gradient by

the inverse Fisher metric cancels out the covariance matrix of the sufficient statistic of q(β|λ),

5̂λL = Eφ[ηg(x, z)]− λ. (2.17)

A similar update can be derived for the local variational parameters.

In the Euclidean gradients, the Fisher information matrix is expensive to compute for variational

parameters with many components. The simple form in Equation 2.17 allows the natural gradients

to be computed easily.

2.2.5 Nonconjugate variational inference

Our review has so far concerned itself with conditionally conjugate latent variable models. In

Section 2.2.2, we described how mean-field variational inference can be used as an off-the-shelf

method for conditionally conjugate models. In Section 2.2.4 we reviewed stochastic variational

inference (SVI) algorithms that combine mean-field variational inference for conditionally conjugate

models and stochastic optimization to scale inference to massive data sets. They gain efficiency by

repeatedly subsampling the data.

Real-world applications often require working with models that are not conditionally conjugate.

In these models, the coordinate updates are not available in closed form because a subset of the

nodes in the graphical model do not satisfy conditional conjugacy. For example, in the AMP model

of node popularities and communities that we present in Chapter 6, the priors on the node popularity

and the community strengths are not conjugate to the conditional likelihood of the data.

Wang and Blei (2013) present variational inference methods for nonconjugate models includ-

ing the Laplace variational inference and the Delta method variational inference. Their work unifies

existing algorithms derived for specific models such as Bayesian logistic regression (Jaakkola and Jor-

dan, 1996), discrete choice models (Braun and McAuliffe, 2010) and the correlated topic model (Blei

and Lafferty, 2007). Laplace VI uses Laplace approximations (MacKay, 1992; Tierney et al., 1989)

within the coordinate ascent updates of Equation 2.10 and Equation 2.11; Delta method VI apply

Taylor approximations to approximate the variational objective L(q) of Equation 2.9 and then derive
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the corresponding updates.

In this thesis, to construct the approximation L̂(q) to L(q), we generally use the zeroth-order

Delta method for moments (Braun and McAuliffe, 2010), and then derive either coordinate ascent

or SVI algorithms.

2.3 Model checking and model selection

Once a model is fit we often cannot immediately apply it to the predictive or explorative task at

hand. There are often multiple competing models or a set of models indexed by hyperparameter

settings. For example, varying the number of communities K in a network model results in multiple

models, each with its own setting of K. Therefore, the posterior distribution approximated in the

previous section, for any particular model, underestimates uncertainty: the assumed model is wrong

in any real-world setting and there are likely to be other reasonable models. This necessitates the

complementary tasks of model checking and model selection.

In model checking we compare the model against the observed data, to assess ways in which the

given model falls short and how it can be improved. One approach is to use posterior predictive

checks (Rubin, 1984; Gelman et al., 1996). In a posterior predictive check (PPC), we define a

discrepancy T (X) to be a function of the data. Let xREP be a random data set drawn from the

posterior predictive distribution. Then, the PPC check is p(T (XREP ) > T (x)|x). This is the

probability that the replicated data differ greatly in terms of the function T , from the observations.

In model selection, we select a model from multiple candidate models using a measure of its

performance on its assigned task. For example, the network models require setting the number of

communities K; in typical applications we will want to set this number based on the data. In our em-

pirical study in Chapter 6, we evaluate the predictive performance of the model for varying numbers

of communities. We held out a portion of the network yheld-out and calculated p(yheld-out |yobserved);

a better model will assign higher probability to the held out set. This reflects a predictive approach

to model selection, and has good statistical properties (Geisser and Eddy, 1979).

As a concrete example consider the LDA model of Section 2.1.1, where a portion of a document is

held-out. Let the held-out portion be wd,test and the observed portion be wd,observed. The probability

of the held-out portion is given by integrating over the posterior Dirichlet θd,

p(wd,held-out|wd,observed) =

∫ ∑
z

p(wd,observed|z)p(z|θd)p(θd|wd,observed)dθd (2.18)
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where the posterior distributions are approximated using variational inference.

We also use the predictive approach to assess convergence of the inference algorithm. A sim-

ple approach to assess convergence in the coordinate ascent algorithm of Section 2.2.3 is to com-

pute the training log-likelihood log p(yobserved). A serious limitation of this metric is it does not

measure whether a model is overfit, and is more appropriate when an MAP or MLE estimate is

fit. Instead the predictive approach determines convergence using the metric from model selection,

p(yheld-out |yobserved). It is important to note that the held-out set used for these experiments, called

the validation set, is different from the validation set used in model selection.

2.4 Discussion

In this chapter, we described latent variable models and their representation through directed graph-

ical models. For the class of conditionally conjugate models, we summarized mean-field variational

methods of approximate posterior inference. We outlined the ideas underlying SVI, an approach to

efficient inference on massive data sets that leverages subsampling and natural gradients.

The applications in this thesis introduce new challenges, making a straightforward development

of the variational inference algorithms difficult. A key assumption underlying SVI’s immediate appli-

cation is the uniform subsampling of data. In Chapter 6, we develop sampling methods appropriate

for models of massive networks, where the Markov blanket of each node includes the variables asso-

ciated with all other nodes. These methods work by non-uniformly subsampling more informative

observations in the network. While our contributions lie in the scalable algorithms developed for the

particular models, the subsampling methods we develop in Chapter 6 are more widely applicable.

Similarly, in Chapter 8, we develop a particular subsampling strategy for high accuracy on both

simulated and real-world data sets of genetic variation.

Another challenge is that many practical models lack the convenience of conditional conjugacy.

We develop both coordinate ascent and SVI algorithms for a variety of nonconjugate models: a

nonconjugate mixed-membership models of networks in Chapter 6, a Bayesian nonparametric non-

conjugate model of user behavior in Chapter 5 and a nonconjugate model of genotype variation in

Chapter 8. However, we leverage conditional conjugacy whenever it is satisfied. We develop coordi-

nate ascent algorithms for conditionally conjugate user behavior models in Chapter 3 and stochastic

variational inference algorithms for conditionally conjugate network models in Chapter 6.
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Part I

User behavior
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Chapter 3

Additive Poisson factorization

In this chapter, we present additive Poisson factorization (APF), a class of latent variable models for

modeling massive discrete data that commonly arise in the context of recommendation tasks. We

model user behavior such as users watching movies, scientists reading articles and readers clicking

on newspaper articles. Our applications are prediction tasks on massive data sets. Our goal is to

recommend items to users based on consumption or ratings provided by millions of users. In the case

of articles, we also use their context in suggesting articles to readers. We develop efficient algorithms

for learning under these models.

Poisson factorization models are widely studied in the statistical computing (Dunson and Her-

ring, 2005; Cemgil, 2009) and machine learning literature (Lee and Seung, 1999; Canny, 2004). Our

contributions include variations on these models aimed at scalable and accurate top-n recommen-

dations. The goal of the recommender system is to find a few items which are most relevant to the

user; the top-n performance can be measured by metrics such as mean rank (Hu et al., 2008) and

precision/recall. Further, we present Bayesian models that extend PF using the additive property

of the Poisson distribution.

We review recommendation using matrix factorization in Section 3.2, before presenting three

finite probabilistic models from the class of additive Poisson factorization in Section 3.3. We first

study a simple instance of this class: the Bayesian Poisson factorization model (BPF) of recom-

mendation. We extend BPF to a hierarchical model in Section 3.3.2 that captures the heterogenous

interests of users and the wide range of popularity of items. We extend BPF to article recommen-

dation in Section 3.3.3 by capturing both readership and article text. We discuss their statistical

properties in Section 3.4, and review related work in Section 3.5.
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Practical applications of the APF models require computationally efficient inference algorithms.

We derive algorithms that only iterate over the non-zero observations in the data set in Section 3.6.

Finally, in Section 3.7, we present a unified approach to modeling discrete data for recommenda-

tion tasks, emphasizing their shared statistical properties, and wider applicability to other sources

of data such as those arising from network interactions.

We evaluate the PF models on prediction tasks in Chapter 4, studying their model fitness to

user behavior and text in the process. In Chapter 5, we use Bayesian nonparametric assumptions

to infer the latent dimensionality of user preferences and item attributes. In general, with the ideas

presented here, we can develop sophisticated statistical models of discrete data.

3.1 Introduction

In an additive Poisson factorization model each observation is drawn from a Poisson distribution

whose rate parameter is an inner product of vectors of non-negative latent variables. The basic

model we present is Bayesian Poisson factorization (BPF), a form of probabilistic matrix factoriza-

tion (Salakhutdinov and Mnih, 2008a) that replaces the standard Gaussian likelihood and real-valued

representations with a Poisson likelihood and non-negative representations. It associates each user

with a latent vector of preferences, each item with a latent vector of attributes, and constrains both

sets of vectors to be sparse and non-negative. In Section 3.3.2, we extend the BPF to a hierarchical

model that explicitly captures the diversity of users, some tending to consume much more than

others, and the diversity of items, some being much more popular than others.

In Section 3.3.3, we consider the setting in which we recommend both old and new scientific

articles to readers. A natural approach to recommending new articles is to extend the PF model

to explain the text of articles in addition to the user behavior, i.e., users listing articles in their

library. We call this model the collaborative topic Poisson factorization model (CTPF). In addition

to effectively solving the cold-start recommendation problem, the CTPF provides a new exploratory

window into the structure of the document collection. It organizes the articles according to their

topics and identifies important articles both in terms of those important to their topic and those

that have transcended disciplinary boundaries.

Using the additive properties of independent Poisson random variables, the PF models capture

dependencies between discrete data, for example, the dependence of user ratings of an article on its

content. We demonstrate how the sharing of latent spaces can capture such dependencies, providing

modeling flexibility and good predictive performance.
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Figure 3.1: Matrix factorization represents users and items with low dimensional vectors.

The models we present are tailored to the real-world properties of discrete user behavior data.

They capture the heterogeneous interests of users, the finite resources that users have to consume

items, the data sparsity and the long-tailed distributions of user consumption. They provide sparse

latent representations and enable efficient inference algorithms. We discuss these statistical proper-

ties in Section 3.4.

We will show that the BPF, and its hierarchical variant, the HPF, provide good predictive perfor-

mance on large data sets of Netflix users watching movies, Last.FM users listening to music, scientists

reading papers, and New York Times readers clicking on articles. Further, we will show that CTPF

scales easily and provides better recommendations than the leading method—the collaborative topic

regression (Wang and Blei, 2011)—and alternatives.

3.2 Recommendation using matrix factorization

Recommendation systems are a vital component of the modern Web. They help readers effectively

navigate otherwise unwieldy archives of information and help websites direct users to items—movies,

articles, songs, products—that they will like. A basic “in-matrix” recommendation system is built

from user behavior data, historical data about which items each user has consumed, be it clicked,

viewed, rated, or purchased. We define in-matrix items as those that have been rated by at least

one user in the recommendation system. We refer to the outcome from a user-item interaction as a

“rating”. The observation yui is the rating that user u gave to item i, or zero if no rating was given.

In so-called “implicit” consumer data, yui equals one if user u consumed item i and zero otherwise.

User behavior data, such as purchases, ratings, clicks, or views, are typically sparse. Most of the

values of the matrix y are zero.

Given the user-item matrix of ratings, we uncover the behavioral patterns that characterize

various types of users and the kinds of items they tend to like. Then, we exploit these discovered

patterns to recommend future items to its users.

Currently, the workhorse method for recommendation systems is matrix factorization (MF) (Ko-
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Figure 3.2: An illustration of in-matrix and out-of-matrix (cold-start) recommendations of scientific
articles.

ren et al., 2009; Hu et al., 2008). MF represents users and items with low dimensional vectors and

computes the affinity between a user and item with the inner product of their respective representa-

tions. MF is typically fit with squared loss, where the algorithm finds representations that minimize

the squared difference between the predicted value and the observed rating. This corresponds to

a Gaussian model of the data (Salakhutdinov and Mnih, 2008b). MF has been extended in many

ways to implement modern recommendation systems (Dror et al., 2012b,a; Rendle et al., 2009a).

Matrix factorization has also been studied for the “out-of-matrix” or “cold-start” recommen-

dation problem. In this setting, the algorithm suggests previously unrated items to users, along

with in-matrix items. Figure 3.2 illustrates the two types of recommendations. Prior work on cold-

start recommendation of articles to users has captured both article text and user ratings of these

articles (Wang and Blei, 2011).

3.3 Additive Poisson factorization

In an additive Poisson factorization model each observation is drawn from a Poisson distribution,

and the rate parameter of each Poisson distribution is an inner product of two vectors of non-negative

latent variables. We now consider a simple instance of this class: the Bayesian Poisson factorization

model (BPF) of recommendation. We extend the model in Section 3.3.2 and Section 3.3.3, and then

discuss their statistical properties in Section 3.4.

3.3.1 The basic model

In this section, we present a basic model of both explicit and implicit user-item ratings—the Bayesian

Poisson factorization model (BPF).

We model the rating yui that a user u gave to item i with factorized Poisson distributions (Canny,
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Figure 3.3: The Bayesian Poisson factorization model (BPF) with U users and D items.

2004), where each item i is represented by a vector of K latent attributes βi and each user u by a

vector of K latent preferences θu. The observations yui are modeled with a Poisson, parameterized

by the inner product of the user preferences and item attributes. This is a variant of probabilistic

matrix factorization (Salakhutdinov and Mnih, 2008c) but where each user and item’s weights are

positive (Lee and Seung, 1999) and where the Poisson replaces the Gaussian. Beyond the basic

data generating distribution, we place Gamma priors on the latent attributes and latent preferences,

which encourage the model towards sparse representations of the users and items.

1. For each user u, sample preferences θuk ∼ Gamma(a, ξu).

2. For each item i, sample attributes βik ∼ Gamma(c, ηi).

3. For each user u and item i, sample rating yui ∼ Poisson(θ>u βi).

The main computational problem is posterior inference: given an observed matrix of user behavior,

we discover the latent attributes that describe the items and the latent preferences of the users.

In the BPF, we fix the hyperparameters ηi to a single constant η for all items, and the hyperpa-

rameters ξu to a single value ξ for all users. The subscripts are used here to maintain consistency

across the models. In the next section, we will place priors on ηi and ξu.
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Figure 3.4: The hierarchical Poisson factorization model (HPF).

3.3.2 The hierarchical model

The literature on recommendation systems suggests that a good model of user behavior must capture

the heterogenous interests of users and the popularity of items (Koren et al., 2009). This is typically

addressed in classical matrix factorization by adding explicit bias terms to the model. In the Bayesian

Poisson factorization, there’s a natural way to do this.

The hierarchical model extends BPF by placing additional Gamma priors on the user and item-

specific rate parameter of those Gammas, which controls the average size of the representation. This

hierarchical structure explicitly captures the diverse consumption activity of users and the popularity

of items.

Putting this together, the generative process of the hierarchical Poisson factorization model

(HPF) is as follows:

1. For each user u:

(a) Sample activity ξu ∼ Gamma(a′, a′/b′).

(b) For each component k, sample preference θuk ∼ Gamma(a, ξu).
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2. For each item i:

(a) Sample popularity ηi ∼ Gamma(c′, c′/d′).

(b) For each component k, sample attribute βik ∼ Gamma(c, ηi).

3. For each user u and item i, sample rating yui ∼ Poisson(θ>u βi).

This process describes the statistical assumptions behind the model. The BPF is therefore a sub-

class of the HPF where we fix the rate parameters for all users and items to the same pair of

hyperparameters.

Recommending in-matrix items to users

The central computational problem is posterior inference, which is akin to “reversing” the generative

process. In the BPF and the HPF, given a user behavior matrix, we want to estimate the conditional

distribution of the latent user preferences and item attributes, p(θ1:Nβ1:M |y).

The posterior is the key to recommendation. Once the posterior is fit, we estimate the posterior

expectation of each user’s preferences, each items attributes and, subsequently, form predictions.

We recommend items to users by ranking each user’s unconsumed items by their posterior expected

Poisson parameters,

scoreui = E
[
θ>u βi |y

]
. (3.1)

This amounts to asking the model to rank by probability which of the presently unconsumed items

each user will likely consume in the future.

Figure 3.5 illustrates the HPF on data from Netflix. The Netflix data contains the ratings of

480,000 users on 17,000 movies, organized in a matrix of 8.16 billion cells (and containing 250 million

ratings). Each observed rating is an integer ranging from 1 to 5 that the user provided for a movie.

From these data, we extract the user preferences and the movies associated with those preferences.

These movies help us interpret the components in the model. The left panel illustrates some of those

components—the algorithm has uncovered action movies, independent comedies, and 1980s science

fiction.

The top panel illustrates how we can use these patterns to form recommendations for an (imagi-

nary) user. This user enjoys various types of movies, including fantasy (“Lord of the Rings”), classic

science fiction (“Star Wars: Episode V”), and independent comedies (“Clerks”, “High Fidelity”).

Of course, she has only seen a handful of the available movies. The HPF first uses the movies she

has seen to infer what kinds of movies she is interested in, and then uses these inferred interests
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Figure 3.5: The top panel shows the top movies in 3 components for a user from the Netflix data
set. The bottom panel is an illustration showing a subset of the highly rated movies by this user,
and the right panel shows movies recommended to the user by our algorithm. The expected user’s
K-vector of weights θu, inferred by our algorithm is shown in the middle panel.

to suggest new movies. The list of movies at the bottom of the figure was suggested by our algo-

rithm. It includes other comedies (such as “The Big Lebowski”) and other science fiction (such as

“Star Wars: Episode II”). The components in Figure 3.5 (left) illustrate the top items for specific

attribute dimensions and the plot in Figure 3.5 (middle) illustrates the estimated preference vector

for the given user. A spike in the preference vector implies that the user tends to like items with the

corresponding latent attribute. We note that this general procedure is common to many variants of

matrix factorization discussed in Section 3.2 and Section 3.5.

3.3.3 A combined model of readership and article text

In this section, we develop a model that demonstrates how additive PF models can capture multiple

types of discrete data with shared latent spaces.

Consider the setting in which we recommend scientific articles to readers. The BPF and the

HPF are basic recommendation models; they cannot handle the cold-start problem or easily give

topic-based representations of readers and articles. The collaborative topic PF model we present

in this section extends BPF and is a model of the article content (the document-word matrix) and

the readers of an article (the reader-document matrix). As we will see, CTPF effectively solves the

cold-start problem and organizes readers and articles by their topic structure.

The BPF is a building block in the CTPF, modeling both reader behavior and article content.

Rather than modeling them as independent factorization problems, we connect the two latent spaces

using a correction term (Wang and Blei, 2011) which we’ll describe below.

The CTPF captures a user u’s topic preferences with a vector θu of size K and assumes that a
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Figure 3.6: The collaborative topic Poisson factorization model (CTPF) with U users, D documents
and vocabulary size V .

document i is generated by a topic model with topic intensities µi and unnormalized topics κ.

Suppose we have data containing D documents and U users. CTPF assumes a collection of K

unnormalized topics κ1:K . Each topic κk is a collection of word intensities on a vocabulary of size

V . Each component κvk of the unnormalized topics is drawn from a Gamma distribution. Given

the topics, CTPF assumes that a document i is generated with a vector of K latent topic intensities

µi, and represents users with a vector of K latent topic preferences θu. Additionally, the model

associates each document with K latent topic offsets βi that capture the documentss deviation from

the topic intensities. These deviations occur when the content of a document is insufficient to explain

its ratings. For example, these variables can capture that a machine learning article is interesting

to a biologist, because other biologists read it.

We now define a hierarchical generative process for the observed word counts in documents and

observed user ratings of documents under the CTPF:

1. Document model:

(a) Draw topics κvk ∼ Gamma(e, f)

(b) Draw document topic intensities µik ∼ Gamma(g, h)

(c) Draw word count wiv ∼ Poisson(µTi κv).

2. Recommendation model:

(a) Draw user preferences θuk ∼ Gamma(a, ξu)

(b) Draw document topic offsets βik ∼ Gamma(c, ηi)
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(c) Draw rating rui ∼ Poisson(θTu (µi + βi)).

CTPF is an instance of additive Poisson factorization. As in the BPF, we fix the hyperparameters

ηi to the same value η across items,and ξu to the same value ξ across users.

CTPF specifies that the conditional probability that a user u rated document i with rating rui

is drawn from a Poisson distribution with rate parameter θu(µi + βi). The form of the factorization

couples the user preference for the document topic intensities µi and the document topic offsets βi.

This allows the user preferences to be interpreted as affinity to latent topics. Using this interpretable

latent space, we explore and organize real-world articles in Chapter 4.

The above intuitions for capturing readers preferences derive from collaborative topic regres-

sion (Wang and Blei, 2011). However, the CTPF has two main advantages over competing methods,

both of which contribute to its empirical performance (see Section 4.1). First, the CTPF model

augmented with auxiliary variables is conditionally conjugate (see Section 3.6 and Chapter 2). This

allows CTPF to conveniently use standard variational inference with closed-form updates (see Sec-

tion 3.6). Second, since CTPF is built on Poisson factorization, which provides sparse representations

of the users and the items, allowing for greater interpretability. Further, it can take advantage of

the natural sparsity of user consumption of documents, and efficiently analyze massive real-world

data. We discuss these properties in more detail in Section 3.4.

Recommending in-matrix and out-of-matrix articles

We analyze data with D documents (articles) and U users (readers) with the CTPF via the posterior

distribution over latent variables p(κ1:K , µ1:D, β1:D, θ1:U |w, r). By estimating this latent structure,

we can characterize user preferences and the readership of documents in many useful ways.

Once the posterior is fit, we use the CTPF model to recommend in-matrix documents and out-

of-matrix or cold-start articles to readers. Out-of-matrix articles are new and therefore have no

ratings from readers. Therefore, a cold-start recommendation of a new article is based entirely on

its content. For predicting these articles, we rank each reader’s unread documents by their posterior

expected Poisson parameters,

scoreui = E
[
θTu (µi + βi)|w, r

]
. (3.2)

The intuition behind the CTPF posterior is that when there is no reader data, we depend on

the topics to make recommendations. When there is both reader data and article content, this

gives information about the topic offsets. Notice that under the CTPF the in-matrix and cold-start
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Figure 3.7: We visualized the inferred topic intensities µ (the black bars) and the topic offsets β (the
red bars) of an article in the Mendeley (Jack et al., 2010) dataset. The plots are for the statistics
article titled “Maximum likelihood from incomplete data via the EM algorithm”. The black bars
represent the topics that the EM paper is about. These include probabilistic modeling and statistical
algorithms. The red bars represent the preferences of the readers who have the EM paper in their
libraries. It is popular with readers interested in many fields outside of those the paper discusses,
including computer vision and statistical network analysis.

recommendations are not disjoint tasks. There is a continuum between these recommendations tasks.

For example, the model can provide better predictions for articles with few ratings by leveraging

the article’s latent topic intensities µi.

Exploring impact of scientific articles

We illustrate the model with an example. Consider the classic paper ”Maximum likelihood from

incomplete data via the EM algorithm” (Dempster et al., 1977). This paper, published in the

Journal of the Royal Statistical Society (B) in 1977, introduced the expectation-maximization (EM)

algorithm. The EM algorithm is a general method for finding maximum likelihood estimates in

models with hidden random variables. As many readers will know, EM has had an enormous impact

on many fields, including computer vision, natural language processing, and machine learning. This

original paper has been cited over 37,000 times. (Wang and Blei also use the EM paper as an

example in Wang and Blei (2011).)

Figure 1 illustrates the CTPF representation of the EM paper. (This model was fit to the shared

libraries of scientists on the Mendeley website; the number of readers is 80,000 and the number of

articles is 261,000.) In the figure, the horizontal axes contains topics, latent themes that pervade the

collection (Blei et al., 2003). Consider the black bars in the left figure. These represent the topics

that the EM paper is about. (These were inferred from the abstract of the paper.) Specifically, it

is about probabilistic modeling and statistical algorithms. Now consider the red bars on the right,

which are summed with the black bars. These represent the preferences of the readers who have

the EM paper in their libraries. CTPF has uncovered the interdisciplinary impact of the EM paper.
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It is popular with readers interested in many fields outside of those the paper discusses, including

computer vision and statistical network analysis.

The CTPF representation has advantages. For forming recommendations, it naturally interpo-

lates between using the text of the article (the black bars) and the inferred representation from

user behavior data (the red bars). On one extreme, it recommends rarely or never read articles

based mainly on their text; this is the cold start problem. On the other extreme, it recommends

widely-read articles based mainly on their readership. (In this setting, it can make good inferences

about the red bars.) Further, in contrast to traditional matrix factorization algorithms, the space of

preferences and articles is defined via interpretable topics. CTPF thus offers reasons for making rec-

ommendations, readable descriptions of reader preferences, and an interpretable organization of the

collection. For example, CTPF can recognize the EM paper is among the most important statistics

papers that has had an interdisciplinary impact.

3.4 Statistical properties

With the modeling details in place, we highlight several statistical properties of the additive Poisson

factorization (APF) models. We use the HPF in our study, but these properties generalize to

other models as they depend on the shared aspects such as the Poisson likelihood, the factorized,

sparse representations and the conditional conjugacy. These properties provide advantages over

some variants of the Gaussian matrix factorization, and contribute to the models’ good empirical

performance as demonstrated in Chapter 4.

When we refer to Gaussian matrix factorization in this section, we mean L2 regularized ma-

trix factorization with bias terms for users and items, fit using stochastic gradient descent (Koren

et al., 2009). Without the bias terms, this corresponds to maximum a-posteriori inference under

Probabilistic Matrix Factorization (Salakhutdinov and Mnih, 2008c). We used a popularity-based

sampling scheme to generate negative examples: we sample users by activity—the number of items

rated in the training set—and items by popularity—the number of training ratings an item received.

3.4.1 Capturing user consumption

One statistical characteristic of real-world user behavior data is the distribution of user activity (i.e.,

how many items a user consumed) and item popularity (i.e., how many users consumed an item). As

shown in Figure 3.8, these distributions tend to be long-tailed: while most users consume a handful

few items, a few “tail users” consume thousands of items. A question we can ask of a statistical
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Figure 3.8: Long-tailed distribution of user activity and item popularity in four large user consump-
tion data sets. The data include users listing articles in their libraries (Mendeley), users rating songs
(Echo Nest) and users rating movies (Netflix). The data sets are described in Section 4.1.

model of user behavior data is how well it captures these distributions. On both explicit and implicit

data, we found that the HPF captures them very well.

To check this, we implemented a posterior predictive check (PPC) (Rubin, 1984; Gelman et al.,

1996), a technique for model assessment from the Bayesian statistics literature. The idea behind a

PPC is to simulate a complete data set from the posterior predictive distribution—the distribution

over data that the posterior induces—and then compare the generated data set to the true observa-

tions. A good model will produce data that captures the important characteristics of the observed

data.

We developed a PPC for matrix factorization algorithms on user behavior data. First, we formed

posterior estimates of user preferences and item attributes for both classical MF and the HPF. Then,

from these estimates, we simulated user behavior by drawing values for each user and item. (For

classical matrix factorization, we truncated these values at zero and rounded to one in order to

generate a plausible matrix.) Finally, we compared the matrix generated by the posterior predictive

distribution to the true observations.

Figure 3.9 illustrates our PPC for the Netflix data. In this figure, we illustrate three distributions

over user activity: the observed distribution (squares), the distribution from a data set replicated

by the HPF (red line), and a distribution from a data set replicated by Gaussian MF with gen-

erated negatives using popularity-based sampling (blue line). The HPF captures the truth much

more closely than Gaussian MF (with subsampled zeros), which badly overestimates the distribution
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Figure 3.9: A posterior predictive check of the distribution of total ratings for the Netflix data set.
The pink curve shows the empirical count of the number of users who have rated a given number
of items, while the green and blue curves show the simulated totals from fitted Poisson and the
Gaussian MF (with subsampled zeros) models, respectively. The Poisson marginal closely matches
the empirical, whereas this variant of Gaussian MF fits a large mean to account for skew in the
distribution and the missing ratings.

of user activity. This is likely an effect of the subsampled negatives. This misfit leads to an over-

weighting of the zeros, which explains why practitioners require complex methods for downweighting

them (Hu et al., 2008; Gantner et al., 2012; Dror et al., 2012b; Paquet and Koenigstein, 2013).

The Gaussian MF based algorithm proposed by Hu et al. (2008) treats all missing ratings as

observed zeroes. It downweights zeros in the weighted MF objective, capturing greater uncertainty

over the zeros, to control their effect on predictions. A comparison to Hu et al. (2008), in capturing

user activity and in predictive performance, is ongoing work at the time of writing of this thesis.

The PPC indicates that the HPF better represents real data, at least in comparison to Gaussian

MF with subsampled negatives, and when measured by its ability to capture distributions of user

activity.

Rewriting additive PF models

Although we’ve studied the PPC for a specific model—the HPF—additive PF models, in general,

capture the marginal user and item counts well. To see this, we rewrite the Poisson observation
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model as a two stage process where a user u first decides on a budget bu she has to spend on items,

and then spends this budget rating items that she is interested in:

bu ∼ Poisson(θTu
∑
i

βi)

[yu1, · · · , yuM ] ∼ Mult(bu,
θTu βi

θTu
∑
i βi

).

This shows that learning a PF model for user-item ratings is effectively the same as learning user

budgets and how they choose to spend their budgets.

With an appropriate fit to user activity, the model has two ways of explaining an unconsumed

item: either the user is not interested in it or she would be interested in it but is likely to not

be further active or has run out of resources. In contrast, a user that consumes an item must be

interested in it. Thus, the model benefits more from making a consumed user/item pair more similar

than making an unconsumed user/item pair less similar. This leads to an implicit downweighting of

the unwatched or unconsumed items.

As an example, consider two similar science fiction movies, “Star Wars” and “The Empire Strikes

Back”, and consider a user who has seen one of them. The Gaussian model pays an equal penalty

for making the user similar to these items as it does for making the user different from them—with

quadratic loss, seeing “Star Wars” is evidence for liking science fiction, but not seeing “The Empire

Strikes Back” is evidence for disliking it. The Poisson model, however, will prefer to bring the user’s

latent weights closer to the movies’ weights because it favors the information from the user watching

“Star Wars”. Further, because the movies are similar, this increases the Poisson model’s predictive

score that a user who watches “Star Wars” will also watch “The Empire Strikes Back”.

3.4.2 Shared, sparse latent factors

PF models can capture multiple types of discrete data, for example, the article text and user ratings

of the articles. Each observation is drawn from a Poisson with the rate specified as an inner product

of two vectors. The models can easily accommodate the sharing of latent spaces. The CTPF

model of Section 3.3.3 is an example. While sparse representations are fundamental to Poisson

factorization—as they are to NMF with KL-divergence based loss function—the Gamma priors on

user preferences and item attributes in the models of Section 3.3 provide further control over the

sparse representations of users and items.
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3.4.3 Fast inference with sparse matrices

We will see that the inference algorithms for the models of Section 3.3 need only iterate over the

viewed items in the observed matrix of user behavior, i.e., the non-zero elements, and this is true

even for implicit or “positive only” data sets. This follows from two useful properties that hold for

the APF models.

1. Dependence of likelihood on consumed items only. The likelihood of the observed

data under the models of Section 3.3 depend only on the consumed items, that is, the non-

zero elements of the user/item matrix y. This facilitates computation for the kind of sparse

matrices we observe in real-world data.

We can see this property from the form of the Poisson distribution. Given the latent preferences

θu and latent attributes βi, the Poisson distribution of the rating yui is

p(yui | θu, βi) =
(
θ>u βi

)y
exp

{
−θ>u βi

}
/yui! (3.3)

Recall the elementary fact that 0! = 1. The log probability of the complete matrix y is

log p(y | θ, β) =
(∑

{yui>0} yui log(θ>u βi)− log yui!
)

(3.4)

− (
∑
u θu)

>
(
∑
i βi) .

2. Conjugacy through auxiliary variables. Another useful property of the Poisson distribu-

tion is that the sum of independent Poisson random variables is itself a Poisson with rate equal

to the sum of the rates. This allows for auxiliary latent variables that modify a nonconjugate

model to being conditionally conjugate.

Conditionally conjugate models enjoy simple, standard variational inference algorithms (see

Chapter 2). For example, for each user and item in the PF models of Section 3.3, we add

K latent variables zuik ∼ Poisson(θukβik), which are integers that sum to the user/item

value yui. These new latent variables preserve the marginal distribution of the observation,

yui ∼ Poisson(θ>u βi). These variables can be thought of as the contribution from component k

to the total observation yui. Note that when yui = 0, these auxiliary variables are not random—

the posterior distribution of zui will place all its mass on the zero vector. Consequently, any

inference procedure need only consider zui for those user/item pairs where yui > 0. We include

more details in Section 3.6.
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As a consequence of these properties, APF models take advantage of the natural sparsity of user

behavior data and can easily analyze massive real-world data.

3.5 Related work

In this section, we discuss the roots of Poisson factorization, and compare our models to alternative

models of discrete data in the literature.

Non-negative matrix factorization. The roots of Poisson factorization come from nonnegative

matrix factorization (Lee and Seung, 1999), where the objective function is equivalent to a factorized

Poisson likelihood. More recently, the original NMF update equations have been shown to be an

expectation-maximization (EM) algorithm for maximum likelihood estimation of a Poisson model

via data augmentation (Cemgil, 2009). That NMF is a “Poisson version” of Latent Dirichlet Alloca-

tion (Blei et al., 2003) was first pointed out by Buntine (2002), and proven in Gaussier and Goutte

(2005).

Similarly to Cemgil (2009), our latent variable modeling perspective of NMF lends itself to

powerful Bayesian extensions, such as the combined model of text and ratings in Section 3.3.3, and

a Bayesian nonparametric model in Chapter 5. We demonstrate better predictive performance than

NMF in Chapter 4.

Log-linear models. Dunson and Herring (2005) present a Poisson variable framework for discrete

outcomes with an underlying simple Poisson log-linear model. These models are motivated by

applications to tumor studies where covariates are typically available. The observed outcome yui

is linked to an underlying Poisson variable zui, which results in a regression model for yui. The

zui are modeled using the Poisson log-linear model. This generalized linear model is useful because

it simultaneously ensures that the expected count is non-negative, while capturing a multiplicative

effect of predictors on the mean. These models can link a vector of mixed discrete outcomes to a

vector of underlying variables. The dependency between these mixed outcomes is captured through

a standard Poisson-gamma shared frailty model, which scales the predictor with a shared Gamma

variable (Dunson and Herring, 2005). The CTPF captures multiple discrete data —the article

text and user ratings of the articles—using a linear model, rather than a log-linear model. Also,

the dependency between these outcomes is modeled differently. We borrow the data augmentation

strategy from Dunson and Herring (2005).
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Gamma-Poisson models. Placing a Gamma prior on the user preferences along with normalized

item attributes results in the GaP model (Canny, 2004), which was developed as an alternative text

model to LDA (Blei et al., 2003; Inouye et al., 2014). The GaP model is fit using the expectation-

maximization algorithm to obtain point estimates for user preferences and item attributes.

The Probabilistic Factor Model (PFM) (Ma et al., 2011) improves upon GaP by placing a Gamma

prior on the item weights as well, and using multiplicative update rules to infer an approximate

maximum a posteriori estimate of the latent factors. In contrast, our models use a hierarchical prior

structure of Gamma priors on user and item weights, and Gamma priors over the rate parameters

from which these weights are drawn. This enables us to accurately model the skew in user activity and

item popularity, which contributes to good predictive performance. Furthermore, we approximate

the full posterior over all latent factors using a scalable variational inference algorithm.

Other applications. Independently of GaP and user behavior models, Poisson factorization has

been studied in the context of signal processing for source separation (Cemgil, 2009; Hoffman, 2012)

and for the purpose of detecting community structure in network data (Ball et al., 2011). This

research includes variational approximations to the posterior, though the issues and details around

these data differ significantly from user data we consider and our derivation below (based on auxiliary

variables) is more direct.

Recommendation algorithms. When modeling implicit feedback data sets, researchers have

proposed merging factorization techniques with neighborhood models (Koren, 2008), weighting tech-

niques to adjust the relative importance of positive examples (Hu et al., 2008), and sampling-based

approaches to create informative negative examples (Gantner et al., 2012; Dror et al., 2012b; Paquet

and Koenigstein, 2013). In addition to the difficulty in appropriately weighting or sampling negative

examples, there is a known selection bias in provided ratings that causes further complications (Mar-

lin and Zemel, 2009; Marlin et al., 2012).

Although Poisson factorization does not require such special adjustments, the downweighting it

naturally induces on zero observations may not work well for all data sets. In preliminary results

comparing to the Gaussian MF model (with downweighted zeros) of Hu et al. (2008), we obtained

mixed results. In Gaussian MF, the downweighting of zeros translates to lower confidence and

increased variance on the zero observations; the ability to capture variance over classes of ratings is

an area of future work for the APF models.
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Models of text and user ratings. Several research efforts propose joint models of item covariates

and user activity. Singh and Gordon (2008) present a framework for simultaneously factorizing

related matrices, using generalized link functions and coupled latent spaces. Hong et al. (2013)

propose Co-factorization machines for modeling user activity on twitter with tweet features, including

content. They study several design choices for sharing latent spaces. While CTPF is roughly an

instance of these frameworks, we focus on the task of recommending articles to readers.

Agarwal and Chen (2010) propose fLDA, a latent factor model which combines document features

through their empirical LDA (Blei et al., 2003) topic intensities and other covariates, to predict

user preferences. The coupling of matrix decomposition and topic modeling through shared latent

variables is also considered in Shan and Banerjee (2010). Like fLDA, both papers tie latent spaces

without corrective terms. Wang and Blei (2011) have shown the importance of using corrective terms

through the collaborative topic regression (CTR) model which uses a latent topic offset to adjust a

document’s topic proportions. CTR has been shown to outperform a variant of fLDA (Wang and

Blei, 2011). Our proposed model CTPF uses the CTR approach to sharing latent spaces.

CTR (Wang and Blei, 2011) combines topic modeling using LDA (Blei et al., 2003) with Gaussian

matrix factorization for one-class collaborative filtering (Hu et al., 2008). Like CTPF, the underlying

MF algorithm has a per-iteration complexity that is linear in the number of non-zero observations.

Unlike CTPF, CTR is not conditionally conjugate, and the inference algorithm depends on numerical

optimization of topic intensities. Further, CTR requires setting confidence parameters that govern

uncertainty around a class of observed ratings. As we show in Chapter 4, CTPF scales more easily

and provides better recommendations than CTR.

We discuss additional related recommendation methods in Section 4.1, where we evaluate the

APF models.

3.6 Inference using Variational Bayes

In this section, we develop variational inference algorithms for the HPF and the CTPF models. The

algorithm for the BPF model is an instance of the HPF algorithm, with a subset of the parameters

held fixed.

3.6.1 The hierarchical model

Using the HPF for recommendation hinges on solving the posterior inference problem. Given a set

of observed ratings, we would like to infer the user preferences and item attributes that explain these
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ratings, and then use these inferences to recommend new content to the users. In this section we

discuss the details and practical challenges of posterior inference for the HPF, and present a mean-

field variational inference algorithm as a practical and scalable approach. Our algorithm easily

accommodates data sets with millions of users and hundreds of thousands of items on a single CPU.

Given a matrix of user behavior, we would like to compute the posterior distribution of user pref-

erences θuk, item attributes βik, user activity ξu and item popularity ηi. As discussed in Chapter 2,

the exact posterior is computationally intractable and we use mean-field variational inference.

Recall from Chapter 2 that variational inference is an optimization-based strategy for approx-

imating posterior distributions in complex probabilistic models (Jordan et al., 1999; Wainwright

and Jordan, 2008). Variational algorithms posit a family of distributions over the hidden variables,

indexed by free “variational” parameters, and then find the member of that family that is closest in

Kullback-Liebler (KL) divergence to the true posterior.

The algorithm

We will describe a simple variational inference algorithm for the HPF. To do so, however, we first

give an alternative formulation of the model in which we add an additional layer of latent variables.

These auxiliary variables facilitate derivation and description of the algorithm (Ghahramani and

Beal, 2001; Hoffman et al., 2013).

As discussed in Section 3.4, we add K latent variables zuik ∼ Poisson(θukβik), which are integers

that sum to the user/item value yui. With these latent variables in place, we have a conditionally

conjugate model; we can now derive a standard variational inference algorithm. First, we posit the

variational family over the hidden variables. Then we show how to optimize its parameters to find

the member close to the posterior of interest.

The latent variables in the model are user weights θuk, item weights βik, and user-item contri-

butions zuik, which we represent as a K-vector of counts zui. The mean-field family considers these

variables to be independent and each governed by its own distribution (see Chapter 2),

q(β, θ, ξ, η, z) =
∏
i,k q(βik |λik)

∏
u,k q(θuk | γuk)

∏
u q(ξu |ωu)

∏
i q(ηi | τi)

∏
u,i q(zui |φui).

The variational factors for preferences θuk, attributes βik, activity ξu, and popularity ηi are all

Gamma distributions, with freely set scale and rate variational parameters. The variational factor

for zui is a free multinomial, i.e., φui is a K-vector that sums to one. This form stems from zui being

a bank of Poisson variables conditional on a fixed sum yui, and the property that such conditional
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For all users and items, initialize the user parameters γu, ωrte
u and item parameters λi, τ

rte
i to the

prior with a small random offset. Set the user activity and item popularity shape parameters:

ωshp
u = a′ +Ka; τ shpi = c′ +Kc

Repeat until convergence:

1. For each user/item such that yui > 0, update the multinomial:

φui ∝ exp{Ψ(γshpuk )− log γrteuk + Ψ(λshpik )− log λrteik }.

2. For each user, update the user weight and activity parameters:

γshpuk = a+
∑
i yuiφuik

γrteuk =
ωshp
u

ωrte
u

+
∑
i λ

shp
ik /λrteik

ωrte
u =

a′

b′
+
∑
k

γshpuk

γrteuk

3. For each item, update the item weight and popularity parameters:

λshpik = c+
∑
u yuiφuik

λrteik =
τ shpi

τ rtei
+
∑
u γ

shp
uk /γ

rte
uk

τ rtei =
c′

d′
+
∑
k

λshpik

λrteik

Figure 3.10: Variational inference for the hierarchical Poisson factorization (HPF) model. Each
iteration only needs to consider the non-zero elements of the user/item matrix.

Poissons are distributed as a multinomial (Johnson et al., 2005; Cemgil, 2009).

After specifying the family, we fit the variational parameters ν = {λ, γ, ω, τ, φ} to minimize the

KL divergence to the posterior, and then use the corresponding variational distribution q(· | ν∗)

as its proxy. The mean-field factorization facilitates both optimizing the variational objective and

downstream computations with the approximate posterior, such as the recommendation score of

Equation 5.18.

We optimize the variational parameters with the coordinate ascent algorithm described in Sec-

tion 2.2.3, iteratively optimizing each parameter while holding the others fixed. The algorithm is

illustrated in Figure 3.10. We denote shape with superscript “shp” and rate with superscript “rte”.

Note that our algorithm is efficient on sparse matrices. In step 1, we need only update variational

multinomials for the non-zero user/item observations yui. In steps 2 and 3, the sums over users and

items need only to consider non-zero observations. This efficiency is thanks the likelihood of the full
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matrix only depending on the non-zero observations, as discussed in Section 3.4.

We terminate the algorithm when the variational distribution converges. Convergence is mea-

sured by computing the prediction accuracy on a validation set. Specifically, we approximate the

probability that a user consumed an item using the variational approximations to posterior expecta-

tions of θu and βi, and compute the average predictive log likelihood of the validation ratings. The

HPF algorithm stops when the change in log likelihood is less than 0.0001%. For the HPF and the

BPF we find that the algorithm is largely insensitive to small changes in the hyper-parameters. To

enforce sparsity, we set the shape hyperparameters a′, a, c and c′ to provide exponentially shaped

prior Gamma distributions. We fixed each hyperparameter at 0.3. We set the hyperparameters b′

and d′ to 1, fixing the prior mean at 1.

3.6.2 The combined model

Given a set of observed document ratings and their word counts, the goal is to infer the topics κ1:K ,

the user preferences θ1:U , the document topic intensities µ1:D, the offsets β1:D, and then use these

inferences to recommend in-matrix documents and out-of-matrix documents to users. To this end,

our goal is to compute the posterior distribution p(κ1:V , µ1:D, β1:D, θ1:U |w, r). As with the HPF,

we use mean-field variational inference (Jordan et al., 1999). We first develop a simple coordinate

ascent algorithm—a batch algorithm that iterates over only the non-zero document-word counts and

the non-zero user-document ratings.

Proceeding as in Section 3.6.1, we first augment the model with auxiliary variables to obtain

a conditionally conjugate model. We then define the mean-field variational family and derive a

coordinate ascent algorithm.

Auxiliary variables

To facilitate inference, we augment the CTPF model with auxiliary variables. Following (Dunson

and Herring, 2005), we add K latent variables ziv,k ∼ Poisson(κikµvk), which are integers such

that wiv =
∑
k ziv,k. Further, for each observed rating rui, we add K latent variables yaui,k ∼

Poisson(θukµik) and K latent variables ybui,k ∼ Poisson(θukβik) such that rui =
∑
k y

a
ui,k + ybui,k. As

in Section 3.6.1, these new latent variables preserve the marginal distribution of the observations,

wiv and rui, and the CTPF model with the auxiliary variables is conditionally conjugate.

The complete conditionals for the CTPF model from Section 3.3.3 augmented with auxiliary

variables is shown in Table 3.1. As with the HPF, notice that ziv is a set of Poisson variables, which
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Latent Variable Type Complete conditional Variational parameters

µik Gamma g +
∑
v ziv,k +

∑
u y

a
ui,k, h+

∑
v κvk +

∑
u θuk µ̃shp

ik , µ̃rte
ik

κvk Gamma g +
∑
d ziv,k, h+

∑
i µik κ̃shp

vk , κ̃
rte
vk

θuk Gamma a+
∑
i y
a
ui,k +

∑
i y
b
ui,k, ξu +

∑
i(µik + βik) θ̃shpuk , θ̃

rte
uk

βik Gamma c+
∑
u y

b
ui,k, ηi +

∑
u θuk β̃shp

ik , β̃rte
ik

ziv Mult log µik + log κvk φiv

yui Mult

{
log θuk + log µik if k < K,

log θuk + log βik if K ≤ k < 2K
τui

Table 3.1: The complete conditionals of the latent variables in CTPF.

Initialize the topics κ1:K and topic intensities µ1:D using LDA Blei et al. (2003).
Repeat until convergence:

1. For each word count wiv > 0, set φiv to the expected conditional parameter of ziv.

2. For each rating rui > 0, set τui to the expected conditional parameter of yui.

3. For each document i and each k, update the block of variational topic intensities µ̃ik to
their expected conditional parameters. Perform similar block updates for κ̃vk, θ̃uk and
β̃ik, in sequence.

Figure 3.11: The CTPF coordinate ascent algorithm. The expected conditional parameters of the
latent variables are computed from Table 3.1.

when conditional on a fixed sum wiv, is distributed as a multinomial (Johnson et al., 2005; Cemgil,

2009). A similar reasoning underlies the conditional for yiv. With our complete conditionals in

place, we now derive the coordinate ascent algorithm for the expanded set of latent variables.

Coordinate ascent algorithm

We first define the mean-field variational over the latent variables in CTPF. The complete condi-

tionals in Table 3.1 show that the variational distributions are in the same exponential family as

the conditional; we can therefore optimize each coordinate in closed form. The coordinate ascent

algorithm is illustrated in Figure 3.11. In step 1, we need only update variational multinomials for

the non-zero word counts wiv and the non-zero ratings rui. In steps 2 and 3, the sums over the

expected ziv,k and the expected yui,k need only to consider non-zero observations.

Stochastic algorithm

The CTPF coordinate ascent algorithm is efficient. With linear-time per-iteration complexity, the al-

gorithm can compute approximate posteriors for datasets with ten million observations within hours
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(see Chapter 4). To fit to larger datasets, within hours, we develop an algorithm that subsamples a

document and estimates variational parameters using stochastic variational inference (SVI) Hoffman

et al. (2013). We refer the reader to Chapter 2 for background on SVI. The stochastic algorithm is

also useful in settings where new items continually arrive in a stream.

To obtain noisy gradients for SVI, assume that we operate under the setting where we subsample

a single document d uniformly at random from the D documents. This sampling strategy is similar

to online LDA (Hoffman et al., 2010a). However, our approach differs in the use of separate learning

rates for each user, allowing the inference to update only the relevant users in each iteration.

We are given observations about a single document in each iteration. Following Hoffman et al.

(2013), we use the conditional dependencies in our graphical model to divide our variational param-

eters into local and global. The multinomial parameters (φiv, ξui) for the sampled document i and

for all u ∈ U , and the Gamma parameters for (µik, βik) are local. All other variational parameters

are global.

In each iteration of our algorithm, we first subsample a document. We then update the local

multinomial parameters and the local topic intensities and offset parameters for this document

using the coordinate updates from Figure 3.11. This optimizes local parameters with respect to the

subsample. We then compute scaled natural gradients Amari (1982) for the global user preference

parameters (θ̃shpuk , θ̃
rte
uk ) for the users u that have rated document i and for all topic parameters

(κ̃shpvk , κ̃
rte
vk ). The global step for the global parameters follows the noisy gradient with an appropriate

step-size.

We maintain separate learning rates ρu for each user, and only update the users who have rated

the document i. We proceed similarly for words. We maintain a global learning rate ρ′ for the topic

parameters, which are updated in each iteration. For each of these learning rates ρ, we require that∑
t ρ(t)2 < ∞ and

∑
t ρ(t) = ∞ for convergence to a local optimum (Robbins and Monro, 1951).

We set ρ(t) = (τ0 + t)−κ, where κ ∈ (0.5, 1] is the learning rate and τ0 ≥ 0 downweights early

iterations (Hoffman et al., 2013).

Computational efficiency

The stochastic algorithm is more efficient than the batch algorithm. The batch algorithm has a

per-iteration computational complexity of O((W + R)K) where R and W are the total number of

non-zero observations in the document-user and document-word matrices, respectively. For the SVI

algorithm, this is O((wi + ri)K) where ri is the number of users rating the sampled document i

and wi is the number of unique words in it. (We assume that a single document is sampled in each
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iteration.) In Figure 3.11, the sums involving the multinomial parameters can be tracked for efficient

memory usage. The bound on memory usage is O((D + V + U)K).

Hyperparameters, initialization and stopping criteria

We fix each Gamma shape and rate hyperparameter at 0.3. We initialize the variational parameters

for θuk and βik to the prior on the corresponding latent variables and add small uniform noise. We

initialize κ̃vk and µ̃ik using estimates of their normalized counterparts from LDA (Blei et al., 2003)

fitted to the document-word matrix w. For the SVI algorithm described in the Appendix, we set

learning rate parameters τ0 = 1024, κ = 0.5 and use a mini-batch size of 1024. In both algorithms,

we declare convergence when the change in expected predictive likelihood is less than 0.001%.

3.7 A unified approach to modeling discrete outcomes

Many modern prediction tasks involve analyzing massive data sets of discrete outcomes. In topic

modeling, it is standard to represent a corpus as a document-word matrix where each cell is the word

frequency in a document (Blei et al., 2003). In recommendation tasks, user behavior is represented

as a user-item matrix of counts where each cell represents the users’ rating or consumption of an

item (Koren et al., 2009). Community detection algorithms commonly represent a network using an

adjacency matrix where each cell is a binary or weighted link between nodes (Newman, 2003).

Machine learning algorithms depend on capturing the statistical properties of discrete outcomes

to obtain a good fit to the data and to predict well. The desired representations and properties are

shared across different types of discrete data domains:

• Data sparsity: Most documents contain a small fraction of words in a vocabulary, most

users rate a small fraction of movies, and most web pages link to a small number of other web

pages. This leads to a sparse matrix of observed outcomes, with rows of non-negative integers

dominated by zeros. For instance, the large data sets we analyze in Chapter 4 and Chapter 7

have less than 0.01% non-zero entries.

• Long-tailed distributions: Word frequencies in natural languages, user activity in rating

products, and degree distributions of web pages, are all known to follow some form of power-law

or characteristics of long-tailed distributions (Sato and Nakagawa, 2010; Paquet and Koenig-

stein, 2013; Clauset et al., 2009).

• Sparse factors: For a given observation, only a small number of latent factors may be
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relevant. For example, although a large number of communities may be needed to explain a

network, each node is likely to participate in a few communities. Similarly, a small number of

preferences may underlie a user’s movie choices and a small number of topics may explain a

document (Blei et al., 2003; Bengio et al., 2013).

These shared properties motivate us to take a unified approach to modeling discrete outcomes of

user behavior, text and networks. Although the APF models we develop in this chapter focus on

recommendation using user behavior and text data, they can be applied to other types of discrete

data, such as those arising from network interactions.

3.8 Conclusion

We presented additive Poisson factorization (APF) models of discrete data with applications in

recommendation and exploratory tasks. In an APF model each observation is drawn from a Poisson

distribution whose rate parameter is an inner product of vectors of non-negative latent variables. We

presented BPF and HPF, both models of user behavior, and CTPF, a combined model of readership

and article text. CTPF couples the user preference for the article content and the article’s readership.

This allows the user preferences to be interpreted as affinity to latent topics.

The APF models capture real-world user activity, provide sparse latent representations and

enable efficient inference algorithms. We derived efficient variational inference for these models, and

developed a SVI algorithm for CTPF.

In this chapter, we have modeled both count and binary data using Poisson distributions. For

binary data, a natural approach is to use censored Poisson distributions (Greene, 2005)—we observe

whether yui > 0. Another line of work is to combine other data sources relevant to recommendation

such as user’s social networks and item covariates. Finally, in our study of the models’ ability to

capture user activity, we compared to Gaussian MF with subsampled negatives. A natural alternative

is the algorithm of Hu et al. (2008) – it observes the full matrix and downweights zero observations

in the MF objective. This helps capture greater uncertainty around those observations.

In Chapter 4, we evaluate these models on a variety of real-world recommendation problems–users

rating movies, users listening to songs, users reading scientific papers, and users reading news articles.

We find that the APF models are robust to hyperparameter settings, making them a good off-the-

shelf tool for recommendation; they are efficient building blocks for more sophisticated models such

as those with Bayesian nonparametric assumptions. We develop Bayesian nonparametric Poisson

factorization in Chapter 5.
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Chapter 4

Scalable recommendation

In this chapter we study the additive PF models of Chapter 3 on large-scale user behavior data sets:

users listening to music, users watching movies, users reading scientific articles, and users reading

the newspaper. We study the CTPF on two data sets of scientific article content and readers listing

these articles. For each data set, we estimated and examined the posterior distributions of the

Poisson parameters and used them to recommend items to users.

The study in Section 4.1 demonstrates that the HPF outperforms competing methods such

as nonnegative matrix factorization (Lee and Seung, 1999), topic models (Blei et al., 2003), and

one variant of Gaussian matrix factorization (Koren et al., 2009); and the study in Section 4.2

demonstrates that CTPF outperforms collaborative topic regression (Wang and Blei, 2011). Further,

we provide validation of the PF models as an exploratory tool in Section 4.3. In particular, we show

that the CTPF organizes articles according to their topics and identifies important articles both in

terms of those important to their topic and those that have transcended disciplinary boundaries.

Our experiments reveal that the additive PF models of Section 3.3 are robust to hyperparameter

settings and can be used as off-the-shelf tools; they are efficient building blocks for more sophisti-

cated models such as those with Bayesian nonparametric assumptions. We will develop Bayesian

nonparametric Poisson factorization in Chapter 5.

A main limitation of our study is we do not include a comparison to Hu et al. (2008), as this

effort is ongoing. Preliminary results suggest that the variant of Gaussian MF proposed in Hu et al.

(2008) outperforms APF models on some data sets. Their method works by downweighting the

contribution of zeros to the MF objective, capturing greater uncertainty around them. Extending

the APF models to capture greater uncertainty around a class of ratings is future work.
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4.1 In-matrix recommendations

In this section, we evaluate the performance of the hierarchical Poisson factorization (HPF) algorithm

from Section 3.3.2 and its non-hierarchical variant (BPF) from Section 3.3.1 on a variety of large-

scale user behavior data sets. We first discuss the details of each data set and of the competing

recommendation methods. We then describe our study, noting the good predictive performance

and computational efficiency of HPF. We conclude with an exploratory analysis of preferences and

attributes on two of the data sets.

Data Sets

We study the HPF algorithm in Figure 5.1 on both implicit and explicit feedback:

• The Mendeley data set (Jack et al., 2010) of scientific articles is a binary matrix of 80,000

users and 260,000 articles, with 5 million observations. Each cell corresponds to the presence

or absence of an article in a scientist’s online library.

• The Echo Nest music data set (Bertin-Mahieux et al., 2011) is a matrix of 1 million users

and 385,000 songs, with 48 million observations. Each observation is the number of times a

user played a song.

• The New York Times data set is a matrix of 1,615,675 users and 103,390 articles, with 80

million observations. Each observation is the number of times a user viewed an article.

• The Netflix data set (Koren et al., 2009) contains 480,000 users and 17,770 movies, with 100

million observations. Each observation is the rating (from 1 to 5 stars) that a user provided

for a movie.

The scale and diversity of these data sets enables a robust evaluation of our algorithm. The

Mendeley, Echo Nest, and New York Times data are sparse compared to Netflix. For example, we

observe only 0.001% of all possible user-item ratings in Mendeley, while 1% of the ratings are non-

zero in the Netflix data. This is partially a reflection of large number of items relative to number

users in these data sets.

Furthermore, the intent signaled by an observed rating varies significantly across these data sets.

For instance, the Netflix data set gives the most direct measure of stated preferences for items, as

users provide an explicit star rating for movies they have watched. In contrast, article click counts

in the New York Times data are a less clear measure of how much a user likes a given article—most
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articles are read only once, and a click through is only a weak indicator of whether the article was

fully read, let alone liked. Ratings in the Echo Nest data presumably fall somewhere in between,

as the number of times a user listens to a song likely reveals some indirect information about their

preferences.

As such, we treat each data set as a source of implicit feedback, where an observed positive rating

indicates that a user likes a particular item, but the rating value itself is ignored. The Mendeley

data are already of this simple binary form. For the Echo Nest and New York Times data, we

consider any song play or article click as a positive rating, regardless of the play or click count. We

also consider two versions of the Netflix data—the original, explicit ratings, and an implicit version

in which only 4 and 5 star ratings are retained as observations (Paquet and Koenigstein, 2013).

Competing methods

We compare the HPF algorithm of Figure 3.10 against an array of competing methods:

• NMF: Non-negative Matrix Factorization (Lee and Seung, 1999). In NMF, user preferences

and item attributes are modeled as non-negative vectors in a low-dimensional space. These la-

tent vectors are randomly initialized and modified via an alternating multiplicative update rule

to minimize the Kullback-Leibler divergence between the actual and modeled rating matrices.

• LDA: Latent Dirichlet Allocation (Blei et al., 2003). LDA is a Bayesian probabilistic generative

model where user preferences are represented by a distribution over different topics, and each

topic is a distribution over items. Interest and topic distributions are randomly initialized

and updated using stochastic variational inference (Hoffman et al., 2013) to approximate these

intractable posteriors. The model is typically used for text, but also for more general discrete

data.

• MF: Probabilistic Matrix Factorization with user and item biases. We use a variant of ma-

trix factorization popularized through the Netflix Prize (Koren et al., 2009), where a linear

predictor—comprised of a constant term, user activity and item popularity biases, and a

low-rank interaction term—is fit to minimize the mean squared error between the predicted

and observed rating values, subject to L2 regularization to avoid overfitting. Weights are

randomly initialized and updated via stochastic gradient descent using the Vowpal Wabbit

package (Weinberger et al., 2009). This corresponds to maximum a-posteriori inference under

Probabilistic Matrix Factorization (Salakhutdinov and Mnih, 2008c).

48



We note that while HPF, BPF, and LDA take only the non-zero observed ratings as input, while

the Gaussian MF that we study requires that we provide explicit zeros in the ratings matrix as

negative examples for the implicit feedback setting. In practice, this amounts to either treating

all missing ratings as zeros (as in NMF) and down-weighting to balance the relative importance of

observed and missing ratings (Hu et al., 2008), or generating negatives by randomly sampling from

missing ratings in the training set (Gantner et al., 2012; Dror et al., 2012b; Paquet and Koenigstein,

2013). We take the latter approach for computational convenience, employing a popularity-based

sampling scheme: we sample users by activity—the number of items rated in the training set—and

items by popularity—the number of training ratings an item received to generate negative examples.1

A main limitation of our study is we do not include a comparison to Hu et al. (2008), as this

effort is ongoing work. Preliminary results suggest that the variant of Gaussian MF proposed in

Hu et al. (2008) may outperform APF models on some implicit data sets. Their method works

by downweighting the contribution of zeros to the MF objective, rather than subsampling negative

examples. This captures greater uncertainty around the negative/zero observations. Extending the

APF models to capture greater uncertainty around a class of ratings is future work.

Finally, we note a couple of candidate algorithms that failed to scale to our data sets. The fully

Bayesian treatment of the Probabilistic Matrix Factorization (Salakhutdinov and Mnih, 2008a),

uses a MCMC algorithm for inference. Salakhutdinov and Mnih (2008a) report that a single Gibbs

iteration on the Netflix data set with 60 latent factors, requires 30 minutes, and that they throw

away the first 800 samples. This implies at least 16 days of training, while the HPF variational

inference algorithm converges within 13 hours on the Netflix data. Another alternative, Bayesian

Personalized Ranking (BPR) (Rendle et al., 2009b; Gantner et al., 2012), optimizes a ranking-based

criteria using stochastic gradient descent. The algorithm performs an expensive bootstrap sampling

step at each iteration to generate negative examples from the vast set of unobserved. We found time

and space constraints to be prohibitive when attempting to use BPR with the data sets considered

here.

Evaluation

Prior to training any models, we randomly select 20% of ratings in each data set to be used as a

held-out test set comprised of items that the user has consumed. Additionally, we set aside 1% of

the training ratings as a validation set and use it to determine algorithm convergence and to tune

1We also compared this to a uniform random sampling of negative examples, but found that the popularity-based
sampling performed better.
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Figure 4.1: Predictive performance on data sets. The top and bottom plots show normalized mean
precision and mean recall at 20 recommendations, respectively. While competing method perfor-
mance varies across data sets, HPF and BPF has consistently good predictive performance.
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Figure 4.2: Predictive performance across users. The top and bottom plots show the mean difference
in precision and recall to HPF at 20 recommendations, respectively, by user activity.

free parameters. We used the BPF and HPF settings described in Section 3.6 across all data sets,

and set the number of latent components K to 100.

During testing, we generate the top M recommendations for each user as those items with the

highest predictive score under each method. For each user, we compute a variant of precision-at-M

that measures the fraction of relevant items in the user’s top-M recommendations. So as not to
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artificially deflate this measurement for lightly active users who have consumed fewer than M items,

we compute normalized precision-at-M , which adjusts the denominator to be at most the number

of items the user has in the test set. Likewise, we compute recall-at-M , which captures the fraction

of items in the test set present in the top M recommendations.

Figure 4.1 shows the normalized mean precision at 20 recommendations for each method and data

sets. We see that HPF and BPF provide good predictive performance—a relatively high fraction of

items recommended by HPF are found to be relevant, and many relevant items are recommended.

While not shown in these plots, the relative performance of methods within a data set is consistent

as we vary the number of recommendations shown to users.

We also study precision and recall as a function of user activity to investigate how performance

varies across users of different types. In particular, Figure 4.2 shows the mean difference in precision

and recall to HPF, at 20 recommendations, as we look at performance for users of varying activity,

measured by percentile. For example, the 10% mark shows mean performance across the bottom

10% of users, who are least active; the 90% mark shows the mean performance for all but the top

10% of most active users. Here we see that Poisson factorization outperforms other methods for

users of all activity levels—both the “light” users who constitute the majority, and the relatively

few “heavy” users who consume more—for all data sets.

4.2 Out-of-matrix recommendations of scientific articles

We compared the predictive accuracy of the CTPF coordinate ascent algorithm in Figure 3.11 to

collaborative topic regression (CTR) (Wang and Blei, 2011), and to the variants of CTPF. We

demonstrate that CTPF outperforms its variants, and CTR. The comparison to CTPF variants is

an attempt to validate it’s modeling assumptions. Finally, we explore large real-world data sets

revealing the interaction patterns between readers and articles.

Data sets

We study the CTPF algorithm on two data sets:

• The Mendeley data set (Jack et al., 2010) of scientific articles is a binary matrix of 80,000

users and 260,000 articles with 5 million observations. Each cell corresponds to the presence

or absence of an article in a scientist’s online library.

• The arXiv data set is a matrix of 120,297 users and 825,707 articles, with 43 million observa-
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Figure 4.3: The CTPF model outperforms CTR and the CTPF variants on both in-matrix and out-
matrix predictions. Each panel either the in-matrix or out-matrix recommendation task on a data
set. Notice that the Ratings model cannot make out-matrix predictions. The mean precision and
mean recall are computed from a random sample of 10,000 users. The CTPF models were trained
on the Mendeley data set and the 1-year arXiv data set using the coordinate ascent variational
inference algorithm from Figure 3.11.

tion. Each observation indicates whether or not a user has consulted an article (or its abstract).

This data was collected from the access logs of registered users on the http://arXiv.org paper

repository. The articles and the usage data spans a timeline of 10 years (2003-2012). In ad-

dition, in some of our experiments we use a subset of the dataset, with 64,978 users 636,622

papers and 7.6 million clicks, which spans one year of usage data (2012). We treat the user

clicks as implicit feedback and specifically as binary data. For each article in the above data

sets, we remove stop words and use tf-idf to choose the top 10,000 distinct words (14,000 for

arXiv) as the vocabulary. We implemented the CTPF algorithm in 4500 lines of C++ code. 2

Competing methods

We study the predictive performance of the following models. With the exception of BPF, which

does not model content, the topics and topic intensities (or proportions) in all CTPF models are

initialized using LDA (Blei et al., 2003), and fit using batch variational inference. We set K = 100

in all of our experiments.

• CTPF: CTPF is our proposed model with latent user preferences tied to a single vector θu,

and interpreted as affinity to latent topics κ.

2Our source code is available from: github.premgopalan.com/collabtm.
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• Decoupled Poisson Factorization: This model is similar to CTPF but decouples the user

latent preferences into distinct components pu and qu, each of dimension K. We have,

wdv ∼ Poisson(µTi κv); rud ∼ Poisson(pTuµi + qTu βi). (4.1)

The user preference parameters for content and ratings can vary freely. The qu are independent

of topics and offer greater modeling flexibility, but they are less interpretable than the ηu in

CTPF. Decoupling the factorizations has been proposed by Porteous et al. (2010).

• Content Only: We use the CTPF model without the document topic offsets βi. This resem-

bles the idea developed in Agarwal and Chen (2010) but using Poisson generating distributions.

• Ratings Only: We use BPF from Section 3.3.1 to the observed ratings. This model can only

make in-matrix predictions.

• CTR (Wang and Blei, 2011): A full optimization of this model does not scale to the

size of our data sets despite running for several days. Accordingly, we fix the topics and

document topic proportions to their LDA values. This procedure is shown to perform almost

as well as jointly optimizing the full model in Wang and Blei (2011). We follow the authors’

experimental settings. Specifically, for hyperparameter selection we started with the values

of hyperparameters suggested by the authors and explored various values of the learning rate

as well as the variance of the prior over the correction factor (λv in Wang and Blei (2011)).

Training convergence was assessed using the model’s complete log-likelihood on the training

observations. (CTR does not use a validation set.)

Evaluation

Prior to training models, we randomly select 20% of ratings and 1% of documents in each data

set to be used as a held-out test set. Additionally, we set aside 1% of the training ratings as a

validation set (20% for arXiv) and use it to determine algorithm convergence. We used the CTPF

settings described in Section 3.6.2 across both data sets. During testing, we generate the top M

recommendations for each user as those items with the highest predictive score under each method.

For each user, we compute the precision-at-M , which measures the fraction of relevant items in the

user’s top-M recommendations. Similarly, we compute recall-at-M , which captures the fraction of

items in the test set present in the top M recommendations.
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Topic: "Statistical Inference Algorithms"

On the ergodicity properties of adaptive MCMC algorithms
Particle filtering within adaptive Metropolis Hastings sampling
An Adaptive Sequential Monte Carlo Sampler

A) Articles about the topic; readers in the field

B) Articles outside the topic; readers in the field
A comparative review of dimension reduction methods in ABC
Computational methods for Bayesian model choice
The Proof of Innocence

C) Articles about this field; readers outside the field
Introduction to Monte Carlo Methods
An introduction to Monte Carlo simulation of statistical...
The No-U-Turn Sampler: Adaptively setting path lengths...

Topic: “Information Retrieval”

The anatomy of a large-scale hypertextual Web search engine
Authoritative sources in a hyperlinked environment
A translation approach to portable ontology specifications

A) Articles about the topic; readers in the field

B) Articles outside the topic; readers in the field
How to choose a good scientific problem.
Practical Guide to Support Vector Classification
Maximum likelihood from incomplete data via the EM…

C) Articles about this field; readers outside the field
Data clustering: a review
Defrosting the digital library: bibliographic tools…
Top 10 algorithms in data mining

Figure 4.4: The top articles by the expected weight µik from a component discovered by our stochas-
tic variational inference in the arXiv data set (Left) and Mendeley (Right). Using the expected topic
proportions µik and the expected topic offsets βik, we identified subclasses of articles. A) corresponds
to the top articles by topic proportions in the field of “Statistical inference algorithms” for arXiv
and “Ontologies and applications” for Mendeley; B) corresponds to the top articles with low topic
proportions in this field, but a large µik + βik, demonstrating the outside interests of readers of
that field (e.g., very popular papers often appear such as “The Proof of Innocence” which describes
a rigorous way to “fight your traffic tickets”). C) corresponds to the top articles with high topic
proportions in this field but that also draw significant interest from outside readers.

Results

Figure 4.3 shows the mean precision and mean recall at 20 recommendations for each method and

data set. We see that CTPF outperforms CTR and the Ratings model on all data sets. CTPF

outperforms the Decoupled PF model and the Content model on all data sets except on cold-start

predictions on the arXiv data set. The Decoupled PF model lacks the CTPF’s interpretable latent

space. The Content model performs poorly on most tasks due to the lack of a corrective term on

topics to account for user ratings.

4.3 Exploratory analysis

In this section, we fit the HPF and the CPF to real-world user behavior data sets. Using the HPF,

we explore the discovered components in the data, and interaction patterns between users and items.

Using the CTPF, we explore scientific articles according to their topics, and identify important and

inter-disciplinary articles.

In Figure 4.5, we explore the scientific articles in the Mendeley data set and the new articles in

New York Times using the HPF model. The goal is to discover the latent structure among items

and users and to confirm that the model is capturing the components in the data in a reasonable
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Biodiesel from microalgae.
Biodiesel from microalgae beats bioethanol
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Second Generation Biofuels
Hydrolysis of lignocellulosic materials for ethanol production

Social Capital: Origins and Applications in Modern Sociology
Increasing Returns, Path Dependence, and Politics
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Error estimation in astronomy: A guide
Astronomy & Astrophysics
Measurements of Omega from 42 High-Redshift Supernovae
Stellar population synthesis at the resolution of 2003
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“Biodiesel”

“Political Science”

News articles from the New York Times Scientific articles from Mendeley

Figure 4.5: The top 10 items by the expected weight βi from three of the 100 components discovered
by our algorithm for the New York Times and Mendeley data sets.

way. For example, in Figure 4.5 we illustrate the components discovered by our algorithm. For each

data set, the illustration shows the top items—items sorted in decreasing order of their expected

weight βi—from three of the 100 components discovered by our algorithm. From these, we see that

learned components both cut across and differentiate between conventional topics and categories.

For instance, in the New York Times data, we find that multiple business-related topics (e.g., self

help and personal finance) comprise separate components, whereas other articles that appear across

different sections of the newspaper (e.g., business and regional news) are unified by their content

(e.g., airplanes).

In Figure 4.4, we explored the scientific articles in Mendeley and the arXiv data set using CTPF.

We fit the Mendeley data set using the coordinate ascent algorithm, and the full arXiv data set using

the stochastic algorithm from Section 3.6.2. We discovered interpretable latent topics corresponding

to all components. Using the expected topic proportions µik and the expected topic offsets βik, we

identified subclasses of articles that reveal the interaction patterns between readers and articles.

4.4 Conclusion

In this chapter, we evaluated the additive Poisson factorization models of Chapter 3. We demon-

strated that the APF models have good predictive performance on a range of data sets, with implicit

and explicit feedback. As noted, a comparison to Gaussian MF with downweighted zeros (Hu et al.,
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2008) is important ongoing work. This includes extending the APF models to capture greater

uncertainty around missing/zero ratings.

In the next chapter, we develop an additive PF model that infers the number of latent components

using Bayesian nonparametric assumptions (Zhou et al., 2012).
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Chapter 5

Bayesian nonparametric Poisson

factorization

In Chapter 3, we developed additive Poisson factorization models for recommendation systems. We

fitted these models to large-scale user behavior data sets and predicted which items a user will like

based on his or her history of purchases or ratings.

One of the main limitations of Poisson factorization (and in general, matrix factorization) is

model selection, i.e., choosing the number of components with which to model the data. The typical

approach in matrix factorization, Poisson or Gaussian, is to determine the number of components

by predictive performance on a held-out set of ratings (Salakhutdinov and Mnih, 2008d). But this

can be prohibitively expensive with large data sets because it requires fitting many models.

In this chapter, we develop a Bayesian nonparametric (BNP) Poisson factorization model. Our

model, described in Section 5.1, is based on the weights from a collection of Gamma processes (Fer-

guson, 1973), one for each user, which share an infinite collection of atoms. Each atom represents a

preference pattern of items, such as action movies or comedies. Through its posterior distribution,

our model adapts the dimensionality of the latent representations, learning the preference patterns

(and their number) that best describe the users. We discuss related models in Section 5.2.

As for with the BPF and the HPF models from Chapter 3, the main computational challenge is

posterior inference, where we approximate the posterior distribution of the latent user/item structure

given a data set of user/item ratings. We again develop an efficient algorithm based on variational

inference in Section 5.3. Our method simultaneously finds both the latent components and the latent

dimensionality, easily handles large data sets, and takes time roughly equal to one fit of the model
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with fixed dimension.

The contributions in this chapter are: (a) a new Bayesian nonparametric model for Poisson

factorization (BNPPF), (b) a scalable variational inference algorithm with nested variational fami-

lies (Kurihara et al., 2006), and (c) a thorough study of BNPPF on large scale movie recommendation

problems. On two large real-world data sets—10M movie ratings from MovieLens and 100M movie

ratings from Netflix—we found that Bayesian nonparametric PF outperformed (or at least performed

as well as) its parametric counterpart, which requires searching over K. Unlike previous algorithms

in Section 5.2, our approach takes advantage of the sparsity and non-negativity to scale to very large

data sets. We analyze data that cannot be handled by previous research. Finally, we note that our

BNP model can be used in a a range of applications requiring matrix factorization, such as topic

modeling (Canny, 2004) or community detection (Ball et al., 2011).

5.1 An infinite model based on the Gamma process

We develop a statistical model of user/item rating matrices. As in Chapter 3, our data are obser-

vations yui, which contains the rating that user u gave to item i, or zero if no rating was given.

The data can be based on “implicit feedback”, where yui is one if the user consumed it and zero

otherwise. User behavior data is typically sparse, i.e., most of the ratings are zero.

In the BPF model of recommendation from Chapter 3, each user and each item is associated

with a K-dimensional latent vector of non-negative preferences and attributes, respectively. Let

θu = [θu1, . . . , θuK ]> be the preferences of user u, and βi = [βi1, . . . , βiK ]> be the attributes of item

i. In this chapter, we will jointly refer to these as “weights”. These weights are given Gamma priors

and each observation yui is modeled by a Poisson distribution parameterized by the inner product

of the user’s and item’s weights,

βik ∼ Gamma(a, b), (5.1)

θuk ∼ Gamma(c, d), (5.2)

yui ∼ Poisson(θ>u βi). (5.3)

With the number of components K fixed, the standard approach to model selection is to fit the

model with different values of K and select the one that gives best performance on a held-out set of

ratings.

Choosing the value of K is a nuisance because it is expensive to fit many models on large data
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sets. We want a model with support over arbitrary K such that the posterior distribution captures

the effective latent dimensionality of our data. The desirable properties for such a model are: (i)

The user weights θu and item weights βi must be infinite-dimensional non-negative vectors, (ii) the

expected dot product θ>u βi of any pair must be finite, and (iii) the item weights βi have to be shared

among all users.

We place independent and identical Gamma priors over each element of the infinite-dimensional

vector βi, following Equation 5.1. Since all elements βik are iid, to satisfy condition (ii), we require

the convergence of
∑∞
k=1 E [θuk]. A natural way to construct a summable infinite set of positive

weights is to use a Gamma process (Ferguson, 1973) for each user weight vector θu. A Gamma

process, GP(c,H), has two parameters: c the rate parameter and H the base measure. A draw from

a Gamma process is an atomic random measure with finite total mass when H is finite. This means

that a draw from a Gamma process gives an infinite collection of positive-valued random weights

(the atom weights) whose summation is almost surely finite. Thus, we make θuk the weights of a

draw from a Gamma process.

To ensure the items are shared among all users and satisfy condition (iii), we need to match the

item weights to the user weights. Notice that the item weights are indexed by the natural numbers.

Thus, to match the user weights to the item weights, we need an ordering of the user weights. We

use a size-biased ordering. The size-biased ordering promotes sharing by penalizing higher index

components. We obtain per-user Gamma process weights, in size-biased order, by scaling the stick-

breaking construction of the Dirichlet process with a Gamma random variable. Miller (2011) states

this construction for Gamma processes with unit scale. In general, scaling the sticks from a Dirichlet

process by a draw from Gamma(α, c) yields a draw from a Gamma process with parameters c and

H, where H(Ω) = α (Zhou and Carin, 2013). While α governs the sparsity of the user weights, both

α and c influence the rating budget available to the user.

Using the scaled sticks for θu, the generative process for the Bayesian nonparametric Poisson

factorization model with N users and M items is as follows:

1. For each user u = 1, . . . , N :

(a) Draw su ∼ Gamma(α, c).

(b) Draw vuk ∼ Beta(1, α),

for k = 1, . . . ,∞.

(c) Set θuk = su · vuk
∏k−1
i=1 (1− vui),

for k = 1, . . . ,∞.
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2. Draw βik ∼ Gamma(a, b),

for k = 1, . . . ,∞, i = 1, . . . ,M .

3. Draw yui ∼ Poisson(
∑∞
k=1 θukβik),

for u = 1, . . . , N , i = 1, . . . ,M .

Unlike draws from a standard Gamma process, these atoms are shared across users. In this way,

our model is similar to a hierarchical Gamma process (Çinlar, 1975). However, in a hierarchical

Gamma process, the atoms are shared across users through the common base measure. In contrast,

the atoms in our model are shared due to the size-biased ordering. Intuitively, components with

different indices are unlikely to be similar due to the penalty levied by the size-biased ordering. This

method of sharing atoms can be leveraged in other hierarchical BNP models like the hierarchical

Dirichlet process (Teh and Jordan, 2010).

Note that, unlike BNP Gaussian matrix factorization (Knowles and Ghahramani, 2011), the

generative process provides a sparse observation matrix. The probability of yui being zero can be

lower bounded as

p(yui = 0) ≥ exp
(
−aα
bc

)
(5.4)

and, therefore, the expected number of zeros in the observation matrix is lower bounded by

NM exp(−aαbc ).

5.2 Related work

There has been significant research on Bayesian nonparametric factor models. Griffiths and Ghahra-

mani (2011) introduced the IBP, and developed a Gaussian BNP factor model with binary weights.

Knowles and Ghahramani (2011) later extended this work to non-binary weights. Other extensions

include Hoffman et al. (2010b) and Porteous et al. (2008). Situated within this literature, our model

is a BNP factor model that assumes non-negative weights and sparse observations.

Closer to our model is the work of Titsias (2007), Zhou et al. (2012), and Broderick et al. (2013a).

Titsias (2007) derives a BNP factor model, the infinite Gamma-Poisson feature model. The Gamma

process can be shown to be the De Finetti mixing distribution for this model (Thibaux, 2008), with

the latent counts being drawn from a Poisson process. Our model does not have an underlying latent

discrete stochastic process. Zhou et al. (2012) generalize Titsias (2007) and extend the infinite prior

to a Beta-Gamma-Gamma-Poisson hierarchical structure. Our model is simpler than Zhou et al.
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(2012) because it is not hierarchical, and our model choices afford a scalable variational inference

algorithm to tackle the kinds of problems that we are trying to solve. Titsias (2007) uses an MCMC

algorithm that does not scale and Zhou et al. (2012) further do inference with a truncated model

(which also does not scale). Finally, Broderick et al. (2013a) give a more general class of hierarchical

models than Zhou et al. (2012) but, again, only develop MCMC algorithms. Our model is simpler

than and complements Broderick et al. (2013a)—Poisson factorization does not immediately fall out

of their framework—and, again, affords scalable inference algorithms.

5.3 Inference using variational expectation-maximization

In this section, we derive a scalable mean-field inference algorithm for approximate posterior inference

under the BNPPF. Recall from Chapter 2 that variational inference algorithms approximate the

posterior by defining a parametrized family of distributions over the hidden variables and then

fitting the parameters to find a distribution that is close to the posterior

Following our approach in Dunson and Herring (2005); Zhou et al. (2012) and Chapter 3, we in-

troduce for each user-item pair the auxiliary latent variables zui,k, such that zui,k ∼ Poisson(θukβik).

Recall that due to the additive property of Poisson random variables, each observation yui can be

expressed as

yui =

∞∑
k=1

zui,k. (5.5)

Thus, the variables zui,k preserve the marginal Poisson distribution of the observation yui. Note that

when yui = 0, the posterior distribution of zui,k will place all its mass on zui,k = 0. Consequently,

our inference procedure needs to only consider zui,k for those user-item pairs such that yui > 0. This

is not the case for BNP Gaussian MF (Knowles and Ghahramani, 2011) and makes our inference

procedure extremely efficient for sparse user/item data.

Using the auxiliary variables, and introducing the notation β = {βi}, s = {su}, v = {vuk} and

z = {zui,k}, the joint distribution over the hidden variables can be written as

p(z,β, s,v|α, c, a, b) =
N∏
u=1

p(su|α, c)
∞∏
k=1

N∏
u=1

p(vuk|α)
∞∏
k=1

M∏
i=1

p(βik|a, b)
∞∏
k=1

N∏
u=1

M∏
i=1

p(zui,k|θuk, βik),

(5.6)

and the observations are generated following Equation 5.5.

The mean-field family considers the latent variables to be independent of each other, yielding
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the completely factorized variational distribution:

q(z,β, s,v) =
N∏
u=1

q(su)
∞∏
k=1

N∏
u=1

q(vuk)
∞∏
k=1

M∏
i=1

q(βik)
N∏
u=1

M∏
i=1

q(zui), (5.7)

in which we denote by zui the vector with the infinite collection of variables zui,k for user u and

item i.

Typical mean field methods optimize the KL divergence by coordinate ascent, iteratively opti-

mizing each parameter while holding the others fixed. Recall from Chapter 2 that these update are

easy to derive for conditionally conjugate variables, i.e., variables whose complete conditional is in

the exponential family (Ghahramani and Beal, 2001). This is the case for most of the variables in

our model and for these variables we set the form of their variational distributions to be the same

as their complete conditionals.

The exceptions are the stick proportions. These variables are not conditionally conjugate because

the Beta prior over the stick proportions vuk is not conjugate to the Poisson likelihood. Rather,

the complete conditional for the stick proportions vuk is a truncated Gamma distribution. Letting

the variational distribution be in the prior or the complete conditional family results in coordinate

updates that do not have a closed form. Therefore, we resort to a degenerate delta distribution for

q(vuk), i.e., q(vuk) = δτuk(vuk), an alternative that is widely used in the BNP literature (Liang et al.,

2007; Bryant and Sudderth, 2012).1

Finally, we handle the infinite collection of variational factors in Eq. 7 by adapting the technique

of (Kurihara et al., 2006), in which the variational families are nested over a truncation level T . We

allow for an infinite number of components for the variational distribution, but we tie the variational

distribution after level T to the prior. Specifically, q(vuk) and q(βik) are set to the prior for k ≥ T+1.

1In variational inference, minimizing the KL divergence is equivalent to maximizing an objective function called
ELBO (evidence lower bound). When the support of the variational distribution and the true posterior do not coincide,
maximizing the ELBO is not equivalent to minimizing the KL divergence. In our case, q(vuk) is a degenerate delta
function and, therefore, its support is not the whole interval [0, 1]. The resulting algorithm that maximizes the ELBO
can be understood instead as a variational expectation maximization algorithm (Beal and Ghahramani, 2003).
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Given a truncation level T , for all users and items, initialize the user scaling parameters
{γu,0, γu,1} and the item parameters {λik,0, λik,1} to the prior with a small random offset.
Initialize the stick proportions τuk, where k ≤ T , randomly.

Repeat until convergence:

1. For each user/item pair such that yui > 0,

• Update the multinomial parameter φui using Equation 5.16.

2. For each user,

• Update the user scaling parameters γu,0 and γu,1 using Equation 5.9 and Equa-
tion 5.10.

• Update the user stick proportions τuk for all k ≤ T using Equation 5.12.

3. For each item,

• Update the item weight parameters λik,0 and λik,1 using Equation 5.13 and Equa-
tion 5.14 for all k ≤ T .

Figure 5.1: Batch variational inference for the Bayesian nonparametric Poisson factorization model.
Each iteration only needs to consider the non-zero elements of the user/item matrix.

With these considerations in mind, the forms of the variational distributions in Equation 5.7 are:

q(su) = Gamma(su|γu,0, γu,1),

q(vuk) =

 δτuk(vuk), for k ≤ T,

p(vuk), for k ≥ T + 1,

q(βik) =

 Gamma(βik|λik,0, λik,1), for k ≤ T,

p(βik), for k ≥ T + 1,

q(zui) = Mult(zui|yui,φui). (5.8)

We now describe the specific updates for each variational parameter. Figure 5.1 gives the algo-

rithm.

1. The update equations for the user scaling parameters γu,0 and γu,1 are given by

γu,0 = α+
M∑
i=1

yui, (5.9)

γu,1 = c+ E

 ∞∑
k=1

vuk

k−1∏
j=1

(1− vuj)

 M∑
i=1

βik

 , (5.10)
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where E [·] denotes expectation with respect to the distribution q. The infinite sum in the

update equation for γu,1 can be split into the sum of the terms for k ≤ T and the sum of the

terms for k ≥ T + 1. The first sum is straightforward to compute, but the second one involves

infinitely many terms. However, it results in a convergent geometric series whose value is given

by

E

 ∞∑
k=T+1

vukYuT

 k−1∏
j=T+1

(1− vuj)

 M∑
i=1

βik


= YuTD, (5.11)

where YuT =
∏T
k=1(1− τuk) and D =

∑M
i=1 E

[
βi(T+1)

]
= Ma/b.

2. The update equations for the stick proportions τuk can be obtained by taking the derivative

of the objective function with respect to τuk and setting it equal to zero. This yields the

quadratic equation Aukτ
2
uk + Bukτuk + Cuk = 0, where the coefficients Auk, Buk and Cuk are

provided in the Supplementary Material. Solving for τuk, we get

τuk =
−Buk ±

√
B2
uk − 4AukCuk

2Auk
, (5.12)

and we discard the solution that is not in [0, 1]. Note that we require α > 1 for the variational

objective to be a concave function of τuk.

3. For the item weights, the equations for the variational parameters λik,0 and λik,1 are straight-

forward due to the conditional conjugacy of the distributions involved:

λik,0 = a+
N∑
u=1

yuiφui,k, (5.13)

λik,1 = b+
N∑
u=1

E

suvuk k−1∏
j=1

(1− vuj)

 . (5.14)

4. Exploiting the Gamma-Poisson conjugacy, we know that the optimal q(zui) can be parame-

terized by an infinite-dimensional vector φui whose components take the form

φui,k ∝ exp{E [log θuk] + E [log βik]}. (5.15)
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Let Rui,k = E [log θuk] + E [log βik]. Then,

φui,k =
exp{Rui,k}∑∞
k=1 exp{Rui,k}

. (5.16)

Similarly to the derivation by (Kurihara et al., 2006), we are left with computing a normalizer

that is an infinite sum. The summation up to the truncation level T is straightforward, and

thus we focus on computing
∑∞
k=T+1 exp{Rui,k}. It is also a convergent geometric series,

which can be computed as

∞∑
k=T+1

exp{Rui,k} =
exp{Rui,T+1}

1− exp
{

E
[
log(1− vu(T+1))

]} . (5.17)

We have described our batch variational inference algorithm for the BNPPF. We emphasize that

the algorithm needs to only iterate over the nonzero elements. For a dataset with N users, M items

and r ratings, the algorithm in Figure 5.1 has a computational complexity of O(T 2N + TM + Tr)).

The dominant cost is the iteration over ratings captured by the O(Tr) term, which equals the cost

for the finite Bayesian Poisson factorization (BPF) model from Chapter 3 with a fixed number of

components K = T . This allows us, in the next section, to analyze very large user/item data sets.

5.4 An empirical study of model selection

In this section, we compare the Bayesian nonparametric Poisson factorization model (BNPPF) and

the Bayesian Poisson factorization (BPF) model from Section 3.3.1 on three different data sets. Our

goal is to demonstrate that the BNPPF variational inference algorithm can avoid model selection,

while yielding better or similar performance than the variational inference algorithm for its finite

counterpart. On large data sets, model selection involves fitting the finite model on a wide range

of the latent dimensionality K, making it computationally intractable. We also show that our

inference algorithm scales, and that it runs in roughly the same time needed for a single run of

the finite model. We do not compare to Gaussian Bayesian nonparametric matrix factorization

algorithms which require iteration over all elements of the user/item matrix. We demonstrated in

Chapter 4 that the finite algorithm outperforms Gaussian MF.

We implemented the algorithm of Figure 5.1 in 4, 000 lines of C++ code. The input to this

algorithm is the user/item matrix. The output are the parameters for the approximate posterior
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Figure 5.2: Rows 1-3: Generalization performance on the MovieLens and the Netflix data sets.
The data sets vary in size from 1 million ratings to 100 million ratings. Points indicate the finite
model predictive performance with varying dimensionality K, while the horizontal line indicates the
BNPPF model performance. The BNPPF model demonstrates better predictive log likelihood for
the two largest data sets and is at least as good as the finite models in terms of mean precision and
recall. Row 4: Predictive log likelihood as a function of run-time for all the considered models. The
BNPPF model is as fast as a single run of the finite model with K = T .
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distribution over the user and item weights.2

Data sets

We study the predictive performance and runtime of the BNPPF model on these data sets:

• The MovieLens data set (Herlocker et al., 1999) contains 1 million (MovieLens1M) ratings

of movies provided by users, with 6, 040 users and 3, 980 movies. The ratings range from 0 (no

rating) to 5 stars.

• The MovieLens dataset with 10 million (MovieLens10M) ratings of movies, 71, 567 users and

10, 681 movies. Ratings are made on a 5-star scale, with half-star increments. We multiply

times 2 to get a scale from 0 to 10 “half stars”.

• The Netflix dataset (Koren et al., 2009), which is similar to MovieLens1M dataset but signif-

icantly larger. It contains 100 million ratings, with 480, 000 users and 17, 770 movies. Unlike

MovieLens, the Netflix data is highly skewed: some users rate more than 10, 000 movies, while

others rate less than 5.

Metrics

As figures of merit, we use the quantities below, measured over a held-out test set which is not

observed during training. For each dataset, the test set consists of randomly selected ratings which

make up 20% of the total number of ratings. This test set consists of items that the users have

consumed. During training, these test set observations are treated as zeros.

• Predictive log likelihood (or mean held-out log likelihood). We approximate the probabil-

ity that a user consumed an item using the variational approximations to the posterior ex-

pectations of the hidden variables. For the BNPPF model, we compute the expectation

E [
∑∞
k=1 θukβik] exactly using a convergent geometric series as in the updates in Equation 5.11.

We use these expectations to compute the average predictive log likelihood of the held-out rat-

ings.

• Mean precision and recall. Once the posterior is fit, we use the BNPPF to recommend items

to users by predicting which of the unconsumed items each user will like. We rank each user’s

2Our software is available at https://github.com/premgopalan/bnprec.

67



unconsumed items by their posterior expected Poisson parameters,

scoreui = E

[ ∞∑
k=1

θukβik

]
, (5.18)

where E [·] denotes expectation with respect to the distribution q. During testing, we generate

the top M recommendations for each user as those items with the highest predictive score under

each method. For each user, we compute the precision-at-M , which measures the fraction of

relevant items in the user’s top-M recommendations. Likewise, we compute recall-at-M , which

is the fraction of items in the test set present in the top M recommendations. We set M to 100

in our experiments. We computed the mean precision and mean recall over 10, 000 randomly

chosen users (for MovieLens1M, we compute the mean over all users).

Hyperparameter selection

In order to set the hyperparameters, we first notice that both the finite and infinite models share

the same prior on the item weights and, therefore, we use the same hyperparameter values for a fair

comparison (specifically, we set a = b = 0.3 for both models). Due to the stick breaking construction,

the prior on the user weights differs between the finite and the infinite models. For the BNPPF

model, we set the user scaling hyperparameter c = 1 and α = 1.1 (recall from Section 5.3 that we

require α > 1). For the finite model, we explored the values in the set {0.1, 1, 10} for both the shape

and scale in Equation 5.2, and choose unit shape and unit scale because these values provided the

best performance on the test set in terms of predictive log likelihood (see Supplementary Material

for a comparison). We use these values in all our experiments.

Assessing convergence

We terminate the training process when the algorithm converges. We measure convergence by

computing the prediction accuracy on a validation set, composed of 1% randomly selected ratings,

which are treated as zeros during training and are not considered to measure performance. The

algorithm stops either when the change in log likelihood on this validation set is less than 0.0001%,

or if the log likelihood decreases for consecutive iterations.

Results

In Figure 5.2, we show the results for the two MovieLens data sets with 1 million and 10 million

ratings, and the Netflix dataset with 100 million ratings. The top row corresponds to mean held-out
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log likelihood, while the second and third rows correspond, respectively, to mean precision and recall.

We set the truncation level for the BNPPF to T = 200 across all data sets. As seen in Figure 5.2, the

BNPPF model has better held-out log likelihood with a fixed truncation level than the corresponding

finite models, as we vary K from 10 to 200 (with the exception of the small MovieLens1M dataset).

Further, the BNPPF model performs at least as well as the finite models in the mean precision and

mean recall metrics.

For the BNPPF model, we computed the effective dimensionality K∗ of the latent weights. In

order to identify K∗, for each user, we identify the top latent components k ≤ T , that contribute to at

least 95% of the user’s expected budget under the approximate posterior, i.e., E
[∑∞

k=1 θuk
∑M
i=1 βuk

]
.

We rank the latent components by their contribution to the expected budget. Across all users, it

gives us the effective dimensionality of the latent weights. For the MovieLens1M dataset, we found

K∗ = 92, and for MovieLens10M and Netflix data sets, we found that all latent components were

used with T = 200.

The last row of Figure 5.2 shows that the BNPPF model runs as fast as the inference algorithm

for the finite model with K set to the truncation level of 200. As discussed in Section 5.3, the

dominant computational cost is the same for these algorithms.

5.5 Limitations and conclusions

In this chapter, we developed a Bayesian nonparametric Poisson factorization model for recommen-

dation systems. In our BNP variant, the number of latent components is theoretically unbounded

and effectively estimated when computing a posterior with observed user behavior data. To ap-

proximate the posterior, we developed an efficient variational inference algorithm. It adapts the

dimensionality of the latent components to the data, only requires iteration over the user/item pairs

that have been rated, and has computational complexity on the same order as for the parametric

model (the BPF) with fixed dimensionality. We studied our model and algorithm on large real-

world data sets of user-movie preferences. Our model eases the computational burden of searching

for the number of latent components and gives better predictive performance than its parametric

counterpart: the BPF from Chapter 3.

There are two limitations. First, as discussed in Section 5.3, the choice of degenerate variational

distributions constrains α to be greater than 1. We focussed on movie data sets in this work.

With other types of data, there may be increased sparsity in user preferences or item attributes.

One example is that of users reading scientific articles, where each user is likely to be interested
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in articles belonging to a very small number of research areas. This may require a prior setting

of α ≤ 1. Second, the use of point estimates for the stick proportions may result in overfitting.

Both limitations can be overcome by placing a non-degenerate variational distribution over the stick

proportions, which may come at an increased computational cost due to numerical optimization.
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Part II

Networks

71



Chapter 6

Assortative mixed-membership

stochastic blockmodels

Network analysis is vital to understanding and predicting interactions between network entities (For-

tunato, 2010; Liben-Nowell and Kleinberg, 2003; Newman, 2002). Examples of data commonly

represented as networks include gene regulation networks (Trevio et al., 2012), communication net-

works (Aral and Walker, 2012), co-authorship networks (Chen and Redner, 2010) and social net-

works (Newman and Girvan, 2004).

In this chapter, we consider a central problem in network analysis: discovering overlapping

communities of connected nodes and popular nodes in the network, and using this latent structure

to predict unobserved links (Liben-Nowell and Kleinberg, 2003). We take a Bayesian approach and

present two probabilistic models of undirected networks. We focus on undirected networks revealing

the modeling and algorithmic issues that arise even with the simpler assumption. The models we

present in this chapter can be extended to directed networks.

Modeling assortativity through latent communities

In Section 6.1.1, we posit a model of undirected networks (Goldenberg et al., 2010) where each

node can belong to multiple communities. We use a subclass of the mixed-membership stochastic

blockmodel (MMSB) (Airoldi et al., 2008) that allows nodes to belong to multiple communities.

The assumption of mixed or multiple memberships for nodes is an important one. Classical

community detection algorithms assume that each node belongs to a single community (Fortunato,

2010; Newman and Girvan, 2004; Nowicki and Snijders, 2001; Wiggins and Hofman, 2008; Clauset
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et al., 2004). In real-world networks, each node will likely belong to multiple communities and its

connections will reflect these multiple memberships (Derényi et al., 2005; Ahn et al., 2010). For ex-

ample, in a large social network, a member may be connected to co-workers, friends from school, and

neighbors. We need algorithms that discover overlapping communities to capture the heterogeneity

of each node’s connections. We will show in Chapter 7 that our MMSB based community model

provides better fits to real network data than single community models (Nowicki and Snijders, 2001;

Wang and Wong, 1987).

We use a sub-class of the MMSB model that assumes assortativity—a property of nodes to

connect to nodes that are similar in some way. In particular, we assume that nodes connect when

they belong to similar latent communities. In this thesis, We refer to this sub-class as “MMSB”. As an

example, consider protein-protein interactions (Airoldi et al., 2008), which can be analyzed to reveal

the functional roles of proteins. The MMSB model encodes the assumption that two proteins interact

because they belong to similar groups, either through co-location or through cellular operations.

Capturing node popularity

The assortativity assumption alone may not be adequate in other contexts. For example, on the

Internet a user’s web page may link to another user due to a similar interest in skydiving. The

same user’s page may also link to popular web pages such as Google’s search page. The competing

explanation to assortativity is that nodes preferentially connect to popular nodes—the basis for

preferential attachment (Jeong et al., 2003). The resulting degree distributions from a preferential

attachment process are known to satisfy empirically observed properties such as power laws (Pa-

padopoulos et al., 2012).

In Section 6.1.2 we present the assortative MMSB with node popularities (AMP). It captures the

effect of both popularity and assortativity in forming links. To achieve this, we extend the assortative

MMSB to capture the popularity of nodes in the network. Recent theoretical work (Papadopoulos

et al., 2012) has argued that optimizing the trade-offs between popularity and similarity best explains

the evolution of many real networks.

There have been several research efforts to incorporate popularity into network models. Karrer

et al. (Karrer and Newman, 2011) proposed the degree-corrected blockmodel that extends the classic

stochastic blockmodels (Nowicki and Snijders, 2001) to incorporate node popularities. Krivitsky et

al. (Krivitsky et al., 2009) proposed the latent cluster random effects model that extends the latent

space model (Hoff et al., 2002) to include node popularities. Both models capture node similarity

and popularity, but assume that unobserved similarity arises from each node participating in a

73



single community. Finally, the Poisson community model (Ball et al., 2011) is a probabilistic model

of overlapping communities that implicitly captures degree-corrected mixed-memberships. However,

the standard EM inference under this model drives many of the per-node community parameters to

zero, which makes it ineffective for prediction or model metrics based on prediction (e.g., to select

the number of communities).

In Section 6.2, we discuss the ability of the AMP to recover overlapping communities in the

presence of skewed degree distributions.

Scalable approximate posterior inference

In Section 6.3, we analyze a network under the MMSB and the AMP by computing the posterior,

the conditional distribution of the hidden community structure given the observed network.

The standard coordinate ascent algorithm for the MMSB (Airoldi et al., 2008) iterates between

computing about every pair of nodes and updating the inferred community structure. This algorithm

is inefficient because it requires repeated computation about all pairs of nodes, which quickly becomes

intractable for large networks. We develop efficient stochastic variational inference algorithms (see

Chapter 2) for the MMSB and the AMP that iteratively subsamples the network and updates an

estimate of the hidden communities. We explore several methods of subsampling.

While the MMSB is conditionally conjugate, the AMP is a nonconjugate model. We develop a

scalable algorithm for posterior inference for the AMP, based on a nonconjugate variant of stochastic

variational inference.

One of the main advantages of taking a probabilistic approach to network analysis is that the

models and algorithms are reusable in more complex settings. Our strategy for analyzing networks

easily extends to other probabilistic models, such as those taking into account node covariates. The

approach we develop here opens the door to using sophisticated statistical models to analyze massive

networks.

In Chapter 7, we will demonstrate the capabilities of our models on large, real networks and

report on a study of large simulated networks where the community structure is known.
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An Alternative To Compactification [26]
(estimated bridgeness = 1276)
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Figure 6.1: The discovered community structure in a subgraph of the arXiv citation net-
work (Ginsparg, 2011). The figure shows the top four link communities that include citations to
“An Alternative to Compactification” (Randall and Sundrum, 1999), an article that bridges several
communities. We visualize the links between the articles, and show some highly-cited titles. Each
community is labeled with its dominant subject area; nodes are sized by their bridgeness (Nepusz
et al., 2008), an inferred measure of their impact on multiple communities. This is taken from an
analysis of the full 575,000 node network.

6.1 Finite network models

6.1.1 Modeling assortativity

In this section, we describe the assortative mixed-membership stochastic blockmodel (MMSB). The

model assumes there are K communities and that each node a is associated with a vector of com-

munity memberships πa. This vector is a distribution over the communities—it is positive and sums

to one. For example, consider a social network and a member for whom half of her friends are from

work and the other half are from her neighborhood. For this node, πa would place half its mass on

the work community and the other half on the neighborhood community.

To generate a network, the model considers each pair of nodes. For each pair {a, b}, it chooses

a community indicator za→b from the ath node’s community memberships πa and then chooses

a community indicator zb←a from πb. (Each indicator points to one of the K communities that

its corresponding node is a member of.) If these indicators point to the same community then it

connects nodes a and b with high probability; otherwise they are likely to be unconnected.

These assumptions capture that the connections between nodes can be explained by their mem-
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berships in multiple communities, even if we do not know where those communities lie. To see this

we consider a single pair of nodes (a, b) and compute the probability that the model connects them,

conditional on their community memberships. This computation requires that we marginalize out

the value of the latent indicators za→b and za←b.

Let βk be the probability that two nodes are connected given that their community indicators

are both equal to k. For now, assume that if the indicators point to different communities then the

two nodes have zero probability of being connected. (In the full model, they will also have a small

probability of being connected when the indicators are different, but this simplified version gives the

intuition.) The conditional probability of a connection is

p(yab = 1 |πa, πb) =
∑K
k=1 πakπbkβk. (6.1)

The first two terms represent the probability that both nodes draw an indicator for the kth com-

munity from their memberships; the last term represents the conditional probability that they are

connected given that they both drew that indicator. (The parameter βk relates to how densely

connected the kth community is.) The probability that they are connected will be high when πa and

πb share high weight for at least one community, such as if the social network members attended the

same school; it will be low if there is no overlap in their communities. The summation marginalizes

out the communities, capturing that the model is indifferent to which communities the nodes have

in common. The model captures assortativity—nodes with similar memberships will more likely link

to each other (Newman, 2002; Hoff et al., 2002).

We described the probability that governs a single connection between a pair of nodes. For the

full network, the model assumes the following generative process:

1. For each community k, draw community strength βk ∼ Beta(η).

2. For each node a, draw community memberships πa ∼ Dirichlet(α).

3. For each pair of nodes a and b, where a < b:

(a) Draw community indicator za→b ∼ πa

(b) Draw community indicator za←b ∼ πb

(c) Draw the connection between them from

p(yab = 1 | za→b, za←b) =

 βza→b if za→b = za←b

ε if za→b 6= za←b.
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Figure 6.2: The assortative mixed-membership stochastic blockmodel (MMSB).

This defines a joint probability distribution over the N per-node community memberships π, the

per-pair community indicators z, and the observed network y (both links and non-links).1 The

graphical model for the assortative MMSB is shown in Figure 6.2.

Given an observed network, the model defines a posterior distribution—the conditional distribu-

tion of the hidden community structure—that gives a decomposition of the nodes into K overlapping

communities. The posterior distribution is

p(π, z |y) = p(π, z,y)/p(y). (6.2)

In particular, the posterior will place higher probability on configurations of the community mem-

berships that describe densely connected communities. With this posterior, we can investigate the

posterior expectation of each node’s memberships; and for each connected node pair, we can examine

the posterior expectation of the community assignments to hypothesize why they are connected. (In

this sense, our algorithm discovers link communities (Ahn et al., 2010)).

As for many interesting Bayesian models, however, this posterior is intractable to compute (see

Chapter 2). Further, existing approximation methods like MCMC (Robert and Casella, 2004) or

variational inference (Wainwright and Jordan, 2008) are inefficient for real-world sized networks

because they must iteratively consider all pairs of nodes (Nowicki and Snijders, 2001; Airoldi et al.,

2008). In Section 6.3, we develop an efficient stochastic variational inference algorithm for approx-

1We will use this as a model of an undirected graph, but it easily generalizes to the directed case.
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imating the posterior with massive networks. Our algorithm will iterate between subsampling the

network, analyzing the subsample, and updating the estimated community structure.

Finally, note that the model in Ball et al. (2011) is an interesting example of a probabilistic model

for finding overlapping communities which, unlike others, accommodates an estimation algorithm

that only involves the observed links between nodes. This approach is more efficient than other

probabilistic models, especially on sparse networks.

Overlapping communities in the arXiv network

Our visualization in Figure 7.3 illustrates the MMSB posterior superimposed on a portion of the

observed network. This is a subgraph of a network of 575,000 scientific articles on the arXiv preprint

server (Ginsparg, 2011); each link denotes that an article cites or is cited by another article. Our al-

gorithm analyzed the complete graph, discovering overlapping communities among the citations. It

assigned multiple communities to each article and a single community to each link; we have colored

the links accordingly. Many articles mostly link to other articles within their main community. How-

ever, the article “An Alternative to Compactification” (Randall and Sundrum, 1999) is different—it

links to multiple communities, which suggests that it relates to multiple fields. Identifying nodes in

large networks that bridge multiple communities is one way that our algorithm gives new insights

into the structure of the network.

6.1.2 Modeling assortativity and preferential attachment

The MMSB model of Section 6.1.1 treats the links or non-links yab of a network as arising from

interactions between nodes a and b. The probability that two nodes are linked is governed by the

similarity of their community memberships and the strength of their shared communities. In the

AMP, we capture the effect of both node popularity and assortativity in forming links.

In the AMP, we introduce latent variables θa to capture the popularity of each node a, i.e.,

its propensity to attract links independent of its community memberships. Under the AMP, the

similarities between the nodes’ community memberships and their respective popularities compete

to explain the observations. The random effects on link generation is captured using a logit model

logit (p(yab = 1|za→b, za←b,θ,β)) ≡ θa + θb +
∑K
k=1 δ

k
abβk, (6.3)

where we define indicators δkab = za→b,kza←b,k. The indicator δkab is one if both nodes assume the

same community k.
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Equation 6.3 is a log-linear model (McCullagh and Nelder, 1989). In log-linear models, the

random component, i.e., the expected probability of a link, has a multiplicative dependency on the

systematic components, i.e., the covariates. This model is also similar in the spirit of the random

effects model (Hoff et al., 2002)—the node-specific effect θa captures the popularity of individual

nodes while the
∑K
k=1 δ

k
abβk term captures the interactions through latent communities. We can

extend the predictor in Equation 6.3 to include observed node covariates, if any. We now define a

hierarchical generative process for the observed link or non-link under the AMP:

1. Draw K community strengths βk ∼ N (µ0, σ
2
0).

2. For each node a:

(a) Draw community memberships πa ∼ Dirichlet(α)

(b) Draw popularity θa ∼ N (0, σ2
1).

3. For each pair of nodes a and b:

(a) Draw interaction indicator za→b ∼ πa

(b) Draw interaction indicator za←b ∼ πb

(c) Draw the probability of a link yab|za→b, za←b, θ, β ∼ logit−1(za→b, za←b, θ, β).

To simplify assumptions we can replace the vector of K latent community strengths β with a single

community strength β. In Chapter 7, we demonstrate that this simpler model gives good predictive

performance on small networks.

We analyze data with the AMP via the posterior distribution over the latent variables

p(π1:N , θ1:N , z, β1:K |y, α, µ0, σ
2
0 , σ

2
1), where θ1:N represents the node popularities, and the posterior

over π1:N represents the community memberships of the nodes. With an estimate of this latent

structure, we can characterize the network in many useful ways.

Figure 6.3 gives an example. This is a subgraph of the netscience collaboration network (Newman,

2006) with N = 1460 nodes. We analyzed this network with K = 100 communities, using the

stochastic inference algorithm for the AMP from Section 6.4. This results in posterior estimates of the

community memberships and popularities for each node and posterior estimates of the community

assignments for each link. With these estimates, we visualized the discovered community structure

and the popular authors.

In general, with an estimate of this latent structure, we can study individual links, characterizing

the extent to which they occur due to similarity between nodes and the extent to which they are an

artifact of the popularity of the nodes.

79



BARABASI, A

JEONG, H

NEWMAN, M

SOLE, R

PASTORSATORRAS, R

HOLME, P

NETSCIENCE COLLABORATION NETWORK POLITICAL BLOG NETWORK
AMP MMSBAMP

Figure 6.3: We visualize the discovered community structure and node popularities in a giant component of the
netscience collaboration network (Newman, 2006) (Left). Each link denotes a collaboration between two authors,
colored by the posterior estimate of its community assignment. Each author node is sized by its estimated posterior
popularity and colored by its dominant research community. The network is visualized using the Fructerman-Reingold
algorithm (Fruchterman and Reingold, 1991). Following Karrer and Newman (2011), we show an example where
incorporating node popularities helps in accurately identifying communities (Right). The division of the political blog
network (Adamic and Glance, 2005) discovered by the AMP corresponds closely to the liberal and conservative blogs
identified in Adamic and Glance (2005); the MMSB has difficulty in delineating these groups.

Ratio of max. degree to avg. degree

M
ea

n 
pr

ec
is

io
n

0.020

0.025

0.030

0.035

mu 0

2 4 6 8

0.018
0.020
0.022
0.024
0.026
0.028

mu 0.2

2 4 6 8

0.016
0.018
0.020
0.022
0.024
0.026
0.028

mu 0.4

2 4 6 8

amp

mmsb

Figure 6.4: The AMP predicts significantly better than the MMSB on 12 LFR benchmark networks (Lancichinetti
and Fortunato, 2009). Each plot shows 4 networks with increasing right-skewness in degree distribution. µ is the
fraction of noisy links between dissimilar nodes—nodes that share no communities. The precision is computed at 50
recommendations for each node, and is averaged over all nodes in the network.

6.2 Statistical properties

In this section, we highlight the ability of the AMP to recover overlapping communities in the

presence of skewed degree distributions.

Since the AMP is a “degree-corrected” mixed-membership stochastic blockmodel (Karrer and

Newman, 2011), the model can better fit networks with skewed degree distributions. The skew-

ness in degree distributions causes the community strength parameters of MMSB to overestimate

or underestimate the linking patterns within communities. The per-node popularities in the AMP

can capture the heterogeneity in node degrees, while learning the corrected community strengths.

We demonstrate this using synthetic networks. We generated 12 LFR benchmark networks (Lan-
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cichinetti and Fortunato, 2009), each with 1000 nodes. Roughly 50% of the nodes were assigned

to 4 overlapping communities, and the other 50% were assigned to single communities. We set a

community size range of [200, 500] and a mean node degree of 10 with power-law exponent set to 2.0.

Figure 6.4 shows that the MMSB performs poorly as the skewness is increased, while the AMP per-

forms significantly better in the presence of both noisy links and right-skewness, both characteristics

of real networks.

By accounting for node popularity, the AMP model can recover the underlying communities

more accurately. Figure 6.3 shows that the AMP model delineates the division of the political blog

network (Adamic and Glance, 2005) better than the MMSB.

6.3 Stochastic variational inference for the conjugate MMSB

In this section, we present the SVI algorithm for the MMSB, and describe subsampling strategies.

The MMSB model of Section 6.1.1 is a conjugate model, and the terms in its variational objective

are tractable. In contrast, the AMP model is a nonconjugate model (see Chapter 2); we will develop

a novel nonconjugate variant of SVI algorithm for the AMP in the next section.

6.3.1 Overview

The variational objective for the MMSB contains a sum of terms for each pair of nodes (see Equa-

tion 6.6). The stochastic algorithm that we develop iteratively subsamples a subset of pairs and

updates its current estimate of the community structure by following a scaled gradient computed

only on that subset. (By “community structure” we mean the N ×K parameters γ, which describe

the posterior distribution of each node’s community memberships π.)

What is important about our algorithm is that it does not require analyzing all N2 pairs at

each iteration and that it is a valid stochastic optimization algorithm of the variational objective.

It scales to massive networks.

We emphasize that our algorithm does not prune the network to make computation manage-

able (Chen and Redner, 2010). Rather, it repeatedly subsamples different subgraphs at each iter-

ation. Further, our algorithm does not need to have the entire network available in order to make

progress on estimating its communities. It gives a natural and principled approach for interleaving

data collection on a network and estimation of its hidden community structure.

We now derive and present two algorithms:
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• Algorithm A subsamples both links and non-links of a network, providing an algorithm that

is flexible in terms of how we sample the subset of node pairs. We can analyze all the pairs

associated with a sampled node; or we can use a subsampling technique that makes data

collection easier, for example if the network is stored in a distributed way. Our approach here

can be applied to sophisticated statistical models, and opens the door to analyzing massive

networks with them.

• Algorithm B subsamples only the links of a network; therefore, it’s faster and efficient than

algorithm A. This algorithm is specific to the assortative MMSB; it exploits the assumption

that when nodes assume different communities during an interaction there is a negligible chance

of a link forming between them.

Naively applied, biased sampling strategies will lead to biases in posterior inference. In the

following, we show how to correct for these biases and how using these strategies can lead to improved

convergence speeds.

6.3.2 Algorithm A: subsample both links and non-links

Recall from Chapter 2 that in variational inference we define a family of distributions over the hidden

variables q(β,π, z) and find the member of that family that is closest to the true posterior. The

mean-field variational family for the MMSB, with Beta priors placed over β, is

q(β,π, z) =
∏K
k=1 q(βk |λk)

∏N
n=1 q(πn | γn)

∏
i<j q(zi→j |φi→j) q(zi←j |φi←j) . (6.4)

The variational distributions are

q(zi→j = k) = φi←j,k; q(πn) = Dirichlet(πn; γn); q(βk) = Beta(βk;λk). (6.5)

Recall from Chapter 2 that minimizing the KL divergence between q and the true posterior is

equivalent to optimizing an evidence lower bound (ELBO) L, a bound on the log likelihood of the
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observations. The ELBO is

L =
∑
k E [log p(βk|ηk)]−∑k E [log q(βk|λk)]

+
∑
n E [log p(πn|α)]−∑n E [log q(πn|γn)]

+
∑
a,b E [log p(za→b|πa)] + E [log p(za←b|πb)]

−∑a,b E [log q(za→b|φa→b)]− E [log q(za←b|φa←b)]

+
∑
a,b E [log p(yab|za→b, za←b,β)] . (6.6)

The first line in Eq. 6.6 contains summations over the global terms: communities and nodes. They

relate to the global variables, which are the community strengths λ and per-node memberships γ.

The remaining lines contain summations over all node pairs—the local terms. They depend on both

the global and local variables, the latter being the indicator parameters φ.

In stochastic variational inference, we form noisy gradients by subsampling the network. This

leads to a scalable algorithm because it avoids the expensive all-pairs sums in the ELBO. Existing

SVI methods require the data be sampled uniformly to form noisy gradients (Hoffman et al., 2013).

We now develop an SVI algorithm that allows for non-uniform samples of links and non-links at

each iteration. We then present SVI with link subsampling, an algorithm that subsamples only the

links of a network.

Recall from Chapter 2 that stochastic variational inference iteratively updates the local and

global parameters. At each iteration, it first subsamples the network. It then computes the optimal

local parameters of the subset—the (φi→j , φi←j) for each sampled node pair (i, j)—given the current

settings of the global parameters γ and λ. Finally, it updates the global parameters using a noisy

natural gradient computed from the subsampled data and the optimized local parameters. The first

phase is the local step; the second phase is the global step (Hoffman et al., 2013).

The pseudocode of algorithm A is in Figure 6.5. The subsampling of the network in each iteration

provides a way to plug in a variety of network sampling algorithms into the estimation procedure.

However, to maintain a correct stochastic optimization algorithm of the variational objective, the

subsampling method must be valid. That is, the natural gradients estimated from the subsample

must be unbiased estimates of the true gradients.
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1. Initialize γ = (γn)Nn=1, λ = (λk)Kk=1.
2. Subsample a set S of node pairs.
3. Local step.

• For each pair (i, j) ∈ S:

– Compute the optimal indicator parameters φ̂i→j and φ̂i←j .

4. Global step.

• For each node a:

– Compute the community membership natural gradients ∂γta and update γa.

• For each community k:

– Compute the community strength natural gradients ∂λtk and update λk.

5. Repeat.

Figure 6.5: Algorithm A: an SVI algorithm for the MMSB that subsamples both links and non-links.

Computing stochastic gradients for algorithm A

The global step updates the global community strengths λ and community memberships γ with a

stochastic gradient of the ELBO in Eq. 6.6. The ELBO contains summations over all O(N2) node

pairs.

Pair-based sampling. Consider drawing a node pair (a, b) at random from a distribution g(a, b)

over the M = N(N − 1)/2 node pairs. We can rewrite the ELBO as a random function of the

variational parameters that includes the global terms and the local terms associated only with (a, b).

The expectation of this random function is equal in objective to Eq. 6.6.

For example, the fifth term in Eq. 6.6 is rewritten as

∑
a,b E [log p(yab|za→b, za←b,β)] = E

[
1

g(a,b)E [log p(yab|za→b, za←b,β)]
]
. (6.7)

Evaluating the rewritten Equation 6.6 for a node pair sampled from g gives a noisy but unbiased

estimate of the ELBO. Following Hoffman et al. (2013), the stochastic natural gradients computed

from a sample pair (a, b) are

∂γta,k =αk + 1
g(a,b)φa→b,k − γt−1a,k (6.8)

∂λtk,i =ηk,i + 1
g(a,b)φa→b,k · φa←b,k · yab,q − λt−1k,i , (6.9)

where yab,0 = yab, and yab,1 = 1− yab. In practice, we sample a “mini-batch” S of pairs per update,
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to reduce noise.

The intuition behind the above update is the following. When a single pair (a, b) is sampled, we

find a noisy natural gradient by computing the community memberships γ that would be optimal

(given indicator parameters φ) if our entire network were a multigraph containing the interaction

yab repeated 1/g(a, b) times.

Once the noisy gradient is computed, the global step follows it with an appropriate step-size,

γ ← γ + ρt∂γ
t; λ← λ+ ρt∂λ

t. (6.10)

Similarly to the other SVI algorithms that we describe in this thesis, we require that
∑
t ρ

2
t <∞ and∑

t ρt =∞ for convergence to a local optimum (Robbins and Monro, 1951). We set ρt , (τ0 + t)−κ,

where κ ∈ (0.5, 1] is the learning rate and τ0 ≥ 0 downweights early iterations.

Set-based sampling. Our algorithm has assumed that the subset of node pairs S are sampled

independently. We can relax this assumption by defining a distribution over predefined sets of pairs.

These sets can be defined using information about the pairs, such as network topology, which lets

us take advantage of more sophisticated sampling strategies. For example, we can define a set for

each node that contains the node’s adjacent links or non-links. At each iteration, we sample one of

these sets at random.

We set two constraints to ensure that set-based sampling results in unbiased gradients. First,

the union of the sets s must be the total set of all node pairs, U : U = ∪isi. Second, every pair (a, b)

must occur in some constant number of sets c ≥ 1. With these conditions satisfied, we can again

rewrite Equation 6.6 as the sum over its global terms and an expectation over the local terms. Let

h(t) be a distribution over the sets. For example, the fifth term in Equation 6.6 can be written as

∑
a,bE [log p(yab|za→b, za←b,β)] =

E
[
1
c

1
h(t)

∑
(a,b)∈st E [log p(yab|za→b, za←b,β)]

]
. (6.11)

Under set-based sampling, the stochastic gradients of the ELBO are

∂γta,k =αk + 1
c

1
h(t)

∑
(a,b)∈st φa→b,k − γ

t−1
a,k (6.12)

∂λtk,i =ηk,i + 1
c

1
h(t)

∑
(a,b)∈st φa→b,k · φa←b,k · yab,q − λ

t−1
k,i , (6.13)

where yab,0 = yab, and yab,1 = 1 − yab. The updates are the same as in Equation 6.10. We now
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describe the steps of algorithm A in Figure 6.5 in detail.

A detailed description of Algorithm A

Initializing variational parameters. The algorithm of Figure 6.5 requires initial settings of the

global variational parameters γ and λ. There are many ways to initialize these parameters. We

set the community strength parameters λ from “false observations” by dividing the links and nodes

equally among the communities and adding a small random offset drawn from a Gamma distribution

with mean 1. We initialize the community memberships γ randomly.

The local step. The local step optimizes the indicators parameters φ with respect to a subsample

of the network. Recall that there is a indicator parameter for each node pair—φa→b and φa←b—

representing the posterior approximation of which communities are active in determining whether

there is a link. We optimize these parameters in parallel. The update for φa→b given ya,b is

φta→b,k|y = 0 ∝ exp{E [log πa,k] + φt−1a←b,kE [log(1− βk)] + (1− φt−1a←b,k) log(1− ε)}

φta→b,k|y = 1 ∝ exp{E [log πa,k] + φt−1a←b,kE [log βk] + (1− φt−1a←b,k) log ε}. (6.14)

This is natural gradient ascent with a step-size of one.

Assessing convergence. We measure convergence of Algorithm 1 by computing the link pre-

diction accuracy on a held-out set of node pairs. In our experiments, we set aside two validation

sets and a test set, each having h% of the network links and an equal number of non-links. In the

experiments on real networks, we set h = 5%. The links and non-links were chosen from the network

uniformly at random. We use a separate validation set to choose learning parameters and study the

sensitivity to the number of communities K.

A “50%-links” validation set poorly represents the severe class imbalance between links and non-

links in real-world networks. For example, links form only 0.0039% of the node pairs in the arXiv

network listed in Table 7.2. However, a validation set matching the network sparsity would have

too few links. We can compute the validation log likelihood at network sparsity by reweighting

the average link and non-link log likelihood (estimated from the 50%- links validation set) by their

respective proportions in the network and adding them. We used the validation log likelihood at

network sparsity for the SVI algorithm with informative set sampling. Since link sampling focusses

on the links of the network, we used the validation log likelihood on the “50%-links” to determine
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convergence.

We stop training on a network (the training set) when the average change in expected validation

log likelihood at network sparsity is less than 0.001%.

Under the MMSB, we approximate the predictive likelihood using point estimates of the posterior

community memberships of nodes π̂ and the posterior community strengths β̂; these point estimates

are computed as the mean of the variational posterior parameters γ and λ, respectively. The

predictive likelihood is

p(yab|yobs) ≈ p(yab|π̂a, π̂b, β̂) (6.15)

=
∑
za→b

∑
za←b

p(yab|za→b, za←b, β̂)p(za→b|π̂a)p(za←b|π̂b).

We refer the reader to Gopalan and Blei (2013) for convergence results on the arXiv network and

the Google network. We used perplexity at network sparsity. Perplexity is defined using the average

predictive log likelihood of a held-out set of node pairs H,

perplexity(ytest) = exp

{
−
∑
a,b∈H log p(yab|yobs)

|H|

}
. (6.16)

Perplexity is a measure of model fitness (lower numbers are better).

Hyperparameters and learning parameters. SVI requires setting hyperparameters of the

model and learning rates of the algorithm. We set the node membership forgetting rate (κ) to

0.5 and the community strength forgetting rate to 0.9. We set the offset τ0 = 1024, but found that

τ0 = 1 works better on some networks. We set Dirichlet hyperparameters α = 1
10·K or α = 1

K , where

K is the number of communities. Note that in the link sampling algorithm, we set the learning rate

to one. On real networks, the prior on the community strengths was set using a uniform assignment

of links and nodes to communities. On synthetic networks, we set the prior on the community

strengths to Beta(1, 1).

Computational complexity. The local step of the SVI algorithm can be computed in O(sK)

operations, where s is the number of node pairs sampled in each iteration and K is the number of

communities. Due to the assortativity assumptions in our model, the local step is not quadratic in K

as is typical for the MMSB (Airoldi et al., 2008). The time for the global step of the SVI algorithm

is O(NK) operations per iteration, where N is the number of nodes. In the SVI algorithm with link

sampling, with the mini-batch set to all links, the computational complexity is O(MK) operations
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per iteration, where M is the number of links. The SVI algorithm with link sampling does not

require subsampling non-links and converges much faster than other subsampling methods.

Setting the number of communities. Probabilistic models of community detection require

setting the number of communities, and in typical applications we will want to set this number based

on the data. In our empirical study, we addressed this model selection problem in two ways. One was

by evaluating the predictive performance of the model for varying numbers of communities. We held

out a portion of the network yheld-out and calculated p(yheld-out |yobserved); a better model will assign

higher probability to the held out set. This reflects a predictive approach to model selection, and has

good statistical properties (Geisser and Eddy, 1979). (We note that non-probabilistic methods for

detecting overlapping communities usually cannot provide a mechanism for predicting unseen pieces

of the network.) A second way was to set the number of communities as part of the initialization

procedure of the variational distribution. This procedure is described in Gopalan and Blei (2013).

Subsampling strategies for algorithm A

Algorithm A is flexible about how the subset of pairs is sampled, as long as the expectation of the

stochastic gradient is equal to the true gradient. We can choose the distribution over pairs to sample

from independently or choose the distribution over sets.

• Random pair sampling. The simplest method is to sample node pairs uniformly at random.

This method is an instance of independent pair sampling, with g(a, b) (used in Eq. 6.7) equal

to 1
N(N−1)/2 .

• Random node sampling. This method focuses on local neighborhoods of the network. A

set consists of all the pairs that involve one of the N nodes. At each iteration, we sample a set

uniformly at random from the N sets, so h(t) = 1/N . Since each pair involves two nodes, each

link or non-link appears in two sets and so c = 2. Following Equation 6.12 and Equation 6.13,

we compute the stochastic gradients from a sampled node a as

∂γta,k =αk + N
2

∑
(a,b) φa→b,k − γt−1a,k (6.17)

∂λtk,i =ηk,i + N
2

∑
(a,b) φa→b,k · φa←b,k · yab,q − λt−1k,i , (6.18)

where yab,0 = yab, and yab,1 = 1 − yab. In practice, we sample a “mini-batch” of nodes per

update, to reduce noise.
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• Informative set sampling. The idea behind this method is to sample a set of pairs around

each node with a bias towards pairs that help estimation. This is a type of set-based sampling.

For each node, we define an “informative set” consisting of all its links and a small number

of non-links. For each node, we also define m “non-informative sets” that partition its non-

links. Since the number of non-links associated with each node is large, dividing them into

many sets allows the computation in each iteration to be fast. At each iteration, we select a

node uniformly at random and choose the informative set with high probability by flipping

a ξ-biased coin. (We pick ξ << 1.) Otherwise, with low probability we select one of the m

non-informative sets. To compute Eq. 6.11 we note that c = 2 and the distribution over sets is

h(t) ∝


(1− ξ) 1

N if the set is informative

ξ 1
Nm if the set is non-informative.

(6.19)

6.3.3 Algorithm B: subsample only links

Many real networks are sparse and only a small fraction of their node pairs are links. (See Table 7.2.)

As the number of nodes increases, subsampling non-links becomes increasingly inefficient. Here we

consider link-based variational inference and link sampling, a subsampling approach that involves

only the links in the network. We develop this algorithm by assuming that a node’s non-links are

explained by the same communities that a node exhibits while generating links.

We specify the variational family in a particular way to focus on the links. It differs from the

family in Equation 6.4 in the variational indicator parameters for the links. The new family specifies

a indicator parameter for the joint distribution over the pair of node community indicators of each

link. The indicator parameters for the non-links remain the same as in Equation 6.4. We then

constrain the non-link indicator parameters of each node to equal the mean of the link indicator

parameters of that node. In the following discussion, links(a) is the set of links of node a in the

training set, and links are the set of all links in the training set. We define the sets for non-links

similarly.

In particular, we use the following mean-field family in link-based variational inference,

q(π, z,β) =
∏N
n=1 q (πn | γn)

∏
(i,j)∈links q (zi→j , zi←j |φij)∏

(i,j)∈nonlinks q (zi→j |φi→j) q (zi←j |φi←j)∏K
k=1 q (βk |λk) . (6.20)
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We constrain the indicator parameters of each non-link (i, l) of a node i,

φi→l,k =

∑
(i,j)∈links(i)

∑K
l=1 φ

kl
ij

di
=

∑
(i,j)∈links(i) φ

kk
ij

di
= φ̄i,k (6.21)

where di is the degree of node i in the training set, di =
∑
j yij .

The simplification in Equation 6.21 arises because
∑
k 6=l φ

kl
ij = 0. When k 6= l, the community

strength parameters are the non-diagonal entries of the blockmodel, each set to ε. Since ε → 0 by

our modeling assumption of homophily, φklij ∝ exp{−∞}. Notice that since
∑K
k=1 φ

kk
ij = 1, φ̄i is

normalized.

The ELBO in the link-based variational inference is a function of the variational parameters

(φlinks, φ̄,γ,λ). The φlinks are the M × K matrix of indicator parameters defined over the links,

where M is the number of links in the training set. The φ̄ are the N ×K matrix of the per-node

mean indicator parameters. We can compute the local step update for φab, given a link yab = 1,

while fixing the other parameters:

φkkab ∝ exp{Eq log πak + Eq log πbk + Eq log βk}. (6.22)

The full natural gradient of the ELBO with respect to the node’s community memberships is

∂γta,k = αk +
∑

(a,b)∈links(a) φ
kk
ab +

∑
(a,b)∈nonlinks(a) φa→b,k − γt−1a,k

= αk +
∑

(a,b)∈links(a) φ
kk
ab + caφ̄a,k − γt−1a,k , (6.23)

where ca is the number of non-links of node a in the training set. The full natural gradient of the

ELBO with respect to the community strengths is,

∂λtk,0 =η0 +
∑

(a,b)∈links φ
kk
ab + λt−1k,0

∂λtk,1 =η1 +
∑

(a,b)∈nonlinks φa→b,kφa←b,k − λt−1k,1 . (6.24)

We can rewrite Equation 6.24 as a function of only the link indicator parameters,

∑
(a,b)∈nonlinks φa→b,kφa←b,k

=
∑

(a,b)∈nonlinks φ̄a,kφ̄b,k

=
∑
n φ̄n,k

∑
n φ̄n,k −

∑
n(φ̄n,k)2 −∑(a,b)∈links φ̄a,kφ̄b,k. (6.25)
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We have expressed the full natural gradients of the community memberships and community strengths

as a function of φlinks and φ̄. We now describe a stochastic variational inference (SVI) algorithm

that iterates only over the links.

Our link subsampling method extends random node sampling. The structure of the algorithm

is similar to Figure 6.5, with a subsampling step, local steps and global steps. At each iteration,

we sample a node uniformly at random and observe all its training links. In practice, we sample

a mini-batch of nodes. In the local step, we iterate over the links and compute the optimal link

indicator parameters using Equation 6.22. We then compute the mean indicator parameters of the

sampled nodes using Equation 6.21.

As with the the previous sampling methods, we consider the stochastic optimization of the

global community strengths λ and the global community memberships γ. Previously, we obtained

community membership gradients with respect to the entire community membership vector γ of

dimension NK. While this allows for flexible sampling, it requires updates to all nodes in every

iteration.

In link sampling, we optimize the community memberships of each node separately, using distinct

learning rates. Further, when we sample a node we observe all links of a sampled node in the training

set. We can therefore update the community memberships of the sampled node using the full natural

gradients in Equation 6.23.

Since many networks are sparse, including the real datasets and the synthetic networks analyzed

in the article, the link sampling algorithm scales to such networks even when the mini-batch in

each iteration is the set of all links in the training set. In this case, the full natural gradients in

Equation 6.23 and Equation 6.24 are used in the global step.

In our study on synthetic networks, we set the mini-batch to the entire set of links and used

a learning rate of one. This leads to good convergence of the variational objective. Further, we

rescaled γ during an initial phase as follows,

γa,k = γa,k ∗
∑

(i,j)∈links 1∑
(i,j)∈links φ

kk
ij

. (6.26)

The rescaling of γ in Equation 6.26 ensures that each community makes an equal contribution

to the observations. This avoids small communities with high community strengths and unused

communities during the early iterations. The initial phase is run until the heldout likelihood on a

heldout set of node pairs no longer improves. At this point, the inference continues without scaling

until the algorithm converges. (This can be interpreted as a form of annealing, a technique that is
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sometimes used in variational inference.)

As we demonstrate in the empirical study, the SVI algorithm with link sampling recovers true

communities with high accuracy, and scales to networks with millions of nodes.

Further subsampling and optimization can be applied to improve the efficiency of the SVI al-

gorithm with link sampling. For instance, we can apply informative set sampling to the links. We

maintain two dynamic sets of links: links whose corresponding indicator parameters have “con-

verged”, and links that have not converged. Each iteration, we sample links with a bias towards

links that have not converged (see Equation 6.19).

6.4 Stochastic variational inference for the nonconjugate AMP

In this section, we present a novel stochastic nonconjugate variational inference algorithm for the

AMP model of Section 6.1.2. Our goal is to compute the posterior distribution

p(π1:N , θ1:N , z, β1:K |y, α, µ0σ
2
0 , σ

2
1). As with the MMSB, exact inference is intractable; we use vari-

ational inference (Jordan et al., 1999).

Traditionally, variational inference is a coordinate ascent algorithm. However, the AMP presents

two challenges. First, in variational inference the coordinate updates are available in closed form

only when all the nodes in the graphical model satisfy conditional conjugacy. The AMP is not condi-

tionally conjugate. To see this, note that the Gaussian priors on the popularity θ and the community

strengths β are not conjugate to the conditional likelihood of the data. Second, coordinate ascent

algorithms iterate over all the O(N2) node pairs making inference intractable for large networks.

We address these challenges by deriving a stochastic gradient algorithm that optimizes a tractable

lower bound of the variational objective (Hoffman et al., 2013). Our algorithm avoids the O(N2)

computational cost per iteration by subsampling a “mini-batch” of random nodes and a subset of

their interactions in each iteration.

In variational inference, we define a family of distributions over the hidden variables q(β,θ,π, z)

and find the member of that family that is closest to the true posterior. We use the mean-field

family, with the following variational distributions:

q(za→b = i, za←b = j) = φijab; q(πn) = Dirichlet(πn; γn);

q(βk) = N (βk;µk, σ
2
β); q(θn) = N (θn;λn, σ

2
θ). (6.27)

The posterior over the joint distribution of link community assignments per node pair (a, b) is
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parameterized by the per-interaction memberships φa→b 2, the community memberships by γ, the

community strength distributions by µ and the popularity distributions by λ.

Minimizing the KL divergence between q and the true posterior is equivalent to optimizing an

evidence lower bound (ELBO) L, a bound on the log likelihood of the observations. We obtain this

bound by applying Jensen’s inequality (Jordan et al., 1999) to the data likelihood. The ELBO is

L =
∑
n E [log p(πn|α)]−∑n E [log q(πn|γn)]

+
∑
n Eq[log p(θn|σ2

1)]−∑n Eq[log q(θn|λn, σ2
θ)]

+
∑
k Eq[log p(βk|µ0, σ

2
0)]−∑k Eq[log q(βk|µk, σ2

β)]

+
∑
a,b E [log p(za→b|πa)] + E [log p(za←b|πb)]− E [log q(za→b|φa→b)]

+
∑
a,b E [log p(yab|za→b, za←b,β)] . (6.28)

Notice that the first three lines in Equation 6.28 contains summations over communities and nodes;

we call these global terms. They relate to the global parameters which are (γ,λ,µ). The remain-

ing lines contain summations over all node pairs; we call these local terms. They relate to the

local parameters which are the φab. The distinction between the global and local parameters is

important—the updates to global parameters depends on all (or many) local parameters, while

the updates to local parameters for a pair of nodes only depends on the relevant global and local

parameters in that context.

Estimating the global variational parameters is a challenging computational problem. Coordinate

ascent inference must consider each pair of nodes at each iteration, but even a single pass through the

O(N2) node pairs can be prohibitive. Unlike the MMSB, the AMP is not conditionally conjugate.

Nevertheless, by carefully manipulating the variational objective, we can develop a scalable stochastic

variational inference algorithm for the AMP.

Lower bounding the variational objective To optimize the ELBO with respect to the local

and global parameters we need its derivatives. The data likelihood terms in the ELBO can be

written as

Eq[log p(yab|za→b, za←b,θ,β)] = yabEq[xab]− Eq[log(1 + exp(xab))], (6.29)

2Following Kim et al. (2013), we use a structured mean-field assumption.
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1. Initialize γ = (γn)Nn=1, λ = (λn)Nn=1, µ = (µk)Kk=1.
2. Subsample a mini-batch S of nodes. Let P be the set of node pairs in S.
3. Local step.

• For each pair (a, b) ∈ P,

– Compute the optimal indicator parameters φa→b using Equation 6.36 and Equa-
tion 6.37.

4. Global step.

• For each node a ∈ S:

– Compute the natural gradients in Equation 6.31 and update memberships γa
– Compute the stochastic gradients in Equation 6.32 and update popularities λa.

• For each community k:

– Compute stochastic gradients in Equation 6.34 and update strengths µk.

• Set ρa(t) = (τ0 + ta)−κ; ta ← ta + 1, for each node a ∈ S.

• Set ρ′(t) = (τ0 + t)−κ; t← t+ 1.

5. Repeat subsampling, local and global steps.

Figure 6.6: Stochastic nonconjugate variational inference for the AMP.

where we define xab ≡ θa + θb +
∑K
k=1 βkδ

k
ab. The terms in Equation 6.29 cannot be expanded

analytically. To address this issue, we further lower bound −Eq[log(1 + exp(xab))] using Jensen’s

inequality (Jordan et al., 1999),

−Eq[log(1 + exp(xab))] ≥− log[Eq(1 + exp(xab))]

=− log[1 + Eq[exp(θa + θb +
∑K
k=1 βkδ

k
ab)]]

=− log[1 + exp(λa + σ2
θ/2) exp(λb + σ2

θ/2)sab], (6.30)

where we define sab ≡
∑K
k=1 φ

kk
ab exp{µk + σ2

β/2} + (1 −∑K
k=1 φ

kk
ab ). In simplifying Equation 6.30,

we have used that q(θn) is a Gaussian. Using the mean of a log-normal distribution, we have

Eq[exp(θn)] = exp(λn + σ2
θ/2). A similar substitution applies for the terms involving βk in Equa-

tion 6.30.

We substitute Equation 6.30 in Equation 6.28 to obtain a tractable lower bound L′ of the ELBO

L in Equation 6.28. This allows us to develop a coordinate ascent algorithm that iteratively updates

the local and global parameters to optimize this lower bound on the ELBO.
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Computing stochastic gradients for the AMP

We optimize the ELBO with respect to the global variational parameters using stochastic gradi-

ent ascent. Stochastic gradient algorithms follow noisy estimates of the gradient with a decreasing

step-size. If the expectation of the noisy gradient equals to the gradient and if the step-size de-

creases according to a certain schedule, then the algorithm converges to a local optimum (Robbins

and Monro, 1951). Subsampling the data to form noisy gradients scales inference as we avoid the

expensive all-pairs sums in Equation 6.28.

The global step updates the global community memberships γ, the global popularity parameters

λ and the global community strength parameters µ with a stochastic gradient of the lower bound

on the ELBO L′.

We use natural gradients for the community memberships, but use distinct stochastic optimiza-

tions for the memberships and popularity parameters of each node and maintain a separate learning

rate for each node. This restricts the per-iteration updates to nodes in the current mini-batch.

Since the variational objective is a sum of terms, we can cheaply compute a stochastic gradient

by first subsampling a subset of terms and then forming an appropriately scaled gradient. We use

a variant of the random node sampling method. At each iteration we sample a node uniformly at

random from the N nodes in the network. (In practice we sample a “mini-batch” S of nodes per

update to reduce noise (Hoffman et al., 2013).) While a naive method will include all interactions

of a sampled node as the observed pairs, we can leverage network sparsity for efficiency; in many

real networks, only a small fraction of the node pairs are linked. Therefore, for each sampled node,

we include as observations all of its links and a small uniform sample of m0 non-links.

Let ∂γta be the natural gradient of L′ with respect to γa, and ∂λta and ∂µtk be the gradients of

L′ with respect to λa and µk, respectively. Following Airoldi et al. (2008), we have

∂γta,k = −γt−1a,k + αk +
∑

(a,b)∈links(a) φ
kk
ab (t) +

∑
(a,b)∈nonlinks(a) φ

kk
ab (t), (6.31)

where links(a) and nonlinks(a) correspond to the set of links and non-links of a in the training set.

Notice that an unbiased estimate of the summation term over non-links in Equation 6.31 can be

obtained from a subsample of the node’s non-links. Therefore, the gradient of L′ with respect to the

membership parameter γa, computed using all of the nodes’ links and a subsample of its non-links,

is a noisy but unbiased estimate of the natural gradient in Equation 6.31.
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The gradient of the approximate ELBO with respect to the popularity parameter λa is

∂λta =− λt−1
a

σ2
1

+
∑

(a,b)∈links(a) ∪ nonlinks(a)(yab − rabsab), (6.32)

where we define rab as

rab ≡ exp{λa+σ2
θ/2} exp{λb+σ2

θ/2}
1+exp{λa+σ2

θ/2} exp{λb+σ2
θ/2}sab

. (6.33)

Finally, the stochastic gradient of L′ with respect to the global community strength parameter µk is

∂µtk =
µ0−µt−1

k

σ2
0

+ N
2|S|

∑
(a,b)∈links(S) ∪ nonlinks(S) φ

kk
ab (yab − rab exp{µk + σ2

β/2}). (6.34)

As with the community membership gradients, notice that an unbiased estimate of the summation

term over non-links in Equation 6.32 and Equation 6.34 can be obtained from a subsample of

the node’s non-links. To obtain an unbiased estimate of the true gradient with respect to µk, the

summation over a node’s links and non-links must be scaled by the inverse probability of subsampling

that node in Equation 6.34. Since each pair is shared between two nodes, and we use a mini-batch

with S nodes, the summations over the node pairs are scaled by N
2|S| in Equation 6.34.

We can interpret the gradients in Equation 6.32 and Equation 6.34 by studying the terms in-

volving rab in Equation 6.32 and Equation 6.34. In Equation 6.32, (yab − rabsab) is the residual for

the pair (a, b), while in Equation 6.34, (yab − rab exp{µk + σ2
β/2}) is the residual for the pair (a, b)

conditional on the latent community assignment for both nodes a and b being set to k. Further,

notice that the updates for the global parameters of node a and b, and the updates for µ depend

only on the diagonal entries of the indicator variational matrix φab.

We can similarly obtain stochastic gradients for the variational variances σβ and σθ; however, in

our experiments we found that fixing them gave good results (see Chapter 7).

A detailed description of SVI for the AMP

The global step. The global step for the global parameters follows the noisy gradient with an

appropriate step-size:

γa ← γa + ρa(t)∂γta; λa ← λa + ρa(t)∂λta; µ← µ+ ρ′(t)∂µt. (6.35)
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We maintain separate learning rates ρa for each node a, and only update the γ and λ for the nodes

in the mini-batch in each iteration. There is a global learning rate ρ′ for the community strength

parameters µ, which are updated in every iteration. For each of these learning rates ρ, we require

that
∑
t ρ(t)2 < ∞ and

∑
t ρ(t) = ∞ for convergence to a local optimum (Robbins and Monro,

1951). We set ρ(t) , (τ0 + t)−κ, where κ ∈ (0.5, 1] is the learning rate and τ0 ≥ 0 downweights early

iterations.

The local step The local step optimizes the indicator parameters φ with respect to a subsample

of the network. There is a indicator parameter of dimension K × K for each node pair—φa→b—

representing the posterior approximation of which pair of communities are active in determining the

link or non-link. The coordinate ascent update for φa→b is

φkkab ∝ exp
{
Eq[log πa,k] + Eq[log πb,k] + yabµk − rab(exp{µk + σ2

β/2} − 1)
}

(6.36)

φijab ∝ exp
{
Eq[log πa,i] + Eq[log πb,j ]

}
, i 6= j, (6.37)

where rab is defined in Equation 6.33. We present the full stochastic variational inference in

Figure 6.6.

Initialization and convergence for the AMP We initialize the community memberships γ us-

ing approximate posterior memberships from the link-sampling based SVI algorithm for the MMSB.

We initialized popularities λ to the logarithm of the normalized node degrees added to a small ran-

dom offset, and initialized the strengths µ to zero. We assess convergence using the procedure for

the MMSB outlined in Section 6.3.

6.5 Discussion

In this chapter, we presented network models that capture basic ways in which nodes form links—

nodes connecting to similar nodes, and nodes connecting to popular nodes. We presented the

assortative MMSB, and developed a scalable SVI algorithm. We presented both set-based and pair-

based subsampling methods. The link-sampling method, which subsamples only the links of the

network, is the most efficient: the corresponding SVI algorithm needs to only iterate over the links.

We overcome the nonconjugacy in the AMP models, and again developed a SVI algorithm. In all of

our algorithms, we interleave subsampling the network with re-estimating its community structure.

These models have several natural extensions. First, the MMSB and the AMP models are based
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on the assumption that nodes assume a single latent community during interactions. Subsequently,

each node is associated with normalized mixed-memberships. However, in social networks an interac-

tion may be made stronger by multiple shared similarities between two people. An interesting venue

for future work is to explore models that can aggregate the effect of multiple shared communities

between nodes in explaining links between them.

Second, we restricted our models to undirected networks, but it is straightforward to consider

directed networks. In this case, the models have distinct receiver and sender memberships in link

formation. Finally, we can use Bayesian nonparametric assumptions to infer the number of commu-

nities within the analysis (Kim et al., 2012). In general, with the ideas presented here, we can use

sophisticated statistical models to analyze massive real-world networks.

In the next chapter, we evaluate the algorithms presented here on large real-world networks and

on synthetic networks where ground truth communities are known.
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Chapter 7

Scalable overlapping community

detection

In this chapter, we study the stochastic variational inference (SVI) algorithms for the MMSB and

the AMP models developed in Chapter 6 for their ability to recover community structure on large

real-world and synthetic networks.

In Section 7.1 we demonstrate that the MMSB accurately identifies overlapping communities

on synthetic data with millions of nodes and tens of millions of links. In Section 7.2 we discover

overlapping communities on three large real-world networks and identify nodes that bridge these

communities.

Finally, in Section 7.3, using nine real world networks, we compare the AMP and the MMSB

models. We demonstrate that by incorporating preferential attachment in addition to assortativity,

the AMP predicts better than the MMSB and provides a better fit to networks. However, the

improved performance comes at a cost. The inference for the nonconjugate AMP model scales to

tens of thousands of nodes, while the inference for the conjugate MMSB model scales to millions of

nodes. We end with a discussion in Section 7.4.

7.1 Recovering ground truth communities

In this section, we perform a benchmark comparison of the results from the MMSB algorithm of

Figure 6.5 on synthetic networks where the overlapping communities are known. We used the

“benchmark” tool (Lancichinetti and Fortunato, 2009) to synthesize networks with the number of
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Figure 7.1: The performance of scalable algorithms on synthetic networks with overlapping com-
munities. The numbers of nodes in each network span one thousand to one million, and for each
network size we generated 5 networks. Our stochastic inference algorithm (SVI) outperforms scalable
alternatives, the INFOMAP algorithm (INF) and the COPRA algorithm (COP), while performing
as well as the Poisson algorithm (POI). We measure accuracy with normalized mutual information
(NMI) (Lancichinetti and Fortunato, 2009). We also compared to many other methods that could
not scale up to one million nodes; see the supplementary materials for a full table of results.

nodes ranging from one thousand to one million.

We compared our algorithm to the best existing algorithms for detecting overlapping commu-

nities (Ball et al., 2011; Derényi et al., 2005; Ahn et al., 2010; McDaid and Hurley, 2010; Gregory,

2010; Lancichinetti et al., 2011; Viamontes Esquivel and Rosvall, 2011). Each algorithm analyzes

the (unlabeled) network and returns both the number of communities and community assignments

for each node. In our algorithm we chose the number of communities in an initialization phase of

variational inference. (The details are in the supplement.) Note that the Poisson algorithm also

requires setting the number of communities. We used the same number of communities derived from

our initialization procedure. A better algorithm better recovers the true community structure. We

measured closeness to the truth with the normalized mutual information (NMI) (Lancichinetti and

Fortunato, 2009), which measures the strength of the relationship between the true and discovered

labels.

Most methods could not scale to one-million node networks. The four that did were our algorithm,

the Poisson algorithm (Ball et al., 2011), INFOMAP (Viamontes Esquivel and Rosvall, 2011), and

COPRA (Gregory, 2010). Figure 7.1 shows the NMI for these methods on twenty synthetic networks,

five each of 1000 nodes, 10,000 nodes, 100,000 nodes, and 1,000,000 nodes. We now describe our

experiments in detail.

Generating synthetic networks

We want the synthetic networks to match the properties of real networks—skewed community and

node degree distributions, significant community overlap (Derényi et al., 2005; Ahn et al., 2010),
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and a large fraction of nodes with multiple memberships.

We ran experiments to evaluate the performance of the algorithms on benchmark networks

with and without noisy links. Notice that the significant community overlap naturally avoids well-

separated clusters. The inclusion of noisy links tests the algorithm’s ability to identify overlapping

communities even when a significant fraction of a node’s links are to other nodes sharing no com-

munities.

For the experiments on networks without noise, we generated 20 LFR benchmark networks (Lan-

cichinetti and Fortunato, 2009) varying in size from 1,000 to 1,000,000 nodes. Half of the nodes in

each network have memberships in m = 4 communities. We set the average degree of nodes as

15 ×m, similar to the experiments in McDaid and Hurley (2010). The LFR benchmarks give the

node degrees and community sizes power laws; the degree distribution and community size distri-

bution exponents were set to the default values of 2.0 and 1.0, respectively. Research on scale-free

networks (Aiello et al., 2000) have assumed the maximum degree to vary as kmax ∼ N
1
α , where α

is the power law exponent for node degrees. We set kmax =
√
N . We varied the minimum and

maximum community sizes as (20 N
1000 , 50 N

1000 ). Since community sizes are typically small (Leskovec

et al., 2009) we restricted the minimum and maximum community size to 2000 and 5000 respectively.

This results in about ≈ 750 ground truth communities when N = 1, 000, 000 and ≈ 30 communities

when N = 1, 000. Finally, we set the mixing parameter µ (Lancichinetti and Fortunato, 2009) to

0 in our experiments on networks without noise. The mixing parameter is the fraction of a node’s

links that connect to nodes sharing no communities.

For the experiments on networks with noisy links, we varied µ in steps of 0.2 from 0 to 0.8.

We fixed the number of nodes at 10, 000, and kept the other settings the same as the preceding

experiment. We generated 25 LFR benchmark networks and included only the candidate algorithms

that successfully scaled to 1, 000, 000 nodes in the preceding experiment.

Competing algorithms

On each network, we ran the following algorithms:

1. The COPRA label propagation algorithm (Gregory, 2010).

2. The INFOMAP algorithm based on flow compression (Viamontes Esquivel and Rosvall, 2011).

3. The MOSES seed expansion algorithm (McDaid and Hurley, 2010).

4. The Poisson EM algorithm (Ball et al., 2011).
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5. The OSLOM algorithm for finding statistically significant communities (Lancichinetti et al.,

2011).

6. The Clique percolation algorithm (Derényi et al., 2005).

7. The Link clustering algorithm (Ahn et al., 2010).

We used the author’s source code for all algorithms. We ran the SVI algorithm with the link sam-

pling method. For each run, we measured the normalized mutual information (NMI) (Lancichinetti

and Fortunato, 2009) between the inferred community structure and the true community structure.

For the algorithms that find communities at various resolutions— Clique percolation, Link clustering

and COPRA—we varied the parameters as described below, and kept the best NMI score. For the

SVI and the Poisson EM algorithm, we ran the algorithms until convergence on networks with up

to 100,000 nodes.

A note on assessing convergence

On the million node networks, the SVI and the Poisson EM algorithm can take a long time for con-

vergence in likelihood, while their NMI scores have typically “converged” quickly. This is primarily

due to the large number of links (approximately 54 million links) in these synthetic networks. We

instrumented the author’s source code for the Poisson EM algorithm and the SVI algorithm to pe-

riodically report the accuracy scores when provided with ground truth communities. We gave both

algorithms a computational budget of 24 hours and recorded the NMI scores attained by them. The

Poisson EM algorithm’s NMI score had typically “converged” at this point, even if the likelihood

did not. (We note that in other applications of EM, such as probabilistic latent semantic indexing,

“early stopping” is an effective form of regularization.)



Table 7.1: Accuracy results on 20 LFR benchmark networks (Lancichinetti and Fortunato, 2009) measured using normalized mutual information (Lan-
cichinetti and Fortunato, 2009). The networks were generated with mixing parameter set to 0. The four algorithms that scale to a million nodes are
the SVI algorithm, the Poisson EM algorithm (Ball et al., 2011), INFOMAP (Viamontes Esquivel and Rosvall, 2011), and COPRA (Gregory, 2010).
The SVI algorithm performs better than INFOMAP and COPRA and is as accurate as the Poisson EM algorithm.

Nodes Replication SVI COPRA INFOMAP MOSES POISSON OSLOM CLIQUE LC

1,000 1 0.58 0.55 0.38 0.47 0.62 0.44 0.93 0.15
1,000 2 0.77 0.45 0.36 0.49 0.77 0.41 0.85 0.16
1,000 3 0.66 0.46 0.36 0.53 0.66 0.49 0.96 0.17
1,000 4 0.63 0.17 0.38 0.52 0.62 0.46 0.78 0.15
1,000 5 0.76 0.39 0.35 0.55 0.75 0.48 0.85 0.20

10,000 1 0.90 0.28 0.35 0.56 0.85 0.18 0.22 0.01
10,000 2 0.90 0.28 0.32 0.55 0.88 0.16 0.13 0.01
10,000 3 0.82 0.07 0.36 0.54 0.78 0.19 0.23 0.01
10,000 4 0.86 0.61 0.44 0.54 0.82 0.17 - 0.02
10,000 5 0.89 0.62 0.40 0.56 0.86 0.17 - 0.00

100,000 1 0.82 0.57 0.34 0.35 0.85 - - -
100,000 2 0.83 0.44 0.33 0.33 0.81 - - -
100,000 3 0.81 0.50 0.35 0.34 0.81 - - -
100,000 4 0.82 0.43 0.33 0.35 0.84 - - -
100,000 5 0.83 0.58 0.33 0.35 0.84 - - -

1,000,000 1 0.76 0.52 0.22 - 0.76 - - -
1,000,000 2 0.77 0.50 0.16 - 0.76 - - -
1,000,000 3 0.78 0.53 0.17 - 0.77 - - -
1,000,000 4 0.76 0.49 0.23 - 0.79 - - -
1,000,000 5 0.77 0.51 0.14 - 0.77 - - -



Algorithm settings for the LFR experiments

The Clique percolation algorithm identifies communities from a series of adjacent k-cliques. In our

experiments we varied k from 4 to 7, a typical range for LFR experiments (McDaid and Hurley,

2010; Gregory, 2010). The Link clustering algorithm defines a similarity function over nodes sharing

a link, and uses hierarchical clustering to find hierarchical community structures (Ahn et al., 2010).

Since the dendrogram can be partitioned in multiple ways, the algorithm uses a measure of the

quality of a link partition, called the partition density D. We varied D from 0.1 to 0.4—the range

we found to be best—in steps of 0.1. The COPRA algorithm is a fast heuristic based on label

propagation and includes a overlap parameter that we varied from 2 to 10, in steps of 2. This is

a typical range (Gregory, 2010). The OSLOM (Lancichinetti et al., 2011), MOSES (McDaid and

Hurley, 2010) and the INFOMAP (Viamontes Esquivel and Rosvall, 2011) algorithms were run with

parameters set to default values.

For the SVI and the Poisson EM algorithm (Ball et al., 2011), we set K to the value chosen by the

initial phase of our variational algorithm. The author’s software for most of the algorithms we com-

pare to generate community assignments, the discovered mapping between nodes and communities.

The mapping is used to compute the accuracy when given the ground truth communities.

We extended both the SVI and the Poisson EM algorithm to generate the community assignment

files. In both algorithms, we assigned a link to a community if the approximate posterior probability

of link assignment to a community exceeded a threshold t. We took the best NMI values obtained

from thresholds t = 0.5 and t = 0.9. For the experiments on networks without noise, we assigned

each node associated with a link to the same community as the link. For the experiments with noisy

links, we required at least 3 links of a node to be assigned to a community prior to assigning the

node to that community. We added this setting to both algorithms to control sensitivity to noise.

(Notice in Figure 7.2 that both algorithms continue to show a high accuracy on networks without

noise (µ = 0) with the threshold set to 3 links.)

Open source software

We implemented the SVI algorithm and the various subsampling variants in C++. Our source code

is available from: github.premgopalan.com/svinet.
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Figure 7.2: Our stochastic inference algorithm (SVI) outperforms COPRA (COP) (Gregory, 2010)
and INFOMAP (INF) (Viamontes Esquivel and Rosvall, 2011) and is as accurate as the Poisson EM
algorithm (POI) (Ball et al., 2011) in discovering ground truth communities in 25 LFR benchmark
networks with noisy links. Each panel shows the performance of the algorithms on five replications
of the random network generated with 10,000 nodes and a fixed mixing parameter (Lancichinetti
and Fortunato, 2009). The mixing parameter is the fraction of a node’s links that connect to nodes
sharing no communities. From left to right, the panels correspond to increasing noise.

Results

Table 7.1 shows the NMI results on the networks without noise. Most algorithms could not scale to

one-million node networks. The four that did were the Poisson EM, the SVI, the COPRA and the

INFOMAP algorithms. The SVI algorithm performs better than the COPRA and the INFOMAP

algorithms and is as accurate as the Poisson EM algorithm on the one-million node network. On

smaller networks, the SVI algorithm performs as well as the Poisson EM algorithm; it performs

second to Clique percolation on the one-thousand node networks. However, the Clique percolation

algorithm does not scale beyond the 10,000 node networks.

Figure 7.2 shows the NMI results on the networks with noisy links. We find that the SVI

algorithm performs better than two of the three other scalable alternatives—the COPRA and the

INFOMAP algorithms—and is as accurate as the Poisson EM algorithm.

7.2 Exploring real-world communities

In this section, we demonstrate how the MMSB algorithm of Figure 6.5 can be used to study

massive real-world networks. We ran the SVI algorithm with informative set sampling on the real

networks in Table 7.2. We pre-processed the networks to associate each node with “informative”

and “non-informative” sets of node pairs.

We analyzed two citation networks: a network of 575,000 scientific articles from the arXiv pre-

print server (Ginsparg, 2011) and a network of 3,700,000 patents from the United States patent

network (Leskovec et al., 2005). In these networks, a link indicates that one document cites another.
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Table 7.2: Real-world networks analyzed in the article and the supplement

Data set Number of nodes Number of links % links Type Source

arXiv 576,000 6,640,000 0.0039% citation (Ginsparg, 2011)
Google 875,000 4,320,000 0.0011% hyperlink (Leskovec et al., 2009)
US Patents 3,700,000 16,500,000 0.00023% citation (Leskovec et al., 2005)

We also analyzed a large network of 875,000 webpages from Google (Leskovec et al., 2009).1 In

all networks, we treated the directed links as undirected—the presence of a link is evidence of

similarity between the nodes and is independent of direction. (This is common in hyperlink graph

analysis (Fortunato, 2010).) These networks are much larger than what can easily be analyzed with

previous approaches to computing with mixed-membership stochastic blockmodels (Airoldi et al.,

2008). (Though we note that several efficient methods have recently been developed for block models

without overlapping communities (Decelle et al., 2011a,b; Amini et al., 2012).)

We analyze a network by setting the number of communities K and running the stochastic

inference algorithm.2 This results in posterior estimates of the community memberships for each

node and posterior estimates of the community assignments for each node pair (i.e., for each pair of

nodes, estimates of which communities governed whether they are connected). With these estimates,

we visualize the network according to the discovered communities.

Scientific articles from arXiv

The arXiv network (Ginsparg, 2011) contains scientific articles and citations between them. Our

large subset of the arXiv contains 575,000 physics papers. We ran stochastic inference to discover

200 communities. This took a few hours of computation.3

Figure 7.3 illustrates a subgraph of the arXiv network and demonstrates the structure that our

algorithm uncovered. In the model, each node i contains community memberships θi and each link

(i, j) is assigned to one of the K communities. In the figure, we colored each link according to

the peak of the approximate posterior p(zi→j |y). This suggests within which communities and to

what degree each paper has had an impact. (We note that most of the links attached to highly

cited articles are incoming links, so visualizing these links reveals the communities influenced by the

paper.)

1This data did not contain the descriptions of the nodes that are required to visualize the communities. Our
quantitative analyses of this network is in the supplementary materials.

2We assess convergence and set the number of communities by looking at predictive probability on a held out
subgraph. We also used the predictive probability to confirm that the mixed-membership model gives a better fit
than the single-membership model (Nowicki and Snijders, 2001; Wiggins and Hofman, 2008). The details of these
results are in the supplementary materials. We will release our software tool on publication.

3In detail, it took a few hours when using the link sampling method of subsampling pairs. See details in the
supplement.
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An Alternative To Compactification [26]
(estimated bridgeness = 1276)

HIGH ENERGY PHYSICS:
THEORY

GENERAL RELATIVITY
AND QUANTUM COSMOLOGY

HIGH ENERGY PHYSICS:
PHENOMENOLOGY

ASTROPHYSICS

Quasinormal Modes of
Black Holes and Black Branes

First Year Wilkinson 
Microwave Anisotropy

A Large Mass Hierarchy 
from a Small Extra Dimension

de Sitter Vacua in String Theory

Figure 7.3: The discovered community structure in a subgraph of the arXiv citation net-
work (Ginsparg, 2011). The figure shows the top four link communities that include citations to
“An Alternative to Compactification” (Randall and Sundrum, 1999), an article that bridges several
communities. We visualize the links between the articles, and show some highly-cited titles. Each
community is labeled with its dominant subject area; nodes are sized by their bridgeness (Nepusz
et al., 2008), an inferred measure of their impact on multiple communities. This is taken from an
analysis of the full 575,000 node network.

The central article in Figure 7.3 is the highly cited article “An Alternative to Compactifica-

tion” (Randall and Sundrum, 1999), which was published in 1999. The article proposes a simple

explanation to one of the most important problems in physics: Why is the weak force 1032 times

stronger than gravity? The paper’s external tag (given by the authors) suggests it is primarily a

theoretical paper. It has had, however, an impact on a diverse array of problems including certain as-

trophysics puzzles regarding the structure of the universe (Khoury et al., 2001) and the confrontation

between general relativity and experiment (Will, 2006).

In analyzing the full network of citations, our algorithm has captured how this article has played

a role in multiple subfields. It assigned it to membership in nine communities and gave it a high

posterior bridgeness score (Nepusz et al., 2008), a measure of how strongly it bridges multiple com-

munities.4 In the subgraph of Figure 7.3, the link colors correspond to the research communities

associated with the links. We visualize the four top communities that link to this article: ”High

Energy Physics: Theory,” “High Energy Physics: Phenomenology,” “General Relativity and Quan-

4We compute the degree-corrected bridgeness (Nepusz et al., 2008), which relates to a normalized distance between
the community memberships of a node and the uniform distribution over communities. This is usually a function
of known community memberships. However, since the community structure is hidden, we use the algorithm in the
previous section to approximate the posterior and then compute the expected bridgeness.
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Table 7.3: Top 10 articles in the arXiv network by estimated bridgeness (Nepusz et al., 2008). Notice
that some articles have higher bridgeness but a smaller citation count than others

Title # Citations Estimated bridgeness

Maps of Dust IR Emission... 5946 2893.7
First Year Wilkinson Microwave... 5707 2270.7
Wilkinson Microwave Anisotropy... 4488 1907.1
Big Bang Nucleosynthesis 2896 1882.9
The Cosmological Parameters 2006 2472 1703.9
Five-Year Wilkinson Microwave... 2804 1485.9
A Large Mass Hierarchy... 3644 1426.7
The Large N Limit of Superconformal... 3914 1378.4
An Alternative to Compactification 2803 1275.8

tum Cosmology,” and “Astrophysics.”5 We emphasize that the citations alone cannot reveal the

role of an article in its citation graph—we executed this analysis by first discovering the commu-

nities with our algorithm and then using those discovered communities to compute quantities, like

bridgeness (Nepusz et al., 2008) and link color, that require community assignments.

As an example of a different kind of article, consider “The Cosmological Constant - the Weight

of the Vacuum” (Padmanabhan, 2003). This article has 1,117 citations in the dataset, on the

same order as Randall and Sundrum (1999). It discusses the theoretical and cosmological aspects

of the cosmological constant. Our algorithm finds that this article has a lower bridgeness, and

membership in only two communities. Both communities are dominated by the “Astrophysics”

subject tag, with the other significant tag being “General Relativity and Quantum Cosmology.”

Detecting these two kinds of articles highlights an advantage of this type of analysis. By discovering

the hidden community structure, we can separate articles (of similar citation count) that have had

interdisciplinary impact from those with impact within their particular fields.

We have illustrated a small subgraph of this large network, centered around a specific article.

Across the whole network, we can use the posterior bridgeness to filter and find a collection of articles

that have had interdisciplinary impact. Table 7.2 shows the top ten papers in the arXiv network

by posterior bridgeness. The top scientific articles in Table 7.2 have a wide impact, as they concern

data, parameters or theory applied in various sub-fields of physics. For example, the top article,

“Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds” (Schlegel

et al., 1998) constructs an accurate full sky map of the dust temperature useful in the estimation

of cosmic microwave background radiation. This filtering demonstrates the practical potential for

unsupervised analysis of large networks. The posterior bridgeness score, a function of the discovered

communities, helps us focus on a class of nodes that is otherwise difficult to find.

5Naming and interpreting communities is a difficult problem in unsupervised community detection. For visual
convenience, we examine the external tags given to the articles and name each community by its most common tag.
Note the algorithm does not have access to the tags.
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Process for Producing Porous Products [28]
(estimated bridgeness = 267)

Tubular polytetrafluoroethylene 
implantable prostheses

PROSTHESIS:
PLASTIC AND NON-METALLIC 
ARTICLE SHAPING

Prosthesis comprising an expansible
 or contractile tubular body

PROSTHESIS

Breathable, cloth-like 
film/nonwoven composite

Light reflectant surface in a recessed cavity 
substantially surrounding a compact fluorescent lamp

OPTICS

STOCK
MATERIAL

Figure 7.4: The discovered community structure in a subgraph of the U.S. Patents network (Leskovec
et al., 2005). The figure shows subgraphs of the top four communities that include citations to
“Process for producing porous products.” (Gore, 1976). We visualize the links between the patents
and show titles of some of the highly-cited patents. Each community is labeled with its dominant
classification; nodes are sized by their bridgeness (Nepusz et al., 2008); the local network is visualized
using the Fruchterman Reingold algorithm (Fruchterman and Reingold, 1991). This is taken from
an analysis of the full 3.7M node network.

United States patents

The National Bureau of Economic Research maintains a large data set of United States patents (Leskovec

et al., 2005). It contains 3,700,000 patents granted between 1975 and 1999 and the citations between

them. We analyzed this network, setting the number of communities to 1000.

Figure 7.4 illustrates a subgraph of the patents data that reveals overlapping community struc-

ture around “Process for Producing Porous Products” (Gore, 1976). This patent was issued in 1976

and describes an efficient process for producing highly porous materials from tetrafluoroethylene

polymers. It has influenced the design of many everyday materials, such as waterproof laminate,

adhesives, printed circuit boards, insulated conductors, dental floss, and strings of musical instru-

ments. Our algorithm assigned it a high posterior bridgeness and membership in 39 communities.

The classification tags of the citing patents confirm that it has influenced several areas of patents:

Synthetic Resins or Natural Rubbers, Prosthesis, Stock Material, Plastic and Non-Metallic Article

Shaping, Adhesive bonding, Conductors and Insulators, and Web or Sheet. Figure 7.4 illustrates
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the top communities for this patent, found by our algorithm.

We also studied a patent with a comparable number of citations but with significantly lower brid-

geness. “Osmotic dispensing device for releasing beneficial agent” (Eckenhoff et al., 1987) concerns

a novel osmotic dispenser for continually administering agents, e.g., opthalmic drugs. It has 339

citations, comparable to the 441 of Gore (1976), but a much lower bridgeness score. Our algorithm

assigned it to 7 communities, with the classification tags mostly restricted to “Drug: Bio-Affecting

and Body Treating Compositions” and “Surgery.”



Figure 7.5: Network data sets. N is the number of nodes, d is the percent of node pairs that are links and P is the mean perplexity over the links and nonlinks in the held-out
test set.

Data set N d(%) PAMP PMMSB type source

US air 712 1.7% 2.75± 0.04 3.41± 0.15 transport (RITA, 2010)
political blogs 1224 1.9% 2.97± 0.03 3.12± 0.01 hyperlink (Adamic and Glance, 2005)
netscience 1450 0.2% 2.73± 0.11 3.02± 0.19 collab. (Newman, 2006)
relativity 4158 0.1% 3.69± 0.18 6.53± 0.37 collab. (Leskovec et al., 2008)
hep-th 8638 0.05% 12.35± 0.17 23.06± 0.87 collab. (Leskovec et al., 2008)
hep-ph 11204 0.16% 2.75± 0.06 3.310± 0.15 collab. (Leskovec et al., 2008)
astro-ph 17903 0.11% 5.04± 0.02 5.28± 0.07 collab. (Leskovec et al., 2008)
cond-mat 36458 0.02% 10.82± 0.09 13.52± 0.21 collab. (Newman, 2006)
brightkite 56739 0.01% 10.98± 0.39 41.11± 0.89 social (Leskovec et al., 2008)
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Figure 7.6: The AMP model outperforms the MMSB model in predictive accuracy on real networks. Both models were fit using stochastic variational inference (Hoffman
et al., 2013). For the data sets shown, the number of communities K was set to 100 and hyperparameters were set to the same values across data sets. The perplexity results
are based on five replications. A single replication is shown for the mean precision and mean recall.



7.3 Comparing the network models

We use the predictive approach to evaluating model fitness (Geisser and Eddy, 1979), comparing

the predictive accuracy of AMP (Section 6.4) to the MMSB with link sampling (Section 6.3.3). In

all data sets, we found that AMP gave better fits to real-world networks. Our networks range in size

from 712 nodes to 56,739 nodes. Some networks are sparse, having as little as 0.01% of all pairs as

links, while others have up to 2% of all pairs as links. Our data sets contain four types of networks:

hyperlink, transportation, collaboration and social networks. We implemented the SVI algorithm

for the AMP from Figure 6.6 in 4,800 lines of C++ code. 6

Evaluation metrics

We used perplexity, mean precision and mean recall in our experiments to evaluate the predictive

accuracy of the algorithms. We computed the link prediction accuracy using a test set of node pairs

that are not observed during training. The test set consists of 10% of randomly selected links and

non-links from each data set. During training, these test set observations are treated as zeros. We

approximate the predictive distribution of a held-out node pair yab under the AMP using posterior

estimates θ̂, β̂ and π̂.

Perplexity is the exponential of the average predictive log likelihood of the held-out node pairs.

For mean precision and recall, we generate the top n pairs for each node ranked by the probability

of a link between them. The ranked list of pairs for each node includes nodes in the test set, as well

as nodes in the training set that were non-links. We compute precision-at-m, which measures the

fraction of the top m recommendations present in the test set; and we compute recall-at-m, which

captures the fraction of nodes in the test set present in the top m recommendations. We vary m

from 10 to 100. We then obtain the mean precision and recall across all nodes. 7

Hyperparameters

For the stochastic AMP algorithm, we set the “mini-batch” size S = N/100, where N is the number

of nodes in the network and we set the non-link sample size m0 = 100. We set the number of

communities K = 2 for the political blog network and K = 20 for the US air; for all other networks,

K was set to 100. We set the hyperparameters σ2
0 = 1.0, σ2

1 = 10.0 and µ0 = 0, fixed the variational

variances at σθ = 0.1 and σβ = 0.5 and set the learning parameters τ0 = 65536 and κ = 0.5. We set

the Dirichlet hyperparameter α = 1
K for the AMP and the MMSB.

6Our software is available at github.com/premgopalan/sviamp.
7Precision and recall are better metrics than ROC AUC on highly skewed data sets (Davis and Goadrich, 2006).
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Results

Figure 7.5 compares the AMP and the MMSB stochastic algorithms on a number of real data sets.

The AMP definitively outperforms the MMSB in predictive performance. All hyperparameter

settings were held fixed across data sets. The first four networks are small in size, and were fit

using the AMP model with a single community strength parameter. All other networks were fit

with the AMP model with K community strength parameters. As N increases, the gap between

the mean precision and mean recall performance of these algorithms appears to increase. Without

node popularities, MMSB is dependent entirely on node memberships and community strengths to

predict links. Since K is held fixed, communities are likely to have more nodes as N increases,

making it increasingly difficult for the MMSB to predict links. For the small US air, political blogs

and netscience data sets, we obtained similar performance for the replication shown in Figure 7.5.

For the AMP the mean precision at 10 for US Air, political blogs and netscience were 0.087, 0.07,

0.092, respectively; for the MMSB the corresponding values were 0.007, 0.0, 0.063, respectively.

7.4 Discussion

In this chapter, we studied the stochastic variational inference algorithms for the AMP and the

MMSB models of Chapter 6. We demonstrated that these algorithms can scale to large network sizes

and recover overlapping communities in benchmark networks. The MMSB algorithm scales better

than the AMP algorithm, but the AMP model outperforms the MMSB in predictive performance

by capturing node popularities.

Our exploration of large overlapping communities and “bridging” nodes in real collaboration

networks has presented the kinds of new scientific analyses these inferences enable. We leave as

future work the exercise of incorporating node covariates in the AMP models, and fitting large

network data sets where such metadata is available.

In the previous chapters, we have analyzed sparse discrete data sets of user behavior, text and

networks. In the next chapter, we consider the problem of fitting probabilistic models to massive

data sets from genetic variations. Unlike the previous data sets, these data sets are dense, presenting

a new inferential challenge; unlike several of the algorithms we have developed so far, we cannot

exploit data sparsity for scalability.
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Part III

Genetic variation
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Chapter 8

Scalable inference of genetic

variation

The goal of population genetics is to quantitatively understand variation of genetic polymorphisms

among individuals. Researchers have developed sophisticated statistical methods to capture the

complex population structure that underlies observed genotypes in humans. The number of humans

that have been densely genotyped across the genome has grown significantly in recent years. In

aggregate about 1M individuals have been densely genotyped to date, and if we could analyze this

data then we would have a nearly complete picture of human genetic variation. Existing state-of-

the-art methods, however, cannot scale to data of this size.

In this chapter, we develop a new algorithm TeraStructure to fit Bayesian models of genetic

variation in human populations on tera-sample-sized data sets (1012 observed genotypes, e.g., 1M

individuals at 1M SNPs). Terastructure is a stochastic variational inference algorithm (see Sec-

tion 2.2.4) for the PSD model we present in Section 8.2. It iterates between subsampling locations

of the genome and updating an estimate of the latent population structure. We develop this algo-

rithm in Section 8.3.

In Section 8.4, we demonstrate that on real and simulated data sets of up to 10K individuals,

TeraStructure is twice as fast as existing methods and recovers the latent population structure with

equal accuracy. On genomic data simulated at the tera-sample-size scales, TeraStructure continues

to be accurate and is the only method that can complete its analysis.
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8.1 Introduction

The quantitative characterization of genetic polymorphisms in human populations plays a key role

in understanding evolution, migration, and trait variation. Genetic variation of humans is highly

structured in that frequencies of genetic polymorphisms depend strongly on ancestry and evolution-

ary forces that vary among individuals. Therefore, to comprehensively understand human genetic

variation, we must also understand the underlying structure of human populations.

Over the last fifteen years, scientists have successfully used genome-wide Bayesian models of

genetic polymorphisms to infer the latent structure embedded in an observed population. The PSD

model of Pritchard, Stephens and Donnelly (Pritchard et al., 2000) has become a standard tool both

for exploring hypotheses about human genetic variation and for taking latent structure into account

in downstream analyses.

Modern genetics, however, cannot take full advantage of the PSD model and related probabilistic

models. The reason is that the existing solutions to the core computational problem—the problem of

estimating the latent ancestral structure given a collection of observed genetic data—cannot handle

the scale of modern datasets. For example, the sample sizes of genome-wide association studies now

routinely involve tens of thousands of people. Public and private initiatives have managed to measure

genome-wide genetic variation on hundreds of thousands of individuals. Taken together, we now have

dense genome-wide genotype data on the order of a million individuals. Fitting probabilistic models

on these data would provide an unprecedented characterization of genetic variation and the structure

of human populations. But, as we show in our study, this analysis is not possible with the current

state of the art.

To this end, we develop TeraStructure, an algorithm for analyzing data sets of up to 1012 geno-

types. It is an SVI algorithm (Hoffman et al., 2013) which iterates between subsampling observed

single nucleotide polymorphism (SNP) genotypes, analyzing the subsample, and updating its es-

timate of the hidden ancestral populations. TeraStructure provides a statistical estimate of the

PSD model, that we review in Section 8.2. The PSD model captures the heterogenous mixtures of

ancestral populations that are inherent in a data set of observed human genomes.

8.2 The PSD Model

We present our model and algorithm for unphased genotype data, though it easily generalizes to

phased data. (Most massive population genetics data sets are unphased.) In unphased data, each
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observation xi,` ∈ {0, 1, 2} denotes the observed allele for individual i at location `. The data are

coded for how many major alleles are present: xi` = 0 indicates two minor alleles; xi,` = 2 indicates

two major alleles; and xi,` = 1 indicates one major and one minor allele. In this last case we do not

code which allele came from the mother and which from the father. This is what it means for the

data to be unphased.

Formally, the PSD model assumes that there are K ancestral populations, each characterized by

its minor allele frequencies βk for each of the SNPs. Further, it assumes that each individual in the

sample exhibits those populations with different proportions θi. Finally, it assumes that each SNP

genotype ` in each individual i is drawn from an ancestral population that itself is drawn from the

individual-specific proportions. The data are assumed drawn from the following model:

βk,` ∼ Beta(a, b)

θi ∼ Dirichlet(c)

xi,` ∼ Binomial (2,
∑
k θi,kβk,`) .

This is the model for unphased data in Pritchard et al. (2000).

8.2.1 The PSD posterior

The PSD model turns the problem of estimating ancestral population structure into one of posterior

inference, i.e., estimating a conditional distribution. The assumed genomic structure—the popu-

lation proportions for each individual and the allele frequencies for each population—are hidden

random variables in the model; the collection of individuals at a collection of SNPs x = {xi,`} are

observed random variables. The main computational problem for the PSD model is to estimate

the posterior distribution of the hidden population structure given the data, p(β, θ |x). With this

posterior, or posterior means of the hidden variables, population geneticists can explore the latent

structure of their data and correct for ancestry in downstream analyses.

For example, Figure 8.1 illustrates the posterior expected population proportions, computed

from our algorithm, for the 1718 individuals of the 1000-Genomes data set. Figure 8.1 illustrates

these posterior estimates at three values of the latent number of populations K, at K = 7, K = 8

and K = 9. This data set contains over 3 billion observations. Though the model is not aware of

the country-of-origin for each individual, our algorithm uncovered population structure consistent

with the major geographical regions. Some of the groups of individuals identify a specific region
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Figure 8.1: Population structure inferred from the TGP data set using the TeraStructure al-
gorithm at three settings for the number of populations K. The visualization of the θ’s in the
Figure shows patterns consistent with the major geographical regions. Some of the clusters identify
a specific region (e.g. red for Africa) while others represent admixture between regions (e.g. green
for Europeans and Central/South Americans). The presence of clusters that are shared between
different regions demonstrates the more continuous nature of the structure. The new cluster from
K = 7 to K = 8 matches structure differentiating between American groups. For K = 9, the new
cluster is unpopulated.
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(e.g., red for Africa) while others represent admixture between regions (e.g., green for Europeans

and Central/South Americans).

Like many modern Bayesian models, this posterior is not tractable to compute: the original

algorithm for using the PSD model (Pritchard et al., 2000) and subsequent innovations (Alexander

et al., 2009; Raj et al., 2013) are all methods for approximating it. However, as we mentioned above,

none of these existing methods can analyze the kind of massive genetic data that is available today.

The reason is that each one requires repeatedly iterating through the entire data set to form its

approximation. With massive data sets, this is not a practical methodology.

8.3 An SVI algorithm for the PSD model

In this section, we develop a SVI algorithm for the PSD model that has a significantly computational

structure from prior work (Alexander et al., 2009; Raj et al., 2013). The algorithm is illustrated

in Figure 8.3. At each iteration, it maintains an estimate of the population proportions for each

person and the allele frequencies for each population.1 It repeatedly iterates between the following

steps: (a) sample a SNP from the data, x·,`, the measured genotypes at a single site in the genome

across all people, (b) analyze how the current estimates of the ancestral populations explain the

genotypes at that SNP, and (c) update the estimates of the latent structure—both the ancestral

allele frequencies and per-individual population proportions.

It is the subsampling step of the inner loop that allows TeraStrucure to scale to massive genetic

data. Rather than scan the entire population at each iteration, it iteratively subsamples a SNP,

analyzes the subsample, and updates its estimate. On small data sets, this leads to faster estimates

that are as good as those obtained by the slower procedures. More importantly, it lets us scale the

PSD model up to sample sizes that are orders of magnitude greater than what the current state of

the art can handle.

8.3.1 Variational Inference

We discussed the main ideas behind variational inference and SVI in Chapter 2. We first parameterize

individual distributions for each latent variable in the model, i.e., a distribution for each set of per-

population allele frequencies q(βk) and a distribution for each individual’s population proportions

q(θi). We then fit these distributions so that their product is close to the true posterior, where

1We describe and illustrate these quantities as though they are estimates. More technically, the algorithm stores
parameterized approximate posteriors to them.
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closeness is measured by Kullback-Leibler divergence. Thus we do Bayesian inference by solving the

following optimization problem,

q∗(β, θ) = arg min
q

KL(
∏
k

q(βk)
∏
i

q(θi)||p(β1, . . . , βK , θ1, . . . , θn |x)). (8.1)

To finish specifying the objective, we must set the form of q(·). The form of the variational

distribution is set to make the problem tractable, that is, for the objective of Equation 8.1 to be

computable (as well as its gradients). We define a family of distributions over the hidden variables

q(·) indexed by a set of free parameters ν. As with other applications in this thesis, we choose q(·)

to be the mean-field family, the family where each variable is independent and governed by its own

parametric distribution,

q(β, θ) =

(
K∏
k=1

L∏
`=1

q(βk,` | β̂k,`)
)

N∏
i=1

q(θi | θ̂i). (8.2)

Our notation is that θ̂i is the variational parameter for the ith individual’s population proportions

θi and β̂k,` is the variational parameter for the distribution of alleles in population k at location

`. Further, we set the form of each factor to be the same form as the prior. Thus q(θi,` | θ̂i,`) are

Dirichlet distributions and q(βk,` | β̂k,`) are Beta distributions. These decisions come from the general

theory around mean-field variational inference in exponential families (Ghahramani and Beal, 2001;

Bishop, 2006). We discuss these decisions in Section 8.3.2.

The objective function of Equation 8.1 is not computable. (It is not computable for the same

reason that exact Bayesian inference is intractable—it requires computing the marginal probability

of the data.) Thus variational inference optimizes an alternative objective that is equal to the

negative KL up to an unknown additive constant,

L(ν) = Eq[log p(β, θ, x)]− Eq[log q(β, θ | ν)]. (8.3)

This variational family is flexible – it represents different individuals with different population

proportions. In Figure 8.1 we plotted the variational expectation of each individuals population

parameters distribution E
[
θi | θ̂i

]
.

With these components—the objective of Equation 8.3 and the variational family of Equa-

tion 8.2—we have turned the inference problem for the PSD model into an optimization problem.
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Figure 8.2: A schematic diagram of stochastic variational inference for the Pritchard-Stephens-
Donnelly (PSD) model. The algorithm maintains an estimate of the latent population proportions
for each individual. At each iteration it samples SNP measurements from the large database, infers
the per-population frequencies for that SNP, and updates its idea of the population proportions.
This is much more efficient than algorithms that must iterate across all SNPs at each iteration.

8.3.2 Stochastic Variational Inference

TeraStructure solves this optimization problem with stochastic variational inference (Hoffman et al.,

2013). Recall from Chapter 2 that SVI is an adaptation of the classical stochastic optimization

algorithm (Robbins and Monro, 1951) to variational inference (see Chapter 2). Specifically, we

optimize the KL divergence by following noisy realizations of its derivatives, where the noise emerges

from our subsampling the data at each iteration. The noisy derivatives are much cheaper to compute

than the true derivatives, which require iterating over the entire data set.

Global and local parameters

Before we develop our algorithm, we use the conditional dependencies in our graphical model to

divide our variational parameters into local and global (Hoffman et al., 2013).

In each iteration we subsample allele measurements for all individuals at a SNP location l. Our

sampled observations are x1:N,l. Under the PSD model, given individual proportions θ the sample

x1:N,l and the allele frequencies β1:K,l are conditionally independent of all other observations and

allele frequencies β1:K,−l. Thus, the allele frequencies β1:K,l are local to the observations x1:N,l.

The per-individual population proportions θi, however, are not local to the observation; they gov-

ern the distribution of observations at all SNP locations. Therefore, the θ are global variables.

Following Hoffman et al. (2013), we extend this notion of global and local sets to the variational
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1. For all users i ∈ 1, · · · , N , initialize the population proportions θi randomly (see Sec-
tion 8.3.2)

2. repeat
3. Sample a location l and all observations x.,l at that location

4. For k ∈ 1, · · · ,K, initialize (β̂lk,0, β̂lk,1) at location l to (a, b),
5. Local step: repeat
6. For k ∈ 1, · · · ,K and i ∈ 1, · · · , N set

φil,k ∝ exp
{

E [log θi,k] + E [log βk,l]
}

ξil,k ∝ exp
{

E [log θi,k] + E [log(1− βk,l)]
}

7. For k ∈ 1, · · · ,K set the Beta parameters at location l

β̂lk,0 = a+
∑N
i=1 xi,l.φil,k

β̂lk,1 = b+
∑N
i=1(c− xi,l)ξil,k

(8.4)

8. until local parameters φ.,l, ξ.,l and β̂.,l converge
9. Global step: For i ∈ 1, · · · , N set the population proportions

θ̂ti,k = (1− ρt)θ̂(t−1)i,k + ρtL(αk + xi,lφil,k + (c− xi,l)ξil,k) (8.5)

10. Set the step-size ρt = (τ0 + t)−κ

11. until convergence criteria is met

Figure 8.3: Stochastic variational inference for the PSD model.

parameters. Given observations xl,1:N at the location l, the θ̂ are the global variational parameters;

the β̂1:K,l are the local variational parameters.

In stochastic variational inference (Hoffman et al., 2013), we iteratively update local and global

parameters. In each iteration, we first subsample a SNP location l and compute optimal local

parameters for the sample, given the current settings of the global parameters. We then update

the global parameters using a stochastic natural gradient (Amari, 2001) of the variational objective

computed from the subsampled data and the local parameters.

We will now develop our algorithm by first obtaining closed forms updates for our local and

global variational parameters. For the local parameters, we will derive optimal coordinate updates;

for the global parameters, we will derive the stochastic natural gradient update.
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Computing the optimal local parameters

Given the global variables θ, we can optimize local parameters β.,l in closed form under certain

assumptions. These assumptions involve the complete conditionals of the hidden variables in the

model, and the variational family. A complete conditional is the conditional distribution of a latent

variable given the observations and the other latent variables in the model (Ghahramani and Beal,

2001). If the complete conditional of a variable is in the same family as its prior, and the correspond-

ing variational distribution is in the same family, then we can optimize its variational parameter by

setting it to the expected natural parameter (under q) of the complete conditional.

If the complete conditional of each latent variable is in the same exponential family as its prior

distribution, then the model is conditionally conjugate.

The complete conditional for the βk,l at a sampled location ` are

p(βk,l|β−k,l, θ, x) ∝ p(βk,l|a, b)
N∏
i=1

p(xi,l|θi, β1:K,l)

∝ exp
{

(a− 1) log βk,l + (b− 1) log(1− βk,l)

+
∑
n
xn,l log

∑
k

θn,kβk,l +
∑
n

(c− xn,l) log(1−∑
k

θn,kβk,l)
}
.

(8.6)

The complete conditional in Equation 8.6 is not in the exponential family because the expectation of

the second and third log-of-summation terms with respect to the variational family q are intractable.

Therefore, the PSD model of Section 8.2 is not conditionally conjugate.

To overcome the nonconjugacy in the model, we introduce multinomial approximations using the

zeroth order delta method for moments (Bickel and Doksum, 2007; Wang and Blei, 2013). These

approximations provide a lower bound to these intractable terms in the evidence lower bound. In

particular, we introduce auxiliary K-multinomial distributions q(φ) and q(ξ),

log (
∑
k θi,kβk,l) ≥ ∑

k φil,k log
θi,kβk,l
φil,k

,

log(1−∑k θi,kβk,l) ≥ ∑
k ξil,k log

θi,k(1−βk,l)
ξil,k

. (8.7)

Notice that these distributions q(φ) and q(ξ) approximate only the conditionals of the allele frequen-

cies local to the sampled location l. Therefore, the parameters to these distributions are also local

to l.
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Substituting the lower bounds from Equation 8.7 in Equation 8.6, the complete conditional is

p(βk,l|β−k,l, θ, x) ∝ Beta
(
a+

N∑
i=1

yi,lφil,k, b+
N∑
i=1

(c− yi,l)ξil,k
)
. (8.8)

Our approximation has effectively placed the complete conditional of allele frequency βk,l in the

exponential family. By choosing the variational distribution q(βk,` | β̂k,`) from Equation 8.2 to be

the Beta distribution, the same family as the prior distribution, we satisfy the conditions for a closed

form coordinate update for the local parameters β̂1:K,l. The optimal β̂k,l is the expected natural

parameter of the complete conditional in Equation 8.8 (Hoffman et al., 2013).

Another perspective on the approximations in Equation 8.7 is they lead to a computationally

efficient lower bound on the objective of Equation 8.3.

Computing stochastic gradient updates

We now turn to the stochastic optimization of the population proportions parameter θ̂n using the

subsampled observations x1:N,l at location l. We compute noisy estimates of the natural gradi-

ent (Amari, 2001) of the variational objective with respect to θ̂n, and we follow these estimates with

a decreasing step-size. Following Hoffman et al. (2013), we can compute the natural gradient of

Equation 8.3 with respect to the global variational parameter θ̂i by first computing the coordinate

update and then subtracting the current setting of the parameters.

To compute the coordinate update for θ̂i, we write down its complete conditional. For the

population proportions θi, the complete conditional is

p(θi|β, x) ∝ p(θi|c)
L∏
l=1

K∏
k=1

p(βk,l|a, b)
L∏
l=1

p(xi,l|θi, βl)

∝ exp
{∑

k

(c− 1) log θi,k

+
∑
l

xi,l log
∑
k

θi,kβk,l +
∑
l

(c− xi,l) log(1−∑
k

θi,kβk,l)
}
.

(8.9)

Similar to the complete conditionals of the local variables in Equation 8.6, the complete conditional in

Equation 8.9 is not in the exponential family. We use the multinomial approximations in Equation 8.7

to bring the complete conditional into the exponential family, and in the same family as the prior
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distribution over the population proportions:

p(θi|β, x) ∝ Dirichlet
(
αk +

L∑
l=1

(xi,lφil,k + (c− xi,l)ξil,k)
)
. (8.10)

Following Hoffman et al. (2013), the stochastic natural gradient of the variational objective with

respect to the global parameter θ̂i, using L replicates of xi,l is

∂L(ν)

∂θi
= α+ L(xi,lφil,k + (c− xi,l)ξil,k)− θi. (8.11)

Notice we have used the expected natural parameter from the complete conditional in Equation 8.10

in Equation 8.11. We arrive at this form of the natural gradient, by premultipling the gradient by

the inverse Fisher information, and replacing the summation over all SNP locations in Equation 8.11

with a summation over L replications from the sampled location. Equation 8.11 is a noisy natural

gradient of a lower bound on the variational objective.

To optimize the variational objective with respect to the population proportions θ̂i, we use the

natural gradients in Equation 8.11 in a Robbins-Monro algorithm (Hoffman et al., 2013). At each

iteration we update the global variational parameter with a noisy gradient computed from the SNP

observations at location l. The step-size at iteration t is ρt, and is set using the schedule

ρt = (t+ τ)−κ. (8.12)

This satisfies the Robbins-Monro conditions on the step-size, and guarantees convergence to a local

optimum of the variational objective.

The stochastic algorithm

The full algorithm is shown in Figure 8.3. For each iteration, we first subsample a SNP location

l and compute optimal local parameters (φ1:N,l, ξ1:N,l, β̂1:K,l) for the sample, given the current

settings of the global parameters. We then update the global parameters θ̂i of all individuals using

stochastic natural gradients of the variational objective computed from the subsampled data and

local parameters.
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Memory efficient computation

During training the stochastic variational inference algorithm is only required to keep the variational

population proportions θ̂i,k for all individuals i ∈ 1, · · · , N in memory. For a given location, the

optimal local parameters (φ1:N,l, ξ1:N,l, β̂1:K,l) can be computed using the local optimization steps—

steps 6 to 9—in Figure 8.3. This drastically cuts the memory needed. The memory requirement

is therefore O(NK) where N is the number of individuals and K is the number of latent ancestral

populations. The algorithm also results in a compact fitted model state. The fitted model state

comprises of the estimated θ̂i for all individuals. The allele frequencies β̂1:K,l can be queried for any

given location l using the local step.

Linear scaling in the number of threads

We can compute the local steps and the global steps in parallel across T threads. First, we “map”

the individuals into T disjoint sets, and each thread is responsible for computation on one of these

sets. Notice that each thread can independently compute the local parameters (φn,l, ξn,l) for any

individual n that it owns. This corresponds to step 6 of the algorithm in Figure 8.3. Further, the

sums required in step 7 can also be computed in parallel. The “reduce” step consists of aggregating

the per-thread sums in step 7, and estimating the new Beta parameters. This is an O(T + K)

operation. Since T and K are small constants, our reduce step is inexpensive. The global step in

step 9 can also be computed in parallel.

Given T threads, the computational complexity of the stochastic algorithm is O(NKT ). The

algorithm is dominated by the parallel computation in steps 6 and 9, which scale linearly in the

number of threads T . By increasing T , we can scale our algorithm almost linearly in the number of

threads.

Initializing variational parameters

We initialize the population proportions randomly using θik ∼ Gamma(100, 0.01). Within the local

step, we initialize (β̂lk,0, β̂lk,1) at location l to the prior parameters (a, b).

Assessing convergence using a validation set

We hold out a validation set of genotype observations, and evaluate the predictive accuracy on that

set to assess convergence of the stochastic algorithm in Figure 8.3 (Geisser and Eddy, 1979). These

observations are treated as missing during training.
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The validation set is chosen with computational efficiency in mind. We will periodically evaluate

the heldout log likelihood on this set (the validation log likelihood) to determine convergence of the

algorithm in Figure 8.3. By choosing individuals from a small fraction of total locations L, we ensure

that this periodic computation is only required to recompute the optimal β̂.,k for those locations.

The TeraStructure algorithm stops when the change in validation log likelihood is less than

0.0001%. We measure this change over 100, 000 iterations for the data sets with N >= 100, 000; we

measure this change across 10, 000 iterations for smaller data sets.

For the validation set, we uniformly sample at random 0.5% of the L locations, and at each

location we uniformly sample at random and keep aside observed alleles for r individuals. The

number of per-location held out individuals r is set to N/100 for large N (N > 2000) and otherwise

to N/10. This allows for a reasonably small fraction of individuals to be held out from each location.

Further, r is limited to a maximum of 1000 individuals for any N .

8.4 Empirical study on massive data sets

We applied TeraStructure to both real and simulated data sets to study and demonstrate its good per-

formance. We compared it to ADMIXTURE (Alexander et al., 2009) and fastSTRUCTURE (Raj

et al., 2013), the two algorithms for estimating the PSD model that work on modestly sized data. In

our comparisons, we timed all the algorithms under equivalent computational conditions. On sim-

ulated data, where the truth is known, we measured the quality of the resulting fits by computing

the KL divergence between the estimated models and the truth. On the real data sets, where the

truth is not known, we measured model fitness by predictive log likelihood of held-out measurements

(Methods). The smaller the KL divergence and the larger the predictive likelihood, the better a

method performs.

Real Data sets

We first analyzed two real data sets: the Human Genome Diversity Panel (HGDP) data set (Cann

et al., 2002; Cavalli-Sforza, 2005) and the 1000 Genomes Project (TGP) (Abecasis, 2012). After

preprocessing, HGDP consisted of 940 individuals at 642K SNPs for a total of 604 million ob-

served genotypes and TGP consisted of 1,718 people at 1,854,622 SNPs for a total of 3.2 billion ob-

served genotypes. The preprocessing for HGDP consisted of removing individuals not in the “H952”

set (Rosenberg et al., 2006), which leaves us with only the individuals without first or second degree

relatives in the data. The preprocessing for TGP consisted of removing related individuals using
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Figure 8.4: TeraStructure recovers the ground truth per-individual population proportions on
the synthetic data sets with high accuracy. Each panel shows a visualization of the ground truth θ∗i
and the inferred E

[
θi|θ̂i

]
for all individuals in a data set. The current state-of-the-art algorithms

cannot complete their analyses of 100,000 and 1,000,000 individuals. TeraStructure is able to analyze
data of this size and gives highly accurate estimates.
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the sample information provided by the 1000 Genomes Project. Further, we removed individuals for

95% genotyping completeness and removed the SNPs with lower than 1% minor allele frequency.

Synthetic data sets

The goal of our study on synthetic data sets is to demonstrate scalability to tera-sized data sets—

one million observed genotypes from one million individuals—while maintaining high accuracy in

recovering ground truth per-individual population proportions θ and allele frequencies β. To this end,

we generated synthetic genotype data using the PSD model (Pritchard et al., 2000). A specification of

the the per-individual population proportions and the population allele frequencies is our “ground

truth”. To generate realistic synthetic data, we made the individual θi’s visually similar to the

proportions obtained from fitting our model to the TGP data set. We modeled our allele frequencies

β` from real data.

In our simulation, the process of drawing an individual i’s proportions θi has two levels. At

the first level, we drew S points in the K-simplex from a symmetric Dirichlet distribution, qs ∼

Dirichlet(α). Each of the S points represents a “region” of individuals, and each individual was

assigned to one of the regions such that the regions are equally sized. Then, we drew the population

proportions of each individual, θi ∼ Dirichlet(γqs,1, . . . , γqs,K). Thus, each region has a fixed qs and

the proportion of individuals from that region are governed by the same scaled qs parameter. The

parameter qs controls the sparsity of the θi, while the parameter γ controls how similar admixture

proportions are within each group. For all simulations, we set S = 50, α = 0.2, and γ = 50.

Each β` at a SNP location `, consists of K independent draws from a Beta distribution with

parameters following that of the Balding-Nichols Model (Balding and Nichols, 1995), i.e. β` ∼

Beta( 1−F`
F`

p`,
1−F`
F`

(1− p`)) where p` is the marginal allele frequency and F` is the Wright’s FST at

location `. The paired parameters p` and F` were estimated from the HGDP data set described

earlier. For each pair, we chose a random complete SNP from the HGDP data and set the allele

frequency p` to the observed frequency. The Wright’s FST F` was set to the Weir & Cockerham

FST estimate (Weir and Cockerham, 1984) with 5 discrete subpopulations, following analysis of the

HGDP study in Rosenberg et al. (2006). We simulated data with 1,000,000 SNPs and four different

scales of individuals: 1,000, 10,000, 100,000 and 1,000,000. With 1 million individuals and 1 million

SNPS, the number of observations is tera-sampled-sized, i.e., 1012 observations.
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Metrics

On real data sets, we computed the predictive accuracy on a test set of observed alleles by computing

the heldout log likelihood under the PSD model. The test set is chosen to enable a fair comparison to

other algorithms. We hold out alleles for 0.5% of the N individuals from each location l ∈ 1, · · · , L.

A better predictive accuracy corresponds to a better fit to the data (Geisser and Eddy, 1979). We

approximate the predictive distribution of a heldout SNP using posterior estimates of θ̂ and β̂.

On synthetic data sets, we measured the accuracy in recovering the ground truth population

proportions. We computed the Kullback Leibler divergence (Kullback and Leibler, 1951) of the

Multinomial governed by the variational posterior estimate θ̂ to the true population proportions θ∗

for each individual. We then compared the median KL divergence across all individuals.

Hyperparameters

We set the Dirichlet parameter c to 1
K to enforce a sparse prior on the per-individual population

proportions. We set the learning rate parameters, τ0 to 1 and κ to 0.5, to allow learning rapidly

in the early iterations. Finally, we set the hyperparameters a and b to 1 to enforce a uniform prior

on the population parameters β1:L,1:K . We used the same hyperparameter settings in all of our

experiments.

Open source software

Our software is implemented in C++ and has 5400 lines of code. It uses the POSIX Threading

library for multi-threaded computation. It inputs genotype data in text or PLINK format (Purcell

et al., 2007) and outputs the population proportions E
[
θ̂
]
. An additional software tool runs local

variational inference to write out the expected allele frequency Beta parameters corresponding to a

list of locations. To run this program, one provides the θ̂, and a list of SNP locations. Our software

is available at http://github.com/premgopalan/popgen.

Computing hardware

All experiments were run on a single multicore machine with two Intel Xeon E5-2680v2 processors

with 10 cores each and running at 2.8GHz. The maximum memory required for our experiments is

10GB.
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Figure 8.5: Predictive log likelihood as a function of the number of ancestral populations on the
Human Genome Diversity Panel (HGDP) and 1000 Genomes Project (TGP) data sets. The HGDP
data peaks at 10 population, and the TGP data peaks at 8 populations.

Data set N Mean predictive log likelihood

TeraStructure ADMIXTURE fastSTRUCTURE

HGDP 940 -0.71 -0.71 -0.71
TGP 1718 -0.60 -0.60 -0.61

Table 8.1: The predictive accuracy of TeraStructure is comparable to the ADMIX-
TURE (Alexander et al., 2009) and the fastSTRUCTURE (Raj et al., 2013) algorithms, implying
a similar model fit. The mean test log likelihood under the model fits is shown. We generated 5 test
sets at random and computed the mean over these heldout sets. N is the number of individuals in
the data set. The number of ancestral populations is set to K = 10 for HGDP and K = 8 for TGP.

131



Data set Replication N L Median per-individual KL divergence

TeraStructure ADMIXTURE fastSTRUCTURE

syn10K 1 10,000 1,000,000 0.016 0.020 6.68
syn10K 2 10,000 1,000,000 0.009 0.019 5.15
syn10K 3 10,000 1,000,000 0.020 0.022 4.49
syn100K 1 100,000 1,000,000 0.006 – –
syn100K 2 100,000 1,000,000 0.013 – –
syn100K 3 100,000 1,000,000 0.009 – –
syn1M 1 1,000,000 1,000,000 0.015 – –

Table 8.2: The accuracy of the algorithms on synthetic data. TeraStructure is the only algorithm
that was able to complete its analysis on the synthetic data sets with N = 100, 000 individuals and
N = 1, 000, 000 individuals. On these massive data sets, TeraStructure found a highly accurate
fit to the data (see also Figure 8.4). On smaller synthetic data, TeraStructure finds a fit to the
data that is closer to the ground truth than either of the other methods. The number of ancestral
populations is set to the number of ground truth ancestral populations: K=6.

8.4.1 Results

In previous work, ADMIXTURE and fastSTRUCTURE have been shown to perform reasonably

well on real data sets of the size corresponding to TGP and HGDP (Alexander et al., 2009; Raj

et al., 2013). In applying all three algorithms to these data, we found that TeraStructure equalled

the predictive log likelihood on held-out data obtained by the competing methods (see Table 8.1).

TeraStructure also completed its estimation in a significantly shorter period of time (Table 8.3).

We then studied the algorithms on synthetic data. We designed these data sets be similar to

real genetic data sets, but at sizes that push the limits of what is available today. We simulated

data sets consisting of 10,000 individuals, 100,000 individuals, and 1M individuals, each with 1M

SNP genotypes per individual. On these data we know the true individual proportions, and we can

visualize how well each algorithm reconstructs them (Figure 8.4). We found that ADMIXTURE

and fastSTRUCTURE were only able to analyze the 10,000-individual set, on which TeraStructure

was both 2-3 times faster and more accurate (Tables 8.3 and 8.2). More importantly, TeraStructure

was the only algorithm that was able to analyze the larger data sets of 100,000 individuals and 1M

individuals, and again with high accuracy (Figure 8.4 and Table 8.2).

TeraStructure uses a convergence criterion to decide when to stop iterating, as described in

Section 8.3.2. This lets us measure how many SNPs were subsampled before the algorithm had

learned the structure of the population. On the HGDP and TGP data, we found that TeraStructure

needed to sample ∼ 90% and ∼ 50% of the SNPs, respectively, before converging (Table 8.3). On

the tera-sample-sized data set of 1M individuals by 1M SNPs, TeraStructure sampled ∼ 50% of the

132



Data set N L S Time (hours)

TeraStructure ADMIXTURE fastSTRUCTURE

HGDP 940 644,258 0.9 < 1 < 1 12
TGP 1718 1,854,622 0.5 3 3 21
syn10K 10,000 1,000,000 1.0 9 28 216
syn100K 100,000 1,000,000 0.7 158 – –
syn1M 1,000,000 1,000,000 0.5 509 – –

Table 8.3: The running time of all algorithms on both real and synthetic data. TeraStructure is
the only algorithm that can scale beyond N = 10, 000 individuals to the synthetic data sets with
N = 100, 000 individuals and N = 1, 000, 000 individuals. S is the fraction of SNP locations
subsampled, with repetition, during training; L is the number of SNP locations. S ∗ L also equals
the number of training iterations of the outer loop in the algorithm of Figure 8.3 prior to convergence,
since we subsample one SNP location in each iteration. The TeraStructure and ADMIXTURE
algorithms were run with ten parallel threads, while fastSTRUCTURE, which does not have
a threading option, was run with a single thread. Even under the best-case assumption of ten
times speedup due to parallel computation, the TeraStructure algorithm is twice as fast as both
ADMIXTURE and fastSTRUCTURE algorithms on the data set with N = 10, 000 individuals.
On the real data sets, TeraStructure is faster than the other algorithms. In contrast to other
methods, TeraStructure iterated over the SNP locations at most once on all data sets.

SNPs before converging.

When analyzing data with the PSD model, we must choose the number of ancestral popula-

tions K. For real data, TeraStructure addressed this model selection problem using a predictive

approach (Geisser and Eddy, 1979). We held out a set of genome locations for each individual and

computed the average predictive log likelihood under the model for varying numbers of ancestral

populations. The best choice of K is the one that assigns the highest probability to the held-out

set. Our sensitivity analysis revealed that K = 8 had the highest validation likelihood on the TGP

data, while K = 10 had the highest on the HGDP data (Figure 8.5). On the real data sets, we used

the optimal values of K (Table 8.1); on simulated data sets, we set K to the number of ground truth

ancestral populations (Table 8.3).

8.5 Discussion

Genomic studies are growing and it is vital that our statistical algorithms can scale to trillions or

more data points. Algorithms that require multiple iterations over the entire data fail in this setting.

But methods like TeraStructure, methods that repeatedly take strategic subsamples of the data to

iteratively build a global picture of its latent structure, are positioned to succeed. We have shown

that TeraStructure can accurately fit a rich probabilistic model of population genetic structure on

data sets with a million individuals and 1012 observed genotypes. This is a jump of orders of
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magnitude beyond the capabilities of current state-of-the-art algorithms. Using TeraStructure to

analyze real data sets of the tera-sample-size will provide the most comprehensive analyses to date

of the global population genetics of humans.

TeraStructure’s computational flow is simple: it iterates between subsampling observed SNPs

from the data, analyzing the subsample, and updating its estimate of the hidden ancestral popu-

lations. The main ideas in this chapter can be adapted to many Bayesian models that are used in

modern genetics research, such as HMMs, phylogenetic trees, and others.

Unlike the previous chapters, genetic variation data sets are dense. In our real data sets, roughly

50% of the entries of the discrete matrix of measured alleles were non-zero. Our algorithms derive

scalability from subsampling within the stochastic variational inference framework, and from using

multiple threads for the trivially parallellizable local step in Figure 8.3.

One direction of future work is to consider more efficient subsampling. The algorithm of Fig-

ure 8.3 subsamples a single location at each iteration, but includes the allele measurements from all

individuals as observations. A improved strategy would be to subsample from both individuals and

the SNP locations. Further, we may consider informative subsampling strategies, as explored in the

context of network models in Chapter 6. One strategy would be to subsample the locations that

have the most variability in allele measurements.

We have presented probabilistic models and scalable inference algorithms for several types of

discrete data: user behavior, text, networks and genetic variation. In the next chapter, we summarize

the ideas behind our models and inference algorithms and point to directions of future work.

134



Chapter 9

Contributions and future research

The preceding chapters developed statistical models and inference algorithms for learning from

massive discrete data sets. We now summarize the principal contributions underlying our results,

and outline avenues for future research.

9.1 Summary of methods and contributions

In this thesis, we have developed statistical inference algorithms for analyzing massive discrete data

sets derived from user consumption, network interactions and genetic variations. We used directed

graphical models to describe our modeling assumptions about the data, and developed variational

inference or stochastic variational inference algorithms. We identify three principal contributions

underlying our results.

• Scaling intractable models. For several models in this thesis a straightforward application of

classic inference methods such as Markov Chain Monte Carlo, variational inference or even

stochastic variational inference fails to scale them to large data sets. The AMP model of

network popularity (Chapter 6) and the Bayesian model of genetic variations (Chapter 8) are

nonconjugate models. In both cases, we develop approximate posterior inference for a tractable

lower bound of the variational objective.

• Subsampling under SVI. We studied new non-uniform subsampling methods in this thesis. In

the assortative MMSB model (Airoldi et al., 2008) of network communities of Chapter 6, the

Markov blanket of each node includes the variables associated with all other nodes. Under this

challenging setting, we developed scalable SVI algorithms that subsample network pairs non-
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uniformly. We presented the link sampling method that relied on positing a variational family

conditional on the data (see Section 6.3.3), and informative set sampling (see Section 6.3.2)

that subsampled network pairs with a bias towards pairs that help estimation.

• Modeling insights. Using posterior predictive checks we demonstrated that the hierarchical

Poisson factorization model of Section 3.3.2 captures the long-tailed user consumption activity

well. Further, the additive PF models provide sparse latent representations of users and items.

In particular, we demonstrated that coupling the latent spaces across article content and article

readership in the CTPF model allows user preferences for articles to be interpreted as affinity

to latent topics. We used these latent representations in exploratory analysis of large data sets

in Chapter 4. In Chapter 5, we showed that the stick-breaking construction of the Gamma

process, derived from a corresponding construction for the Dirichlet process, results in efficient

mean-field inference for the Bayesian nonparametric Poisson factorization model.

In conclusion, we have developed scalable inference for a range of sophisticated models: Bayesian

nonparametric models (Section 5.1), generalized linear models (Section 6.1.2), Bayesian hierarchical

models (Section 3.3.2). On real-world data sets and synthetic data sets, we have demonstrated that

our algorithms yield good predictive performance and provide an exploratory tool for the hidden

structure in the data.

9.2 Suggestions for future research

We conclude by discussing open research directions suggested by our approaches to scaling latent

variable models to large data sets.

Two broad areas of future work include learning algorithms for streaming data sets (Broderick

et al., 2013b) and using our models as building blocks in more sophisticated models, for example,

Bayesian nonparametric models or a recommendation model that combines network, text, user and

item covariates and user ratings. We now enumerate a few specific suggestions for future work.

• Better subsampling methods for the PSD model. In Chapter 8 we have shown that TeraS-

tructure can accurately fit a rich probabilistic model of population genetic structure on data

sets with a million individuals and 1012 observed genotypes. The algorithm of Figure 8.3

subsamples a single location at each iteration, but includes the allele measurements from all

individuals as observations. A improved strategy would be to subsample from both individu-

als and the SNP locations. Further, we may consider informative subsampling strategies, as
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explored in the context of network models in Chapter 6. One strategy would be to subsample

the locations that have the most variability in allele measurements.

• Modeling covariates. One of the main advantages of taking a probabilistic approach to network

analysis (Chapter 6) is that the models and algorithms are reusable in more complex settings.

Our strategy for analyzing networks easily extends to other probabilistic models, such as those

taking into account node covariates. For example, the AMP model of networks (Section 6.1.2)

can be extended to incorporate observed and hidden node covariates, but we have only studied

hidden node variables in Chapter 6. Recent research from Krivitsky et al. (2009) and Kim and

Leskovec (2011) will be informative and relevant to this step.

• Posterior predictive checks. For what types of data do our models and algorithms work best?

The MMSB and the AMP models are based on the assumption that nodes assume a single

latent community during interactions. Subsequently, each node is associated with normalized

mixed-memberships. However, in social networks an interaction may be made stronger by

multiple shared similarities between two people. An interesting venue for future work is to

explore models that can aggregate the effect of multiple shared communities between nodes in

explaining links between them.

Posterior predictive checks (Rubin, 1984; Gelman et al., 1996) are effective tools for such model

assessment. The idea behind a PPC is to simulate a complete data set from the posterior pre-

dictive distribution—the distribution over data that the posterior induces—and then compare

the generated data set to the true observations. A good model will produce data that captures

the important characteristics of the observed data.

• Comparison to Gaussian MF with downweighted zeros. As noted in Chapter 4, a comparison

of HPF to Gaussian MF with downweighted zeros (Hu et al., 2008) is important future work.

A related effort is to similarly extend the APF models to capture greater uncertainty around

missing/zero ratings.

While we have focussed on specific applications in modeling user behavior, network interactions

and human genetic variation, the statistical methods developed in this thesis extend to a variety

of discrete data sets. Examples include finding overlapping communities of functionally similar

chromosomes from chromosome folding data or the study of fMRI data. On advanced computing

architectures, our algorithms can likely analyze much larger data sets. Further advances in this area

are needed to make scalable Bayesian data analysis a standard tool in the scientist’s toolbox.
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