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Abstract

Web Privacy Measurement experiments have heavily influenced privacy debates by

shedding light into practices such as third party online tracking and price discrim-

ination. However, these research experiments have typically been one-off projects,

with different groups encountering similar methodological and engineering challenges

without forming an institutional knowledge base. As an illustrative example of this

trend of repeating effort through self-contained experiments, we present the results

of one study comparing mobile and desktop tracking and discuss how challenges from

this study and other works in the literature shaped the formation of general design

principles intended to improve the efficiency of such experiments.

We present a robust and modular web measurement platform that enables scalable

and repeatable experiments while avoiding many common pitfalls observed by the

research community. We describe case studies performed on this framework, including

the detection of unique cookie identifiers, the detection of third-party synchronization

of these IDs and an examination into the personalization of the content on news sites

based on user history.
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Chapter 1

Introduction

Web Privacy Measurement - the analysis and collection of data while browsing online

to understand the flow and use of personal information - serves as a powerful tool in

privacy and policy debates. Already, smaller-scale studies with wide media exposure

[20],[32] have revealed practices such as price discrimination and price re-ordering,

sparking public outcry and increased regulation. While we reserve judgement on

individual practices by third-party trackers and data consumers, Web Privacy Mea-

surement, or WPM, is valuable in reducing information asymmetry by bringing these

practices to light.

Despite abundant anecdotal evidence of practices such as targeted ads, for WPM

to have a serious role in privacy discussions, it must possess scientific rigor. Achieving

this level of rigor is a challenging task both due to engineering and measurement

concerns as well as the current disparateness of the field. In particular, performing

large measurements requires a high degree of automation, but the dynamic nature

of the web renders even the creation of a platform capable of driving a full browser

instance over tens of thousands of sites in a stable manner a non-trivial task. The

related issue of ensuring that browser profiles remain consistent throughout these

crawls is another fundamental engineering challenge.
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In [8] we surveyed 32 papers in the field of WPM, considering both their areas of

inquiry as well as their engineering challenges. One major trend in this survey was

that the various research groups performed experiments using one-off platforms on

private codebases. The first major drawback of this approach is that research groups

unknowingly duplicated efforts when solving the same problems in WPM. Not only

only does this waste effort and lead to slightly different solutions but there currently

does not exist a central codebase to serve as a repository of institutional knowledge

in the field. Likewise, the closed nature of individual codebases severely hampers the

repeatability of measurement experiments.

To provide a concrete example of the old paradigm of WPM studies, we describe

our earlier study on the mobile browsing ecosystem and the issues that inspired our

move to a centralized platform. We present a new measurement platform that solves

many of the engineering problems in the literature and has the capability to replicate

many of the measurement phases of these studies as well. Finally, we describe a set

of new measurement experiments conducted entirely on this platform. We plan to

release the platform as an open source tool in order to increase the frequency of WPM

studies and discussions in the privacy sphere.

Much of the material from this thesis is drawn from our specific contributions in

[8, 9, 28] as well as other currently ongoing studies.
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Chapter 2

Background and Related Work

We present a survey of related work with a particular focus on the infrastructure

components of previous WPM studies. This survey is primarily drawn from the

metholody review in [8]. We also present a brief overview of the types of experiments

conducted within the WPM space.

When conducting WPM experiments, the three major tasks are driving a crawl,

collecting the data and analyzing the data. The first two tasks are conducted online

and ideally should transcend the scope of individual experiments. Data analysis is

typically performed offline with custom scripts written for individual studies.

Although some of the studies in the literature appear to have involved manual

browsing [30, 16, 3, 14] or crowd-sourcing, conducting repeated experiments across

huge numbers of sites requires some form of automation. When considering the type

of user agent for a crawl, there exist a few key considerations in terms of the ease of

conducting measurements experiment and arguing about the validity of the results.

2.1 Browser Automation

First, the automation platform should be easy to program in order to promote the

replication of results and to minimize the possibility of bugs stemming from an overly
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complicated architecture. On a related note, the platform should allow researchers

to perform a similar set of actions with respect to a real browser. Second, the plat-

form should be resource-efficient in the sense that many instances of the automation

platform should be able to run on the same machine. Third, the platform should

look like a real user as closely as possible or else an obvious objection to studies

performed on the platform is that third parties detected the presence of an artificial

user and acted in a pathological manner. We now evaluate the three most funda-

mental possibilities for user agents in WPM experiments: HTTP libraries (e.g. curl

or wget), lightweight browsers like PhantomJS (an implementation of WebKit) and

fully automated browser instances powered through drivers such as Selenium.

In practice, none of the studies used HTTP libraries since these libraries clearly do

not provide a realistic representation of an actual browser. Lightweight browsers and

full browser instances enjoyed heavy popularity in the literature. Acar et. al. [1] claim

that PhantomJS can provide up to 200 parallel instances on a commodity desktop, a

clear advantage in terms of resource efficiency. However, PhantomJS does not support

plugins and, in general, may differ from consumer browsers in a significant enough

manner so as to be flagged by bot detection software. Thus, studies performed on

this framework risk facing serious methodological concerns as to whether their results

reflect the experience of a typical user browsing online. Full browser instances offer

the advantage of realism but at the cost of resource efficiency, especially when dealing

with issues such as Firefox memory leakage.

In terms of actually automating online browsing, the two primary tasks consist of

visiting a page and, if needed, performing a task on that page. The simplest method

of visiting a site is to use JavaScript to launch a page in an iframe or a separate tab as

did [25] and our earlier WPM study [9] described in Section 3.2. While this approach

is extremely simple and platform-agnostic, it does not provide the end-user with much

control over the course of the crawl since this involves simply visiting a static page
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with a set of JavaScript commands. Perhaps more seriously, these JS-bearing pages

can show up as referrers during the course of the crawl, potentially polluting the data.

In order gain more flexibility in browser actions, many researchers used frameworks

such as CasperJS for PhantomJS and SlimerJS or Selenium for Firefox, Chrome and

PhantomJS. Selenium was popular in many of the studies due to the fact that it

implements the Web Driver API for browser automation and provides support for

FireFox, Chrome and Internet Explorer. The Ghost Driver integration in PhantomJS

also implements this API.1 However, in our experience and according to researcher

responses in [8], Selenium is quite unstable and unreliable for longer crawls since it is

subject to frequent crashes and an unreliable blocking API. Likewise, certain desirable

features such as headless browsers are supported in PhantomJS but not Selenium.

Studies such as [25, 15, 29] used plug-ins to drive the crawl and/or simultaneously

perform measurements. For instance, iMacro [25] provides support for automating

complex tasks on a single site.

Overall, we found that Selenium running a full browser instance provides the

most realistic browsing experience but PhantomJS and lighter frameworks provide

superior stability. Ideally, a web measurement platform will combine full browser

automation with the stability of PhatomJS. However, since the studies we considered

were primarily one-off measurements, the researchers did not invest the engineering

time to build a flexible and stable platform on top of Selenium that also provided

support for more advanced features such headless browsing.

2.2 Instrumentation

Instrumentation is often performed through add-ons or plugins. Perhaps the best

browser instrumentation tool is FourthParty [23] which has been used in several stud-

ies either directly or as a forked version [22, 21, 7, 9, 10]. Several studies used custom

1http://phantomjs.org/release-1.8.html
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plug-ins [17, 26, 27], a useful strategy for crowdsourced studies since they can extract

information, visualize results or both. The drawbacks of browser extensions is that

they add a time overhead, especially if they run large computations using JavaScript.

Similarly, maintaining instrumentation in between browser crashes introduce a new

class of engineering pitfalls, as will be discussed in more detail in Section 5.1.2.

Several studies used a proxy instead of or in addition to browser instrumentation.

Mitmproxy and Fiddler were the two popular choices, while custom proxies were also

seen [13, 25]. Proxies were necessary for data collection for studies lacking browser

instrumentation. The authors of [25] also used proxies to modify traffic to perform

automation tasks such as modifying DNT headers to measure the impact of Do-Not-

Track. While this is certainly one valid approach to this problem, DNT, for instance,

can be managed at the browser-level using Selenium, which provides a much more

realistic approximation of a real user.

2.3 Measurement Study Targets

The set of studies we examined cover a wide variety of targets which can be parti-

tioned into three categories: data collection, data flow and data use. Data collec-

tion encompasses the presence of online tracking, data flow captures the leakage of

personal information to third parties and data use entails the presence of content

personalization based on user data.

In terms of data collection, the primary focus was the measurement of stateful

tracking, namely cookies, either as the primary focus [9, 27, 24, 15, 30, 29, 10] or

as a secondary research question [17, 27]. Other data collection studies focused on

Flash cookies (LSO’s) [24, 30, 3], scripts [15] and stateless tracking such as browser

fingerprinting [1].
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For data flow, researchers such as [22, 14, 19] examined the flow of identifying

information such as names and emails as well as sensitive infomormation such as age

and sexual orientation from first parties to third parties. Another source of data

flow includes cookie syncing, in which two different third parties pass cookie IDs

corresponding to the same user to each other [27]. We will discuss cookie syncing in

more detail and present new results in Section 5.3.

Data usage primarily entails leveraging user information when personalizing web

pages. One prominent target in this sphere is the presence of personalized ads, in-

cluding text, flash and image ads. These studies, [4, 12, 34], predominantly focus on

Google ads but one study in particular examined a large collection of roughly 175K

distinct ads [5].

In a different area, Olejnik et al examined differences in the bid prices used in

real-time online auctions [27], which provides a potential window into the valuation

of the ad technology industry. However, since this study relied on the fact that the

bid prices were sent unencrypted over HTTP traffic, the adoption of encryption may

render similar future studies infeasible.

Another application of user data, price discrimination in both online vendors and

results returned by search engines were considered by [25] and [26], respectively, while

[13, 35, 18] examined the search results themselves for personalization.

The vast majority of the literature examined the data in an offline fashion from

databases built over the measurement phases. Of course, data analysis may require

non-trivial tasks as heuristically detecting bid prices or cookie ID strings. Hence,

building an infrastructure that outputs a comprehensive set of the online interactions,

such as the HTTP traffic, cookies and Flash objects in a standardized way would not

only enable nearly all of the studies above, but would also provide a single database

schema so that research groups, in addition to releasing their own data, could release

measurement scripts compatible with other groups’ data.
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Chapter 3

Measuring Mobile Web Tracking

In Chapter 2, we presented an overview of the various engineering decisions and

research questions in the field of WPM. In this chapter, we present the results from our

first foray into this space - an examination of the mobile browsing tracking ecosystem

- and describe how the challenges in this study inspired the transition to the more

unified measurement platform presented in Chapter 4. This chapter draws from our

individual contributions in [9].

3.1 Introduction

Despite the wide variety of potential studies, WPM research primarily focuses on

desktop browsing, leaving mobile web tracking a largely unstudied area. Conversely,

mobile app privacy measurement has attracted a larger degree of attention (e.g. Mo-

bileScope1 and [11], [33]). Given the fact that mobile devices provide additional

signals, such as a user’s location, which could enhance targeted ads as well as mobile

devices’ increasing computational power, the lack of mobile tracking research was

initially surprising.

1http://mobilescope.net/
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Folk knowledge in the community suggests that this vacuum was because of the

relative difficulty of carrying out measurements on smartphones and other devices,

given that they are typically locked down in some way and comparatively under-

powered. The limited programmability of mobile browsers at the time and physical

limitations on RAM and persistent storage further hampered data collection.

3.2 Mobile Measurement Platform

As described in the literature review, the two primary challenges of conducting mea-

surement studies are data collection and browser automation. The primary challenges

we solved were the mobile devices’ limited storage for crawl data and the difficulty in

automating mobile browsers.

In terms of data collection, we ported the FourthParty code base to support

Android-based mobile devices, such as smartphones and tablets, by leveraging the

Android SDK and the Mozilla Add-On SDK. Although we maintained the same

database schema as the original desktop FourthParty, we modified the source code

to remove dependency on local secondary storage and push persistence operations

through a TCP connection to a desktop server. By porting storage to a desktop

platform, we enabled arbitrarily long crawls on mobile devices, subject to the much

looser memory constraints on the desktop servers.

When choosing an automation framework, we considered WebDriver, Mozmill

and other tools, but ultimately settled on a simple JavaScript architecture. The

WebDriver API, implemented by Selenium and GhostDriver, is an extremely pop-

ular choice for browser automation in the literature. However, at the time of the

study, Selenium did not seem stable enough to support long studies with mobile Fire-

fox (Fennec). Other testing and automation frameworks we considered, including

Mozmill, Robocop and Scriptish, faced similar issues when interacting when Fennec.
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For the mobile measurement study, we simply created a website containing a list

of URLs and a JavaScript snippet that caused a browsing device to visit each one in

succession in a separate tab. This approach’s primary advantage is its simplicity and

platform-agnosticism but this method of driving browsers is otherwise quite limited.

In particular, the list of websites on the page must be pre-specified and we cannot

easily isolate visits to different websites within the same crawl. On the other hand,

non-isolation of websites is also an advantage: we can observe how third parties

interact with a user over repeated visits. Indeed, this allowed us to identify and

study “growing cookies” as will be discussed in the results section.

3.3 Experiments and Results

We perfomed crawls from the Alexa Top 500 United States sites on 6 devices: a

desktop (Ubuntu 12.04, Firefox 11.0), two tablets (Asus Transformer Pad TF300T

and Samsung Galaxy Tab 2), a smartphone (HTC Evo 4G), an emulated tablet

(Emulated Nexus 7) and an emulated smartphone (Emulated Nexus S). In general,

we found that the third-party tracking ecosystems on desktop and mobile devices

were extremely similar. In particular, roughly the same set of third-party domains

appeared across all crawls and approximately the same proportion of these third

parties placed cookies and/or made JavaScript calls typically associated with tracking

(e.g. Window.LocalStorage.*).

Although the results were for the most part fairly mundane, we found two sur-

prising trends: the nearly complete lack of mobile-only trackers and the presence of

growing cookies that appear to store an approximation of a user’s browsing history.
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3.3.1 Mobile-Only Third Parties

The sheer ubiquity and variety of mobile devices appear to provide a significant

opportunity for exclusively mobile-oriented third parties to enter the advertising and

analytics space. We define a domain that appeared in our HTTP logs but not in the

list of sites we visited to be a third party. We call a third party mobile-only if it is

one of the top 100 third-party sites in terms of the number of distinct cookies and

tracking JavaScript calls it made for any of the mobile devices but not in the top 500

for desktop. The rationale is that if a tracker, for instance, appears as the top 100th

track mobile device and the 200th on desktop, the difference could be explained away

by statistical noise.

Contrary to our intuition, we found that each physical and emulated mobile device

contained only a handful of top 100 third-party sites that did not also appear in the

desktop top 500. These sites were typically the mobile versions of third-party sites

present on the desktop. The two exceptions were admarvel.com and mocean.mobi,

advertising networks centered around mobile devices.

The dearth of third parties that exclusively focus on mobile devices is surprising.

Perhaps already-established third parties have transitioned to mobile tracking or new

third parties have simply not yet entered this relatively new market. Regardless of the

reason, our metric for detecting mobile-only third parties can be utilized for keeping

track of the growth of this market in the future.

3.3.2 Growing Cookies

In the vast majority of cases, a cookie’s value field consists of a string or integer that

remained largely static throughout the duration of a particular crawl. However in cer-

tain cases, we observed that the values for third-party cookies consistently increased

in size throughout a crawl. While some of these growing values are Base64 encoded

11

admarvel.com
mocean.mobi


strings whose decoded binary values do not present an obvious pattern over time,

other values grow in a very specific manner.

In particular, these values appear to be lists related to a user’s browsing history.

Figure 3.1 presents a brief analysis of a representative example. Each node of the

list is delineated by separator tokens and is comprised of two values separated by

another type of token. It appears that the first value contained in each node is either

an ID corresponding to each visited site, or an ID describing the category of the site

(essentially, an interest segment in advertising terminology).

We hypothesize that the second value in each node is a site-specific ID for the

individual user. While the latter value does not have enough entropy to be a unique

user ID (i.e., unique among all the users that the third party has encountered), it has

enough bits to be unique when combined with the approximate creation time of the

cookie.

We base our claims on two key observations. First, the growth of these cookies is

characterized by the addition of new nodes somewhere in the string each time a site

is visited. Second, after repeatedly running new crawls through sites known to place

one type of the aforementioned cookies, the nodes corresponding to a particular site

were added in the order in which we visited them.

The first node value, which is almost certainly a site or segment ID, remained

constant across the different crawls. For some growing cookies these IDs had a few

duplicates (different first-parties with the same ID), which rules out site-specific IDs

and suggests segment IDs. For other growing cookies we did not observe duplicates,

although this does not rule out the possibility of duplicates if we observed more first

parties beyond the top 500. The second value in each node, which we believe to be

the user ID, changed across crawls in accordance with our hypothesis.

Nevertheless, new nodes were not added to history lists in a particular order,

and sometimes the entire list could be shuffled between changes. The most likely

12



Cookie Value String Domain 
EXAMPLE 1 
"b!!!!#!!2-]!!!!#>+YEL" Netflix 
"b!!!!$!!2-]!!!!#>+YEL!%HWu!!!!#>+YE]" Cracked 
"b!!!!%!!2-]!!!!#>+YEL!%HWu!!!!#>+YE]!%ODP!!!!#>+YF$" Salon 
EXAMPLE 2 

"b!!!!#!!2-]!!!!#>+YB5" Netflix 
"b!!!!$!!2-]!!!!#>+YB5!%HWu!!!!#>+YBo" Cracked 
"b!!!!%!!2-]!!!!#>+YB5!%HWu!!!!#>+YBo!%ODP!!!!#>+YC," Salon 
EXAMPLE 3 

"b!!!!#!%HWu!!!!#>+YG<" Cracked 
"b!!!!$!%HWu!!!!#>+YG<!%ODP!!!!#>+YGC" Salon 
"b!!!!%!!2-]!!!!#>+YGP!%HWu!!!!#>+YG<!%ODP!!!!#>+YGC" Netflix 
EXAMPLE 4 

"b!!!!#!%ODP!!!!#>+YLs" Salon 
"b!!!!$!!2-]!!!!#>+YM$!%ODP!!!!#>+YLs" Netflix 
"b!!!!%!!2-]!!!!#>+YM$!%HWu!!!!#>+YM,!%ODP!!!!#>+YLs" Cracked 
Bold text indicates site ID; Underlined text indicates user ID 
Hwu = cracked.com; 2-] = netflix.com; ODP = salon.com 

Figure 3.1: This figure contains the cookie value growths for yieldmanager.com’s
history-storing bh cookies as recorded after visiting three sites known to place these
cookies in different orders across four different crawls. Individual website nodes ap-
pear to be separated by the token %! while the site/segment ID and user ID are sep-
arated by !!!!#>+. Observe that the nodes containing site/segment IDs are added
in the order in which the corresponding sites are visited. The associated strings that
we believe to represent user IDs for each site remain constant within each crawl but
vary across crawls. This is especially apparent when comparing Examples 1 and 2.
Note that the nodes for each website appear in the same relative ordering (specifically
netflix.com precedes cracked.com precedes salon.com). This particular ordering
suggests that the third party represents the history nodes in a JavaScript associative
array, accounting for the fact that the nodes consistently appear in a specific sorted
order that is independent of the order in which they were visited.

explanation is that the histories are stored in a JavaScript (associative) array before

being serialized into a cookie. Associative arrays do not preserve the order of insertion.

Observe that these history-storing cookies expose a privacy vulnerability. Suppose

an attacker uses cross-site scripting to read the contents of one of these growing

cookies. Then, he could a lookup table for the cookie’s site ID’s to recover (an

approximation to) the victim’s browsing history. An even weaker adversary could

simply listen in on the communication between the user and website to intercept the

contents of these cookies.

13



Having established the existence of growing cookies, for each device we then exam-

ined the proportion of third-party sites that place growing cookies during the crawls.

The results are contained in Table 3.1.

Formally, we consider a cookie to be a growing cookie if it had been changed at

least five times and if it satisfies a certain growth metric. We consider the standard

growth metric, which we denote X3, to be an indicator of whether over the course of

the crawl, the cookie’s value tripled in length and had a final length of at least 25

characters. We imposed the limit of 25 characters so as to not count the common

case of cookies that are added with either no value or a single-character value that

is immediately changed to a short but static string. Clearly these types of cookies

more than triple in size but do not grow beyond this initialization. As a stricter

requirement for growth, which we denote Strict, we consider the subset of cookies

that pass the X3 requirements but additionally have at least 75% of their changes

increasing their lengths and no more than 10% of changes decreasing their lengths.

Device Growing Metric
X3 X3 w/ Strict

Desktop 8.0% 3.6%
Tablet (Asus) 3.2% 0.8%
Tablet (Galaxy) 4.4% 2.6%
Phone 1.0% 0.4%
Emulated Tablet 0.4% 0.2%
Emulated Phone 0.8% 0.6%

Table 3.1: Percentage of third parties using growing cookies

We find that regardless of the metric, a much larger proportion of top third-party

sites place growing cookies on the desktop when compared to the mobile devices,

with perhaps the slight exception of the Galaxy tablet. Both the emulated phone and

physical phone have extremely low proportions of growing cookies.

There are two possible reasons why the desktop has a greater proportion of grow-

ing cookies. First, the relative immaturity of mobile tracking when compared to

desktop tracking might mean that trackers have not yet fully ported their growing

14



cookie infrastructure to mobile devices. Second, the limited computational power of

mobile devices might mean that companies prefer server-side tracking architectures.

Developing automatic methods to parse and determine the structure of these growing

cookies is one potential avenue of future work.

3.4 Returning to Desktop

Overall, the most interesting result from our measurement of mobile tracking was

the presence of growing cookies, which themselves were most prevalent on desktop

platforms. Furthermore, the lack of stable mobile browsing automation frameworks

severely limited the ability to conduct large-scale and in-depth mobile measurement

studies. For instance, one interesting line of inquiry would be to examine the behavior

of trackers when visiting sites logged into social media accounts or after clicking on

links within a site - tasks not generalizable using our naive JavaScript automation

approach. From a data collection perspective, the ability to easily port FourthParty

instrumentation to various devices for our own experiments further stood to highlight

the lack of a similarly generalizable browser automation framework for mobile studies.

Given the presence of the several desktop automation frameworks that we exam-

ined when attempting to automate our mobile study, we were surprised to find that

no single unifying infrastructure existed in the literature that natively implemented

more complex actions when visiting sites as would have been desirable for our mobile

studies. This infrastructure vacuum led to the development of our own generalized

platform that will be described in the next chapter.
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Chapter 4

Engineering the Web Measurement

Platform

4.1 Requirements

By examining the challenges faced in other experiments, we determined that our

WPM platform should be flexible in its ability to manage a wide variety of large-scale,

automated studies. This core vision translated into a few key design requirements.

WPM experiments consist of three major tasks. The first task is mapping high-

level commands, such as visiting URLs or extracting news articles from websites, into

automated browser actions. The second task is collecting and consolidating crawl

data, such as cookies set by the browser and JavaScript calls, in a unified manner.

The last task is to create automated tools to perform specific analyses on the dataset

in order to answer individual research questions.

While the third component is specific to individual research questions, the browser

automation and measurement components are designed to be general-purpose by

adhering to the following principles.
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Figure 4.1: Generalized WPM framework
The Task Manager ensures crawls are robust, the Browser Manager converts high-level commands
into automated browser actions and the data aggregator robustly receives and pre-processes data
from browser instrumentation tools.

Stability. During the course of a long crawl, a variety of unpredictable events,

such as page timeouts or browser crashes, could halt the crawl’s progress or, even

worse, corrupt the data. The browser automation framework should recover from

such events gracefully, quickly and intact.

Abstraction layer. The overall automation API should serve as a user-friendly

abstraction, hiding the complexities involved in performing browser tasks such as

finding and clicking buttons on a page. Keeping automation commands at a high-

level reduces the complexity of the scripts used for driving particular experiments.

Modularity. In the course of actually implementing our framework, we had to

choose specific libraries for tasks such as driving the browser. However, adopting a

modular design will enable us to easily switch the underlying tools in our framework

for future studies.

Realism. Our automation framework should mimic a real person surfing the web

as closely as possible - a task we primarily complete by choosing to drive full browser

instances.
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4.2 Design and Implementation

A high-level diagram of our infrastructure is contained in Figure 4.1.

We divided our browser automation and data collection infrastructure into three

main modules: a Browser Manager which acts as an abstraction layer for browser

automation, a Task Manager and a Data Aggregator which acts as an abstraction

layer for browser instrumentation. The entire infrastructure was implemented using

Python.

The motivation for requiring a Browser Manager as an abstraction layer stems

from our choice to use Selenium for automation. As we and several other groups

of researchers found, despite its other advantages, Selenium is quite poorly suited

to running scalable automated crawls across websites — it is intended as a tool for

webmasters to test their own sites, where they are in control of the site architecture.

As a result, it frequently crashes or hangs indefinitely due to its blocking API [2];

in our survey of engineering challenges we found that there are no solutions to this

problem, only workarounds.

We opted to use Selenium, as opposed to other browser automation frameworks

such as CasperJS and SlimerJS, due to its more extensive range of web technologies,

such as plugins, addons and HTML5 features. Due to the need for scaling we used

pyvirtual display to interface with Xvfb in order to run headless browser instances,

which both allowed us to utilize remote virtual instances for crawls and increased the

number of parallel crawls that we could run on a given machine.

As an example workflow, the Browser Manager receives a command to extract

information from a given news site. The manager translates it into a series of low-level

commands to instruct the browser driver to visit the site, wait for the page to load,

and take various actions on the page. Browser instrumentation tools parse the page

content and sends the relevant data (in this case, headlines) to the Data Aggregator.

The logic for translating application-specific commands into browser actions resides
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entirely in the Browser Manager, enhancing modularity — we can swap out the

browser and driver if necessary, without affecting the rest of the platform.

The Task Manager’s chief responsibility is to recover gracefully from inevitable

crashes or freezes in any of the other components without affecting the crawl. It

is also responsible for management of user profiles. While the Task Manager does

not conduct any of the browser automation itself, it is responsible for copying over

user information (e.g. cookie databases) and preferences (e.g. whether features such

as DoNotTrack are enabled) to newly-spawned browser managers. Essentially, while

individual browser instances may stop and restart, the Task Manager ensures that

the crawl as a whole appears to be from the same person’s browser.

In terms of collecting data during the crawl, we experimented with different in-

strumentation options, including FourthParty and mitmproxy. While browser au-

tomation and instrumentation initially appear to be separate issues, in practice, one

of these two components crashing can fatally disrupt the other. Since instrumentation

tools often write data as well as collect it, browser crashes (and the corresponding

instrumentation failures) can severely corrupt data.

To ensure data integrity, the Task Manager also manages the Data Aggregator

subprocess, which receives data during the course of the crawl, manipulates it as nec-

essary and writes it to a central database. A socket-based communication framework

enables the Data Aggregator to separate itself from browser crashes and continue writ-

ing to the database, eventually receiving the input from a restarted browser instance

without having to restart itself.

Also, since the data aggregator can receive raw data, it is able to perform complex

data pre-processing tasks in real-time before writing to the database. This allows the

browser instrumentation process to spend all of its computational power on parsing

and manipulating pages. We have found that doing pre-processing in the same process

as instrumentation can result in performance degredation.
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While we have built a platform that allows us to quickly launch new WPM ex-

periments (we present such three such studies in the next chapter), there are many

possible improvements. For example, it would be useful to simulate complex user

interactions on websites, such as automatically logging into websites with a given

username and password or finding and clicking “Like buttons.” Collaboration with

researchers on such tasks as well as new WPM studies will significantly speed up the

development process and reduce redundant engineering work. Accordingly, we plan

to open-source our platform at the earliest opportunity.

4.3 Evaluation

Our infrastructure is still accumulating changes and improvements, so our evaluation

presented here reflects the state of the platform at the time this thesis was written.

Stability. When running a light wrapper around Selenium, without our Browser

Manager and Task Manager, the stability varied depending on experimental condi-

tions but was always poor. With a timeout of 40 seconds, the best average we were

able to obtain was 800 pages without a freeze or crash. This number is too small for

large-scale measurement studies. We also frequently observed data corruption. With

our current infrastructure we successfully recover from all crashes and have observed

no data corruption after completing crawls of over 100,000 pages.

Resource usage. When using the headless configuration, we are able to run up to

24 browser instances on a 16GB commodity desktop. This is in line with the other

studies we analyzed and is limited by Firefox’s memory leak issues. The platform

also possess support for a single Task Manager controlling multiple browser instances

at once. This new multi-process module allows the end-user to issue commands to

these browsers in different ways, including all at once and for-come-first-serve.
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Generality. For the news measurement study in the next chapter, the browsing

and measurement was completely automated with the exception of writing custom

template scripts for extracting headlines. We hope to eventually automate the task

of extracting categorized lists of links from arbitrary sites. Generality also applies to

the fact that our infrastructure now log many storage vectors such a HTTP cookies,

requests and responses and Flash objects, which enables a much richer set of studies

than for crawls instrumented with FourthParty alone.

Modularity. Our platform abstracts away the details of the automation framework

and trivially supports other browser/driver configurations, although we have only

done large crawls with Firefox/Selenium. We support different measurement options

(instrumentation via FourthParty, or proxying via mitmproxy) and have successfully

tested both in isolation and in combination.
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Chapter 5

Selected Applications

We now present three separate studies conducted using the measurement platform

described in the previous chapter. The first study on news personalization was per-

formed as part of [8]. We briefly present the results of this paper but our individual

contributions on this study were primarily on infrastructure matters that will be de-

scribed after the results. Similarly, we performed more of an infrastructure support

role in the identification leakage through cookies study [28]. We conducted all of

the analysis presented in the section on cookie synchronization, which is part of an

ongoing study.

5.1 Measuring News Personalization

5.1.1 Motivation and Results

Although the threat of the filter bubble - the use of personalization algorithms to

steer a user into seeing only content related to his or her interests - is a concern

in the media, the actual level of personalization is predominately collected through

anecdotal evidence or manual analysis [31]. We considered the level of personalization

on news publishers by examining links to two types of recommended content: “Around
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the Web” (i.e. links outside a given publisher) and “More From [Publisher]” (links

owned by that publisher). These sets of related links for the publishers we considered

were contained in recommendation boxes run by Taboola1 and Outbrain2, two large

content recommendation and delivery engines which are found on many mainstream

news publishers.

We created extreme profiles of users who browse a single topic, such as technology,

which were trained over a period of 4 days. Classifying articles into topics leveraged

the categories contained within the URL strings of the publishers themselves. During

the measurement phase, we re-loaded the browser profiles built during the training

period and re-collected the links, examining the categories of sites contained within

the recommendation boxes.

Overall, we found that Outbrain’s content, but not the Taboola’s recommenda-

tions, contained a statistically-significant level of personalization. Links in “Around

the Web” were skewed towards articles matching the interests of the training profile

and links in “More From [Publisher]” were skewed away from these interests. How-

ever, qualitatively, these skews towards or away from the interest area were quite low

- always less than 10% but often even below 3%.

Despite some limitations of the study including the short training phase and the

focus on history-based personalization rather than on location-based and other types

of personalization, the filter bubble appears less present than conventional wisdom

would suggest. In this case, the high level of media coverage did not correspond to a

high level observed personalization. In the next case study, we present a more subtle

tracking issue that, despite its relative lack of media coverage, could represent a much

greater privacy violation.

1http://www.taboola.com
2http://www.outbrain.com
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5.1.2 Infrastructure Contributions

The three primary engineering challenges when running the news crawls were profile

management, the addition of study-specific HTML-parsing and measurement code

within the platform and the necessity of running many browser instances with limited

computational and memory constraints.

With respect to profile management, freezes or crashes in the browser or Web

Driver necessitate restarting Selenium with a fresh browser instance. However, unless

the full set of cookies and other profile attributes are transferred to this new browser

instance, it may appear to represent a new user in the eyes of third parties. To

alleviate this concern, we added profile management so that, when the Task Manager

detects a crash or freeze, it dumps the browser profile as well as preferences such as

Do Not Track into a tar file.

During the profile recovery process, the Task Manager uses this tar file to cleanly

reload the browser profile. Furthermore, we added high-level functions to dump these

profile files at any time and load them at the beginning of a crawl. Overall, the

platform natively supports profile management that hides the implementation details

from the user and providing a clean interface capable of managing the dozens of

distinct browser profile files necessary for the news experiments.

Although the other authors actually implemented the custom HTML-parsing code

for the study, our modular design enabled this new library to be incorporated into

the platform as a new high-level command in under a dozen lines of code. The

successful integration of these news measurement scripts illustrates that the platform

can support libraries from many different studies without bloating the core code base.

The modular architecture, especially decoupling the Task Manager from direct

interactions with the browser, also enabled the platform to be easily ported to a

multi-process framework in which a single Task Manager manages several browser
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instances at once. As a result, we could manage the training of many news profiles

without the resource overhead of many Task Manager instances.

5.2 Linking IDs through Cookies

5.2.1 Motivation and Results

In [28] we considered the problem of a network observer using third-party cookies

to link an individual’s unencrypted web traffic together. This attack is considerably

strengthened given the threat of personally identifying information leaked by a third

party in turn being linked to previously pseudonymous web traffic.

Using a set of heuristics, of which we present an expanded version in our descrip-

tion of the third case study, we identified third-party cookies with value strings that

appear to be unique IDs. When examining HTTP traffic, we were able to connect vis-

its to two different sites together if a common third party ID appeared while browsing

both these sites. Overall, this resulting traffic graph was highly connected. When

examining crawl data emulating the histories found in the AOL dataset as per the

method in [17], we found that 90% of sites with embedded trackers can be linked in

a single connected component.

After creating and logging into accounts for the top 50 sites (according to Alexa)

that support account creation, we found that in the course of browsing, over half

of these sites leak personal identifying information over insecure HTTP traffic. In

particular, 28% of sites leaked a user’s first name, 12% leaked the full name, 30%

leaked the user name, 18% leaked the email address and 60% leaked at least one of

these attributes. The fact that some of these sites also were in the giant connected

component of the traffic graph is troubling because not only can this traffic be con-

nected to a single pseudonymous user but this user can also be linked to a real-world

identity.

25



The adoption of extensions such as “HTTPS everywhere” which makes requests

over HTTPS whenever the server supports it or third-party cookie blocking may help

to mitigate this attack and is a potential direction of future work. Overall, this study

illustrates the privacy risks stemming from third party cookies in which traffic linking

is managed by some external adversary using third-party IDs. In the third case study,

we will examine the implications of ID synchronization performed by the third parties

themselves.

5.2.2 Infrastructure Contributions

While concerns with browser automation dominated the engineering challenges for

the news personalization study, the cookie ID study required a greater concern with

respect to instrumentation. In particular, we originally opted to use FourthParty

to log cookie interactions and HTTP traffic. However, when dealing with browser

crashes, simply copying the old FourthParty database into the new browser profile

often led to data corruption over the course of long crawls. The two workarounds

were to programmatically move over the rows in the old database to the new one - an

extremely inefficient approach - or, instead, dumping all of the distinct FourthParty

databases into a single file and then merging them after the crawl.

Neither one of these approaches was appropriate for a generalizable infrastruc-

ture since they either required a high computational overhead or forced the end user

to perform database post-processing. Furthermore, FourthParty’s extensive use of

JavaScript adds computational overhead to browser instances. To reduce these com-

putational requirements and to increase usability, we used mitmproxy to capture

HTTP traffic, including the flow of cookies, and pass the data to the Data Aggrega-

tor process. Since the Data Aggregator remains functional during the course of the

crawl and maintains the database connection itself, the end user only has to interact

with a single database per crawl, regardless of the number of browser restarts.
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Additionally, the platform now supports Flash storage logging and more sophis-

ticated cookie logging, thereby increasing the amount of data collected during the

course of the crawl beyond FourthParty’s standard offering. We hope that the plat-

form’s expanded database will increase the variety of questions that can be natively

answered with our platform’s output. If the platform is adopted by other researchers,

then it will provide the ability for research groups to verify the results of other studies

on their own databases without having to add additional instrumentation. Overall,

just as the platform hides the browser automation details from the user, the increased

data logging should also reduce the necessity of adding custom instrumentation.

5.3 Measuring Cookie Synchronization

A target of prior work such as [27], cookie synchronization occurs when third parties

send each other the value strings corresponding to ID cookies - a practice that enables

back-end database merges which link records from distinct psuedonymous IDs to-

gether. Often, these syncs are performed through HTTP redirects or direct HTTP re-

quests. For instance, tracker a.com could pass its ID string xsq21 to tracker b.com

by making a request of the form tracker b.com/sync/partner=a&uid=xsq21.

For this section of the paper3, we will consider a basic threat model for cookie

syncing - namely the ability for third parties to use these IDs to perform back-end

merges. As the previous two case studies focused on the automation and instrumenta-

tion component of the WPM platform, this section will focus on a useful subroutine for

WPM studies, which we first introduced in [28]: a more accurate automatic method

of detecting ID cookies.

3This section is based on work in progress with Gunes Acar, Claudia Diaz, Steve Englehardt,
Mark Juarez and Arvind Narayanan.
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5.3.1 Detecting unique identifier cookies

Cookie text files contain several pieces of information, including the host (the domain

who owns it) and a name-value string. For our analysis, we consider a cookie to

be the unique (owner’s domain, name) pair and the cookie’s value to be the value

component of the name-value string (see the Cookie text in the PREF cookie below).

Our most fundamental analytical task was to effectively identify cookies with value

strings that correspond to unique identifiers.

Host : www.google.com

User-Agent : Mozilla/5.0 (X11; Ubuntu;

Linux x86 64; rv:26.0) Gecko/20100101

Firefox/26.0

...

Referer : http://www.unity3d.com/gallery

Cookie : PREFID=5834573d6649ab5

For a cookie to be useful as an identifier, cookie values must have two important

properties: persistence over time and uniqueness across different browser instances.

Based on these criteria we develop heuristics that classify cookies as identifiers and

attempt to avoid false positives. Our heuristics are intentionally conservative, since

false positives risk exaggerating presence of cookie syncing. Our method does have

some false negatives, but this is acceptable since our study will at least demonstrate

a lower bound on the prevalence of this practice.

We define a cookie to be an identifier cookie if its value string:

• Is long-lived – the cookie’s observed expiry date at time of creation is suffi-

ciently far in the future
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• Remains stable over time within a browser instance – once set, the

cookie value does not change over time and over multiple visits to the cookie

domain and even if the browser is restarted

• Varies across browser instances – has a different value in all the crawls we

have observed

• Passes the entropy test – value strings are sufficiently different across differ-

ent browser instances so as to serve a globally unique identifier

• Is of constant length – the length of the value string is invariant across

browser instances

Long-lived cookies are non-session cookies with expiry times longer than three

months. Our baseline ignores cookies that fail this criterion as they are too transient

to track long-term user behavior without back-end synchronization.

Stable cookies have value strings that, for a given browser, remain stable across

multiple browsing sessions. Cookies with dynamic value strings may simply be logging

timestamps and other non-identifying information. We believe that other non-static

cookies contain identifying information but do not fit within our study. For example,

(google.com, utma) changes when data are sent to Google Analytics.4 Although we

believe that cookies encoding some part of an individual’s browsing patterns may in-

deed leak personal information, their dynamic nature excludes them for our definition

of persistent identifier.

User-specific cookies have value strings that are unique across different browser

instances in our dataset. Cookies that fail this criterion only mark a given browser

as belonging to larger set of browsers that have been marked with a given string. An

extreme case is (doubleclick.com, test cookie), which has the same value (CheckFor-

Permission) across all crawls in our sample.

4https://developers.google.com/analytics/devguides/collection/analyticsjs

/cookie-usage
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Low-entropy cookies have values that differ across different users’ browsers in our

measurements but are not sufficiently different enough as to be truly unique identifiers.

For instance, value strings that incorporate fixed timestamps (e.g. the time that the

cookie was created) may differ across different users by a few digits but are likely

to not be globally unique. To mitigate this issue, we used the Ratcliff-Obershelp

[6] algorithm to compute similarity scores between value strings. We filtered out all

cookies with value strings that were more than 90% similar to value strings from the

corresponding cookies from different crawls.

Constant-length cookies have value strings with the same, fixed length across all

our datasets. We believe that unique cookie identifier strings are typically generated

in a standard, fixed-length format. This belief is motivated by patterns seen during

manual inspection and the likelihood of third-party libraries generating identifiers.

As such, we only consider constant length cookies, keeping in mind that this heuristic

may cause false negatives that render our analysis in fact overly conservative.

To collect data to identify unique cookies, we ran two simultaneous crawls using

identical sets of websites visited in the same order. By conducting simultaneous mea-

surements, we avoid the problem of sites changing their cookie interaction behavior

depending on a user’s browsing time. For instance, in relation to the entropy heuris-

tic, cookies with values that depend on time stamps will be easier to detect and ignore

if the crawls have nearly the same timestamps for all actions.

Once the data were collected, we applied our heuristics when comparing cookies

with the same keys across the different datasets in order to identify the cookies most

likely to be unique identifiers. To increase the number of potential ID strings, we also

attempted to parse the cookie value strings into parameter-value pairs according to

known delimiters.
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5.3.2 Detecting cookie flows

Using the heuristics outlined in the previous subsection, we were able to identify

cookies with value strings that are or contain user identifiers. Given these IDs, one

of the most fundamental questions of cookie syncing is to understand to what extent

these identifiers flow to multiple domains. In particular, for a given ID we consider

which domains know this identifier by examining cookie values and HTTP traffic.

If a domain places a cookie containing a given ID, then the domain clearly knows

that ID. In fact, a telltale sign of cookie syncing is multiple domains owning cookies

with the same ID value string. For HTTP traffic, if an ID appears in a domain’s URL

string of any time (e.g. the referrer URL), we assume that domain knows the ID.

For both HTTP requests and responses, we assume that if an ID appears in

the referrer URL, then the domain owning the requested URL will learn this ID.

Unfortunately, we cannot assume the reverse as third-party JavaScript executed on a

first party domain will cause the first party to show up in the database as the referrer

in an ID sync call even though this first party may not even be aware an ID sync

is taking place. When examining HTTP redirects in the HTTP response database,

we consider the URL of the location domain in the redirect. In particular, if an ID

appears in the location URL then we assume the domain performing the redirect

must have known the ID in order to perform the redirect.

Determining the directionality of ID syncs is a much more difficult task since, as

previously mentioned, the observed referrer may not be the party performing a sync.

We can typically determine the directionality of flow in HTTP redirects but overall

the flows in which we could to determine both the sender and receiver is a very small

fraction of all observed ID syncs. Hence, when examining cookie synchronization, we

focused on which parties knew a given an ID rather than the precise paths in which

the ID flowed.

31



5.3.3 Basic results

In order to collect the data for the sync measurements, we ran multiple crawls of

the Alexa top 3,000 on Amazon EC2 instances. As the general statistics for cookie

synchronization were roughly equal across the crawls, we present the data from one

crawl as an illustrative example.

We detected 569 distinct ID strings dispersed across 614 distinct cookies. The fact

that these IDs appeared in a greater number of cookies can partially be explained

by the fact that some domains owned multiple cookies with the same ID. However,

the presence of independent domains placing cookies with the same IDs also points

towards cookie synchronization.

The ratio of distinct cookies to distinct IDs increases when considering the number

of IDs observed being synced. We claim that an ID is involved in a sync if at least two

distinct domains know it. Under these conditions, we detect 138 distinct ID strings

spread across 179 distinct cookies. There were a total of 384 domains which knew

at least one synced ID. The most widely-spread ID involved in synchronization was

known by 45 different sites and each ID known by 5.88 domains on average, with a

median of 3.

The top 20 ID collectors are contained in Table 5.1. Overall, each domain knew

an average of 2.11 IDs, with a median of 1 ID. Clearly, these top domain collectors

directly know the IDs of several other domains, but the typical domain involved

in syncing only knows a handful of IDs. In the next subsection, we demonstrate

that given the wide presence of certain IDs as well as the fact that certain domains

know many IDs, even parties who do not know many IDs themselves can merge their

tracking databases with many other domains.
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Domain Number of IDs known

doubleclick.net 27

rubiconproject.com 24

openx.net 23

adnxs.com 22

pubmatic.com 19

bluekai.com 17

facebook.com 17

contextweb.com 14

exelator.com 11

casalmedia.com 11

rlcdn.com 11

lijit.com 10

aol.com 9

addthis.com 9

demdex.net 9

adscale.de 9

360yield.com 8

burstnet.com 9

nexac.com 6

afy11.net 6

Table 5.1: Top-20 observed ID-syncing domains

5.3.4 Back-end database synchronization

In the process of tracking a user, a third-party domain can map that user’s browsing

history to a pseudonymous ID. Via cookie synchronization, a tracker can associate

that user’s records with other domains’ IDs, even without knowing who originated

a given ID. Given the long and random nature of these ID strings, trackers can use

commonly-known IDs to merge their records on specific users.

More precisely, we consider two forms of database merges. In the one-hop model,

two domains can merges their records for a user if they mutually know at least one ID.

In the two-hop model, two parties can also use an intermediary to perform the sync

if they each know at least one ID in common with this intermediary (but not neces-

sarily with each other). This model captures a greater degree of tracker cooperation,

including the presence of domains that serve as ID exchange hubs.
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Figure 5.1: Number of IDs known by domains involved in syncs

Figure 5.1 contains the number of IDs known by each domain in descending order.

Observe that this distribution contains a long tail of domains that only know a few

IDs. This long tail persists when, sorting by the number of known IDs, considering

the number of other domains with which a given party can perform a direct database

merge (see Figure 5.2). Each domain can sync with 19.18 domains on average, with a

median of 10. For the top 50 ID collectors, we observed an average and mean of 68.18

and 61.5, respectively. While the one-hop model enables the top ID collectors to merge

databases with 20% of other domains observed performing syncs, only allowing direct

database merges hampers the ability for domains which only know a few number of

IDs to expand their records.

As illustrated in Figure 5.3, introducing intermediaries to the database merge

model significantly increases the merging capacity for many of the domains. In par-

ticular, the average number of other sites a given domain can sync is now 121.44 while

the median is 156. For the top 50 domains, the mean is 216.36 and the median is

232, roughly 57% of all domains observed in syncs.
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Figure 5.2: Back-end database merge capabilities with single hop

More significantly, many of the domains with only a few IDs can leverage the

presence of ubiquitous IDs and intermediate domains with many IDs to communicate

with a sizable fraction of parties involved in synchronization. Overall, using inter-

mediaries in merges enables domains to connect to a large fraction of known cookie

syncing parties using only one or two hops. In the next subsection, we consider the

potential for cookie synchronization when tracking a user who clears his cookies.

5.3.5 Cookie re-spawning and syncing

At a given point in time, cookie synchronization provides a mechanism for linking

different IDs corresponding to a single user together. These collections of linked IDs

can be represented as graphs, which intuitively will be disjoint when a user clears

his cookies. However, these graphs can be connected if one of these deleted cookies

is re-spawned and later used in database merges. An even stronger threat model

would be a cookie re-spawn followed by continued synchronization. Given the many

35



0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

1	
   26	
   51	
   76	
   101	
  126	
  151	
  176	
  201	
  226	
  251	
  276	
  301	
  326	
  351	
  376	
  

N
um

be
r	
  o

f	
  d
om

ai
ns
	
  w
ith

in
	
  tw

o	
  
ho

ps
	
  

Rank	
  of	
  domain	
  by	
  IDs	
  known	
  

Figure 5.3: Back-end database merge capabilities with two hops

possible storage vectors (e.g. Flash and local storage) which can be used to re-spawn

HTTP cookies, re-spawning and re-syncing could be a powerful tool for linking a

user’s browsing history between state clears.

In order to test this threat, we first ran a 3,000 site crawl on one EC2 instance. On

a second instance, we ran a 3,000 site crawl from a completely fresh state. Next, we

cleared the Flash storage, cache and local storage on the second machine and copied

over the Flash storage from the first machine. Finally, we ran another 3,000 site crawl

on the second machine. Both crawls on the second machine were conducted using the

same randomly-selected browser fingerprint.

If an HTTP cookie appeared in both the first machine’s and second machine’s

second crawl’s cookie database, we claim that this cookie was re-spawned. In total,

we detected 3 IDs that were re-spawned with ID strings that also appeared in the

Flash storage - indicating that Flash was likely used in the re-spawning process. We

only observed one of these IDs being synced.
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More unexpectedly, we discovered 12 IDs that were re-spawned between the first

and second crawl on the second machine that did not appear in Flash or local storage.

While perhaps encoded versions of these strings appeared in one of these storage

vectors, we conjecture that these cookies were re-spawned through some form of

fingerprinting. Moreover, two of these IDs were observed in sync flows.

One of these IDs, de7fbd21d41af681013b188b0459c76a, provides a useful case

study. In particular, casino.com made a request to a merchenta.com URL contain-

ing this ID as a parameter. Then, merchenta.com redirected to a adnxs.com URL

containing this ID. While we cannot conclusively determine if casino.com made the

first call itself, merchenta.com definitely passed this ID to adnxs.com, one of the top

observed ID collectors contained in Table 5.1.

To demonstrate the power of this ID being re-synced, suppose that the ID syncing

domains collectively attempt to track a user between state wipes. In the pre-wipe

crawl, we observed 140 unique IDs and 365 syncing domains. For the post-wipe crawl,

the corresponding figures are 133 and 381. Between the two crawls, we observed 271

distinct IDs and 456 syncing domains. Many of these IDs can be divided into pairs:

a given ID cookie’s value before the state wipe and its value after the second crawl.

Now consider the connected components in the ID sync graph. In partic-

ular, there exists an edge between two IDs if they are mutually known by

at least one domain. In the first crawl, the connected component containing

de7fbd21d41af681013b188b0459c76a had 99 IDs, corresponding to 276 domains.

For the second crawl, it contained 94 IDs, corresponding to 290 domains. Both

of these components correspond to a potential sync network of roughly 70% of all

parties observed performing ID syncs during the course of a crawl.

Merging the two graphs through the re-spawned and re-synced ID results in a

connected component with 192 IDs, corresponding to 341 domains. Once again,

this figure corresponds to approximately 70% of the syncing domains. Overall, this

37

casino.com
merchenta.com
merchenta.com
adnxs.com
casino.com
merchenta.com
adnxs.com


analysis indicates that even a single re-spawn and re-sync can enable a supermajority

of the parties involved in ID synchronization to combine their records across cookie

wipes. The fact that we observed this sync occurring even when clearing cookies,

Flash objects, local storage and cache indicates that not only can a user’s traffic be

linked at fixed points in time but that a user making a concerted effort to wipe state

can have his future and past browsing linked through the actions of a single party.
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Chapter 6

Conclusion

Even as a collection of largely disparate studies, Web Privacy Measurement has offered

insight into third-party tracking patterns and, more generally, the collection, flow

and use of individuals’ data. Although many of these studies included some form

of automation in their measurements, we have introduced a more stable, scalable

and generalizable web measurement platform, which has already been used in three

distinct measurement studies.

Moreover, resolving the various automation issues, such as the problem of profile

measurement between browser crashes, suggests not only is our platform much more

robust than infrastructures built for one-off studies, but that it also has the poten-

tial to serve as a source of institutional knowledge in the web measurement space.

Consequently, we will be releasing the platform as an open-source project in order

to increase collaboration in the research community, reduce redundant engineering

effort and consolidate efforts into a single platform.

We hope that this environment of increased collaboration will foster a greater

number of ongoing measurements, in turn, fueling more lively debate in the privacy

community and ad technology industry.
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6.1 Future Work

Future work in Web Privacy Measurement can be divided into platform improvements

and possibilities for future studies. In terms of growing the infrastructure, leveraging

machine learning to perform tasks such as automatic button detection would provide

methods of interacting with a page beyond merely visiting it. Related subroutines

such as the ability to consistently log in to sites with user credentials would further

contribute to this deeper level of interaction. These types of additional features can

be generally clustered under the umbrella of providing a platform API that natively

supports complex forms of page interaction.

Another desirable trait for a measurement platform is its ability to better mimic

a real user’s browsing patterns. Beyond the obvious desirability of managing the

input user credentials such as a name and an email throughout a measurement, au-

tomatically generating user browsing patterns would greatly enhance the realism of

experiments. In particular, many studies use fixed content such the Alexa top sites

to seed their crawls. A superior model would be some sort of generative approach in

which a list of sites can be built based on the demographics of the user we are trying

to mimic.

When considering new targets for WPM studies, the ability to consistently la-

bel top-level domains when logging HTTP traffic and cookie interactions with our

platform would enable new sets of experiments. For instance, linking changes in the

cookie database with visit to top-level domains will enable further analysis in parsing

and understanding the semantics of growing cookies. The presence of top-level do-

mains will similarly enable researchers to examine ad segments present in the HTTP

traffic that occurs on individual sites. Analyzing the sets of segments placed on first

party sites corresponding to certain interests or demographics may reveal that ad

companies can leverage these segments to learn sensitive demographic information.
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Mapping first parties to third parties is a particularly for useful for privacy de-

bates since the third-party domains themselves may be largely unknown by the general

public. Although people browsing online choose to visit first parties, they are likely

not aware of the specific third parties tracking them. However, revealing third-party

tracking patterns and linking these parties to first parties will likely cause public de-

bates involving first parties who, in turn, can choose whether or not to allow particular

third-party trackers on their sites.

Finally, the tracking landscape will remain dynamic, with various tracking tech-

niques gaining and losing popularity as well as changing the ways in which they

are implemented. Performing periodic measurements and performing diffs on the

data could reveal not only pattern in the tracking ecosystem at a fixed point but

also changes over time. Consolidating these longitudinal results online as part of a

web measurement census is one future application of the platform that will provide

increased exposure to trackers’ behavior and provide a dynamic illustration of the

changing tracking landscape.
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