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“If you hear a voice within you say you cannot paint, then by all
means paint and that voice will be silenced.”

—Vincent van Gogh

“Everyone who has any talent at all in sketching, painting, sculptur-
ing or carving, should have the opportunity to use that talent. The
expression is important for the person, and can tremendously enrich
the lives of other people.”

—Edith Schaeffer

“All you need to paint is a few tools, a little instruction, and a vision
in your mind.”

—Bob Ross



Abstract

Digital artists create evocative drawings and paintings using a tablet and stylus
coupled with digital painting software. Research systems have shown promising
improvements in various aspects of the art creation process by targeting specific
drawing styles and natural media, for example oil paint or watercolor. They combine
carefully hand-crafted procedural rules and computationally expensive, style-specific
physical simulations. Nevertheless, untrained users often find it hard to achieve their
target style in these systems due to the challenge of controlling and predicting the
outcome of their collective drawing strokes. Moreover even trained digital artists are
often restricted by the inherent stylistic limitations of these systems.

In this thesis, we propose a data-driven painting paradigm that allows novices and
experts to more easily create visually compelling artworks using exemplars. To make
data-driven painting feasible and efficient, we factorize the painting process into a
set of orthogonal components: 1) stroke paths; 2) hand gestures; 3) stroke textures;
4) inter-stroke interactions; 5) pigment colors. We present four prototype systems,
HelpingHand, RealBrush, DecoBrush and RealPigment, to demonstrate that each
component can be synthesized efficiently and independently based on small sets of
decoupled exemplars. We propose efficient algorithms to acquire and process visual
exemplars and a general framework for data-driven stroke synthesis based on feature
matching and optimization. With the convenience of data sharing on the Internet,
this data-driven paradigm opens up new opportunities for artists and amateurs to
create original stylistic artwork and to abstract, share and reproduce their styles
more easily and faithfully.
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Chapter 1

Introduction

Digital art is gaining popularity among artists due to its broad range of aesthetic
freedom, capability of programmatic enhancements such as undo, repeat, and edit,
and ease of transmission. Non-Photorealistic Rendering (NPR) emerged in the 90s
and focuses on enabling a wide variety of expressive styles for digital art, [44] and [129].
One major pursuit in NPR is concerned with automatic rendering techniques that
directly stylize visual input such as images, videos and 3D models for chosen artistic
styles. However, for many applications, it is more important to bring the artists into
the design loop. Therefore, a more recent pursuit in NPR focuses on digital simulation
of the traditional painting process, giving artist full control over the placement of
strokes while letting computer to figure out the rendering details. Along this line
of research, we propose a novel data-driven paradigm for digital painting simulation.
We design efficient algorithms and intuitive user interfaces for novices to more easily
create digital art with the help of high-quality exemplars.

This chapter introduces the digital drawing and painting problem, reviews the
related work, discusses the challenges and the thesis organization, elaborates our
data-driven paradigm, and concludes with our contributions in digital drawing and
painting.

1



Figure 1.1: Lascaux cave painting, 15000 BC

1.1 Digital Drawing and Painting

Drawing and painting are universally appreciated forms of art gaining popularity
throughout the history of mankind. From the ancient cave and wall paintings
(Figure 1.1), to the Renaissance masterpieces (Figure 1.2), to the contemporary
abstract visual representations (Figure 1.3), painting has been the most versatile
and evocative form of visual art that expresses artist’s inner emotions, thoughts and
stories and inspires viewer’s imaginations and interpretations. The work of great
artists manifest centuries of art knowledge and practices and possess enduring artistic
values that many of us are still trying to understand and recreate today. Beyond their
artistic value, drawings and paintings are often appreciated as effective means of visual
communication. Compared to photos, paintings abstract the visual information and
direct the viewer’s attention to the important content. For example, fashion designers,
architects, etc., use paintings and drawings to convey their design concepts (Figure 1.4
and 1.5).

Painting is an extremely captivating and fun activity that both kids and adults
enjoy. However, in the words of Baxter, “painting is something simple enough that
a child can do, yet deep enough to require a lifetime to master” [14]. To effectively
maneuver brushes to visualize and express something in the painter’s mind can take
significant amount of training and practice. Even for experienced artists, painting

2



Figure 1.2: Birth of Venus, Sandro Botticelli, 1486

Figure 1.3: Eule, Gerhard Richter, 1982

3



Figure 1.4: Portland building, arch. Michael Graves

can be tedious at times; pieces are started over and over and can take months or
years to finish.

In recent decades, digital painting technology has become an important and
ubiquitous medium. The general research goal in digital painting is to bring the
artistic freedom and expressiveness into the digital world, taking advantage of the
computer to make art creation increasingly accessible for casual users and experts
alike. Digital painting tools provide a qualitatively similar interactive process, but
lower the barrier to entry of art creation. People can now quickly paint something in
computer and progressively refine their result using unlimited digital undo, redo and
modifications. Tedious physical setup and cleanup, running out of paint, and waiting
for paint to dry are no longer concerns in the digital world. Digital art evolves as a
brand new art form, creating styles and effects that are not physically achievable and
unique in their own ways. New generations of artists are trained to work with the
capabilities and limitations of the digital painting medium to produce artistic imagery
for various applications, including movies, games, advertisements, designs etc.
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Figure 1.5: Marine fashion collection, 2009-2014, Callista1981

1.2 Related Work

Much of the previous work in NPR has focused on designing automatic algorithms
to stylize images, videos, or 3D models for selective artistic styles. Survey papers
by Bénard [16] and Kyprianidis [79] give a comprehensive discussion of this line of
research. With an automatic stylization algorithm, once an input image is selected,
users only have limited control over the final rendering by dragging sliders of a set of
parameters. The effects of the parameters are often global to the whole image and
sometimes not intuitive to understand. Local and precise user control is sometimes
more desirable, for the following reasons: automatic algorithms sometimes require
precise user intervention to obtain best results, and the artistic goals cannot always
be articulated a priori by the user using an input picture and a few parameters. For
these reasons, we have witnessed the rise of interactive digital painting technology
in the last decade. From commercial software to research systems, digital painting
technology has undergone a series of revolutionary changes. This section gives a brief
overview of the recent advances in stroke-based digital painting simulation. For a
more complete discussion, we refer the readers to survey by DiVerdi [29].

1.2.1 Procedural Approaches

The earliest work in digital painting applied a combination of heuristics, procedu-
ral rules and image filters to synthesize strokes in artistic styles. To render a stroke
mark, some procedural approaches use simple sweeping and stamping methods. The
idea is to continuously sweep 2D bitmap primitives [30, 66, 111], or intersect 3D ge-
ometries with the canvas [127, 128, 131], along the input trajectory. Procedural rules
have also been used to model the uni-directional ink transfer from the brush to the
canvas [98, 99], or the bi-directional pigment transfer where the brush not only de-
posits but also picks up pigment on the canvas [12, 19]. Previous work in watercolor
and calligraphy use a diffusion process [92, 98, 99], or random walk based procedu-
ral rules [32, 33, 64], to approximate the dynamic behavior of pigment propagation
through canvas media. Procedural approaches generally do not require heavy com-

5



putation or memory consumption and therefore are widely adopted by commercial
painting software, such as Corel Painter [23], Ambient Design Art Rage [28], Autodesk
SketchBook Pro [5] and Microsoft FreshPaint [24]. Such applications are continuously
advancing, increasingly capable of creating images faithful to hand-drawn art. How-
ever, the results are sometimes criticized as “too clean” and not yet realistically
reflecting the complexity, richness and spontaneousness of real media.

1.2.2 Physical Simulation Approaches

In recent years, research in digital painting are focused on applying physics
knowledge to improve the realism and organic quality of the simulation results. A
lot of effort has been made to model a deformable virtual brush and its physical
interaction with the canvas. For the best results, the user needs to paint with a
tablet and a stylus, which keep track of the user’s hand-pose to control the virtual
brush simulation engine. The tip of the brush can be physically simulated with a
center spine using the spring model [117], or multiple discrete spines [10, 20, 137],
or more sophisticatedly individual bristles for most dynamic brush deformation
behaviors [31, 92]. To faithfully simulate fluid-like pigment propagation for oil and
watercolor, previous work have used 2D flow simulation [21, 25, 136], or 2.5D flow
(height field) [13], or even full 3D flow for the dynamic effects of heavy and viscous
oil paints [11, 105]. To simulate the realistic appearance of pigments, Kubelka-Munk
(KM) model has been introduced to the digital painting community, which physically
models the multi-spectrum optical behaviors of paint layers [75, 76]. In order to
apply KM or an approximation, pigment coefficients (absorption and scattering
coefficients) need to be physically acquired and complex non-linear equations need
to be evaluated per pixel at runtime [11, 13, 25, 72, 73, 115, 135, 136]. Physical
simulations dramatically improve the synthesis fidelity, producing excellent results
for a few natural media such as oil, watercolor, pastel and crayon. However, accurate
physical simulations are computational expensive even on high-end hardware. They
offer more faithful user experience to the physical painting process, but require special
input devices and the skills to control those devices, to some extent similar to that of
using a physical brush. Other factors such as robustness and low output resolution
also limit the commercial uptake of existing research.

1.2.3 Data-driven Approaches

In the past few years, a few data-driven techniques have been introduced into
digital drawing and painting. The work of Xu et al. [151, 153, 154] proposed a
data-driven brush model to simulate realistic Chinese calligraphy. They used real
calligraphic strokes to train the parameters of a set of writing primitives — solid
geometries that represent clusters of brush hair — for the purpose of synthesis.
Without explicit brush modeling, statistical models can be trained on real Chinese
characters to directly generate strokes of new styles [150]. Other work learned
the mapping between input strokes and output diffused shapes to simulate the ink
diffusion process [152]. More recent work explored the idea of data-driven whole stroke
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synthesis, which uses libraries of acquired stroke exemplars to create novel strokes
using matching and stitching algorithms [3, 70]. The idea has also been extended to
go beyond natural media painting to allow synthesis of real-world textures [93, 113],
or even structured patterns [163], using a painting-like interface. This thesis aims at
advancing the data-driven idea for more general digital painting applications.

1.2.4 Sketch-based Interface

Sketch-based interface and its applications is another category of related work.
In 3D modeling, SKETCH [161] provides a gestural interface for creating rectilinear
models such as furniture, based on a few 2D lines drawn by the user. Teddy [60]
supports the design of freeform models based on the user’s 2D freeform strokes. In
character animation, previous work used a series of drawings of a skeleton pose to
synthesize an animation sequence [27]. The user can also draw the desired trajectory
of a character to guide the transversal of the motion graph [74], or to control the
playback of recorded motion segments [55, 133]. Other work in computer graphics
have also used sketch-based interfaces for tree and flower modeling [63, 103], and for
garment design and manipulations [59, 134]. The common challenge of sketch-based
applications is to infer high dimensional output (3D models, animations, etc) from
low dimensional input (2D sketches). In digital painting simulation, a stroke-based
technique is commonly used to render the artistic intent of the user. It solves a
similar low-dimension to high-dimension inference problem, where the input is still
the 2D sketch, but the output is the shape and appearance of the stroke. Stroke-based
techniques [50] provide a broad range of stylizations, as each stroke can be arbitrarily
shaped and textured, by example or by physical simulations.

1.3 Remaining Challenges

Artists have long been trained to maximize the expressive power and artistic
potentials of whatever artistic tools at hand. Despite the limitations and constraints
of digital painting technologies, great artists can always create amazing art pieces.
However, creating visually compelling painting is still hard for novices. And most
digital painting results are still criticized as “too clean, too sterile” [14]. Physical
simulation systems improved the “organic” quality and “complexity” of digital
painting results. However, there are several remaining challenges:

• Input Hardware requirements. High-fidelity simulation usually requires
high-end input device, such as tablet and stylus. A common obstacle for the
adoption of digital painting technologies is the inaccessibility of such devices
and the steep learning curve to wield them effectively.

• Only supporting a few common media. Physical simulations have focused
on common artistic styles such as oil and watercolor painted on canvas with
brush. However, progressive artists can freely express their creativity utilizing
different instruments to apply various natural media on distinct substrate
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surfaces, limited only by their imagination. Designing simulation for each of
these innovations is a daunting process. Furthermore, accurate high-quality
simulations require expensive computation and abundant memory resources.
They also expose various parameters that might not be intuitive for novices.

• Lack of support for structured patterns. Very few effective simulations
or procedural approaches have been proposed for the synthesis of strongly
structured vector patterns following sketch-based interface. Most structured
designs are still produced from scratch using software like Adobe Illustrator [65].

• Physical measurement for color prediction. In order to faithfully
reproduce paint-like color effects, most simulation systems require tedious
physical measurement of the pigment properties, which is needed for each new
type of medium. Therefore, most state-of-art digital painting software still use
linear RGBA compositing, which is simple but hardly faithful to the complex
optical appearance of real pigments.

1.4 Thesis Overview

In this thesis, we propose a new data-driven painting paradigm that allows novices
to more easily create visually compelling artwork with the help of high-quality
exemplars. Section 1.5 elaborates the data-driven idea and describes its benefits
and challenges. Section 1.5.4 proposes the concept of painting process factorization,
which enables fast exemplar acquisition and processing and reduces the solution space
for run-time stroke synthesis. We introduce four prototype systems, HelpingHand
(Chapter 2), RealBrush (Chapter 3), DecoBrush (Chapter 4) and RealPigment
(Chapter 5), that follow the data-driven synthesis framework. As pre-processing,
we acquire and process libraries of exemplars created by professional artists. At
runtime, given a new input trajectory, we predict the remaining information of the
stroke based on the chosen exemplar library. Section 1.5.5 provides an overview of the
piecewise matching algorithm (shared by HelpingHand, RealBrush and DecoBrush),
which addresses the problem of mapping a low-dimensional input trajectory to high-
dimensional stroke properties.

In the remaining chapters, we describe each prototype system that addresses one
of the digital drawing and painting challenges highlighted in Section 1.3:

• No need for high-end input hardware.
HelpingHand (Chapter 2) learns from hand gesture data to hallucinate the
possible hand pose (pressure, tilt and rotation) used during drawing, based
only on x, y positions obtained from low-quality input devices. Additionally,
the system can also stylize the input trajectory by example. This eliminates the
need for a high-end input device wielded by an expert hand, enabling novices
using touch screens and mice to draw in the gestural style of experts.

• Painting with new natural media.
RealBrush (Chapter 3) uses photographed natural media stroke marks to stylize
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the user’s query path, completely obviating the need for physical simulation.
It also stylizes the stroke interactions such as paint smearing and smudging
based on captured physical examples. It provides a general synthesis framework
for natural media beyond the commonly seen oil, watercolor and pastel. We
demonstrate results synthesized with various exotic media that have never been
physically simulated before, including plasticine, lipsticks, heavy gel mixed with
paints, glitter, etc.

• Painting with structured patterns.
DecoBrush (Chapter 4) further generalizes the conventional “painting” concept
beyond the scope of natural media to allow synthesis of structured vector
patterns following a sketch-based interface. It advances the concept of “design
by sketching”, where the user only needs to supply a 1D spine as input and
the system automatically figures out the possible structures to grow along
the input spine. This interface makes the vector design problem much more
accessible for novices, allowing easy modification of existing expert designs for
new applications.

• A simple approach to realistic color prediction.
RealPigment (Chapter 5) proposes a data-driven color model which predicts the
result color of compositing a new layer of pigment on top of the background
layer, based on a physical color compositing chart. Our data-driven color model
eliminates the tedious measurement process needed for Kubelka-Munk theory
and improves the color prediction fidelity compared to the commonly used
RGBA compositing.

We have previously described the systems presented in Chapters 2-4, [91, 88, 89].
This thesis pulls the work together into a common framework, and also describes
work in Chapter 5 that remains in preparation for subsequent publication [90].

1.5 Data-driven Painting Paradigm

The recent “Big Data” trend entails a strategy of using simple algorithms and lots
of data to answer questions. It obviates the need to make simplifying assumptions
or use computationally-intensive algorithms and models to approximate the physical
phenomena. With the abundant information present in the data, one can directly
point at the data and say “this is what the world really is”. Many previous efforts
in image editing and computer vision successfully build on this idea, [34, 48, 147].
However, in the digital drawing and painting domain, the Big Data idea has not been
directly applied, due to the limited CPU and memory resources and the stringent
requirement for interactive performance. Therefore, this thesis focuses on designing
data-driven techniques to work under such resource and performance constraints.
This section talks about the general data-driven methodology (Section 1.5.1), its
benefits (Section 1.5.2) and challenges (Section 1.5.3) for digital drawing and painting,
and our specific strategies to address these challenges (Section 1.5.4 and Section 1.5.5).
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1.5.1 Methodology

Powered by the availability of Internet-scale image and video collections coupled
with greater processing speeds, the last decade has witnessed the rise of the data-
driven approaches in computer graphics. The animation community has long used
motion capture data to control virtual avatars [81, 87]. More recently data-driven
approaches have also been used for animating deformable objects [107]. Efforts have
also been made to synthesize geometry by example [41, 160], or manipulate, enhance
or re-target photos and videos by example, [85, 86]. Some other research directions,
such as texture synthesis and image-based rendering, are inherently data-driven.
Texture synthesis addresses the problem of algorithmically constructing a large image
from a small sample image by taking advantage of its structural content. Image-
based modeling and rendering algorithms rely on a set of 2D images to reconstruct
3D models and render them from novel viewpoints. The general methodology of the
data-driven approaches is: first design the amount and type of data to collect, then
acquire the data in a controlled way, perform analysis and/or training on the data,
and finally use the data to perform prediction or synthesize new variations.

There are parametric methods and non-parametric methods. Parametric data-
driven methods usually assume an underlying parametric model to represent the
data, then the acquired data is used to train/optimize the model parameters. The
prediction result is highly dependent on the feasibility of the model and the quality
and quantity of the data. Special efforts need to be made to address the problem of
local minimum for non-linear objective functions and over-fitting when there is not
enough data. Along this line, in Chapter 5, we attempt to use color compositing
chart to predict the parameters of the Kubelka-Munk color model, which can then be
used to predict the compositing behavior given new query colors.

Non-parametric data-driven methods, on the other hand, adopt slightly different
methodology. They avoid the training phrase, but directly modify and apply
the acquired data for synthesis purposes. In general, there are two types of
approaches. One is interpolation and extrapolation. For example, some animation
algorithms directly interpolate motion capture data or key frames for the synthesis of
intermediate frames. Usually, the motion capture database is large and the key-frames
are frequent, therefore the resulting blurriness is not objectionable, or even desirable
for smooth motion. Another type of approach, that has wider range of applications,
chops data into discrete parts and then smartly stitches them together to create
interesting variations [38, 41, 122]. Our work in drawing and painting (Chapter 2, 3
and 4) follow this route. Parametric learning-based methods do not, in general, scale
well with the number of categories. For example, to include new media or styles,
we need to train new models for the new categories and adjust system parameters
accordingly. Non-parametric approaches, on the other hand, simply re-use the same
general framework given new categories of exemplars, which is why we focus on these
methods in this thesis.
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1.5.2 Benefits

This section elaborates the benefits of non-parametric data-driven approaches for
digital drawing and painting:

• The data represent reality. Exemplars can directly capture the desirable
properties of natural media, including organicness, spontaneity and complexity,
which can then be utilized directly for more faithful reproduction of the real
world.

• The data encode designs and styles implicitly without specifying explicit
technical definitions. It is easier for human to understand concrete examples
than to comprehend abstract rules. Therefore, the most natural and easy way
for novices to learn and start painting is to borrow from and build on examples
made by professionals, instead of creating something entirely new from scratch.
The use of exemplars as the painting building blocks lowers the barriers for art
newcomers.

• With today’s fast Internet, styles can be easily shared and reproduced by cap-
turing exemplars and publishing them on-line. In fact, people are already doing
this through on-line image warehouses, such as Flickr, and stock photography
sites like istockphoto.com to share Adobe Photoshop brushes, Adobe Illustra-
tor designs, etc. Huge opportunities lie in the effective manipulation of existing
data for new applications.

• While physical simulation continues to produce compelling synthesis results,
they are demanding for CPU and memory resources. It is hard to trim them
down to perform well on low-power tablets and cellphone devices, whereas
carefully-designed data-driven algorithms have this potential.

• Compared to simulation and procedural modeling, non-parametric data-driven
algorithms tend to be parameter-free or expose small numbers of parameters,
and therefore easier to understand and use.

• Data-driven techniques have the potential to combine the behaviors of different
media to create appearance that is not physically possible. For example, one
can combine pencil-like textural appearance with oil-like smearing behavior and
watercolor-like pigment compositing effect, creating a unique digital medium on
its own.

1.5.3 Challenges

Despite the these various benefits, non-parametric data-driven approaches are less
explored in the digital painting and design realm. Only a handful of previous work has
attempted this route with limited success, [3, 70, 93, 113, 123, 163]. This thesis aims
to make further progresses towards more complete answers to the following questions:
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What data to use?

For non-parametric methods, the data and the synthesis results are of the same
form. A top-down approach is usually adopted. We first determine the target range
of results, for example we might target thick dry oil paint applied with a fan brush
using diverse hand-poses on rough surface. Then, we seek to design the data of the
target medium to contain a desirable amount of variation and complexity. This step
is crucial, since the quality of exemplars directly limit the range of possible synthesis
appearances. Section 2.3, 3.5 and 4.4 describe the types of data that are needed to
achieve the respective synthesis goals.

How much data?

Drawing and painting is an interactive process, which involves artists iteratively
refining their design and composition given the continuously updated visual feedback.
Therefore, interactive performance is important. The increasing popularity of
battery-powered tablet devices place even harder constraints on the amount of CPU
and memory that can be used for digital painting applications. The research question
here is “What is the minimal amount of data sufficient to generate high-quality
synthesis results?” It ties closely to the question of “What data to use?” We propose
to factorize the painting process into a set of independent components and use a small
amount of carefully-designed exemplars to efficiently synthesize each component,
giving a modularized and general-purpose rendering framework that applies to a large
variety of target media and styles (Section 1.5.4).

How to acquire and annotate the data?

The data can come from several different sources:

• Created by professionals or end users and captured by data acquisition devices,
including printer, digital camera, tablet and stylus, etc (Chapter 2 HelpingHand
and Chapter 3 RealBrush).

• Existing on-line data (Chapter 4 DecoBrush and Chapter 5 RealPigment).

• Completely synthetic or generated by off-line high-fidelity simulation system, for
quick acquisition of large amount of data (synthetic color charts in Chapter 5).

Regardless of the sources, in most cases, the training data must be annotated by
humans when it involves features that are difficult to be accurately identified by
automated algorithms. We attempt to strike a balance between acquiring all necessary
information and requiring manual intervention. Our data acquisition and annotation
pipelines do not assume domain knowledge, special hardware or carefully controlled
capture setup, for the ease of use and the potential to be adopted by novices. For
RealBrush and DecoBrush, we only ask the users to specify the rough spine and end
points of the strokes, which is a straightforward task and can potentially be conducted
and shared collaboratively on-line by a community of users.
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How to establish mapping and use data to create new variations?

The central step common to all non-parametric approaches is searching in the
dataset for visually similar matches to a given query. For digital painting specifically,
we chop the query into pieces at appropriate places and map the pieces to exemplar
segments. Section 1.5.5 introduces our piecewise matching idea. Section 2.5, 3.6.1
and 4.5.1 discuss the adaptations to the matching algorithm for different applications.
Another common challenge to address in data-driven stroke synthesis is how to morph
the exemplar pieces and stitch them seamlessly to compose the query. Depending
on different scenarios, this challenge might be addressed by simple warping and
cross-blending (Section 2.6 and 3.6.2) or complex procedures involving graph-cut and
texture synthesis (Section 3.6.3 and 4.5.4).

How to evaluate the success when there is no ground-truth?

In Non-Photorealistic Rendering, we rarely have access to agreed upon ground-
truth to objectively evaluate the success of algorithms. In the case of non-parametric
data-driven algorithms for digital painting where the data and the synthesis results are
of the same format, we can directly compare them and ask human for their subjective
opinions. We propose a user study framework based on pairwise image comparisons
for perceptual evaluations of the results. We ask the viewers “Do the synthesized
results look real or synthetic?” (Section 2.7.2 and 3.8) to provide some evidence for
the robustness of the algorithm.

1.5.4 Painting Process Factorization

Painting is a complex process. Strokes and designs can take many different
forms, shapes and textures. Stroke interactions can happen at different overlap
configurations between different colors and media. Everything coupled, it seems we
need a huge number of exemplars to represent a medium. And the space of all possible
strokes are high dimensional and difficult to organize. We propose a factorized
painting model that abstracts the physical painting process into a modularized
framework composed of five independent components. Each component can be
synthesized in a data-driven fashion with a small number of exemplars decoupled
from the rest of the painting process. The factorization idea avoids exemplar explosion
and provides a much more tractable solution space, which is crucial for low memory
consumption and interactive performance. In particular, the five components are:

1. Input trajectory. Users interact with the painting system by providing
2D input trajectories. The quality of the trajectories characterizes an user’s
expertise in art and proficiency with the tablet device. Amateur users often have
a hard time making smooth and confident trajectories, resulting in undesirable
synthesis results. In that regard, as the first step of a synthesis pipeline, the
input trajectory can be improved or stylized by trajectory exemplars provided
by professional artists (Section 2.6.1). Then the synthesized trajectory can be
fed into the rest of the pipeline to predict the final stroke appearance.
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2. Input hand-pose. Casual users often paint with touch screens and mice.
Their input hand-pose, such as pressure, tilt angles and rotation angle, are
not well captured by those input devices. However, hand-pose are often
useful for the painting applications, to drive virtual brush simulations or to
procedurally determine the 2D stroke shape in order for data-driven prediction
of the appearance. For example, RealBrush and DecoBrush approximate the
rough outline of the query stroke taking into account the instantaneous pressure
at every query sample. More complex procedures can be designed to utilize all
four dimensions of the hand-pose to determine a more accurate stroke shape.
Therefore, we separate the hand-pose as another system component, which can
be synthesized independently by example (Section 2.6.1) and then utilized by
the rest of the synthesis pipeline.

3. Shape. Shape refers to the outline and the textural appearance of a 2D stroke,
which can also be synthesized by example. As an exemplar library, we collect
a set of isolated strokes that are produced by a consistent choice of instrument
and natural medium (RealBrush) or artistic style (DecoBrush). For natural
media exemplars, shape inherently entails the three-way interactions between
the instruments, natural media and the canvas grains. For structured vector
exemplars, shape represents the geometric arrangement and composition of the
design. The color of the stroke can be separated from the “shape” and can be
specified by the end users at runtime. We show that both natural media and
structured exemplars can be synthesized using a similar data-driven pipeline
(Section 3.6 and 4.5).

4. Inter-stroke interaction texture. For natural media, we consider two types
of inter-stroke interactions, smearing and smudging. Smearing refers to the
change in foreground stroke’s texture when applying it on top of background
strokes of different colors. The change in texture is caused by the background
pigment being picked up by the brush and mixed with the foreground pigment
along the course of the new stroke. Smudging refers to the resulting texture of
stroking over wet paint with a clean instrument without adding more paints.
Though not explored by the thesis, structured strokes can have non-trivial
interaction effects as well. For example, when strokes overlap, their structures
can become interconnected and grown into an integral piece. We propose to
synthesize the textural effects of the inter-stroke interaction separate from the
“shape” of the single stroke, based on a set of exemplars that contain pairs of
overlapping strokes (Section 3.7).

5. Inter-stroke interaction color. The interaction color represents the result
of the optical interaction of overlapping layers of pigment applied over time.
As a simple approximation, most digital painting systems use linear RGBA
compositing, which behaves unlike paint. We show that the interaction color
can be abstracted from the rest of the pipeline and synthesized based on physical
color compositing charts, for more realistic pigment effects (Chapter 5). These
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charts are often used by artists to study the pigment behaviors and therefore
widely available on-line.

There are several advantages for the factored formulation: First, the decoupling of
the painting process reduces the complexity and dimensionality of the data needed to
capture for each stage. For example, the textural appearance of the stroke interaction
is decoupled from the “shape”, which eliminates the need to capture interaction
exemplars for each possible “shape”. Instead, we only need to capture a set of
generic overlapping strokes and extract the influence of the interactions as differential
operators (Section 3.5.2). The separation of the interaction color from the texture
also reduces the need to capture overlapping strokes for each possible pair of colors.
Suppose we would like to capture n different “shape”, m interaction variations and
l pairs of colors. The factorization reduces the required number of exemplars from
O(n ·m · l) to O(n + m + l). Second, such formulation enables modularized system
design, where each component can be synthesized independently. The synthesis
algorithm and the type and quantity of the exemplars for each component can be
modified without influencing the design for the rest of the system. Last but not
least, the factorization allows combining different behaviors of the different synthesis
components for unique appearance or style that does not exist or is not physically
possible. For example, one can combine one artist’s hand-pose with another artist’s
stylish trajectory. One can combine playdoh’s “shape” with oil’s smearing behavior
and watercolor’s color compositing effect. One can also apply the data-driven color
compositing algorithm to colored vector designs.

Section 3.4 gives a concrete example of the factorization idea. DiVerdi [29]
discussed a slightly different factorization for natural media simulation in particular.

1.5.5 Piecewise Matching Idea

Artists interact with the digital painting tool via a sketch-based interface, where
they sketch 1D curves on the virtual canvas to indicate the regions for applying paints.
We call the 1D curve “trajectory” or “path” throughout the thesis. The sketch-based
interface naturally leads to the use of stroke-based rendering techniques. A stroke is
a parametric description of a 2D region that can be rendered in the image plane. It is
the smallest discrete rendering unit that can take different shapes having wavy paths
and varying thickness.

In this thesis, we use “stroke” to generally represent the information accompanying
the input trajectory to be used for rendering. In particular, HelpingHand (Chapter 2)
synthesizes the missing hand-pose information (pressure, tilt angles and rotation
angle), given the runtime query trajectory. “Stroke” here refers to the trajectory
and the hand-pose data. In RealBrush (Chapter 3), we directly synthesize the 2D
appearance of the query (stroke), based on natural media strokes. In DecoBrush
(Chapter 4), we refer to the whole structured design as “stroke” and synthesize it
along the direction of the input trajectory. The common problem to be solved for
all three systems is the mapping between low-dimensional input (trajectory) to high-
dimensional exemplar (hand-pose or 2D stroke appearance).
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Notice that, given an arbitrary query trajectory, it is unlikely that a single
exemplar will be a good match. The exemplar might need to be stretched or squashed
depending on the length of the query. Previous work have chopped the exemplars into
small units and match the query trajectory to sequence of those units, [3, 70, 93, 163].
The exemplar units are often too small limiting the synthesis quality and the range
of styles they can support. Large features in the exemplar strokes might be broken
up and hard to recreate during synthesis.

In contrast, we propose a piecewise matching idea that automatically breaks the
query trajectory into long segments each of which is matched to a segment of an
exemplar stroke. In particular, we represent the input trajectory by a sequence
of discrete samples, where each sample is composed of the x, y coordinates in the
canvas plane. To perform matching, we construct a feature vector at each sample
that represents the local trajectory variation and the relative positioning within the
stroke. For each query sample, we perform approximate nearest neighbor search and
obtain a set of candidate exemplar samples. Then we use global optimization, taking
into account the entire query stroke, to select one exemplar sample for each query
sample, favoring connecting consecutive exemplar samples into long segments. Our
design of feature vectors and energy functions for optimization strives to preserve the
beginning and end characteristics of the exemplars in the synthesized stroke, to select
as long as possible exemplar segments of similar trajectory to the query, and to avoid
sharp discontinuity in the synthesized appearance. The piecewise matching idea is
utilized by HelpingHand, RealBrush and DecoBrush, each of which adapts the design
of feature vector and energy functions to achieve a slightly different goal (Section 2.5,
3.6.1 and 4.5.1). The trajectory-based matching is governed by our observation that
similar trajectories leads to similar hand-poses, which in turn produces similar stroke
appearance (Section 2.3.1).

1.6 Our Contributions

This thesis makes the following contributions.

• We propose factorizing the painting process into a set of orthogonal components:
1) the input trajectory; 2) the input hand-pose; 3) the stroke shape; 4)
the inter-stroke interaction texture; 5) the inter-stroke interaction color. We
develop prototype systems to demonstrate that each of the components can
be synthesized efficiently and independently based on small sets of decoupled
exemplars. The factorization idea makes data acquisition and stroke synthesis
tractable and efficient, meeting the need of interactive performance.

• We introduce efficient techniques to acquire and process several types of visual
exemplars with the goal in mind of ease of acquisition. We perform analysis on
the exemplars to provide useful insights for the artistic rendering community.
We also make our exemplar databases publicly available to encourage future
research in this direction.
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• We describe a novel and versatile piecewise matching algorithm that matches
a query path to long segments of exemplar strokes using feature-based nearest
neighbor search and solving an optimization efficiently with dynamic program-
ming. We show that different types of exemplars can be synthesized using the
same framework.

• We design our prototype systems with the ease of use in mind. We provide
intuitive user interfaces for novices, where one can simply select a target
exemplar library and make simple sketch to create complex-looking strokes and
paintings. We enable novices to easily create visually-compelling drawings,
paintings and designs in the hands of expert.

• We propose a user study framework that evaluates the perceptual similarity of
the synthesis results to the real exemplars. Our results show that casual viewers
have a hard time distinguishing our synthesis results from the real exemplars,
especially compared to the results of naive synthesis methods.
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Chapter 2

HelpingHand:
Example-based Stroke Stylization

Digital painters commonly use a tablet and stylus to drive software like Adobe
Photoshop. A high quality stylus with 6 degrees of freedom (DOFs: 2D position,
pressure, 2D tilt, and 1D rotation) coupled to a virtual brush simulation engine allows
skilled users to produce expressive strokes in their own style. However, such devices
are difficult for novices to control, and many people draw with less expensive (lower
DOF) input devices. This chapter presents a data-driven approach for synthesizing
the 6D hand gesture data for users of low-quality input devices. Offline, we collect a
library of strokes with 6D data created by trained artists. Online, given a query stroke
as a series of 2D positions, we synthesize the 4D hand pose data at each sample based
on samples from the library that locally match the query. This framework optionally
can also modify the stroke trajectory to match characteristic shapes in the style of the
library. Our algorithm outputs a 6D trajectory that can be fed into any virtual brush
stroke engine to make expressive strokes for novices or users of limited hardware.

(a) Query (b) Pose synthesis

(c) Trajectory & pose synthesis (d) Alternate style

Figure 2.1: Hand-writing synthesis results. (a) Given one or more query strokes, we
synthesize (b) hand pose data crucial for bush simulation, based on artist’s examples.
(c) We can also modify the trajectory to locally match the artist’s style. (d) Trajectory
and pose synthesis using different artist’s style.
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2.1 Background

rtists wielding traditional drawing instruments such as a pencil, a stick of
charcoal or a paint brush exercise fine control over the interplay between
their gestures and the physical medium. The appearance of the strokes is

governed not only by the path of the instrument but also the pressure and angle (see
inset). Digital artists often work with high quality tablets that track a stylus with
6 DOFs (2D position, pressure, 2D tilt, and rotation), which painting software can
use to simulate the interaction of digital brushes in various media with increasing
fidelity [10].

c© Sandr Imaging

However, most people drawing on digital devices today
do not use 6-DOF tablets, for two reasons. First, high-
quality tablets are relatively expensive as compared with
other input devices like mice (2-DOF), multitouch screens
(≥2-DOF), or mass-market tablets (3- or 5-DOF). Second,
even if everyone owned a 6-DOF tablet, most people would
not have the training and experience to be able to wield it
effectively. To achieve high quality calligraphy, for example,
takes many hours (perhaps years) of practice.

This chapter describes a method whereby a non-expert draws a 2D query stroke
(Figure 2.1a), perhaps using an inexpensive input device, and missing DOFs are
synthesized based on a library of examples supplied by an artist (Figure 2.2a). The
resulting marks follow the trajectory drawn by the non-expert but convey the gestural
style of the artist (Figure 2.1b). We also show how the approach can be extended to
approximate the input trajectory while adopting some of the character of the strokes
in the artist’s library (Figure 2.1c). This option is beneficial for users who are not
confident in their own style, or when using a coarse input device like a mouse. One
can easily change style by choosing a different library (Figure 2.1d).

To synthesize hand pose, we address this problem: given a library of 6-DOF strokes
(drawn by the artist) and a 2-DOF query stroke (drawn by the user), produce 4-DOFs
to accompany the query so that the 6-DOF (2+4) combination looks like the strokes
in the library. Trajectory stylization optionally replaces the 2-DOF trajectory as well.
There is no single correct answer because the same path can be drawn differently, even
by a single artist, so our goal is to synthesize plausible gestures.

Our method produces gestures that are plausibly in the style of the artist’s library.
It performs at interactive rates to provide immediate feedback to the user during
drawing and to make it easy to choose amongst different styles. Finally, while we have
designed the system for interactive use by non-experts or people without high-quality
tablets, the same method can apply stylization to any source of line art, including
the output of vector illustration software or computer-generated line drawings based
on 3D models.

Our main contributions include stroke stylization via example-based synthesis of
hand pose—data needed to control a virtual brush—as well as optional trajectory
modification. Through data collection and analysis we offer understanding of how
hand pose relates to individual writing style. Finally, we explore the space of
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candidate algorithms and evaluate them quantitatively and qualitatively, concluding
with a demonstration of practical results.

(a) ArtA (b) ArtB

(c) ArtC (d) ArtD

Figure 2.2: Example libraries. (a) and (b) show the same pangrams written by two
different artists; (c) and (d) are line drawings.
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2.2 Related Work

ur fundamental idea builds on recent advances in non-parametric model-
ing that have been shown to be effective for texture synthesis by example
in a variety of domains—images, meshes, video, and animation [143]. These

techniques work by selectively copying portions of a library to generate new data
that maintains a similar statistical distribution and aesthetic property, with careful
tailoring to the particular requirements of each domain. Ashikhmin [4] observes that
copying swaths of pixels for image texture greatly improves performance over per-
pixel methods, but leads to discontinuity artifacts at boundaries. Optimal boundary
placement on the 2-D grid is intractable; however, we show that on our 1-D domain
it can be solved via dynamic programming. Due to this optimization over the 1-D
domain, our method is similar to the video textures of Schödl et al. [122].

We also derive high-level inspiration from the approach for human motion
synthesis of Kovar et al. [74] and Hsu et al. [55], both of which synthesize high
dimensional output from a database of low dimensional control input. Several aspects
of stroke gesture synthesis make our problem unique. For example, artist data
collection must be fully automatic, as many strokes are made quickly. Similarly, user
input must be processed at interactive rates and without additional user input, to
allow for a fluid painting experience. Furthermore, we separate the concerns for pose
stylization versus input trajectory stylization, and show how to apply our algorithm
to either one individually or both simultaneously.

Stylization. There have been a number of versions of curve and stroke stylization
in the graphics community. In the 2D domain, Elasticurves [132] intelligently neaten
input strokes based on velocity data, but are only able to produce a single style
of smooth result. McCrae and Singh [96] present a different neatening technique
that would piecewise fit and blend among french curve segments to sketched input,
to create pleasing line shapes. They also demonstrate alternative stylizations by
substituting different canonical strokes for french curves. The curve analogies
framework of Hertzmann et al. [51] could apply arbitrary stylizations to input curves,
by learning variations from pre-existing input-output curve pairs. But its extension to
more general brush parameters such as pose is not obvious. Moreover, our approach
for trajectory modification relies on a library of output-only exemplars, rather than
input-output pairs.

Some previous work address additional brush parameters. House and Singh [54]
propose a dynamic control process to generate varying width along smooth curves.
Saito et al. [116] describe heuristics to procedurally compute stroke width based on
curvature. Both approaches depend on explicitly and narrowly defined relationships
between stroke shape and width, and do not support additional pose DOFs as needed
for a virtual brush model. The isophote distance of Goodwin et al. [45] formulates
heuristics about line thickness, but relies on a 3D scene as input.

Specifically targeted towards digital painting, Okabe et al. [104] apply realistic
brush strokes to curves, by first acquiring videos of the changing shape of real brushes
during strokes, and then training an HMM to generate the appropriate footprint based
on the user’s curves. The IntuPaint system of Vandoren et al. [138] creates artistic
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paintings using instrumented, physical brushes and workspaces and interactively
acquiring the pigment deposition for compositing to a virtual document in realtime.
It supports a variety of traditional media tools and techniques, but imposes heavy
custom hardware requirements and thus is not suitable towards our goal of more
generally applicable brush stroke rendering.

Handwriting. Our approach of learning and then reproducing the brush pose
styles of real artists also bears similarities to a branch of biometrics research concerned
with handwriting verification and synthesis. Much of the work records samples of
individual character glyphs in advance, and then plays back those glyphs based on
the desired target text, often with random or physically inspired perturbations [139].
However, these techniques only reproduce strokes they have recorded and labeled,
making them inappropriate for freeform sketching.

More general approaches attempt to create dynamical systems that can repro-
duce 2D handwriting-like motion from training samples [52]. In the extreme, Plam-
ondon [109] developed a kinematic theory of rapid human movements that was used
to synthesize stroke trajectories with properties similar to natural motions. Beyond
2D trajectories, Franke et al. [40] create a handwriting robot that holds a pen at
a static orientation but can vary pressure throughout a stroke, to create very con-
vincing signature forgeries. Yu et al. [159] consider hardware that acquire 5D input
including pressure and 2D tilt, but only for the purposes of writer identification, and
not synthesis. We are not aware of previous work that considers the six DOFs of a
real brush.

2.3 Data Collection and Analysis

e collected two data sets from the artists: English pangrams and line
drawings (Figure 2.2). Five artists drew strokes in their own natural
drawing style using a Wacom Intuos4 tablet with an art pen (inset) and

Adobe Photoshop CS5 for immediate visual feedback and recording, sampled at 140
Hz. During recording, the tablet orientation remained consistent for each particular
artist and is treated as part of their drawing style. Each 6D sample contains 2D
position x = 〈x, y〉 and 4D pose h = 〈ρ, θ, φ, ω〉 comprised of pressure ρ, tilt 〈θ, φ〉
and rotation ω. We refer to trajectory T as a sequence of sample positions T = {xi},
and pose H as the corresponding hand pose sequence H = {hi}. After capture, we
resample each stroke uniformly in arc length (roughly 1 pixel spacing in 2000x2000
images).

Our system takes those recordings as in-
put and builds a collection of 6D strokes that
we call library L. Each library stroke L ∈ L
consists of a set of position and pose sam-
ples, L = {xi,hi}. Figure 2.2 shows Photo-
shop renderings from some examples of the
data that we collected. While artists created
multiple pages of input (e.g., Figure 2.1a),
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we treat each page as a separate library. Typical pangram libraries have between
100 and 200 strokes, each of which typically has between 40 and 80 samples, whereas
drawings often contain some longer strokes.

2.3.1 Artist Distinctiveness

This project relies on several assumptions. The first is that shapes of strokes
used in handwriting (for example) are part of the “style” of a given artist; different
examples of similar shapes like loops or ‘v’ shapes will be more consistent from the
same person as compared with examples from other artists. This assumption is widely
accepted. For example, it forms the basis for forensic handwriting analysis. We rely
on this assumption for the trajectory synthesis method presented in Section 2.5. But
we also make a second assumption that is less well studied—that artists’ hand poses
are determined by their target trajectories, with some variance. An artist drawing
the same shapes (with the same intention) multiple times tends to select poses from
the same pool of possible gestures. This implies that given a stroke L with trajectory
T, if we find other strokes with similar trajectories their poses should have similar
statistics as T. This observation forms the underpinnings of the example-based pose
synthesis methods presented in Section 2.5.

Therefore, to verify our pose assumption, we conduct a correlation-based analysis
on the recorded library data, investigating how well the pose attributes are correlated
between stroke patches with similar shapes. For each sample i in each stroke L ∈ L,
we construct a patch ti centered at sample i and composed of neighboring samples
ti = {xj | n ≥ |i− j|}. For a stroke with m samples, we have a total of m − 2n
overlapping patches, each of size 2n + 1. The size n provides a notion of what we
mean by “local” and through moderate trial and error we found n = 12 to work well;
we use this value throughout our experiments.

For each patch ti ∈ L we construct a simple feature vector Fi as the vector of
local tangents at every sample, concatenated with a pair of coordinates 〈x−i , x+i 〉 that
indicates whether the sample is near the beginning or end of the stroke (described
fully in Section 2.5.1). Next for each patch ti we find the most similar patch tc
from a different stroke within the library, measured by the L2 distance ‖Fi − Fc‖.
We reject all pairs of patches whose distance is larger than a threshold (the mean
feature distance over all pairs of patches). For each remaining pair of patches
〈ti, tc〉 we calculate the Pearson correlation coefficient between their corresponding
pose attributes, ri,c = corr(Hi,Hc). To aggregate across multiple patch pairs and
multiple pose attributes, we convert Pearson’s r coefficients into Fisher’s z coefficients,
compute the average, and then convert the result back into Pearson’s r [126]. The
aggregated r gives us an indication of how well a library’s pose is correlated among
similar strokes. As a baseline comparison, we also find random pairs of patches of the
same size 2n+ 1 within the library and calculate the correlation among them.

Figure 2.3 summarizes our findings. The bar chart shows that within libraries
written by the same person, pose sequences of random pairs of patches are not well
correlated whereas pose from strokes with similar trajectories have high correlation.
The blue bars report aggregate correlation within the library shown in Figure 2.2b.
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Figure 2.3: Hand-pose correlation. Left: Correlation is weak for random pairs and
strong for similar shapes. Right: Libraries drawn by the same artist are highly
correlated (diagonal blocks), relative to libraries from different artists.

Red bars are for a different library from the same artist, and green shows correlation
between those two libraries. While correlation is low for random pairs it is still
positive; many strokes have some correlation because pressure always starts and ends
near zero, for example. As evidence that different people have different writing styles,
we observe that their hand pose data also carry different statistics. The matrix on
the right shows the same correlation analysis described above, comparing all pairs
from a set of nine libraries (three by each of three artists). The block diagonal (same
artist) exhibits obviously higher values than the off-diagonal (different artists).

Of course even within the same library, correlation is not perfect (r < 1) for at
least three reasons. (1) During the recording process, which lasts about an hour,
the volunteer may introduce hand pose variation setting down the stylus and picking
up again with a different grip. (2) Pairs of similar patches do not have exactly the
same trajectories. (3) The same artist exhibits some variation in hand pose, even
when following the same path multiple times. The degree of variance depends on
the individual and to some extent the artist’s skill. Pose data from novice users
tends to exhibit less consistency. Three of our five volunteers have more than two
years of experience with a stylus (Artists A-C in Figure 2.3) while the other two are
less experienced and have correlation statistics around 0.5—still higher than typical
correlation between different artists (off-diagonal).

Figure 2.4a supports these claims with a visualization of the pressure magnitude of
example characters drawn by an artist (the word “quiz” above with other examples of
letters ‘q’ and ‘u’ below). Observe that the same shapes drawn at different moments
on different parts of the tablet exhibit similar pressure progressions, although there
is variation.

2.3.2 Spatial Variation

There are other influences related to pose, beyond shape and artist. One of the
prominent factors is the position of the stroke on the tablet. This is to be expected
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(a) ρ (b) rotation ωi (c) rot: ωi - Ω(xi)

Figure 2.4: Hand-pose visualizations (color range: blue=low – red=high). (a) Pen
pressure follows similar progressions for similar shapes drawn at different times.
(b) Rotation angle depends strongly on pen position. (c) Positional influence removed
via linear regression.

based on body kinematics, because the pen pose changes when the person moves his
hand from one position to another. This factor can have an observable effect. As an
extreme example, Figure 2.4b shows that the rotation of the pose is strongly related
to the position of the stroke, at least in this library where the range from blue to
red is roughly 50◦. It is possible to remove the strong spatial component prior to
pose synthesis, as follows. We model the pose attributes at sample i, for example
rotation ωi, as a sum of two components: (1) local variation intended by the artist ω′i,
and (2) a positional component Ω(xi). We observe that the the local variations are
fairly uniformly distributed and may be viewed as noise relative to the more global
positional signal. Therefore we approximate Ω(xi) by a quadratic polynomial over
the coordinates of xi, and perform a simple least squares fit to find the coefficients
of the polynomial. Then we can remove the approximate positional influence simply
by subtracting the polynomial from ωi, but adding in its place the average value.
Figure 2.4c shows the result, with a range of roughly 20◦. We find that tilt tends to
vary by position the way rotation does, but pressure is more consistent. Positional
influence varies from library to library. Nevertheless, we have not found these effects
to have a strong impact on the visual quality of the synthesis results. Therefore, our
libraries have not been modified using the regression fit for any of the results that
follow.

2.3.3 General Observations

Here we note a few general observations we found when studying the data in the
example libraries supplied by our artists:

• Continuity. Pose tends to change smoothly along strokes.

• Directionality. Strokes drawn from left to right are not identical to strokes
drawn right to left, for example.
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Preprocess:
• Compute feature vectors for library samples: (§2.5.1)

choice
{ ◦ shape contexts
◦ filtered velocities

Online:
• Compute feature vectors for queries, as above (§2.5.1)
• Find k nearest neighbors (k-NN) of each sample
• Select neighbors from k-NN for synthesis: (§2.5.2)

choice

{ ◦ closest neighbor
◦ weighted average
◦ optimal sequence

• Post process: (§2.6.1)
◦ for optimal sequence: transition blending
◦ for trajectory: shape optimization

Figure 2.5: Algorithm overview.

• Gravity. Statistics of stroke paths are not rotationally symmetric; up, down,
left and right are not interchangeable.

• Endpoints. Special care must be taken for the beginnings and endings of
strokes because the physical act of drawing makes these parts look different
from the middle of the path.

2.4 Algorithm Overview

ata analysis in Section 2.3.1 tells us strokes with similar trajectory are drawn
with similar hand pose. Given a query stroke trajectory, we can “hallucinate”
plausible hand pose from segments of library strokes that have locally similar

trajectory. The synthesis algorithm operates on a stroke by stroke basis, processing
each stroke in isolation, so inter-stroke effects are not considered. In an interactive
painting program, on mouse-up after a stroke is drawn, the synthesis algorithm is run
and the new stroke replaces what the user drew (in a fraction of a second for typical
strokes).

In both handwriting and line drawings, the hand pose attributes themselves do
not fully represent an artist’s style. We observe that one of the most important
cues is the trajectory itself. Given a query trajectory that might be drawn with the
shaky hand of an amateur user, we can find a new trajectory that follows the user’s
overall intention but has the style and expertise of the artist who drew the library.
This application relies on the same algorithm developed for pose hallucination. We
replace the query trajectory with similar, but not identical, patches from the library
(striking a balance between following query intent and preserving library style).

As pre-processing, we calculate a feature vector for each sample of each exemplar
stroke (Section 2.5.1). At runtime, for each query stroke, we first compute a feature
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vector for each sample and then optimally select appropriate exemplar samples for
the query stroke (Section 2.5.2). We use “piecewise matching” to refer to the
forementioned algorithm that performs feature matching and optimization to map
the query stroke to consecutive segments of the exemplar strokes (Section 2.5).
Chapter 3 and 4 reused and modified this algorithm respectively as the first step
of their pipelines. After the mapping is established, we need to perform additional
synthesis step to “hallucinate” the pose and trajectory attributes for the query stroke
(Section 2.6).

For each stage of the synthesis pipeline (Section 2.5.1, 2.5.2 and 2.6.1), we
consider different implementations to support various data and performance trade-
offs. Figure 2.5 offers a concise overview of these stages and implementation options.

2.5 Piecewise Matching

ection 2.5.1 describes two different designs of feature vector, shape contexts
and filtered velocities. Section 2.5.2 discusses three different methods, closest
neighbor, weighted average and optimal sequence, for selecting appropriate

exemplar samples as matches.

2.5.1 Feature Vectors

For the exemplar sample or the query sample, we compute a feature vector
that describes the local shape, using either shape contexts (Section 2.5.1) or filtered
velocities (Section 2.5.1). Then online, for a given query stroke, synthesis begins
by computing feature vectors for the query samples, and then searching for similar
features in the library.

One goal of the feature vector is to characterize the local trajectory of the query
(or library) strokes. Therefore, our feature vector takes into account samples in the
“recent history” and “near future” as in the patch construction from Section 2.3.1.
The pose attributes at the start or end of a stroke have different distributions than
those in the middle (Section 2.3.3). Therefore, a second goal for the feature vector
is to encode closeness to the endpoints, where appropriate. We define the scalar
x−i = min(1,

√
d/dh) where d is the arc length distance to the start of the stroke and

dh is the size of our recent history window. Likewise we have x+i measuring distance
to the end of the stroke relative to the future window. These values are clamped such
that the interiors of the strokes are undifferentiated. Putting this all together we have
feature vector Fi = {x−i , x+i ,W{fj} | j}, where {fj} is the set of shape features and
W is a weight that balances between the relative importance of shape features versus
end features. The next two subsections consider alternatives for the shape features.

Shape Contexts

Introduced by Belongie et al. [15], a shape context is a log-polar histogram of
sample positions on the curve, relative to the current sample. We have adapted a
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variant that performs well for our application, with two modifications. First, we
consider local shape by using only a small number of history and future samples.
Second, we further divide these into two separate histograms, one for history and one
for future; this division allows us to distinguish, for example, a stroke drawn left to
right versus right to left.

In our experiments we have used from 25 to 40 history and future samples each,
depending on the data set. The shape features fj are then the histogram bins, of
which we use 6 angular bins and 5 radial bins for a total of 2 × 6 × 5 + 2 = 62
dimensions for Fi.

Filtered Velocities

Here we describe a feature vector that is based on velocity rather than shape. We
use the sample velocities {vi}, where vi = xi−xi−1,v0 = 0. A näıve implementation
of the feature vector would have each tap correspond directly to a velocity sample
from the stroke: fj = vj. Because of the high sampling rate, this approach would
require many taps to capture a significant portion of the trajectory, and would apply
equal weight to samples regardless of how near or far they are to the current sample.

}}history future

stroke path

f i
Instead, each filter tap is obtained by applying a

discrete triangle filter (inset figure on the right) to
the velocity samples, fj =

∑
wkvk, where wk are the

triangle filter weights, for (i−N) ≤ j ≤ (i + M) taps.
N and M are the number of history and future taps,
respectively. The triangle filters overlap so that the start index and the end index
of a triangle are the center indices of the adjacent triangles, which ensures that
all the weights applied to a single velocity sample in a feature vector sum to one.
The filter width increases exponentially with distance from sample i, which means
individual samples that are distant contribute relatively less to the feature vector.
When synthesizing the query samples near the start or the end of the query stroke,
some of the feature taps will cover hypothetical samples that are outside of the query
stroke. In that case, we only average the velocity of the samples that are valid. If
all the samples under a triangle centered at j are located outside of the valid range,
then we use fj = 0. Using triangle filters reduces the dimensionality of the feature
vector needed to represent a large local neighborhood and filters out noise present in
the raw samples.

Results in this chapter use triangle filters with equal sized history and future
windows M = N = 7. Thus, considering 2D velocity and two extra “endpoint”
dimensions, the overall dimension of the feature vector Fi is 2× (2× 7 + 1) + 2 = 32.
We also use a weight W = 0.3 balancing shape features against endpoint features.
In our experiments we have found the method to be relatively insensitive to these
parameters, and robust through a broad range. Section 2.8 discusses the relative
merits of the two feature vectors we investigated.
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2.5.2 Selecting Among Nearest Neighbors

Once we have computed a feature vector for each sample in a query stroke, we find
its k nearest samples in the library as potential samples for synthesis. Brute force
search is not practical because the library is potentially large and the search must be
performed for many samples. Acceleration structures like K-D trees are known to lose
efficiency in high dimensional searches, as in the case of our feature vectors. Therefore,
we resort to algorithms for finding approximate k nearest neighbors, the output of
which we have found acceptable in the stages that follow. We experimented with two
algorithms, the FLANN implementation of Muja and Lowe [101], and an adaptation
of the PatchMatch algorithm of Barnes et al. [8]. The PatchMatch approach requires
a straightforward modification to search over the 1-D domain of samples, and we
found that with our data the algorithm converges to a reasonable approximation in
∼5 passes (as Barnes et al. found for image patches). Overall, the two approaches
offer roughly equivalent performance for equivalent quality of output. The major
tradeoff between the methods is that FLANN expends time and memory to build
auxiliary structures during the offline library construction phase; on the other hand
PatchMatch is only efficient when processing the entire query stroke at once and
therefore is not suitable for on-the-fly synthesis during stroke input.

Once we have the k neighbors (k-NN) for each query sample i, the next step is to
synthesize a new sample {x′i,h′i} from them. The synthesized attributes should look
like those of similar shapes in the library, especially at the start and end of strokes,
and vary smoothly in time. We consider three approaches—closest neighbor, weighted
average, and optimal sequence—discussed in the following subsections.

Closest Neighbor

The most straightforward approach is to select the one neighbor with the smallest
distance. That is, just use the closest neighbor to the query sample. While simple,
this method does not lead to good coherence properties along the length of the stroke.
Suppose library sample Lj is the 1-NN of query sample Qi. For strong coherence we
want Lj+1 to be the 1-NN of Qi+1, which is only sometimes true (and it becomes
more rare as the library size grows). However, Lj+1 is usually among the k-NN,
which means there is an opportunity to do better.

Nevertheless, we retain this case for comparison with the other methods in
Section 2.8. Moreover, this case may be thought of as a stand-in for the general
non-parametric texture synthesis approaches following that of Efros and Leung [39].
In particular, we also experimented with choosing randomly among the k-NN, and
also the variant proposed by Ashikhmin [4] (which probabilistically chooses Lj+1 in
the scenario above). However, in our experiments, none of these led to results as
coherent as those of the methods that follow.

Weighted Average

Building on the intuition of the closest neighbor approach, interpolation is a way
to provide smooth transitions. Given k neighbors nj, with distances dj from the
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Figure 2.6: Piecewise matching illustration.

query sample in feature space, we synthesize a sample as their weighted average
using weights 1/dj. This produces consecutive samples that vary smoothly, creating
a continuous output stroke. However, the library typically contains many similar
strokes (say multiple versions of the letter ‘a’), each with slightly different pose
and trajectory. The weighted average method therefore generates a stroke that
is a compromise among the distinctive features of the library strokes, not quite
reproducing any of them well. The result is that this method produces strokes that
tend to be smoother than the artist’s style.

Optimal Sequence

Both closest neighbor and weighted average are local solutions that have difficulty
reproducing the smoothness and distinctiveness of the artists’ style. To achieve
both of these qualities, we propose a (per-stroke) global optimizing solution, which
we solve using dynamic programming for efficient computation. One goal of the
optimization is to select a few long segments of library strokes (sequences of near-
consecutive samples) to be matched to segments of the query (Figure 2.7), avoiding
many potential discontinuities. Figure 2.6 illustrates the general idea. Consider
three exemplar strokes (blue, green and orange) and the query stroke of five samples
(purple). In this example, each query sample finds k = 3 nearest samples from the
exemplars. The goal is to optimize the transition path (red) that selects one nearest
exemplar sample for each query sample.

We optimize for the sequence of transition indices {ci = 〈ai, bi〉 | i = 1, 2, · · · , s}
by minimizing a total synthesis cost over the s samples in the query stroke. For the
i-th query sample: ai is the index of the selected library stroke, and bi is the index of
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Figure 2.7: Optimal matching visualization. Query strokes ‘q’ and ‘my’ are broken
into parts that map to segments of library strokes.

the selected sample on stroke ai. We seek the optimal sequence {Ci} that minimizes
the sum of four error terms, ef , es, em and et. These terms address, respectively,
matching feature vectors, avoiding short segments, matching stroke endpoints and
choosing good transitions between segments—discussed below.

Feature Penalty. The term ef simply sums (over all query samples i) the distance
in feature space to the selected neighbor ci. If all other terms in the optimization had
no impact then this term would drive the solution to the closest neighbor selection
method. However there is typically a different neighbor among the k-NN that is
almost as good as the closest neighbor and that has other desirable properties that
would cause it to be selected over the closest neighbor, based on the terms that follow.

Short Penalty. We find that short segments often lead to visual discontinuities in
the synthesized result. To avoid them we impose a penalty es taken as the sum of
(Cl + (Lmin − li))2 over all segments of length li < Lmin. In our experiments, we use
Cl = 3 and Lmin = 12 samples.

Endpoint Penalty. As noted in Section 2.3.3, ends of strokes have unique
characteristics. Therefore we prefer where possible to synthesize the beginning of
a query stroke with the beginning of of a library stroke, and the same for ends. We
impose a penalty term em = Ce((b1− 1) + (s′− bs)) where b1 is index of the neighbor
selected for the first sample, bs is the index for the last query, and s′ is the number of
samples in the library stroke as. This term essentially measures how far the neighbors
selected for the ends of the query are from the ends of their respective strokes. Ce is
the cost of not matching endpoints, which we set to Ce = 3.

Transition Penalty. The term et encourages using fewer segments. For consecutive
query samples, we encourage selecting samples that are consecutive on a library stroke,
since they have natural coherence in the hand pose attributes and capture the local
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style. If that is not possible for other reasons, we still encourage repeating the same
library sample once, or skipping exactly one library sample—policies that allow the
library segment to be stretched or shrunk to match the query. Otherwise we call the
transition a jump, and assign a penalty that includes both a large constant cost and
a cost based on pose discontinuity at the jump location. We compute the transition
penalty et by summing over the query eit, the transition cost of going from ci to ci+1.
According to the policies above there are four cases:

1. Consecutive: If ai = ai+1 and bi+1 = 1 + bi, then eit = 0.

2. One repeat: If ai = ai+1 and bi+1 = bi and bi 6= bi−1, then eit = Cr, the cost of
stretching.

3. One skip: If ai = ai+1 and bi+1 = 2 + bi, then eit = Cs, the cost of shrinking.

4. Jump: Otherwise, eit = Ct + Cp
∥∥hci − hci+1

∥∥, the cost of a jump with deeper
penalty for large pose discontinuities.

We use Cr = 3, Cs = 3, Ct = 50, and Cp = 10. To synthesize trajectory instead of
pose, we modify the transition cost et slightly. Rather than penalizing pose difference
at the jumps, we penalize direction changes. The term eit becomes:

4b. Trajectory jump: eit = Ct + Cp

(
1− v′ci · v

′
ci+1

)
where v′ci is the normalized

velocity of sample bi in library stroke ai.

Optimization. We solve the optimization with dynamic programming over a
transition table with k rows for the k-NN by n columns for the stroke samples. To
fill each entry in column i, we consider all the entries in i− 1. Once full, we recover
the optimal sequence by selecting the lowest cost path through the table.

2.6 Query Stroke Synthesis

fter selecting a sequence of neighbor samples, we post-process them to create
the final stroke data (Section 2.6.1). For best synthesis quality, the synthesis
pipeline can be implemented as a two-step algorithm, where the input

trajectory is first stylized and then the pose is synthesized based on the modified
trajectory (Section 2.6.2).

2.6.1 Post Processing

For the case of optimal neighbor selection we apply transition blending, and for
the case of trajectory synthesis we perform shape optimization, both discussed below.

Pose Transition Blending

The optimal sequence method (Section 2.5.2) can still have discontinuities at
the jump locations, despite the penalty term eit that attempts to minimize them.
Therefore, we employ blending to remove remaining artifacts. We gather as many as
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(a) (b) (c) (d)

Figure 2.8: Trajectory stylization of tentatively-drawn input curves, in black. (a)
Integration of the output velocities results in drift, shown in blue. (b) Anchor points
define tangent and velocity constraints. (c) Optimizing to satisfy the constraints
results in the final stylized trajectory, in red. (d) More examples.

6 samples (if they exist) on either side of the jump from both library strokes that
abut the jump, and perform a simple cross fade between their attributes (pose and/or
trajectory) in this overlap region.

Trajectory Shape Optimization

When synthesizing trajectories, the result can “drift” away from the query shape,
so we correct it using shape optimization. Suppose T = {xi} is the input query
trajectory. If we simply integrate the synthesized velocity V = {vi} starting from
the position of the first sample x1, we get a new trajectory that looks like the library,
but deviates from the query (Figure 2.8a black vs. blue).

We therefore design a simple linear optimization that attempts to simultaneously
preserve the synthesized shape while matching a few key features of the query. We
identify a set of anchor points on the query, of which we have three types. We place
the first type of anchor point a few samples from the start and end locations (blue
dots in Figure 2.8b). Second, we add locations with very rapid change in orientation,
as follows. For each query sample, we calculate the stroke turning angle in a local
window. We find all local maxima above a threshold angle (we use 60◦) and call them
angle points (magenta dots). Finally, between successive pairs of end points and
angle points we approximate the path as a polyline using a dynamic programming
optimization similar to that of McCrae and Singh [95]. The added vertices of the
polylines are the third kind of anchor point (green dot).

Next we set up a system of equations composed of three constraints, each of which
we wish to satisfy in a least-squares sense, in order to construct the final curve (red
in 2.8c, 2.8d). The first constraint attempts to match the final velocities v̄i to the
synthesized velocities vi. The second constraint attempts to match the positions of
the anchor points. To avoid second order discontinuities induced by optimization at
the anchor points, the third constraint attempts to match the local curvature of the
result to that of the synthesized velocities, near the anchors. With known synthesis
velocities vi and query positions xi we seek the unknown positions x̄i via a system of
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(a) Noisy trajectory (b) Pose synthesis on noisy trajectory

(c) Neatened trajectory (d) Pose synthesis on neatened trajectory

Figure 2.9: Stylization results on noisy input.

equations:

0 =
s∑
i=1

(v̄i − vi)
2 (2.1)

0 = Ca
∑
i∈A

(x̄i − xi)
2 (2.2)

0 = Ck
∑
i∈A

j=i+ε∑
j=i−ε

(κ(x̄j)− κ(xj))
2 (2.3)

where v̄i = x̄i − x̄i−1, and κ(xi) = xi+1 + xi−1 − 2xi. The set A contains the indices
of the anchor points. ε is the number of surrounding samples involved in the second
order constraints. In our experiments, we use ε = 2, Ca = 0.25, and Ck = 2.

2.6.2 Synthesizing Both Pose and Trajectory

The output of our synthesis process so far is a sequence of poses and/or trajectories
that can drive a virtual brush model. However, our pose synthesis framework uses
trajectory as input. If both pose and trajectory are being synthesized, the algorithm
can be run in either one or two passes. In the one pass version, the query trajectory is
used to directly synthesize both the pose and new trajectory and thus the combined
output does not have ideal correlation. In the two pass version, first the input stroke
(Figure 2.9a) is used to synthesize a new trajectory (Figure 2.9c), and then that
output trajectory is used to synthesize pose data (Figure 2.9d), which creates a
data dependency but produces better correlation. Note that, compared to the pose
synthesis result on the noisy input trajectory (Figure 2.9a), synthesizing pose after
trajectory stylization produces more pleasing result (Figure 2.9d). Another advantage
to the two-pass version is that it allows us to use separate parameters for synthesizing
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Closest Neighbor Weighted Average Optimal Sequence

Figure 2.10: Synthesized hand-pose correlation. We apply ArtA to ArtB, and vice-
versa, and see that the output is well correlated with the library and not the query,
and optimal sequence performs best.

trajectory and pose. For example we generally tune for fewer segments in trajectory
synthesis than in pose synthesis in the two-pass case.

2.7 Evaluation

his section describes the studies we conducted to evaluate our results. As
a quantitative measure of the pose synthesis quality, we computed the
correlation between the synthesized results and ground truth. However,

there is no equivalent measure for trajectory synthesis and ultimately we care most
about how users judge our results. Therefore, we also conducted user studies on both
pose and trajectory synthesis.

2.7.1 Quantitative Analysis

Section 2.3.1 shows that an artist exhibits some natural variation in hand pose even
when drawing the same path multiple times. Therefore, there is no “gold standard”
that we can compare our synthesis results against—L2 measurement of reconstruction
error against the ground truth is not a good indication of success. Correlation on the
other hand is a better evaluation metric in this case. For pose synthesis, we can apply
analysis similar to Section 2.3.1 to evaluate our results. If the style of the library
is successfully transferred onto the query strokes, every local patch of the output
should have a similar pose profile to similar patches in the library. We compared the
closest neighbor, weighted average, and optimal sequence variants of our algorithm
(Section 2.5.2). Figure 2.10 contains the correlation results. It shows that the optimal
algorithm achieves the highest pose correlation in both synthesis cases. Furthermore,
since we have ground truth pose data for the query strokes, we compare them to the
synthesis and find they are not well correlated, as expected. Note that we have no
analogous quality measure for trajectory synthesis because the goal is a blend of local
features with global shape, and a fair objective function is more difficult to formulate.
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Figure 2.11: User study interface.

2.7.2 User Studies

We conducted two user studies with the goal of evaluating whether a user can
distinguish between our results and ground truth. Pose and trajectory are studied
separately because users are overwhelmingly sensitive to trajectory over pose, which
would make pose evaluation difficult if combined. Both studies use the same
methodology; only the images are different.

Study Design. We show the subject three lines of English text from an artist’s
library—the exemplar (we used two libraries from each of the artists shown in
Figure 2.2a, 2.2b). Below the exemplar appear two test images containing the same
(3-9 letter) phrase—one ground truth originally written by the artist, and one forgery
synthesized by one of our algorithms. The subject is instructed that one image is
an “original” and the other is a “forgery,” and is asked to identify the original by
comparing both with the exemplar. Figure 2.11 shows the design of the interface. In
the pose study, the ground truth and forgery have the same trajectory (Figure 2.12).
In the trajectory study, the ground truth trajectory is used for synthesis, and pose
data is omitted from all images (Figure 2.13).

One trial consists of 26 such tasks (each with the same exemplar) comparing (a)
a random ground truth phrase, and a forgery selected from one of five conditions:
(b) optimal sequence, (c) weighted average, (d) closest neighbor, (e) style transfer,

36



(a) Ground truth (b) Optimal (c) Weighted average

(d) Closest (e) Transfer 1 (f) Transfer 2

Figure 2.12: Example images from pose study. (b-c) are algorithms being tested, and
(e-f) have pose transferred from other artists.

(a) Ground truth (b) Optimal (c) Weighted average

(d) Closest (e) Transfer 1 (f) Transfer 2

Figure 2.13: Example images from trajectory study, organized as in Figure 2.12.

and (f) style transfer for validation. Conditions (b-d) are the algorithms being tested,
whereas (e-f) are baselines that synthesize the forgery with another artist’s library (so
should be very easy to identify). Of the 26 tasks, four are from each of (b-e) and ten
are from (f), randomly shuffled. For any particular subject, (e-f) are selected from
two different library styles, randomly. We only retain data from a trial when 9 out of
10 of the validation conditions (f) are correct, so we know the user understands the
task and is actually trying to succeed (p = 0.01). Then style transfer results are only
reported for (e).

Subjects were “workers” on the Amazon Mechanical Turk, a micro-job market-
place that has been used for a growing variety of such studies [22]. Our studies were
restricted to US-only workers who were paid $0.20 per task (a “HIT” containing the
26 comparisons, which they typically completed in a few minutes). Across the two
studies, 70 workers completed a total of 214 HITs. Subjects were allowed to complete
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correct / count (%)
method pose study trajectory study
average 153 / 322 (48%) 96 / 302 (32%)
optimal 169 / 316 (53%) 172 / 305 (56%)
closest 269 / 304 (88%) 220 / 292 (75%)
transfer 293 / 301 (97%) 274 / 288 (95%)

Table 2.1: Pose and trajectory user study results. Each entry is the number of times
ground truth was correctly chosen out of a number of paired comparisons for each
condition.

as many as 10 HITs per study, but most workers did just one. For cases where a
particular pair was repeated by a particular worker due to the randomized selection,
we only retained the first such response, for total of 4,170 responses.

Study Results. The results are reported in Table 2.1 as the frequency with
which the ground truth was correctly identified. A Bonferroni corrected, randomized
permutation test on the distributions for each consecutive pair of rows in the table
shows that they are different with statistical significance (p � 0.01) except in the
case of the average and optimal conditions in the pose study (p = 0.34).

The ideal forgery is indistinguishable from ground truth so subjects will choose
randomly, resulting in a correct answer near 50% of the time. When the forgery is
easy to identify (Figure 2.13e), we expect scores near 100%. The transfer condition
is near 100% in both studies, which shows people can perform the task in easy
cases. People tend to identify the closest method (88% and 75%), so it is generally
implausible. In the pose study, average and optimal are both near 50%, and therefore
plausibly synthesize pose data. Optimal performs well in the trajectory study, but
average is significantly below 50% which means subjects tend to incorrectly identify
the forgery as the “original.” As mentioned in Section 2.5.2 the weighted average
method produces a very smooth output trajectory, and we believe people have a bias
towards smoother curves. In such cases people choose average over ground truth,
even though it is actually smoother than the exemplar and thus fails to mimic the
exemplar’s style.

2.8 Results and Discussion

he running time of our synthesis algorithm is sublinear with the number of
library samples, due to the approximate k-NN search. We found through
experimentation that 150 strokes is sufficient for generating plausible results,

and confirmed this through correlation analysis similar to that of Section 2.3. For
such a library, the average running time for both pose and trajectory synthesis is
0.08 seconds per stroke. We experimented with “enriching” the library up to about
1000 strokes by including the same strokes scaled to different sizes (±50%), to increase
matching scale-invariance, but did not see a significant improvement, and performance
was reduced. We also tried using very small (fewer than 10) and very large (more
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(a) Query (b) Ground truth

(c) Synthesis (d) Alternate style

Figure 2.14: Handwriting pose synthesis results. Query strokes (a) are ground
truth strokes (b) without the pose data. (c) Our synthesis results are visually
indistinguishable. (d) Applying another artist’s style yields characteristically different
visual appearance.

than 500) libraries. With small libraries, feature matching cannot find similar enough
trajectories and therefore picks random strokes to copy. Since the optimal sequence
algorithm encourages long segments, the pose results still look plausible, but for
trajectories, poor matches may result in complete loss of semantics in the results.
Large libraries do not affect pose synthesis, whereas trajectory modification is more
likely to find very similar patches to the query, reducing the effect of style transfer.

All the results shown here are rendered using Adobe Photoshop’s bristle brush
tool [31] with the same brush settings. The differences in the synthesized pose data
induce the visibly different shape and texture of the strokes.

Figure 2.14 shows the plausibility of pose synthesis on handwriting. An artist’s
6-DOF strokes are stripped of their pose data and the trajectories are used as
queries with the same artist’s library applied. The synthesized output is visually
indistinguishable from the ground truth, whereas applying another artist’s library
creates a visually distinct result. Pose synthesis on line drawings is demonstrated in
Figure 2.15.

Examples of trajectory stylization are in Figure 2.18 and Figure 2.16. We show
robustness to noisy input and the utility of trajectory stylization by demonstrating
how it can neaten mouse-written text, which has characteristic shakiness. Similarly,
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Figure 2.15: Line drawing pose synthesis results with two different styles.

a line drawing made by an artist with an unsure hand can be made to have more
confident strokes. Our algorithm can also apply stylistic flourishes such as serifs or
block lettering. Figures 2.1, 2.16, 2.17, and 2.18 show the two-pass algorithm stylizing
both pose and trajectory.

Discussion. Many of our results are handwriting samples, though we do not
make special accommodations for them, because handwriting provides an easy to
understand and readily available source of data. Handwriting is uniquely stylized by
the writer’s hand pose, the local trajectory variations, and the global features such
as slant angle. Handwriting also provides readily-evaluated test sets; in contrast, it
is more difficult to measure performance on strokes in a drawing. We consider that
the pose and local trajectory are stylistic results of motor reflexes, whereas the global
shape is intentional. Our algorithm attempts to transfer style but maintain intent
(via the trajectory shape optimization). For handwriting, we could use auxiliary
information such as the semantic content of the text to improve stylization, but that
would not be generalizable to other types of artistic strokes. Similarly, while an
artist’s style may consistently place higher weight on strokes in a drawing that are

40



(a) Query (b) Stylized trajectory

(c) Trajectory and pose (d) Alternate style

Figure 2.16: Line drawing pose and trajectory synthesis results. The flower is drawn
by an amateur user. The different colors represent different consecutive segments.

nearer to the viewpoint, we do not attempt to model these variations. In this way,
we provide the most general result possible.

We examined both shape contexts and filtered velocities for feature vectors. Our
results use filtered velocities, though it is difficult to say which is absolutely better.
Figure 2.19 shows their limitations. Filtered velocities tend to perform very well, but
can sometimes get “confused” and match a letter to a different but similar letter. This
may be fixable with a handwriting specific algorithm, but we make no assumptions
about the types of strokes being made. Shape contexts have fewer of these errors, but
have difficulty balancing local style transfer with global shape, resulting in output
that appears less plausible and noisy. Also it is generally more difficult to select
parameters for shape contexts, whereas filtered velocities are more robust through a
broader range of settings. Finally, to get high quality results, the shape contexts need
to have more dimensions (see Section 2.5.1) and this impacts performance.

We also compared strategies for choosing among nearest neighbors: closest
neighbor, weighted average, and optimal sequence. The result of our pose evaluations
is that quantitatively, optimal sequence is best, but to the casual observer, weighted
average is as effective. However, careful inspection can reveal subtle differences
between the two (e.g. Figure 2.12b-c). For trajectory synthesis, weighted average
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Figure 2.17: (Top row) Pose and trajectory stylization. (Bottom row) Pose synthesis
for vector line art from Adobe Illustrator.
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(a) Query (b) Stylized trajectory

(c) Trajectory and pose (d) Alternate style
Figure 2.18: Handwriting pose and trajectory synthesis results. The words “Siggraph”
and “my milk” are written with the mouse. The words “zebras” and “thanks” are
written using a 2DOF stylus.
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Figure 2.19: Synthesis limitations. (left) Filtered velocities can cause a query letter
(black) to map to a different library letter (blue) with similar trajectory. (right)
Filtered velocities (above) generally produce more visually pleasing results than shape
contexts (below).

is obviously more smooth, and in some cases too smooth. The advantage weighted
average has over optimal sequence is that it does not require the query stroke
be completed before it begins synthesizing, so it can be used in an “on-the-fly”
implementation that synthesizes pose data while the user is still creating the stroke.
Otherwise, optimal sequence results in the highest quality output.

Finally, our approach does not require hand-drawn input. The method applies
to any kind of 2D path, such as Bézier curves (see Figure 2.17). The paths are first
sampled uniformly in arc length and then treated as constant-velocity brush strokes
by our unmodified algorithm. This approach would also work for lines extracted from
3D models or other automatic processes.

2.9 Limitations and Future Work

ur algorithm considers each stroke independently, but artistic styles also
include interactions among nearby strokes, both temporally and spatially,
which we hope to model in future work.

Our results are all rendered by Adobe Photoshop’s bristle brush, which uses all
6-DOF of the stroke data. However the visual impact of each DOF may not be
as obvious as it would be with a real physical brush. Because our algorithm only
generates stroke data, it can be used with any digital paint engine, so other brush
simulations may be able to use the data more effectively.

Figure 2.19 highlights some trajectory synthesis failures where the query shape
was poorly matched by our algorithm. Our approach is local and has no higher-level
notion of intent on the part of the artist. While the cognitive process is too complex
to model there may be some intermediate levels that could help. Moreover, these
failures could be addressed in our current framework by choosing different parameter
settings. Our approach works well, especially for pose synthesis for a broad range of
settings, but finding the ideal values for an arbitrary problem is difficult.

Finally, we treat the artist’s library as a single monolithic style. In practice, artists
may choose among multiple styles, even in a single drawing. A style is really more
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multi-modal than is characterized by our process. We can partially address this issue
by offering the user the choice of different styles, but finding an effective interface for
this remains an interesting problem. More challenging would be to try to characterize
the multi-modal nature within a library.

2.10 Conclusion

e present HelpingHand [91], a data-driven approach for synthesizing plau-
sible pose data that can be used to generate expressive handwriting and
line drawings. The same framework can also be used to transfer stroke

trajectory style. We collect a library of strokes drawn by artists on a 6-DOF tablet
in Adobe Photoshop and analyze the pose data as insight for future research in this
area. We have made our program executable and the exemplar database available
on-line in the hope that they will be helpful for future research.
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Chapter 3

RealBrush: Painting with
Examples of Physical Media

Conventional digital painting systems rely on pro-
cedural rules and physical simulation to render paint
strokes. This chapter presents an interactive, data-
driven painting system that uses scanned images of
real natural media to synthesize both new strokes and
complex stroke interactions, obviating the need for
physical simulation. First, users capture images of real
media, including examples of isolated strokes, pairs of
overlapping strokes, and smudged strokes. Online, the
user inputs a new stroke path, and our system synthe-
sizes its 2D texture appearance with optional smearing
or smudging when strokes overlap. This work builds
on the matching algorithm introduced in Chapter 2
and uses it to construct full stroke by example (not
just hand-pose). We demonstrate high-fidelity paint-
ings that closely resemble the captured media style,
and also quantitatively evaluate our synthesis quality
via user studies.
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3.1 Background

raditional artists working with natural media take advantage of a great
abundance of different materials. These can have different chemical
properties, such as wet, dry, or cracked paint. Pigments can be scratched
or mixed with binders or thinners. Materials can have 3D relief or
embedded particles. The artist can express her creativity utilizing

materials found in the wild, limited only by her imagination. In contrast, digital
artists are heavily restricted. High quality approximations of commonly used media
such as oil and watercolor have been achieved in research systems [13, 21]. However,
these systems rely on complex simulations that cannot easily generalize to new media.
Commercial painting tools achieve a wider range of effects with procedural algorithms,
at the cost of requiring significantly more effort to generate a similar level of result
fidelity. Ultimately, artists are limited by the built-in assumptions embodied by digital
painting software.

This chapter introduces “RealBrush”, a system that allows artists to paint
digitally with the expressive qualities of any physical medium. As input to the
system, the artist first makes some example strokes demonstrating the medium’s
behaviors and scans them in. The scanned images are processed to make a “library”
(Figure 3.1a). Within RealBrush, the user can select this library and make new
strokes that are synthesized using the library to create novel marks in the same style
(Figure 3.1b). In this manner, the artist can digitally paint with whatever physical
media she feels most comfortable, without requiring the development of a custom
simulation algorithm (see Figure 3.2). We accomplish this by using a data-driven
approach that derives the full knowledge of a medium from the example library,
making only the minimal necessary assumptions about physicality and locality.

Expressive media can achieve different appearances based on the artist’s skill and
technique. In constructing an oil paint library, the artist may thickly apply paint,
or may make smooth, textureless strokes. A watercolor artist may paint strokes in
a calligraphic style. Therefore, libraries encode not only the physical properties of
the media, but also their application in a specific style by a trained artist. With a
calligraphic watercolor library, a novice user may make strokes of much higher quality
than he could with a real brush.

The shape of individual strokes is only a small part of the behavior of physical
media—traditional painting is not possible without the complex interaction between
strokes. Wet pigment can be advected by subsequent strokes to create smears
(Figure 3.1c), or particles may be pushed around the canvas by finger smudges
(Figure 3.1d). The myriad of potential effects creates an undue burden to attempt
to capture examples of all different behaviors for a library. A generic data-driven
algorithm that is not tailored for natural media could easily become impractical due
to requiring intractably large amounts of data.

Our main contribution is the plausible reproduction of natural media painting in
a practical and fully data-driven system. This is possible because we factorize the
range of physical behaviors into a tractable set of orthogonal components that can
be treated independently, which is motivated by our analysis of the space of natural
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(a) (b)

(c) (d)

Figure 3.1: A simple painting created by our system. Left to right: (a) shows oil
(left) and plasticine (right) exemplars which are used to synthesize the painting in
(b). The foreground flower strokes use oil exemplars, while the background strokes
use plasticine and are smoothed with our smudging tool using. (c) (d) show close-ups
of the smearing and smudging effects.
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media. We discuss the implications of this factorization, and present algorithms for
capturing and reproducing each of these behaviors. Our results demonstrate the
algorithm with images painted by artists using a variety of different captured media
and with a quantitative evaluation of the realism achieved by RealBrush.

3.2 Related Work

espite the remarkable progress made by digital painting software to perform
increasingly sophisticated image processing, it remains difficult to achieve
results that mimic the textural qualities of real natural media. Established
results fall into three broad categories.

Procedural approaches rely on heuristics explicitly designed to mimic specific
natural media behaviors and effects, based on the developer’s intuition [32]. Com-
mercial packages such as Adobe Photoshop use these techniques. They provide a
wide range of effects for digital artists, but they have difficulty reproducing the visual
fidelity of natural media and can require significant user effort to achieve a convincing
level of realism.

For higher fidelity results, researchers have developed simulation approaches
that numerically model the physical interaction between the virtual brush, the
canvas, and the pigment medium. Specifically, modeling deformable 3D brushes
and simulating paint fluid flow through a canvas are increasingly common, and have
been applied successfully for particular natural media, including watercolor [21], oil
paint [13, 31], and pastels [135], with impressive results. Commercially, Microsoft’s
Fresh Paint application implements recent work [9, 19] to create an oil paint system.
However, these results are all carefully tailored to their respective natural media, and
extending any of them to other types of artistic tools is difficult. Our focus is a more
general digital painting system that can support arbitrary natural media as supplied
by the artist while maintaining high visual fidelity.

Our work belongs to the class of data-driven approaches, which includes such
work as modeling virtual brushes [9, 154], generating brush stroke paths [148, 150],
and simulating pigment effects [152]. Perhaps most straightforward is using scanned
marks as basic drawing units (footprints), interpolated along a path to produce novel
strokes [149]. However these techniques all still depend on physical simulations and
procedural rules which limit the fidelity and generality of their results. For realistic
synthesis of arbitrary media, we use a solely data-driven approach and avoid any
physical model or procedural rules.

Researchers have deformed strokes to match new paths. Zeng et al.’s work on
applying painterly styles to photographs [162], and Xu et al.’s decomposition and
deformation of Chinese paintings [155] both warp images of real strokes to create novel
shapes. Earlier work by Hsu et al. [57] developed a system based on stylizing lines with
warped pieces of art, which has become a core algorithm of commercial programs such
as Adobe Illustrator. All of these systems suffer from a common limitation though,
that they can only support a small range of deformations of example strokes before
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Figure 3.2: Acquired natural media samples, including paint, charcoal, pastel, marker,
lip gloss, plasticine, toothpaste, and glitter.
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the altered appearance becomes unrealistic. Zhou et al. [163] achieve a wider range
of deformations, but only from individual exemplars with uniform texture.

Most similar to our approach is the work of Ando and Tsuruno [3], and Kim and
Shin [70], which use images of real strokes to stylize user input lines. These works
focus on single stroke synthesis, which is a part of our approach, but we additionally
explore data-driven smearing and smudging. Both approaches make aggressive
simplifications, losing fidelity to gain performance. That each system relies on small
patches that are not deformed fundamentally limits these techniques by forcing many
patch boundaries within a stroke, which is frequently where artifacts occur. The
lack of deformation also reduces the range of shapes they can synthesize from few
example strokes, and therefore increases the computational burden per stroke by
requiring more search. These small patches further limit the scale of texture features
that can be reliably reproduced from example media, because patch boundaries can
cause jarring discontinuities. RealBrush has two significant advantages over these
approaches. First, we are able to support a wider array of artistic media. Second, we
gain higher fidelity: we are able to reproduce strokes that are indistinguishable from
real examples, as demonstrated by our user study.

Also related is work in texture synthesis. Wang et al. [141] generate textures
sampled from paintings to stylize 2D images. Yan et al. [156] apply a similar
technique for shading 3D geometry. Neither of these approaches provide a means for
interactive, paint-style control. Conversely, Schretter [123] and Ritter et al. [113] both
demonstrate brush-based painting systems that use texture synthesis to fill arbitrary
regions with acquired samples. However, they do not support oriented anisotropic
textures, and they do not consider interaction between overlapping textured regions.

3.3 Understanding Natural Media

atural media exhibit a tremendous number of different types of behaviors
(see Figure 3.2). Simulation based approaches rely on complex physical
models to control these effects from a small number of parameters. They
pose a daunting problem for data-driven approaches, because of the huge
number of different examples that need to be acquired to reasonably
approximate the medium.

3.3.1 Factorization

We factor the effect space into four orthogonal bases—“shape,” “smear,”
“smudge,” and “composite”—that make the data acquisition and search problem
tractable. Shape refers to the silhouette and texture of a single stroke made in
isolation. Many obvious media features are part of shape including watercolor’s
darkened edges. However, most of the important qualities of natural media are
due to the interactions among multiple strokes. Smear is exemplified by applying
a new stroke across wet paint, “dirtying” the brush and smearing the two paint
colors together (Figure 3.3b,c). Smearing is the core component of color blending on
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(a) (b) (c) (d) (e)

Figure 3.3: Smearing and smudging exemplars. (a) We detect the overlap and the
trailing regions. They are highlighted in green and yellow and are represented by
eight polyline segments; (b) (c) show oil and plasticine smearing exemplars; (d) (e)
show oil and plasticine smudging exemplars. The extracted smearing and smudging
operators are inset.

canvas, and is also referred to as “bidirectional” pigment transfer (from the brush
to the canvas, and vice versa). Smudge specifically refers to stroking over wet paint
with a clean brush or finger to make a smudge mark, but we use it more generally
to refer to any action that modifies pigment on canvas without applying more
pigment, including using other implements such as salt, a blowdryer, or tissue paper
(Figure 3.3d,e). Finally, composite refers to the way colors mixed or applied atop
one another optically combine to form the final reflected color, such as in glazing or
overlapping transparent strokes, or during bidirectional pigment transfer.

Each basis can be captured in isolation, reducing the burden for data-driven
acquisition and synthesis. Shape exemplars are isolated strokes. Smear exemplars
come from crossing paint strokes of two different colors, so the mixing proportion
can be determined by color. Smudge exemplars do not have a foreground color,
so registered images of the canvas paint are needed, before and after the smudge
is applied. Composite exemplars are overlapping strokes of different colors, so the
combined color can be sampled.

In proposing this factorization, we reduce the library size that must be acquired
from n4 to 4n, where n is the number of examples needed for each basis. We leave
composite as future work, and focus on achieving realistic results for shape, smear,
and smudge. See Figure 3.2 and Section 3.5 for examples of these effects.

3.3.2 Varieties in Media Texture

One complicating aspect of natural media, even in light of our factorization, is
the wide variety of types of texture and appearance that are exhibited within each
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of our bases. Consider the following media and the characteristics of their shapes:
watercolor has smooth internal textures with some granularity and sharp silhouettes.
Oil paint has directional texture and sparse large features (blobs). Toothpaste has
strong 3D structure. Glitter has noisy texture and sporadic application. Lip gloss has
3D structure and sparse noise texture. This is just a selection of possible variations.

Any single technique that could reliably synthesize all of these media efficiently
would be a major advance in texture synthesis. Therefore it is clear that a small
toolbox of core algorithms will be necessary to produce realistic results across all
media.

3.4 Algorithm Overview

ur factorization of natural media behaviors suggests a factored algorithm
(Figure 3.4). RealBrush is a data-driven painting implementation of this
theory including shape, smear, and smudge behaviors, which are each treated
separately and then combined.

First, shape, smear, and smudge examples are collected and processed
to generate media libraries (Section 3.5). During painting, each stroke input by the
user is processed individually. Its shape and texture are synthesized in isolation from
a single stroke library (Section 3.6). Then, if the stroke covers paint already on the
canvas, a smear effect is synthesized from a smear library and applied to the stroke
(Section 3.7). When smudging, no new stroke is being generated, so a smudge effect
is synthesized from a smudge library and directly applied to the paint on the canvas.

Preprocessing (§3.5)

Single Stroke Synthesis:
• Find optimal sequence of library samples (§3.6.1)

choice

{
• Alpha blending (§3.6.2)
• Texture synthesis (§3.6.3)

Stroke Interaction Synthesis:
• Detect overlap regions in query stroke (§3.7.1)
• Find closest neighbor example (§3.7.2)
• Vectorize interaction regions (§3.7.3)
• Integrate color in interaction regions (§3.7.4)

choice
{ • Apply smear operator (§3.7.5)
• Apply smudge operator (§3.7.6)

Figure 3.4: Algorithm overview.

Algorithm Assumptions. Procedural and simulation based approaches to
digital painting encode explicit assumptions about the character of natural media
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(a)

(c)
(b)

Figure 3.5: Workflow overview. (a) Paint strokes are acquired with a handheld,
point-and-shoot camera with indoor lighting. (b) A few simple edits isolate and
white balance the stroke. (c) The library stroke is piecewise matched and deformed
to the input curve.

into their algorithms. Simulations assume properties of the underlying physical
system, while procedural rules assume specific behaviors the media exhibits. Data-
driven techniques have the ability to ease these assumptions, but completely removing
them may not be possible. We enumerate the basic assumptions we rely on in data
acquisition and synthesis.

We call our first assumption stroke causality—that pixels that have been touched
will not be modified after the stroke has passed. This means we explicitly cannot
support effects like watercolor backruns, where excess water advects pigment into
areas of the stroke that have already been painted.

The second assumption is effect locality—that a stroke’s effect does not extend
beyond its silhouette. This means that for effects like feathered watercolor where the
pigment has advected away from the brush-canvas contact area, the brush silhouette
must be made artificially large to encompass the entire final extent of the stroke.

Our final assumption is recursion. Given n strokes on a canvas, the n + 1 stroke
may have interactions that depend on the full, ordered set of previous strokes. Instead,
we treat each stroke as interacting with a single, flattened canvas raster, which
elides details about occlusions and ordering. This assumption enables efficient stroke
interaction synthesis for paintings of thousands of strokes or more.

3.5 Data Collection and Processing

s default options for casual users, we collect libraries of exemplars made
by real physical media (Figures 3.2 and 3.6). Advanced users can acquire
their own libraries in the same manner. In light of our natural media
factorization, we collect separate, different examples for each of shape,
smear, and smudge. Our exemplars were captured using a DSLR camera

mounted on a tripod under normal in-door lighting without any camera calibration.
However, capture a handheld point-and-shoot camera also yields good results
(Figure 3.5). We scan the exemplars into raster textures, and semi-automatically
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(a) oil (b) playdoh

(c) pastel (d) watercolor

Figure 3.6: Single stroke libraries.

process them to create libraries. Single stroke (shape) exemplars are discussed in
Section 3.5.1, while smear and smudge exemplars are in Section 3.5.2.

3.5.1 Single Stroke Processing

For each medium, we collect isolated brush
strokes of different shape, curvature and thickness
to build a single stroke library, L, typically be-
tween 20 and 30 strokes. For each stroke, the user
specifies a rough spine from start to end (inset, red
to black line), which is smoothed and discretized
into samples spaced a few pixels apart (inset, six black dots along spine). The stroke
outline (green) is automatically extracted plus a small margin to preserve boundary
effects. Ribs connecting the spine to the outline are added greedily, avoiding inter-
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sections (inset, yellow/magenta lines). Each stroke L ∈ L consists of between 30 and
100 samples, L = {t}, where a sample t = {x, l, r} consists of the 2D positions of
the spine, left outline, and right outline points respectively. The stroke is parame-
terized by u ∈ [0, 1] along the spine and v ∈ [−1, 1] from left to right along each
rib. We use the Multilevel B-splines Approximation (MBA) library [53] to interpo-
late u, v coordinates for every pixel in the stroke. The output of this stage consists
of the gray-scale intensity image of the exemplar, the vector representation, and the
uv parameterization.

3.5.2 Overlapping Stroke Processing

Smearing is the result of transferring pigment from the canvas to the brush
during a stroke, causing a mixing of colors (see Figure 3.3). Different physical
media properties cause unique smearing behaviors. For example, thick wet oil paint
smears significantly, pastels smear somewhat, and dry watercolors do not smear at all.
Unconventional media such as plasticine smear differently without mixing pigments
but still smudging them along. We use the term smearing for all stroke interactions
containing overlapping strokes of different colors.

Artists can also smudge strokes on the canvas without applying additional
pigment, commonly with a finger or clean brush. Such smudging exemplars contain
two strokes of the same color—a background, and a smudged foreground.

For smearing and smudging separately, we collect between 10 and 20 pairs
of overlapping strokes in several different media. For smearing, we collected oil,
plasticine, and pastel. For smudging, we collected oil, plasticine, lipstick, charcoal,
and pencil. Each pair of strokes overlap at different crossing angles and with
different relative thickness. We only collect pairs of strokes interacting—our synthesis
algorithm can plausibly reproduce the interactions among many strokes from this
data. To process the scanned overlapping strokes, the user needs to specify the stroke
spines (in our system) and create binary foreground and background masks, F and B
(with Photoshop threshold and brush tool). The system then automatically vectorizes
the foreground and background strokes (Section 3.5.1), and extracts information
specific to smearing and smudging. Though the exemplars shown here are near-
orthogonal crossings, our synthesis algorithm can handle all possible overlap cases.

Interaction Region Vectorization: As input for the on-line synthesis of
smearing or smudging, we extract binary masks for the overlap region Ω and the
trailing region Ψ (green and yellow regions in Figure 3.3a) by doing logic operations
on the foreground and the background stroke masks. Specifically, Ω = F∩B, where F
and B are the foreground and background stroke masks. Let u(Ω) define the average
u coordinate of a connected region, then Ψ = {A | A ⊆ F \ Ω,u(A) > u(Ω)} We
refer to interaction region Π = Ω ∪Ψ as the union of the overlap and the trailing
regions. We then extract the contours of the interaction region as eight polylines
(colored line segments in Figure 3.3a) which are used for synthesis (Section 3.7.3).

Smearing Operator: In the interaction region, the background blue pigments
get mixed with the foreground red pigments resulting in vertical streaks of brownish
color along the stroking direction (Figure 3.3b,c). Since the physical smearing process
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is more or less independent of the specific colors being mixed, it is safe to require the
foreground to be red and background to be blue and obtain the mixing behaviors
that are universal for paints of any colors. For each exemplar, we extract a smearing
operator that is a 1 channel, 2D texture indicating the amount of background paint
(from 0 to 100 percent) at each pixel. Since blue and red are more or less orthogonal
after capturing, we simply use one minus the blue channel (lower right corner of
Figure 3.3b,c). At runtime, we use the smearing operator to synthesize the smearing
appearance of arbitrary colors (Section 3.7.5).

Smudging Operator: The foreground smudged strokes consist of advected
pigment from the background strokes (Figure 3.3d,e). We extract a smudging operator
(the lower right corners of Figure 3.3d,e) as the inverse intensity indicating the amount
of background pigment at every pixel. In addition, we also extract a blending
attenuation mask automatically by blurring the left, right, and upper side of the
overlap region binary mask Ω. For better synthesis quality, a more precise blending
attenuation mask can be provided by the user using standard image editing tools.
The blending attenuation mask is used in the synthesis to provide gradual transition
at the overlap region boundaries (Section 3.7.6).

Output. After processing is complete, the following information is passed to
the on-line synthesis stage. Each of the smearing and smudging exemplars consist
of the vectorization of both the foreground and background strokes and the vector
representation of the interaction region. In addition, the smearing exemplars contain
the smearing operator. The smudging exemplar contains the smudging operator and
the blending attenuation mask. Optionally, the user can also provide as input the
background strokes themselves before being smeared or smudged by the foreground
strokes, which can facilitate the exemplar matching process (Section 3.7.2).

3.6 Single Stroke Synthesis

ealBrush starts by generating the appearance of a single, isolated stroke.
Given an input query spine (a curve-like spline), we first calculate the
instantaneous stroke thickness at every path sample (proportional to the
pressure values or inversely proportional to the stroking velocity). We
sweep line segments of the estimated length along and perpendicular to the

stroke path to obtain a rough 2D shape and u, v parameterization (see Section 3.5.1).
To fill in the pixel colors within the 2D region, we apply a piecewise matching
algorithm to find segments of library exemplars that have similar shape with the query
(Section 3.6.1). Finally, we warp and merge the matched grayscale exemplar segments
together (Section 3.6.2) to determine the lightness, L, of the synthesized stroke.
Alternatively, for complex structured exemplars, such as sponges and glitters, we
can use an off-line texture synthesis step for higher synthesis quality (Section 3.6.3).

At runtime, given a user-specified query color, we convert it to CIELAB space,
(Lt, at, bt). Then the synthesized color Cf = (Lf , af , bf ) of each pixel is: Lf = L,
af = αat and bf = αbt, where α = (100 − L)/100. The synthesis outputs are a
binary query mask Q indicating the regions of the canvas that belong to the query,
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the u, v parameterization, and the colors Cf that we call foreground color for the rest
of this chapter.

3.6.1 Piecewise Matching

We modify the algorithm introduced in Section 2.5 to find an optimal sequence
of similar segments from the shape library. The following sections highlight the
differences in the design of feature vector and optimization.

Feature Vector

The feature vector (similar to Ando and Tsuruno [3]) contains a shape feature
Si using samples of path turning angle (reflects the changes in hand-pose) and the
instantaneous thickness (implies pressure). To preserve the unique appearance at the
beginning and end parts of the exemplar strokes, the feature vector also contains an
end feature Ei (same as Section 2.5.1), which encodes the closeness of the current
sample to the endpoints.

For the current query sample i, the shape feature is defined as: Si = {fj | n ≥
|i− j|}. The number of shape samples fj is 2n+1, n in the history and n in the future.
We obtain each shape sample by applying triangle filtering (described in Section 2.5.1)
to the turning angles and the thickness values in the local neighborhood. The
instantaneous turning angle θk and stroke thickness λk are defined as follows:

θk = sgnk arccos
−−→vk+1 · −→vk
‖−−→vk+1‖‖−→vk‖

(3.1)

−→vk = xk − xk−1,
−→v0 = 0 (3.2)

sgnk =

{
1 xk+1 is on the left of −→vk
−1 xk+1 is on the right of −→vk

(3.3)

λk = ‖xk − lxk‖+ ‖xk − rxk‖ (3.4)

Each shape sample contains two scalars, fj = {Θj,Λj}. Θj represents the filtered
turning angle, Θj = triangleFilter({θk, |k − j| < δ}). Λj represents the filtered
thickness, Λj = triangleFilter({λk, |k − j| < δ}).

Putting these all together we have feature vector Fi = {Si, wEi} where w is a
weight that balances between the relative importance of shape features versus end
features. We use n = 7, w = 0.5. Therefore, the overall dimension of the feature
vector Fi is 2× (2× 7 + 1) + 2 = 32.

Matching Optimization

Once we have computed a feature vector, we look for k nearest exemplar samples
for each query sample. Then we use a global optimization framework, similar to
Section 2.5.2, to break the query stroke into a few long segments each of which
matches a consecutive library stroke segment. We keep the first three energy terms,
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Figure 3.7: Single stroke piecewise matching and warping. The bigger query stroke
at the bottom is broken into three overlapping segments each of which matches an
exemplar segment. The three segments are highlighted in yellow, green and blue.

ef (feature penalty), es (short penalty), em (endpoint penalty), and tailor the design
of the transition penalty term et to account for textured 2D strokes.

At the query sample i, the transition penalty of going from library samples ci to
ci+1 include the following terms:

1. Appearance term: We sample a 2D region on the intensity texture of the
exemplar stroke centered at ci and we sample another 2D region with the
same size on the exemplar stroke centered at ci+1. We calculate the L2
distance between this two regions. The idea is to prevent jumping from a
library exemplar to another which have very different local texture details and
intensities.

2. Thickness term: We measure the difference in the instantaneous thickness
between library samples ci and ci+1. The motivation is to find library segments
that have similar thickness with each other to avoid sudden changes in texture
frequencies in the synthesized stroke appearance.

3. Curvature term: If the query sample i has large filtered turning angle (high
curvature), we discourage the transition from one library stroke to another
to happen here. The reason is to minimize warping and blending artifacts
around sharp corners, since blending flat regions of strokes tend to produce less
noticeable visual artifacts.

3.6.2 Warping and Merging

The matched segments will not exactly match the shape of the query stroke and so
must be warped to fit. This is done by sampling the exemplar textures according to
the u, v parameterization computed by the MBA library [53]. Because the segments
are already close in shape to the query, warping usually produces a high quality
output.

To merge adjacent segments, alpha blending simply linearly interpolates between
the two segments in their overlap region, creating a cross-dissolve. For many types
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of media with low frequency textures such as watercolor and oil paint, this produces
high quality results. Alpha blending is easy to implement and efficient, so we use it
for our results unless otherwise indicated. Alpha blending can result in two types of
artifacts: ghosting and blurring (Figure 3.8a). Ghosting occurs when matching cannot
find segments with similar appearance at the boundary, and blurring is caused by
interpolating mismatched structured texture. In both cases, graph cuts can be used
to find an optimal seam between segments, followed by gradient domain compositing
to smooth the transition [78] (Figure 3.8b). In many cases, graph cuts generate
a superior result and is still relatively efficient, so we reserve it as an alternative
merging option. Figure 3.7 shows the piecewise matching and blending result. The
query stroke at the bottom is broken into three overlapping segments each of which
matches an exemplar segment (highlighted in yellow, green and blue).

3.6.3 Texture Synthesis

To better deal with highly textured media (Figure 3.8), we have prototyped an
optional texture synthesis module which runs off-line to produce higher stroke quality.
We adapt image melding [26] to the problem of stroke synthesis. As a review,
image melding works through multiscale texture synthesis over small square patches.
The “melding” component allows for smooth transitions between different textures
without losing detail in the transition region. We use this to transition between
different brush exemplars. We also use the “texture preserving warps” which improve
the texture distortion introduced by warping.

We apply image melding to an initial guess which is the warped image after graph
cut. However, naive melding alone produces inferior visual results. Therefore we
add constraints to image melding to better guide synthesis. These include index
masks, color corrections, and rotation constraints. The constraints are illustrated in
Figure 3.10. The importance of constraints is shown in Figure 3.9, which gives a
comparison with naive image melding.

Index masks. We apply index masks to constrain interior regions in the result
to be synthesized from interior regions in the exemplars. We define interior regions to
be those that are more than a threshold distance τ = 1/4 from the stroke boundary,
where the maximum distance is defined to be unity. The interior regions are shown
in Figure 3.10, regions 1 and 3. Similarly to image melding, we also apply distance
constraints, which prevent matched patches from moving too far from the initial
correspondence given by warping.

Color corrections. Image melding can introduce undesired fluctuations in color
because of its gradient energies. We thus constrain the color outside the initial guess
to be transparent and white. To prevent fluctuations in paint density due to any
averaging, at coarse scales after each iteration we use color transfer [108] to match
colors to the initial guess. We do this locally by running the color transfer on each of
5x5 sub-windows that are overlapping, and smoothly interpolating the result in the
overlapped regions.

Rotation constraints. We constrain rotations to be similar to the principal
brush angle. These angles follow the direction of the brush stroke and are shown
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(a) (b) (c) (d) (e) (f)

Figure 3.8: Artifacts in synthesis and methods to fix them. While simple alpha
blending works for most media, some media may not be able to find well-registered
matches and produce ghosting artifacts (a, d). Graph cuts often improves this (b,
e). Texture distortion artifacts can also be present for highly textured media. These
artifacts can be improved with our off-line texture synthesis module (c, f).

(a) Image melding (b) Our result

(c) No index masks (d) No color correction

Figure 3.9: Comparison with Image Melding. Melding alone can produce results that
do not closely follow the brush stroke (a). Our texture synthesis gives an improved
result (b). The effect of removing index masks from our algorithm is shown (c),
as well as the effect of removing color correction (d). Without our constraints, the
texture can deviate from the brush stroke.
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Exemplar 1 

Synthesized 
Result 

1 
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3 
4 
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1+3 

2+4 

Exemplar 2 

Figure 3.10: Explanation of the optional texture synthesis module. Two exemplars
(top) are matched and an initial guess is constructed by warping. Texture synthesis
improves any texture distortion. Each upright patch (small square) in the result is
matched during multiscale synthesis to an appropriately rotated patch in an exemplar.
Rotation constraints orient patches to follow the brush principal angle (indicated
by small arrows inside the patches). Distance constraints prevent matched patches
from moving too far from the initial correspondence given by warping. Patches are
constrained to only come from the same index mask: patches in region 1 match
patches in region 1, and so forth. The overlap regions 1 + 3 and 2 + 4 match both
exemplars and are melded for a smooth transition.

as small arrows inside the patches in Figure 3.10. For each patch of each warped
exemplar, we find a principal angle. We determine for a square patch in the output
synthesized image which quadrilateral it corresponds to in the exemplar image. For
a square quad each edge vector would have the same angle, after rotation by 0, 90,
180, and 270 degrees. We define the principal angle of a general quad similarly by
averaging the four edge vectors after these same rotations. Patches in the synthesized
image are always upright, whereas matched patches in the source exemplars rotate.
We allow some deviation from the exact brush principal angle by allowing for matches
in an angular window. We use a larger angular window of 30 degrees in the interior
region, and a smaller angular window of 10 degrees on the boundary.
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3.7 Stroke Interaction Synthesis

ingle stroke synthesis does not consider what is on the canvas. When
strokes overlap, independent synthesis will produce artificial results.
When real media overlap, their appearances change predictably. Real-
Brush reproduces two types of these interactions: smearing and smudg-
ing.

We observe that smearing and smudging happen mostly within the interaction
region (defined in Section 3.5.2). We factor the interaction effect into three
components: color, texture and shape. In most natural media, the impact to the
foreground stroke shape is not obvious, so we only handle the change of color and
texture. This is a consequence of our natural media factorization—first we perform
single stroke synthesis (Section 3.6), and input the appearance into the smearing and
smudging algorithms.

When the user paints a new stroke, our system first detects a set of overlap regions
where the canvas beneath already has paint (Section 3.7.1). Per overlap region, we
match to a smudging or smearing exemplar for synthesis (Section 3.7.2). To warp
the exemplar, we vectorize the interaction regions (Section 3.7.3). To determine the
colors in the interaction region, we apply weighted color integration (Section 3.7.4).
The only difference between smearing and smudging is how we apply the matched
exemplar (Section 3.7.5 and Section 3.7.6).

3.7.1 Overlap Regions Extraction

As strokes accumulate on the canvas, a new stroke might overlap many previous
strokes creating an exponential number of overlap regions. However, our recursion
assumption allows us to treat the canvas as a single, flattened paint raster, which
makes the approach efficient and scalable. Specifically, the smearing or smudging
behavior of the current time step t is only dependent on the raster canvas image of
all strokes at t− 1, the time of the previous stroke.

At every time step, we update a binary coverage mask Ct to keep track of whether
a pixel on the canvas has paint. After the user paints a new query stroke, the system
detects a set of overlap regions Ωt = {Ωi

t} by intersecting the query mask Qt with the
coverage mask: Ωt = Qt ∩Ct. Each overlap region Ωi

t is restricted to lie inside the
query stroke and forms a connected component in the coverage mask (Figure 3.13a).
We break long, irregularly shaped overlap regions into smaller ones by scanning the
connected component along the stroke spine to identify cusps and cutting at the cusp
perpendicular to the spine. For example, the first two overlap regions in Figure 3.13a
originate from a single connected component. We also discard small overlap regions,
since their influence on the final painting are minimal. The rest of the overlap regions
are classified into several categories (Figure 3.11) for vectorization.
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(a) (b) (c) (d) (e)

Figure 3.11: Stroke overlap situations. (a) - (e) The query stroke (red) might overlap
with the background stroke (blue) in several different configurations. The overlap
region might (a) run across the query stroke; (b) be at the beginning or the end of
query stroke; (c) not separate the query stroke into disjoint regions; (d) be entirely
inside the query stroke; (e) be the entire query stroke; The colored line segments in
(a) indicate the overlap region vectorization. In (b), they indicate the trailing region.

3.7.2 Exemplar Matching and Feature Vectors

We synthesize the stroke interactions by warping the captured interaction exem-
plars. To reduce warping artifacts, we search for exemplar strokes that cross at similar
angles and have similar thickness. For simplicity and robustness, we design a raster
feature vector to capture information of the overlap region and its surroundings. For
each overlap region in the query stroke, the feature vector is a two-channel square
texture (50 x 50). The square is oriented along the average foreground stroke spine
orientation in the overlap region. It contains the entire overlap region with padding
so the surroundings can be captured. The first texture channel contains the alpha
matte of the background in the overlap region. The second texture channel contains
a mask of whether strokes are present in the surrounding region. The feature vector
distance is the L2 distance between the squares. When providing the exemplars, the
user can optionally input photographs of the background strokes before foreground
strokes are applied. After manually aligning the “before” and “after” textures, we
sample intensities of the “before” overlap region as the first channel of our feature vec-
tor. The use of the “before” image allows the system to search for crossing exemplars
not only similar in shape, but also in texture and intensity. Without the “before”
image, we reduce the feature vector to one channel. The search is not sensitive to the
size of the square or the precision of the “before” and “after” alignment. The amount
of distortion even in the case of very different exemplars is hardly noticeable in the
context of a whole painting. Figure 3.12 shows the query stroke feature vector and
the most similar overlapping exemplar.

3.7.3 Interaction Region Vectorization

After identifying the most similar interaction exemplar, we need to warp the
matched exemplar to fit the query interaction region exactly for synthesis. Sec-
tion 3.7.1 identifies the overlap regions in raster format. We then need to vectorize
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(a) (b) (c) (d)

Figure 3.12: Overlap region feature vector. The overlap regions of the query and
exemplar strokes are characterized by a squared two-channel texture. The query
feature vector contains the alpha matte of the background in channel 1 (a) and a
binary mask of surrounding strokes in channel 2 (b). The matching exemplar is
shown in (c, d).

the regions and identify the trailing regions. We extract the six polylines (green, blue
and white lines in Figure 3.11a) for the overlap regions and two polylines (purple
and cyan lines in Figure 3.11b) for the trailing regions, corresponding to that of the
exemplar (Figure 3.3a).

From the overlap region mask, we extract the overlap contour using OpenCV. We
scan the overlap contour to identify six “key points” that divide the contour into
six polylines. For overlap regions that cross the query stroke (Figure 3.11a), we first
intersect the stroke spine with the contour to identify p5 and p6. We then locate the
p1, p2, p3, p4 by tracing from p5 and p6 clockwise and counterclockwise along the
overlap contour until reaching the query stroke boundary. When the overlap region
is at the beginning (or end) of the query stroke (Figure 3.11b), we identify p5 to be
the first sample on the query spine and apply an offset from p5 to locate p1 and p2

on the query contour. The offset is determined by the average thickness of the query
stroke. Then p3, p4, p6 are extracted the same as case (a). There are also cases
where the overlap region does not separate the query stroke into disjoint segments
(Figure 3.11c). In this case, we find the overlap contour sample p′ with smallest v
coordinate. We offset from p′ to obtain p1 and p3 on the overlap contour and use the
center of mass pc to locate p5 and p6 following the stroke spine direction. Then p2

and p4 are traced from p5 and p6, the same as in case (a). When the entire overlap
region is within the query stroke (Figure 3.11d), none of the points can be located
exactly, so we identify points with maximum and minimum u coordinates as p5 and
p6 and use the offset idea to find the other points. In the final case where the entire
query stroke is inside a background stroke (Figure 3.11e), p5 and p6 are the start
and end of the stroke spine, and we apply offsets to locate the other points. In real
painting scenario, the case in Figure 3.11c happens frequently resulting in many thin
interaction regions. To avoid aliasing and ensure the stableness of the points pi, we
discard overlap regions that are smaller than some threshold. For larger interaction
regions, experiments show that the detection of points pi is very robust to all possible
overlap shapes and angles.
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(a) (b) (c) (d) (e) (f)

Figure 3.13: Stroke interaction synthesis illustration. (a) The query stroke overlaps
with the background in four overlap regions; (b) The single stroke synthesis result
without smearing; (c) (d) (e) The background colors in the overlap regions are smeared
into the subsequent query stroke regions. The warped smearing operators are shown
on the right of the query stroke; (f) The four overlap regions are synthesized, alpha
composited and rendered in the context of the background.

To finish vectorizing the interaction region Πi
t, we also detect and vectorize a

trailing region Ψi
t that follows the overlap region Ωi

t. The trailing region length
is determined by the ratio of trailing region length to overlap region length in
the exemplar, L(Ψquery) = L(Ωquery)L(Ψexemplar)/L(Ωexemplar), where L(Ω) =
(du(p1,p3) + du(p5,p6) + du(p2,p4))/3 and L(Ψ) = (du(p7,p3) + du(p7,p6) +
du(p7,p4))/3. du(p1,p2) defines the absolute difference of u coordinates between
two points. We locate the point p7 by tracing from point p6 along the stroke spine
direction. Then, we trace two polylines from p3 and p4 following the stroke spine
direction and curve in to reach p7 (Figure 3.11b). The trailing region is constrained
to lie within the query stroke boundary. When an overlap region is at the end of the
stroke, there is no trailing region.

3.7.4 Interaction Region Color Integration

For smearing or smudging, in each interaction region, the background material
colors are picked up by the brush or the finger and smeared into the succeeding
foreground stroke regions. The synthesized query stroke color might have contribu-
tions from multiple background strokes. For each pixel in the interaction region, we
find the background color Cb by integrating the colors from the pixels on and above
(with smaller u coordinates) the current pixel pc along the stroke spine direction.
The set of the background pixels that contribute to the color of the current pixel
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Figure 3.14: Smearing and smudging synthesis results. From left to right, the first row
synthesizes the oil and the lipstick media. The second row synthesizes the charcoal
and the plasticine media. A few strokes are painted in the background with the
smearing effect and then are smudged by a few strokes in the foreground.

is S = {pi | u(pi) < u(pc), v(pi) = v(pc),pi has paint}. Then the integrated back-
ground color is calculated as Cb =

∑
wici/

∑
wi,∀pi ∈ S, where ci is the color of the

background pixel pi and wi = 1/(du(pi,pc) + ε), ε = 0.06. We exclude background
pixels that have no paint to contribute.

3.7.5 Smearing Effect Synthesis

As the outcomes of the Single Stroke Rendering pipeline, each pixel of the query
stroke has a foreground color Cf . To simulate smearing, at every pixel, some amount
of the background color Cb (defined in Section 3.7.4) is mixed with the foreground
color Cf (defined in Section 3.6) to create paint streaking effect. We use the matched
smearing operator to estimate the color mixing proportion α at every pixel. Then the
synthesized color of each query pixel is a blending of the foreground and background
colors, Cp = αCb + (1 − α)Cf . Specifically, we determine the α for every pixel by
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warping the smearing operator. We specify control points on the detected polylines
(Figure 3.11a,b) and apply interpolation for all other pixels.

Note that each query stroke can have several overlapping interaction regions.
We sort the interaction regions by ascending u coordinates (4 interaction regions
in Figure 3.13a). We synthesize them in order by using color integration, followed
by alpha compositing. Let Ci

b represent the integrated background color for the
interaction region i. The smearing result of multiple interaction regions is therefore
a recursive alpha compositing of the integrated background color Ci

b onto the query
stroke (Figure 3.13c-e). Cn = αCn

b + (1 − α)Cn−1, where C0 = Cf and n is the
number of interaction regions. Finally, the updated query stroke colors Cn are alpha
composited onto the canvas (Figure 3.13f).

3.7.6 Smudging Effect Synthesis

Smudging proceeds similarly to smearing, except that the foreground query
stroke is transparent, so the single stroke rendering pipeline is skipped. Instead,
the smudging operator intensities and the integrated background colors Cb directly
determine the smudged colors: the alpha component is taken from the warped
exemplar, while the color is Cb. A warped blending attenuation mask is used to
decrease alpha at the boundary of the query stroke to avoid boundary artifacts.
Finally, the smudged colors are alpha composited onto the canvas. Figure 3.14 shows
a few stroke scribbles demonstrating the smearing and smudging effects. From left
to right, the first row is synthesized based on the oil and the lipstick exemplars. The
second row uses the pastel and the plasticine exemplars.

3.8 Evaluation

ere, we describe three user studies we conducted to determine how
faithfully our methods reproduce acquired media. Experts can accurately
identify our results as computer-generated given sufficient time, so we
focus on casual viewers. Talented artists can always work around
a system’s limitations to make realistic digital paintings by carefully

applying many strokes. The resulting images can often fool casual viewers, so
evaluating finished paintings is unlikely to yield meaningful data. A stricter standard
is to evaluate each algorithm step in isolation. This design controls factors impacting
viewers’ opinions but outside the scope of the thesis, such as stroke trajectories and
subjective color preferences.

3.8.1 Study Design

We employ the same basic methodology in all three studies, adapted from Sec-
tion 2.7.2, which shared a similar overall goal. The idea is to show both real strokes
selected from a library, and synthetic strokes based on the same library, asking
subjects which ones are real (using a two-alternative forced choice design). If the
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Figure 3.15: User study interface.

synthetic strokes effectively match the library, the subject will be unable to differ-
entiate them and will choose randomly, while a less successful synthesis approach
may be recognized as fake, and the subject will correctly identify the real stroke
more often than 50% of the time. To avoid frustrating the participants, we chose the
two media (watercolor and oil) that most people are familiar with and can reliably
identify as computer-generated without undue effort. We first describe the study
for single stroke synthesis, and after, describe the differences for the other two studies.

Study 1: Single-stroke.
Subjects are shown an image (the guide) with three photographic examples of

real paint strokes in either oil or watercolor. Below it appear two test images, one
containing a photograph of a real paint stroke (ground truth), and the other showing
a (synthetic) stroke generated to match the approximate shape of the ground truth
stroke. The subject is told that the guide image contains real strokes and asked to
pick which of the test images below it is also real (as opposed to a computer-generated
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Figure 3.16: Example images from the user study.

fake). When the subject clicks on one of the two test images (believed to be real) they
are replaced with a new pair, but the guide image remains unchanged. A progress
bar indicates advancement through a series of 26 test pairs until the task is complete.
Figure 3.15 shows the design of the interface.

Of the 26 synthetic images, eight are rendered using the (“RealBrush”) method of
Section 3.6 (Figure 3.16c), eight are rendered using a “naive” method (Figure 3.16b),
and ten are obvious “filter” images (Figure 3.16d) used to ensure the subject
understands the task and is trying. Each test pair is randomly swapped (left-right);
a random flip (horizontal, vertical, both, or neither) is applied to both images; and
the 26 pairs appear in random order. The eight strokes selected for the RealBrush
condition are chosen randomly without repeats to match a pool of 17 (for oil) or
19 (for watercolor) possible ground truth paths. Likewise for the naive and filter
conditions. Thus, even though synthetic strokes may only appear once during a task,
a particular ground truth path may possibly be seen by the subject as many as three
times. However, we find in such cases it is difficult to recognize because of the random
flipping and swapping in a long sequence of comparisons (and even if so, it might only
weaken our statistical findings).

The strokes in the RealBrush condition follow the paths of their ground truth
comparators, and are rendered using a library of 30 strokes, some of which may be
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used as ground truth in other tests but are prevented from synthesizing their own
paths in a hold-one-out scheme. The library strokes are, however, disjoint from the
guide image strokes shown to the subject above the test pair. In the naive method,
each test stretches a single library example chosen randomly from a set of ten
relatively straight library strokes, rather than fitting multiple parts based on shape
as in the RealBrush condition. The strokes in the filter condition, whose goal is to
be easily recognized, have constant color over the entire stroke, roughly matched to
the ground truth. The strokes are all rendered in blue to prevent color preferences
from affecting the results.

Study 2: Smearing. The second study attempts to evaluate the effectiveness
of using smearing operator to approximate paint streaking behavior in oil media.
To avoid the influence of the color choice, we show crossing strokes using blue as
background and red as foreground consistently as with all of our exemplars (Fig-
ure 3.16e-g). The ground truth pool contained 10 examples, and the corresponding
RealBrush conditions were drawn in our application to roughly match the crossing
shape of the ground truth, using 9 possible exemplars in a hold-one-out scheme. The
instructions described, “paint strokes crossing over each other.” In other respects
the study design was as in the first study above.

Study 3: Smudging. In the third study, the guide image showed five smudges
of blue paint. However, the test images were shown in black-and-white because the
color model used in our system is insufficient to capture the subtlety of this effect
well enough to avoid detection when compared with real smudges (Figure 3.19d,e).
Using grayscale allows us to factor out the color influence and only evaluate the
effectiveness of the smudging operator. Accordingly the instructions are modified
describing “black-and-white photos below.” The RealBrush condition smudges are
based on a library of 10 exemplars, whereas the naive approach uses the “smudge”
tool in Adobe Photoshop. (see Figure 3.16h.)

3.8.2 Study Results

Our subjects were recruited on Amazon’s Mechanical Turk, and restricted to US-
only “workers” who were paid $0.20 per task (“HIT”), which they typically completed
in a few minutes. In the first study, a single worker could perform as many as five
HITs for oil and five for watercolor, while in the second and third studies workers
could perform up to five HITs per study. Most workers did just one HIT in any study,
and in total 139 unique subjects participated. For each of the three studies 100 HITs
were posted, from which, respectively, data from 92, 86 and 95 were retained after
omitting HITs from workers who failed to correctly identify the 10 filter images.

Table 3.1 shows the results of these studies. In each, a Bonferroni corrected,
randomized permutation test on the distributions shows that the naive approach
and the RealBrush methods perform differently with statistical significance (p �
0.01). In the case of single strokes the RealBrush method appears to have been
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correct / count (%)
study naive method RealBrush
1: single stroke 462 / 736 (63%) 360 / 736 (49%)
2: smearing 703 / 760 (93%) 487 / 760 (64%)
3: smudging 673 / 688 (98%) 413 / 688 (60%)

Table 3.1: Results for three user studies. Subjects were asked to identify real
vs. synthetic strokes. In one condition the synthesis method was naive, while in
the other condition strokes were generated by methods in Sections 3.6–3.7. Results
are reported as ratios: pairs correctly identified over pairs shown. If the synthesis
method effectively matches the medium, subjects will be forced to guess, leading to
an expected 50% ratio. On the other hand, less effective approaches will be correctly
identified more often, leading to higher ratios. In each study the RealBrush condition
is more effective than the naive approach, with statistical significance.

indistinguishable from real photographs. While less effective, the smearing and
smudging methods still perform well and clearly outperform the naive methods.

3.9 Results and Discussion

e gave our prototype painting application to artists to experiment with
the media we have acquired. Figure 3.20, 3.21, 3.22, 3.23 show a
selection of paintings, which exhibit a wide range of styles and effects.
The flowers and ocean sunset use plasticine for single strokes, smearing,

and smudging, resulting in smooth textures. The tearful face and the woman in
curly hair are made of many transparent watercolor strokes. The young girl’s face
and the car consist of a combination of oil and watercolor strokes creating abstract
contemporary style. The colorful tiger uses oil paint and the line drawing tiger is
synthesized with heavy gel exemplars resulting in distinct artistic styles. The feathers
of the bird explores the smudging tool to significant effect. The line drawing of the
dancer demonstrates the synthesis quality for long curvy strokes. The train and
landscape mix different natural media, including oil, watercolor, pencil, and lipstick,
which underscores the utility of a general data-driven pipeline supporting a diverse
range of media. Figure 3.17 shows that our smudging tool can be used to manipulate
photographs for a painterly effect.

Figure 3.18 shows stroke synthesis results from Microsoft Fresh Paint, a commer-
cial oil paint application based on state of the art research [9, 19], for comparison
with Figure 3.14. We achieve comparable visual quality, while our data-driven ap-
proach produces richer textures and organic appearance. An important advantage
of our approach is our support of a broader range of media. Conversely, our syn-
thesized appearance is harder to predict or control—a small change in the stroke
path might lead to different matched exemplars with disparate appearances. How-
ever, this is arguably similar to the physical painting process where strokes can have
unpredictable appearances, especially for novices. Additionally, since our exemplar
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Figure 3.17: An additional benefit of our recursion assumption (Section 3.3) is
manipulating photographs. Here, lipstick smudges were used for a painterly effect.
The original photo is inset.

Figure 3.18: Test strokes in Microsoft Fresh Paint [9, 19], generating oil strokes,
smeared colors, and smudging with a dry brush, for comparison with Figure 3.14.
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strokes encode the experts’ techniques, we often found that poorly made query paths
result in aesthetically pleasing synthesized strokes.

For a 1000x1000 canvas, synthesizing one stroke takes from 0.5 to 1 seconds,
depending on the stroke length and library size. Due to the rotation invariant
nature of the matching feature vector, roughly 20 strokes with different thickness and
curvature profiles are enough to avoid noticeable repetitions of the same exemplar
segments. Though increasing the library size diversifies the synthesis appearance, we
do not find significant perceptual quality improvement. The matching performance
scales sub-linearly with the library size depending on the nearest neighbor search
package. For our chosen canvas size, the performance bottom-neck lies in the image
manipulations for stroke vectorization, color integration, and exemplar warping. For
synthesizing a query stroke, the performance is constant in the number of existing
strokes on the canvas, but heavily depends on the canvas resolution. On the contrary,
a vector-based approach that does not flatten the canvas might perform badly as
the stroke count goes up, which often happen in real painting scenarios. All our
pixel manipulation is implemented in unoptimized C++ on a single core, so could
be improved significantly. The texture synthesis takes minutes per stroke, but large
portions are implemented in MATLAB and may be optimized.

3.10 Limitations and Future Work

he first result of our evaluation is that for common natural media (oil
and watercolor), synthesized individual strokes are indistinguishable
from real examples to casual viewers. Though not part of the
evaluation, other media with similar texture properties such as

plasticine, pencil, charcoal, etc. can also be plausibly reproduced. However, under
close examination, several limitations reveal. One is that we do not explicitly
synthesize lighting effect. During exemplar acquisition, we do not isolate and handle
the lighting artifacts, instead, we treat them as part of the media texture. For
example, thick media such as toothpaste (see Figure 3.19a) may cast shadows, and
wet media such as lip gloss (see Figure 3.19b) may have specular highlights. Since
our matching is rotation invariant, synthesized strokes may have inconsistent lighting
effects as a result. For our exemplar libraries, we capture the media using overhead
lighting to mitigate these artifacts. Another limitation lies in our color replacement
model. We only use the lightness of the exemplars to modulate the synthesized
strokes, therefore any color differences within the exemplars will be lost. For example,
the sparkles in Figure 3.19b are not well reproduced in the result in Figure 3.19c.
Texture distortion due to warping is reduced by our piecewise matching technique,
but can still be observed in some regions, such as Figure 3.19c and the oil sponge and
glitter in Figure 3.8a.

The second result of our evaluation is that synthesized smears and smudges often
look plausible, but are not indistinguishable from real examples. We believe this is
largely due to the difference in color mixing, which we leave as future work. For
smearing, Figure 3.16f,g shows that the synthesized color in the interaction region is
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.19: Synthesis limitations. (a) shows a toothpaste smudging example that
will not be successfully reproduced using our synthesis approach. (b-g) shows side
by side comparison of an exemplar (left) with the synthesis result (right). (b,c)
lip gloss. Only using the lightness of exemplars fails to reproduce the color of the
sparkles. (d,e) oil smudging. The textures are faithfully reproduced, but our simple
color model fails to mimic hue changes inside the interaction region. (f,g) plasticine
smearing. The textures and colors in the interaction region are plausibly reproduced,
but the foreground stroke boundary remains untouched leaving an artificially clean
look.

different from that of the exemplar. For smudging, a hue shift (from dark blue to
cyan) can be observed from the exemplar in Figure 3.19d. Our use of simple alpha
blending in the color integration step results in transition from dark blue to gray in
Figure 3.19e. Regardless, in practice this is not a serious limitation as smudges and
smears generally occur in complex paintings amid many strokes, where fine details
are less noticeable (see Figures 3.14 and 3.21). For some media interactions, our
factorized model assumptions do not hold. We assume that smearing synthesis does
not alter anything outside the foreground stroke’s silhouette. However, for some
media, the silhouette may be changed slightly, as with plasticine stroke in Figure 3.19f.
Our approach plausibly reproduces the textures and colors within the silhouette, but
leaves the foreground stroke shape untouched which gives an artificially clean look
(Figure 3.19g). For smudging, some challenging media such as toothpaste are not
handled well by blending the smudging operator with the background strokes. Due
to strong textures in toothpaste, the synthesized texture in the interaction region
may not match the textures in the background stroke (see Figure 3.19a).

Currently, we do not support “scribble strokes,” where the stroke overlaps itself,
due to the use of MBA to compute the u, v parameterization (Section 3.6.2),
which can limit paint mixing on-canvas. This is not a fundamental limitation,
as alternative mechanisms for computing the parameterization may not have this
problem. Meanwhile, our smudging functionality provides an easy alternative for
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paint mixing (see Figures 3.1b and 3.22a). Another limitation is that synthesis is
performed on mouse-up. Both the piecewise matching optimization and the detection
of overlap regions require the knowledge of the whole query stroke. Future work might
investigate synthesizing mid-stroke, possibly using a sliding window for optimization.

3.11 Conclusion

e present RealBrush [88], a fully data-driven system for reproducing
high fidelity natural media effects in real-time. We have shown that
RealBrush is usable by artists and creates results that casual users
cannot distinguish from photographs. Furthermore, we propose a

factorized representation of natural media painting with explicit assumptions about
physical properties that can motivate future research, and we make our database
available to aid that goal.
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Figure 3.20: Example artwork by contributing artists. Used with permission.
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Figure 3.21: Example artwork by contributing artists. Used with permission.
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Figure 3.22: Example artwork by contributing artists. Used with permission.
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Figure 3.23: Example artwork by contributing artists. Used with permission.
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Chapter 4

DecoBrush: Drawing Structured
Decorative Patterns by Example

Structured decorative patterns are common ornamentations in a variety of media
like web pages, greeting cards, interior design, etc. Creating such art from scratch
using conventional software is time consuming for experts and daunting for novices.
This chapter introduces DecoBrush, a data-driven drawing system that generalizes the
conventional digital “painting” concept beyond the scope of natural media to allow
synthesis of structured decorative patterns following user-sketched paths. The user
simply selects an example library and draws the overall shape of a pattern. DecoBrush
then synthesizes a shape in the style of the exemplars but roughly matching the
overall shape. If the designer wishes to alter the result, DecoBrush supports user-
guided refinement via simple drawing and erasing tools. This work improves on the
synthesis method described in Chapter 3 by combining the advances of two texture
synthesis paradigms, using a quilting-like approach for initialization followed by a
pixel-based synthesis technique for optimization. For a variety of example styles, we
demonstrate high-quality user-constrained synthesized patterns that visually resemble
the exemplars while exhibiting plausible structural variations.
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4.1 Background

esigners rely on structured decorative patterns for ornamentation
in a variety of media such as books, web pages, formal invitations,
commercial graphics and interior design. Digital artists often create
such patterns from scratch in software like Adobe Illustrator. The
artwork is typically represented as a set of outlines and fills using
vector primitives like Bézier curves. In conventional software, the

creation process can take hours to complete, even for skilled designers, and represents
a steep learning curve for non-experts. Moreover, restructuring or repurposing an
existing pattern can be painstaking, as it can involve many low-level operations like
dragging control points.

This chapter introduces “DecoBrush”, a data-driven drawing system that allows
designers to create highly structured patterns simply by choosing a style and
specifying an approximate overall path. The input to our system is a set of pre-
designed patterns (exemplars) drawn in a consistent style (Figure 4.1a). Off-line,
we process these exemplars to build a stroke library. During the drawing process,
the user selects a library, and then sketches curves to indicate an intended layout.
The system transforms the query curves into structured patterns with a style similar
to the exemplar library but following the sketched paths. DecoBrush allows both
experts and non-experts to quickly and easily craft patterns that would have been
time consuming for the experts and difficult or impossible for novices to create from
scratch.

Inspired by the work of Risser et al. [112] that enables synthesis of structural
variation, this chapter builds on top of Chapter 3 to allow “drawing” structured
decorative patterns. The decorative patterns shown in this chapter present a unique
challenge for example-based texture synthesis, where most of the methods have been
optimized for continuous-tone imagery where artifacts are largely hidden by fine-scale
texture.

Our pattern synthesis works as follows. We first divide the query path into
segments that are matched to similar segments among the exemplars, using dynamic
programming to efficiently optimize this assignment. We then warp the segments
using as-rigid-as-possible deformation to approximate the query path. Next at the
joints where neighboring segments overlap, we rely on graph cuts (shown red in
Figure 4.1b) to form a single, coherent figure that approximates the hand-drawn
path. Despite the use of nearly-rigid warps combined with graph cuts at the joints, the
resulting figure generally suffers from small stretching artifacts from the warp as well
as misalignments at the joints (Figure 4.1c). Therefore we adapt structure-preserving
hierarchical texture synthesis techniques to repair, refine and diversify the query
stroke appearance. Our texture synthesis pipeline both ameliorates feature distortion
within the warped exemplar segments and repairs broken local structures at the joints
(Figure 4.1d). We also show that when synthesizing from coarse levels the pipeline
brings additional structural variation into the design, consistent with the style of the
exemplars. If the designer is not completely satisfied with the result of this process,
our system also supports user-guided refinement of the synthesized result – a few new
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(a) (b) (c) (d)

(e)

Figure 4.1: The “flower boy” drawing (e) was created by synthesizing decorative
patterns by example along user-specified paths (a)-bottom. (a)-top and Figure 4.2d
show a subset of the exemplars for this floral style. (b), (c), and (d) show a closeup
of the right ear. In (b), portions of the exemplars, shown outlined with dashes in
green, yellow and purple, are matched along the user’s strokes. Graph-cuts shown in
red reduce but do not completely eliminate artifacts in the overlap regions, as seen
in (c). Starting with this initialization, we run texture synthesis by example (d) and
then vectorize the result (e).
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(a) aboriginal (b) curly (c) doodle (d) floral

(e) leaves (f) palm (g) rose (h) wings

Figure 4.2: A selection of the structured stroke patterns used for synthesis.
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strokes with brush or eraser tools form the input to a supplemental texture synthesis
step that seamlessly incorporates the newly-drawn constraints with earlier results.
Finally, we obtain a vector representation of the synthesis results (Figure 4.1e). The
proposed synthesis pipeline is efficient, which facilitates applications such as user-
guided pattern diversification and sketch-based decoration of confined regions.

Our primary contribution is the idea of synthesizing structured decorative patterns
along user-sketched paths, thereby generalizing the conventional digital “painting”
concept beyond the scope of natural media to incorporate art traditionally represented
in vector form. We show that starting from an initial figure carefully constructed from
exemplar segments, a hierarchical texture synthesis pipeline can efficiently produce
structured decorative patterns. DecoBrush is the first system to be able to synthesize
by example structured patterns like those shown in this chapter. Moreover, our
pipeline allows the designer to specify both the overall shape of the resulting pattern
as well as user-guided refinement to control fine detail.

4.2 Related Work

here have been procedural approaches for synthesizing decorative
patterns. The early pioneer work by Wong et al. [145] use procedural
rules to grow decorative patterns for the application of automatically
filling a confined region. Other than reshaping and resizing the target
region, they do not investigate other types of user interactions. Other
procedural approaches allow growing structured patterns along a user-

specified path, [2, 18], but the range of supported styles is heavily limited by the
employed simplistic procedural rules. Měch and Miller [97] introduce an interactive
procedural modeling framework, which generates complex decorative patterns. The
procedural rules target plant-like structures and are hand-crafted by professional
artists. Defining procedural rules for faithful reproduction of general structured
patterns remains a challenging problem.

A variety of research has addressed data-driven stroke synthesis, where the
general goal is to synthesize a 2D shape by example based on a 1D input query path.
The skeletal strokes of Hsu et al. [56] warp pieces of the same structured texture to
stylize lines. They focus on controlling the deformation of the selected features on the
picture and do not introduce structural variations into the synthesis results. Curve
analogies [51] introduces a statistical model for synthesizing new curves by example.
However, they target 1D curves instead of the shape and texture of 2D strokes.
Previous work use small patches of stroke exemplars to stylize users’ input lines,
[3, 70]. Chapter 3 improves the synthesis quality of natural media strokes by warping
and blending long exemplar segments. Other work, [93, 163], supports exemplars with
repetitive small-scale local structures. Their techniques, however, do not differentiate
the beginning and end of the strokes from the middle regions. We target multiple
exemplars that contain high-level large-scale structures and characteristic appearance
at both ends of the strokes. For this purpose, we use the piecewise matching idea
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introduced in Section 2.5 and 3.6 as the first step of our synthesis pipeline, which
gives a good initial guess of the possible query stroke structure.

Another related line of research is structured texture synthesis. Markov
Random Field-based texture synthesis approaches, stemming from the pioneering
work of Efros and Leung [39], make the assumption that the appearance of a pixel is
only dependent on a local spatial neighborhood regardless of the rest of the image.
This model works well for homogeneous continuous-tone imagery. However, this
assumption is weakened for highly structured textures where large-scale geometric
features such as long connected lines are present, especially in binary or vector
imagery where artifacts are difficult to hide. Previous work introduced hierarchical
tile-based synthesis approaches, which better handle structured textures. Instead of
synthesizing the image structure sequentially pixel by pixel, which often results in
unrecognizable and spurious structures, previous work, [82, 83], explores the idea of
tiling the exemplars and introducing structural variations by coordinate jitter and
correction. They focus on synthesizing larger textures from a single small exemplar.
Risser et al. [112] introduce structure-preserving jitter and show further evidence that
the hierarchical tile-based parallel synthesis framework is able to preserve, modify
and repair image structures. They also extended the synthesis pipeline to consider
multiple source exemplars. However, their goal is to synthesize variations of the
exemplars without any user constraints. We, on the other hand, target synthesizing
new structured patterns following a user specified path. We borrow ideas from texture
synthesis methods and follow the hierarchical upsampling and correction pipeline.
The major difference is that we enforce user constraints by initializing the synthesis
field using the matched exemplar segments that follow a similar path to the query. We
also modify the upsampling and correction steps to suit our goals. The synthesized
patterns contain meaningful structures and closely follow the input query path.

There has been work to use texture synthesis techniques to arrange discrete
elements, [1, 7, 58, 62, 69, 80, 94]. The general idea is to define relationships between
elements on a graph and synthesize new patterns by searching for input elements with
graph-based neighborhood matching and pasting them to target locations. These
approaches only support discrete primitives that do not intersect each other. However,
the exemplars we have contain long, curly, intersecting lines and complex layout which
pose additional challenges for defining inter-element relationships.

4.3 Algorithm Overview

ecent advances in sketch-based stroke synthesis [93] demonstrate
promising results for synthesizing natural media strokes. The
input strokes are not structured and can be combined using a
simple blending algorithm. These approaches generate the synthesis
results that closely follow the user’s sketches, but cannot be directly
applied to decorative patterns due to the difficulty of combining

exemplar segments of very different structures. On the other hand, there has been
remarkable progress in texture synthesis for structured exemplars, [83, 112]. However,
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(a) SDF (b) non-SDF (c) SDF (d) non-SDF

Figure 4.3: Trade-off of using Signed Distance Field. Lines are often joined better
when using SDF (a,b), however this can also sometimes make spurious joins between
unrelated lines (c,d).

the synthesis of high-level semantic contents following user constraints remains a
challenging problem. We combine the advantages of both types of approaches for the
new application of “painting” decorative patterns.

To prepare the exemplars for synthesizing new strokes, we need to extract a stroke-
like semantic structure for each exemplar. We optionally convert the exemplars to
a signed distance field representation (Section 4.4.1), which can preserve lines better
for some exemplars. We then semi-automatically parameterize the exemplar stroke
(Section 4.4.2). We also precompute the neighborhood information at every pixel so
that runtime synthesis is efficient (Section 4.4.3).

At runtime, given a query stroke spine specified by the user, we look for long
segments of exemplar strokes that have similar shape (Section 4.5.1) and apply
as-rigid-as-possible deformation to align them with the query path (Section 4.5.2).
We then apply graph cut to optimize the transition boundaries between the nearby
exemplar segments (Section 4.5.3). The result of graph cut provides a good initial
layout for the query stroke. We then use hierarchical texture synthesis approach
to further reduce the warping artifacts and repair the broken image structures
(Section 4.5.4). Finally, we vectorize the synthesized result using Adobe Illustrator.

4.4 Data Collection and Processing

e target synthesizing structured patterns such as the ones in
Figure 4.2. The exemplars can have either a raster or vector
representation. We have focused on synthesizing decorative florals,
stylized fonts and other structured vector patterns. The exemplars
share common characteristics: 1) They are composed of variable

width curves and other simple solid-colored geometric shapes; 2) They have stroke-
like structures with a clear directionality indicated by a center curve and/or the
orientations of a group of curves; 3) They have unique appearance at the beginning
and the end of the stroke.

We collect several libraries of structured patterns. Each library contains between
8 and 12 strokes all following a consistent design. The design is characterized by the
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(a) (b) (c)

Figure 4.4: Exemplar parameterization. (a) The user specifies the blue end points
and the spine. The transition from red to green indicates the directionality of the
stroke from the start to the end. (b) The system then automatically parameterizes
the stroke. (c) Given the end points, we can optionally optimize the red spine
automatically. The blue square and arrow indicate the search neighborhoods are
aligned with the stroking orientation.

choice of geometric primitives, the branching structures, the thickness and curviness
of lines, etc. We collect strokes of different shapes, lengths and spine curvatures,
which are then semi-automatically processed to create a library. Each library stroke is
limited to lie within a square of resolution 512x512. We rasterize the exemplar strokes
and optionally compute Signed Distance Field (SDF) representation (Section 4.4.1).
Then we parameterize the exemplars (Section 4.4.2) in preparation for the runtime
synthesis. Finally, we also pre-compute per-pixel neighborhood information on the
raster exemplar (Section 4.4.3) for efficient runtime synthesis.

4.4.1 Signed Distance Field

Before further processing, we rasterize the input
exemplars and optionally calculate the Signed Distance
Field (SDF) [84]. In the SDF, black pixels have negative
distances to the shape boundary and the white pixels
have positive distances. The SDF effectively thickens
the feature lines and introduces gradient information
enriching the neighborhood information, which facilitates the piecewise matching
process (Section 4.5.1) and the texture synthesis process (Section 4.5.4). Before the
final vectorization, we simply threshold the SDF to extract a level set. However,
as shown in Figure 4.3, the use of SDF can prove detrimental on some exemplars,
where it can join unrelated lines. Thus we leave SDF usage as optional (we note in
the supplementary where it has been used). The inset figure on the right shows an
example of the SDF representation.

4.4.2 Exemplar Parameterization

Each decorative stroke has a clear directionality. The directionality is sometimes
suggested by a continuous line that runs from the start to the end of the stroke. Other
times, a number of lines collectively hint where the center branch is. To conduct
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Figure 4.5: Automatic detection of stroke spine. The red curve indicates the detected
spine.

synthesis, we need to extract the location of the main branch as a sequence of sample
positions. To simplify the problem, we manually specify the start and end points
of the main branch. Note that the start and end points do not have to be located
on the tips of the structure or even on any of the feature lines (Figure 4.4a). The
curls at the ends of the stroke serve for the purpose of decoration more than direction
indication. They are part of the style that should be preserved in the synthesis results.
By straightening the main branch towards the ends of the stroke, we can effectively
simulate such curly appearance even when the query path is relatively straight.

With the two end points specified, we solve for the main branch by optimizing a
path between them. Our goal is that the path does not wiggle too much, roughly
follows the edge tangent flow (ETF) ([67]) of the exemplar, and is smooth. We
find a polyline found by running Dijkstra’s algorithm on a pixel grid containing the
exemplar, where nodes of the graph are the pixels, and edges connect each pixel to
neighbors distributed roughly uniformly in 32 directions. Each edge carries a weight w
based on the vector v between the two adjacent pixels as w = |v|+wf (1−fp)+wc(1−c)
where: f is the dot product of the v with the ETF sampled at its midpoint; c is the
difference in curvature at the ends of this edge; and wf , wc and p are user-specified
constants that control the behavior of these terms. (We found wf = 10, wc = 3
and p = 4 to work well in practice.) Finally, we fit a quartic polynomial to the
vertices of the polyline to produce a smooth main branch that fits the artwork.

This typically produces a good match to the artwork and re-
quires very little user effort (Figure 4.5). However, sometimes
it fails to match the artwork well, especially where the curves
of the exemplar do not present a consistent orientation (inset
figure on the left). In these cases, it is straightforward for the
user to sketch a preferred path for the main branch directly

over the artwork. The optimized main branch (red to green indicates the stroke direc-
tionality in Figure 4.4a) coincides with the “center” of the pattern, slightly straight-
ened up at both ends of the stroke. We then follow Section 3.5.1 to obtain the uv
parameterization of the whole stroke (Figure 4.4b). Each stroke consists of between
30 and 100 samples, where a sample t = {x̂, l̂, r̂} consists of the 2D positions of the
spine, left and right outline samples respectively.
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4.4.3 Per-Pixel Processing

For efficient runtime synthesis, we further pre-process the exemplar image (or SDF
if used) to extract hierarchical per-pixel information. We calculate three Gaussian
pyramid levels for each exemplar. Note that since we do not perform the coordinate
jitters, gaussian stack [82] which consumes more memory and computation is not
needed. At each level, we only consider the pixels inside the automatically extracted
stroke outline. We calculate a per-pixel orientation ωe = (ωex, ω

e
y), by interpolating

the stroking orientations at the spine and the outline samples. The orientation of the
spine is defined as x̄i = x̂i − x̂i−1. The orientation of the outline is defined as ⊥ l̄i
and ⊥ r̄i, where l̄i = l̂i − x̂i and r̄i = r̂i − x̂i. We then calculate an oriented 5x5
local neighborhood for each pixel with the upright direction (blue square and arrow
in Figure 4.4c) of the neighborhood aligned with the per-pixel orientation ωe.

4.5 Query Stroke Synthesis

ere we describe our process for converting a user-drawn stroke into
a decorative pattern of roughly the same overall shape. First,
we consider how to match segments from the exemplar set to
overlapping portions of the query path. Next, we warp their shapes
to better match the path. Because the warped shapes overlap at
joints between the segments, we use graph-cuts to seek a seamless

boundary between neighboring segments. Finally, to address distortion artifacts and
mismatched boundaries, we use texture synthesis to find a shape similar to the output
from warping and graph-cuts but everywhere locally matches the exemplar set.

4.5.1 Piecewise Matching

Given a query spine (blue curve in Figure 4.6a), we estimate a rough 2D shape and
the uv parameterization (see Section 4.4.2). We then adapt the piecewise matching
algorithm proposed in Section 3.6.1 to find a sequence of exemplar segments from the
exemplar library and merge them together for the query stroke. To collect candidate
nearest neighbors from the exemplars, for each query sample, we use the feature vector
that includes the turning angle, the stroke width and the distance to the endpoints.
In the dynamic programming step, we heavily penalize the ends of the query stroke
being matched to the middle parts of the exemplars. For structured exemplars, it is
especially critical to avoid cutting short the ends, since it might destroy important
features and lead to broken lines that are hard to repair. We also avoid matching the
middle parts of the query stroke to the end parts of the exemplar strokes and heavily
penalize any jumps between library segments that have very different appearance or
have very different stroke thickness at the segment boundaries (thickness is the rib
length in the uv parameterization). After finding the appropriate library segments,
we extend each segment in both directions to overlap the nearby matched segments.
In Figure 4.6, the query stroke is matched to three exemplar segments.
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(a) (b) (c) (d)

Figure 4.6: Synthesis pipeline. (a) The warping introduced in Section 3.6.2 results in
noticeable distortions. (b) We apply As Rigid as Possible Deformation to recalculate
the shape of the query stroke. (c) We find the optimal cuts (red curves) within the
overlapped regions (outlined in yellow). (d) We apply hierarchical texture synthesis
to reduce the residual distortion and fix broken line structures.

4.5.2 As Rigid As Possible Deformation

To synthesize decorative patterns closely following the user’s intent, we need
to align the spines of the exemplar segments with the input query spine. The
warping method introduced by Section 3.6.2 leads to noticeable texture distortion
for the structured exemplars (Figure 4.6a). We instead use As Rigid As Possible
Deformation [61] to reduce the distortions. The query stroke’s spine samples (blue
curve in Figure 4.6a) are fixed at the input locations. The locations of the outline
samples (green curve in Figure 4.6b) are optimized to reflect the original shape of
the exemplar segments. The use of As Rigid As Possible Deformation minimizes the
amount of structural distortion and therefore leaves an easier task for the texture
synthesis step (Section 4.5.4) to remove the residual warping artifacts. Note that
though it is later changed, the query stroke’s input outline (green curve in Figure 4.6a)
is utilized for the piecewise matching process in constructing the feature vector. Thus,
if thin query strokes are drawn with little pressure, then thin exemplar segments are
likely to be matched.

4.5.3 Graph cut

After the adjacent library segments are extended and deformed, we detect the
region where they overlap (outlined by yellow curves in Figure 4.6c). We apply a
2-label planar graph cut algorithm [120] to find the least cost cut that smoothly
transitions from one library segment to another. We define a graph on the overlap
region where each pixel is a node and each node has four edges connecting the adjacent
nodes. Each pixel (j, k) corresponds to two stroke textures, L and R. Then the cost
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of each node Ec and edge Ed is defined as:

Ec = wc(2− Lj,k −Rj,k) + C (4.1)

Ed =


(Lj,k −Rj,k+1)

2 going up
(Lj,k −Rj,k−1)

2 going down
(Lj,k −Rj+1,k)

2 going right
(Lj,k −Rj−1,k)

2 going left

(4.2)

Ec is designed to penalize lengthy cuts and cuts that pass through black feature
lines on the exemplar, which might result in undesirable changes in line thickness.
Ed represents the difference in intensity of the two adjacent pixels along the edge
direction from the two library segments respectively. We use C = 0.02 and wc = 0.01.
Figure 4.6c shows the result after applying graph cut (red curves in Figure 4.6c), in
comparison to the result of applying a naive cut (red curves in Figure 4.6b) along the
stroke rib in the middle of the overlap region.

The output of the piecewise matching and the graph cut steps include, for every
query pixel, a local orientation ωq = (ωqx, ω

q
y) (Section 4.4.3) and a 3D texture

coordinate µ = (i,x,y), where i indicates the index of the exemplar from which
this pixel originates.

4.5.4 Texture Synthesis

The graph cut step (Section 4.5.3) finds good transition boundaries most of the
time, but at times the results might contain undesirable distortions and broken or
jagged line structures (Figure 4.8a). We therefore apply a fast hierarchical texture
synthesis step to fix the distortion and the broken structures, inspired by the approach
proposed by Lefebvre et al. [82]. Their key idea is to initialize, synthesize and
upsample the exemplar coordinates instead of the pixel values. During the upsample
step, the finer level pixels inherit and offset the coordinates of the coarser level.
Using coordinate inheritance better preserves the sharp image features compared to
applying bilinear interpolation on the pixel values. We follow their synthesis pipeline,
but modify the steps to suit our need. The synthesis pipeline is initialized using the
exemplar coordinates produced by graph cut (Section 4.5.4). Then, we improve the
image structures by iteratively replacing the initialized exemplar coordinates with
the center coordinates of the appropriate exemplar neighborhoods (Section 4.5.4).
The synthesized exemplar coordinates are then upsampled to the next finer level
(Section 4.5.4). We alternate the correction and upsample steps until we reach the
finest level and skip the upsample step at the finest level. We found three synthesis
levels produce good results (Figure 4.6d).

Initialization

We initialize the texture synthesis pipeline by performing the graph cut step with
the exemplars at low resolution (usually 128x128). The graph cut outputs an exemplar
coordinate to initialize every synthesis pixel.
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(a) 1 orientation (b) 11 orientations

Figure 4.7: Searching over more orientations slightly improves the synthesis results.

Correction

The essential step that repairs the broken image structures is inspired by the
correction step proposed by Lefebvre et al. [82], which we briefly review. During
correction, the exemplar coordinate of each query pixel is replaced by the center
coordinate of an exemplar neighborhood that is most similar to the local query
neighborhood measured by L2 distance. The correction step also uses the idea of
coherent synthesis [4], and considers the 3x3 immediate neighbors of the current
query pixel. Correction can be applied to non-adjacent pixels independently, which
allows fast parallel processing. Several iterations of this step for each pixel at each
synthesis level ensure that the synthesis result is locally similar to the exemplars
everywhere and therefore faithful to the style.

We adapt this step in several ways. We sample rotated query neighborhoods with
the up axis aligned with the per-pixel orientation, ωq (calculated in the same way as
in Section 4.5.3). Rotating both the exemplar and the synthesis neighborhoods to
align with the stroking direction increases the chances of success for neighborhood
matching. In the overlap region of the adjacent exemplar segments (red curves in
Figure 4.6c), the image structures are the most challenging to repair. We therefore
apply approximate nearest neighbor search [101] to find the most similar 5x5 exemplar
neighborhood among all exemplar strokes for each 5x5 query neighborhood. For
each query pixel, we additionally gather eight coherent exemplar neighborhoods by
applying an appropriate offset to the coordinate of each pixel in the 8-connected
neighborhood. We favor choosing the closest coherent neighborhood unless the L2

distance to this neighborhood is significantly larger (5 times or more) than the L2

distance to the approximate nearest neighbor. We find the use of strong coherence
very important for fixing image structures and maintaining clean feature lines. For
the non-overlap region, we find it satisfactory to only select the best one among the
eight coherent neighborhoods for faster synthesis performance. To better tolerate the
distortion introduced by the warping step (Section 4.5.2), we can optionally sample a
few query neighborhoods rotated at several different angles around and including the
stroking direction, ωe. We perform the search for each rotated query neighborhood
and select the exemplar coordinate µ and the optimal query orientation ωe that
gives the lowest L2 neighborhood distance. Figure 4.7 demonstrates slight quality
improvement when orienting the query neighborhoods at 11 different orientations
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(a) (b) (c) (d)

Figure 4.8: Synthesis refinement using secondary strokes. (a) The graph-cut step
sometimes finds sub-optimal transition boundaries. (b) The texture synthesis step
reduces but cannot completely remove the artifacts. (c) Users can apply refinement
strokes (yellow indicates erasing and blue indicates adding). The light blue regions
indicate the masks inside of which the synthesis pipeline modifies the exemplar
coordinates. (d) The final synthesis result. Notice that though the user’s scribbles
are noisy, the synthesis pipeline produces smoother curves.

around the stroking angle. Due to the diminishing return of searching over different
orientations, all results of this chapter are generated searching only one orientation
exactly aligned with the stroking orientation.

Upsample

To initialize the synthesis field of the next finer level, we inherit the exemplar
coordinates obtained by the correction step. To turn one center pixel into four
surrounding pixels of the finer level, we use the optimal orientation ωe to calculate
the four offsets to be applied to the inherited exemplar coordinates. Specifically,
each child pixel of the finer level l inherits the parent coordinate of level l − 1 in the
following way: Sl[p + ∆] := Sl−1[p] + JTe (p)Jq(p)∆, ∆ = (+−1/2 +− 1/2)T , where

Jq(p) =

(
ωqx ωqy
ωqy −ωqx

)
and Je(p) =

(
ωex ωey
ωey −ωex

)
denotes the Jacobian matrices for the

query and the exemplar neighborhoods respectively.

4.5.5 User-guided Refinement

Often the result of texture synthesis is satisfactory. However, in some cases, the
graph cut step finds a sub-optimal cut due to the dissimilarity between the nearby
segments (Figure 4.8a), which poses a challenging problem for texture synthesis. On
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top of the synthesized result (Figure 4.8b), users can optionally refine the design or
fix the remaining artifacts by scribbling refinement strokes. The refinement strokes
are drawn as black or white discrete pixels (visualized as blue or yellow pixels in
Figure 4.8c) at the highest synthesis level, which facilitate adding or removing features
respectively. To improve upon user’s imprecise refinement strokes and obtain clean
feature curves, we apply a slightly modified texture synthesis pipeline. We first dilate
the refined pixels to obtain a binary mask M (visualized as light blue region in
Figure 4.8c), which indicates the region of pixels to be changed. We downsample the
refinement strokes and the binary mask for two levels until the coarsest synthesis level
and seed the synthesis pipeline. At the coarsest level, we disable the coherence search
for the user refined pixels, since there are no corresponding exemplar coordinates
at these locations. We find the corresponding exemplar coordinates by searching for
nearest exemplar neighborhood. We then upsample the updated exemplar coordinates
to the next level and continue the usual synthesis pipeline (Section 4.5.4). At each
synthesis level, the pixels outside the mask are locked and remain unchanged. At the
coarsest level, the pixels inside the mask are updated to reflect the user’s refinement
constraints, and at other levels they are unconstrained. The hierarchical synthesis
pipeline effectively smooths user’s refinement strokes by matching to the exemplar.
The synthesized curves are smoother than the initial refinement strokes, which is
useful for novices who have difficulty drawing clean lines. All results of this chapter
except the fonts and Figure 4.8 are generated without synthesis refinement.

4.6 Results and Discussion

he results in this chapter are all synthesized with exemplars of
a maximum resolution of 512 × 512 for performance and memory
considerations. Figure 4.9 shows that for datasets which contain
very thin lines, using resolution higher than 256 × 256 is crucial for
maintaining thin line structures. On the other hand, for the exemplars
in Figure 4.2c, 4.2e and 4.2f, we find the resolution of 256 × 256 is
enough for synthesizing reasonable structures. The whole synthesis

pipeline takes about 1-2 seconds to synthesize a stroke similar to the one in Figure 4.6.
At 512 × 512, the synthesis is about 5 times slower. On average, each stroke in this
chapter takes about 8 seconds to finish. We did our performance measurement with
the following hardware, Intel Core i7 2.3 GHz CPU. We believe the performance can
be improved to real-time by implementing the synthesis correction step on GPU [82].

The synthesis starting level can be determined by the user based on the quality
of the graph cut result. For minor texture distortion (uneven and jagged curves),
starting the synthesis using the exemplar resolution of 256 × 256 can sufficiently
smooth out the feature curves. With more severe texture distortion or broken
lines, synthesizing three hierarchy levels starting from 128 × 128 improves the
results. Starting from even lower resolution presents a trade-off in the result quality.
With the exemplar resolution of 64 × 64, close-by features are sometimes merged
together undesirably (magenta arrows in Figure 4.12a), while on the other hand, the
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(a) Graph-cut (b) Final result (c) Lower-res result

Figure 4.9: Synthesis result comparison. (a) The graph-cut step gives good
initialization at the cost of small artifacts. (b) The texture synthesis step removes
the local artifacts and connects broken lines. (c) Using exemplars at lower resolution
of 256× 256 cannot preserve thin line structures in the synthesis results compared to
using 512× 512.

(a) (b) (c) (d)

Figure 4.10: Natural media synthesis results. (a) Sample dry watercolor exemplars.
(b) RealBrush alpha blending result. (c) DecoBrush result on the same set of
exemplars. (d) DecoBrush result using pastel exemplars.

Figure 4.11: Colored synthesis result.
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(a) 64× 64 (b) 128× 128

Figure 4.12: Trade-off of synthesizing from different resolutions. Starting the
synthesis with exemplars at lower resolution improves the smoothness of the curves,
but aggravates the problem of incorrectly connecting nearby sub-structures.

(a) (b) (c)

Figure 4.13: Synthesis limitations: Even though graph-cut results in separate
structures (a), synthesis sometimes falsely connects them together (b). Details can
appear in inappropriate places, like the partial flower in the middle of the stroke (c).

synthesized curves are usually smoother (magenta arrow in Figure 4.12b). This reveals
a limitation (Figure 4.13a,b) of our approach. Curves that are near each other might
be represented by only a few pixels at the coarse levels and are sometimes integrated
into a single component through the synthesis correction steps.

We tested the robustness of our system by sketching strokes of different lengths
and shapes synthesized with eight different exemplar libraries (see supplementary ma-
terials). We also made simple drawings and decorative designs shown in Figure 4.1e,
4.18, 4.19, 4.20, 4.21. Each of the designs was created by novice with less than 20
strokes in total. The resulting drawings contain complex structures in the styles of
the exemplars. We vectorized our drawing results using Adobe Illustrator.

If gray-scale image exemplars are used, our approach is also able to synthesize
structured natural media exemplars with improved quality. Figure 4.10 demonstrates
that compared to RealBrush, our synthesis results are free of blending artifacts and
contain realistic variations in the stroke thickness. Figure 4.11 shows that our system
also addresses colored exemplars. We convert the colored exemplars to grayscale and
synthesize them as usual. Since the main synthesis component works by referencing
texture coordinates, we synthesize the colors by directly reading them from the
exemplars.
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(a) DecoBrush result (b) RealBrush alpha blending (c) texture synthesis

Figure 4.14: Comparison with RealBrush (Chapter 3). All three results are
synthesized using the exemplar library in Figure 4.2h.

(a) DecoBrush result (b) Painting-By-Feature result

Figure 4.15: Comparison with Painting-By-Feature [93]. The result of Lukáč et al.[93]
uses the single exemplar shown in the upper right corner.

(a) DecoBrush (b) The work of [163]

Figure 4.16: Comparison with the work of Zhou et al. [163]. The results are
synthesized with the “curly” exemplars in Figure 4.2b.
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(a) (b) (c) (d)

Figure 4.17: Stroke intersection and branching results. (a-b) demonstrates the self-
intersecting strokes. (d) shows the result of branching two strokes from the main
spine in (c). (a) is synthesized with “doodle” in Figure 4.2c. (b-d) are synthesized
with “palm” in Figure 4.2f.

(a) the number “2014” (b) partial “4”

Figure 4.18: Synthesis results and stroke crossing limitation. (a)“2014” is synthesized
with the “wings” exemplars in Figure 4.2h. The digit “4” is drawn with two crossing
strokes. Our current pipeline cannot synthesize proper crossing appearance due to
the lack of crossing structures in the exemplars. (b) shows the first stroke of “4”
before the crossing.

In Figures 4.14, 4.15 and 4.16, we compare with RealBrush (introduced in
Chapter 3), Painting by Feature [93] and the work of Zhou et al.[163]. In Figure 4.14,
the RealBrush alpha blending result introduces noticeable distortions, and the texture
synthesis module removes delicate line structures, since it was designed for highly
textured media such as sponge or glitter. In Figure 4.15, Painting by Feature
introduces ghosting artifacts and does not handle the stroke ends differently from
the middle. Figure 4.16 shows that the method of Zhou et al. cuts off the exemplar
features at the end of the query stroke and generates jagged spines that do not closely
follow users’ input paths.
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(a) Butterfly (synthesized using Figure 4.2b)

(b) Teapot (synthesized using Figure 4.2e)

Figure 4.19: Synthesized drawings.
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(a) Fish (synthesized using Figure 4.2a)

(b) Tree lady (synthesized using Figure 4.2f)

Figure 4.20: Synthesized drawings.
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Figure 4.21: Synthesized drawings. The outer result is syntheszied using Figure 4.2d.
The inner result is synthesized using Figure 4.2b.
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4.7 Limitations and Future Work

ecoBrush is the first system that can synthesize by example structural
patterns like those shown in this chapter along user-specified paths.
Nevertheless there are a number of limitations to our system, and many
of these suggest opportunities for future work.

Global structure limitations. The texture synthesis pipeline can
only remove small local artifacts, but cannot fix artifacts on a more global scale, for
example curvature discontinuities at a transition boundary that can lead to wobbling
in the output that is not characteristic of the exemplars or the query curve. A more
global strategy for synthesis could potentially address these artifacts, but we find
that the most straightforward approach of deepening the synthesis hierarchy is not
effective.

Variation in output. Because the initialization to our texture synthesis process
comes from piecewise-matching portions of exemplars to the query path, the statistics
of the resulting texture can be skewed by the shape of the query. For example, a near
perfect circular query may cause a single, similar-curvature portion of an exemplar to
match repeatedly along the query, leading to repetition. Lukáč et al. [93] introduced
an efficient algorithm for matching the statistics of an exemplar set when selecting
them for a linear sequence. It may be possible to adapt their algorithm for our setting
where we need to take special care at the endpoints of curves and also match the rough
shape of the query. More broadly, our system currently has no random component,
so the same input always produces the same output. It would be nice to offer a mode
suitable for ideation where several different variations are presented and the designer
chooses among them.

Parameterization challenges. First of all, there are other general-purpose param-
eterization techniques available, [121, 130], that are better than the one introduced in
Section 4.4.2. Additional parameterization challenges exist for our particular prob-
lem. For example, when drawing a curve around a sharp corner, branches that extend
towards the curve can intersect in the corner. We believe that a more sophisticated
parameterization of the path could ameliorate these artifacts. Moreover, our current
framework cannot handle some forms of decorative art – those with very large features
relative to the size of the strokes, or which do not have an obvious directionality. To
extend the kinds of artwork that could be handled well, it would be desirable to be
able to express secondary branches off the main spine. During sketching this could
provide additional control over where such features appear. In addition it would be
ideal if there is some mechanism whereby a user could indicate regions of the exem-
plars that should remain intact (such as the head of the flower in the “rose” dataset),
so that artifacts shown in Figure 4.13c can be avoided.
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Vectorization from SDF. As discussed in Section 4.4, many of our example styles
work best when we synthesize a signed distance field (SDF) rather than binary image
as output. In such cases, our current approach is to use Adobe Illustrator to vectorize
from a level set in the SDF. However, the synthesized SDF contains much more
data (highly redundant) than simply the values neighboring the level set, and this
information might be used to address small topological problems that are difficult
to repair directly from the level set. One strategy might be to use the gradient and
SDF values sampled at many patches in the neighborhood of the level set to generate
point and normal samples at the boundary, and then reconstruct a boundary from
this (noisy) data using Poisson reconstruction [68].

Stroke Intersections and Branching. With the piecewise matching pipeline,
when a long stroke intersects itself, the new drawn part overwrites the previously
drawn parts. Then the texture synthesis pipeline refines all pixels in the query
stroke in the same way, including the overlap region. We can synthesize meaningful
intersections for some datasets that contain intersection-like structures, like “doodle”
and “palm” (Figure 4.17a,b). In addition, we can emulate branching by starting a
new stroke from the main branch of a previously synthesized stroke. The texture
synthesis step merges the new structures with the existing structures, creating a
branching appearance. Figure 4.17c shows a synthesized stroke before branching.
Figure 4.17d demonstrates the effect of adding two branches. The decorative capital
letters also demonstrate branching: the T and D are generated with two strokes,
where the beginnings of the second strokes overlap the first strokes. To better
handle intersections and branching for more complex datasets such as “floral” and
“wings”, one should design explicit synthesis procedures for the overlap regions based
on exemplars that contain proper crossing and branching structures. Figure 4.18a
shows that the current synthesis pipeline does not synthesize optimal structure in the
overlap region between the two strokes of the digit “4”.

4.8 Conclusion

e introduce DecoBrush [89], a novel sketch-based design interface
that makes the vector design task easier and accessible for
novices. We propose a novel combination of two texture
synthesis paradigms to synthesize, for the first time, complex
strongly structured exemplars, using a quilting-like approach for

initialization followed by pixel-based synthesis for optimization. Our system design
balances the interactive performance and the synthesis quality. The major insight
is that raster-based texture synthesis, with strong preference for coherence, can be
used to synthesize structured vector patterns, but only given good initial structures.
We publish our exemplar database to facilitate future research in interactive vector
design.
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Chapter 5

RealPigment:
Paint Compositing by Example

The color of composited pigments in digital painting is generally computed one
of two ways: either alpha blending in RGB, or the Kubelka-Munk equation (KM).
The former fails to reproduce paint like appearances, while the latter is difficult to
use. Chapters 3 and 4 deal with color layering using alpha blending. This chapter
presents data-driven pigment models that reproduce arbitrary compositing behavior
by interpolating sparse samples in a high dimensional space. The input is a color
chart, which provides the composition samples. We propose two different prediction
algorithms, one doing simple interpolation using radial basis functions (RBF), and
another that trains a parametric model based on the KM equation to compute novel
values. We show that RBF is able to reproduce arbitrary compositing behaviors,
even non-paint-like such as additive blending, while KM compositing is more robust
to acquisition noise and can generalize results over a broader range of values. The
proposed color models can be integrated with the painting systems described in
Chapters 3 and 4 for enhanced stroke interaction appearance.

(a) marker color chart (b) alpha blending (c) radial basis (d) Kubelka-Munk

Figure 5.1: Color compositing: (a) a color chart (made with markers) crafted by an
artist in order to observe how different kinds of pigments appear when layered; (b)
alpha blending, though standard in computer graphics, fails to capture known effects
like yellow over blue gives green; (c) RBF interpolate and extrapolate from the data
in the chart to produce more realistic effects; (d) fitting parameters of a KM model
to the data in the chart improves on RBF for paint-like behaviors.
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5.1 Background

igital drawing and painting tools mimic many aspects of traditional media
with increasing fidelity. Much of the research has addressed the shape
and texture of individual strokes, as well as secondary effects like bleeding
and smearing. However, the interaction of multiple pigments has received

relatively less attention, yet remains crucial for plausibly simulating the effects of
many media including watercolor and oil paint. The major strategies for layering
digital pigment have been either to rely on simple ad-hoc methods like alpha-blending
using various blend modes, or to resort to complex physical models such as that
of Kubelka and Munk (KM) [77]. Simple alpha blending maps trivially onto the
traditional graphics pipeline, but spectacularly fails to capture straightforward paint
mixing principles such as “yellow and blue makes green” (Figure 5.1b). On the other
hand, physically accurate models like KM (Figure 5.1d) require many parameters to
capture each individual pigment, and even more parameters when they are mixed. Of
course it is possible to measure such KM parameters for a set of paints and use them
in a digital palette, but this requires sophisticated hardware and restricts the artist to
working within the fixed set of paints, and when drawing still requires specifying more
parameters such as density and thickness – this extra complexity leads to cumbersome
interfaces in a digital painting tool.

Instead this chapter proposes a data-driven approach toward layering color in
digital painting tools. In our process, the way that colors blend is specified by
leveraging a physical color chart like the one shown in Figure 5.1a. Artists use such
instruments to understand how the range of colors expressible in a particular palette
of paints will combine, before applying paint to canvas. The artist first applies a blob
of a particular color across each cell in a row, and moves onto the next row with a
different color, and so on. Next, the artist applies a blob of color across each cell in
a column, with a different upper color for each column. The resulting grid depicts
visually how all pairs of color will appear when layered, and informs their application
in a subsequent painting.

In our proposed digital painting interface, the user simply selects a color chart
(the exemplar) in order to specify how colors will be composited. The color chart
may be selected from a set of pre-existing charts, or may be created anew in order to
specify a novel mixing behavior. Next, the user simply selects (RGB) colors using a
standard color picker and paints strokes, and the system plausibly composites colors
in a way that mimics the exemplar chart.

This chapter makes a series of contributions to enable this interface. The first con-
tribution is a novel formulation of the pigment compositing problem as interpolation
among a sparse set of high dimensional samples. Our second contribution is, based
on this novel formulation, detailing how to acquire such a set of samples via a color
chart, and interpolate them using radial basis functions (RBF) [110] (Figure 5.1c).
The third contribution is to improve upon RBF by using a priori knowledge about
the shape of the function by using the KM equation, effectively interpolating in KM
space (Figure 5.1d). Finally, we explore the performance of these methods compared
against a baseline of optimized alpha blending. We show that for pigment models that
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can be reproduced by the KM equation, the optimized KM interpolation is able to
produce better results that smooth over acquisition errors and can be extrapolated to
a broader range of compositions. Conversely, RBF interpolation better approximates
the exact behaviors in the color chart, whether or not those behaviors are realizable
by pigments (e.g. additive blending).

5.2 Related Work

here are extensive research on modeling physical pigments to accurately
predict the color when they are combined to improve printing processes
and make realistic natural media painting systems.

Kubelka-Munk and Other Physically-Accurate Models.
The seminal work by Kubelka and Munk [77] (KM) defines a per-wavelength

equation for the reflectance of a homogeneous, isotropic pigment layer atop a substrate
in a continuous setting (see Section 5.3). Alternate formulations have been developed
in the same domain [42, 49, 140], but KM remains the most commonly used.

Much work has been done to improve KM. Saunderson [119] provides a correction
based on surface reflection of the pigment layer, and Berns and De la Rie [17]
extend this result by considering reflective varnishes for oil paint. Granberg and
Edström [47] show the KM model mis-estimates strongly absorbing pigments, and
Yang and Kruse [157] propose a revised KM model which corrects for path-length
errors in highly scattering media. However, Edström [35] later show this revision had
other errors.

Extensions have been proposed to relax the assumptions made by KM. Shake-
speare and Shakespeare [124] propose a method to incorporate fluorescence, while
Yang etal [158] add inhomogeneous materials. Edström extends these to also include
anisotropic reflections [36, 37]. Finally, Sandoval and Kim [118] re-derive the KM
equation from the radiant transport equation, thereby generalizing it to handle
inhomogeneous materials with boundaries, and with greater accuracy.

Approximations to Kubelka-Munk.
Many natural media painting systems have used the KM model in various forms

to improve the quality of paint rendering. The Stokes Paint program [11] uses linear
combinations of four or eight acquired real pigments with KM coefficients to generate
a wide gamut of paints. Impasto [13] improves on this with a numerical approximation
of the same pigments for reduced memory and computation.

Curtis et al. [25] uses a reduced KM model with coefficients for only three
wavelengths, which are computed from user-specified RGB colors. A further
approximation is presented by Wang and Wang [142], which uses a single coefficient
variant of KM, for each of three wavelengths. The simplest approximation is found in
the work of Rudolf et al. [115], which uses one absorption and scattering coefficient
pair plus an RGB color, thereby entirely obviating multispectral rendering.
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Gossett and Chen [46] create a paint-inspired color model they label RYB (for Red
Yellow Blue), which defines three paint pigment primaries and linearly interpolates
among them to define a paint-like gamut. This is most similar to our approach, but
we generalize the concept to support arbitrary, non-orthogonal, sparse sets of paint
samples with data-defined compositing behavior.

Finally, instead of explicitly defining an equation to model the pigment compo-
sition effect, Xu et al. [152] and Westland et al. [144] both propose using a neural
network to learn how pigments combine to produce the final reflectance spectra.
These algorithms must be trained on acquired pigment composition samples with
KM coefficients, and do not provide clear mechanisms for exerting artistic control
over the resulting model.

Pigment Acquisition.
Acquiring the parameters of individual pigments to use in these various models

is an arduous task, involving multispectral measurements of controlled samples in
controlled environments [106]. Mohammadi and Berns [100] show that it is crucial to
capture the full KM coefficients for a pigment in order to accurately reproduce the
range of generated colors. Kokla et al. [71] propose a way to use a set of captured
pigments to determine from a simple image of a painting or manuscript the mixture
of pigments used for each local color, via an optimization.

5.3 Pigment Model

he commonly accepted method for predicting the reflectance of a layer of
pigment is to use the Kubelka-Munk (KM) equation [43, 77]:

R =
1− ξ(a− b coth bSh)

a− ξ + b coth bSh

a = 1 +
A

S
, b =

√
a2 − 1

(5.1)

where h is the thickness of the pigment layer, S and A are the pigment’s scattering and
absorption coefficients, ξ is the substrate reflectance, and R is the resulting reflectance
of the pigment layer. All of these quantities are per-wavelength, so a pigment p is
modeled as a set of scattering and absorption coefficients over a set of wavelengths L
as p = {Sl, Al|l ∈ L}.

Realizing the RGB to display in an image corresponding to a stroke of pigment on
a canvas is a standard multispectral rendering problem. Let us denote this transform
as c = {r, g, b} = f(p), for a pigment p. f(p) is the perceptual response of the
pigment, which could be regarded as the space that artists think in when selecting
pigments for painting. That is, rather than understanding pigments in terms of a set
of coefficients or a reflectance spectrum, an artist may associate pigment p with a
particular color c, for some nominal conditions (illuminant, thickness, substrate).

Now consider two pigments, p1 and p2, painted on a white canvas such that p2
is on top of p1. The perceived color of this composition is f(p2 ◦ p1), which can

108



be computed by the recursive application of the KM equation. However, from the
artist’s perspective, the behavior is better modeled as g(f(p2), f(p1)), where g is a
composition function that operates on RGB values. Indeed, a digital artist selects
an RGB to paint with, and needs a predictable and plausible outcome when painting
over the RGBs on the canvas.

The function g : R3 × R3 → R
3 is an approximate model of the pigment

composition process in which foreground and background RGB colors combine to
form a new RGB color. Our data driven color model sparsely represents g by a set
of a-priori known composition results that are interpolated to generate the result
for arbitrary foreground and background colors. These sparse samples come from
the color chart provided by the user; a different color chart will result in a different
function g and therefore a different color model. For example, an oil paint chart
would produce a different g than a watercolor chart.

The nature of g’s approximation is that it is not possible in general to find an
analytical form of g such that g(f(p2), f(p1)) = f(p2◦p1) for all p1 and p2. One reason
is that g cannot express the behavior of metamers – different pigments pa 6= pb that
share the same perceived color: f(pa) = f(pb). In general, these metamers will
yield different results when painted over some other color pc: f(pa ◦ pc) 6= f(pb ◦ pc).
This phenomenon cannot be expressed by g, which treats pigments only in terms of
perceived color, i.e. f(pa) = f(pb)⇔ pa = pb.

While g has these inherent ambiguities regarding metamers, we regard this
limitation as a benefit of our approach. While metamerism is important for simulation
of physical reality, it is a highly non-intuitive effect. Understanding the expected
behavior of each combination of real pigments is a difficult part of learning to paint,
which is why even expert painters often create color charts to help them predict
these behaviors. Thus, our pigment model can improve the predictability of paint
compositing by eliminating this difficult phenomenon.

While this discussion has focused on paint composition, in which one layer of
pigment is applied atop another, it can be trivially extended to paint mixing, in
which two pigments are blended into a single layer. In the KM model, pigment
mixing is accomplished by interpolating between the two pigments’ scattering and
absorption coefficients, with resulting color f(p2 ⊗ p1). This can be modeled in the
same manner, by a function m(f(p2), f(p1)) : R3 ×R3 → R

3, which is defined by a
sparse set of color mixing samples. The primary difference between m and g is that
m is symmetric, m(b, a) = m(a, b), while g is not, g(b, a) 6= g(a, b).

5.4 Data Collection and Processing

rtists create color charts to familiarize themselves with properties of
different pigments. They experiment with glazing a layer of pigment on top
of a dried layer to study the effect of compositing. In order to choose the
right pigments to paint with, they observe the color chart and speculate on

behaviors of pigments outside the chart. This process can be automated by prediction
models, which learn from the known compositing examples in the chart and predict
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(a) thin acrylic (b) watercolor

Figure 5.2: Physical color compositing charts available on-line.

the result given an arbitrary pair of new colors. To train our prediction models
(see Section 5.5), we collect a set of physical and synthetic color charts.

Physical charts. As a common practice, a compositing chart is created as
follows: Given n base pigments, divide the empty canvas into a grid of n2 cells. As the
background layer, paint each row i with base pigment i, keeping uniform distribution
of the pigment for all cells of the row. After the background layer is completely
dried, as the foreground layer, paint each column j with base pigment j. We collect
compositing charts online, which are hand-painted by anonymous Internet users using
the previously described procedure in several different natural media, including acrylic
(Figure 5.2a), watercolor (Figure 5.2b) and marker pen (Figure 5.1a). In addition to
the online charts, we also captured a watercolor chart ourselves in a controlled setting.
Figure 5.3a shows the original capture. To better control paint thickness, we made
uniform glazings of watercolor on transparent plastic, cut the plastic pieces to obtain
background and foreground squares, and then captured every layered combination of
these squares.

To process these physical charts, we undo the gamma correction and extract a
single color from each grid cell by averaging pixels around the cell center. The
cell borders are avoided to prevent the boundary effects, such as watercolor edge-
darkening, to adversely influence the measured color. After processing, each grid cell
contains a composite color – the result of glazing a particular foreground pigment over
a background pigment or a base color – the result of applying a base pigment on the
empty canvas (the leftmost column and the bottommost row in Figure 5.2 and 5.3).
Figure 5.3b shows the processed chart. Though subtle, the compositing charts are not
symmetric. The result of applying pigment A on top of B is slightly different from
the result of the other way around. For example, in Figure 5.3b, column 4 within the
composite matrix shows clear asymmetry from row 4, because the dark blue paint is
very absorbent of light whereas other colors are more reflective.
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(a) physical chart (b) processed chart

Figure 5.3: We capture a gouache chart using uniform glazes on transparent plastic.

To simplify our inference problem and reduce the training parameters, we make
some assumptions about the physical color charts. We assume that the thickness
of the pigment layer is more or less constant for all rows and columns and that the
charts are captured under roughly uniform lighting. The assumptions are reasonable,
since they are the guiding principles for creating the charts. But they are hard to be
enforced precisely and therefore small variations in brightness and layer thickness can
be observed. For example, Figure 5.2b shows luminance variation within many cells
due to the difficulty of depositing watercolor pigment uniformly.

Synthetic charts. Uniform lighting and constant layer thickness is desirable,
but not guaranteed, due to the hand-painted nature of the charts. To understand
how violations of these assumptions influence the prediction and to provide a
baseline evaluation of our models, we algorithmically construct some synthetic charts.
Specifically, we apply KM model (see Section 5.3) with the physically measured
coefficients [106] of five acrylic pigments, including Phthalo Blue, Pyrrole Red, Hansa
Yellow, Carbon Black and Titanium White. Each of the n base pigments are
generated as a random mixture of the five primaries. The grid cells of the chart are
calculated by two evaluations of the KM model. One evaluation of KM applies the
background pigment onto the substrate and another applies the foreground pigment
onto the rendered background. For KM, we use constant layer thickness for all
pigment layers, standard illuminant D65 [102] and ideal white substrate (completely
reflective at all wavelengths). For some natural media, the compositing behaviors
might vary with different layer thickness. For example, for oil or acrylic, a thin layer
of foreground pigment allows the background pigment to show through (Figure 5.4a),
while a thick layer heavily obscures the background (fifth column from the right in
Figure 5.4b) with the exception of using light-colored pigments as the foreground
(last column from the right). Additionally, high light absorbance can cause certain
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(a) thin pigment layer (b) thick pigment layer

Figure 5.4: Synthetic color compositing charts with different pigment layer thickness,
created using acquired Kubelka-Munk coefficients and multispectral rendering.

colors to result in dark composites if used in either background or foreground (seventh
column and row from the top and the right).

5.5 Prediction Models

ere, suppose a color chart is painted with N base pigments, then we have
N base color samples, represented as Bi. And we have N2 composite
color samples, represented as Cij, produced by layering base pigment j
(foreground) on top of base pigment i (background). In the empty region

of the chart, we can sample the substrate color S. We convert all color values into
the CIELAB color space for its perceptual linearity. Each color chart can be seen as
a 6D point cloud of N2 points, {(Bi, Bj) | i, j ∈ {1 . . . N}}. We use the standard
quick hull algorithm [6] to calculate the convex hull, H, of the point cloud, which is
utilized in the following prediction models.

When a user selects a color chart to specify compositing behavior and then paints
a given foreground color Qf over a different background color Qb, our goal is to predict
the composite color Qc. To address this goal, we propose three prediction models,
optimized alpha compositing, radial basis interpolation and optimized KM compositing,
with different pros and cons. Optimized alpha compositing (Section 5.5.1) is included
as a baseline, which demonstrates the best possible performance of alpha blending
to approximate the real paint compositing in the chart. Radial basis interpolation
(Section 5.5.2) is a straightforward implementation of our model from Section 5.3
that interpolates and extrapolates the matrix g. Alternately Section 5.5.3 presents
an optimized KM compositing scheme that refines the model for color charts that
contain paint-like pigments. Each model contains a training phase conducted per
color chart, and a prediction phase performed per query color.
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5.5.1 Optimized Alpha Compositing

Alpha compositing is often used in digital painting, where an alpha value is
specified by the user together with a RGB color. Choosing the alpha manually to
reproduce the appearance of a target medium is challenging. For example, there is
no alpha that can perfectly simulate the darkening effect of watercolor. Given a color
chart, we can solve a constrained least squares problem to optimize the alpha that
best explains the chart, which can then be used to predict the compositing result
given new query colors. We include this method to provide a reference point for
evaluating the performance of our other methods.

Training. Given an intrinsic color βi = (Li, ai, bi) and a chosen alpha value α,
alpha compositing on the substrate gives bi = αβi + (1− α)S. With the same alpha
and another intrinsic color βj, recursive alpha compositing over the previous result
gives cij = αβj + (1 − α)bi = αβj + (1 − α)αβi + (1 − α)2S. Given a color chart,
we minimize the difference between bi and the measured base color Bi, as well as the
difference between cij and Cij, solving for α and β = {βi, i ∈ {1 . . . N}}:

α∗, β∗ = argmin
α,β

Ea (5.2)

such that α ∈ [0, 1], and Li ∈ [0, 100], ∀i ∈ {1 . . . N}

Ea =
N∑
i

‖Bi − bi‖2 + wc
1

N

N∑
i

N∑
j

‖Cij − cij‖2 (5.3)

We use wc = 1 to give equal importance to fitting both the base and the composite
colors. We initialize α to be 0.5 and β to be random. The optimized alphas α∗, in
the order of Table 5.1, are 0.58, 0.42, 0.49, 0.63, 0.31, 0.45, plausibly reflecting the
thinner or thicker paint behaviors in the corresponding charts.

Prediction. From training, we obtain the optimized α∗ that best describes
the chosen color chart. Suppose the unknown intrinsic color of the foreground is
qf = (Lf , af , bf ), then the following holds, Qf = α∗qf + (1 − α∗)S. The composite
color Qc = (Lc, ac, bc) can be estimated as:

Qc = Qb(1− α∗) + α∗qf = Qb(1− α∗) +Qf − (1− α∗)S (5.4)

However, the resulting luminance Lc might be outside the valid range [0, 100], when
the 6D query is outside the convex hull of the chart. To address this, we perform a
fast runtime optimization to make small adjustment to the alpha estimation. We use
α∗ and β∗ to initialize the following optimization, solving for α̂, β̂ and q̂f :

α̂, β̂, q̂f = argmin
α,β,qf

Ea + wa‖Qf − αqf − (1− α)S)‖2 (5.5)

such that α ∈ [0, 1], and Lf ∈ [0, 100]

We set wa = 3 to encourage the query color Qf to be well fitted. The composite color
can then be predicted by substituting α̂ and q̂f into the equation (5.4).
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5.5.2 Radial Basis Function Interpolation

The Radial Basis Functions (RBF) is one of the primary tools for interpolating
multidimensional scattered data. RBF is suitable for our problem for the following
reasons: it does not require the data points to lie on a regular grid, and gives good
interpolation accuracy even when the data is sparse. RBF is defined as:

g(x̂) =
n∑
t

λtφ(‖x̂− x̂t‖), x̂ ∈ RD (5.6)

Training. A color chart can be interpreted as a 6D point cloud, with each data
point corresponding to a 3D value. In our case, {x̂t} in equation (5.6) corresponds to
{(Bi, Bj) | i, j ∈ {1 . . . N}}. We have n = N2 and D = 6. Given a sparse point cloud
of several hundreds points, an arbitrary query is often near or outside its convex hull,
H. In these situations, the basic RBF interpolation is inaccurate. We use augmented
RBF, which adds a polynomial term to the equation (5.6):

f(x̂) = g(x̂) +
M∑
m

γmpm(x̂) (5.7)

We use the parameter-free linear kernel, φ(r) = r and the following polynomial
basis, {pm(x̂) | m ∈ {1 . . .M}} = {1, x̂, x̂2, ...}, M = 2 (that is, {1, x̂}). The
linear polynomial term can improve the interpolation accuracy, especially at and
outside the boundary (second and third rows in Table 5.1), but little benefits can
be obtained going beyond linear [146]. The polynomial term also allows simple
extrapolation beyond the convex hull of the chart. Note that, our data values
{Cij} = {Ct | t ∈ {1 . . . N2}} are 3 dimensional, therefore we train three separate

RBFs for each color dimension f̂(x̂) = (fl(x̂), fa(x̂), fb(x̂)). We write the following
constraints in a matrix form and solve for the expansion parameters, λ and γ.

f̂(x̂t) = Ct, ∀t ∈ {1 . . . N2} (5.8)

N2∑
t

λtpm(x̂t) = 0, ∀m ∈ {1 . . .M} (5.9)

Prediction. With the trained λ and γ, we predict the composite color by substituting
the query point (Qb, Qf ) into equation (5.7).

5.5.3 Optimized KM Compositing

Similar to Section 5.5.1, we attempt to train a parametric model to explain the
color samples from the compositing chart. The difference is that this section assumes
the underlying model to be Kubelka-Munk (KM), which is a powerful multi-spectrum
model that more accurately simulates the appearance of physical pigments.
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Training. We use L = 8 uniformly spaced wavelength samples to approximate
the full visible light spectrum. We assume each base pigment of the chart is created by
mixing different proportions of K = 3 distinct primary pigments, which corresponds
to the common art practice that a color on the palette is usually created by mixing
several different paints. This prediction model has the following parameters:

• σ = {skl , akl | l ∈ {1 . . . L}, k ∈ {1 . . . K}}: the scattering and absorption
coefficients per wavelength of each primary pigment, in total 2LK parameters.

• m = {mi | i ∈ {1 . . . N}, where mi = {mk
i | k ∈ {1 . . . K}}: the proportions

for combining the K primaries, for each of the N base pigments, in total NK
parameters.

• ξ = {ξl | l ∈ {1 . . . L}}: the reflectance coefficients of the substrate at each
sample wavelength, in total L parameters.

Given a mixing proportion mk
i , the absorption and scattering coefficients of the

mixed pigment i at each wavelength l is given by A =
∑K

k m
k
i a

k
l and S =

∑K
k m

k
i s
k
l .

We concisely represent the pigment mixing and the KM equation (Section 5.3), using
the following notation km(σ,mi, ξ), where the input are σ and ξ, the output is the
reflectance spectrum, and we use constant layer thickness, h = 1. We represent
the standard transform function that converts a reflectance spectrum to tristimulus
CIELAB values as lab(ξ), where we use the standard illuminant D65. Then, each
base color bi and composite color cij can be evaluated by KM:

ri = km(σ,mi, ξ) (5.10)

bi = lab(ri) (5.11)

cij = lab(km(σ,mj, ri)) (5.12)

We train the model parameters as follows:

σ∗,m∗, ξ∗ = argmin
σ,m,ξ

Ek + wcEc + wpEp + wsEs (5.13)

such that skl ∈ [0,∞), akl ∈ [0,∞),mk
i ∈ [0, 1],

Ek = Ea + wξ‖S − lab(ξ)‖2 (5.14)

Ec =
1

K

N∑
i

(
1−

K∑
k

mk
i

)2

(5.15)

Ep =
N

(L− 1)K

K∑
k

(
L−1∑
l

(skl − skl+1)
2 + (akl − akl+1)

2

)
(5.16)

Es =
N

L− 1

L−1∑
l

(ξl − ξl+1)
2 (5.17)

where Ek replaces the bi and cij in equation (5.3) with the new definitions in
equation (5.11) and (5.12), and adds another term to fit the measured sub-
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strate color S. Ec, Ep and Es serve as the regularization. Ec constrains that
for each base pigment, the mixing proportions of the primaries sum up to 1.
Ep encourages the scattering and absorption coefficient curves to be smooth
for each primary. Es encourages the reflectance curve of the substrate to be
smooth. We initialize σ, m and ξ randomly within their respective valid range.
We set wc = 1.5, wp = ws = 60, wξ = 1. Rendering the optimized
primaries on white substrate with KM equations results in three
distinct colors that well represent the base colors in the marker
chart, for example (inset figure).

Prediction. Given the query foreground color Qf and the optimized parameters
σ∗, ξ∗, we solve a least squares problem to predict the proportion, mq = {mk

q | k ∈
{1 . . . K}}, by which the primary pigments are mixed to generate the query foreground
color. We could use the same least squares problem to solve for the mixture of primary
pigments for the background color Qb, but this would take twice as long and throw
away previously computed data needlessly. Instead we cache and re-use the reflectance
spectrum of the canvas due to previous strokes, R = {rl | l ∈ {1 . . . L}}. Then the
composite color Qc can be predicted as follows:

m∗q = argmin
mq

‖lab(km(σ∗,mq, ξ
∗))−Qf‖2 (5.18)

such that mk
q ∈ [0, 1],∀k ∈ {1 . . . K},

Qc = lab(km(σ∗,m∗q,R)) (5.19)

Prediction in this way is efficient, but can be problematic at times. The trained
primary pigments σ∗ define a color gamut (the range of colors that can be represented
by mixing the primaries). When the query color Qf is outside the gamut, the least
squares solution might be far from the true answer. We use the convex hull of the
color chart, H, to approximate the color gamut.

In this case, we propose the following remedy. Similar to the idea in Section 5.5.1,
we perform a runtime optimization taking into account the query color Qf using the
trained parameters, σ∗ and m∗, as initialization and having the substrate spectrum
fixed at ξ∗. We solve the following least squares problem, slightly modified from
equations (5.13) and (5.14):

σ̂, m̂, m̂q = argmin
σ,m,mq

Eq + wcEc + wpEp + wsEs (5.20)

such that skl ∈ [0,∞), akl ∈ [0,∞),mk
i ∈ [0, 1],mk

q ∈ [0, 1],

Eq = Ek + wk‖lab(km(σ,mq, ξ
∗))−Qf‖2 (5.21)

The term Eq adjusts the primary coefficients and the query mixing proportion to
constrain the query color to lie inside the gamut. After the optimization, we predict
the composite color by substituting σ̂ and m̂q into equation (5.19). We set wk = 3
and initialize mq using the mixing proportion of the base pigment that has the most
similar color to the query.
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Average prediction error
methods marker acrylic watercolor
alpha 30.75 29.20 29.99 10.92 9.02 9.88 21.23 18.37 19.80
rbf 16.78 9.01 12.90 9.90 4.85 7.14 9.19 7.05 8.12
rbf-nopoly 19.02 9.58 14.30 14.39 5.19 9.38 9.69 7.14 8.41
km 12.32 10.72 11.52 8.04 8.26 8.16 8.83 8.98 8.90
methods gouache thin synthetic thick synthetic
alpha 10.89 8.19 9.54 3.02 2.40 2.71 11.90 8.74 10.32
rbf 8.45 4.80 6.63 1.30 0.87 1.09 5.53 4.49 5.01
rbf-nopoly 9.60 5.08 7.34 6.55 2.89 4.72 7.54 5.33 6.43
km 9.17 6.68 7.93 0.41 0.34 0.38 2.51 2.04 2.28

Table 5.1: Hold-one-out evaluation results, broken up to show error for outside gamut
samples, near gamut samples, and both sets combined.

5.6 Results and Discussion

his section describes a number of quantitative and qualitative means to
evaluate the quality of our pigment model, and discuss the impact of
various design considerations on our results.

5.6.1 Quantitative Results

We report errors in terms of L2 difference in CIELAB colorspace, which represents
the perceptual error in the predicted color. The just noticeable difference (JND) in
LAB is between 1.0 and 2.3 [114] – differences less than this value are not generally
perceivable to casual viewers.

Hold-one-out Evaluation. To evaluate the quality of our prediction, we would
ideally compare the predicted color of a composition with the ground truth color for
a given medium. However, ground truth data is difficult to come by particularly
for color charts from the Internet. To work around this we use a hold-one-out
methodology. If we have N base colors in a mixing chart, for color i we create a
new pigment model on the N − 1 other pigments (removing column and row i from
the chart), and then use this reduced model to predict the composition results of color
i with the other N−1 colors, which we have ground truth for (from the original chart
of N base colors). Data from this evaluation is presented in Table 5.1. We find that for
media of lower scattering properties (i.e. less opacity), namely marker and watercolor,
RBF and KM both perform dramatically better than alpha blending. More highly
scattering pigments such as acrylic and gouache are closer in performance, though
still an improvement over alpha blending. Table 5.1 also shows that RBF with the
polynomial term outperforms the basic RBF in all test cases, especially for the outside
gamut samples.

Influence of Gamut. Because the pigment model is a 6D function and there are
relatively few samples, in general all the samples are on the convex hull which defines
the gamut of the model, or the volume within samples can be interpolated. This
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Figure 5.5: Gamut influence on prediction accuracy.

means that when performing the hold-one-out evaluation, the held out sample i is
usually outside the gamut of the remaining N−1 samples. However, depending on the
shape of the gamut, the sample i may be near the gamut (e.g. if i is an orange color
and both red and yellow remain) or far outside the gamut (e.g. if i is blue and the
remaining N − 1 samples are all reds, oranges, and yellows). The prediction of near
gamut samples is generally better than outside gamut as the prediction is closer to
interpolation than extrapolation. For that reason, Table 5.1 splits the aggregate errors
into near and outside gamut values, to see the difference. The important detail is
that RBF tends to have a bigger discrepancy between near and outside gamut samples
than KM, because RBF relies on extrapolation while KM fits a more restricted model
that generalizes better.

To evaluate the error on inside gamut samples requires many more samples than
we can reasonably acquire so we rely on synthetic charts made from measured KM
coefficients of real paint pigments [106] and multispectral rendering. Figure 5.5 shows
the relationship between distance from the gamut boundary for the thin and thick
synthetic charts from Figure 5.4. We approximate the query distance from the gamut
boundary (x axis value in Figure 5.5, negative means inside) by the Euclidean distance
to the training convex hull normalized by the average distance of pairs of training
samples. The performance of KM remains roughly the same, while RBF and alpha
blending are both correlated with the signed distance from the gamut boundary.

Influence of Noise. The acquisition process for a physical chart involves a fair
amount of noise. Most significantly, the swatches may not all be painted with the
same pigment thickness and lighting may not be constant across the chart. We again
rely on synthetic color charts to gain some understanding of the influence of noise on
our results. Figure 5.6 shows prediction error for our thin and thick synthetic paint
charts with increasing amounts of Gaussian noise (maximum [-0.1, 0.1]) added to each
RGB channel. The graphs show error in two ways: the solid lines represent the same
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Figure 5.6: Noise influence on prediction accuracy.

hold-one-out error calculation as explained before. However, in this experiment, the
ground truth values have noise added to them, which may increase the error over the
“real” ground truth values which are the actual composition colors without noise.
This “real” error is shown with dashed lines, and demonstrates that our hold-one-out
methodology may overestimate the error between our models and actual pigments.

KM and RBF handle noise differently. RBF will simply try to reproduce whatever
noise may be present in the color chart – systematic errors such as luminance changes
across the chart can be reproduced well. KM on the other hand fits a single pigment
model to all the data, effectively finding a best fit that minimizes the errors due to
noise. While this may result in a higher apparent error for physical pigments due to
our hold-one-out methodology, Figure 5.6 suggests that the actual error between the
predictions and the real paints may be overall less.

Influence of Chart Size. It is interesting to examine the impact of chart size
on performance, to determine how many pigments should be acquired (color charts
online tend to have between 6 and 10 base colors). Figure 5.7 shows these results,
where for each N = {5 . . . 13}, we created 5 random synthetic charts with base
colors sufficiently different from each other and evaluate the error for a persistent
set of 10 random samples. What we find is that KM is quickly able to generalize
a model and does not change significantly as the chart size increases, whereas RBF
is initially worse than KM and slowly approaches its performance as the chart size
improves. On the other hand, performance for alpha blending is roughly constant and
very fast regardless of chart size, while KM’s time to compute a prediction increases
linearly with the number of pigments, as the size of the optimization problem becomes
harder. We measure the running time using a desktop computer with Intel Core i7-
3770, 3.40GHz. Finally, the average sample distance from the model gamut decreases
also roughly linearly as the chart size increases. With a practical chart size, random
queries are more likely to be outside the gamut, which underscores the importance of
handling extrapolation.
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Figure 5.7: Experiments with synthetic charts.

For KM it is also important to note that as the chart size grows, the amount
of data increases faster than the number of unknowns. For N base colors, L = 8
wavelengths and K = 3 primary pigments (disregarding substrate optimization), we
have 2LK + NK unknowns and N2 + 2N + 4K equations. Therefore, we want
48 + 3N < N2 + 2N + 12 ⇒ N2 − N − 36 > 0, which means that when N ≥ 7, we
have more equations than unknowns. For N < 7, the system is underconstrained.

Influence of Parameters. The alpha and KM prediction methods both have
a number of parameters to tailor their optimizations. However, we found that
the results were not particularly sensitive to the specific values of the parameters.
Similarly, optimizing the illuminant spectrum and the substrate reflectance spectrum,
versus using standard values, does not make a large difference on the results, with
the exception of the acrylic chart where the substrate is far from white. The impact
of the regularization error terms is to reduce the number of optimization steps, which
for KM is between 200 and 1000 iterations, and for alpha is between 20 to 60. A
more significant factor in the quality of the prediction and speed of convergence is
the amount of acquisition noise in the color charts – noisier charts require more
optimization steps. Note that KM uses non-linear optimizations. To avoid getting
trapped in a local minimum, off-line we perform the training several times with
random initialization and pick the parameters giving the lowest training error. Then,
initializing the runtime per-query optimization with the trained parameters improves
the prediction performance and reduces the influence of local minima. Though the
global minimum is hard to reach, we find that the prediction results of the synthetic
charts are very close to the groundtruth suggesting that adequate local minimums are
usually obtained. We solve the non-linear least squares problem using the standard
Levenberg-Marquardt algorithm provided by Alglib [125]. To reduce the complexity
of the runtime optimization, we can fix the mixing proportions m∗ for the N base
colors and only optimize the pigment coefficients, σ, for the K primaries and the
mixing proportion, mq, for the query .
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(a) Alpha (b) RBF (c) KM

Figure 5.8: Prediction methods comparison. All strokes are synthesized using the
marker chart (Figure 5.1a). Foreground: horizontal.

(a) Marker (b) Acrylic (c) Watercolor

Figure 5.9: KM prediction results using different color charts from Figures 5.1a, 5.2a,
and 5.2b, respectively. Foreground: horizontal.

Finally, we have noticed that charts with more bold or vivid colors (e.g. marker,
thick synthetic) have higher prediction errors than lighter, more pastel charts (e.g.
watercolor, thin synthetic). We believe this is due to our hold-one-out methodology
and the larger gamuts of these charts. When holding out pigment i, the absolute
distance to the gamut of the N −1 pigments is going to be larger for charts that have
a wider gamut. Reporting relative error, or normalizing the errors with respect to
the gamut size, may facilitate direct comparison of the accuracy of different charts,
but we have not found this to be necessary.

5.6.2 Qualitative Results

We present a qualitative comparison of our model’s prediction quality in Fig-
ures 5.1 and 5.8. We choose saturated colors, the behaviors of which are familiar
to casual viewers, to demonstrate our results using different prediction models. Fig-
ure 5.1 shows that for queries that are outside the training gamut (similar to, but
different from the training base colors), the “best effort” alpha blending fails to re-
produce the paint-like appearance. RBF improves the prediction of blue and yellow
over red, but fails to produce green when applying yellow over blue, due to the fact
that bright yellow is not represented in the chart, Figure 5.1a. KM, on the other
hand, provides more robust extrapolation producing dark green as the result. Fig-
ure 5.8 shows more results of using the marker chart. Note that when layering bright
yellow over cyan and pink, KM produces light green and orange respectively, which
are closer to the behaviors in the chart. When using a darker brownish red as the
background color, layering bright yellow results in dark brown making the yellow ap-
pear more transparent. We also compare our KM optimization results on the same
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Figure 5.10: KM prediction results. Top matrix: synthesized with the gouache
chart in Figure 5.3a. Bottom matrix: synthesized with the thick synthetic chart
in Figure 5.4b. Foreground: horizontal.

set of queries, based on different charts. Figure 5.9 shows that different color charts
produce perceptually distinct results. For example, cyan over red produces the light
brownish color when using the watercolor chart (similar to C2,8 from the top and
right in Figure 5.2b) and darker brownish red when using the marker chart (similar
to C6,16 in Figure 5.1a). Note that though the saturated magenta is outside the gamut
of the acrylic chart, paint-like composition is still obtained. Figure 5.10 demonstrates
more results of KM based on two different training charts. We experiment with
less saturated colors that are different from the training base colors and show that
the prediction results faithfully simulate the high opacity and darkening effects in
Figure 5.3a and 5.4b respectively.

We also show a non-paint-like model in Figure 5.11. We use Adobe Photoshop to
create a color chart with RGB colors and the additive blend mode, which simulates the
behavior of light (e.g. red and green makes yellow). This chart is not well modeled by
alpha blending or KM, as neither has the ability to represent this type of behavior, but
RBF handles it well, as can be seen in the simple painting in Figure 5.11, where colors
not in the chart are repeatedly laid atop one another until the color is completely
saturated. The hold-one-out evaluation on this chart produces combined error values
of 50.97, 19.92, and 51.74 for Alpha, RBF, and KM respectively.

5.6.3 Controlling Opacity

Our pigment model does not include an explicit parameter for “alpha” in the
regular digital painting sense, in which a user can select an RGB and set the alpha
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Figure 5.11: A non-paint-like color chart that exhibits additive blending, created in
Adobe Photoshop. RBF is used to create the strokes on the right that reproduce the
additive effect.

value to determine how much of the background shows through. This information
is however implicitly encoded in the color chart, as any set of paint composition
behaviors can be represented. For example, one color chart could use thinned paint
while another could use thick paint, and the different models would then include the
corresponding transparent or opaque composition behavior. Furthermore, a single
color chart could include samples from a dark red pigment applied thickly, appearing
dark red, and thinly, appearing light pink – the model would then produce opaque
results for dark red colors, and translucent results for light pink colors. See Figure 5.12
for an example.

The main limitation of this approach is that, because the pigment model cannot
represent metamers, some flexibility is lost. For example, it is not possible to have
both a thin, translucent stroke of dark red pigment that appears light pink, as well
as a thick opaque stroke of light pink pigment, as these strokes would have the same
RGB value in the color chart and so would conflict with one another.

In the implementation of our pigment model in a painting application, it may
still be desirable to support some type of alpha control that operates in a way that
users are accustomed. It would be straightforward to provide such a control which
would interpolate between the background color and the composited result. That
is, at α = 1, the resulting color is the pigment model’s prediction, at α = 0, the
result is the background color, and at α = 0.5, it is the average of the two, etc.
Another approach would be to use α to interpolate between two charts, one with a
thin application of the foreground pigment and the other with thicker paint applied.
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Figure 5.12: A color chart (left) with both opaque and translucent compositions, and
some strokes (right) painted with the resulting pigment model (foreground: vertical).
Note that lighter colored strokes are more transparent, while darker colored strokes
are more opaque. Also all colors do not appear in the chart.

5.7 Limitations and Future Work

This chapter raises a number of possible areas for future work.

Modeling noise. We do not directly model noise in the acquisition process
due to variation in the paints, thickness, opacity, lighting etc. A more sophisticated
fitting scheme might be able to model these components and therefore respond to
them more robustly.

Support for paint mixing charts. Section 5.3 discusses briefly how the chart-
based approach we use for compositing could easily be extended to paint mixing.
Nevertheless, any digital painting application that allows mixing needs controls for
both operations. The cross product of all mixed and composited colors is obviously
a substantially larger space; it may necessitate acquisition of considerably more data
and/or require more care from the UI perspective.

Online painting application. Our prototype implementation is for offline
experiments, and we have not yet integrated our approach into an online painting
system. Typical digital painting systems have support for brush and paper textures,
and these effects interact with the compositing rules – which may require at least
engineering if not further research to implement convincingly.

Simpler model outside convex hull. We have found that the compositing
behavior is high-quality when pigment combinations are selected that are within the
convex hull of the data in the chart. As colors move further away the ability for our
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methods to extrapolate well breaks down. Of course it is always possible to add more
exemplars in the region one wishes to paint, but we also speculate that it might be
possible to smoothly transition to some simpler, plausible model far away from the
exemplar data.

5.8 Conclusion

his chapter presents RealPigment [90], a data-driven color model that
can be adopted by existing painting systems for more realistic color
compositing effects. We propose and compare a class of compositing
methods and show their respective advantages. Using our framework,

novice users can take a picture of a color chart and then paint strokes with it. The
query strokes allow arbitrary color and emulate the compositing behaviors of the
chart. We conduct quantitative analysis to evaluate our color model and develop a
simple painting program that demonstrates the applications.
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Chapter 6

Conclusion

6.1 Summary

This thesis aims at designing efficient algorithms and intuitive user interfaces for
novices to more easily create visually-compelling drawings and paintings exploiting
the power of example. In particular, we introduce a data-driven painting paradigm,
where the painting process is factorized into a set of orthogonal components: 1)
Input trajectory; 2) Input hand-pose; 3) Shape; 4) Inter-stroke interaction texture;
5) Inter-stroke interaction color. We describe four prototype systems to demonstrate
that each of the components can be synthesized efficiently and independently based
on small sets of decoupled exemplars.

HelpingHand (Chapter 2) shows that the input trajectory from the user can be
stylized and the hand-pose, if missing, can be synthesized by example. It eliminates
the need of high-end input device and allows novices to make pretty handwritings
and line drawings without substantive trainings. RealBrush (Chapter 3) implements
a concrete factorized synthesis pipeline to support painting in a wide variety of
physical media. We show that “shape” and “inter-stroke interaction” can be faithfully
synthesized by separate sets of exemplars in an efficient manner. DecoBrush (Chapter
4) generalizes the “shape” to include strongly structured vector patterns. We show
that the sketch-based user interface can be used for efficient design of vector art.
Finally, we present RealPigment (Chapter 5), a data-driven color model that makes
use of color compositing charts to realistically predict the resulting color of “inter-
stroke interaction”.
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6.2 Future Work

Previous chapters have summarized the possible extensions to the respective
systems (Section 2.9, 3.10, 4.7 and 5.7). This section outlines a few long term research
directions with related to digital art.

Data-driven art creation. This thesis only scratches the surface of data-driven
art creation. There are many remaining challenges to be addressed in the future. For
example, the synthesis of stroke interactions can take into account local context and
canvas history. For trajectory stylization, the shape of the new trajectory should
depend on the existing curves in the local proximity. For structured decorative
art, the “growing” of new structures might be adaptive to the existing structures.
Future research in digital art creation can take a hybrid approach to combine physical
simulation and data-driven techniques. For example, one can use physical simulation
to guide the exemplar selection during synthesis or use the acquired exemplars to
improve the design of physical simulation and train the parameters best suited for a
target style. The data-driven painting concept can be extended to the time domain.
For example, watercolor strokes have a dynamic diffusion effect that can be captured
as short videos and displayed along the course of painting a new stroke. One might
also provide users with a way to paint with videos of flowing waterfall, shaking trees,
falling snows etc, creating animations by example using sketch-based interface. With
the increasing computational power and memory capacity, we may break down the
concept of a discrete stroke, and directly use the paintings on the Internet as exemplars
for synthesis. We can synthesize the appearance of new “regions” by searching for
the most suitable regions within the paintings. We need to address the challenge
of region matching as well as blending different exemplar regions that have different
colors and lightings. Paintings contain infinite number of possible “stroke regions”
and implicitly embody the stroke interactions. Using paintings as exemplars will
potentially improve the complexity and variety in the synthesis results.

Visual data analysis and human perception. Of equivalent importance to
art creation, art understanding should be emphasized in future research. We can
utilize the advances in crowd-sourcing, statistics and machine learning to enhance
the scientific understanding of art and build better model for human perception.
We can design and conduct user studies to investigate questions like “what makes
computer-generated imagery look fake? What visual artifacts are the most noticeable
to human eyes?”, “what defines the style of Van Gogh?”, “How do human interpret
the illusion paintings?”, “where do people look in a painting?”, “How do image and
video caricature influence human perception about the subject?”, etc. HelpingHand
and RealBrush conducted user studies to evaluate the synthesis results based on
pairwise image comparisons (Section 2.7.2 and Section 3.8). Future work can be done
to further formulate such a systematic evaluation framework for more general NPR
research, and the study statistics can be used to develop better models of human
perception and suggest future research directions.
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Better painting interface. We believe a more radical change can be made to
the current digital painting interface. We envision a painting interface composed
of mixed reality. The users draw with the physical instrument of their choice on
actual substrate surface. As they draw, both the gesture of the user and the physical
appearance of the strokes are captured by cameras and displayed on the screen for
immediate visual feedback and digital editing. This interface takes advantage of
people’s familiarity and comfort with existing physical drawing tools and provides all
the richness of the medium as well as true haptic feedback. On the other hand, it can
potentially integrate digital synthesis into the physically captured imagery, perhaps
through a data-driven system like RealBrush, but taking the physical capture as
exemplars. With ever increasing computational power and network bandwidth, on-
line collaborative art creation is not far out of reach. A generic interface will enable
physical and digital artists to work together and jointly contribute to large scale,
ever-evolving art pieces that were not possible before.
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