
.

A HYBRID SPMD – COARSE GRAIN DATAFLOW PARALLEL

PROGRAMMING MODEL

Adrian M. Soviani

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

Adviser: Prof. Jaswinder Pal Singh

June 2014

i

.

.

© 2014, Adrian M. Soviani

ii

.

To my beloved

Lizi and Valona

Abstract

The design of parallel programming models that achieve a good trade-off between

productivity and efficiency, while maintaining performance portability and cost trans-

parency, remains a challenging task. Similarly, parallel runtime cost modeling is es-

sential for application and architecture design, as well as performance optimization;

however, cost accuracy remains limited when modeling the effect of bandwidth bottle-

necks for globally unbalanced communication.

This dissertation proposes a hybrid dataflow model (CGD) that leverages the simplic-

ity and elegance of dataflows and the good performance scalability of Single Program

Multiple Data (SPMD) computations. Benchmark analysis shows that the CGD model

increases the productivity while maintaining or exceeding the performance of the MPI

and pthreads models. The thesis also presents a hierarchical bandwidth machine

model (αDBSP) that can estimate the execution time of CGD collective communication

by naturally extending and improving the Decomposable Bulk Synchronous Parallel

(DBSP) model.

The CGD model is a dataflow graph with SPMD computation nodes and datastructure

decomposition data nodes, which exploits dataflow semantics to express data and task

parallelism at a high-level, and relies on imperative languages to express efficient se-

quential computations. Data and computation partition and assignment are explicit,

while communication, synchronization, and machine specific optimizations are han-

dled automatically.

iii

ABSTRACT iv

This dissertation introduces a coordination language with dataflow semantics that

implements the CGD model, and presents several applications and their optimiza-

tions implemented in this language. The CGD runtime supports MPI, SHMEM, and

pthreads running on both shared memory and cluster machines. The results from an

128 processor SGI Altix 4700 system show that the optimized CGD FT outperforms

NPB2.3 MPI by 27%, the optimized CGD stencil is 41% faster vs. handwritten MPI,

and the CGD Barnes-Hut particle simulation improves SPLASH2 by 14%.

The αDBSP model extends DBSP by associating a bandwidth growth factor α to mes-

sage patterns, improves DBSP in terms of execution time, and helps machine band-

width budgeting by estimating application hierarchical bandwidth. Consequently, for

some globally unbalanced problems the αDBSP analysis is more accurate, and some-

times simpler. E.g., the single-element nearest-neighbor message exchange running on

a pruned butterfly requires O(log3(p)) on αDBSP vs. O(
√
p) on DBSP, while optimally

modeling the one-to-all broadcast requires a single communication step on αDBSP vs.

O(log(p)) steps on DBSP. We present three scientific computing kernels that illustrate

the differences between αDBSP and DBSP analysis.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Jaswinder

Pal Singh, for his continuous guidance, wisdom, encouragement, and friendship through-

out all these years. His liberal advice and insight into emerging software and hardware

HPC systems shaped my understanding of parallel computing, and proved essential to

completing my dissertation research.

I would like to thank my committee members, Prof. Kai Li, Prof. David August, Prof.

Andrea LaPaugh, and Prof. Brian Kernighan for their enthusiasm, thoughtful com-

ments, hard questions, and suggestions. Our technical discussions and their unique

perspective helped me improve tremendously the quality of my research and presenta-

tion. My sincere thanks go to Melissa Lawson, our graduate department coordinator,

for her constant help and support during my Ph.D program.

We are grateful to the Flexible Modeling System group at the Geophysical Fluid Dy-

namics Laboratory affiliated with Princeton University for presenting to us real world

large-scale scientific computing problems, and for kindly allowing us to use their super-

computing facilities.

Several distinguished professors and researchers have played an important role in my

professional development. I would like to express my gratitude to Prof. Charles Leis-

erson for instilling in me the love for parallel computers and algorithms while working

on the Cilk project, and to Prof. Thomson Leighton for teaching me to think pragmat-

ically and bridge the gap between theory and real world problem solving during my

v

ACKNOWLEDGMENTS vi

work at Akamai Technologies. Last, I would like to thank my late Romanian litera-

ture professor Lucian Cristea for his boundless efforts to make us who we are.

I would also like to thank my fellow MIT and Princeton University colleagues for the

stimulating discussions and all the fun we have had in the last few years: Alexan-

dru Salcianu, Cristian Soviani, Mihai Badoiu, Erich Schmidt, Christian Bienia, Berk

Kapicioglu. Finally, I would like to thank my family for their love, encouragement, and

unconditional support.

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Programming Model Desiderata . 5

1.2 Programming Model Landscape . 8

1.2.1 Shared Address Space . 9

1.2.2 Message Passing . 14

1.2.3 Partitioned Global Address Space 16

1.2.4 Dataflow . 21

1.3 This Dissertation . 25

1.3.1 Discussion . 26

1.3.2 Organization . 29

2 Coarse Grain Dataflow Programming Model 30

2.1 Model Overview . 33

2.1.1 Coarse Grain Dataflow Graph . 34

vii

CONTENTS viii

2.1.2 SPMD Computations . 37

2.1.3 Distribution Rules . 39

2.1.4 Orchestration . 41

2.2 Model Definition . 42

2.3 Examples . 51

2.3.1 Stencil Computation . 52

2.3.2 NPB FT . 54

2.3.3 Barnes-Hut N-Body Simulation . 57

3 Language Specification 64

3.1 Types . 67

3.2 Constants . 70

3.3 Predefined Distributions . 71

3.4 Distribution Rules . 72

3.5 Dataflow and SPMD Functions . 74

3.5.1 Local and Global Domain Access 77

3.5.2 SPMD Functions . 80

3.5.3 Dataflow Functions . 82

3.6 Examples . 86

3.6.1 Stencil Computation . 86

3.6.2 NPB FT . 90

3.6.3 Barnes-Hut N-Body Simulation . 94

CONTENTS ix

4 Implementation and Evaluation 99

4.1 Compiler Implementation . 100

4.1.1 Overview . 100

4.1.2 Front End . 104

4.1.3 Back End . 110

4.2 Experimental Results . 118

4.2.1 Machine Setup . 118

4.2.2 NPB FT . 120

4.2.3 Stencil Computation . 127

4.2.4 Swaptions . 133

4.2.5 Black-Scholes . 135

4.2.6 Barnes-Hut N-Body Simulation . 136

5 Cost Model 143

5.1 Model Overview . 144

5.2 Related Work . 148

5.3 Definitions . 149

5.4 Bounds . 153

5.5 Examples . 161

5.5.1 Generalized Broadcast . 161

5.5.2 North-South FFT . 163

5.5.3 Nearest-Neighbor Exchange . 166

5.5.4 Discussion . 167

5.6 Summary . 168

CONTENTS x

6 Conclusions 169

Bibliography 171

List of Tables

3.1 Type declaration syntax . 67

3.2 Constant declaration syntax . 70

3.3 Predefined distribution types . 71

3.4 Distribution rules syntax . 73

3.5 Dataflow and SPMD function syntax . 74

3.6 Local and global data domain access examples 77

3.7 Computation node and dataflow graph syntax 83

3.8 NPB FT programming effort and scalability comparison 93

4.1 Single-processor runtime for NPB FT implementations 120

4.2 Time breakdown for NPB FT on 128 processor Altix 4700 126

4.3 Single-processor iteration time for Stencil 127

4.4 Single-processor runtime for Swaptions and Blackscholes 133

4.5 Single-processor runtime for Barnes-Hut 136

4.6 Relative and absolute speedup for Barnes-Hut on Altix 4700 139

5.1 Bounds on i-superstep (h, α)-relation routing and αBSP parameters . . 156

5.2 Bounds on execution time for DBSP, DBSP+, and αDBSP 167

xi

List of Figures

1.1 CGD matrix multiplication example . 3

1.2 Parallel programming models landscape 8

1.3 Programming model memory organization 10

1.4 Fine- and large-grain dataflow models . 22

2.1 CGD dataflow graph and SPMD computation example 35

2.2 CGD language implementation of dataflow graph example 37

2.3 C++ implementation of SPMD computation example 39

2.4 Dataflow diagrams for CGD conditional and iterative constructs 48

2.5 Stencil kernel “halo exchange” aggregation optimization 53

2.6 NPB FT “overlap slab” optimization . 55

2.7 Barnes-Hut 2D particle representation . 58

2.8 CGD dataflow for Barnes-Hut iteration 63

3.1 NPB FT type declarations, constants, and distribution rules 69

3.2 NPB FT dataflow and SPMD functions . 81

3.3 Stencil computation types and dataflow 87

xii

LIST OF FIGURES xiii

3.4 Stencil computation aggregating two communication steps 89

3.5 Stencil computation exploiting communication overlap 89

3.6 NPB FT “slab” optimization . 91

3.7 Barnes-Hut type declarations and main dataflow function 95

3.8 Barnes-Hut center of mass and bounding box dataflow functions 97

4.1 CGD application components . 101

4.2 NPB FT “slab” CGD code for dataflow function fft 103

4.3 NPB FT “slab” generated C++ code for function fft 105

4.4 NPB FT “slab” fft intermediate representation 109

4.5 NPB FT “slab” fft intermediate representation after ordering 111

4.6 Efficiency and speedup for NPB FT class A on Opteron SMP 122

4.7 Efficiency and speedup for NPB FT class B on Altix 4700 124

4.8 Efficiency and speedup for NPB FT class C on Altix 4700 124

4.9 Efficiency and speedup for Stencil 512× 512 on Opteron SMP 129

4.10 Efficiency and speedup for Stencil 512× 512 on Altix 4700 130

4.11 Efficiency and speedup for Stencil 1024× 1024 on Altix 4700 130

4.12 Communication time per iteration for Stencil on Altix 4700 131

4.13 Speedup for Stencil on 64 processor Altix 4700 132

4.14 Efficiency and speedup for Swaptions largesim on Opteron SMP 134

4.15 Efficiency and speedup for Blackscholes largesim on Opteron SMP . . . 134

4.16 Efficiency and speedup for Barnes-Hut 32K on Opteron SMP 138

4.17 Efficiency and speedup for Barnes-Hut 32K on Altix 4700 140

LIST OF FIGURES xiv

4.18 Efficiency and speedup for Barnes-Hut 256K on Altix 4700 142

4.19 Efficiency and speedup for Barnes-Hut 1M on Altix 4700 142

5.1 DBSP cluster hierarchy for a 16 node fat-tree 150

5.2 2D and 3D pruned butterfly topology examples 160

5.3 (n,
√
p
2 n) hm-routing message pattern examples 162

Chapter 1

Introduction

Writing efficient parallel applications that are portable across architectures remains

a daunting task due to implementation complexity, optimization effort, architecture

heterogeneity, and lack of cost transparency. A programming model greatly impacts

the addressing of these issues, and inevitably, some of its most desired features include

good productivity, efficiency, portability, and ease of design-space exploration. The

development of high productivity programming models has recently received greater

attention, representing a central aim of the HPC Challenge initiative and the newly

developed Partition Global Address Space (PGAS) language family [CCDI09].

In the world of programming models—especially parallel models—achieving a good

trade-off between productivity, efficiency and portability is not trivial. While low-level

communication libraries and memory access primitives can potentially provide the

best performance, they require a substantial development effort and may exhibit lim-

ited portability1. On the other hand, highly abstract languages require developers to

specify fewer implementation details, thus increasing productivity; however, machine

and problem coverage is often limited, and compilers need to solve complex optimiza-
1Communication libraries include pthreads [But97], MPI [GS99], SHMEM [Fei95], and GASNET

[Bon02], and memory access primitives rely on cache-coherent shared address space (CC-SAS) [CSG98]
mechanisms implemented in hardware.

1

CHAPTER 1. INTRODUCTION 2

tion problems, in many instances underperforming handwritten code, or requiring pro-

gramming workarounds that defeat the stated high productivity goals2.

However, on considering both low- and high-level programming models, an interesting

question emerges: how much low-level detail is required by compilers to maintain

the performance of low-level models and produce efficient implementations without

sacrificing productivity?

The answer to this question probably lies along the continuum between low- and high-

level programming models, mixing elements of both. A significant efficiency loss is not

expected if programmers describe what they know best—including data layout, com-

putation assignment, and algorithmic optimizations—and if compilers handle repet-

itive work such as communication, synchronization, data handling, and well-known

scheduling and machine specific optimizations. Instead of aiming to automatically

solve all difficult problems, such a model could provide developers with the best tools

needed to solve them.

Hybrid Model This dissertation introduces a new programming model called CGD

(for Coarse Grain Dataflow), which exploits the simplicity and elegance of dataflows

and the good performance scalability of Single Program Multiple Data (SPMD) compu-

tations [SS09, CSG98]. The CGD model is a dataflow graph with SPMD computation

nodes and datastructure decomposition data nodes, which leverages dataflow seman-

tics to express data and task parallelism at a high-level, and relies on imperative

languages to express efficient sequential computations. Section 2.2 presents how CGD

reconciles the dataflow and SPMD elements.

In the CGD model, the developer specifies the SPMD computations, datastructure de-

compositions, distribution rules, and dependencies between SPMD computations and
2Parallel programming languages popular within the HPC community include OpenMP [DM98], CoAr-

ray Fortran [NR98], Cilk [cil04], and more recently PGAS languages such as UPC [CHea03] and Chapel
[CCZ07].

CHAPTER 1. INTRODUCTION 3

Figure 1.1: (a) CGD graph computing Z ← (A + B) ∗ (C + D), where A, B, C, and
D are matrices; the graph specifies the dependencies between matrix decompositions
and SPMD computations; and (b) SPMD computation for Z ← (X ∗Y) mapped to three
processes

datastructure decompositions (Fig. 1.1). Dependencies define a graph between datas-

tructure decompositions nodes and SPMD computation nodes; distribution rules define

how data decompositions can be automatically transformed. SPMD computations are

functions written in an imperative language such as C++, and operate on the local

domains of global datastructures [KR88].

On the other hand, the compiler orders the computations to obey data dependencies,

and automatically inserts communication, data handling, and synchronization. Fur-

CHAPTER 1. INTRODUCTION 4

thermore, the system exploits the large optimization scope of CGD semantics to in-

clude architecture-specific communication, synchronization, datastructure access, and

scheduling optimizations. E.g., similar to the Unified Parallel C (UPC) [CHea03] NPB

FT “slab” optimization reported by [BBNY06], the CGD NPB FT implementation ex-

ploits the communication overlap allowed by fine-grain tasks as well as architecture-

specific communication fine-tuning to significantly improve MPI performance on both

large-scale distributed memory and small symmetric multiprocessing machines (Sec-

tion 4.2.2).

The CGD model aims at achieving a good trade-off between programming productivity

and implementation efficiency by having developers leverage their unique understand-

ing of application particularities to specify data and computation decomposition and

assignment, while allowing dataflow compilers to solve easier scheduling and orches-

tration problems.

Comparison Our programming model combines and develops several concepts de-

fined by dataflow and SPMD-centric models. Similar to dataflows, CGD uses the single

assignment rule, and data dependencies determine the scheduling. However, unlike

dataflows, our model relies on user specified datastructure and computation decompo-

sitions and assignments. We feel that these requirements are essential for providing

performance transparency and efficiency.

Similar to SPMD applied to message passing models and certain shared address space

models such as SHMEM, CGD relies on explicit data and computation decomposition

and assignment. Similar to newly developed PGAS languages such as UPC, Chapel

[CCZ07], and X10 [CGS+05], CGD uses datastructure distributions and allows remote

data element access. However, unlike these models, CGD computations are described

as dataflow graphs, and thus, a CGD compiler can take advantage of dataflow seman-

tics and explicit distribution rules to schedule computations, and automatically insert,

aggregate, overlap, and optimize block communication. Moreover, message passing

CHAPTER 1. INTRODUCTION 5

implementations require explicit messaging and a greater programming effort, while

PGAS languages don’t allow multiple datastructure distributions, and suffer from fine-

grain message overhead. These issues are presented in more detail in Section 1.3.1.

1.1 Programming Model Desiderata

This section discusses some of the most desired features of parallel programming mod-

els, and showcases a few successful approaches that address these features. The pro-

graming model Holy Grail of good performance and good programmability has been

widely discussed, and several schools of thought have stated similar yet not identical

aims; to better understand how to address and trade-off model features, we analyze

some of the success stories as well as practical issues encountered by existing models.

Ease of Programming Most application developers are not familiar with concur-

rent reasoning, particularly with building a mental model of concurrent processes,

inter-process communication, and synchronization. Reasoning regarding the correct-

ness of concurrent applications is a challenge, and debugging such applications is

equally demanding. A programming model that avoids explicit concurrency improves

both the developer’s productivity and application robustness [BVZ+07, SS10].

Many applications can exploit data, task, pipeline, and recursive parallelism [SSOG93,

CSG98]. A model that supports more than just one type of parallelism improves pro-

grammability.

Most high performance computing (HPC) users have gradually developed a large do-

main-specific code base. Developers are familiar with a set of languages taught in

school or extensively used by the community. A model that can incorporate components

written in other languages, and that uses a familiar syntax has a greater chance of

early adoption and success.

CHAPTER 1. INTRODUCTION 6

The separation of algorithm and datastructure implementation is not well supported

by most programming languages, requiring algorithms to be modified when internal

datastructure representations change. For example, converting a 2D grid into a 2D ar-

ray of smaller 2D grids—a change often employed by parallel partial differential equa-

tion (PDE) solvers—requires recomputing and updating all array references. Similar

algorithmic changes are needed when converting dense arrays into sparse arrays, row-

major matrices into column-major matrices, etc [CCZ07]. A programming language

that decouples the algorithm and datastructure implementation reduces the work re-

quired by changes in the datastructure representation.

Good Performance Historically, SPMD-centric applications have had a good perfor-

mance track record for a wide range of architectures, partly owing to the developer’s

ability to explicitly decompose data domains and assign computations to processes.

Thus, SPMD-centric applications balance the workload and minimize communication

by taking advantage of application particularities. A model supporting explicit data

and computation decomposition and assignment allows users to balance the workload

and optimize the communication, leading to a good performance.

In many cases, message passing [SOW+95] and pthreads [But97] applications are

optimized for performance by adding sections of architecture-specific code. Such ex-

amples include speeding up data copy by rewriting loops and reorganizing buffers,

and reducing synchronization and messaging overhead by using faster primitives sup-

ported by the target machine. A programming model that defines distributed datas-

tructure abstractions can automatically implement some of these architecture-specific

optimizations, reducing the programming effort and improving performance portabil-

ity [JSS97, SSOB00].

Cost Transparency Real-world HPC applications have frequently grown in size

and complexity, incorporating the work of scientific teams over periods of several years.

CHAPTER 1. INTRODUCTION 7

Finding scalability bottlenecks in such systems is a non-trivial task without relying

even on a heuristic measure of cost [SRG94]. To cope with this issue, developers have

tried to create a mental map between operations and their hardware implementation,

and thereby their cost; message passing models and the C programming language have

proved successful in this respect. A cost-transparent model allows programmers to

understand the communication and computation complexity during the design stage,

and helps them make an educated choice between implementation options.

Design-Space Exploration Flexibility The development cycle of most HPC appli-

cations starts with the code development, and then continues with the optimization for

performance [CSG98] on target machines. The initial implementation frequently re-

quires major redesigns to address the typical load balancing and communication costs

[JS99].

Programming models closer to the hardware layer such as message passing and pthreads

provide good flexibility, allowing both lower-level architecture-specific optimizations

and higher-level algorithmic changes, e.g., using shared memory for fine-grain element

access, and hiding latency by replicating the computation and aggregating the com-

munication in the case of PDE solvers. Unfortunately, many applications interleave

the two optimization types, containing code that is complex and prone to concurrency

errors, and potentially limits performance portability; such applications require a sig-

nificant time investment to reorganize datastructure layouts, messaging, and buffer

handling. In this context, the performance optimization process is greatly simplified

using a programming model that decouples datastructure and algorithm implemen-

tation [CCZ07], and easily allows the exploration of datastructure and computation

decomposition and assignment.

CHAPTER 1. INTRODUCTION 8

clusters

CC-SAS

low high

Machine
Coverage

 Model Abstraction

MPI

pthreads
shm

PGAS
UPC, X10, CoArray
Chapel

GASNet
SHMEM
RDMA

OpenMP Cilk

Dataflow
GLU, Lucid

Figure 1.2: Programming model classification in terms of machine coverage and ab-
straction level [CSG98, CCZ07, Jag95, JHRM04]

1.2 Programming Model Landscape

This section presents an overview of the most influential parallel programming mod-

els, including Shared Address Space (SAS), message passing, Partitioned Global Ad-

dress Space (PGAS), and dataflow models [CSG98, BCBY04]. These models can be

classified in terms of machine coverage and programming abstraction (Fig. 1.2).

Some parallel programming languages and libraries require Cache-Coherent Shared

Address Space (CC-SAS) [CSG98] machines, PGAS languages require support for at

least Remote Direct Memory Access (RDMA) [Bon02] or one-sided messaging, some

dataflow languages rely on CC-SAS, and the Message Passing Interface (MPI) [SOW+95]

is supported by virtually any architecture. If message passing libraries and pthreads

[But97] expose primitives closer to the hardware layer, parallel languages rely on con-

structs that partially hide the communication and synchronization details.

CHAPTER 1. INTRODUCTION 9

1.2.1 Shared Address Space

Symmetric Multiprocessing (SMP) systems, such as workstations and servers, and

some large-scale distributed memory systems implement the CC-SAS memory model.

On these machines, all processors access a unified address space (Fig. 1.3a), and spe-

cialized hardware implements a coherence protocol that propagates writes to a mem-

ory location to all readers, and ensures that all cache coherence conditions are met

[CSG98].

Shared address space architectures do not necessarily provide cache coherence. Larger

machines such as Cray T3E allow each processor to access any memory location; how-

ever, only local memory elements are handled by the cache, and developers explicitly

access remote memory relying on SHMEM operations [Fei95]. More recently, clus-

ters of SMPs connected via Infiniband or Quadrics switches provide a similar RDMA

functionality.

The implementation cost of cache-coherent mechanisms on large-scale Cache-Coherent

Non-Uniform Memory Architecture (ccNUMA) machines has traditionally been consid-

ered prohibitive; however, techniques such as directory-based protocols have reduced

the cost of building such machines [SJHG93, LLG+90].

Shared Virtual Memory (SVM) is a software solution that provides a coherent shared

address space on commodity clusters lacking CC-SAS hardware support. SVM imple-

ments coherence at page granularity via virtual memory management [KL89, MAB94].

Valid page entries correspond to up-to-date locally cached shared pages, while invalid

entries correspond to locally unavailable pages. When an invalid page is accessed, a

page fault occurs, and the SVM protocol brings an up-to-date page copy locally. CC-SAS

applications running on SVM might exhibit performance issues caused by fragmenta-

tion and false-sharing, which are typically addressed by changing page granularity

and memory access patterns to avoid frequent updates [PL, JSS97]. A family of SVM

models has been developed to address such issues first by adding coherence protocol

CHAPTER 1. INTRODUCTION 10

(a) (b) (c)

CPU

memory

CPU CPU CPU CPU CPU CPU CPU CPU

Figure 1.3: Programming model memory organization: (a) SAS threads access the
global memory using a single address space [CSG98]; (b) message passing processes
access local memories and exchange messages; and (c) PGAS processes access local
and remote domains of distributed datastructures [CCZ07].

laziness (release, eager release, and lazy release consistency), and then by limiting the

scope of page updates (entry and scope consistency) to reduce update frequency and

size, thereby improving performance [Ift98].

All threads or processes of SAS applications access a single shared address space, mak-

ing development easier in comparison to message passing models, where each process

accesses only its local address space and handles messages explicitly [SS99]. More-

over, the CC-SAS model provides better problem coverage and requires significantly

less effort vs. message passing when implementing irregular or adaptive algorithms

[SSOB00].

While the CC-SAS memory model simplifies the application development, achieving

good scalability on large systems comes at a cost. The CC-SAS model provides a uni-

form view of the entire memory address space; however, memory access latency is

not uniform, remote access latency being larger than local access latency. This dis-

crepancy increases as the memory hierarchy deepens, becoming most significant on

large-scale ccNUMA machines. Subsequently, programming for performance requires

understanding data placement, and trying to avoid remote accesses.

In most cases, good performance is achievable even on large systems if developers de-

sign good data decompositions that maintain access locality, and the problem size is

CHAPTER 1. INTRODUCTION 11

large enough for the target machine, i.e., the working set is sufficiently large to main-

tain a good communication-computation ratio [RSG93]. Other helpful optimizations

include avoiding false-sharing between distinct data elements mapped to the same

cache line, latency hiding techniques such as prefetching, write buffering, and higher-

level algorithmic changes that reduce inherent communication or improve load balance

[HSH96, JS99, JSS97].

Pthreads POSIX threads (pthreads) is a library that provides thread management

and synchronization primitives on CC-SAS machines [But97]. Application program-

ming interfaces (APIs) are available for most languages, from C and Fortran to Python

and Ada. Pthreads is one of the most popular choices for small-scale applications de-

veloped for SMP systems such as x86 based servers.

All pthreads access a single shared address space, and shared datastructures are

therefore easily implemented by adding synchronization. The unified memory view

allows a gradual transition from single- to multi-threaded implementations, providing

a practical approach to parallelizing existing applications. However, good performance

is obtained after optimizing at least the synchronization, partition, and placement of

shared datastructures.

The pthreads library provides users with a significant degree of freedom, and thus

good problem coverage. However, expressing concurrency requires highly special-

ized developers, and similarly, achieving good scalability requires time consuming

optimizations; the burden of these tasks is somewhat alleviated by the expertise ac-

cumulated by the community. Reported performance ranges from average scalabil-

ity on SMPs to good performance on large-scale distributed shared memory systems

[SSOB03, WOT+95, WMT08, CLZ+11].

An interesting alternative to calling low-level pthreads primitives is parallelizing com-

pilers that automatically extract threads from sequential codes. Automatic paralleliza-

CHAPTER 1. INTRODUCTION 12

tion is a promising strategy for multi-core systems, allowing existing sequential codes

to exploit implicitly available parallelism. However, common sequential programming

practices can limit the ability of compilers to produce efficient code. Datastructure

reuse occasionally leads to false datastructure element contention when loop itera-

tions use the same memory location to store distinct values; this issue is addressed

through the replication or privatization of elements, and [JKP+12] reports good results

even for dynamic datastructures. Similarly, the sequential program structure some-

times unnecessarily constraints execution order, and thus, the ability to concurrently

execute essentially independent tasks; here, implicit parallel programming models on

top of sequential models extend the language to better describe data dependencies

and help compilers perform more aggressive optimizations, thereby improving scala-

bility [PGZ+11]. Automatic parallelization is a promising approach to parallelization

on tightly-coupled systems, and its adoption depends on the continuous evolution of

compiler technology, as well as the ease of achieving good parallel performance.

SHMEM SHMEM was first introduced by Cray to exploit its hardware support for

non-cache-coherent remote memory access within a shared address space [Fei95]. La-

ter, SHMEM gained a larger support on SGI and IBM machines, while at the same

time having an open source implementation. SHMEM provides a large set of prim-

itives for remote memory data read (get) and write (put), where the put and get op-

erations access shared memory pages; these primitives are highly optimized for low

latency fine-grain data access. Synchronization is provided as barriers, waits on data

arrival, and semaphores.

In contrast to MPI, all SHMEM processes can access a shared address space by map-

ping memory pages to this space. Subsequently, each process holds a local copy of the

memory page, and can access remote page copies via SHMEM calls; the same address

can be used at a given time by several processes, each operating on its own copy. There

is no hardware mechanism that keeps these copies in sync, which is a deliberate choice

CHAPTER 1. INTRODUCTION 13

taken for performance considerations. Since SHMEM is not cache-coherent, data con-

sistency becomes the programmer’s responsibility.

The SHMEM shared address space abstraction makes data access more elegant com-

pared to MPI on large distributed memory machines; however, the lack of cache co-

herence makes SHMEM more vulnerable than CC-SAS programming models to subtle

data race conditions and synchronization errors.

SHMEM allows processes to execute arbitrary communication via remote memory ac-

cess, and similar to message passing, it provides good performance on large systems

at the cost of significant programming effort. The usage of SHMEM is currently re-

stricted to a few proprietary systems, whereas RDMA systems that supply similar

functionality are becoming more common and affordable.

OpenMP Open Multiprocessing (OpenMP) is a programming language that aug-

ments the sequential C and Fortran syntax with parallel compiler directives [DM98].

With the aid of these directives, the compiler understands data, and recently, task

parallelism, and automatically generates multi-threaded code.

The idea is promising: the OpenMP code is algorithmically sequential, datastructures

use a single address space, and all communication and synchronization issues are

transparent to the user. However, there are important drawbacks: i) applications are

restricted to cache-coherent machines; ii) users rely on private variables to produce ef-

ficient codes, manually assigning arrays elements and loop iterations to threads, and

hence breaking the single-view datastructure abstraction; and iii) automatically ex-

tracting algorithmic parallelism from sequential code does not always produce the best

results given the present day compiler technology. Historically, OpenMP has not per-

formed well on large systems, its use being mostly limited to SMPs; hybrid OpenMP–

MPI solutions for SMP clusters have reported results improving MPI only performance

[FG06, BBNY06].

CHAPTER 1. INTRODUCTION 14

Cilk Cilk annotates sequential C code with keywords that allow recursively spawn-

ing and synchronizing logical threads using modified function calls [RLR98, cil04]. The

runtime starts a predefined number of processes that access shared memory pages,

and load is balanced among processes using a work-stealing scheduling algorithm.

When a function call is spawned, its context is saved on a globally accessible stack;

when a process runs out of work it tries to steal a task from processes that have non-

empty stacks. Unfortunately, dynamic work-stealing means that tasks are assigned to

processes at runtime, and therefore data access locality becomes hard to maintain.

Cilk allows task and data parallelism by decomposing a problem into sub-problems—

frequently employing the “divide and conquer” principle—that are executed as recur-

sively spawned function calls. All logical threads access datastructures globally, how-

ever, without explicitly assigning data or computation to processes.

Unfortunately, optimizing the work-stealing algorithm to maintain data access locality

remains an open problem for Cilk. While Cilk shows a good performance on smaller

SMPs, scalability suffers on larger ccNUMA systems where access locality is critical,

and additional remote accesses have a larger performance impact [Kus06, OP]. How-

ever, its particular ability to exploit task parallelism makes the possibility to overcome

this limitation more promising.

1.2.2 Message Passing

Message passing architectures—such as SMP clusters connected via Infiniband or

Quadrics switches, and SGI Altix and IBM Blue Gene supercomputers connected via

high-performance custom backplanes—implement a message passing programming

model. Here, all processes access only their local memory address space, and com-

municate with each other by explicitly sending and receiving messages that copy data

blocks between local memories (Fig. 1.3b).

Message passing machines are typically implemented as individual physical nodes

CHAPTER 1. INTRODUCTION 15

linked by an interconnect, similar in this regard to large-scale ccNUMA machines,

with the exception of communication, which is integrated into the I/O system rather

than into the memory system [CSG98].

MPI The Message Passing Interface (MPI) provides solid performance across a wide

range of parallel architectures, representing a mainstream programming model within

the HPC community [For94, SOW+95, GS99]. The MPI library offers explicit commu-

nication primitives such as send, receive, broadcast, reduction, and synchronization.

The MPI standard is continuously being updated by the MPI Forum, and currently

defines bindings for the C, Fortran, and C++ (MPI-2) programming languages; unof-

ficial ports to other languages such as Java and Python are also available. If sev-

eral MPI implementations such as OpenMPI and MPICH are freely available, vendor

implementations—typically based on MPICH—provide improved performance on their

target machines.

The MPI-1 standard defines two-sided communication, where each send called by a

sending process matches a receive called by the receiving process (Fig. 1.3b). The MPI-2

standard takes some clues from other high performance communication libraries such

as SHMEM and Silicon Graphics (SGI)’s MPI extension, and allows both two-sided and

single-sided communication. A process using single-sided communication executes get

or put operations on remote memory addresses without requiring matching operations

be executed by remote processes.

The semantics of two-sided communication can be summarized as follows:

process A: send (process_B , source_addr_A , s ize)

process B: recv (process_A , destination_addr_B , s ize)

where source_addr_A and destination_addr_B represent local memory buffers, and

processes are not aware of remote addresses.

On the other hand, one-sided communication is initiated by a single process:

CHAPTER 1. INTRODUCTION 16

process A: put (process_B , destination_addr_B , source_addr_A , s ize)

process A: get (destination_addr_A , process_B , source_addr_B , s ize)

where process_A needs to know remote buffer address destination_addr_B, an address

that is otherwise meaningless in the local address space.

One-sided communication is more prone to synchronization errors than two-sided com-

munication. In the latter, processes progress more or less in lockstep, being implicitly

synchronized by the send-receive call pairs. In the former, processes are free running

while communication occurs in the background, changing remotely accessed local data

without notice. However, for small messages, one-sided communication has lower pro-

tocol overheads, the one-sided latency approaching performance levels once reserved

for SHMEM and RDMA requests.

MPI passes to the programmer the burden of handling communication details such

as carefully interleaving various communication primitives with computation, mar-

shaling and unmarshaling data into buffers, and managing distributed datastruc-

tures. These issues are orthogonal with algorithm design, breaking the algorithm-

datastructure decoupling principle (Section 1.1). E.g., reorganizing distributed datas-

tructure layouts requires changing the algorithm to send and receive new data slices

at different points in time, and to update synchronization accordingly. Nevertheless,

MPI is popular within the HPC community, being a well-established and well-specified

free standard that has efficient implementations on most architectures.

1.2.3 Partitioned Global Address Space

PGAS languages are based on a global memory model that is logically partitioned

between processors (Fig. 1.3c). Roughly speaking, these languages can be viewed as

parallel extensions of existing imperative languages such as C, Fortran, or Java, where

computation decomposition and data partition are practically explicit, while accessing

data from remote memory partitions implicitly generates communication [BCBY04].

CHAPTER 1. INTRODUCTION 17

Code parallelism is typically expressed as data-parallel loops similar to forall, task

creating function calls similar to spawn, and explicit SPMD constructs. Datastructures

are partitioned among processes by assigning domain ranges to each process; some

languages such as UPC allow only fixed 1D partitions, while more recent languages

such as Chapel allow arbitrarily defined datastructures and partitions. The union of

all domain ranges covers the entire datastructure domain; however, all domains have

to be disjoint, sometimes limiting replication.

PGAS languages are usually implemented using one-sided communication libraries

such as ARMCI and GASNet; these libraries allow processes fine-grain access to both

local and remote datastructure elements. While this approach seems very attractive,

it has certain fallacies: local access is fast compared to remote access, which could be

orders of magnitude slower, and yet PGAS languages support both access types using

an essentially identical syntax.

GASNet and ARMCI These libraries attempt to provide a standardized API for

low-overhead fine-grain remote memory access, and remote code execution for a wide

array of architectures ranging from hardware CC-SAS and RDMA machines to generic

MPI clusters [Bon02, NC99]. These libraries are not designed to be used directly by

application developers, but rather, to be used as a unifying bottom layer by parallel

language compilers.

Subsequently, both libraries are one-sided communication libraries that extend the

RDMA and Active Messages concepts; Active Messages [VECGS92] is a light-weight

layer that allows code execution upon message receipt. Both GASNet (Berkley) [Bon02]

and Aggregate Remote Memory Copy Interface (ARMCI, Pacific Northwest National

Labs) [NC99] are built directly on top of a multitude of native network communication

interfaces and resources.

An important particularity of these libraries is their careful tuning for performance.

CHAPTER 1. INTRODUCTION 18

Not only are they heavily optimized for the supported target architectures, but the

same functionality may also have different implementations on the same target given

practical details such as message size. Their performance is very good, and the library

overhead remains low. However, their low-level abstractions make them unpractical

as programming models, which is not a surprise given their declared goal of serving as

a base layer for PGAS languages; their success depends on the success of the latter.

UPC Unified Parallel C (UPC) is a C parallel extension that introduced first what

would later become the PGAS memory model [CHea03]. UPC defines two pointers

types: shared pointers that address both local and global memory, and private pointers

that address local data only. This gives compilers a significant optimization potential

since private data accesses are guaranteed to be executed locally.

Shared arrays are usually distributed among processes in a cyclic or block-cyclic man-

ner. 2D block decompositions are not supported directly, and thus require developers

to create arrays of arrays to achieve a similar functionality. Parallel primitives such

as upc_forall loops assign iterations to processes using an affinity expression, or oth-

erwise trying to maximize access locality.

UPC can be considered a textbook representative of PGAS: shared pointers access

global memory, and the physical location of data remains transparent to users. When

addresses are local, simple read/write memory accesses are executed; otherwise, ac-

cesses are translated into library calls resulting in remote communication.

While the transparency of distributed datastructure access provides a powerful ab-

straction, it can quickly become a weakness by reducing a developer’s locality aware-

ness, and leading to poor data partition and unnecessary communication. Similarly,

unstructured datastructure access patterns can lead to fine-grain rather than coarse-

grain remote memory access, and therefore a significant latency overhead [MTT+09,

PG08]. Moreover, accessing the local domains of distributed arrays can be slow if the

CHAPTER 1. INTRODUCTION 19

compiler cannot determine at compile time whether the address is local, and inserts

a branch before each local memory access [EGC02]. Fortunately, language instru-

mentation using the shared, private, and affinity constructs is provided to help the

programmer keep such issues under control.

Co-Array Fortran Co-Array Fortran (CAF) is a popular parallel extension of For-

tran, which was eventually added to the Fortran 2008 standard. This extension adds

parallelism using data-parallel loop constructs, and elegantly hides communication

through distributed array element access [NR98].

CAF introduces a new array dimension called the co-array; a variable with such a

dimension has its own copy on each process. Any array copy can be accessed by any

process by indexing the variable with the desired co-array index. Synchronization

primitives ensure that data written within a parallel section can be seen globally.

Even if CAF handles distributed datastructures in a more systematic way compared to

the ad-hoc custom view exposed by message passing libraries, the programmer is still

responsible for explicitly assigning data to processes and handling indexes accordingly;

indexes are converted between a global view addressing the entire vector domain and

a co-array fragmented view.

Chapel Chapel is a PGAS block-imperative parallel language developed by Cray,

which abandons the idea of extending a sequential language such as C or Fortran.

A declared goal is a better separation of algorithms and datastructures [CCDI09,

CCZ07], and this language generally encourages developers to think "in parallel" from

the very beginning.

Chapel provides a global view of distributed datastructures, which otherwise are par-

titioned among processors. Several distribution schemes are provided, including the

block, cyclic, and sparse matrix decompositions. The language provides mechanisms

CHAPTER 1. INTRODUCTION 20

allowing developers to define custom datastructures and distributions, if needed. Chapel

provides a nice algorithm-datastructure decoupling: changing the datastructure dis-

tribution or representation does not require changing the code that accesses the new

datastructure.

This language supports task parallelism using cobegin and coend constructs, and data

parallelism using forall loops; both types of parallelism are composable, and the on

keyword can be used to specify task-to-process assignment. The exploration of alter-

native execution patterns requires modifying these assignments, and may result in a

better or worse locality and performance.

While Chapel’s distributed datastructure abstractions look promising, the language

suffers—similar to UPC and other PGAS languages—from fine-grain remote access

overheads, thereby prompting developers to explicitly copy global to local datastruc-

ture blocks to achieve a good performance [CDHW]. The success of this language de-

pends on how well compiler technology can address these problems [CL10, CCDI09],

and the extent to which the HPC community will adopt the new language and its

datastructure abstractions.

X10 X10 is a PGAS object oriented parallel language developed by IBM with syn-

tax inherited from Java; it is not a Java extension but rather a language of its own

[CGS+05].

Parallelism is expressed explicitly using the finish/async construct, which executes

multiple tasks similar to an SPMD computation, and then waits for all of the tasks

to finish. Asynchronous calls can take both data and function names as parameters;

execution is coordinated using clocks and lock-free synchronization primitives.

Similar to other PGAS languages, X10 distributed arrays provide a global view, and

their domain is explicitly partitioned between processes that can access local and re-

mote data elements. The keyword here returns the name of the process executing the

CHAPTER 1. INTRODUCTION 21

code; by default, function calls are executed by the same process as the caller, unless

the keyword at is used to specify another process.

The X10 language is being actively developed by IBM, and preliminary results have

shown it is powerful enough to allow the implementation of complex scientific problems

[MGRG11]. Its performance does not currently scale as well as traditional message

passing implementations, but this performance gap is expected to diminish over time

as the compiler matures.

1.2.4 Dataflow

Dataflow models define an algorithm in terms of data-computation dependencies rather

than making use of traditional von Newman control-flow constructs. A computation

is described as a directed graph, where nodes are computational elements, and data

flows through the arcs [AC86]; later dataflows define a bipartite graph with compu-

tation and data-link nodes connected by edges [KBB86]. An interesting feature of

dataflows is their ability to inherently express parallelism; computations can be exe-

cuted in parallel in any order as long as data dependencies are obeyed (Fig. 1.4).

Pure Dataflow The original dataflow model consists of a graph with nodes executing

primitive operations and arcs between nodes holding data tokens. Arcs can be seen as

unlimited First In First Out (FIFO) queues from which nodes read tokens when a

node becomes fireable, and to which nodes produce tokens after the node operation

is executed. Specific rules define which input arcs need to hold tokens before a node

becomes fireable [AC86].

This type of dataflow graph can include special flow-control nodes that are needed to

model the conditional execution and looping. Two such nodes are the merge and switch

nodes, which behave like a multiplexer and demultiplexer, respectively. A merge node

has a boolean select input, two data inputs, and one output; the node first consumes

CHAPTER 1. INTRODUCTION 22

Figure 1.4: Fine- and large-grain dataflow models: (a) computation nodes are elemen-
tary operations; and (b) computation nodes or macro-actors are arbitrary imperative
functions.

the input select token, and then consumes one token from the selected data input,

producing it as an output. A switch node has a boolean select input, one data input,

and two outputs; the input token is passed only to the selected output. These nodes

are sufficient for modeling any arbitrarily complex algorithm.

The mathematics behind this apparently simple model is rather complex, i.e., it relies

on Petri nets to deal with extreme cases when no node has the required tokens to fire,

or an infinite number of tokens have accumulated on an arc [Mur89].

If a fine-grained approach provides the biggest potential for parallelization and com-

piler optimization, practice shows that compiling coarser-grain nodes into optimized

sequential code decreases dataflow overheads leading to an improved performance.

Choosing the granularity of computation nodes remains an important problem in per-

formance fine-tuning.

Dataflow languages The dataflow model is functional in nature as its computation

nodes take data tokens as inputs and produce data tokens as outputs, without having

any side effects. The first dataflow languages were functional languages adapted to

the dataflow model, although they had some resemblance to their original application.

CHAPTER 1. INTRODUCTION 23

Lucid Lucid started as a functional language developed for use with formal mathe-

matical proofs [AW77]. Its functional and single assignment semantics made it a nat-

ural candidate for programming dataflow machines, within a short period of time. It-

erations are elegantly handled by adding the next keyword that refers to the value of a

variable during the next iteration, thus maintaining the single assignment functional

semantics. This approach spares programmers the burden of describing iterations in

a traditional functional way, i.e., using tail recursion. Lucid’s background delivers the

mathematical soundness of a functional language, while its non-traditional functional

features such as iterations define it as a dataflow language.

Id Id was developed for the purpose of writing operating systems functionally, out-

side the von Neumann paradigm, based on the sequential control flow and memory

cells [Nik93]. Multiple enhancements have been gradually added to the language

for practical reasons; the single assignment rule that was so cherished by functional

purists proved to be too restrictive for handling datastructures in complex applications.

Its functional formalism was relaxed by adding I-structures that allow lazy element

evaluation. I-structures can now be produced by a computation before all I-structure

elements are populated. Subsequently, computations reading I-structure elements

have to wait until the evaluation of each required element is completed. The new

I-structures avoid delays when propagating complex data through a dataflow; how-

ever, they do not address the issue of copying the entire datastructure when individual

elements are modified.

SISAL Steams and Iteration in a Single Assignment Language (SISAL) is a struc-

tural functional language used for programming dataflow machines [GBT87]. Its

conditional and iterative evaluations maintain single assignment semantics, while

the language provides datastructures and explicit loop parallelism. In contrast to I-

structures, SISAL datastructures are treated as single values in a purely functional

way.

CHAPTER 1. INTRODUCTION 24

Large-Grain Dataflow If the dataflow model naturally expresses parallelism while

maintaining the mathematical soundness of its functional semantics, the model does

not enforce any fundamental limitations on the complexity of computation nodes.

The idea of collapsing small computation nodes into bigger macro-actor nodes [LH94]

brings about the immediate advantage of a better performance, owing to reduced to-

ken, data handling, and scheduling overheads. Since such macro-actor nodes are exe-

cuted by a single process they can be compiled into highly efficient sequential code.

Morrison has developed this idea further, and noticed that since macro-actors are ex-

ecuted sequentially, they can be written in an arbitrary sequential language such as

C or Java [Mor94]. The "flow-based programming" concept is defined as a program

consisting of coarse-grained components written in an imperative language, which are

connected by data dependencies maintaining some aspects of the dataflow semantics.

This technique has become the de-facto standard for a class of visual digital signal

processing applications such as LabView and Simulink; however, its applicability has

not been extended to other domains.

GLU Following the idea of having a coarse-grain dataflow language where compu-

tation nodes are written in a sequential imperative language, Granular Lucid (GLU)

was developed as a dataflow language designed for programming conventional, rather

than dataflow, computers [Jag95]. GLU represents a natural extension of Lucid, and

its parallelism is therefore expressed implicitly, variables are multi-dimensional, and

the single-assignment rule is enforced. GLU practically enjoys all of the features that

established Lucid as a popular dataflow language.

GLU extends Lucid by allowing developers to define the functions and types in a for-

eign sequential language such as C. GLU claims to successfully address expressive-

ness and efficiency; Jagannathan reported elegant and performant solutions for sev-

eral well-known application kernels [DRJ94].

CHAPTER 1. INTRODUCTION 25

Dataflow languages are an attractive choice for a programming model since they nat-

urally expose a high degree of parallelism, do not require explicitly specifying commu-

nication and synchronization, and therefore avoid typical concurrency related failures

such as data races or deadlocks. Furthermore, implementing macro-actors as sequen-

tial functions written in an imperative language can reduce the fine-grain dataflow

overheads.

Unfortunately, some critical parallel computing features have not been addressed by

the previously described dataflow languages, namely, the explicit datastructure and

computation partition and assignment. For example, in most successful large-scale

applications, large datastructures such as vectors or trees are stored and distributed

among the local memories of each node, where local access is obviously much faster

than remote access. For such applications, explicitly specifying datastructure layout

along with computation assignment maximizes the access locality, which is essential

in achieving good scalability.

We believe that a coarse-grain dataflow language allowing users to specify and change

data and computation decomposition and assignment at an appropriate granularity,

and in a natural way, maintains the most desired properties of dataflows while im-

proving their performance.

1.3 This Dissertation

This dissertation proposes a hybrid SPMD – coarse grain dataflow model (CGD) that

leverages the simplicity and elegance of dataflows and the good parallel performance

of SPMD. It then presents a collective communication cost model that estimates the

execution time of datastructure redistribution operations by naturally extending and

improving the Decomposable Bulk Synchronous Parallel (DBSP) model. The most im-

portant contributions of this thesis include:

CHAPTER 1. INTRODUCTION 26

• Introduces a hybrid SPMD – coarse grain dataflow programming model, where

data and task parallelism are described by dependencies between SPMD compu-

tations and datastructure distributions. Communication, synchronization, and

data handling are automatically added.

• Presents a programming language for the CGD model, and describes the imple-

mentation of a CGD compiler, as well as several benchmarks implemented using

the new language.

• Shows that the CGD model increases productivity for programming and optimiz-

ing these benchmarks, at the same time achieving a performance on par or better

than the original pthreads or MPI implementations.

• Introduces an αDBSP hierarchical bandwidth machine model that can estimate

application runtime. This model naturally extends the DBSP model by adding a

bandwidth growth factor α to each message exchange, i.e., h-relations are gener-

alized as (h, α)-relations.

• Shows that the αDBSP model is an improvement of DBSP for several common

globally unbalanced problems such as PDE solvers, Fast Fourier Transforms

(FFT) on grid subsets, and broadcasts. Discusses how αDBSP cost estimation

can aid hierarchical bandwidth capacity planning for certain HPC application

classes.

1.3.1 Discussion

MPI Most successful HPC applications deployed on large-scale systems are SPMD-

centric, relying on MPI and hybrid OpenMP-MPI solutions. Such applications—which

use the SPMD computation view in conjunction with low-level optimizations—achieve

good performance, at the cost of high development and optimization effort, and limited

CHAPTER 1. INTRODUCTION 27

productivity. Message passing requires developers to call communication and synchro-

nization primitives, marshall and unmarshall messages, and handle buffers; the hy-

brid OpenMP-MPI solution further increases complexity by adding OpenMP parallel

and synchronization pragmas to codes executed within MPI processes.

The CGD model, PGAS languages, and more generally, parallel programming lan-

guages address this issue by providing higher-level abstractions and moving some of

the workload to the compiler and runtime library. Furthermore, the CGD language

abstraction decouples algorithm and datastructure implementation, ensures a correct

parallel execution of algorithms while avoiding concurrency pitfalls, provides a few

architecture-specific datastructure optimizations in the runtime, and still, achieves a

performance similar to and sometimes exceeding MPI performance (Section 4).

PGAS Compared to modern PGAS languages, CGD datastructure distributions are

more flexible, since the datastructure domain-to-process mapping is arbitrarily de-

fined. CGD distributions allow domain overlapping, i.e., the replication of the same

datastructure elements among processes. This feature proves useful for applications

sensitive to replication, e.g., PDE solvers that overlap grid domains and hide latency by

aggregating multiple communication steps (Section 2.3.1). Additionally, CGD datas-

tructures allow multiple views or distributions, while PGAS datastructures are defined

for a single distribution. This is beneficial when computations locally access several

non-inclusive domains of the same underlying datastructure; accessing a new datas-

tructure distribution requires sending only the missing elements via a redistribution

in CGD, but it requires creating a full datastructure replica in PGAS [CCDI09].

The CGD model helps avoiding some common yet persistent PGAS performance bottle-

necks. The CGD dependency graph and distribution rules allow compilers to schedule

coarse-grain data transfers well before scheduling computations depending on such

data, while at the same time exploiting communication-computation overlap when

available. On the other hand, PGAS compilers determine remote data dependencies

CHAPTER 1. INTRODUCTION 28

based on the static analysis of loops and array access patterns. For certain com-

plex codes, present-day compilers cannot pre-determine all remote data dependen-

cies, or whether local or remote elements are being accessed. The former issue leads

to fine-grain remote element access and latency overhead [CDHW, CCDI09, CL10],

while the latter results in slower sequential code due to branch evaluation overhead

[CHea03, PG08, EGC02]. We believe that a language supporting both explicit and im-

plicit data dependencies enables users to choose the mechanism best suited to each

application and performance objective (Section 3.5.1).

GLU The GLU language describes a dataflow of sequential functions and datastruc-

tures, therefore increasing the granularity and improving the efficiency of computation

nodes vs. pure dataflow languages. However, similar to dataflow schedulers, the GLU

scheduler partitions the graph and assigns its nodes to processes. Partition and assign-

ment of data and computation is a complex problem—especially on machines without

CC-SAS support that require data elements be sent explicitly between processes—

and dataflow compilers have historically not achieved good results on larger systems

[JHRM04]. In contrast to GLU and other dataflow models, CGD relies on SPMD com-

putation nodes, delegating the partition and assignment problems to the user, and

thus, exploiting the good parallel performance of SPMD.

In terms of cost transparency, CGD datastructure redistributions implemented as col-

lective communication steps clearly expose communication complexity, while the GLU

language keeps details such as process number and data assignment out of sight, mak-

ing communication cost estimation more difficult throughout the application develop-

ment process (Section 5.3).

CHAPTER 1. INTRODUCTION 29

1.3.2 Organization

The remainder of this dissertation is organized as follows. First, Chapter 2 provides an

overview of the CGD model, formally defines the CGD graph, and presents the map-

ping of a few examples and their optimizations to CGD. Next, Chapter 3 introduces

the new CGD language and shows how the same examples are implemented in CGD,

while commenting on language particularities. In Chapter 4, we present the imple-

mentation of the CGD compiler, along with experimental results that evaluate CGD,

MPI, pthreads, and OpenMP performance on different machine configurations. Fi-

nally, the αDBSP cost model for collective communication is presented and evaluated

in Chapter 5, and the concluding remarks are provided in Chapter 6.

Chapter 2

Coarse Grain Dataflow

Programming Model

This chapter introduces a new hybrid SPMD – coarse grain dataflow (CGD) program-

ming model, which represents one of the main contributions of this dissertation. First,

Section 2.1 discusses the position of the new model in the landscape of SPMD and

dataflow programming languages, and points out similarities and differences in con-

trast with models from both worlds. The main aspects of the newly introduced model

are briefly presented, followed by examples illustrating them. Next, Section 2.2 pro-

vides a formal mathematical definition of the CGD graph and its execution schedule.

Finally, Section 2.3 shows how more complex problems are implemented and optimized

within the CGD framework, using three familiar problems as examples: the stencil

computation commonly employed by scientific PDE solvers, the NPB FT application,

and the SPLASH2 Barnes-Hut N-body simulation [WOT+95, BBea91].

SPMD Models Message passing libraries such as MPI and SHMEM not only sup-

port SPMD-centric applications, but also provide good problem coverage, efficiency,

and portability, being the de-facto scientific community standard (Section 1.2.2). Un-

30

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 31

fortunately, they require a significant amount of user involvement to explicitly specify

data and computation partition and assignment, send and receive messages, synchro-

nize processes, and fine-tune the messaging and synchronization performance of spe-

cific architectures.

CC-SAS machines support SPMD applications based on pthreads, Java threads, or

OpenMP, which provide good efficiency while reducing message passing implementa-

tion effort and increasing problem coverage. However, they require explicit synchro-

nization, and frequently need to maintain both fast locally mapped and slower glob-

ally accessible datastructures in order to achieve better efficiency. Generally, SPMD-

centric programming models perform well at the cost of extra programming effort

[CHea03, NR98, SS99, PG08].

Dataflow Models Large-grain dataflow models such as GLU address the above is-

sue by requiring users to describe only data-computation dependencies (Section 1.2.4),

and by delegating parallelism discovery and exploitation to the compiler and the run-

time.

Compared to SPMD models, dataflow models the decrease application development

workload at the cost of an increased compiler complexity; the compiler has to solve

a harder scheduling and assignment problem, sometimes lacking information easily

available to the programmer. For example, what represents a simple 2D domain de-

composition and assignment problem for the user can become a complex optimization

problem for the compiler. Historically, dataflow language implementations have not

succeeded in offering the best performance on large systems due to data granularity

overheads, memory locality, and scheduling [JHRM04, BL05].

In the world of programming models, especially parallel models, a trade-off exists be-

tween efficiency and simplicity. As expected, code that explicitly specifies data layouts

and low-level communication and synchronization primitives outperforms the code au-

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 32

tomatically generated from a dependency graph. Skilled programmers can produce

code at least as good as a compiler, and further, optimize it considering application and

architecture particularities. However, considering both high- and low-level program-

ming models, an interesting question emerges: how much low-level detail is required

by the compiler to produce an efficient implementation?

Hybrid Model The answer to the previous question probably lies somewhere be-

tween the two ends of the spectrum. We do not expect a significant loss in efficiency

if programmers describe what they know best, including data layouts and algorithmic

optimizations, while compilers and runtimes implement repetitive predictable work

such as data handling and architecture-specific optimizations.

CGD is a dataflow graph with datastructure distribution data nodes and SPMD com-

putation nodes (Section 2.1). This model aims at achieving a good trade-off between

programming effort and implementation efficiency by having the programmer specify

data and computation decomposition and assignment, while having the compiler solve

easier scheduling and orchestration problems. Furthermore, to simplify the dataflow

specification, the model is augmented with distribution rules that automatically gen-

erate datastructure transformation links in the graph. Other benefits of the coarse-

grain dataflow abstraction include architecture-specific communication, synchroniza-

tion, data handling, and scheduling optimizations.

Similarities Similar to dataflow models, the CGD model defines a dependency graph

between data nodes and computation or actor nodes. This graph is described as a list

of computations taking data nodes as input and output arguments. The order in which

computations are specified is irrelevant since only the data-computation dependencies

determine the schedule. In particular, a topological ordering of the computation nodes

represents a valid schedule.

The CGD language shares common features with dataflow programming languages

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 33

such as Id, Lucid and GLU [Jag95, JHRM04]. CGD is a functional language that

obeys the single variable assignment rule, its functions are free of side effects, its data

dependencies are equivalent to scheduling, and finally, it defines unusual iterative

constructs owing to its functional nature [JHRM04].

Similar to SPMD models, the CGD model requires the programmer to explicitly de-

compose datastructures into domains, and assign datastructure domains and compu-

tations to processes (Section 2.1). Similar to “flow-based programming” [Mor94], com-

putations are iterative functions executed in parallel rather than compiled dataflows;

sequential computations provide excellent performance by leveraging decades-old com-

piler optimization technology.

2.1 Model Overview

The following definitions of n, pi, process, datastructure, domain, and distribution will

be used throughout this dissertation:

• A process represents a processing environment that can be implemented as a

thread, process, etc. depending on the runtime.

• n is defined as the total number of parallel processing environments, and pi rep-

resents the ith running process for 0 ≤ i < n.

• A datastructure represents an arbitrary distributed datastructure such as an ar-

ray or a binary tree that contains data elements that are read or written by the n

processes. Indexes are globally addressable, i.e., all processes use the same index

to refer to a given element. However, there is no guarantee that all data elements

can be accessed by all processes, i.e., datastructures may enforce access locality.

• A domain or range corresponds to a subset of data elements from a datastruc-

ture. As expected, domains can describe which elements from a datastructure

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 34

can be accessed by each process. A single process executes sequential compu-

tations that take datastructure domains as inputs and produces datastructure

domains as outputs, given that the process has read-access to all input datas-

tructure domains and write-access to all output datastructure domains.

• A domain distribution, or simply a distribution or partition, is an arbitrary as-

signment of domains to processes. Processes can be assigned overlapping do-

mains, and therefore datastructure elements can be replicated among processes.

• A distribution rule defines how a distribution can be transformed into a new

distribution. Distribution rules are generic, i.e., they are applicable to all datas-

tructures that have matching distributions. For example, a redistribution rule is

a distribution rule that defines a matrix of domains that are exchanged between

processes to obtain a new distribution (Section 2.1.3).

2.1.1 Coarse Grain Dataflow Graph

We define a CGD graph as a dataflow graph where the nodes are either data nodes

or computation nodes. Data nodes are 〈datastructure, distribution〉 pairs, and compu-

tation nodes are SPMD computations, dataflow graphs, iterative constructs, and con-

ditional constructs (Section 2.2); for the sake of simplicity, throughout this section we

consider that computation nodes are always SPMD computations. The dataflow graph

links indicate which datastructure distributions are needed to execute an SPMD com-

putation, and which computations produce a datastructure distribution.

Throughout this dissertation, we use the terms data node, 〈datastructure, distribution〉

pair, datastructure distribution, and datastructure decomposition to refer to the data

nodes from the CGD graph. A data node composed of datastructure A and distribution

X is represented by

〈A,X〉 = A[X] (2.1)

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 35

Figure 2.1: Dataflow computing Z ← (A + B) ∗ (C + D) on three processes, where
A, B, C, and D are matrices: (a) the CGD graph specifies dependencies between ma-
trix decompositions and SPMD computations; and (b) the SPMD computation prod
executes in parallel sequential computations acting on matrix subdomains. The row,
cel, and blk distributions assign multiple domains to each process, while the prod com-
putation assigns multiple sequential computations to each process.

Similarly, we use the terms parallel computation, SPMD computation, and SPMD

function to refer to the SPMD computation nodes from the CGD graph. An SPMD

computation node f that takes data node A[X] as an input and produces data node

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 36

B[Y] as an output is represented by

B[Y]← f(A[X]) (2.2)

The remainder of this overview section introduces key CGD elements using the famil-

iar matrix multiplication problem as a presentation device. We consider the parallel

matrix multiplication implementation that uses block row, block column, and 2D de-

compositions. Fig. 2.1 shows how SPMD computation Z[blk] ← prod(X[row], Y [col])

takes matrix X[row] decomposed in rows and matrix Y [col] decomposed in columns as

inputs, and it produces matrix Z[blk] with a 2D block decomposition as output.

The CGD graph specifies both data and task parallelism: all SPMD computations

exploit data parallelism, and independent SPMD computations can be executed con-

currently by disjoint process sets. In Fig. 2.1a, task parallelism is exploited by exe-

cuting X[blk12] ← add(A[blk12], B[blk12]) on process set P12 = {p1, p2} and Y [blk3] ←

add(C[blk3], D[blk3]) on process set P3 = {p3}. Fig. 2.1b shows how parallel computa-

tion Z[blk] ← prod(X[row], Y [col]) uses data parallelism by executing function prod on

process set P = {p1, p2, p3} to compute each of the four sub-matrices of Z.

Fig. 2.2 presents the CGD language implementation of the dataflow from Fig. 2.1.

Here, each SPMD computation corresponds to one statement (lines 28–30): the two

add computations are executed by disjoint process sets P12 and P3, and the prod com-

putation is executed by all processes.

The CGD model features two easily noticeable properties: the large granularity of se-

quential computation chunks, and the explicit partition and assignment of both datas-

tructures and computations. These features distance CGD from existing large- and

coarse-grain dataflow models, making it a hybrid between SPMD and dataflow.

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 37

1 // TYPES, CONSTANTS
2 type range Range2D;
3 type partition <Range2D> PartRange2D [PartNP];
4 type mpartition <Range2D> MPartRange2D [PartNP];
5 type mswap <Range2D> MSwapRange2D [PartNP];
6 type data Vector2Dreal [PartRange2D, MPartRange2D];
7 const PartRange2D blk12[ALLn], blk3[ALLn];
8 const MPartRange2D row[ALLn], col[ALLn], blk[ALLn];
9 const MSwapRange2D blk2row[PPEn], blk2col[PPEn];

10
11 // DISTRIBUTION RULES
12 part blk2row : blk12 -> row;
13 part blk2col : blk3 -> col;
14
15 // SPMD FUNCTION Declaration
16 function prod (A, B, blk, row, col -> C)
17 Vector2Dreal A[row], B[col], C[blk],
18 Range2D row, col, blk;
19
20 function add (A, B, ra -> C)
21 Vector2Dreal A[ra], B[ra], C[ra],
22 Range2D ra;
23
24 // DATAFLOW FUNCTION Definition
25 function foo (A, B, C, D -> Z)
26 Vector2Dreal A[blk12], B[blk12], C[blk3], D[blk3], Z[blk]
27 {
28 sum <blk12> (A[blk12], B[blk12] -> X[blk12]);
29 sum <blk3> (C[blk3], D[blk3] -> Y[blk3]);
30 prod (X[row], Y[col], blk -> Z[blk]);
31 }

Figure 2.2: CGD language implementation of dataflow Z ← (A + B) ∗ (C + D) from
Fig. 2.1. Types, constants, and SPMD computations are declared in CGD but are de-
fined in C++; decomposition rules and dataflow functions are defined in CGD.

2.1.2 SPMD Computations

An SPMD computation is a set of sequential computations assigned to processes. Se-

quential computations are functions without any communication or synchronization

primitives and can be written in an arbitrary iterative language; their input and out-

put arguments are domains of distributed datastructures. Fig. 2.1b shows how compu-

tation node prod is represented by an SPMD computation taking matrix block decom-

position arguments. SPMD computations are declared in the CGD language (Fig. 2.2,

lines 15–22) but are written in C++ as sequential functions (Fig. 2.3). An exception

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 38

to this rule is datastructure redistribution SPMD computation nodes, which are auto-

matically generated by the compiler (Section 2.1.3 and 2.2).

Sequential computations access distributed datastructure elements relying on global

indexes; the CGD runtime is responsible for implementing the underlying mechanisms

needed to access these elements.

SPMD computation arguments can be local or global: a local distribution argument

allows sequential computations to access only the elements included in the domains

assigned to each process, whereas a global distribution argument allows sequential

computations to access any element from the global domain, but incurs a higher cost

when accessing remote elements (Section 3.5.1).

Two sequential computations executed by an SPMD computation can produce over-

lapping domains of an output datastructure. In this case, the application developer

needs to ensure that the replicated data elements have identical values; otherwise,

the correctness of the SPMD computation may be compromised. The ability to overlap

output domains adds extra flexibility to the model, e.g., parallel computations pro-

ducing replicated data can avoid communication at a later stage, when remote data

elements would otherwise be needed if local replicas are not available.

SPMD computations are allowed to modify their datastructure arguments to avoid

unnecessary data copy; this feature is supported by in-out arguments, which are logi-

cally replicated before executing computations to maintain CGD functional semantics

(Section 3.5). The translation of a CGD dataflow into C++ code avoids replication if

the input data node is not required by a computation scheduled at a later time (Sec-

tion 4.1.1). Replication cannot be avoided when two or more computations take the

same data node as an in-out argument. Since both computations expect unmodified

data as an input, and both modify the data, the only acceptable solution is copying the

data; sequential dataflow languages require the same solution.

Making several modifications to the same datastructure is made possible by passing

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 39

1 // SPMD FUNCTION Definition
2 void prod (Vector2Dreal &A, Vector2Dreal &B,
3 Range2D &blk, Range2D &row, Range2D &col,
4 Vector2Dreal &C)
5 {
6 for (int i=blk.s1; i<=blk.e1; i++)
7 for (int j=blk.s2; j<=blk.e2; j++) {
8 double s = 0.0;
9 for (int k=col.s1; k<=col.e1; k++)

10 s += A(i,k) * B(k,j);
11 C(i,j) = s;
12 }
13 }
14
15 void add (Vector2Dreal &A, Vector2Dreal &B, Range2D &ra,
16 Vector2Dreal &C)
17 {
18 for (int i=ra.s1; i<=ra.e1; i++)
19 for (int j=ra.s2; j<=ra.e2; j++)
20 C(i,j) = A(i,j) + B(i,j);
21 }

Figure 2.3: C++ implementation of SPMD matrix multiplication and addition. The
local domains sqr, row, col of distributed datastructures A, B, C are addressed using
global indexes.

the output node of an in-out argument as an input node to the next in-out argument.

In this case, several computations modify the same underlying datastructure while

avoiding a deadly full datastructure replication.

2.1.3 Distribution Rules

The CGD model adds distribution rules to simplify writing dataflow graphs by auto-

matically completing missing paths between data nodes that share the same datas-

tructure but have different distributions. These rules are specified only once in terms

of domain distributions; however, they apply to all data nodes from the graph that

uses these distributions, i.e., a rule transforming distribution dfrom to dto can be trig-

gered to transform data nodes X[dfrom] → X[dto] for any X. By defining distribution

rules only once, developers are relieved from transforming data nodes every time it is

required, thereby reducing the chance of human errors.

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 40

One such example is shown in Fig. 2.1a, where sum produces data node X[blk12] and

prod depends on data node X[row]; when rule blk2row : blk12 → col is specified, the

compiler automatically completes the path X[blk12]→ X[row] by adding redistribution

transformation X[row] ← redistribute(blk2row,X[blk12]). Lines 11-13 in Figure 2.2

present the distribution rules needed to add all redistributions from Fig. 2.1a.

Distribution rules describe transformations in terms of domain inclusion, union, and

intersection. Generally, a redistribution matrix specifies the domains that have to be

sent and received by each process to build a target distribution (Table 3.4). Although

a bit inconvenient, redistribution matrices are relatively easy to build by relying on

predefined library functions that take the source and target distributions as inputs.

The model supports arbitrarily defined domains, datastructures, and distributions; to

ease development, these are predefined for most common data types, and are available

as off-the-shelf solutions. However, programmers can choose to define completely cus-

tomized domain and datastructure representations to meet their particular needs; new

domain and datastructure types are defined by providing a set of operators specific to

these types (Section 3.1).

Discussion A parallel computation can access any element of a globally distributed

datastructure without any user involvement if the compiler knows everything about

the memory layout of each datastructure, and the mapping of its global domain to pro-

cesses; this approach is indeed embraced by most PGAS languages. Assuming that

PGAS compilers understand all user datastructure layouts, and fine-grain remote ac-

cess is not an issue, assigning a single distribution to each datastructure has certain

limitations.

In many cases, each operation performed on a datastructure works best with a differ-

ent domain decomposition, e.g., the row-wise and column-wise FFT transforms exe-

cuted by 2D FFT work best when the matrix has block-row and block-column distri-

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 41

butions, respectively. Since a compiler is unlikely to understand the semantics of the

2D FFT code, and assign these different layouts to the same datastructure at different

points in time, optimized PGAS implementations of 2D FFT use two datastructures

with explicit block-row and block-column distributions and manually copy all data ele-

ments between the two, when needed. Arguably, some of the elegance and productivity

of PGAS languages is defeated when the user has to manually mimic message passing

transposes to achieve good performance.

Unlike PGAS, CGD allows working with multiple distributions of the same datas-

tructure, and relies on the developer’s educated choice to specify which datastructure

distribution works best for each computation, and which rules should be applied to

transform datastructure distributions, when needed.

2.1.4 Orchestration

A scheduler can automatically generate a sequence of sequential computations, com-

munication, and synchronization primitives running on each process such that all

data-computation dependencies are satisfied. Compared to classic dataflow models

[KBB86, JHRM04], the CGD scheduler has a simpler job as it only needs to determine

the computation order and insert communication and synchronization—the partition-

ing and assignment of data and computation are provided by the application writer.

A scheduling solution can be as simple as traversing the graph in topological order

and inserting start or end communication operations when the data become available

or are needed. When an SPMD computation assigns multiple computations to a pro-

cess, these computations can be executed one at a time. In this particular case, the

computations scheduled for later execution can afford to receive their input data later;

splitting data into multiple smaller batches can result in improved communication

overlapping, as shown by the NPB FT example (Section 2.3.2).

Chapter 4 shows that for several benchmarks the CGD performance does not suffer

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 42

from dataflow overheads, being on par or even exceeding the SPMD performance; this

is not surprising given that, in both cases, developers have full control over datastruc-

ture and computation decomposition and assignment.

2.2 Model Definition

In this section, we present a formal definition of the CGD model. A CGD dataflow

graph is a bipartite directed graph, where the nodes are either data nodes or computa-

tion nodes. Using dataflow terminology the data nodes correspond to link nodes, and

the computation nodes correspond to actor nodes.

In our dataflow model, actor nodes are pairs of input and output argument sets, and

each link in the graph has a label specifying an actor argument. This augmentation

is necessary since multiple data nodes can be connected to the same actor, and the

order of the actor arguments is relevant. For example, specifying only that data nodes

A[row] and B[col] are linked to computation node prod is ambiguous since this graph

can represent both prod(A[row], B[col]) and prod(B[col], A[row]). Accordingly, a label-

ing function maps every graph link to one actor input or output argument, which is

possible since the graph is bipartite and each link contains exactly one actor.

For the purpose of specifying the dependencies between data and computation nodes,

descriptions of how actors produce their output and how data nodes are represented

are irrelevant. We will commence this section by first defining the dataflow graph, and

then expanding the definition of data nodes and actors.

Definition 1. A coarse grain dataflow graph GD is a bipartite directed acyclic graph G

specifying the dependencies between data nodes D and actor nodes A, which has input

data nodes I and output data nodes O, and an edge labeling function l.

GD = 〈D,A,E; I,O, l〉 = G(D ∪A,E) (2.3)

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 43

where the graph nodes and edges are

D = {d | d is a data node } (2.4)

A = {f | f = 〈If , Of 〉 is an actor with input set If and output set Of} (2.5)

E = {(di, f) and (f, do) | di ∈ D, do ∈ D\I, f ∈ A} (2.6)

the labeling function has the following properties

for any actor f = 〈If , Of 〉 ∈ A,∀i ∈ If we have ∃! e = (d, f) ∈ E s.t. l(e) = i (2.7)

for any actor f = 〈If , Of 〉 ∈ A,∀o ∈ Of we have ∃! e = (f, d) ∈ E s.t. l(e) = o (2.8)

and D is the set of data nodes, I ⊂ D is the set of input data nodes, O ⊂ D is the set
of output data nodes, A is the set of actors, E is the set of links between data nodes and

actor nodes, and function l maps edges corresponding to data nodes to actor inputs and

outputs.

Equations (2.4), (2.5), and (2.6) define the data and actor node sets and stipulate that

edges exist between data nodes and actor nodes, and actor nodes and non-input data

nodes. Equations (2.7) and (2.8) ensure that for each actor input and output, there is

a single edge in the graph labeled with the actor input or output.

This definition of a dataflow graph slightly diverges from the classical dataflow defini-

tion from [KBB86], given that actors are pairs of input and output arguments, and a

labeling function is added to map links to these actor arguments. This approach fol-

lows more closely the solution presented by [BL05], where input and output data ports

are defined for each actor, and links connect the data ports. As anticipated, (2.7) and

(2.8) specify that for every single actor input and output there exists exactly one edge

in the graph that is mapped to the actor argument. Generally, this means that each

actor argument is linked to a single data node from the graph.

Throughout the remainder of this chapter, we use D(G), I(G), O(G), A(G), E(G)

and l(G) to denote the corresponding elements of a dataflow graph G(D,A,E; I,O, l).

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 44

For any node of the graph we can define the predecessor and successor sets in the

usual manner. These definitions will prove useful when analyzing the correctness of a

dataflow graph schedule.

Definition 2. I(x) and O(x) represent the set of predecessors and successors of node x

from dataflow graph GD(D,A,E; I,O, l)

I(x) = {i | (i, x) ∈ E} (2.9)

O(x) = {o | (x, o) ∈ E} (2.10)

Data nodes can be input and output nodes of the graph (Definition 1). While any data

node can be an output of the graph, only data nodes that have no predecessors can be

inputs of the graph i.e. x ∈ I(G)⇒ I(x) = Ø.

Definition 3. A distribution X is an assignment of domains Xij to processes pi

X = (X0, . . . Xi, . . . Xn−1) (2.11)

Xi = {Xi0, . . . Xij , . . . } (2.12)

whereXi is the set of domains assigned to process pi, andXij is the jth domain assigned

to process pi for 0 ≤ j < |Xi|

A distribution is not required to be a mathematical partition of a datastructure do-

main. A distribution allows overlapping domains to be assigned to different processes

i.e. it is possible to have Xij ∩Xkl 6= Ø for i 6= k. The number of domains |Xi| assigned

to each process pi is not required to be identical for all processes, i.e., it is possible to

have |Xi| 6= |Xk| for i 6= k.

Definition 4. A data node d = 〈A,X〉 represents an assignment of datastructure A

elements to processes pi according to distribution X

d = 〈A,X〉 = A[X] (2.13)

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 45

where all datastructure A elements included in any Xij domain from distribution X

are assigned to process pi.

Similar to distributions, data nodes are not mathematical assignments of datastruc-

ture elements to processes; the same element can be assigned to multiple processes,

i.e., element A[x] can be assigned to pi and pk where i 6= k, x ∈ Xij , and x ∈ Xkl.

Dataflow graphs are defined in terms of actors and data nodes. Actors can be de-

fined in terms of dataflow graphs, thereby creating a graph hierarchy. Actors can be

SPMD functions defined by the application writer, or they can be constructs that em-

bed dataflow graphs.

Definition 5. An actor f = 〈If , Of 〉 included in a dataflow graph G is an SPMD com-

putation, a subgraph computation, a selection construct, or an iteration construct:

i) f is an SPMD computation

b1, b2, . . .← fSPMD(a1, a2, . . .) (2.14)

B1[Y 1
ij], B[Y 2

ij], . . .← fSPMD(A1[X1
ij], A[X2

ij], . . .) (2.15)

where If = {ai}, Of = {bi} are the inputs and outputs of actor f , Ak[Xk], Bl[Y l] are

the input and output data nodes, i.e., ek = (Ak[Xk], f) ∈ E(G) and l(ek) = ak, el =

(f,Bl[Y l]) ∈ E(G) and l(el) = bl, and process pi executes all computations from (2.15)

for i, 0 ≤ j < m, where m = |Xk
i | = |Y l

i | for all 0 ≤ k < |If |, 0 ≤ l < |Of |

ii) f is a subgraph computation

fG = GD(D,A,E; I,O, l) (2.16)

where the actor has the same inputs and outputs as the embedded graph, I = If , O = Of

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 46

iii) f is a conditional construct

fIF = 〈GT , GF ; I, IC , O〉 (2.17)

where IC is the input condition, GT is a dataflow graph evaluated when the condition

is true, GF is a dataflow graph evaluated when the condition is false, and I = I(GT) ∪

I(GF) are the inputs required by both graphs; the actor takes as inputs the union of all

inputs If = IC ∪I, and both graphs produce the same outputs as the actor O = O(GT) =

O(GF) = Of

iv) f is an iterative construct

fLOOP = 〈GL; I,O,OC〉 (2.18)

where GL is a dataflow graph evaluated for multiple iterations until the output condi-

tion OC ∈ O(GL) becomes true, and after each iteration, the outputs O = O(GL)\OC

of the loop graph are logically assigned to the inputs I ⊂ I(GL) of the loop graph, i.e.,

I ← O, and If = I(GL), Of = O.

Note that the inputs and outputs of actors (2.16), (2.17), and (2.18), which embed

dataflow graphs, are both nodes in the embedded graph and actor arguments. When

executing (2.15), the same data element may be produced more than once if the output

distribution has overlapping domains. Computations are assumed to produce identical

results for the same data element; otherwise, correctness is not ensured.

The CGD model recognizes three types of SPMD computation actors. These are classi-

fied in terms of datastructure domain access. (Section 3.5.1):

1. SPMD computations consisting of sequential computations that access only the

local domains of each datastructure. Datastructure access requires no interpro-

cess communication.

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 47

2. SPMD computations consisting of sequential computations that access the local

domains of each datastructure, and the global domains of some datastructures

that are not in-out arguments. Global datastructure access might require the

runtime to execute interprocess communication.

3. Datastructure transformations implemented by the runtime based on distribu-

tion rules.

Accessing only the local domains results in the best performance during the compu-

tation phase, but this approach requires knowing the required distributions ahead of

time. Accessing the global domains removes this constraint at the expense of some

possibly higher communication cost. The CGD model provides both mechanisms, as

well as a mixture of both, giving the programmer the opportunity to make an educated

choice. CGD model dataflow semantics is exploited by the runtime, which implements

optimizations such as read caching and write buffering while avoiding race conditions.

Section 3.5.1 describes how local and global domain computations act on datastruc-

tures, and Section 3.4 illustrates how distribution rules are defined.

The subgraph computation actor from (2.16) is provided as a convenience method al-

lowing a hierarchical organization of the graph, and becomes useful when expressing

task parallelism. The compiler might choose to expand the subgraph into the parent

graph to increase the optimization scope.

The conditional construct actor defined by (2.18) selectively executes the subgraph

associated with the active branch. This construct is equivalent with the dataflow chart

from Fig. 2.4a. The true and false subgraphs might require different input sets, i.e., the

true subgraph GT requires inputs IM ∪IT , while the false subgraph GF requires inputs

IM ∪ IF . As expected, the same outputs O are produced by this construct regardless of

which branch is executed.

The iterative construct actor defined by (2.18) addresses the well-known difficulty of

dataflow programming languages to express iterations. This construct is represented

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 48

Figure 2.4: Dataflow diagrams for CGD conditional and iterative constructs. (a) The
conditional construct takes I∪IC as inputs and produces O as output; (b) The iterative
construct takes I ∪ IL as inputs and produces O as output. All input and output labels
represent data node sets. The OC data node is initially set to true.

by the dataflow from Fig. 2.4b. It takes a subgraph GL as an argument, and all the out-

puts of subgraph O, except the output condition OC , are assigned to their correspond-

ing inputs I after each non-terminal iteration. Iterative constructs are defined simi-

larly by older dataflow programming languages such as Lucid and Id [AW80, Jag95].

However, the latter define the iteration output names as the input names prepended

with the next keyword, while CGD inputs and outputs have arbitrary names, and

matching is done based on argument order (Section 3.5).

Definition 6. The schedule S(G) of dataflow graph G(D,A,E; I,O, l) is an ordering

of data nodes and actor executions representing a topological ordering of the nodes in

the graph. The execution E(f) of an actor f is represented by the actor paired with the

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 49

schedule of the graphs, if any, embedded in the actor.

S(G) = (s1, s2, . . . , si, . . .) (2.19)

E(fSPMD) = fSPMD (2.20)

E(fG) = 〈fG, S(G(fG))〉 (2.21)

E(fIF) = 〈fIF , S(GF (fIF)), S(GT (fIF))〉 (2.22)

E(fLOOP) = 〈fLOOP , S(GL(fLOOP))〉 (2.23)

where

si ∈ D ∪ {E(f) | f ∈ A}, si 6= sj ∀i 6= j (2.24)

∀(si, f) ∈ V, si ∈ D, f ∈ A, ∃! sj = E(f) and j > i (2.25)

∀(f, si) ∈ V, f ∈ A, si ∈ D, ∃! sj = E(f) and j < i (2.26)

Equation (2.24) stipulates that no two steps of the schedule are identical, while (2.25)

and (2.26) ensure that dependencies between data and computation nodes are satis-

fied.

A schedule is defined in terms of actor executions, and some actor executions are de-

fined in terms of schedules. These recursive definitions allow building a hierarchical

tree of schedules, where the leafs are data nodes and executions of SPMD computa-

tions.

The output data nodes O(G) of graph G can be produced starting from the input data

nodes I(G) by executing all steps of the schedule S = (si). Some of these steps are

SPMD computations and are trivially executed, while others are executions of sub-

graphs, conditional constructs, and iterative constructs.

A subgraph actor execution 〈fG, S(G(fG))〉 requires simply executing the schedule of

its subgraph S(G(fG)). A conditional actor execution 〈fIF , S(GF (fIF)), S(GT (fIF))〉

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 50

consists of first evaluating the condition IC(fIF), and then executing the schedule

S(GT (fIF)) if the condition is true, or the schedule S(GF (fIF)) if the condition is false.

Finally, executing a loop actor 〈fLOOP , S(GL(fLOOP))〉 requires executing the schedule

S(GL(fLOOP)), and then evaluating OC(fLOOP); if the condition is true, the execution

is complete; otherwise, the outputs O(fLOOP) are assigned to the inputs I(fLOOP), and

the execution of this actor continues until the condition becomes false.

A schedule for a dataflow graph may contain both task and data parallelism. Data

parallelism is trivially exposed by every SPMD computation that is executed on mul-

tiple processes. Task parallelism is exposed when two independent computations are

executed on separate process sets. Let us consider the schedule corresponding to the

dataflow graph shown in Fig. 2.1a:

S = (A[blk12], B[blk12], C[blk3], D[blk3], sumX , X[blk12], redistribute(blk2row),

sumY , Y [blk3], redistribute(blk2col), X[row], Y [col], prod, Z[blk]) (2.27)

where blk12 domains are assigned to process set P12 = {p1, p2}; blk3 domains to set

P3 = {p3}; and row, col, blk domains to set P = {p1, p2, p3}.

SPMD computation actors sumX and sumY from schedule (2.27) are executed in par-

allel. This example can be generalized easily by executing in parallel two subgraph

computation actors rather than two SPMD computation actors.

In the example schedule from (2.27), all distributions and redistribution matrices are

assumed to be constants that are available to all computation nodes from the schedule.

If this was not the case, the schedule would contain computation nodes that produce

distributions and redistribution data nodes that are later required by other redistri-

butions and computation nodes (Section 3.3).

The sequence of data nodes and actor executions from a schedule can be any traversal

of the graph in topological order, thereby obeying a core principle of dataflow models.

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 51

Finding an efficient traversal represents an important problem addressed by the pro-

gramming model implementation, since many traversals are typically possible. How-

ever, CGD compilers solve an easier problem, since fine-grain computation assignment

is provided by users, and the topological order search space is limited to valid permu-

tations of SPMD computation nodes.

Based on a schedule, the compiler can generate SPMD code running on the entire

process set by listing all sequential SPMD computations according to the schedule

order, and adding communication and synchronization for all SPMD computations that

are data transformations. In the latter case, each data transformation results in two

operations: the beginning of the transfer when the datastructure distribution becomes

available, and the end of the transfer before the datastructure distribution is required

by a computation. The original execution in the schedule of an SPMD transformation

is substituted with an interval to maximize the communication-computation overlap.

2.3 Examples

This section introduces the CGD implementation of three familiar problems: the sten-

cil computation kernel, the NPB FT, and the SPLASH2 Barnes-Hut N-body simulation.

For each benchmark, we first present the problem and its importance in the scientific

computing world. We then discuss the most common algorithmic and architectural

challenges on present day machines. Finally, we briefly describe their CGD dataflow

and potential optimizations. These problems have a relatively simple dataflow; more-

over, changing the data layouts and computation assignments to implement non-trivial

optimizations requires a little more than redefining a few distributions. Section 3.6

presents in detail the original and optimized CGD language implementations of these

problems.

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 52

2.3.1 Stencil Computation

The stencil kernel implements a typical PDE solver that includes the “halo exchange”

communication pattern so common among scientific computing codes. Many HPC labs

working on fluid dynamics, plasma physics, bioinformatics, or material science make

heavy use of PDE solvers to compute problems such as weather prediction, ocean

current modeling, climate change, and blood flow dynamics. Although these scien-

tific codes are rather complex systems developed by numerous teams, the equations

they solve are finite differencing schemes that are similar from a communication-

computation perspective with simpler equations, such as the shallow water or heat

dissipation equation [BN]. More precisely, the time-forward equation solvers require

the state of the physical system, as well as the spatial derivatives at time t to compute

the state of the system at time t + ∆. Moreover, computing the spatial derivatives of

point x at time t requires reading the values adjacent to point x at time t.

Parallel implementations of such equation solvers execute iteratively computation or

“domain update” steps, followed by communication or “halo exchange” steps. The 2D

or 3D grids holding the discretized system state are partitioned among processes, typ-

ically using block decomposition. Inevitably, some neighbors of point x that are needed

to compute the next value of x may be assigned to other processes. The communication

step sends these points between the processes assigned to neighboring blocks before

the computation step can be executed.

The stencil kernel captures the structure of a latency-bound parallel PDE solver by

including a small “domain update” step corresponding to heat dissipation, and a “halo

exchange” step produced by the 2D grid decomposition. Fig. 2.5a shows a schematic

of the stencil computation steps without fully describing all of the nodes and links of

the dataflow graph (Section 3.6.1). In contrast to 3D PDE solvers, 2D solvers have

a poorer performance due to their larger communication-computation ratio. When

the computation step is short compared to the constant communication latency, the

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 53

Figure 2.5: Stencil kernel “halo exchange” aggregation optimization: (a) basic sten-
cil computation with two iterations and two communication steps; and (b) communi-
cation aggregation optimization replicating data and computation; the first iteration
computes the “halo” elements needed by the second iteration.

performance is particularly poor since communication takes a large fraction of runtime

regardless of the amount of data being sent over the wire. In this case, the PDE solver

is latency-bound.

The parallel performance of latency-bound 2D solvers greatly depends on architec-

ture parameters, or more precisely, on the computation unit speed and the intercon-

nect latency. Distributed CC-SAS machines such as the SGI Altix family, and modern

RDMA interconnects such as Infiniband and Cray SeaStar, have latencies in the sub-

microsecond range, and perform better than clusters running two-sided MPI protocols

(Section 4.2). Fortunately, constant improvement is seen both in the realm of inter-

connects and computing units. And yet, whether newer machines will have a smaller

communication latency per computation power ratio to avoid latency bottlenecks is

still uncertain. The stencil computation remains an interesting benchmark as long as

the latency problem remains unsolved.

An effective optimization that diminishes the overhead of communication latency is

trading extra computation for communication by merging two communication steps

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 54

into one, and executing two computation steps without the intermediary “halo ex-

change” step. Fig. 2.5b outlines this algorithm: the first computation step relies on the

larger halo2 domain to compute the halo domain rather than the cell domain, as was

the case with the original algorithm. Hence, the first communication step is avoided

since the halo domains provided by the first iteration computation are available for the

second iteration; the second computation step remains unchanged, but it sends twice

as much data to build the halo2 rather than halo distribution starting from the cell

distribution. This optimization leads to improved results when communication cost is

dominated by the latency and not the bandwidth cost (Section 4.2).

Application developers can implement the communication step aggregation optimiza-

tion in CGD by replacing the halo and cell distributions taken by computation F with

the new distributions halo2 and halo, and by changing the distribution definitions and

distribution rules accordingly (Fig. 2.5, Section 3.6.1).

2.3.2 NPB FT

The numerical Aerodynamic Simulation Parallel Benchmark (NPB) FT uses spectral

methods to solve the following equation for a 3D vector

∂u(x, t)

∂t
= α∇2u(x, t) (2.28)

The proposed solution first applies a Fourier transform to both sides of the equation,

finds the solution analytically, and then applies an inverse Fourier transform to re-

cover the original solution [BBea91]. The discrete solution of the equation first com-

putes a forward FFT of the 3D grid, applies exponentials to the result, and then com-

putes the inverse FFT of the 3D grid.

From a parallel computation perspective, the most interesting sections are the FFT

transforms, which account for most of the work and expose non-trivial scalability prob-

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 55

Figure 2.6: NPB FT “overlap slab” optimization: (a) 2D FFT dataflow includes a
column-wise FFT SPMD computation acting on multiple “slab” domains; and (b)
column-wise FFTs are executed while “slab” domains are sent between processes.

lems. The NPB MPI implementation of FFT decomposes the 3D grid into 1D or 2D

layouts depending on the number of processes. For the 1D layout, the algorithm de-

composes the 3D domain into Z-planes, computes the X- and Y-wise FFTs, and then

transposes the vector into Y-planes and computes the Z-wise FFTs. For the 2D layout,

the algorithm decomposes the domain into X-columns, computes the X-wise FFTs, and

then transposes the vector into Y-columns, and computes the Y-wise FFTs. Finally, it

transposes the vector into Z-columns, and computes the Z-wise FFTs. The 1D layout is

faster than the 2D layout as it requires a single transpose, but this limits the available

parallelism to the number of Z-planes. Subsequently, when the number of processes is

smaller than the number of Z-planes the 1D layout is used, otherwise the 2D layout is

used.

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 56

The NPB FT benchmark is typically bandwidth-bound since its parallel FFT trans-

forms heavily exercise interconnect bandwidth capacity; the parallel transform in-

cludes local X-, Y-, and Z-wise FFT computations, as well as vector transpositions

implemented as blocking all-to-all collective communication. This algorithm suffers

from poor scalability on large systems since the transpose sends almost the entire

data domain over the interconnect; on systems with limited global bandwidth, this

operation represents a large fraction of the total runtime (Section 4.2). However, for

large data sets scalability improves when the working set stops fitting in the aggregate

cache, and the computation time per data element increases, whereas the bandwidth

cost per data element remains constant.

Fortunately, communication overhead can possibly be avoided by overlapping commu-

nication and computation. The “overlap slab” optimization works by splitting each vec-

tor domain into several smaller domains called slabs, and computing the local FFTs on

each slab independently [BBNY06]. Communication overlap is achieved by executing

the local FFTs for a given slab at the same time transferring data needed to compute

the FFTs for the next slab. Fig. 2.6 shows a simplified dataflow for the 2D version of

this algorithm, illustrating how the transpose and local FFTs are concurrently exe-

cuted.

Exploiting communication-computation overlap can produce code significantly faster

than the original NPB FT algorithm [BBNY06]. The overlap is most effective when the

architecture supports asynchronous remote memory operations, and data transfers

are executed by the system while processors are free to execute computations; such

systems include Infiniband clusters and the newer SGI Altix UV CC-SAS machines.

Implementing the “overlap slab” optimization for NPB FT is easily achieved in CGD:

new distributions are defined to represent slab decompositions, and the FFT dataflow

graph and distribution rules are modified accordingly (Section 3.6.2). The simplified

2D example from Fig. 2.6a shows how distributions are changed from block decompo-

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 57

sition col to slab block decomposition mcol; Fig. 2.6b shows how column distribution

mcol assigns multiple slab domains to each process, and accordingly, how SPMD com-

putation fft_col is executed multiple times for each slab domain. The CGD compiler

automatically overlaps communication and computation when possible; hence, the ex-

ecution of the 2D FFT dataflow from Fig. 2.6a takes advantage of overlap by sending

the mcol slab domains to other processes while the fft_col computations are executed.

Section 3.6.2 presents the CGD language implementation of NPB FT “overlap slab” for

3D vectors; this implementation refines the 2D layout decomposition of 3D vectors by

defining domains of size a × b ·fftblock × dimm [BBNY06], while slab size is adjusted to

ensure that interprocess messages have the same predefined size.

2.3.3 Barnes-Hut N-Body Simulation

Hierarchical algorithms that solve n-body problems are particularly useful in simulat-

ing physical systems where distances span over a large range of scales. Hence, these

algorithms are commonly employed by HPC applications in the areas of astrophysics,

plasma physics, and molecular dynamics. These applications simulate the evolution

of a physical system by computing the interaction between n particles during each

time step, and by updating the state of the system to the next time step. Unfortu-

nately, the number of interactions grows quadratically with the number of particles,

making the problem unsolvable for large systems if all pair-wise interactions are to

be computed. Hierarchical n-body methods such as Barnes-Hut divide the 3D space

recursively into an octotree, where each space domain, called a cell, corresponds to a

node of the octotree (Fig. 2.7a) [SHG95]. The computation of the pair-wise interactions

between particles can be reduced by observing that the interactions between a particle

P and a group of particles contained by a distant cell C can be approximated by the

interaction between particle P and cell C. For example, for the classical gravitational

problem, the long-range interactions can be computed as interactions between particle

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 58

Figure 2.7: Barnes-Hut 2D particle representation: (a) spatial; and (b) quadtree. Each
of the four processes, pi, holds the tree_loc[i] nodes, which include the tree_bot[i] nodes
stored only by pi, and the tree_top nodes replicated among all processes.

P and the center of mass of cell C [GKS94, SHT+95].

The CGD parallel Barnes-Hut algorithm presented herein is based upon the SPLASH2

[WOT+95] implementation, which defines two types of tree nodes: cell nodes and leaf

nodes. The cell nodes have eight children corresponding to their spatial subdomains—

these children can be either cell or leaf nodes. Leaf nodes contain a list of particles

assigned to their spatial domain, but no more than a predefined number of particles.

This approach reduces the tree depth by avoiding the recursive cell subdivision when

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 59

only a few particles fall into the same cell. The parallel Barnes-Hut algorithm includes

the following steps:

1. Building the tree by inserting all particles one by one into an initially empty

octotree. When new particles are inserted into the tree root cell node, they are

recursively inserted into cell nodes until a leaf node is reached. If the leaf node

has too many particles, it is expanded into a cell node with eight children, and all

the particles assigned to the leaf are reinserted into the newly created cell. This

algorithm creates an adaptive tree that has a higher depth in areas with higher

particle density.

2. Computing the center of mass of the tree nodes by first computing the center of

mass of the leaf nodes, followed by recursively computing the center of mass of

all cell nodes.

3. Computing the forces acting on each particle P by recursively computing the in-

teractions between particle P and the nodes of the octotree, starting from the

tree root. When the recursion reaches a cell node C or leaf node L that is dis-

tant according to a predefined measure, the recursion stops and the interaction

is computed between particle P and node C or L. Otherwise, the recursion con-

tinues, and the interactions are computed between particle P and all children of

cell node C, or between particle P and all particles contained by leaf node L.

4. Updating the particle properties based on the time step, coordinates, and forces

computed during the previous steps.

5. Partitioning the tree between the n processes by aggregating the computational

weight of each particle and assigning contiguous sections of the tree to each pro-

cess, such that the total computational weight of each section is load balanced.

A CGD dataflow representing these steps is illustrated in Fig. 2.8, while Section 3.6.3

presents a detailed code implementation. The algorithm distributes the particles of

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 60

the octotree among n processes according to the costzones partition [SHG95]. Each

process pi locally holds the domain of the tree tree_loc[i], which represents the union

of the bottom tree domain, tree_bot[i], assigned only to process pi, and the top tree

domain, tree_top, replicated among all processes (Fig. 2.7b). The assignment of these

tree domains to processes is described by distributions tree_loc, tree_bot, and tree_top,

while the following distribution rule applies: tree_loc = tree_bot+tree_top (Section 3.4).

Step (1) described above is executed in parallel by makeTree, with each process insert-

ing the particles assigned to itself into a new tree partitioned according to distribu-

tion tree_top01 (Fig. 2.8). This step involves inserting particles into remote subtrees

since particles may be reassigned to new processors after each iteration. During step

(2), each process computes centerMass for all the leaf and cell nodes assigned to it-

self, while occasionally reading the center of mass of remote cells. For step (3), each

process computes the interactions of all the particles assigned to itself by recursively

descending the tree from the root. The force computation depends on node[tree_loc+]

and body[tree_loc+], i.e., the centers of mass of each cell node of the tree and all of the

particles. Although the nodes assigned locally are expected to be frequently accessed,

the + sign allows the force computation to read remotely assigned centers of mass and

particles. Next, step (4) is executed by computation advance by updating the coordi-

nates and speed of all particles based on the newly computed forces, and therefore the

accelerations. Finally, during step (5) score aggregates the computational weight

of all particles from the tree, and balance then creates a new tree distribution, tree_top01,

by assigning a contiguous tree section to each processor while trying to evenly balance

the weight of each section based on costzones. Both operations access both local and

remote tree nodes, and each process computes the replicated top of the tree (Fig. 2.8).

Typical scalability issues exposed by the parallel Barnes-Hut algorithm include com-

munication overhead when the problem size is too small for a given number of pro-

cesses, work load imbalance, and poor scalability of the tree building phase.

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 61

During an iteration, each process computes the forces acting on local particles by read-

ing parts of the remote essential-tree interacting with these particles [SHG95]. There

are two main approaches to access the remote data needed by the local force computa-

tion: i) each process pulls remote node elements on a need-to-know basis; and ii) each

process builds a list of local nodes included in the essential-tree of each other process,

and then, it sends the nodes to these processes prior to the force computation phase.

In the first approach, fewer data elements are read, and implementing the algorithm

is easier; however, a lower latency interconnect, such as that of CC-SAS or RDMA

machines, is required to achieve good performance. For the second solution, all data

elements that may be needed by remote processes are sent over the wire. Furthermore,

the programmer needs to explicitly compute, send, and receive these nodes, thus con-

servatively estimating data dependencies. While the first approach is simpler to use

and minimizes the amount of sent data, the second approach works better on higher

latency machines such as MPI clusters.

As previously mentioned, the SPLASH2 Barnes-Hut algorithm solves the load balance

problem using the costzones tree partitioning technique [SHT+95]. Nevertheless, the

tree building phase can become a scalability bottleneck when the top of the tree com-

putation takes a significant fraction of the entire tree computation time. This is the

case since the top tree computation is replicated among all processes and provides no

speedup. Moreover, it grows in size as the number of processors increases; the top

tree size increase is needed to maintain load balance among the smaller subtrees. A

trade-off naturally occurs between the load balance accuracy and the overhead from

building a larger replicated top tree.

The CGD Barnes-Hut implementation uses global distribution arguments to read re-

mote tree nodes during the force computation phase, and write remote tree nodes dur-

ing the tree building phase. Although the CGD semantics is more restrictive, it en-

ables several optimizations by ensuring that these distributed trees are accessed only

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 62

for read or write operations. Not only does this reduce the explicit fine-grain synchro-

nization between concurrent writers to a single barrier, it also allows datastructure

access optimizations such as caching remote elements into local memory and buffering

writes into batches.

When processes read remote elements from a global distribution datastructure, the

CGD runtime will use the fastest communication primitive to retrieve the elements,

store them locally, and provide them to the application; on CC-SAS machines, these

operations translate into remote cache line reads and local writes. When the working

set size exceeds the processor cache size, the CGD mechanism becomes more efficient

than simply accessing remote memory locations each time the element is needed; when

incurring a cache miss, the CGD application will read elements from local memory

rather than remote memory. The CGD model allows this optimization by ensuring

that these distributed datastructure are accessed only for read.

When processes write remote elements to a global distribution datastructure, the CGD

runtime will first queue the write requests, and then will send and execute them on

remote processes in batches; on CC-SAS machines, these operations translate to copy-

ing data elements to local memory blocks, transferring the blocks from local to remote

memory, and having remote processes copy the memory blocks to remote data ele-

ments. The CGD solution is faster than writing remote data elements one by one as

it eliminates fine-grain synchronization and avoids cache line false-sharing. The CGD

model allows this optimization by ensuring that these distributed datastructures are

never accessed for read, and the time and order in which writes take place are ir-

relevant to the correctness of the algorithm. The CGD semantics requires that any

sequential ordering of the local and remote writes that preserve the sequential order-

ing of the operations executed by each process leads to a correct result. In particular,

inserting particles into trees in any order will produce the same correct tree during

the Barnes-Hut tree building step.

CHAPTER 2. COARSE GRAIN DATAFLOW PROGRAMMING MODEL 63

Figure 2.8: CGD dataflow for Barnes-Hut iteration: i) a tree partition tree_top01 is
computed by score and balance based on particle computation weight; ii) a tree is cre-
ated by makeTree by inserting all particles into the top of the tree; and iii) the particle
position is computed by advance after evaluating centerMass for tree nodes and force
for particles. Data nodes with distributions followed by the + sign allow for global
datastructure domain access.

Chapter 3

Language Specification

This chapter introduces a programming language that implements the CGD parallel

programming model presented in Chapter 2. The CGD language is a coordination lan-

guage with dataflow semantics that describes parallelism at a high-level, and relies on

existing languages to specify its sequential components. First, we give an overview of

the essential CGD language features, and discuss some design alternatives. The fol-

lowing sections introduce the main language elements, starting with types, constants,

and distribution rules, followed by SPMD functions, dataflow functions, and language

constructs for dataflow computation nodes. Finally, Section 3.6 illustrates three CGD

applications, along with an analysis of their implementation and optimization effort.

Application Structure The implementation of a CGD application requires two code

sections to be provided. The top-level section is written in the CGD coordination lan-

guage, and describes data and task parallelism, as well as data and computation as-

signment. The low-level section is written in C++, and contains sequential computa-

tions, data types, and decomposition definitions. The compiler uses the dependencies

provided by the top layer to generate C++ code that includes communication, synchro-

nization, data handling, and an ordering of sequential computations (Section 4.1).

64

CHAPTER 3. LANGUAGE SPECIFICATION 65

In most cases, this code structure forces a clear separation between a shorter top-

level parallel section and a lengthier low-level sequential section. This separation

encourages programmers to consider and exploit parallelism during the design stage,

while at the same time making the most common forms of parallelism easier to express

and less prone to errors.

The advantage of a top-level parallel and low-level sequential code structure becomes

more prominent in large projects, where programmers are assigned tasks based on

their skill set. Structuring large-scale numerical solvers proved beneficial during our

work at the Geophysical Fluid Dynamics Laboratory affiliated with Princeton Uni-

versity: on the one hand, sequential “kernels” were written by physicists, and on the

other, higher-level “drivers” were written largely by computer scientists. The “ker-

nels” mostly contained the numerical methods specific to each PDE solver, while the

“drivers” acted as a glue, calling both “kernels” and data distribution primitives. Al-

ternatively, allowing an arbitrary parallel code structure would typically require all

programmers to understand parallel performance bottlenecks and optimize parallel

codes. This would therefore demand a high-level of specialized training for all engi-

neers and scientists.

Language Overview CGD is a functional language with dataflow semantics that

inherits some of the features first introduced by the Lucid and Id programming lan-

guages [AW80, Jag95]. The CGD language includes a small set of constructs needed

to declare types and sequential computations, and to define dataflow graphs and dis-

tribution rules.

If all types are declared in CGD, datastructure and domain types are arbitrarily de-

fined by users in C++ subject to certain constraints. Subsequently, the language de-

fines template datastructure decomposition and redistribution types based on these

user types (Section 3.1). Although sequential computations are declared in CGD, they

are implemented as C++ functions with standardized signatures (Section 3.5.2).

CHAPTER 3. LANGUAGE SPECIFICATION 66

Parallelism is exposed in CGD by defining dataflow functions (Section 3.5.3). These

functions represent a dataflow graph with data and computation nodes, and are writ-

ten as a sequence of computations taking both input and output arguments. Each

computation represents a computation node, and its input and output data node argu-

ments represent its predecessors and successors in the dataflow graph, respectively.

Computations can be SPMD functions, dataflow functions, iterative language con-

structs, and conditional language constructs (Section 2.2). The semantics of these

constructs is similar to other functional languages: i) iterative constructs assign the

output values produced by one iteration to the inputs consumed by the following itera-

tion; and ii) conditional constructs compute the same output datastructure distribution

by evaluating one of two branches.

The language introduces the notion of distribution rules to mitigate the need for datas-

tructure decomposition transformation (Section 3.4). These rules are defined in the

global and local scopes, and are used to automatically create dataflow graph links be-

tween data nodes with identical datastructures.

Code Generation The compiler transforms a dataflow function into parallel C++

code first by topologically ordering the computation nodes, and then, by adding commu-

nication, synchronization, and other operations (Section 4.1.3). Hence, the resulting

C++ code contains sequential C++ function calls corresponding to computation nodes,

and collective communication and synchronization operations corresponding to redis-

tribution operations. The generic collective communication runtime library supports

several underlying communication protocols including MPI, SHMEM, and pthreads.

Discussion A dataflow coordination language such as CGD generally has several

benefits vs. a pure dataflow programming language such as Lucid [JHRM04]. Particu-

larly, CGD benefits include language simplicity and the ability to embed iterative lan-

guage computations. This approach takes advantage of the programmer’s familiarity

CHAPTER 3. LANGUAGE SPECIFICATION 67

Table 3.1: Type declaration syntax

Declaration Syntax

Domain type range DOMTYPE;

Datastructure

non-decomposable type data DATATYPE;

decomposable type data DATATYPE [DISTTYPELIST];

Distribution type partition <DOMTYPE> DISTTYPE [DISTTYPELIST];

Multi-distribution type mpartition <DOMTYPE> DISTTYPE [DISTTYPELIST];

Redistribution of

distribution type swap <DOMTYPE> REDISTTYPE [DISTTYPELIST];

multi-distribution type mswap <DOMTYPE> REDISTTYPE [DISTTYPELIST];

with mainstream programming languages, leverages decades-old sequential compiler

optimization technology, and encourages the reuse of existing codes and off-the-shelf

solutions.

This chapter starts by presenting the syntax for type declaration, type definition, con-

stant declaration, and redistribution rule definition (Section 3.1). It then describes

SPMD function declaration, and the constructs needed to define dataflow functions

(Section 3.5). Finally, three applications and their CGD implementation are presented:

the stencil computation, the NPB FT, and the Barnes-Hut N-body simulation (Sec-

tion 3.6). Throughout this chapter, the presentation of the language syntax is aided by

informal syntax tables and code fragments from the NPB FT “slab” implementation

(Section 2.3.2).

3.1 Types

Domains The CGD language defines types for domains or ranges, which represent

subsets of datastructure elements (Section 2.1). Domain types are declared using the

type range keywords followed by the domain type name (Table 3.1). Domain types are

arbitrary types defined by users in C++ by providing a minimum set of data-handling

CHAPTER 3. LANGUAGE SPECIFICATION 68

operators: equal, included, intersect, copy, and size. Consider the NPB FT example in

Fig. 3.1:

type range Range3D;

This statement declares a new domain type, Range3D, representing block regions of a

3D grid; this domain is defined in C++ as a structure with six elements that hold the

start and end values for each X,Y, and Z coordinate.

Datastructures CGD defines types for arbitrary distributed datastructures (Sec-

tion 2.1). Datastructures are decomposable when their elements can be decomposed

using a domain type; otherwise, datastructures are non-decomposable. Datastructure

types are declared using the type data keywords followed by the datastructure type

name and an optional list of compatible distribution types (Table 3.1). The latter are

distribution types that can decompose the datastructure; when the list is empty, the

datastructure is non-decomposable. Datastructures are defined by users in C++ by

implementing a set of operators including alloc, get, set, copy, to, from, and size. The

following example declares a decomposable 3D vector type (Fig. 3.1):

type data Vector3Dcplx [PartRange3D];

Here, the Vector3Dcplx type represents a 3D vector of complex numbers implemented

in C++ using a template array provided by the runtime. The vector can be decom-

posed using PartRange3D distributions, which are assignments of Range3D domains

to processes.

Distributions The language defines distribution or partition types, which represent

an assignment of domains to processes (Section 2.2). Distribution types are declared

using the type partition or type mpartition keywords followed by the domain type, dis-

tribution type, and a list of compatible distribution types; distributions assign at most

one domain to each processor, while multi-distributions assign any number of domains

CHAPTER 3. LANGUAGE SPECIFICATION 69

1 // DOMAIN Types
2 type range Range3D;
3
4 // DISTRIBUTION Types
5 type partition <Range3D> PartRange3D [PartNP];
6
7 // REDISTRIBUTION Types
8 type swap <Range3D> SwapRange3D [PartNP];
9

10 // DATASTRUCTURE Types
11 type data Setup, Checksums, Int, Bool, Cplx;
12 type data Vector3Dcplx [PartRange3D];
13 type data <Cplx> ArrayCplx [PartNP];
14
15 // Constant Datastructures
16 const Setup sp [ALL1];
17 const Int niter [ALL1], fdir [ALL1], finv [ALL1], lay1d [ALL1];
18 const PartRange3D dom0 [ALLn], dom1 [ALLn], dom2 [ALLn];
19 const SwapRange3D sw01 [PPEn], sw12 [PPEn], sw21 [PPEn];
20 const SwapRange3D sw10 [PPEn], sw02 [PPEn], sw20 [PPEn];
21
22 // DISTRIBUTION RULES
23 part sw01 : dom0 -> dom1;
24 part sw12 : dom1 -> dom2;
25 part sw21 : dom2 -> dom1;
26 part sw10 : dom1 -> dom0;
27 part sw02 : dom0 -> dom2;
28 part sw20 : dom2 -> dom0;

Figure 3.1: NPB FT type declarations, constants, and distribution rules

to each processor (Table 3.1). Programmers only declare distribution types in CGD;

the distribution type implementation is automatically generated by the compiler. The

distribution type used by the previous examples is defined in Fig. 3.1:

type partition <Range3D> PartRange3D [PartNP];

The PartRange3D type represents distributions assigning Range3D domains to pro-

cesses; i.e., it represents arbitrary decompositions of 3D grids. The distribution itself

is decomposed according to a predefined distribution, PartNP, described later in this

section.

Redistributions The CGD language defines redistribution or swap types, which

represent transformations between arbitrary datastructure distributions. Particu-

CHAPTER 3. LANGUAGE SPECIFICATION 70

Table 3.2: Constant declaration syntax

Declaration Syntax

Constant datastructure const

local domain DATATYPE CONST[CONSTDIST], ...,

global domain DATATYPE CONST[CONSTDIST+], ...;

larly, redistribution distribution rules are defined in terms of redistribution datas-

tructures (Section 2.1). Redistribution types are declared using the type swap or type

mswap keywords followed by the domain type, redistribution type, and a list of compat-

ible distribution types. Redistributions of distributions and multi-distributions trans-

form the datastructures decomposed by distributions and multi-distributions, respec-

tively (Table 3.1). Similar to distributions, redistribution types are declared in CGD,

but their C++ implementation is generated automatically. Redistributions are repre-

sented as matrices of domains that are exchanged between processes to build a new

datastructure decomposition (Section 3.4). The NPB FT example declares the redistri-

bution types as follows (Fig. 3.1):

type swap <Range3D> SwapRange3D [PartNP];

Here, SwapRange3D is a matrix of Range3D domains, which are copied between pro-

cesses to transpose, for example, a Vector3Dcplx vector from block-row to block-column

organization.

3.2 Constants

The CGD language supports the definition of constant datastructures. Constants are

declared by adding the const keyword before a list of type and datastructure distribu-

tion declarations (Table 3.2). Consider the example shown in Fig. 3.1:

const Setup sp [ALL1];

CHAPTER 3. LANGUAGE SPECIFICATION 71

Table 3.3: Predefined distribution types

Distribution No of data All assigned to All assigned to One element
type elements single proc all procs assigned per proc

PartOne 1 ONE1 ALL1

PartNP n ONEn ALLn PPEn

Here, constant datastructure sp with type Setup is replicated among all processes ac-

cording to distribution ALL1; the sp[ALL1] data node represents an implicit input

to all dataflow functions (Section 3.5.3). Constant datastructures are set during the

initialization phase before any dataflow functions are executed (Section 4.1).

3.3 Predefined Distributions

CGD defines predefined distributions to break the circular dependency between dis-

tribution data nodes and their own distribution. CGD data nodes are 〈datastructure,

distribution〉 pairs, and are therefore always defined in terms of distributions. Distri-

butions are datastructures assigning domains to processes; however, the entire assign-

ment is not necessarily replicated among all processes, especially when the assignment

changes at runtime. Subsequently, distribution datastructures are also distributed

among processes according to a distribution. This circular dependency is solved by

relying on predefined constant distributions that can partition distributions, redistri-

butions, and non-decomposable datastructures.

PartOne Distributions with the predefined type PartONE assign one element to n

processes; accordingly, non-decomposable datastructures are replicated among pro-

cesses based on PartONE distributions (Table 3.3). Predefined distribution ONE1 as-

signs the element to a single process, and distribution ALL1 assigns the element to all

processes. E.g., the constant integer niter[ALL1] from line 17 in Fig. 3.1 is replicated

among all processes.

CHAPTER 3. LANGUAGE SPECIFICATION 72

PartNP Distributions with the predefined type PartNP assign n element arrays to

n processes (Table 3.3). Predefined distribution ALLn assigns all n elements to each

process, and distribution PPEn assigns element i only to process pi. Particularly, dis-

tribution assignments and redistribution matrices are decomposed using distributions

with type PartNP. E.g., the domain assignment dom0[ALLn] is fully replicated among

all processes, while redistribution matrix sw01[PPEn] is decomposed among processes

by assigning the domains that are sent and received by pi only to pi (lines 18–19 in

Fig. 3.1).

3.4 Distribution Rules

The CGD language supports distribution rules to the facilitate dataflow graph defini-

tion by reducing the number of datastructure transformations (Section 2.1). Distri-

bution rules are applied to automatically add missing links between data nodes that

have different distributions but identical datastructures. These rules are defined in

the global and local dataflow function scopes (Section 3.5).

Distribution rules are generically defined in terms of distributions rather than datas-

tructures; accordingly, they apply to all data nodes from the graph that use these dis-

tributions. This approach delegates some of the programmer’s responsibilities: the

programmer defines the rules once, and the compiler applies them to all relevant

datastructures throughout the application. E.g., lines 23-28 in Fig. 3.1 defines the

six rules needed by the entire NPB FT application to transpose 3D complex vectors be-

tween the block-X,Y, Z decompositions. The CGD language currently supports three

rule types:

Inclusion The inclusion distribution rule states that distribution X is smaller than

distribution Y , i.e., (∪Xij) ⊂ (∪Yij) for 0 ≤ i < n. Subsequently, distribution Y of a

CHAPTER 3. LANGUAGE SPECIFICATION 73

Table 3.4: Distribution rules syntax

Rule Operation Syntax

Inclusion none part DISTX < DISTY < DISTZ ...;

Union local data copy part DISTX = DISTY + DISTZ ...;

Redistribuion local, remote data copy part REDISTS : DISTX -> DISTY;

datastructure A can be transformed to data node A[X] without performing any opera-

tions. Inclusion rules are specified as an ordered sequence of distributions (Table 3.4).

Union The union distribution rule states that distribution X is the union of distri-

butions Y , Z, ..., i.e., ∪Xij = (∪Yij) ∪ (∪Zij) ∪ . . . for 0 ≤ i < n. Then, distribution

X of a datastructure A can be produced by merging the local data domains from data

nodes A[Y] and A[Z]. The compiler tries to assign all A[X], A[Y], and A[Z] data nodes

to the same C++ datastructure (Section 4.1.3); when this is successful, the merge op-

eration is avoided. Union rules are specified as a target distribution followed by a list

of component distributions (Table 3.4).

Redistribution The redistribution distribution rule states that distribution X can

be transformed into distribution Y by changing the assignment of subdomains accord-

ing to redistribution matrix S. For each source domain Xi and target domain Yj , Sij

specifies a common subdomain, if any, that has to be moved from Xi to Yj to create the

target distribution Y . Subsequently, a data node A[X] can be transformed into data

node A[Y] using redistribution matrix S. Similar to the union rule, redistributions

avoid copying the intersection between the source and target domains when both data

nodes are assigned to the same C++ datastructure. E.g. the stencil computation from

Section 3.4 copies only the “halo” elements instead of the entire “halo” domains dur-

ing the redistribution or “halo exchange” step. Redistribution rules are specified as a

redistribution, followed by the source and target distributions (Table 3.4).

Redistribution matrices are defined by the user; however, they can be computed using

CHAPTER 3. LANGUAGE SPECIFICATION 74

Table 3.5: Dataflow and SPMD function syntax

Declaration Syntax

Dataflow function function FUNCNAME (INARG , ... -> OUTARG , ...)

Argument list

decomposable DATATYPE ARG [DISTARG], ...,

non-decomposable DATATYPE ARG, ...,

global domain DATATYPE ARG [DISTARG+], ...

Dataflow graph { DATAFLOWGRAPH }

SPMD function function FUNCNAME (INARG , ... -> OUTARG , ...)

Argument list

decomposable DATATYPE ARG [DOMARG], ...,

non-decomposable DATATYPE ARG, ...,

in-out DATATYPE ARG* [DOMARG], ...,

global domain DATATYPE ARG [DOMARG+], ...;

a predefined function when the source and target distributions are fully replicated,

i.e., both distributions have the ALLn distribution. This function can be used when

the intersection operator is defined by the distribution domain type.

3.5 Dataflow and SPMD Functions

The CGD language provides dataflow and SPMD functions, which represent the sub-

graph and SPMD computation nodes from the CGD graph (Section 2.2). The input and

output arguments of these functions are data nodes representing the predecessors and

successors of the computation node, respectively. Both dataflow and SPMD functions

are declared in the CGD language. Dataflow functions are implemented in CGD by

specifying a dataflow graph after the function declaration. SPMD functions are imple-

mented in C++ as sequential functions taking domains of the input datastructures as

input and producing domains of the output datastructures as output.

CHAPTER 3. LANGUAGE SPECIFICATION 75

Declaration Dataflow functions are declared first by specifying the list of input and

output arguments, then by defining the type and distribution of each argument (Ta-

ble 3.5). The distribution corresponding to each argument can be a constant distribu-

tion, or another argument passed to the function. Input distribution arguments can

be assigned to both input and output arguments, whereas output distributions are as-

signed only to output arguments. Moreover, the argument type and its distribution

type have to be compatible; the datastructure type declaration specifies a list of com-

patible distribution types (Table 3.1). As a simple example, consider the declaration of

function fft from Fig. 3.2:

function fft (A -> D)

Vector3Dcplx A[dom0], D[dom2]

{ ... }

Here, function fft takes as input argument A with constant distribution dom0 (XY

planes), and produces as output argument D with constant distribution dom2 (XZ

planes). Both arguments are 3D vectors with type Vector3Dcplx, which can be parti-

tioned by 3D decompositions with type PartRange3D (Fig. 3.1 line 12); hence, distri-

butions dom0 and dom2 with type PartRange3D are compatible with datastructures A

and B.

Similar to dataflow functions, SPMD functions are declared by specifying a list of ar-

guments, followed by the type and domain of each argument (Table 3.5). The argument

type and its domain type have to be compatible, i.e., the domain type has to be used

by a distribution type compatible with the argument type. Fig. 3.2 illustrates such an

example:

function cffts1 (sp, dir, A, dom -> A*)

Setup sp, Int dir, Range3D dom,

Vector3Dcplx A[dom], A*[dom];

CHAPTER 3. LANGUAGE SPECIFICATION 76

Function cffts1 takes as input arguments sp, dir, and the dom domain of argument

A, and produces as output the same dom domain of argument A*. Vector3Dcplx is

compatible with distribution type PartRange3D, which uses domain type Range3D;

hence, the 3D dom domain is compatible with 3D vector A. This declaration contains

non-decomposable datastructures sp and dir, and in-out arguments A and A*, which

are addressed later in this section.

Both dataflow and SMD function declarations require all arguments to have explicit

types. This requirement is needed by the compiler to infer all of the data node types

from the function argument types (Section 4.1.2).

Non-Decomposable Arguments The declaration of an argument requires no ex-

plicit distribution or domain when the argument is a non-decomposable datastructure

(Table 3.5). However, when the function is invoked, the data node corresponding to

the non-decomposable datastructure argument requires a distribution with the Par-

tOne type (Table 3.3). The ALL1 distribution is used by default when a data node

does not specify a distribution; this feature makes the dataflow graph more readable,

replicating the scalars to all processes by default. Fig. 3.2 shows the declaration and

invocation of function cffts1:

function cffts1 (sp, dir, A, dom -> A*)

Setup sp, Int dir, ... ;

...

cffts1 (sp, fdir, A[dom0] -> B[dom0]);

When SPMD function cffts1 is executed, the computation assigned to process pi takes

as arguments a copy of non-decomposable datastructures sp and dir, and the dom0i

domain of datastructures A and B.

In-out Arguments SPMD functions support in-out arguments that are declared by

specifying the same argument name as both an input and an output, and by adding

CHAPTER 3. LANGUAGE SPECIFICATION 77

Table 3.6: Local and global data domain access examples

Domain Access Runtime Operation Example

All arguments local none f(A[X] -> B[Y]);

Input global, output local remote reads, cached f(A[X+] -> B[Y]);

Input local, output global remote writes, buffered f(A[X] -> B[Y+]);

an asterisk sign after the output argument name to differentiate between the two. An

in-out argument can have different input and output distributions. A simple example

is the cffts2 function from the NPB FT benchmark (Fig. 3.2):

function cffts2 (sp, dir, A, dom -> A*)

Vector3Dcplx A[dom], A*[dom], ... ;

...

cffts2 (sp, fdir, B[dom1] -> C[dom1]);

Here, the cffts2 computation node takes B[dom1] as an input and produces C[dom1] as

an output. The function declaration maps both data nodes to the same in-out argument

A[dom] which is read and written by the C++ implementation of cffts2.

A dataflow graph that contains a computation node with an in-out argument uses

one input data node to represent the data before being modified, and one output data

node to represent the data after modification. After the graph is ordered, the compiler

replicates the input data node when required by a computation scheduled at a later

time.

3.5.1 Local and Global Domain Access

Local Domain Access Dataflow and SPMD functions have arguments that support

local domain access by default; when this feature is active, the corresponding sequen-

tial functions executed by a process can only access datastructure domains assigned

to that particular process. In Fig 3.8, the CGD Barnes-Hut implementation uses local

CHAPTER 3. LANGUAGE SPECIFICATION 78

domain access to compute the center of mass for the bottom of the tree nodes:

function ctrmassb (body, bot -> node)

BodyPM body[bot], NodePM node[bot], Tree bot;

...

ctrmassb (body_pm [tree_bot] -> node_pm [tree_bot]);

Here, all ctrmassb computations assigned to pi access only the local data elements from

bodypm[treeboti] and nodepm[treeboti] that are assigned to pi.

We recall from (2.11) that distribution domains are not always disjoint, and allow data

replication among processes. If local distribution arguments provide the benefits of

replication and locality, they require knowing and defining data dependencies before-

hand; e.g., programmers have to define which domain treeboti of datastructure bodypm

is needed by computation ctrmassb to produce nodepm[treeboti]. A good example is

the optimized stencil benchmark from Section 2.3.1, which uses local domain access

to considerably reduce communication cost by exploiting both locality and replication

(Section 4.10).

Global Domain Access Dataflow and SPMD functions can have arguments that

support global domain access; when this feature is enabled, the corresponding sequen-

tial functions executed by a process can access data domains assigned to any process.

Global domain access is enabled by adding a plus sign after the distribution name

when declaring a function, and when calling it from a dataflow graph (Table 3.5). The

Barnes-Hut implementation uses global domain access to compute the center of mass

for the top of the tree nodes (Fig 3.8):

function ctrmasst (node, top, bot -> node2)

NodePM node[bot+], node2[top], Tree top, bot;

...

ctrmasst (node_pm [tree_bot+] -> node_pm2 [tree_top]);

CHAPTER 3. LANGUAGE SPECIFICATION 79

The ctrmasst computations assigned to pi access any tree nodes from nodepm to com-

pute nodepm2[treetopi]; if any nodes can be accessed globally, nodepm[treeboti] nodes

are accessed locally. Table 3.6 summarizes the common use cases for both local and

global domain access.

Several restrictions apply to functions using global arguments: global arguments can-

not be in-out arguments, and datastructures using global arguments support remote

element access via set and get operators implemented based on runtime primitives.

Global arguments provide greater access flexibility, and do not require knowing all

data elements needed by a computation beforehand. This feature can prove useful

when implementing irregular applications such as the Barnes-Hut N-body simulation

presented in Section 2.3.3.

Discussion The CGD language provides both a faster local mechanism and a slower

global mechanism for accessing distributed datastructures. The best solution depends

on the application type and implementation complexity. Applications such as PDE

solvers and other structured scientific codes can generally rely on local distribution

arguments and redistribution rules to avoid using global domain access altogether.

Applications such as N-body simulations and other irregular codes benefit from global

domain access: they can access any data elements while maintaining fast access to

local data domains. While accessing local elements is always faster than accessing

remote elements, the remote access overhead highly depends on machine architecture

and runtime performance.

CGD dataflow semantics allows several remote datastructure access optimizations.

Read-only arguments benefit from local memory caching, since these datastructures

are not modified until the computation is completed. On ccNUMA machines, this opti-

mization improves the efficiency of globally shared datastructures when data sets are

large, and the cumulative size of the remote reads exceeds the single-processor cache

CHAPTER 3. LANGUAGE SPECIFICATION 80

size (Section 4.2.6). Similarly, write-only argument access is optimized by buffering

writes and committing them in batches, since the write order is irrelevant. This so-

lution leads to a higher write throughput by avoiding fine-grain message latency and

ping-pong write-sharing pitfalls.

3.5.2 SPMD Functions

SPMD functions represent the SPMD computation nodes from the CGD graph, and

they take input and output 〈datastructure, distribution〉 arguments (Section 2.2). These

functions are declared in the CGD language but are implemented as a sequential C++

functions. When SPMD function f is executed in parallel, each process pi executes

sequential function f for each tuple of datastructure domains assigned to pi by the

distribution of each argument. The following example shows the declaration and invo-

cation of function cffts2 used by NPB FT to compute Y-wise FFTs (Fig. 3.2):

function cffts2 (sp, dir, A, dom -> A*)

Setup sp, Int dir, Range3D dom,

Vector3Dcplx A[dom], A*[dom];

...

cffts2 <ALL1> (sp[ALL1], fdir[ALL1], B[dom0] -> C[dom0]);

When this computation node is executed, the cffts2 sequential computation assigned

to process pi takes as input the sp and fdir constants, as well as the dom0i domain (XY

planes) of 3D vector B, and produces as output the dom0i domain of 3D vector C.

For simplicity’s sake, distributions can be mixed with multi-distributions when calling

an SPMD function (Table 3.1). All multi-distributions assign the same number of

domains to each process, and all distributions assign a single domain to each process.

Process pi executes function f for each domain assigned to pi by multi-distribution

arguments; the single domain assigned to pi by distribution arguments is used for all

function calls. For example, during the execution of SPMD computation node f , which

CHAPTER 3. LANGUAGE SPECIFICATION 81

1 // SPMD Function Declaration
2
3 function cffts1 (sp, dir, A, dom -> A*) // X-WISE FFT
4 Setup sp, Int dir, Range3D dom, Vector3Dcplx A[dom], A*[dom];
5
6 function evolve (sp, idx, u0, dom -> u1) // FORWARD TIME
7 Setup sp, Int idx, Range3D dom,
8 Vector3Dcplx u0[dom], u1[dom];
9

10 // DATAFLOW Function Definition
11
12 function mainLoop (-> success) // MAIN
13 Bool success[ALL1]
14 {
15 init_checksums (sp -> cksum); // Initialization
16 compute_init_cond (sp -> u0[dom0]);
17
18 fft (u0[dom0] -> u1[dom2]); // Direct transform
19
20 loop (iter, cond; cksum[ONE1] -> cksum2[ONE1]) // Main loop
21 {
22 evolve (sp, iter, u1[dom2] -> u2[dom2]); // Time forward
23
24 ifft (u2[dom2] -> u3[dom0]); // Inverse transform
25
26 checksum (iter, u3[dom0], cksum -> cksum2); // Global checksum
27 econd (niter, iter -> cond); // End condition
28 }
29 verify <ONE1> (sp, cksum2[ONE1] -> success[ONE1]);
30 }
31
32 function fft (A -> D) // DIRECT FFT
33 Vector3Dcplx A[dom0], D[dom2]
34 {
35 cffts1 (sp, fdir, A[dom0] -> B[dom0]); // X-wise FFT
36
37 if (lay1d, B[dom0] -> C[dom2]) { // 1D layout
38 cffts2 (sp, fdir, B[dom0] -> C[dom0]); // Y-wise FFT
39
40 } else { // 2D layout
41 cffts2 (sp, fdir, B[dom1] -> C[dom1]); // Y-wise FFT
42 }
43 cffts3 (sp, fdir, C[dom2] -> D[dom2]); // Z-wise FFT
44 }
45
46 function checksum (iter,x,cksum, dom -> cksum2) // GLOBAL CHECKSUM
47 Int iter[ALL1], PartRange3D dom[ALLn],
48 Vector3Dcplx x[dom], Checksums cksum[ONE1], cksum2[ONE1]
49 {
50 checksum_dom <ALL1> (x[dom] -> c1[PPEn]);
51 sumproc <ONE1> (c1[ONEn] -> c2[ONE1]);
52 checksum_set <ONE1> (sp,c2[ONE1],iter,cksum[ONE1] -> cksum2[ONE1]);
53 }

Figure 3.2: NPB FT dataflow and SPMD functions

CHAPTER 3. LANGUAGE SPECIFICATION 82

takes data nodes A[X] and B[Y] as inputs and produces data node C[Z] as an output,

process pi executes the following sequential computations:

C[Zij]← f(A[Xi], B[Yij]) for 0 ≤ j < |Zi| (3.1)

where X is a distribution, Y and Z are multi-distributions, and |Xi| = 1, |Yi| = |Zi| for

all 0 ≤ i < n; the same A[Xi] argument is used when calling f for each B[Yij] argument.

A similar example is the cffts2 function invocation from the optimized NPB FT “slab”

implementation (Fig. 4.2):

cffts2 <mdom1> (sp[ALL1], fdir[ALL1], B[mdom1] -> C[mdom1]);

Here, each process pi executes |mdom1i| sequential functions that take as arguments

the “slab” domains mdom1ij of datastructures B and C, and the same sp[ALL1i] and

fdir[ALL1i] constants.

3.5.3 Dataflow Functions

Dataflow functions represent the subgraph computation nodes from the CGD graph

(Section 2.2). A dataflow function takes input and output data node arguments and

embeds a dataflow graph that produces the output arguments based on the input ar-

guments. A dataflow function definition consists of a function declaration and dataflow

graph (Table 3.5).

The body of dataflow functions is specified as a sequence of computation nodes that

take input and output data node arguments. Computation nodes are iterative con-

structs, conditional constructs, SPMD function invocations, and dataflow function in-

vocations (Table 3.7). The order of these computations is irrelevant since they repre-

sent graph nodes, and the final execution order is generated by topologically ordering

the CGD graph.

For example, dataflow function fft from line 32 in Fig. 3.2 computes the direct FFT

CHAPTER 3. LANGUAGE SPECIFICATION 83

Table 3.7: Computation node and dataflow graph syntax

Construct Syntax

Function invocation FUNCNAME <TASK> (INARG[DIST], ... -> OUTARG[DIST], ...);

Conditional construct if (COND; INARG[DIST], ... -> OUTARG[DIST], ...)

eval if COND { TRUEDATAFLOWGRAPH }

else

eval unless COND { FALSEDATAFLOWGRAPH }

Iterative construct loop (IDX, COND; INARG[DIST], ... -> OUTARG[DIST], ...)

eval while COND { DATAFLOWGRAPH }

Dataflow graph FUNCTIONINVOCATION; ... ;

computation node ITERATIVECONSTRUCT; ... ;

sequence CONDITIONALCONSTRUCT; ... ;

transform of a 3D vector; it includes three SPMD functions that compute X-wise, Y-

wise, and Z-wise FFTs on local domains, and it employs a conditional construct to

choose between the 1D and 2D decomposition layouts. When the 1D layout is enabled,

the compiler adds a redistribution operation that transposes the 3D vector between the

dom0 (XY-plane) and dom2 (XZ-plane) decompositions using the sw02 redistribution

rule from line 27 in Fig. 3.1 (Section 4.1.3).

Function Invocation SPMD function invocations represent the SPMD computa-

tion nodes from the CGD graph; similarly, dataflow function invocations represent the

subgraph computation nodes from the CGD graph (Section 2.2). A function invoca-

tion takes input and output data node arguments, and an optional task distribution

argument specified prior to the argument list (Table 3.7). Let us consider the exam-

ple in Section 3.5.2, where SPMD function cffts2 takes multi-distribution data node

arguments:

cffts2 <mdom1> (sp, fdir, B[mdom1] -> C[mdom1]);

The explicit task argument <mdom1> ensures that exactly |mdom1i| computations are

assigned to each process pi.

CHAPTER 3. LANGUAGE SPECIFICATION 84

When the task distribution is not supplied, the ALL1 distribution is used instead; this

means that, by default, a single computation is executed by each process. When a

computation node takes data node arguments that do not specify a distribution, the

PPEn distribution is used by default for datastructure arguments with distribution

types, and the ALL1 distribution is used by default for all other types; e.g., in the

previous example, arguments sp and fdir are assigned the default distribution ALL1.

Conditional Constructs Conditional constructs correspond to conditional compu-

tation nodes in the CGD dataflow graph (Section 2.2). Being computation nodes, con-

ditional constructs take input and output datastructure distribution arguments; how-

ever, they have an additional condition argument and embed two dataflow subgraphs

(Table 3.7). One subgraph is evaluated when the condition argument is true, while the

other subgraph is evaluated when the condition argument is false.

While both subgraphs produce the same output data nodes, they might depend on dif-

ferent input data nodes. The conditional computation node depends on all data nodes

required by either subgraph. When the two subgraphs require different distributions

for the same datastructure, an explicit distribution is specified through an input data

node. This rule avoids ambiguity, ensuring that the distribution of an input datastruc-

ture is known before the condition is evaluated, and thus, data transformations and

communication can be scheduled in advance.

The following example shows how dataflow function fft from lines 37–43 in Fig. 3.2

computes the Y-wise FFTs using either the 1D or 2D decomposition layouts:

if (lay1d, B[dom0] -> C[dom2]) {

cffts2 (sp, fdir, B[dom0] -> C[dom0]);

} else {

cffts2 (sp, fdir, B[dom1] -> C[dom1]);

}

CHAPTER 3. LANGUAGE SPECIFICATION 85

This code produces the same C[dom2] output regardless of which branch is evaluated;

lay1d determines whether the dom0 or dom1 distribution is used to compute the lo-

cal FFTs; and B[dom0] is provided as an explicit conditional input since the branch

subgraphs take both B[dom0] and B[dom1] as inputs.

Iterative Constructs Iterative constructs represent the iterative computation nodes

from the CGD graph (Section 2.2). Similar to other computation nodes, iterative con-

structs take input and output datastructure distribution arguments; however, they

have additional end condition and index arguments, and include a dataflow subgraph

(Table 3.7). Iterative constructs are evaluated by executing the embedded subgraph

for multiple iterations until the end condition is satisfied.

The subgraph evaluation produces the subgraph outputs based on its inputs; the sub-

graph inputs are the loop inputs, and arbitrary data nodes from the parent graphs

(Fig. 2.4b). However, only the outputs of the subgraph are assigned to its inputs when

the loop evaluation continues; an assignment A[X]← B[Y] requires that A and B have

the same type, and distribution X can be obtained from distribution Y based on dis-

tribution rules. The compiler tries to assign corresponding loop inputs and outputs to

the same C++ datastructure to avoid local copy operations (Section 4.1.3).

The dataflow subgraph includes two special data nodes that are not visible to the par-

ent graph: i) the index data node represents an iteration count and is provided as an

input with no matching output; and ii) the end condition data node is produced as an

output with no matching input. The index input is only provided for convenience and

can be ignored if not needed.

Consider the main loop from the stencil example in Fig. 3.4, which updates all of the

grid values during each iteration:

loop (idx, cond ; A [cell] -> C [cell]) {

ftcs_step (cfg, A[halo] -> B[cell]);

CHAPTER 3. LANGUAGE SPECIFICATION 86

ftcs_step (cfg, B[halo] -> C[cell]);

end_cond (cfg, idx -> cond);

}

Each loop iteration produces the cell domain of grid C after applying two update steps

to the larger halo domains of grid A, followed by grid B. Here, the loop subgraph

has inputs A[cell] and idx[ALL1] provided by the iterative construct, and cfg[ALL1]

provided by the parent graph. If cond[ALL1] is false after the subgraph is evaluated,

C[cell] is assigned to A[cell] and the process is repeated; otherwise, C[cell] is produced

as an output of the iterative construct computation node.

3.6 Examples

This section presents the implementation of the three examples introduced in Sec-

tion 2.3: i) the stencil computation and two optimizations that aggregate communi-

cation steps and overlap communication and computation; ii) the NPB FT benchmark

and its “slab” optimization similarly overlapping communication and computation; and

iii) the SPLASH2 Barnes-Hut hierarchical N-body simulation.

These examples are first explored by analyzing relevant types and dataflow function

structure. We then showcase interesting language features exercised by selected code

fragments, and finally present a few high-level optimizations and discuss their imple-

mentation effort and performance impact.

3.6.1 Stencil Computation

This section illustrates the CGD implementation of the stencil kernel introduced in

Section 2.3.1. The application types and basic algorithm dataflow are outlined in

Fig. 3.3; additionally, two optimizations aggregating communication steps and over-

lapping computation with communication are shown in Figs. 3.4 and 3.5, respectively.

CHAPTER 3. LANGUAGE SPECIFICATION 87

1 // DOMAIN Types
2 type range Range2D;
3 type partition <Range2D> PartRange2D [PartNP];
4 type mpartition <Range2D> MPartRange2D [PartNP];
5 type swap <Range2D> SwapRange2D [PartNP];
6
7 // DATASTRUCTURE Types
8 type data Vector2Dreal [PartRange2D, MPartRange2D];
9 type data Int, Config;

10
11 // CONSTANT Datastructures
12 const PartRange2D cell[ALLn], halom[ALLn], halo[ALLn];
13 const MPartRange2D boundary[ALLn];
14 const SwapRange2D sw_chm[PPEn];
15 const Config cfg[ALL1];
16
17 // DISTRIBUTION RULES
18 part cell < halom < halo;
19 part boundary < halo;
20 part halo = halom + boundary;
21 part sw_chm : cell -> halom;
22
23 // DATAFLOW Functions
24 function mainLoop ()
25 {
26 // Initialize: A, BD
27 // Main loop: two updates, two redistributions
28 loop (idx, cond ; A [cell] -> C [cell])
29 {
30 copy (BD[boundary] -> A[boundary]);
31 copy (BD[boundary] -> B[boundary]);
32 ftcs_step (cfg, A[halo] -> B[cell]);
33 ftcs_step (cfg, B[halo] -> C[cell]);
34 end_cond (cfg, idx -> cond);
35 }
36 // Produce results: C
37 }

Figure 3.3: Stencil computation types and dataflow

The stencil kernel types are typical for applications working with grid decomposi-

tions: i) Range2D declares a 2D block region domain type; ii) PartRange2D and MPar-

tRange2D define distributions and multi-distributions assigning Range2D domains to

processes; iii) SwapRange2D defines redistributions between 2D block decompositions;

and iv) Vector2Dreal declares 2D arrays of real numbers that allow PartRange3D and

MPartRange3D type distributions. The cell and halo distributions are 2D block de-

compositions, as depicted in Fig. 2.5. While cell has disjoint domains, halo repli-

CHAPTER 3. LANGUAGE SPECIFICATION 88

cates the “halo” elements to neighbor processes; the boundary distribution contains

the enclosing boundary elements, and the halom distribution represents the halo do-

mains excluding the boundary elements. Accordingly, the distribution rule halo =

halom + boundary describes how boundary elements are added to create the halo dis-

tribution, and the sw_chm redistribution represents the “halo exchange” characteristic

of any stencil computation.

The loop computation from line 28 in Fig. 3.3 takes as input the system state in grid

A[cell], advances the system by two time steps, and produces as output the system

state in grid C[cell]; the iteration is complete after a predefined number of time steps.

Each ftcs_step computation requires the larger halo domains and produces the smaller

cell domains. Consequently, each iteration executes two cell → halom redistributions

along with two computation steps. The compiler moves the computations that copy the

boundary elements outside the loop, to avoid unnecessary work; such optimizations are

possible when computations do not depend on the loop inputs (Section 4.1.3).

The stencil kernel communication can be optimized by replicating computation and

aggregating communication steps (Section 2.3.1). The “merged step” optimization com-

putes the first ftcs_step update on larger halo2 domains and, produces halom rather

than cell domains (line 20 in Fig. 3.4). Subsequently, the two cell → halom redistribu-

tions from each iteration are replaced by a single cell → halom2 redistribution. This

optimization avoids the constant overhead of one extra communication step, trading

computation for latency.

The “merged step” optimization can be added to the basic stencil implementation with

a few easy steps (Fig. 3.3 vs. Fig. 3.4): i) new distributions are defined for halo2,

halom2, and boundary2 to represent larger domains; ii) the distribution inclusion

graph is augmented with new distribution rules; iii) the sw_chm redistribution is

changed accordingly; and iv) the main loop data nodes are changed to use the larger

domains.

CHAPTER 3. LANGUAGE SPECIFICATION 89

1 // DISTRIBUTION RULES
2 part cell < halom < halo < halo2;
3 part cell < halom2 < halo2;
4 part boundary < boundary2;
5 part boundary < halo;
6 part boundary2 < halo2;
7 part halo = boundary + halom;
8 part halo2 = boundary2 + halom2;
9 part sw_chm : cell -> halom2;

10
11 // DATAFLOW Functions
12 function mainLoop ()
13 {
14 // Initialize: A, BD
15 // Main loop: two updates, one redistribution
16 loop (idx, cond ; A [cell] -> C [cell])
17 {
18 copy (BD [boundary2] -> A [boundary2]); // larger domain
19 copy (BD [boundary] -> B [boundary]);
20 ftcs_step (cfg, A [halo2] -> B [halom]); // larger domain
21 ftcs_step (cfg, B [halo] -> C [cell]);
22 end_cond (cfg, idx -> cond);
23 }
24 // Produce results: C
25 }

Figure 3.4: Stencil computation aggregating two communication steps

1 // DISTRIBUTION RULES
2 part cell2 < cell < halom < halo;
3 part border < cell;
4 part boundary < halo;
5 part halo = boundary + halom;
6 part cell = cell2 + border;
7 part sw_chm : cell -> halom;
8
9 // DATAFLOW Functions

10 function mainLoop ()
11 {
12 // Initialize: A, BD
13 // Main loop: two updates, two overlapped redistributions
14 loop (idx, cond ; A [cell] -> C [cell])
15 {
16 copy (BD[boundary] -> A[boundary]);
17 copy (BD[boundary] -> B[boundary]);
18 ftcs_step (cfg, A[cell] -> B[cell2]); // overlapped
19 ftcs_step (cfg, A[halo] -> B[border]);
20 ftcs_step (cfg, B[cell] -> C[cell2]); // overlapped
21 ftcs_step (cfg, B[halo] -> C[border]);
22 end_cond (cfg, idx -> cond);
23 }
24 // Produce results: C
25 }

Figure 3.5: Stencil computation exploiting communication overlap

CHAPTER 3. LANGUAGE SPECIFICATION 90

Although the stencil kernel is computationally simple, this optimization is generally

applicable to PDE codes that exhibit similar computation-communication patterns,

i.e., “domain update” computations followed by “halo exchanges”. Let us consider the

process of adding the “merged step” optimization to a large scale application, which in-

cludes PDE solvers developed by several scientists. In CGD, the optimization requires

adding distributions and distribution rules (steps i-iii above), and trivially modifying

dataflow distributions. While the distribution rules are redefined once in the top-level

section, they allow the optimization of all “halo exchanges” throughout the entire ap-

plication. On the other hand, in message passing, this optimization requires reorga-

nizing the computation loops, data buffers, send and receive calls, and synchronization

primitives in each code section that employs a PDE solver.

Another stencil kernel optimization improves performance by overlapping the “halo

exchange” communication with the “domain update” computation (Fig. 3.5). Particu-

larly, each ftcs_step computation is split into a computation acting on the cell domains

that does not depend on the halo-cell elements, and the computation of the remaining

elements, which requires the halo elements. The compiler overlaps the first compu-

tation with the redistribution operation, since the computation does not depend on

the redistribution. Similar to the “merged step” optimization, implementing the sten-

cil overlap optimization only requires new distributions and distribution rules to be

added, and the main loop dataflow to be slightly altered.

3.6.2 NPB FT

This section presents the CGD implementation of the NPB FT benchmark first intro-

duced in Section 2.3.2. The application types and distribution rules were presented

earlier in this chapter in Fig. 3.1, and a few relevant dataflow functions were shown in

Fig. 3.2. These types are typical for an application working with distributed vectors: i)

Range3D declares a 3D region domain type; ii) PartRange3D and SwapRange3D define

CHAPTER 3. LANGUAGE SPECIFICATION 91

1 function fft (A -> D)
2 Vector3Dcplx A[dom0], D[dom2]
3 {
4 cffts1 <ALL1> (sp, fdir, A[dom0] -> B[dom0]);
5 if (lay1d, B[dom0] -> D[dom2])
6 { // 1D layout
7 cffts2 <ALL1> (sp, fdir, B[dom0] -> C[dom0]);
8 cffts3 <mdom2> (sp, fdir, C[mdom2] -> D[mdom2]); // overlapped
9 }

10 else
11 { // 2D layout
12 cffts2 <mdom1> (sp, fdir, B[mdom1] -> C[mdom1]); // overlapped
13 cffts3 <mdom2> (sp, fdir, C[mdom2] -> D[mdom2]); // overlapped
14 }
15 }

Figure 3.6: NPB FT “slab” optimization

distributions and redistributions based on Range3D; and iii) Vector3Dcplx declares 3D

vectors of complex numbers allowing distributions of type PartRange3D. Distributions

dom0, dom1, and dom2 are the X-, Y-, and Z-block decompositions used by NPB FT,

whereas sw01, sw12, etc. are the redistribution rules transforming these distributions.

The main loop computation takes one checksum as an input and produces another

as an output (line 20 in Fig. 3.2); during each iteration it executes a time-forward

step, then computes the inverse Fourier transform, and finally incorporates the result

into checksum cksum[ONE1]. The checksum function first computes the local domain

checksums, and then aggregates them globally; n local checksums are produced by

all processes in c1[PPEn], which is later aggregated by a single process from input

c1[ONEn] to output c2[ONE1] (lines 50–51). Array transformations between the pre-

defined distributions ONE1, ONEn, and PPEn are automatically supported by prede-

fined redistribution rules (Section 3.3).

The fft dataflow function calculates the direct Fourier transform of a 3D complex vec-

tor (line 32 in Fig. 3.2). The parallel 3D FFT is computed by executing X-, Y-, and

Z-wise uni-dimensional sequential transforms that take local vector domains as argu-

ments. Subsequently, the corresponding cffts1, cffts2, and cffts3 SPMD functions take

CHAPTER 3. LANGUAGE SPECIFICATION 92

arguments with dom0, dom1, and dom2 distributions that assign an entire X, Y, and

Z coordinate to a single process.

Vector distributions are chosen to optimize communication according to the original

NPB algorithm: the 1D layout is used when the number of processors is less than

the Z-dimension; otherwise, the 2D layout is chosen (Section 2.3.2). The conditional

construct from line 37 computes the Y-wise FFT starting from vector decomposition

B[dom0], and producing vector decomposition C[dom2]: i) for 1D layouts the Y-wise

FFT is executed on the same dom0 decomposition as the X-wise FFT since dom0 con-

tains XY-planes; ii) for 2D layouts the Y-wise FFT is executed on the dom1 decomposi-

tion containing Y-block columns, since dom0 contains X-block rows and it is no longer

compatible with Y-wise FFTs. The compiler uses distribution rules to automatically

add one transpose, dom0→ dom2, for the 1D layout, and two transposes, dom0→ dom1

and dom1→ dom2, for the 2D layout (line 23 in Fig. 3.1).

The original NPB FT algorithm can be optimized by overlapping communication with

computation (Section 2.3.2). The “overlap slab” optimization works by splitting each

vector domain into smaller domains called slabs, and assigning multiple FFT compu-

tations acting on these smaller domains to each process; overlap is achieved by execut-

ing the local FFTs on a given slab, while at the same time transferring data needed to

compute the FFTs on the next slab (Fig 2.6).

Adding the “overlap slab” optimization to the CGD NPB FT implementation requires

a few simple changes (Fig. 3.2 vs. Fig. 3.6): i) new multi-distributions mdom0, mdom1,

and mdom2 are defined to represent slab decompositions; ii) distribution rules are

changed to allow multi-distributions; and iii) fft and ifft dataflow function data nodes

are changed to use multi-distributions when invoking Y-wise and Z-wise FFT compu-

tations. The cffts2 and cffts3 SPMD computations are then executed on vector multi-

distributions, resulting in communication-computation overlap and a better cache be-

havior. Section 2.3.2 describes in more detail how this optimization exploits communi-

CHAPTER 3. LANGUAGE SPECIFICATION 93

Table 3.8: NPB FT programming effort and scalability comparison

Version Layout Language Line count Speedup

Serial 0D Fortran 704 1.00
OpenMP 1D C 752 17.21
MPI 1D, 2D Fortran 1261 99.12

C++ CGD func. CGD decl. Total
CGD 1D, 2D C++, CGD 703 45 38 786 111.46
CGD slab 1D, 2D slabs C++, CGD 740 47 43 830 125.72

cation overlap.

The parallel implementation and optimization of NPB FT requires less effort in CGD

compared to message passing models such as MPI; moreover, the CGD performance

matches or exceeds the MPI performance (Section 4.2.2). Table 3.8 presents the amount

of code measured as a SLOC count for five NPB FT implementations: sequential For-

tran, MPI Fortran, OpenMP, CGD, and CGD “overlap slab”. The Fortran versions

are the original NPB implementations, the OpenMP version was derived from the

Fortran version by the Omni compiler project, and the CGD versions were derived

from the OpenMP version. Each of these implementations shares a common base of

about 700 lines of code implementing sequential functions that were first translated

by Omni from Fortran to C, and then incorporated in a virtually unchanged state into

CGD. The table reveals that the parallel implementation of the original sequential al-

gorithm adds about 50 lines of OpenMP code, 100 lines of CGD code, and 500 lines

of Fortran MPI code. The MPI implementation requires a significantly higher effort

without achieving a performance improvement over CGD, and the OpenMP implemen-

tation lacks 2D layout support and shows poor scalability on large CC-SAS machines

(Table 3.8, Section 4.2.2).

The “overlap slab” NPB FT implementation requires minimal dataflow and sequential

code changes in CGD; however, it does require a non-trivial remanufacturing of the

message passing code. In CGD, the optimized and unoptimized versions have roughly

CHAPTER 3. LANGUAGE SPECIFICATION 94

the same SLOC count; adding the optimization changes about 15 lines of CGD code

and 30 lines of C++ code (Table 3.8). These modifications represent localized dataflow

changes in CGD, and add straightforward sequential code for computing new distri-

butions in C++. On the other hand, an MPI implementation of the same algorithm

requires adding—on top of 500 lines of existing parallel code—new code that allo-

cates vectors and buffers, issues multiple send and receive operations, changes the

loop structure, and reorders computations to allow overlap. Subsequently, the CGD

optimization process for NPB FT—which relies on automatic issue of communication

and synchronization operations, and automatic computation ordering and overlap—

requires significantly less effort than manually remanufacturing functionally equiva-

lent message passing code.

3.6.3 Barnes-Hut N-Body Simulation

This section analyzes the CGD implementation of the Barnes-Hut algorithm presented

in Section 2.3.3. The application types and the main loop dataflow are presented in

Fig. 3.7, and two aggregation functions are presented in Fig. 3.8. The Tree and List do-

main types represent octotree regions, and TreePart and ListPart are their correspond-

ing distribution types. A ListPart distribution assigns lists of particles to processes,

while TreePart distributions assign subtree domains to processes; subtrees can be tra-

versed to enumerate their particles. List distributions do not expose the tree structure,

but they do describe particle properties such as position and mass (BodyPM), and ac-

celeration (BodyAccel). On the other hand, tree distributions maintain the tree con-

text, and describe cell and leaf node properties such as position and mass (NodePM),

and the computation weight (NodeScore). Note that the BodyPM datastructure type

allows both TreePart and ListPart distributions (line 7 in Fig. 3.7).

The tree domain, list domain, and datastructure types are opaque to CGD, as they

have been defined specifically for this application. Although the compiler has no un-

CHAPTER 3. LANGUAGE SPECIFICATION 95

1 // DOMAIN Types
2 type range Tree, List;
3 type partition <Tree> TreePart [PartNP];
4 type partition <List> ListPart [PartNP];
5
6 // DATASTRUCTURE Types
7 type data BodyPM [TreePart, ListPart];
8 type data BodyScore [TreePart, ListPart], BodyAccel [ListPart];
9 type data NodePM [TreePart], NodeScore [TreePart];

10 type data <Box> BoxArray [PartNP];
11 type data <Stats> StatsArray [PartNP];
12 type data Int, Bool, File, Vector, Box, Params, Stats;
13
14 function mainLoop (pari -> stats)
15 Params pari[ALL1], StatsArray stats[PPEn]
16 {
17 // DISTRIBUTION RULES
18 part list = tree_loc;
19 part list0 = tree_loc0;
20
21 // Compute initial tree and partition
22
23 // Main loop
24 loop (idx, cond ;
25 body0 [tree_loc0], body_sc0 [tree_loc0], stats0 [PPEn],
26 tree_loc0 [PPEn], tree_top0 [PPEn], tree_bot0 [PPEn], list0 [PPEn]
27 ->
28 bodyout [tree_loc], body_sc [tree_loc], stats [PPEn],
29 tree_loc [PPEn], tree_top [PPEn], tree_bot [PPEn], list [PPEn])
30 {
31 // Build partitions
32 Score (body_sc0[tree_loc0], tree_top0, tree_bot0 -> node_sc0[tree_loc0]);
33 balance (par, node_sc0 [tree_loc0+] -> tree_top01);
34
35 // Build top tree
36 MinMax (body0 [list0] -> M);
37 makeTree (body0 [list0], tree_top01, M ->
38 body [tree_loc+], tree_loc [PPEn+]);
39 aliasPart (tree_loc, tree_top01 -> tree_bot, tree_top, list);
40 endCond (par, idx -> cond);
41
42 // Compute center of mass
43 CtrMass (body [tree_loc], tree_top, tree_bot -> node [tree_loc]);
44
45 // Force calculation
46 force (par, M, body [tree_loc+], node [tree_loc+], stats0 [PPEn] ->
47 body_sc [list], body_ac [list], stats [PPEn]);
48
49 // Move particles
50 advance (par, idx, body [list], body_ac [list] -> bodyout [list]);
51 }
52 // Write particle data
53 }

Figure 3.7: Barnes-Hut type declarations and main dataflow function

CHAPTER 3. LANGUAGE SPECIFICATION 96

derstanding of how these Tree, List, and BodyPM types are represented, it relies on

user defined operators to apply merge and redistribution distribution rules, and to

handle remote element access (Section 4.1.3). The application uses a single C++ tree

to encode multiple distributions; each tree node contains a bit set, and distributions

are defined as the set of nodes with one of the bits set. Hence, all tree_top, tree_bot,

tree_loc, and list distributions can be stored within the same tree. Other tree datas-

tructure and tree domain implementations are possible, subject on the user providing

the necessary datastructure and domain operators.

The main loop from line 24 in Fig. 3.7 takes as input and produces as output several

tree distributions and particle properties; these include the particle position, mass,

computational weight, and pairwise interaction statistics. During each iteration, the

iterative construct body computes these outputs starting from these inputs. Most im-

portantly, the distributed tree is rebalanced during each iteration based on computa-

tion weight; the Barnes-Hut CGD application dynamically recomputes the tree distri-

butions using the makeTree and aliasPart functions (lines 37–39). The loop executes

the following computations: i) Score aggregates the computational weight of each sub-

tree; ii) balance computes a new top tree trying to load balance the computational

weight; iii) makeTree creates a new tree by inserting particles into the top tree; iv)

CtrMass computes the center of mass of each subtree; v) force computes the forces act-

ing on each particle by recursively descending the distributed tree; and vi) advance

finally moves the particles into their new position (Fig. 2.8). These computations and

the Barnes-Hut algorithm are described in more detail in Section 2.3.3.

The CtrMass dataflow function computes the center of mass for each tree node rely-

ing on distribution rules and remote domain access (Fig. 3.8 line 2). This function

uses local domain access to compute the tree_boti domains of the tree bottom (line

10), and global domain access to compute the replicated tree_topi domains of the tree

top (line 11). The tree_loci domains contain the local regions of the tree bottom and

the replicated tree top region (Fig. 2.7); hence, the tree_loc distribution is produced

CHAPTER 3. LANGUAGE SPECIFICATION 97

1 // Compute the center of mass for all cell nodes
2 function CtrMass (body_pm, tree_top, tree_bot, tree_loc -> node_pm)
3 BodyPM body_pm [tree_loc],
4 NodePM node_pm [tree_loc],
5 TreePart tree_top [PPEn], tree_bot [PPEn], tree_loc [PPEn]
6 {
7 // DISTRIBUTION rules
8 part tree_loc = tree_top + tree_bot;
9

10 ctrmassb (body_pm [tree_bot] -> node_pm [tree_bot]);
11 ctrmasst (node_pm [tree_bot+] -> node_pm2 [tree_top]);
12 copy (node_pm2 [tree_top] -> node_pm [tree_top]);
13 }
14
15 // Compute the bounding box of all bodies
16 function MinMax (body, list -> M)
17 BodyPM body [list],
18 Box M [ALL1],
19 ListPart list [PPEn]
20 {
21 minmaxlt <ALL1> (body [list] -> Mnp [PPEn]);
22 minmaxnp <ONE1> (Mnp [ONEn] -> M [ONE1]);
23 }

Figure 3.8: Barnes-Hut center of mass and bounding box dataflow functions

by merging the tree_bot and tree_top distributions using the local distribution rule

tree_loc = tree_top + tree_bot (line 8). The top of the tree is replicated among all pro-

cesses, and the top of the tree computation is also deliberately replicated; the ctrmassb

and ctrmasst function invocations use ALL1 as a task and argument distribution, and

thus, they replicate both computations and their arguments. Alternatively, a gather-

scatter algorithm could build the tree top once, and then broadcast it to all processes.

Overall, the computation replication algorithm is the better choice, sending less data

and avoiding an extra communication step.

The MinMax dataflow function computes the bounding box over all particles by first

computing the bounding box locally, and then aggregating the results globally (line

16 in Fig. 3.8). This function takes the local body[list] particles, and produces the

Mnp[PPEn] array containing the bounding boxes for each domain of distribution list

(line 21). The bounding boxes from Mnp[ONEn] are then aggregated by one of the

processes to produce the global bounding box, M[ONE1], which is later broadcasted

CHAPTER 3. LANGUAGE SPECIFICATION 98

to every process (line 22). Here, the compiler knows how to convert the predefined

PPEn distribution that assigns one element to each process to the ONEn distribution

that assigns all n elements to a single process (Section 3.3). Similarly, the ONE1

distribution is converted into the ONEn distribution by replicating the bounding box M

among all processes. CGD allows changing computation and data assignments easily;

in this case, the gather-scatter global bounding box aggregation can be transformed

into one all-to-all communication step and one computation step replicated among all

processes by simply replacing ONE1 with ALL1, and ONEn with ALLn in line 22.

Chapter 4

Implementation and Evaluation

This chapter presents the implementation of a CGD language compiler, and describes

its performance evaluation based on several benchmarks (Section 3.6). First, Sec-

tion 4.1 gives an overview of the implementation, and outlines key compiler aspects

such as the graph ordering and datastructure assignment. The front- and back-end

compiler steps are then described in more detail, using the FT “slab” algorithm from

Section 3.6.2 as an example. Next, experimental results are presented in Section 4.2,

which gives an account of machine setup and methodology, and analyzes the perfor-

mance of each benchmark for multiple implementations and machine configurations.

The CGD benchmarks rely on the MPI, SHMEM, and pthreads runtimes, while the

original benchmark implementations are written for MPI, pthreads, and OpenMP.

The CGD model permits a compiler implementation that produces efficient paral-

lel code. Furthermore, optimizations such as communication-computation overlap,

caching of global reads, buffering of global writes, and datastructure reuse, are sup-

ported automatically at the same time being effective (Section 4.1.3). Experimental

results show that CGD performance matches and sometimes exceeds original imple-

mentation performance; the performance boost is partly due to high-level algorithmic

refinements, and architecture-specific runtime optimizations (Section 4.2).

99

CHAPTER 4. IMPLEMENTATION AND EVALUATION 100

4.1 Compiler Implementation

4.1.1 Overview

A CGD application consists of a CGD code file, and C++ header and code files. Figs. 4.1

and 4.2 show that the CGD code file, FT.pd, contains type declarations, distribution

rule definitions, global constants, SPMD function declarations, and dataflow function

definitions. On the other hand, the C++ header file, FT.h, defines user types, and

the FT.cc file provides C++ implementations for all SPMD functions (Fig. 3.2). The

CGD compiler reads the FT.pd file and produces C++ files FT_auto.h and FT_auto.cc;

the header contains user type declarations, automatic type definitions, and function

signatures, whereas the code file contains the parallel implementation of all dataflow

functions (Fig. 4.3). Dataflow function implementations call user defined sequential

functions, and include CGD distributed datastructure operations that may execute

communication and synchronization. These operations are provided by a CGD runtime

library implemented based on the SHMEM, MPI, and pthreads libraries. The final

application is built by linking together the automatically generated C++ code, the C++

code provided by the user, and the CGD runtime library.

The CGD compiler takes a CGD code file as input and generates C++ header and code

files as output. The compiler front-end first performs lexical and syntax analysis and

generates an abstract syntax tree using the flex and bison GNU tools. Then, the se-

mantic analysis step completes missing computation node arguments using default

values and rules, determines the type of all data nodes from each dataflow function

graph, and checks for type inconsistencies. The syntax tree is converted into an in-

termediate representation that holds symbol information, distribution rules, and a

dataflow graph structure for each dataflow function; graph structures can recursively

include other graph structures (Section 4.1.2).

The compiler back-end starts by inlining dataflow functions to expand optimization

CHAPTER 4. IMPLEMENTATION AND EVALUATION 101

binary

 CGD types
 Dataflow func decl
 SPMD func decl

 Dataflow func impl

 SPMD func impl Type impl

 MPI
 SHMEM
 Pthreads Type decl

 Rules
 Dataflow func impl
 SPMD func decl

Figure 4.1: CGD application components: FT.pd – CGD declarations and dataflow
functions; FT.h – C++ type definitions; FT.cc – C++ sequential computations.

scope. The compiler generates a topological ordering of dataflow functions by recur-

sively ordering graph structures. The following datastructure assignment step as-

signs the data nodes from each dataflow function to C++ datastructure names; this

step tries to avoid local copy operations and minimize the number of allocated C++

datastructures. Finally, C++ code is generated from the intermediate representation

for all relevant dataflow functions. These steps are presented in greater depth in Sec-

tion 4.1.3.

The graph ordering step is particularly important for a dataflow language. CGD graph

ordering features a few particularities: i) distribution rules are used to automatically

CHAPTER 4. IMPLEMENTATION AND EVALUATION 102

add computations and links in the graph, whereas redistribution rules are avoided

when other rules can be applied; ii) computation nodes are moved from subgraphs to

their enclosing graphs to reduce computation replication; iii) computation nodes are

removed from the graph if they are not needed to produce the output data nodes; and

iv) when multiple graph orderings are possible, the original computation ordering is

used as a tie breaker.

The compiler adds a redistribution rule by inserting setup, begin, and end operations.

The CGD runtime typically initializes a shared datastructure during the setup oper-

ation, starts sending and receiving data during the begin operation, and completes

sending and receiving data during the end operation. E.g., lines 13, 21, and 29 in

Fig. 4.2 show how redistribution rule sw01 is employed to transform datastructure B

from multi-distribution mdom0 to multi-distribution mdom1; lines 38-41 in Fig. 4.2

show the C++ code that implements this redistribution operation.

Communication-computation overlap is exploited by scheduling the begin operation as

early as possible, and the end operations as late as possible while maintaining data de-

pendencies. Particularly, for multi-distributions this results in sending and receiving

data for smaller domains and achieving better overlap; one such example is the NPB

FT “slab” algorithm presented in Section 2.3.2. In line 25 of Fig. 4.2, the invocation of

SPMD computation cffts3 is translated into the loop from line 30 of Fig. 4.3; this loop

calls the cffts3 sequential function for all Z-wise slabs and redistributes data from

the mdom1 multi-distribution to the mdom2 multi-distribution by inserting a swapBe-

gin operation at line 29 and a swapEndAM operation at line 32. Here, swapBeginAM

sends data using asynchronous messaging and swapEndAM is called multiple times

to receive data for each “slab” domain. The cffts3 computation from line 33 is executed

after data for the next iteration have been sent but not yet received, and the cffts3

execution is therefore overlapped with the asynchronous Y-Z transposition.

The assignment step maps multiple compatible data nodes to the same C++ datastruc-

CHAPTER 4. IMPLEMENTATION AND EVALUATION 103

1 type range Range3D; // types
2 type partition <Range3D> PartRange3D [PartNP];
3 type mpartition <Range3D> MPartRange3D [PartNP];
4 type mswap <Range3D> MSwapRange3D [PartNP];
5 type data Vector3Dcplx [PartRange3D, MPartRange3D];
6 type data Setup, Int;
7 ...
8 const Setup sp[ALL1], Int fdir[ALL1], lay1d[ALL1]; // constants
9 const PartRange3D dom0[ALLn], dom1[ALLn], dom2[ALLn];

10 const MPartRange3D mdom0[ALLn], mdom1[ALLn], mdom2[ALLn];
11 const MSwapRange3D sw01[PPEn], sw12[PPEn], sw02[PPEn];
12 ...
13 part sw01 : dom0 -> dom1; part sw12 : dom1 -> dom2; // distribution
14 part sw02 : dom0 -> dom2; // rules
15 part dom0 = mdom0; part dom1 = mdom1; part dom2 = mdom2;
16 ...
17
18 function fft (A -> D)
19 Vector3Dcplx A[dom0], D[dom2]
20 {
21 cffts1 <ALL1> (sp, fdir, A[dom0] -> B[dom0]); // X FFT
22 if (lay1d, B[dom0] -> D[dom2])
23 { // 1D layout
24 cffts2 <ALL1> (sp, fdir, B[dom0] -> C[dom0]); // Y FFT
25 cffts3 <mdom2> (sp, fdir, C[mdom2] -> D[mdom2]); // Z FFT
26 }
27 else
28 { // 2D layout
29 cffts2 <mdom1> (sp, fdir, B[mdom1] -> C[mdom1]); // Y FFT
30 cffts3 <mdom2> (sp, fdir, C[mdom2] -> D[mdom2]); // Z FFT
31 }
32 }

Figure 4.2: NPB FT “slab” CGD code: dataflow function fft, and relevant global types,
constants, and distribution rules.

ture; the assignment algorithm maps to the same C++ datastructure in-out argument

data nodes, iteration input and output data nodes, data nodes with the same underly-

ing datastructure, and arbitrary compatible data nodes. The first three cases reduce

the number of local copy operations between nodes representing the same datastruc-

ture, and all of the above cases reduce the total number of allocated C++ datastruc-

tures. Two data nodes are compatible if they have the same type, one distribution is

included in the other distribution, and either both data nodes have the same datas-

tructure, or the final use of one data node comes before the first use of the other.

Let us consider the optimized FT “slab” example from Fig. 4.2. Its dataflow graph

CHAPTER 4. IMPLEMENTATION AND EVALUATION 104

contains eleven data nodes corresponding to 3D vectors, including A[dom0], B[dom0],

B[mdom1], C[dom0], C[mdom1], C[mdom2], D[mdom2]. If the handwritten Fortran

MPI implementation uses three 3D vectors by relying on reshapable arrays, the auto-

matically generated C++ code from Fig. 4.3 uses just four vectors: u0_dom2, u2_dom2,

u2_dom1, and u2_dom0. The CGD compiler not only generates code that uses about

the same amount of memory as the original handwritten implementation, but it also

avoids copy operations inherent to dataflow languages.

In general, an automatic datastructure assignment may give better results than a

manual assignment, especially for large-scale projects. The automatic assignment is

easily applied to the entire project scope after dataflow functions are inlined; on the

other hand, the manual assignment requires programmers to coordinate code develop-

ment globally, and manually change assignments and check for use conflicts each time

a change is made. Note that sequential compiler optimizations are unlikely to map full

distinct datastructures such as arrays or trees to the same memory location; however,

the CGD compiler is able to reuse full datastructures by taking advantage of dataflow

semantics and CGD data nodes that represent entire datastructures.

4.1.2 Front End

Lexical Analysis The first compiler step is lexical analysis, where the source code

is broken up into tokens; lexical analysis is implemented using the GNU flex tool to

generate a CGD language scanner. The scanner produces 25 token types, including

identifiers, operators, delimiters, and the eight CGD reserved words: function, loop, if,

else, type, const, part, and as.

Syntax Analysis The next step is syntax analysis, where the token sequence is

parsed into an abstract syntactic tree using the GNU bison tool. CGD has a context-

free grammar that is specified by 30 rules; these rules recursively define language

CHAPTER 4. IMPLEMENTATION AND EVALUATION 105

1 Alias (PartRange3D, dom0, env.dom0); // constants
2 Alias (PartRange3D, dom1, env.dom1);
3 Alias (PartRange3D, dom2, env.dom2);
4 Alias (MPartRange3D, mdom1, env.mdom1);
5 Alias (MPartRange3D, mdom2, env.mdom2);
6 Alias (MSwapRange3D, sw01, env.sw01);
7 Alias (MSwapRange3D, sw12, env.sw12);
8 Alias (MSwapRange3D, sw02, env.sw02);
9 Alias (Setup, sp, env.sp);

10 Alias (Int, fdir, env.fdir);
11 ...
12 Data (Vector3Dcplx, u0_dom2); // declare vars
13 Data (Vector3Dcplx, u2_dom0);
14 Data (Vector3Dcplx, u2_dom1);
15 Alloc (u0_dom2, dom2[pe]); // allocate vars
16 Alloc (u2_dom0, dom0[pe]);
17 Alloc (u2_dom1, dom1[pe]);
18 ...
19 swapSetupAM (sw02, u2_dom0, u0_dom2, 0, 0, pe); // init swaps
20 swapSetupAM (sw01, u2_dom0, u2_dom1, 0, 1, pe);
21 swapSetupAM (sw12, u2_dom1, u0_dom2, 0, 2, pe);
22 ...
23
24 cffts1 (sp, fdir, u2_dom0 /* mod */, dom0[pe]); // X FFT
25
26 if (lay1d) // 1D layout
27 {
28 cffts2 (sp, fdir, u2_dom0 /* mod */, dom0[pe]); // Y FFT
29 swapBeginAM (sw02, u2_dom0, u0_dom2, 0, 0, pe); // start Z swap
30 for (int _mi=0; _mi<mdom2.getNo(pe); _mi++) // loop Z slabs
31 {
32 swapEndAM (sw02, u2_dom0, u0_dom2, _mi, 0, 0, pe); // end Z swap
33 cffts3 (sp, fdir, u0_dom2 /* mod */, mdom2.idx(pe,_mi)); // Z FFT
34 }
35 }
36 else // 2D layout
37 {
38 swapBeginAM (sw01, u2_dom0, u2_dom1, 0, 1, pe); // start Y swap
39 for (int _mi=0; _mi<mdom1.getNo(pe); _mi++) // loop Y slabs
40 {
41 swapEndAM (sw01, u2_dom0, u2_dom1, _mi, 0, 1, pe); // end Y swap
42 cffts2 (sp, fdir, u2_dom1 /* mod */, mdom1.idx(pe,_mi)); // Y FFT
43 }
44 swapBeginAM (sw12, u2_dom1, u0_dom2, 0, 2, pe); // start Z swap
45 for (int _mi=0; _mi<mdom2.getNo(pe); _mi++) // loop Z slabs
46 {
47 swapEndAM (sw12, u2_dom1, u0_dom2, _mi, 0, 2, pe); // end Z swap
48 cffts3 (sp, fdir, u0_dom2 /* mod */, mdom2.idx(pe,_mi)); // Z FFT
49 }
50 }

Figure 4.3: NPB FT “slab” generated C++ code: relevant code fragments implement-
ing dataflow function fft; variable env points to the global scope that defines global
constants including partitions and redistributions.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 106

constructs such as types, constants, distribution rules, SPMD function declarations,

dataflow function definitions, function invocations, iterative constructs, and condi-

tional constructs (Chapter 3).

Semantic Analysis During this step, the compiler creates the global and local scopes,

determines all data node types, fills in the default arguments and distributions, and

checks the program for inconsistencies.

A CGD program defines a global scope, and each dataflow function defines a local

scope. Scopes contain distribution rules, types, and 〈datastructure, distribution, type〉

tuples representing data nodes and their type. As expected, when parsing a dataflow

function, the local scope overwrites the global scope. The global scope has two partic-

ularities: data nodes can only be constants, and types are declared only in the global

scope.

Dataflow function definitions and SPMD function declarations fully specify the type

and distribution of their arguments. However, the type of data nodes that are not

arguments or global constants is not specified. Similarly, function invocations are not

required to specify all arguments and distributions. Fortunately, data node types can

be inferred from function declarations; extra arguments and distributions can also be

inferred from function declarations, or using default values.

The CGD syntax allows both a simplified and a full function invocation syntax. The

aim of simplified syntax is to make programs more readable and easier to write, while

that of full syntax is to provide better verbosity. The full syntax requires that all argu-

ments have distributions, and all non-global distributions are provided as arguments

(Section 3.5.3). E.g., the function invocation from line 21 in Fig. 4.2 is not fully speci-

fied; the first two arguments are missing their distribution, and the dom0 distribution

is not provided as an argument.

During semantic analysis, the compiler reconstructs the full function invocation syn-

CHAPTER 4. IMPLEMENTATION AND EVALUATION 107

tax from the simplified function invocation syntax. Missing argument distributions are

inferred based on argument type: PPEn is used for datastructures allowing PartNP

distribution types, and ALL1 is used for datastructures allowing PartOne distribution

types; in particular, distribution arguments lacking distributions take the PPEn distri-

bution, and non-decomposable datastructures take the ALL1 distribution. Moreover,

non-global distributions used by data node arguments but not provided as stand-alone

arguments are automatically added as an extra input argument. E.g., the invoca-

tion “cffts1 (sp, fdir, A[dom0] -> B[dom0])” is converted into “cffts1 <ALL1> (sp[ALL1],

fdir[ALL1], A[dom0], dom0[PPEn] -> B[dom0])” by adding the default task distribu-

tion <ALL1>, adding the default distribution <ALL1> to the first two arguments, and

adding the dom0 distribution used by data node A[dom0] as a separate argument with

default distribution PPEn.

Dataflow functions only specify the type of input and output arguments; all other data

nodes types are inferred automatically. When a function graph is parsed, the com-

piler generates a list of type relations that are later used to determine datastructure

types and check the type consistency. These relations are built by matching actual

arguments against function declarations, by matching datastructures with their dis-

tributions, and by analyzing distribution rules. Type relations can be assignments or

consistency checks.

Assignment type relations have the following form:

t(A) ←


t(B)

part2range(B)

part2swap(B)

(4.1)

The type of datastructure A can be computed when the type of datastructure B is

known using relation (4.1). The right-hand side of the relation is computed as follows:

i) t(B) is the type of datastructure B; ii) part2range(B) is the range type corresponding

CHAPTER 4. IMPLEMENTATION AND EVALUATION 108

to distribution type B; and iii) part2swap(B) is the redistribution type corresponding

to distribution type B.

Similarly, consistency check type relations have the following form:

check T =


t(B)

part2range(B)

part2swap(B)

(4.2)

These relations check whether type T is identical to the right-hand side of the relation.

Types are considered identical only if they correspond to the same global symbol.

The type relations from a dataflow function are built into a graph that is traversed

level by level to determine all types and complete all checks. A single relation estab-

lishes a link between B and A; once the type of B is evaluated, the type of A can be

evaluated as well. For a simple graph that doesn’t include subgraphs, the relation

graph can be traversed in one pass; the type of all function invocation arguments is

known from the start. For nested graphs, the relation graph is traversed in several

steps, propagating types from the inner to the outer subgraphs. When the relation

graph traversal is completed, all datastructures—and therefore all data nodes—have

a type, and the compatibility of distribution types is checked.

Intermediate Representation Generation After semantic analysis is complete,

an intermediate format is generated from the abstract parse tree. The intermedi-

ate format has the following representation: a program contains the global scope,

SPMD function declarations, and dataflow function definitions; the global scope con-

tains types, constant data nodes, and distribution rules; dataflow function definitions

contain a local scope and a dataflow graph; local scopes contain only data nodes and

distribution rules. As an example, the intermediate representation of a dataflow func-

tion, fft, is illustrated in Fig. 4.4.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 109

1 0 0 0 IN <ALL1> (-> A[dom0], ALL1[ALLn], ONE1[ALLn], ALLn[ALLn], ONEn[ALLn],
2 PPEn[ALLn], SwONE2ALL1[PPEn], SwONE2ALLn[PPEn], SwPPE2ALLn[PPEn],
3 SwPPE2ONE n[PPEn], SwONE2PPEn[PPEn], sp[ALL1], niter[ALL1], fdir[ALL1],
4 finv[ALL1], lay1d[ALL1], mdom0[ALLn], mdom1[ALLn], mdom2[ALLn], dom0[ALLn],
5 dom1[ALLn], dom2[ALLn] , sw01[PPEn], sw12[PPEn], sw21[PPEn], sw10[PPEn],
6 sw02[PPEn], sw20[PPEn])
7 2 2 0 cffts1 <ALL1> (sp[ALL1], fdir[ALL1], A[dom0], dom0[PPEn] -> B[dom0])
8 3 3 0 IF 0 <ALL1> (lay1d[ALL1], B[dom0] -> D[dom2])
9 0 0 0 IN <ALL1> (-> lay1d[ALL1], B[dom0])

10 2 0 0 cffts2 <ALL1> (sp[ALL1], fdir[ALL1], B[dom0], dom0[PPEn] -> C[dom0])
11 3 0 0 cffts3 <mdom2> (sp[ALL1], fdir[ALL1], C[mdom2], mdom2[PPEn] -> D[mdom2])
12 4 0 0 OUT <ALL1> (D[dom2] ->)
13 ELSE
14 0 0 0 IN <ALL1> (-> lay1d[ALL1], B[dom0])
15 2 0 0 cffts2 <mdom1> (sp[ALL1], fdir[ALL1], B[mdom1], mdom1[PPEn] -> C[mdom1])
16 3 0 0 cffts3 <mdom2> (sp[ALL1], fdir[ALL1], C[mdom2], mdom2[PPEn] -> D[mdom2])
17 4 0 0 OUT <ALL1> (D[dom2] ->)
18 ENDIF
19 4 4 0 OUT <ALL1> (D[dom2] ->)

Figure 4.4: NPB FT “slab”: intermediate representation of function block fft after
semantic analysis

A scope structure contains the following elements:

1. A list of data nodes and their type. This is represented as a map between datas-

tructures and a list of distributions, and a map between datastructures and their

type.

2. The declaration or definition of types. Custom types are only declared, whereas

automatic types are defined for both distributions and redistributions (Section 3.1).

3. The distribution rules for inclusion. These are represented as a directed acyclic

graph, where nodes are distributions, and links between nodes represent the

inclusion relation. A distribution X is considered smaller than distribution Y if

there is a path from X to Y in this directed graph; in this case, if a data node

A[X] is needed as an input but only A[Y] is available, A[Y] can be used as an

input instead of A[X] (Section 3.4).

4. The distribution rules for union. These are represented as a list describing how

a distribution can be created by merging a list of smaller distributions, e.g., A =

B + C indicates that distribution A can be created by merging the domains of

CHAPTER 4. IMPLEMENTATION AND EVALUATION 110

distributions B and C (Section 3.4).

5. The distribution rules for redistribution. These specify a redistribution matrix

for every redistribution transformation, e.g., M c2h : cell → halo specifies how the

cell distribution can be transformed into the halo distribution (Section 3.4).

A dataflow graph structure is represented as follows:

1. A list of input and output data nodes. These represent the inputs that are re-

quired and the outputs that are produced by the graph.

2. A list of computations. Each computation has a list of input data node arguments

and a list of output data node arguments. These computations represent compu-

tation nodes in the dataflow graph; their arguments and the input and output

data nodes from (1) represent data nodes in the dataflow graph.

3. Computations can be SPMD functions, dataflow functions, conditional language

constructs, and iterative language constructs. Dataflow functions and language

constructs can recursively include graph structures (Section 3.5.3).

4.1.3 Back End

Function Inlining The internal representation generated by the compiler is opti-

mized by replacing dataflow function invocations with their dataflow graphs. The goal

of this step is not avoiding the function call overhead, but expanding the scope of opti-

mizations such as datastructure assignment and communication-computation overlap.

By default, all dataflow function invocations are recursively replaced with their graphs;

a pragma directive is used to avoid the expansion of specific functions.

Expanding dataflow function F is first conducted by expanding all included dataflow

functions, In, and then, by merging the scope and graph structures of expanded func-

tions In into the scope and graph structure of function F . Merging function Ii starts

CHAPTER 4. IMPLEMENTATION AND EVALUATION 111

1 4 20 4 cffts1 <ALL1> (sp[ALL1], fdir[ALL1], u0[dom0], dom0[PPEn] -> Be2[dom0])
2 5 21 5 IF 0 <ALL1> (lay1d[ALL1], Be2[dom0], ALL1[PPEn], sp[ALL1], fdir[ALL1], dom0[PPEn],
3 PPEn[PPEn], mdom2[PPEn], sw02[PPEn], dom2[PPEn], mdom1[PPEn], sw01[PPEn],
4 PPEn[PPEn], dom0[PPEn], sp[ALL1], ALL1[PPEn], fdir[ALL1], mdom2[PPEn],
5 sw12[PPEn], dom1[PPEn], dom2[PPEn] -> u1[dom2])
6 0 12 0 IN <ALL1> (-> lay1d[ALL1], Be2[dom0])
7 1 13 1 DEP <ALL1> (-> ALL1[PPEn], sp[ALL1], fdir[ALL1], dom0[PPEn], PPEn[PPEn],
8 mdom2[PPEn], sw02[PPEn], dom2[PPEn])
9 2 14 2 cffts2 <ALL1> (sp[ALL1], fdir[ALL1], Be2[dom0], dom0[PPEn] -> Ce2[dom0])

10 3 5 3 SWAP_Beg_AM -1 <ALL1> (sw02[PPEn], Ce2[dom0] -> Ce2[mdom2])
11 4 30 4 SWAP_End_AM -1 <mdom2> (sw02[PPEn], Ce2[dom0] -> Ce2[mdom2]) Ct
12 5 15 5 cffts3 <mdom2> (sp[ALL1], fdir[ALL1], Ce2[mdom2], mdom2[PPEn] -> u1[mdom2])
13 6 16 6 OUT <ALL1> (u1[dom2] ->)
14 ELSE
15 0 14 0 IN <ALL1> (-> lay1d[ALL1], Be2[dom0])
16 1 15 1 DEP <ALL1> (-> mdom1[PPEn], sw01[PPEn], PPEn[PPEn], dom0[PPEn], sp[ALL1],
17 ALL1[PPEn], fdir[ALL1], mdom2[PPEn], sw12[PPEn], dom1[PPEn], dom2[PPEn])
18 2 5 2 SWAP_Beg_AM -1 <ALL1> (sw01[PPEn], Be2[dom0] -> Be2[mdom1])
19 3 35 3 SWAP_End_AM -1 <mdom1> (sw01[PPEn], Be2[dom0] -> Be2[mdom1]) Ct
20 4 16 4 cffts2 <mdom1> (sp[ALL1], fdir[ALL1], Be2[mdom1], mdom1[PPEn] -> Ce2[mdom1])
21 5 6 5 SWAP_Beg_AM -1 <ALL1> (sw12[PPEn], Ce2[dom1] -> Ce2[mdom2])
22 6 36 6 SWAP_End_AM -1 <mdom2> (sw12[PPEn], Ce2[dom1] -> Ce2[mdom2]) Ct
23 7 17 7 cffts3 <mdom2> (sp[ALL1], fdir[ALL1], Ce2[mdom2], mdom2[PPEn] -> u1[mdom2])
24 8 18 8 OUT <ALL1> (u1[dom2] ->)
25 ENDIF

Figure 4.5: NPB FT “slab” function fft: intermediate representation after function
expansion and graph ordering

by inserting the scope of Ii into the scope of F , while at the same time renaming the

Ii datastructures and distributions to avoid name conflicts; scope merging includes

datastructure and distribution rule merging.

A rename map is created to translate old names into new ones; this map adds entries

for Ii function arguments and for Ii data nodes that have name conflicts. A copy of

the Ii graph structure is created, and all data nodes are renamed using the rename

map. Finally, the expanded Ii graph structure is inserted into F to replace the initial

dataflow function invocation. After this process is completed for all functions In, the

expanded function F is stored into a table, and will be used to expand the subsequent

invocations of F .

Topological Order Generation Here, the compiler recursively generates a topo-

logical order for every graph structure contained by expanded dataflow functions gen-

erated during the previous step. Additionally, distribution rules are employed to add

CHAPTER 4. IMPLEMENTATION AND EVALUATION 112

datastructure transformation computations when needed. Each graph structure is or-

dered first by ordering its included subgraphs, such as graphs defined by conditional

and iterative constructs, and then, by generating a sequence or schedule of compu-

tations that produces the graph structure outputs based on the graph structure in-

puts while maintaining the required data dependencies. Several optimizations are ap-

plied during this process, including moving computation nodes from iterative construct

subgraphs to their enclosing graphs when possible, and maximizing communication-

computation overlap.

The ordering of a graph structure—containing a list of computations and their argu-

ments as an intermediate representation—first creates a dataflow graph where links

are added between computation nodes and their output data nodes, and between data

nodes and computation nodes that require these data nodes as inputs. E.g., the cffts2

computation node from line 10 in Fig. 4.4 depends on data node B[dom0], which in

turn depends on the cfft1 computation from line 7.

After the graph representation is created, it is traversed starting from the output data

nodes, by following predecessor links; predecessors of input data nodes are not fol-

lowed. When reaching a data node A[X] that has no predecessors and is not an input

data node, the compiler tries to add links and datastructure transformations using dis-

tribution rules that can create distribution X from other distributions already avail-

able for datastructure A. This algorithm employs a heuristic that aims at reducing

the number of redistributions and local copy operations. Missing data nodes are con-

structed by applying the minimum number of distribution rules in the following order:

1. Inclusion rules

2. Union and inclusion rules

3. Redistribution and inclusion rules

4. Union, redistribution and inclusion rules

CHAPTER 4. IMPLEMENTATION AND EVALUATION 113

After successfully completing this traversal, the graph contains all of the nodes and all

the links needed to compute the output nodes, starting from the input nodes.

The ordering of a graph structure can now be completed by generating a topological

ordering of the graph built during the previous step; this ordering contains only the

nodes needed to compute the output nodes of the graph. When multiple orderings are

possible, the compiler breaks any ties by giving priority to the node appearing first in

the original code; effectively, the line number acts a second ordering key, transforming

a partial order relation into a total order relation. This algorithm produces determin-

istic results that remain unchanged when other unrelated sections of the graph are

modified.

Next, redistribution operations are split into begin, end, and setup operations (Fig. 4.5).

When a begin operation is executed, the datastructure is ready to be redistributed;

after an end operation is completed, the datastructure has been successfully redis-

tributed. Communication-computation overlap is maximized by moving the setup and

begin operations as early as possible, and the end operations as late as possible, while

maintaining data dependencies at all times.

When a dataflow function graph is ordered, some computation nodes are moved from

subgraphs to their parent graphs, or are removed altogether. We recall that a graph

structure is ordered recursively first by ordering its subgraphs, and then, by ordering

its nodes. When a graph ordering is complete, new nodes can be inserted based on

distribution rules, and nodes are moved to the parent graph if they are not dependent

on the input nodes, or are not needed to compute the output nodes. E.g., the boundary

copy needed by the stencil example from line 18 in Fig. 3.5 is moved outside the loop

subgraph since its input arguments do not depend on the loop input arguments; this

optimization avoids unnecessarily copying these values during each iteration. When

the recursive ordering process finishes at the top-level, computations that are not de-

pendent on input nodes are kept in the main dataflow function graph, and computa-

CHAPTER 4. IMPLEMENTATION AND EVALUATION 114

tions not needed to produce output nodes are discarded. Particularly, if two distinct

computations produce a single identical output data node, then at most one of these

computations is included in the graph ordering.

Datastructure Assignment For each ordered graph structure the compiler maps

its data nodes to C++ datastructures; the mapping algorithm uses a heuristic that

tries to minimize the number of C++ datastructures, and tries to avoid local copy oper-

ations. After the mapping is complete, datastructure copy and datastructure allocation

operations are added to the graph structure; the relative ordering of graph structure

computation nodes is maintained throughout this process.

The assignment problem consists of creating a map between data nodes and C++

datastructure names. Multiple data nodes can be mapped to the same datastructure

name if they are compatible and they have no use conflicts. Data nodes A[X] and B[Y]

are compatible if datastructures A and B have the same type, and there is an inclusion

relation between distributions X and Y . A[X] and B[Y] have no use conflict if A = B,

or the last use ofA[X] is before the first use of B[Y], or the last use of B[Y] is before the

first use of A[X].

Datastructure assignment starts by computing a directed graph representing distribu-

tion inclusion relations; the inclusion graph is generated using the union and inclusion

distribution rules. The compiler then generates a topological ordering of all distribu-

tions, and it computes the creation time and the expiry times for each data node. Cre-

ation time is represented by the position of the computation node that first uses a data

node, whereas expiry time is represented by the position of the computation node that

uses a data node last. Creation and expiry times are computed for each distribution,

since distributions are data nodes, too. Data node compatibility is checked relying on

both the inclusion graph, and the creation and expiry times.

The assignment algorithm uses a heuristic to minimize the number of C++ datas-

CHAPTER 4. IMPLEMENTATION AND EVALUATION 115

tructures and local copy operations. It maps compatible data nodes to the same C++

datastructure name in the following order:

1. In and out data nodes corresponding to in-out SPMD function arguments

2. Loop in data nodes and out data nodes

3. Compatible data nodes with identical datastructures

4. Compatible data nodes with distinct datastructures

The compiler executes step (3) for each datastructure A by selecting all data nodes

A[Yi] from the graph and building an ordered list of distributions Yn; distributions

are ordered according to the distribution topological ordering built during the previ-

ous steps. Next, the largest distribution Yn is selected and all data nodes A[Yi] where

Yi ≤ Yn are assigned to the same C++ datastructure, and their distributions are re-

moved from the list. This step is repeated until the distribution list becomes empty;

during every step, a new C++ datastructure is created. As expected, a single C++

datastructure is allocated when Yn is larger than all distributions of A.

Step (4) starts by recomputing the distribution, creation time, and expiry time for each

group of data nodes assigned to the same C++ datastructure by steps (1), (2), and (3).

Then, compatible groups with identical distributions are merged together using the

following algorithm: i) the ordered graph structure is traversed from the beginning to

the end while maintaining a list of target datastructures; ii) when a data node group is

first used, it is assigned to a target datastructure that is not active, which activates the

target datastructure; if all target datastructures are active, a new target datastructure

having the name of the data node group is added; iii) when a data node group reaches

its expiry time, its target datastructure becomes inactive. This algorithm minimizes

the number of C++ datastructures that are needed to assign all data node groups with

identical distributions.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 116

Next, a C++ variable name is assigned to each data node from the graph structure. The

naming convention tries to merge the original datastructure name with the distribu-

tion name to create a data node name; e.g., u0_dom2 from line 24 in Fig. 4.3 represents

the dom2 distribution of datastructure u0. Maintaining this naming convention is not

always possible since multiple distributions, and even multiple datastructures, can be

mapped to the same C++ datastructure.

Before datastructure assignment is complete, the compiler makes a few more addi-

tions. First, data allocations are inserted before the first computation that uses each

C++ datastructure. Synchronization operations are then added between the producer

and consumer of data nodes used as global access datastructures.

Code Generation During code generation the compiler converts the latest internal

representation into C++ code by generating a header file and a code file; the header file

defines all types and declares all SPMD functions, and the code file contains the body

of all expanded dataflow functions.

The header file declares all user defined types, and includes a user header file defin-

ing them (Fig. 4.1). Next, automatic CGD types are defined for distributions, multi-

distributions, redistributions, multi-redistributions, and the global environment that

holds all constant data nodes (Section 3.1). All dataflow functions and user defined

SPMD functions are then declared; the function signature uses the following conven-

tion: i) input arguments are followed by in-out arguments, then by out arguments; ii)

within each list datastructure arguments are followed by distribution arguments; iii)

all arguments are passed by reference; and iv) the last argument is a pointer to the

processing environment that holds a pointer to the global scope.

The compiler writes the body of each dataflow function to the code file executing the

following steps: i) the function header is written following the convention used by code

generation; ii) constants from the global scope are aliased to local variables; iii) vari-

CHAPTER 4. IMPLEMENTATION AND EVALUATION 117

ables are declared for all C++ datastructures; and iv) the graph structure computations

are written one by one, adding auxiliary operations when needed.

Computation nodes are written as C++ function calls that take as arguments all datas-

tructures and distributions referenced by the data node arguments. Computations are

translated to for loops that iterate over multiple domains when data node arguments

use multi-distributions, or the task-set argument is a multi-distribution. Computa-

tions that take as arguments global access datastructures are surrounded by auxil-

iary operations that handle synchronization as well as setup read caching and finalize

buffered writes.

The code generated for copy and redistribution computation nodes does not follow ex-

actly the same pattern as regular computation nodes. Copy operations require domain

rather than distribution arguments. Redistribution operations require a few extra

arguments, including an id that points to a temporary structure maintaining the com-

munication state; these structures can be reused after the operation is completed. The

compiler generates the minimum number of ids such that any concurrent redistribu-

tions use different ids.

The iterative and conditional constructs are translated into for and if statements; the

loops are augmented with operations that copy the output datastructures to input

datastructures when datastructure assignment cannot assign both the input and the

output to the same C++ datastructure.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 118

4.2 Experimental Results

This section first describes the two experimental platforms used to run the experi-

ments, as well as the measurement methodology. An evaluation of the relative perfor-

mance of the original, CGD, and optimized CGD implementations is then presented for

the following problems: stencil computation kernel, NPB FT, and SPLASH2 Barnes-

Hut N-body simulation.

4.2.1 Machine Setup

Opteron SMP The first experimental platform is a small CC-SAS SMP machine

with two quad-core 2.3 GHz Shanghai Opteron processors, and 8 GB of memory. Each

CPU has a split 128KB 2-way L1 cache, a 512KB 16-way L2 cache per core, and a

6MB L3 cache shared between the four cores. The L1 TLB has 48 entries and the L2

TLB has 512 entries for data and instructions; both TLBs are 4-way set associative.

The system runs a Linux kernel, version 3.5.0-17, and uses the version 4.7.2 GCC

compilers, and version 1.4.1 MPICH2 library. The MPI library is compiled with shared

memory support providing zero copy intra-node communication.

Altix 4700 The second experimental platform is an Altix 4700, which is a larger

CC-SAS distributed memory machine produced by SGI. It has 1.6 GHz Itanium 2 pro-

cessors, a 6.4 Gb/sec NUMAlink4 interconnect, and 1024 processor cores organized as

256 boxes with two dual-core processors each. The CPU cores have 16KB 4-way data

and instruction L1 caches, and 256KB 8-way L2 caches; the 24MB L3 cache is shared

by the two cores. The L1 has 64-byte cache lines, while the L2 and L3 have 128-byte

cache lines. The TLBs are fully associative, and have 32 L1 entries and 128 L2 entries,

both for data and instructions. The system uses the version 4.3.3 GCC compilers. The

SHMEM and MPI implementations rely on fast_bcopy to transfer data between nodes

CHAPTER 4. IMPLEMENTATION AND EVALUATION 119

via direct memory access. Short messages have very low latency, but the amount of

communication overlap allowed by asynchronous communication is limited.

The experiments presented here were executed on machines deployed at the Geophys-

ical Fluid Dynamics Laboratory, which is affiliated with Princeton University. These

systems run jobs submitted by multiple scientific teams, and a scheduling system as-

signs jobs to machine partitions. However, the NUMAlink interconnect is shared by

all machine partitions, and thus, the communication executed by a job indirectly influ-

ences the performance of other jobs when contention occurs. To attenuate this issue,

all experiments that are compared against each other were executed together as a

single job running on the same machine partition.

Methodology Throughout this section, all speedups presented in the same chart

are computed as Sn = T1/Tn, where T1 is the same single-processor runtime for all

implementations, and Tn is the n processor runtime of each implementation. In addi-

tion to the speedup charts, we present efficiency charts, where efficiency is defined as

En = nTn/T1, and T1 is the same runtime for all implementations. Efficiency repre-

sents a fraction of linear speedup, e.g., an efficiency of 0.8 on n processors corresponds

to a speedup of 0.8n.

The experiments were run three times for each configuration, and all measured times

were aggregated and recorded into a file; large problems running on small processor

counts were executed only twice. The time breakdowns presented in this chapter are

taken from the run with the shortest runtime; this approach was designed to filter out

measurement variability due to machine load. Particularly, for the Altix 4700 machine,

independent jobs running on the computer farm can hurt bandwidth-intensive experi-

ments that require a large machine partition. In practice, the runtime distribution is

grouped within 5% of the minimum runtime, occasionally containing an outlier.

The CGD experiments measure the overall runtime, as well as the time taken by a

CHAPTER 4. IMPLEMENTATION AND EVALUATION 120

Table 4.1: Single-processor runtime for NPB FT implementations

Problem Domain Size Language Implementation Machine
Runtime

(seconds)

FT A 256× 256× 128

Fortran Sequential, NPB Opteron SMP 6.69

OpenMP OpenMP, Omni Opteron SMP 6.76

Fortran MPI, NPB Opteron SMP 6.70

C++ CGD Opteron SMP 7.40

C++ CGD slab Opteron SMP 7.02

FT B 512× 256× 256

Fortran Sequential, NPB Altix 4700 306.98

OpenMP OpenMP, Omni Altix 4700 314.39

Fortran MPI, NPB Altix 4700 309.20

C++ CGD Altix 4700 329.53

C++ CGD slab Altix 4700 307.76

FT C 512× 512× 512 Fortran Sequential, NPB Altix 4700 1341.07

few relevant SPMD computations, datastructure redistribution operations, and other

runtime library calls. These time intervals are measured using gettimeofday clocks

that add an overhead of 0.5 microseconds.

Experiments running on either machine were compiled with the GCC compilers for

C++, Fortran, and OpenMP, i.e., “gfortran”, “gcc”, and “gcc -fopenmp” enabling the

flags “-O3 -funroll-loops”.

4.2.2 NPB FT

The NPB FT benchmark is a spectral PDE solver that computes a 3D FFT transform

during each iteration; this is a popular benchmark that exercises bisection-width band-

width and floating point performance. The problem and its CGD implementation are

described in more detail in Sections 2.3.2 and 3.6.2.

This section evaluates the performance of our CGD NPB FT implementation for both

the original and optimized algorithms. We compare four implementations:

CHAPTER 4. IMPLEMENTATION AND EVALUATION 121

1. The “OpenMP” implementation was developed by the Omni OpenMP compiler

project by converting the sequential NPB 2.3 Fortran implementation into C.

This implementation uses only a 1D layout to decompose the 3D vector.

2. The “NPB MPI” implementation is the original NPB 2.3 Fortran version. It uses

a 1D layout when the number of processors is small; otherwise, a 2D layout is

utilized.

3. The “CGD” implementation has SPMD computations written as C++ functions

that are based on the OpenMP C code. The lower-level C functions called from

these computations are virtually unchanged and unoptimized, allowing a fair

comparison between implementations. The decomposition algorithm is identical

with the NPB MPI algorithm.

4. The “CGD slab” implementation adds a decomposition optimization to the CGD

version, but otherwise uses the same codebase. This algorithm uses both 1D and

2D layouts; however, it decomposes data domains into smaller slices allowing

communication-computation overlap and better cache utilization.

Both CGD experiments were compiled on the Altix machine with a mixed SHMEM

and MPI runtime, where smaller messages are sent via SHMEM for improved latency;

for the Opteron SMP, these experiments were compiled using the pthreads runtime.

The speedup of all NPB FT implementations is computed based on the sequential NPB

Fortran runtime (Fig. 4.1). However, the runtimes presented herein are represented

by total− setup, where total and setup are the times defined and measured by the NPB

benchmark. We believe this approach makes the comparison more meaningful given

the large setup time of OpenMP (Fig. 4.2)

Opteron SMP Figure 4.6 shows the NPB FT results for the smallest domain size

for the SMP machine configuration. The efficiency is good for up to two processors,

CHAPTER 4. IMPLEMENTATION AND EVALUATION 122

1 2 4 8
OpenMP 0.99 0.88 0.73 0.50
NPB MPI 1.00 0.80 0.71 0.51
CGD 0.90 0.96 0.77 0.74
CGD slabs 0.95 0.97 0.78 0.75

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ef

fic
ie

nc
y

Number of Processors

1 2 4 8
0.99 1.76 2.93 3.98
1.00 1.59 2.83 4.11
0.90 1.91 3.08 5.95
0.95 1.95 3.11 6.02

0

1

2

3

4

5

6

7

Sp
ee

du
p

Number of Processors

Figure 4.6: Efficiency and speedup for NPB FT class A on Opteron SMP

after which it decreases for all implementations. Here, memory bandwidth becomes

the main bottleneck; if the transpose time depends on per process domain size and

ideally should scale linearly, the transpose time is 0.37 sec and 0.19 sec on two and

eight processors, respectively. Unfortunately, these results are expected to occur since

two processes running on two quad-cores have the same available bandwidth as eight

processes running on the same two quad-cores.

Although the C++ codes have a 5–10% sequential performance handicap compared to

Fortran codes (Table 4.1), CGD C++ recovers the handicap and becomes faster than

NPB MPI Fortran on eight processors (1.126 vs. 1.628 sec). For this configuration, the

sequential performance is CPU-bound and depends on language specific optimizations,

while the parallel performance is mostly memory-bound. The CGD redistribution op-

eration copies data elements directly between datastructures avoiding unnecessary

vector-to-buffer data copy; hence, the slower sequential C++ code is able to achieve a

better absolute speedup by reducing memory traffic.

The original and optimized CGD versions have a very similar performance (1.13 vs.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 123

1.11 sec on eight processors). This result is expected, since the overlap optimization

is not effective on small SMPs where communication consists merely of reading from

and writing to local memory.

CGD improves the OpenMP performance by a solid 51%. While both OpenMP and

CGD represent 3D vectors as globally addressable arrays, CGD uses block copy to

transpose the vectors, while OpenMP relies on finer-grain per element access. While

CGD explicitly assigns vector domains to processes, the OpenMP compiler makes this

assignment by relying on programmer hints. These results indicate that explicit data

assignment allows a CGD runtime implementation that optimizes data transfers bet-

ter than OpenMP for problems such as NPB FT, even on small SMPs.

Figure 4.6 shows that CGD is 46% faster than NPB MPI. The CGD transpose copies

data directly between 3D vectors, while the NPB MPI transpose copies the same

amount of data twice: i) it copies data from 3D vectors to buffers, then it sends and

receives the buffers via MPI at no extra cost, relying on the zero-copy MPI implementa-

tion; and ii) it copies data from buffers into 3D vectors. Sending twice as much data to

the memory negatively affects the MPI performance given the memory bandwidth lim-

itation. In this case, the higher-level CGD datastructure abstraction allows a runtime

optimization for SMPs—copying data directly between vectors—that was not avail-

able to the message passing implementation, which could only exchange contiguous

memory blocks between processors.

Altix 4700 The single-processor performance of the four NPB FT implementations

is not exactly identical, despite the fact that all implementations are derived from the

same Fortran code (Table 4.1). The sequential Fortran runtime is shorter than the

single-processor CGD runtime (306.98 vs. 329.53 sec for FT class B). Similarly, the

performance of the sequential 1D FFT function fftlow is slightly poorer for C++ than

for Fortran (CGD vs. MPI in Table 4.2), and fftcopy exhibits the same performance

disparity when copying data locally between a 3D vector and a smaller buffer; we

CHAPTER 4. IMPLEMENTATION AND EVALUATION 124

8 16 32 64 128
OpenMP 0.65 0.51 0.35 0.18 0.13
NPB MPI 0.85 0.86 0.89 0.90 0.77
CGD 0.90 0.81 0.85 0.92 0.87
CGD slabs 0.98 0.90 1.02 0.99 0.98

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ef

fic
ie

nc
y

Number of Processors

8 16 32 64 128
5.18 8.17 11.20 11.46 17.21
6.77 13.70 28.45 57.84 99.12
7.20 12.97 27.33 58.85 111.46
7.87 14.40 32.49 63.21 125.72

0

20

40

60

80

100

120

140

Sp
ee

du
p

Number of Processors

Figure 4.7: Efficiency and speedup for NPB FT class B on Altix 4700

8 16 32 64 128
OpenMP 0.65 0.53 0.36 0.18 0.11
NPB MPI 0.85 0.82 0.79 0.83 0.78
CGD 0.90 0.83 0.82 0.87 0.82
CGD slabs 0.98 0.91 0.98 0.97 0.95

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ef
fic

ie
nc

y

Number of Processors

8 16 32 64 128
5.18 8.48 11.48 11.54 13.53
6.77 13.19 25.22 53.36 99.29
7.2 13.22 26.32 55.39 105.42

7.87 14.54 31.31 62.18 121.45

0

20

40

60

80

100

120

140

Sp
ee

du
p

Number of Processors

Figure 4.8: Efficiency and speedup for NPB FT class C on Altix 4700

assume these are compiler-related issues.

The single-processor runtime handicap can bias the speedup comparison towards the

implementation with the fastest single-processor code, considering that all speedups

are computed using the same single-processor runtime. In Figs. 4.7 and 4.8, we present

CHAPTER 4. IMPLEMENTATION AND EVALUATION 125

both the speedup and efficiency of each implementation. We notice that the efficiency of

the CGD implementation is already better than NPB MPI for eight processors, despite

its single-processor runtime handicap, and this difference is maintained all the way

up to 128 processors.

The speedups of the MPI and CGD implementations are nearly linear for FT class B

and C (Figs. 4.7, 4.8). The good efficiency is partly explained by the fast all-to-all block

communication of the Altix machine, and the super-linear effect of the larger aggregate

multi-processor cache partially offsetting parallel overhead.

CGD is slightly faster than the original NPB MPI version, which is impressive consid-

ering that the parallel code is automatically generated, and that the C++ sequential

code has a performance handicap. This performance gap is closed by the CGD runtime,

which handles data faster than its NPB MPI counterpart. For example, the 1D layout

transposition takes 2.58 sec in CGD vs. 5.05 sec in NPB MPI for FT class C running

on 128 processors (Fig. 4.2).

The handwritten NPB MPI transpose includes some lengthy memory copy optimiza-

tions but its measured performance on the Altix 4700 machine is poorer than CGD. Let

us investigate one of these transpose functions: transpose_x_z calls transpose_x_z_local,

transpose_x_z_global, and transpose_x_z_finish; the first one moves vector elements

into buffers, the second executes collective communication via an mpi_alltoall call, and

the third copies data from buffers into vectors. All of these functions are optimized to

reduce memory copy costs, and the local transpose tries to achieve better caching by

executing the copy operation into two stages: first it copies the vector elements to a

small buffer, and then, it copies the small buffer into the destination buffer.

The NPB MPI transpose optimizations take about 600 lines of code that are executed

by all architectures. While these optimizations will probably lead to improved results

on a particular machine, it is not clear whether they are relevant to other present-day

or future architectures. It is not feasible to expect an application be optimized for all

CHAPTER 4. IMPLEMENTATION AND EVALUATION 126

Table 4.2: Time breakdown (sec) for NPB FT on 128 processor Altix 4700

Problem Code section OpenMP MPI CGD CGD slab

FT B

fft 15.02 2.66 2.26 1.99

fftlow 1.19 1.23 1.27

fftcopy .175 .258 .231

swap 1.295 .794 .489

setup 9.81 .068 .060 .060

total - setup 17.84 2.98 2.75 2.44

speedup 17.21 103.10 111.46 125.72

FT C

fft 81.38 12.44 10.70 9.31

fftlow 5.40 5.73 5.74

fftcopy 1.99 2.39 1.49

swap 5.05 2.58 2.08

setup 37.79 0.21 0.22 0.22

total - setup 99.12 13.88 12.72 11.04

speedup 13.53 96.61 105.42 121.45

target architectures; a partial approach might report good numbers in some particular

cases, while possibly operating poorly in the general case. Rather than encouraging

developers to spend time over-optimizing their code, a higher-level abstraction such

as CGD moves these low-level architecture-specific optimizations from the application

into the compiler and runtime, while making higher-level algorithmic optimizations

easier to write.

Such an optimization is “CGD slab”, which reports speedups significantly exceeding

the original NPB MPI results; for FT class B on 128 processors, the improvement

is 22% (Fig. 4.7). This gain is due to communication scheduling, cache locality, and

runtime optimizations. For example, the transposition is executed as a sequence of

small chuck data transfers that fit into the cache; when local FFT computations are

executed, they are likely to find these chunks in the cache. We expect the performance

benefits of the “slab” algorithm to be greater on machines with improved asynchronous

messaging support.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 127

Table 4.3: Single-processor iteration time for Stencil

Domain Size Language Implementation Machine

Iteration

Time T1
(usec)

Element

Comp. Te
(usec)

128× 128 C++ MPI, manual Opteron SMP 51.45 .0031

256× 256 C++ MPI, manual Opteron SMP 204.35 .0031

512× 512 C++ MPI, manual Opteron SMP 872.30 .0033

128× 128 C++ MPI, manual Altix 4700 281.24 .0171

256× 256 C++ MPI, manual Altix 4700 1123.89 .0171

512× 512 C++ MPI, manual Altix 4700 4480.65 .0171

1024× 1024 C++ MPI, manual Altix 4700 31377.40 .0299

4.2.3 Stencil Computation

The stencil micro-kernel solves the equation of heat dissipation on a 2D grid by imple-

menting a forward time centered space differencing scheme. This PDE solver computes

new grid values during each iteration as a function of the old grid values, and their

spatial derivatives (Section 2.3.1); hence, the solver requires nearest-neighbor commu-

nication to compute the derivatives. 2D PDE solvers—including heat dissipation—are

generally latency-bound, having a poor communication-computation ratio. The stencil

computation and its CGD implementations are presented in Sections 2.3.1 and 3.6.1.

Herein, we evaluate and compare both the original and optimized version of stencil

computation. Three implementations are considered:

1. The “MPI manual” implementation is written by hand relying on asynchronous

communication. The goal of this example is to estimate the performance of typical

user implementations that include common optimizations. The “halo” exchange

uses eight neighbor pair-wise communication, while at the same time handling

the boundary conditions. The handwritten implementation is comprised of the

following steps:

CHAPTER 4. IMPLEMENTATION AND EVALUATION 128

i . f o r a l l (messages to rece ive)

MPI_Irecv (buf fer)

i i . f o r a l l (messages to send)

marshall message to buffer

MPI_Isend (buf fer)

i i i . MPI_Waitany (messages to rece ive)

unmarshall message from buffer

iv . Compute grid update

v . MPI_Waitall (messages already sent)

2. The “CGD” implementation represents the above algorithm in CGD, with each

iteration containing a redistribution operation and a computation update.

3. The “CGD merged step” implementation optimizes the original algorithm by

merging two redistributions of two consecutive iterations into a single redis-

tribution. Two iterations require two computation updates and a single larger

redistribution operation. As mentioned in Section 2.3.1, this technique reduces

communication latency at the expense of slightly more computation.

The speedup of all implementations is computed based on the single-processor MPI

“manual” runtime (Table 4.3). However, the single-processor runtime is virtually iden-

tical among all experiments, which are written in the same language and rely on the

same update computation. Table 4.3 presents both the single-processor runtime, and

the average time needed to process a single grid element, Te = T1/domainsize.

Opteron SMP Both CGD experiments use the pthreads runtime for this machine

configuration; hence, the redistribution or “halo” exchange operations are executed by

reading the “halo” elements directly from memory allocated by each thread, thereby,

minimizing latency overhead.

Figure 4.9 shows that efficiency is very good on this small SMP for a problem size of

CHAPTER 4. IMPLEMENTATION AND EVALUATION 129

1 2 4 8
MPI Manual 1.00 0.98 0.95 0.91
CGD 1.00 0.99 0.97 0.90
CGD merged 1.00 0.99 0.99 0.98

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ef

fic
ie

nc
y

Number of Processors

1 2 4 8
1.00 1.96 3.81 7.24
1.00 1.98 3.90 7.19
1.00 1.99 3.97 7.87

0

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

Number of Processors

Figure 4.9: Efficiency and speedup for Stencil 512× 512 on Opteron SMP

512 × 512. For four processors, all implementations have an efficiency greater than

0.95, and for eight processors, the MPI and CGD efficiency decreases to approximately

0.90. However, the CGD “merged step” implementation does not suffer from this per-

formance degradation; here, the constant communication cost, which includes syn-

chronization, is reduced by executing a single communication step rather than two

communication steps.

Overall, the MPI and CGD performance is very similar on this machine, and the CGD

“merged step” optimization slightly outperforms both original implementations.

Altix 4700 On this machine, both CGD experiments use the SHMEM rather than

the MPI runtime to reduce messaging latency. The MPI “manual” implementation

uses the standard MPI software stack.

Table 4.3 reveals that the element computation time Te remains constant for problem

sizes of up to 512×512, and increases more than 75% (0.0171 vs. 0.0299 usec) when the

working set stops fitting into the aggregate cache. This particularity leads to a super-

linear speedup, visible in Fig. 4.13, where the “merged step” 64-processor speedup

jumps from 44.06 for problem size 512× 512 to 96.09 for problem size 1024× 1024.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 130

8 16 32 64 128
MPI Manual 0.90 0.80 0.72 0.54 0.37
CGD 0.94 0.84 0.77 0.61 0.44
CGD merged 0.97 0.87 0.82 0.69 0.52

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ef

fic
ie

nc
y

Number of Processors

8 16 32 64 128
7.18 12.82 22.92 34.41 47.51
7.52 13.51 24.78 38.73 56.47
7.73 13.96 26.25 44.06 67.13

0

10

20

30

40

50

60

70

80

Sp
ee

du
p

Number of Processors

Figure 4.10: Efficiency and speedup for Stencil 512× 512 on Altix 4700

8 16 32 64 128
MPI Manual 1.67 1.57 1.49 1.36 1.16
CGD 1.71 1.63 1.58 1.44 1.26
CGD merged 1.75 1.64 1.60 1.50 1.36

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ef
fic

ie
nc

y

Number of Processors

8 16 32 64 128
13.39 25.07 47.79 87.21 148.32
13.67 26.04 50.55 91.95 161.66
13.99 26.26 51.22 96.09 173.74

0

20

40

60

80

100

120

140

160

180

200

Sp
ee

du
p

Number of Processors

Figure 4.11: Efficiency and speedup for Stencil 1024× 1024 on Altix 4700

The efficiency chart in Fig. 4.10 shows that the 2D stencil is a hard problem even

for a low latency machine such as the Altix 4700; the MPI implementation efficiency

drops from about 0.9 for eight processors, to 0.4 for 128 processors, while its maximum

speedup reaches only 47.5.

Even when the CGD version is algorithmically identical to the handwritten MPI ver-

sion, the former outperforms the latter considerably by 19%. This improvement is

CHAPTER 4. IMPLEMENTATION AND EVALUATION 131

8 16 32 64 128
MPI manual 60.5 67 53.5 56.5 56
CGD 33 51 40.5 43.5 43
CGD merged 25 41 30 28.5 29.5

0

10

20

30

40

50

60

70

80

C
om

m
un

ic
at

io
n

Ti
m

e

Number of Processors

8 16 32 64 128
57.5 92.5 78.5 67.5 66.5
54.5 81 57.5 60.5 58.5
43.5 77.5 50.5 44.5 43

0

10

20

30

40

50

60

70

80

90

100

C
om

m
un

ic
at

io
n

Ti
m

e

Number of Processors

Figure 4.12: Communication time per iteration (microseconds) for Stencil 512 × 512,
1024× 1024 on Altix 4700

mainly due to the SHMEM runtime being slightly faster than MPI for small messages;

for the 512×512 problem, CGD communication improves the MPI time from 56 usec to

43 usec on 128 processors (Fig. 4.12). As was the case with NPB FT (Section 4.2.2), the

CGD distributed datastructure abstraction allows architecture-specific optimizations

that are otherwise unavailable to MPI applications.

The CGD “merged step” optimization outperforms both the MPI and CGD implementa-

tions, improving the MPI speedup by more than 40% (67.1 vs. 47.5). Here, the slightly

more expensive update computation is offset by the shorter aggregated communication

time, which drops from 43 usec for MPI to 29.5 usec for CGD “merged step” (Fig. 4.12).

Moreover, communication time does not really increase with the processor count, being

mostly determined by the constant latency cost; on the other hand, the CGD optimiza-

tions, which reduce latency or avoid a communication step altogether, show improved

results across the board (Fig. 4.12). This experiment shows that algorithmic changes

taking advantage of latency hiding techniques can effectively mitigate machine limi-

tations.

Figure 4.11 presents improved results for all implementations for the larger 1024×1024

CHAPTER 4. IMPLEMENTATION AND EVALUATION 132

128 256 512 1024
MPI Manual 5.48 16.36 34.41 87.21
CGD 7.83 20.45 38.73 91.95
CGD merged 11.16 26.48 44.06 96.09

0

20

40

60

80

100

120

Sp
ee

du
p

Grid Size

Figure 4.13: Speedup for Stencil 128 × 128, 256 × 256, 512 × 512, 1024 × 1024 on 64-
processor Altix 4700

problem size: efficiency decreases from approximately 1.7 to 1.2, and speedups on 128

processors range from 148 to 173. As previously discussed, these numbers show super-

linear speedups due to the larger aggregate cache.

Figure 4.13 plots speedups for different problem sizes running on 64 processors; a

super-linear bump is easily visible between 512 and 1024. We recall that Te—the se-

quential processing time of each element—is significantly higher for the 1024 × 1024

problem size, since the full dataset does not fit into a single processor’s cache (Ta-

ble 4.3). The parallel code splits the dataset among multiple processors, reducing the

local working set to a fraction of the full dataset. When the number of processors is

large enough the local working set fits into the processor cache, and the application

benefits from a large computation speedup. Fig. 4.11 already shows a super-linear

speedup of 13-14 for eight processors. The efficiency then gradually decreases with

processor count since the computation decreases in size, communication starts to be-

come more latency-bound, and the overall communication-computation ratio increases.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 133

Table 4.4: Single-processor runtime for Swaptions and Blackscholes (largesim)

Benchmark Language Implementation Machine
Runtime

(seconds)

Swaptions C++ PARSEC, pthreads Opteron SMP 9.085

Swaptions C++ CGD, pthreads Opteron SMP 8.853

Swaptions C++ CGD, MPI Opteron SMP 8.866

Blackscholes C++ PARSEC, pthreads Opteron SMP 1.614

Blackscholes C++ CGD, pthreads Opteron SMP 1.473

Blackscholes C++ CGD, MPI Opteron SMP 1.469

4.2.4 Swaptions

This benchmark computes the price of a swaptions portfolio using the Heath-Jarrow-

Morton (HJM) framework [BL09]. The HJM framework models the interest rate evo-

lution, taking into consideration the relationship between the drift and volatility of the

forward-rate dynamics. There is no analytical approach to solving this non-Markovian

model, and the price computation is therefore based on Monte Carlo (MC) simulation.

This section evaluates the performance of Swaptions for both the CGD and PARSEC

[BL09] versions. We compare three implementations:

1. The “PARSEC pthreads” implementation is the original application provided by

the PARSEC 2.1 benchmark suite. This implementation is compiled with pthreads

support.

2. The “CGD mpi” implementation includes SPMD computations that are virtually

unchanged PARSEC code snippets; datastructures and top level functions are

slightly modified to fit into the CGD framework. This implementation uses the

MPI CGD runtime.

3. The “CGD pthreads” implementation is identical to “CGD mpi”; however, it uses

the pthreads runtime.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 134

1 2 4 8
PARSEC pthreads 1.00 1.00 1.00 0.99
CGD pthreads 1.03 1.02 1.02 1.01
CGD mpi 1.02 1.02 1.02 1.02

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ef
fic

ie
nc

y

Number of Processors

1 2 4 8
1.00 2.01 3.98 7.89
1.03 2.04 4.08 8.07
1.02 2.05 4.08 8.17

0

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

Number of Processors

Figure 4.14: Efficiency and speedup for Swaptions largesim on Opteron SMP

1 2 4 8
PARSEC pthreads 1.00 0.98 0.92 0.99
CGD pthreads 1.10 1.09 1.09 1.08
CGD mpi 1.10 1.09 1.04 1.03

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ef
fic

ie
nc

y

Number of Processors

1 2 4 8
1.00 1.96 3.68 7.91
1.10 2.19 4.37 8.62
1.10 2.18 4.16 8.20

0

1

2

3

4

5

6

7

8

9

10

Sp
ee

du
p

Number of Processors

Figure 4.15: Efficiency and speedup for Blackscholes largesim on Opteron SMP

Figure 4.14 shows that on the Opteron SMP machine, efficiency is very good for both

PARSEC and CGD; similarly, speedup is almost linear. This application is compu-

tationally intensive, runs on a small machine with fast inter-processor communica-

tion, and therefore features a low communication overhead and good scalability. CGD

single-processor performance exceeds PARSEC by only 2% (Table 4.4), and this gain is

maintained for all processor counts.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 135

Compared to PARSEC, the CGD Swaptions implementation has both a simpler struc-

ture, and a better performance portability. While the PARSEC implementation mixes

pthreads, Intel Threading Building Blocks (TBB), and OpenMP function calls in the

top-level functions, the CGD code describes parallelism in a simple top-level dataflow

function. Furthermore, the CGD code can be compiled with the MPI, pthreads, and

SHMEM runtimes without any code changes. The PARSEC implementation runs only

on CC-SAS machines, while the CGD code has better portability, running on both CC-

SAS and message-passing cluster machines.

4.2.5 Black-Scholes

This kernel is provided by the PARSEC benchmark suite, and calculates the value of

a portfolio of European options relying on the Black-Scholes partial differential equa-

tion:
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (4.3)

The option prices are computed numerically, since there is no closed-form expression

for the Black-Scholes equation [BL09]. This is a computation-bound kernel typical for

computational finance applications.

Similar to the Swaptions application from Section 4.2.4, the Black-Scholes perfor-

mance analysis compares both the MPI and pthreads CGD implementations, and the

original PARSEC 2.1 implementation. Moreover, for the same reasons stated in Sec-

tion 4.2.4, the CGD implementation has a simpler parallel structure and a better per-

formance portability compared to PARSEC.

On the Opteron SMP machine, the single-processor runtime of CGD is faster than

PARSEC by approximately 10% (Table 4.4); this improvement is partly explained by

the more efficient use of CGD distributed datastructures.

The Black-Scholes speedups are roughly linear for both PARSEC and CGD (Figure 4.15).

CHAPTER 4. IMPLEMENTATION AND EVALUATION 136

Table 4.5: Single-processor runtime for Barnes-Hut

No. Bodies Language Implementation Machine
Runtime

(seconds)

32K
C SPLASH2, pthreads Opteron SMP 10.86

C++ CGD, pthreads Opteron SMP 10.39

32K
C SPLASH2, pthreads Altix 4700 37.06

C++ CGD, shmem Altix 4700 30.87

256K
C SPLASH2, pthreads Altix 4700 390.74

C++ CGD, shmem Altix 4700 362.59

1M
C SPLASH2, pthreads Altix 4700 1728.03

C++ CGD, shmem Altix 4700 1801.40

Efficiency remains largely constant, and “CGD pthreads” maintains the 10% perfor-

mance gain vs. “PARSEC pthreads” for all processor counts. The good overall perfor-

mance of all implementations is accounted for by the small communication-computation

ratio of this computationally intensive application.

4.2.6 Barnes-Hut N-Body Simulation

This benchmark implements the Barnes-Hut hierarchical n-body algorithm; during

each iteration, it computes the interactions between every particle and selected par-

ticles or groups of particles contained by an adaptive subdivision spatial tree (Sec-

tion 2.3.3).

Parallelizing the Barnes-Hut algorithm exhibits irregular fine-grain communication

when accessing the nodes of the distributed octotree, and requires constantly repar-

titioning the tree among processors to balance the computational load. The irregular

access pattern of this application makes it a good candidate for the shared memory

model, while message passing implementations need to rework the algorithm to ag-

gregate data access into larger chunks. Sections 2.3.3 and 3.6.3 present these issues

and the CGD Barnes-Hut implementation in more detail.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 137

This section evaluates the performance of the CGD and SPLASH2 Barnes-Hut imple-

mentations for different problem sizes. The following versions are compared:

1. The “SPLASH2” implementation is the original Barnes-Hut application provided

by the SPLASH2 benchmark suite, and includes the University of Delaware

patches. This version is compiled with pthread support, using pthread barriers

for global synchronization.

2. The “CGD pthreads” implementation was derived from the SPLASH2 implemen-

tation, sharing with it most of the sequential C code. However, a few essential

modifications were made: (i) tree nodes are accessed via a distributed datastruc-

ture API rather than directly by pointers; (ii) cell nodes encode children as 4-byte

indexes rather than as 8-byte pointers; and (iii) the tree partitioning algorithm is

slightly modified, such that the replicated tree top contains only cell nodes. Oth-

erwise, the algorithm remains unchanged, and the results match accordingly.

This experiment uses the CGD pthreads runtime.

3. The “CGD shmem” implementation is identical to “CGD pthreads”; however, it

uses the CGD SHMEM runtime.

The CGD adaptation of the SPLASH2 algorithm relies on global domain access dur-

ing the force computation, tree building, and score aggregation steps (Section 3.6.3).

Accessing remote tree cells and leafs translates into direct memory access for the

pthreads version, and shmem_get calls for the SHMEM version. The CGD scheduler

ensures that there is at least one barrier between the point where a datastructure dis-

tribution pair is created using a global distribution argument, and the point where it

is consumed.

Table. 4.5 shows the single-processor runtimes measured for the SPLASH2 and CGD

implementations for both machine configurations; all speedups presented in this sec-

tion, except for those in Table 4.6, are based on the SPLASH2 runtimes. For all ex-

CHAPTER 4. IMPLEMENTATION AND EVALUATION 138

1 2 4 8
SPLASH2 1.00 1.00 1.00 0.99
CGD pthreads 1.04 1.05 1.02 1.02

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ef
fic

ie
nc

y

Number of Processors

1 2 4 8
1.00 1.99 3.99 7.94
1.04 2.10 4.08 8.14

0

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

Number of Processors

Figure 4.16: Efficiency and speedup for Barnes-Hut 32K on Opteron SMP

periments, the first four main loop iterations were not measured to avoid cold start

noise.

Opteron SMP The CGD experiments use only the CGD pthreads runtime for this

machine configuration. Figure 4.16 reveals that both CGD and SPLASH2 implemen-

tations have good efficiencies, even for eight processors. The sequential CGD C++ code

is a bit faster (Table 4.5), leading to an increase in efficiency and speedup of about 4%.

Overall, the SPLASH2 and CGD pthreads implementations have both very similar

and solid results on the small SMP machine. The next paragraph presents how this

problem scales on larger ccNUMA machines.

Altix 4700 On this machine, we measure the CGD implementation performance for

the pthreads and SHMEM CGD runtimes. CGD improves the SPLASH2 sequential

performance by 20% for the smallest problem size (Table 4.5), mostly due to the new

distributed tree implementation, which uses smaller indexes rather than pointers; this

advantage is lost for larger problems that are dominated by numerical computation

time. Consequently, the speedup comparison gives an unfair advantage to CGD by

adding the benefit of a faster sequential code to absolute speedup.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 139

Table 4.6: Relative and absolute speedup for Barnes-Hut on Altix 4700

No. Bodies Implementation

Sequential Speedup

Runtime 64 proc 128 proc

(seconds) relative absolute relative absolute

32K
SPLASH2 37.06 59.11 100.44

CGD 30.87 57.17 68.64 95.88 115.11

256K
SPLASH2 390.74 64.59 125.88

CGD 362.59 74.79 80.60 143.37 154.50

1M
SPLASH2 1728.03 64.90 128.03

CGD 1801.40 83.95 80.53 165.10 158.38

Table 4.6 shows both the absolute speedups based on the SPLASH2 single-processor

runtime, and the relative speedups based on the single-processor runtime of each im-

plementation. Unfortunately, the relative speedup comparison is also not fair: the

implementation with the faster sequential code includes less computation but pays

the same constant communication cost as the implementation with the slower sequen-

tial code. Hence, relative scalability becomes a harder problem for the implementation

with the faster sequential code. Not only are speedups compounded with sequential

code performance, but also, for larger problems they are also compounded with the

computation speed boost due to the larger aggregate multi-processor cache. These

issues are reviewed and discussed later in this section.

Both CGD versions have a very similar performance for the larger problems (Figs. 4.18

and 4.19); however, for the 32K problem, “CGD shmem” improves the speedup of “CGD

pthreads” by nearly 30% for 128 processors (Fig. 4.17). This reveals that for the small-

est problem size, the pthreads latency advantage vs. SHMEM is offset by the slower

pthreads synchronization. Moreover, this shows that SHMEM one-sided communica-

tion is almost as fast as direct memory access, which is an expected result given that

SHMEM is implemented as a thin layer on top of CC-SAS memory.

Figure 4.17 shows that for the smallest problem size, “CGD shmem” improves the

CHAPTER 4. IMPLEMENTATION AND EVALUATION 140

8 16 32 64 128
SPLASH2 0.98 1.02 0.97 0.92 0.78
CGD pthreads 1.17 1.20 1.14 1.00 0.69
CGD shmem 1.15 1.21 1.17 1.07 0.90

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ef

fic
ie

nc
y

Number of Processors

8 16 32 64 128
7.88 16.27 31.09 59.11 100.44
9.40 19.27 36.55 63.68 88.46
9.22 19.28 37.36 68.64 115.11

0

20

40

60

80

100

120

140

Sp
ee

du
p

Number of Processors

Figure 4.17: Efficiency and speedup for Barnes-Hut 32K on Altix 4700

SPLASH2 speedup by 15% on 128 processors, although having a steeper efficiency

drop between eight and 128 processors (1.15 to 0.90 vs. 0.98 to 0.78). The same obser-

vation is confirmed by Table 4.6, where the absolute CGD speedup is greater than the

SPLASH2 speedup, while the relative speedup is less (115.11 and 95.88 vs. 100.44). As

previously discussed, these numbers show how a shorter sequential computation can

lead to greater scalability limitations while still achieving a better overall runtime.

However, both implementations are highly competitive, exceeding a relative speedup

of 95 for a small problem running on 128 processors.

The CGD speedups reach super-linear territory at 16 processors for all problem sizes,

ranging from 19.28 to 20.64 (Figs. 4.17, 4.18, and 4.19). While efficiency is relatively

flat for all Barnes-Hut experiments, there is a small efficiency bump at 16 processors

due to the larger multi-processor aggregate cache size. For fewer processors, efficiency

deceases due to cache misses, whereas for more processors, efficiency slowly decreases

as the number of processors increases and the communication-computation ratio in-

creases: i) 1.21 to 0.90 (32K for 16 to 128 processors); ii) 1.29 to 1.21 (256K for 16 to

128 processors); iii) 1.26 to 1.21 (1M for 32 to 128 processors).

CHAPTER 4. IMPLEMENTATION AND EVALUATION 141

For the larger 256K and 1M problem sizes, “CGD shmem” outperforms SPLASH2

in terms of both absolute and relative speedup (Table 4.6). E.g., CGD improves the

SPLASH2 absolute speedup by 22%, and relative speedup by 14% on 128 processors

(154.50 and 143.37 vs. 125.88).

The improved CGD scalability for larger Barnes-Hut problems can be explained by the

distributed octotree implementation. As described in Section 2.3.3, there are two CGD

optimizations that apply to this problem: first, remote element reads are cached in

local memory, avoiding repeated communication when data stops fitting into the pro-

cessor cache; and second, writes are clumped together into larger batches to improve

throughput. Additionally, remote element access translates into block reads for the en-

tire size of a cell or leaf node, therefore increasing the granularity of remote memory

access.

Similar results were reported by [SS99], where a comparison of CC-SAS, SHMEM, and

MPI Barnes-Hut implementations shows that the SHMEM implementation improves

the CC-SAS implementation results for the 1M problem running on a 64-processor SGI

Altix 2000. The SHMEM and MPI implementations use a slightly modified algorithm

that builds the essential tree for each processor during a communication step, and

then it proceeds to the force computation step. While the SHMEM communication

step sends more data than CC-SAS, its force calculation accesses only local memory.

For the largest problem size, the tree building step is dominated by the force computa-

tion, and the latter is significantly faster for SHMEM and MPI. The time breakdowns

show that CC-SAS memory access takes longer than SHMEM and MPI local memory

access, and it is argued that accessing the remote top of the tree nodes during the

force computation leads to TLB misses, thereby hurting performance. A new CC-SAS

version that replicates the top of the tree shows good improvements, matching the

SHMEM and MPI performance.

Maintaining access locality by replicating the tree top and caching the locally accessed

CHAPTER 4. IMPLEMENTATION AND EVALUATION 142

8 16 32 64 128
SPLASH2 0.99 1.03 1.02 1.01 0.98
CGD pthreads 1.22 1.28 1.27 1.25 1.18
CGD shmem 1.20 1.29 1.27 1.26 1.21

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ef

fic
ie

nc
y

Number of Processors

8 16 32 64 128
7.93 16.51 32.59 64.59 125.88
9.77 20.54 40.75 80.07 150.81
9.62 20.64 40.78 80.60 154.50

0

20

40

60

80

100

120

140

160

180

Sp
ee

du
p

Number of Processors

Figure 4.18: Efficiency and speedup for Barnes-Hut 256K on Altix 4700

8 16 32 64 128
SPLASH2 0.98 1.03 1.02 1.01 1.00
CGD pthreads 1.14 1.24 1.26 1.26 1.24
CGD shmem 1.12 1.25 1.26 1.26 1.24

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ef
fic

ie
nc

y

Number of Processors

8 16 32 64 128
7.86 16.41 32.61 64.90 128.03
9.12 19.90 40.19 80.40 158.77
9.00 20.07 40.43 80.53 158.38

0

20

40

60

80

100

120

140

160

180

Sp
ee

du
p

Number of Processors

Figure 4.19: Efficiency and speedup for Barnes-Hut 1M on Altix 4700

remote tree nodes is automatically provided by the CGD runtime and compiler without

user involvement (Section 3.6.3). The CGD model easily allows such optimizations

since globally addressable distributed datastructure arguments are guaranteed to be

either read-only or write-only (Section 3.5.1).

Chapter 5

Cost Model

Building scalable parallel applications remains a difficult task, owing to implementa-

tion complexity, inability to easily understand costs and bottlenecks, and unpredictable

communication performance. The machine architecture further influences both appli-

cation efficiency and performance transparency. An accurate and general cost model

may become a bridge between application development and machine design; such a

model would allow application writers to optimize their algorithms and datastructure

decompositions, while helping system designers build interconnects and tailor band-

width capacity to application needs.

CGD datastructure redistribution operations, and in general, scientific computing codes,

are developed using custom-built collective communication primitives; these can be

satisfactorily analyzed using the family of Bulk Synchronous Parallel (BSP) machine

models [Val90, BFPP01]. However, modeling the effect of bandwidth limitations for

globally unbalanced communication and estimating the hierarchical bandwidth used

by applications remain key challenges. This chapter introduces a hierarchical band-

width machine model (αDBSP) that naturally extends the Decomposable BSP (DBSP)

model by associating a bandwidth growth factor α to each collective communication

pattern.

143

CHAPTER 5. COST MODEL 144

The chapter is organized as follows. First, we discuss the main contributions of the

αDBSP model in the context of BSP-family models in Section 5.1. Section 5.2 sum-

marizes related work and presents the meaning of the h, l, and g parameters of BSP-

family models in more depth. Section 5.3 provides a more precise definition of DBSP

and introduces the αDBSP model. In Section 5.4, we present two routing algorithms

that are later used to prove the upper bounds on executing (h, α)-relations on various

topologies. Section 5.5 analyzes three computation kernels that have been selected to

illustrate the differences between αDBSP and DBSP in terms of time complexity and

analysis effort. Finally, Section 5.6 summarizes the results presented in this chapter.

5.1 Model Overview

Cost Model Implementing applications that rely on structured collective communi-

cation steps is a common trend in the scientific community [BN]. This programming

paradigm uses custom-built data redistribution libraries, making large-scale codes

easier to write and maintain. At the same time, this programming model allows the

analysis of application performance using the Bulk Synchronous Parallel (BSP) ma-

chine model introduced by Valiant [Val90], or the Decomposable BSP (DBSP) machine

extension that models submachine locality [dlTK96, Nic06].

On the BSP machine, a globally synchronized superstep, which includes w work and an

h-relation, runs in w+hg+ l time. Hence, an h-relation is a message exchange in which

each processor sends and receives at most h packets, while l and g are machine param-

eters that correspond to global latency and bandwidth. The upper bounds of these

parameters are computed for theoretical topologies by solving a routing problem using

store and forward switches [Val90]. Experimental results have the capacity to approx-

imate the same parameters for real machine configurations [HMS+98, BJvOR03]. The

DBSP model extends BSP by executing synchronized supersteps on predefined parti-

tions of processors [dlTK95, dlTK96, Ber99]. This model exploits locality by computing

CHAPTER 5. COST MODEL 145

its parameters for each machine size i; running an i-superstep takes w + hg(i) + l(i)

time. Similar to BSP, DBSP is an effective but more accurate tool for cost analysis.

While DBSP overestimates the runtime of unbalanced h-relations, the results are im-

proved by routing each h-relation as O(log(p)) supersteps. A routing algorithm pre-

sented in [HPP01] achieves optimal results for (k1, k2)-routing problems1 running on

DBSP(n,g(α), l(β)) machines such as nD meshes. It follows as a corollary that (h,m)-

relations2 can be routed in O(dm/neαh1−αnα + nβ) time on such machines, match-

ing the results of the Extended BSP [JW96] without adding a new machine primitive

[BFPP01, FPP06, BPP07]. While this bound is optimal when considering all routing

problems that are (h,m)-relations, there remain problems in which DBSP overesti-

mates the runtime. E.g., the 2D nearest-neighbor single-packet exchange executes

in constant time on a 2D mesh and O(log(p)) time on a pruned butterfly, yet DBSP

estimates its runtime as O(
√
p) for both topologies.

This chapter presents a hierarchical bandwidth machine model (αDBSP) [SS12] that

naturally extends the DBSP model. A new exponential factor α is augmented to each h-

relation, describing its growth in terms of required hierarchical bandwidth, i.e., H(i) ≤
1

2(k−i−1)αh, where H(i) roughly estimates the number of packets per processor reaching

machine level i (Definition 10).

On αDBSP, a superstep including w work and an (h, α)-relation runs in w + hg(i, α) +

l(i, α) time, where l(i, α) and g(i, α) are the new machine parameters. We present

two routing algorithms based on (k1, k2)-routing [HPP01], which improve the (h, α)-

relation execution upper bound compared to DBSP h-relations. The modified algo-

rithms redistribute fewer packets and compute the execution time using an upper

bound on the number of packets traveling up to each level in the machine hierarchy.

The αDBSP model is at least as powerful as the DBSP model; any DBSP algorithm pro-
1A (k1, k2)-routing is a routing instance where each processor sends at most k1 packets and receives at

most k2 packets
2A (h,m)-relation is a routing instance where each processor sends and receives at most h packets,

and the total number of packets is m

CHAPTER 5. COST MODEL 146

vides identical results on αDBSP when h-relations are replaced with (h, 0)-relations.

Additionally, there are unbalanced h-relations for which αDBSP provides better re-

sults. For example, for the 2D nearest-neighbor exchange αDBSP gives Ω(log(p)) and

O(log3(p)) on the pruned butterfly, improving the DBSP (k1, k2)-routing upper bound of

O(
√
p). Similarly, for the North-South 1D FFT problem (Section 5.5.2) αDBSP requires

O(log4(p)), whereas DBSP requires O(
√
p). Section 5.5 presents a cost analysis for the

three more general computation kernels commonly included in scientific codes.

The αDBSP results on pruned butterflies are relevant today if we consider that most

modern large-scale supercomputers have their switches organized as meshes or par-

tial fat-trees. Large Infiniband deployments such as the Nebulae supercomputer3 and

higher-end cache-coherent machines such as the LRZ SGI Altix 47004 employ meshes

or federations of fat-trees at the top of their router hierarchy. For the class of ma-

chines that rely on such fat-trees, the αDBSP model brings a significant improvement

when analyzing common scientific computing kernels such as the 2D nearest-neighbor

exchange, or multi-pole FFT filtering.

αDBSP slightly increases analysis effort by adding an α factor to each h-relation to

improve the analysis accuracy. This trade-off may lead to a faster runtime, or to a

simpler cost analysis.

For the generalized broadcast problem, αDBSP requires O(np), whereas DBSP re-

quires O(np
√
p) on the pruned butterfly. Hence, the (k1, k2)-routing DBSP algorithm

runs this problem as fast as αDBSP, but executes O(log(p)) supersteps, making the

analysis more complex on arbitrary machines. Based on the examples from Section 5.5,

αDBSP provides a reasonable balance between cost accuracy and analysis effort, im-

proving the DBSP results without increasing difficulty.
3TOP 500 supercomputer number four at the time of writing, 120,640 nodes
4Munich University supercomputing center, 9,728 nodes

CHAPTER 5. COST MODEL 147

System Design Architectural advances over the years have led to a relatively stan-

dardized modern parallel computer design. Fat-tree and mesh interconnects have a

high bandwidth and are easy to build, being commonly used with Myrinet, Infiniband,

NumaLink, and SeaStar switches [Lei85]. While the advent of wormhole routing has

made the in-transit time insignificant compared to end-point overhead, bandwidth ca-

pacity planning remains an important issue [NGM97].

Unfortunately, bandwidth availability may vary dramatically at various levels of the

memory-network hierarchy [FPP06, DDHM08]. For example, inter-core bandwidth is

higher than intra-socket bandwidth, which is higher than the networking chip band-

width. Moreover, large-scale machines are unable to provide full bisection-width band-

width5 at the top of their router hierarchy6.

This unbalance becomes more prevalent as more cores are packed into a box, and

system designers are forced to make a trade-off between the number of cores, per-

core bandwidth, and switch size. When thousand-core chips become available, we can

expect the bandwidth gap to become even larger.

It is possible to build parallel machines that avoid inherent bandwidth bottlenecks for

a class of applications without requiring a full bisection-width bandwidth. An αDBSP

application exposes communication as (h, α)-relations, and its α bandwidth growth

factor allows the computation of a lower bound on the required hierarchical bandwidth

and link capacity. E.g., a 2D PDE solver that employs FFT filtering at the top and

bottom of its grid has α = 1/2. A large-scale machine organized as a fat-tree with αM =

1/2, or a 2D mesh are able to execute this problem without an inherent bandwidth

bottleneck (Section 5.5).
5Minimum aggregate bandwidth linking two equal partitions of the interconnect
6The LRZ SGI Altix 4700 machine has nodes organized as a mesh of fat-trees; the RedStorm Cray XT4

system is a 3D torus

CHAPTER 5. COST MODEL 148

5.2 Related Work

The PRAM model provides a framework for algorithm analysis extending the RAM

concept to parallel architectures by assuming constant latency remote memory access.

The technical infeasibility of this model has been addressed by PRAM variants that

aim to adapt the cost model to real machine performance [HR91].

First in a family of bridging models, Valiant’s BSP [Val90] describes a machine that

executes synchronized supersteps consisting of local computation, global communica-

tion, and synchronization. The BSP machine executes a superstep with w work and an

h-relation in w + gh+ l time, where the latency and bandwidth machine parameters l

and g are computed globally without modeling locality.

The LogP model proposed by Culler et al. relaxes the synchronization requirement,

and models interconnect performance more accurately [CKP+93, AISS95]. The fine-

grain cost model accounts for the local bandwidth limitation G, global interconnect

capacity L, and local overhead incurred by sending and receiving packets o. The ef-

ficiency of LogP implementations may be higher than BSP, in part due to its asyn-

chronicity; however, the simplicity of BSP may be desirable. The two models are equiv-

alent in terms of complexity [BHP+96].

The BSP machine overestimates the execution time for globally unbalanced h-relations.

The EBSP model addresses this issue by adding a new (M,k1, k2)-relation that incor-

porates the total number of packets, as well as the maximum number of sent and

received packets [JW96]. While this machine improves the BSP results, it increases

analysis effort by adding a relatively complex primitive.

The Decomposable BSP machine is a BSP extension that captures submachine local-

ity by executing supersteps on predefined partitions of processors [dlTK95, dlTK96,

BPP07]. The l and g parameters are vectors whose elements correspond to each parti-

tion size; these costs become smaller with a decreasing partition size.

CHAPTER 5. COST MODEL 149

If DBSP overestimates the runtime of unbalanced h-relations, the results are improved

by routing each relation as O(log(p)) supersteps using the DBSP (k1, k2)-routing algo-

rithm from [HPP01]. Subsequently, on DBSP(n,g(α), l(β)) machines (h,m)-relations

take O(dm/neαh1−αnα + nβ) routing time, matching the results obtained by EBSP

[BFPP01, FPP06].

While this bound is optimal when considering all routing problems within a class,

the solution is not optimal for all such problems. There are unbalanced routing prob-

lems for which αDBSP improves the DBSP bounds, or allows a simpler analysis (Sec-

tion 5.5). Furthermore, the αDBSP machine abstraction allows for more than an esti-

mation of time complexity; for tight relations, the α factor provides a lower bound on

the required hierarchical link bandwidth, which is useful for capacity planning.

5.3 Definitions

Applications that rely on structured collective communication and computation steps

may be analyzed using the Bulk Synchronous Parallel (BSP) family of machine models.

The Decomposable BSP (DBSP) model is an extension of BSP that exploits locality

by relying on submachine decomposition [dlTK95]. In this dissertation, we consider

only recursive DBSP machines that allow recursive binary machine decompositions

(Fig. 5.1) [dlTK96].

It is assumed that p = 2k is the total number of processors of a DBSP machine. For

each 0 ≤ i ≤ k, the machine is partitioned into 2i disjoint i-clusters C(i, j) containing

processors j2k−i to (j+1)2k−i−1. Note that each C(i, j) cluster has 2k−i processors, and

the clusters form a binary decomposition hierarchy, i.e., C(i, j) = C(i + 1, 2j) ∪ C(i +

1, 2j + 1).

A DBSP machine is parametrized by two vectors g(i) and l(i), where 0 ≤ i ≤ k. These

parameters describe the bandwidth and latency characteristics of submachines, i.e., a

CHAPTER 5. COST MODEL 150

Figure 5.1: (a) DBSP cluster hierarchy for a 16 processor fat-tree, and top-level
Cs/r(i, j) packet sets; (b) Pruned butterfly implementing a fat-tree with link band-
widths b(i) = 2dk−ieαM for αM = 1/2.

h-relation is executed on a C(i, j) cluster in hg(i) + l(i) time; a h-relation is a routing

problem where each processor sends and receives at most h packets.

A DBSP program is executed as a sequence of labeled supersteps. An i-superstep is

executed in parallel on C(i, j) clusters and takes w + hg(i) + l(i) time, where w is

the maximum number of operations or work performed by each processor during this

superstep [BFPP01].

The above definitions of p, k, g(i), l(i), and C(i, u) will be used throughout the rest of

the dissertation.

CHAPTER 5. COST MODEL 151

Definition 7. R-routing is a routing problem where processor x sends R(x, y) packets

to processor y.

Definition 8. For a R-routing problem, Cs(i, u) is defined as the set of packets sent by

the processors of cluster C(i, u) to all other processors, and Cr(i, u) is the set of packets

received by the processors of cluster C(i, u) from all other processors. These parameters

are represented by the following equations

|Cs(i, u)| =
∑

x∈C(i,u), y 6∈C(i,u)

R(x, y)

|Cr(i, u)| =
∑

x 6∈C(i,u), y∈C(i,u)

R(x, y)

A DBSP h-relation may be generalized by computing a value H(i) corresponding to

each level i of the machine hierarchy. H(i) represents the maximum number of packets

sent to or from any i-cluster divided by the number of processors in that cluster. The

H vector is used as a tool for cost analysis rather than as a machine primitive.

Definition 9. An R-routing problem is an H-relation if

H(i) =
1

2k−i−1
max0≤u<2i+1 {|Cs(i+ 1, u)|, |Cr(i+ 1, u)|}

for all 0 ≤ i < k

Next, an exponential factor α is defined to capture the growth of H. The log(p) values

of vector H are compressed to a single value pair (h, α) that enforces an upper bound

on all H(i).

Definition 10. A H-relation executed during an i-superstep is a (h, α)-relation if

H(j) ≤ 1

2(k−j−1)α
h

for all i ≤ j < k.

CHAPTER 5. COST MODEL 152

Note that for α = 0 we have H(i) = H(k − 1), which means that all packets are routed

all the way to the top of the hierarchy, while for α = 1 we have H(i−1) = H(i)/2 which

means that half of the packets reaching level i will be routed up one level to level i− 1.

The α factor provides an upper bound on the number of packets sent to each level

of the hierarchy, and it facilitates the computation of an execution upper bound. For

example, this factor allows determining the λ load factor [Lei85] and its corresponding

upper bound for a fat-tree with known bandwidths [BB95]. For some patterns, α also

provides a lower bound on packet count. When this is the case, a lower bound on

execution time may be proved by making a bandwidth argument.

Definition 11. An algorithm executing an i-superstep H-relation is said to execute a

tight (h, α)-relation if ∃c > 0 s.t. for any problem size and machine size we have

c
1

2(k−j−1)α
h ≤ H(j) ≤ 1

2(k−j−1)α
h

for all i ≤ j < k.

We define an αDBSP machine as an extension of an DBSP machine that executes

(h, α)-relations during each i-superstep. The bandwidth g(i, α) and latency l(i, α) pa-

rameters are defined as a function of both machine size i, and bandwidth growth factor

α.

Definition 12. An αDBSP machine executes an i-superstep (h, α)-relation and w work

in time

TαDBSP (i, w, h, α) = w + hg(i, α) + l(i, α)

where g(i, α), l(i, α) are the αDBSP machine parameters.

DBSP machines and algorithms are particular cases of αDBSP for α = 0. Any DBSP

machine is an αDBSP machine with g(i, α) = g(i) and l(i, α) = l(i) since any (h, α)-

CHAPTER 5. COST MODEL 153

relation is a h-relation; any DBSP algorithm becomes an αDBSP algorithm when h-

relations are replaced with (h, 0)-relations.

Definition 13. For a machine, Cbw(i, u) is defined as the total bandwidth of the links

connecting cluster C(i, u) to any other cluster.

Machines with symmetric topologies such as butterflies and meshes have the same

number of links connecting any i-cluster to the rest of the machine. For these machines

it is possible to estimate the bandwidth Cbw(i, u) in terms of i and a bandwidth growth

factor αM .

Definition 14. A machine has an αM bandwidth growth factor if ∃c > 0 s.t. for any

machine size we have:

c
1

2(i−1)αM
Cbw(1, 0) ≤ Cbw(i, u) ≤ 1

2(i−1)αM
Cbw(1, 0)

for all 0 < i < k, 0 ≤ u < 2i+1

Note that for fat-trees and meshes Cbw(1, 0) = Cbw(1, 1) represents the bisection-width

bandwidth. An nD mesh has a bandwidth growth factor of αM = 1
n , while a pruned

butterfly has a bandwidth growth factor of αM = 1
2 (Table 5.1).

The next section analyzes communication cost and presents the αDBSP machine pa-

rameters for most common topologies.

5.4 Bounds

An upper-bound on (h, α)-relation execution time may be computed by routing the re-

lation as a sequence of redistribution steps. This method is similar to the algorithm

for (k1, k2)-routing [FPP03] that redistributes all packets evenly among all processors

during a bottom up phase, then routes each packet to its destination during a top down

phase.

CHAPTER 5. COST MODEL 154

The (h, α)-relation routing algorithm improves the (k1, k2)-routing by redistributing

only the packets with destinations outside of a cluster during the bottom up phase,

i.e., Cs(i, j) for machines of size i. The number of packets that are redistributed at

each level is upper-bounded by h
2(k−i)α

(Definition 10) providing a bandwidth cost of

O (dH(i)e g(i)).

Theorem 1. An s-superstep H-relation is executed by a DBSP machine in time

O

(
k−1∑
i=s

dH(i)eg(i) +

k−1∑
i=s

(l(i) + Pf(i))

)

where g(i), l(i) are the DBSP machine parameters; Pf(i) is the parallel prefix execution

time on an i-cluster.

Proof. Let Cx(i, j) be the set of packets sent from C(i+1, 2j) processors to C(i+1, 2j+1)

processors, and from C(i + 1, 2j + 1) processors to C(i + 1, 2j) processors. Cx(i, j) are

packets exchanged between the children of cluster C(i, j) and travel up to level i in the

hierarchy. We have Cs(i+ 1, 2j)∪Cs(i+ 1, 2j + 1) = Cx(i, j)∪Cs(i, j) and Cr(i+ 1, 2j)∪

Cr(i+ 1, 2j + 1) = Cx(i, j) ∪ Cr(i, j).

It is assumed that n packets are evenly distributed among 2a processors when each

processor holds at most d n2a e packets. The following algorithm may be applied to exe-

cute an H-relation:

1. For each i = k−1 downto s execute step (1a)

1a. For each processor cluster C(i, j) with 0 ≤ j < 2i execute step (1b)

Invariant: Cs(i + 1, x) and Cx(i + 1, x) have packets evenly distributed

among C(i+ 1, x) for all x.

1b. Redistribute evenly the packets from Cs(i, j) among the processors of

C(i, j). Repeat the process for the packets from Cx(i, j).

CHAPTER 5. COST MODEL 155

2. For each i = s to k−1 execute step (2a)

2a. For each processor cluster C(i, j) with 0 ≤ j < 2i execute step (2b)

Invariant: Cr(i, x) have packets evenly distributed among C(i, x) for all x.

2b. Evenly redistribute the packets from Cr(i+ 1, 2j) among the processors of

C(i+ 1, 2j), and the packets from Cr(i+ 1, 2j + 1) among the processors of

C(i+ 1, 2j + 1)

The invariants after step (1a) and (1b) are easily verified by induction. During the

bottom up phase the packets from the Cx(i, j) sets are evenly distributed among C(i, j)

processors, level by level. Step (1b) may be executed as a parallel prefix and two dH(i)e-

relations. Note that for H(i) < 1 execution time is still g(i), even when H(i)g(i) may

be significantly smaller.

Proof. Similarly, during the top down phase the packets from the Cr(i, j) sets are dis-

tributed evenly, and step (2b) is executed as a parallel prefix followed by two dH(i)e-

relations. The theorem follows after adding up the execution time for steps (1b) and

(2b).

The results from Theorem 1 may be improved on the pruned butterfly, in the event

that redistributions of n < p packets run faster than a 1-relation. Such redistributions

are executed as
⌈
n√
p

⌉
waves \cite{PBFLY} take O

(⌈
n√
p

⌉
+ log(p)

)
time, improving the

O
(√
p
)

bound for a 1-relation.

Theorem 2. An s-superstep H-relation is executed by a pruned butterfly in time

O

(
k−1∑
i=s

dH(i)g(i)e+

k−1∑
i=s

(l(i) + Pf(i))

)

where l(i) = k−i, g(i) = 2(k−i)αM , αM = 1/2, and Pf(i) is the parallel prefix execution

time on an i-cluster.

CHAPTER 5. COST MODEL 156

Ta
bl

e
5.

1:
B

ou
nd

s
on

i-
su

pe
rs

te
p

(h
,α

)-
re

la
ti

on
ex

ec
ut

io
n

ti
m

e
an

d
α

B
SP

pa
ra

m
et

er
s

fo
r

co
m

m
on

m
ac

hi
ne

to
po

lo
gi

es
w

it
h

p
pr

oc
es

so
rs

.T
he

re
la

ti
on

is
ex

ec
ut

ed
on

a
pa

rt
it

io
n

of
2
i

su
bm

ac
hi

ne
s

w
it

h
p
′
=
p
/
2
i

pr
oc

es
so

rs
ea

ch
,i

.e
.,

on
al

li
-c

lu
st

er
s.

α
M

is
a

co
ns

ta
nt

de
fin

ed
fo

r
ea

ch
m

ac
hi

ne
ty

pe
de

sc
ri

be
d

in
th

is
ta

bl
e.

T
he

lo
w

er
bo

un
ds

ap
pl

y
on

ly
to

ti
gh

t
re

la
ti

on
s.

M
ac

hi
ne

α
M

(h
,α

)
D

B
SP

α
D

B
SP

g
(i
,α

)
l(
i,
α

)

B
ut

te
rfl

y
0

α
=

0
O

(h
lo
g
(p
′)

)
O

(h
lo
g
(p
′)

)
Ω

(h
+
lo
g
(p
′)

)
O

(l
og

(p
′)

)
O

(1
)

α
>

0
O

(h
+
lo
g
3
(p
′)

)
Ω

(h
+
lo
g
(p
′)

)
O

(l
og

(p
′)

)
O

(l
og

3
(p
′)

)

P
ru

ne
d
n

D
B

ut
te

rfl
y

1/
2

1
/
n

α
<
α
M

O
(h
p
′α
M

)

O
(h
p
′α
M
−
α
)

Ω
(h
p
′α
M
−
α
)

O
(p
′α
M
−
α
)

O
(l
og

(p
′)

)

α
=
α
M

O
(h
lo
g
(p
′)

+
lo
g
3
(p
′)

)
Ω

(h
+
lo
g
(p
′)

)
O

(l
og

(p
′)

)
O

(l
og

3
(p
′)

)

α
>
α
M

O
(h

+
lo
g
3
(p
′)

)
Ω

(h
+
lo
g
(p
′)

)
O

(1
)

O
(l
og

3
(p
′)

)

n
D

M
es

h
1
/
n

α
<
α
M

O
(h
p
′α
M

)

O
(h
p
′α
M
−
α

+
p
′α
M

)
Ω

(h
p
′α
M
−
α
)

O
(p
′α
M
−
α
)

O
(p
′α
M

)

α
=
α
M

O
(h
lo
g
(p
′)

+
p
′α
M

)
Ω

(h
)

O
(l
og

(p
′)

)
O

(p
′α
M

)

α
>
α
M

O
(h

+
p
′α
M

)
Ω

(h
)

O
(1

)
O

(p
′α
M

)

CHAPTER 5. COST MODEL 157

Proof. The algorithm presented by Theorem 1 can be modified to prove Theorem 2.

It is assumed that n packets are evenly distributed among 2a processors when: i) for

n ≥ 2a each processor holds at most
⌈
n
2a

⌉
packets; and ii) for n < 2a processor x holds

one packet if x = 0 (mod 2a−m), otherwise it holds no packets, where 2m−1 < n ≤ 2m.

Steps (1b) and (2b) are executed as H(i)-relations for H(i) ≥ 1, and dH(i)/g(i)e waves

for H(i) < 1 [BB95].

Let’s consider the redistribution of Cs(i, j) during step (1b) for H(i) < 1. The Cs(i, j)

packets are evenly distributed i) by computing a parallel prefix for the placement of

Cs(i+ 1, 2j) ∪Cs(i+ 1, 2j + 1) also in Cs(i, j); ii) by subsequently routing these packets

as waves to their C(i, j) destinations.

The routing of packets Cs(i+ 1, 2j)∩Cs(i, j) to processors C(i, j) is considered. Cluster

C(i + 1, 2j) has 2k−i−1 processors; let s = k − i − 1, and let’s choose m s.t. 2m−1 <

H(i)2s ≤ 2m.

Processors x = 0 (mod 2s−m) from C(i+ 1, 2j) hold at most one packet since Cs(i+ 1, 2j)

has at mostH(i)2s ≤ 2m packets distributed among 2s processors. Similarly, processors

x = 0 (mod 2s−m) from C(i, j) hold at most one packet.

When m ≥ d(k − i)/2e the routing is executed as 2m−d(k−i)/2e waves, with each wave

j involving processors x = j (mod 2s−m−d(k−i)/2e); otherwise it is executed as a single

wave. This gives a routing time of O
(⌈

2m−d(k−i)/2e
⌉

+ (k − i)
)

= O (dH(i)g(i)e+ l(i)).

The Cs(i + 1, 2j + 1) ∩ Cs(i, j) packets are routed to C(i, j) using the same algorithm.

Overall, the redistribution of Cs(i, j) during step (1b) takes O(dH(i)g(i)e+ l(i) + Pf(i))

time. The same argument may be repeated for redistributing Cx(i, j) during step (1b),

and redistributing Cr(i+ 1, 2j), Cr(i+ 1, 2j + 1) during step (2b). The theorem follows

after adding up these terms.

We may compute an upper bound on i-superstep (h, α)-relation execution time by in-

serting the machine parameters into Theorem 1 for the butterfly and mesh topologies,

CHAPTER 5. COST MODEL 158

and into Theorem 2 for the pruned butterfly topologies. The lower bounds may be

deduced by making a bandwidth argument about the links connecting i + 1 level ma-

chines and enforcing the minimum packet travel time within i level machines. Here,

we briefly calculate the results shown in Table 5.1.

On a butterfly, for α = 0 the h-relation BSP routing algorithm provides an execution

time of O(h(k − i)). For α > 0 Theorem 1 provides an execution time of

O

k−1∑
j=i

(
1

2(k−j)α
h+ 1

)
(k − j) +

k−1∑
j=i

(k − j)2 + (k − i)2
 = O

(
h+ (k − i)3

)
(5.1)

On a nD mesh with αM = 1
n the execution time is

O

k−1∑
j=i

(
1

2(k−j)α
h+ 1

)
2(k−j)αM +

k−1∑
j=i

2(k−j)αM + n2(k−i)αM

 =

O

k−1∑
j=i

1

2(k−j)α
h 2(k−j)αM + 2(k−i)αM

 =

O

h k−1∑
j=i

2(k−j)(αM−α) + 2(k−i)αM


(5.2)

Expression (5.2) evaluates to

O
(
h 2(k−i)(αM−α) + 2(k−i)αM

)
for α < αM (5.3)

O
(
h(k − i) + 2(k−i)αM

)
for α = αM (5.4)

O
(
h+ 2(k−i)αM

)
for α > αM (5.5)

On a pruned butterfly with αM = 1
2 the run time is

O

k−1∑
j=i

(
1

2(k−j)α
h 2(k−j)αM + 1

)
+ (k − i)3 + (k − i)2

 =

CHAPTER 5. COST MODEL 159

O

h k−1∑
j=i

2(k−j)(αM−α) + (k − i)3
 (5.6)

Similarly, (5.6) evaluates to

O
(
h2(k−i)(αM−α)

)
for α < αM (5.7)

O
(
h(k−i) + (k−i)3

)
for α = αM (5.8)

O
(
h+ (k−i)3

)
for α > αM (5.9)

The pruned butterfly topology presented in [BB95] may be generalized by excluding

one set of nodes from a regular butterfly every n levels (Fig.~2). The resulting topology

has a bisection-width of p(n−1)/n. While both an nD mesh and an nD butterfly have the

same bisection width, the butterfly has log(p) maximum latency vs. n
√
p for the mesh.

Note that for n = 1 the topology is a binary tree, for n = 2 it is a pruned butterfly, and

for n =∞ it is a butterfly.

Definition 15. An nD butterfly is a graph G(V,E) that is a subgraph of a butterfly with

p = 2k processors. More precisely

V =
{
〈i, j, u〉 | 0 ≤ i ≤ k, 0 ≤ j < 2i, 0 ≤ u < 2m

}
E =

{
(〈i, j, u〉, 〈i+ 1, 2j, u′〉) , (〈i, j, u〉, 〈i+ 1, 2j + 1, u′〉) |

0 ≤ i < k, 0 ≤ j < 2i, 0 ≤ u < 2m
}

where m =
⌈
(k−i)n−1n

⌉
, and u′ = u for k− i = 0 (mod n); u′ = u − 2m−1

⌊
u

2m−1

⌋
for

k−i 6= 0 (mod n)

An upper bound on executing an i-superstep (h, α)-relation on the nD butterfly may

be computed by relying on a generalization of Theorem 2 where αM = 1
n . The results

from Table 5.1 follow as corollaries. Proving the generalization of Theorem 2 relies on

the ability of nD butterflies to route m waves of 2dk(n−1)/ne evenly distributed packets

CHAPTER 5. COST MODEL 160

Figure 5.2: Pruned butterfly examples: (a) 2D butterfly for p = 32; (b) 3D butterfly for
p = 32

in O(m + log(p)) time. This property may be proved by building a routing algorithm

similar to the pruned butterfly wave routing algorithm presented in [BB95].

CHAPTER 5. COST MODEL 161

5.5 Examples

This section compares the αDBSP model presented in this dissertation with DBSP

using three simple kernels common in scientific computing applications.

Message patterns are executed on DBSP using two routing algorithms:

1. DBSP : an h-relation is executed as a single i-superstep

2. DBSP+ : a (k1, k2) K12-routing problem is executed as 2(log(p)− i) supersteps as

described in [FPP03, BFPP01]

A (h,m) hm-routing problem is executed as a (h, dmp e) K12-routing followed by another

(dmp e, h) K12-routing. To simplify this analysis we use the following notation to repre-

sent K12-routing time:

K12route(k1, k2, i) =

O

log(p)−1−i∑
j=0

(
min{k1, k22j}+min{k12j , k2})g(j+i) + l(j+i) + Pf(j+i)

) (5.10)

where Pf(i) is the time taken to execute a parallel prefix on an i-level machine.

Our examples are selected to illustrate the difference between the BSP family models

in terms of time complexity and analysis effort (Table~\ref{tab:complex}). We decided

to evaluate the results of the pruned butterfly since our focus is based on estimating

the required hierarchical bandwidth. For the full bisection-width topologies the results

are straight-forward, while for the meshes the bandwidth cost may be dominated by

the latency cost.

5.5.1 Generalized Broadcast

The generalized broadcast algorithm sends n data elements from one processor to all

other processors in a single step. This problem is an example of unbalanced communi-

CHAPTER 5. COST MODEL 162

Figure 5.3: Message patterns corresponding to a (n,
√
p
2 n) hm-routing: (a) nearest-

neighbor exchange between level 2 clusters; (b) North-South FFT for s = log(
√
p) − 1;

(c)
4
√
p√
2
×

4
√
p√
2

corner area exchange

cation for which αDBSP provides a result similar to K12 routing on DBSP+ and better

than DBSP.

The routing problem is a np-relation for DBSP, a tight (np, 1)-relation for αDBSP, and

a K12 (np, n)-routing for DBSP+. The αDBSP runtime is:

TαBSP (n) = np g(0, 1) + l(0, 1) (5.11)

While for DBSP we have:

TDBSP (n) = np g(0) + l(0) (5.12)

TDBSP+(n) = K12route(np, n, 0)

= O

log(p)−1∑
i=0

(
n(2i + 1)g(i) + l(i) + Pf(i)

) (5.13)

On the pruned butterfly g(i) =
√
p/2i/2, l(i) = log(p) − i, Pf(i) = (log(p) − i)2, and

g(i, 1) = 1, l(i, 1) = (log(p)− i)2 (Table 5.1). By entering these parameters we evaluate

the execution time for the three machine models:

CHAPTER 5. COST MODEL 163

TαBSP (n) = O
(
np+ log2(p)

)
= O(np) (5.14)

TDBSP (n) = O (np
√
p+ log(p)) = O(np

√
p) (5.15)

TDBSP+(n) = O

log(p)−1∑
i=0

(
n2i
√
p 2−i/2 + (log(p)− i)2

)
= O

n√p log(p)−1∑
i=0

2i/2 + log3(p)


= O

(
np+ log3(p)

)
= O(np) (5.16)

As anticipated, the αDBSP model presented in this dissertation provides a cost analy-

sis that is both simple and accurate for the generalized broadcast problem.

5.5.2 North-South FFT

Many scientific codes discretize the space using grids that have singularity points. For

example, problems such as atmospheric and ocean simulations use bipolar or tripolar

grids that are mapped to the surface of the Earth. In such instances, most numerical

methods become unstable in the neighborhood of grid poles and use FFTs to filter

undesired frequencies.

The North-South FFT problem computes an n
√
p element FFT on the top and bottom

rows of a 2D matrix. We summarize the algorithm for the top row FFT in terms of

computation and communication steps:

1. At the beginning each top row processor is assigned n data elements

2. Each processor computes a local FFT that takes n log(n) computation time

3. For each s = 0.. log(
√
p)− 1 execute steps (4) and (5)

4. Processor x obtains n data elements from processor y, where x, y are top row

processors and their binary representation is identical except for bit 2s

CHAPTER 5. COST MODEL 164

5. Each top row processor recomputes its local n data elements taking n computa-

tion time

6. At the end the n data elements assigned to the top row processors contain the

Fourier transform

The 2D processor grid may be recursively divided vertically, then horizontally to create

a binary tree that is mapped to the hierarchical DBSP machine.

Each communication step (4) is executed up to level i = log(p) − 1 − 2s. For every

0 ≤ s′ < s and intermediate level i′ = log(p) − 1 − 2s′ there are 2s
′ packets sent from

a size 22s
′ submachine to the higher levels. Step (4) has a growth factor of α = 1/2

and represents a n-relation for DBSP, a (n, 1/2)-relation for αDBSP, and a (n, n
√
p)

hm-routing for DBSP+.

Hence, the αDBSP runtime is:

TαBSP (n) = n log(n
√
p) +

log(p)/2−1∑
s=0

(ng(2s+ 1, 1/2) + l(2s+ 1, 1/2)) (5.17)

DBSP is represented by:

TDBSP (n) = n log(n
√
p) +

log(p)/2−1∑
s=0

(ng(2s+ 1) + l(2s+ 1)) (5.18)

DBSP+ is represented by:

TDBSP+(n) = n log(n
√
p)

log(p)/2−1∑
s=0

2K12route

(
n,

⌈
2sn

22s

⌉
, log(p)− 1− 2s

)
(5.19)

= O

n log(n
√
p) +

log(p)/2−1∑
s=0

2s∑
j=0,i=log(p)−1−2s+j

(
Pf(i)l(i) +min

{
n,
⌈ n

2s

⌉
2j
}
g(i)

)

On the pruned butterfly g(i) =
√
p/2i/2, l(i) = log(p) − i, Pf(i) = (log(p) − i)2, and

g(i, 1/2) = log(p)− i, l(i, 1/2) = (log(p)− i)2 (Table 5.1).

CHAPTER 5. COST MODEL 165

We therefore evaluate:

TαBSP (n) = O

n log(np) + n

log(p)/2∑
i=0

(2i+ (2i)3)


= O

(
n log(n) + n log2(p) + log4(p)

)
(5.20)

TDBSP (n) = O

n log(np) + n

log(p)/2∑
i=0

(2i + 2i)


= O (n log(n) + n

√
p) (5.21)

To compute TDBSP+(n) we generate an argument similar to [FPP03]. We observe that

the inner sum is dominated by the largest term that is reached when n/2j/2 =
⌈
n
2s

⌉
2j/2.

The resulting equation is:

TDBSP+(n) = O

n log(np) +

log(p)/2∑
s=0

(⌈ n
2s

⌉1/2
n1/22s + s3

)
= O

n log(np) +

log(p)/2∑
s=0

(
n2s/2 + n1/22s

)
+ log4(p)

 (5.22)

= O
(
n log(n) + n 4

√
p+ n1/2

√
p
)

Minimal effort is required for the αDBSP analysis to lead to a generic parametrized

expression, while entering the machine parameters is straightforward.

The K12 routing algorithm used by DBSP+ improves the single superstep DBSP run-

time while αDBSP improves the DBSP+ bounds: for n = 1 αDBSP gives O(log4(p))

vs. O(
√
p) on DBSP; for n =

√
p αDBSP gives O(n log2(p)) vs. O

(
n 4
√
p
)

on DBSP

(Table 5.1).

CHAPTER 5. COST MODEL 166

5.5.3 Nearest-Neighbor Exchange

Scientific codes commonly use differencing schemes to solve partial differential equa-

tions. To approximate the local derivatives during iterations, these solvers require

data that is computed by the neighbor processors during the previous iteration. The

nearest-neighbor problem sends n data elements from each processor to its direct

neighbors considering that processors are mapped to a 2D grid.

The 2D processor grid is mapped to a binary tree by recursive horizontal and vertical

division as in Section 5.5.2. For a vertical split, a level 2s subtree sends up 2sn data; for

a horizontal split a level 2s+ 1 subtree sends up 2sn data. This problem is a n-relation

for DBSP, a tight (n, 1/2)-relation for αDBSP, and a sum of two (n,
⌈
2sn
22s

⌉
) K12-routings

for DBSP+. For αDBSP we obtain:

TαBSP (n) = ng(0, 1/2) + l(0, 1/2) (5.23)

While for DBSP we obtain:

TDBSP (n) = ng(0) + l(0) (5.24)

TDBSP+(n) = O

log(p)/2∑
s=0

K12route
(
n,
⌈ n

2s

⌉
, log(p)−1−s

) (5.25)

On the pruned butterfly the computations are similar to the analysis from Section 5.5.2.

By substitution we obtain TαBSP (n) = O(n log(p) + log3(p)) and TDBSP (n) = O(n
√
p).

Evaluation of the K12route term for DBSP+ produces TDBSP+(n) = O
(
n 4
√
p+ n1/2

√
p
)
.

The nearest-neighbor and the North-South FFT examples represent a simplification of

the steps executed by scientific codes running on 2D grids mapped to the surface of the

Earth. By adding up the numbers we compute a cost ofO
(∑log(p)−1

i=0 (ng(i, 1/2) + l(i, 1/2))
)

for communication, and a required bandwidth growth factor of α = 1/2 for the entire

application.

CHAPTER 5. COST MODEL 167

Table 5.2: Bounds on algorithm execution time for three BSP family machines model-
ing a pruned butterfly topology.

Model
Generalized
Broadcast

North-South FFT
Nearest-Neighbor
Exchange

DBSP O(np
√
p) O(n log(n) + n

√
p) O(n

√
p)

DBSP+ O(np) O(n log(n) + n 4
√
p+ n1/2

√
p) O(n 4

√
p+ n1/2

√
p)

αDBSP
Ω(np) Ω(n log(np) + log2(p)) Ω(n+ log(p))

O(np) O(n log(n) + nlog2(p) + log4(p)) O(n log(p) + log3(p))

5.5.4 Discussion

The DBSP+ results from Sections 5.5.2 and 5.5.3 use the hm and K12 routing algo-

rithms for DBSP presented in [FPP03, BFPP01]. The K12 algorithm is not optimal for

all problems classified as
(
n,
⌈
n√
p

⌉)
K12-routings. For example, if the cases shown in

Fig. 5.3b and Fig. 5.3c have identical K12-routings, the first example could be executed

faster.

For the case from Fig. 5.3b the DBSP algorithm introduced by Theorem 1 improves the

K12 results being as good as αDBSP for n ≥ √p. For n < √p this is no longer the case.

In particular, for n = 1 no DBSP algorithm can give a bound better than O(
√
p) since

at least one 0-superstep 1-relation is executed. This observation in parallel with the

results from Theorem 2 explain why αDBSP has the capability to improve the highly

optimized DBSP+ results.

Table 5.2 summarizes the execution bounds for the three cases analyzed in this sec-

tion; the αDBSP results include lower bounds since all relevant (h, α)-relations are

tight. For these examples αDBSP is an improvement of DBSP+ in terms of execution

complexity, and observing the detailed analysis it is possible to argue that αDBSP is

no harder to use than DBSP.

CHAPTER 5. COST MODEL 168

5.6 Summary

This chapter presents the αDBSP model—an extension of the DBSP model that aug-

ments h-relations with an exponential bandwidth growth factor α. This additional

factor allows for improved cost analysis by providing an upper bound on the number

of packets traveling up to each machine level.

We describe two routing algorithms for (h, α)-relations that improve DBSP results.

Theorem 1 describes an algorithm that may be executed on any DBSP machine but

sends fewer packets compared to the (k1, k2)-routing algorithm, while Theorem 2 fur-

ther exploits the ability of the pruned butterfly to route sparse relations faster than

O(
√
p). Table 5.1 shows the αDBSP machine parameters that were computed using the

above routing algorithms. On the mesh and pruned butterfly topologies the bandwidth

parameter g(i, α) improves the DBSP g(i) parameter by pαM , pα or pαM / log(p), depend-

ing on the αM machine factor and the α relation factor. These results are applied in

Section 5.5 to analyze scientific computing kernels representative for ocean and at-

mospheric global Earth models. This exercise shows that αDBSP improves DBSP for

both the FFT and PDE kernels, at the same time maintaining a virtually unchanged

analysis complexity (Table 5.2).

A bandwidth argument may be generated by computing the lower bound on (h, α)-

relation execution time (Table 5.1). A heuristic routing algorithm that runs on a real

world interconnect would most likely approach this bound if contention is avoided by

the distribution of messages over multiple paths, i.e., the interconnect implements

an efficient adaptive routing algorithm. Subject to this assumption, a (h, α)-relation

executes in linear time on a real world machine with αM ≤ α. To avoid bandwidth

bottlenecks for a class of applications, machine interconnects could be designed to meet

at least this criterion.

Chapter 6

Conclusions

This dissertation introduced a hybrid SPMD – coarse grain dataflow model that de-

scribes high-level data and task parallelism, argued that this model achieves a good

trade-off between programming simplicity and implementation efficiency by present-

ing the implementation and performance of several benchmarks, and showed how

the αDBSP model estimates collective communication cost on parametrized machines

while improving DBSP accuracy on globally unbalanced patterns. Section 1.3 summa-

rizes the main contributions of this dissertation.

A prerequisite of a productive and efficient programming model design is finding the

proper balance between low- and high-level programming abstractions. If low-level

communication libraries and memory access primitives can potentially provide the

best performance, they require a substantial development effort and may exhibit lim-

ited portability. Highly abstract languages require that fewer implementation details

be specified by developers, thus increasing productivity; however, their compilers are

faced with solving complex optimization problems, in many instances underperform-

ing hand-written code or requiring programming workarounds that defeat the stated

high productivity goals (Section 1.3.1).

169

CHAPTER 6. CONCLUSIONS 170

The CGD model (Section 2.1) aims to solve the above trade-off by requiring program-

mers to describe what they know best—including data layouts, computation assign-

ments, and algorithmic optimizations—and allowing compilers to handle repetitive

work and well-understood optimizations such as communication and synchronization,

datastructure access, communication overlap, and machine specific low-level optimiza-

tions (Section 4.1). Accordingly, instead of trying to address each hard problem au-

tomatically, the CGD model provides abstractions that aid developers to solve these

problems with less effort.

The language support for datastructure decomposition and distribution rules (Sec-

tion 3.4) makes application implementation and layout optimization easier, as shown

through the examples presented in Sections 2.3 and 3.6. The explicit dataflow data de-

pendencies allow compilers to generate C++ code that is very similar to hand-written

code in terms of collective communication structure. Hence, the performance is very

good compared to the reference MPI or pthreads manual implementations, sometimes

outperforming them by relying on optimizations such as communication overlap, avoid-

ing data serialization, and caching and buffering remote reads and writes (Section 4.2).

Both the CGD model and PGAS languages provide a distributed datastructure ab-

straction that hides the communication and synchronization behind the datastructure

implementation, elegantly expressing SPMD structured parallelism. In contrast to

PGAS languages, a single CGD datastructure can have multiple distributions, and

distributions allow domain overlap and replication. E.g., X- and Y-wise FFTs access

locally the row and column block decompositions of a single vector datastructure; finite

differencing scheme PDE solvers access locally the overlapping “halo” domains needed

to compute spacial derivatives (Sections 1.3.1 and 2.3). Hence, algorithms represented

as a sequence of SPMD computations can maximize access locality by executing each

computation relying on a different view of the same datastructure, and by replicating

data elements relying on distributions with overlapping domains.

CHAPTER 6. CONCLUSIONS 171

While only approximating the real hardware performance, a theoretical communi-

cation model provides a mental map between communication and hardware opera-

tions and their complexity. This dissertation introduces the CGD programming model,

which exposes collective communication as redistribution operations (Section 2.1.3),

and the αDBSP machine model, which estimates the collective communication cost

on parametrized architectures (Section 5.1). These models allow developers to un-

derstand communication and computation complexity during the development stage,

therefore helping them to make an educated choice among the implementation options.

The αDBSP model defines (h, α)-relations and improves DBSP for several common

globally unbalanced problems such as PDE solvers and FFTs on grid subdomains.

Additionally, αDBSP estimates the hierarchical bandwidth required by an application,

helping system architects design interconnects that avoid bandwidth bottlenecks for

their target applications. For example, a 2D PDE solver that employs FFT filtering at

the top and bottom of its grid has a bandwidth growth factor of α = 1
2 , and may be

executed without inherent bandwidth bottlenecks on a machine with αM = 1
2 such as

a 2D fat-tree or 2D mesh (Section 5.5).

Bibliography

[AC86] Arvind and David E. Culler. Dataflow architectures. In Annual review of

computer science, volume 1, pages 225–253. Annual Reviews Inc., Novem-

ber 1986.

[AISS95] Albert Alexandrov, Mihai Ionescu, Klaus Schauser, and Chris Scheiman.

LogGP: incorporating long messages into the LogP model, one step closer

towards a realistic model for parallel computation. In Proceedings of

the 7th Symposium on Parallel Algorithms and Architectures (SPAA ’95).

ACM, July 1995.

[AW77] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language with

iteration. Communications of the ACM, 20(7):519–526, July 1977.

[AW80] Ed Ashcroft and Bill Wadge. Some common misconceptions about Lucid.

SIGPLAN Notices, 15(10):15–26, October 1980.

[BB95] Paul Bay and Gianfranco Bilardi. Deterministic on-line routing on area-

universal networks. Journal of the ACM (JACM), 42(3):614–640, May

1995.

[BBea91] D. H. Bailey, E. Barszcz, and J. T. Barton et al. The NAS parallel bench-

marks. Technical report, The International Journal of Supercomputer

Applications, 1991.

172

BIBLIOGRAPHY 173

[BBNY06] Christian Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing band-

width limited problems using one-sided communication and overlap. In

Proceedings of the 20th International Parallel and Distributed Processing

Symposium (IPDPS ’06). IEEE Computer Society Press, April 2006.

[BCBY04] C. Bell, W. Chen, D. Bonachea, and K. Yelick. Evaluating support for

global address space languages on the Cray X1. In Proceedings of the 19th

Annual International Conference on Supercomputing (ICS ’04). ACM,

June 2004.

[Ber99] Martin Beran. Decomposable bulk synchronous parallel computers. In

Proceedings of the 26th Conference on Current Trends in Theory and Prac-

tice of Informatics (SOFSEM ’99). Springer-Verlag, November 1999.

[BFPP01] G. Bilardi, C. Fantozzi, A. Pietracaprina, and G. Pucci. On the effective-

ness of D-BSP as a bridging model of parallel computation. In Proceedings

of International Conference on Computational Science (ICCS ’01), pages

579–588. Springer-Verlag, May 2001.

[BHP+96] G. Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis. BSP

vs LogP. In Proceedings of the 8th Symposium on Parallel Algorithms and

Architectures (SPAA ’96). ACM, June 1996.

[BJvOR03] Olaf Bonorden, Ben Juurlink, Ingo von Otte, and Ingo Rieping. The

Paderborn University BSP (PUB) library. Journal of Parallel Computing,

29(2):187 – 207, February 2003.

[BL05] Shawn Bowers and Bertram Ludascher. Actor-oriented design of scien-

tific workflows. In Proceedings of the 24st International Conference on

Conceptual Modeling (ER’05). Springer-Verlag, October 2005.

BIBLIOGRAPHY 174

[BL09] Christian Bienia and Kai Li. Parsec 2.0: A new benchmark suite for chip-

multiprocessors. In Proceedings of the 5th Annual Workshop on Modeling,

Benchmarking and Simulation, June 2009.

[BN] V. Balaji and Robert W. Numrich. A uniform memory model for

distributed data objects on parallel architectures. In Use of High-

Performance Computing in Meteorology. World Scientific Publishing Co.

[Bon02] Dan Bonachea. GASNet specification, v1.1. University of California at

Berkeley, 2002.

[BPP07] G. Bilardi, A. Pietracaprina, and G. Pucci. Decomposable BSP: A

Bandwidth-Latency Model for Parallel and Hierarchical Computation.

CRC Press, Inc., 2007.

[But97] David R. Butenhof. Programming with POSIX threads. Addison-Wesley

Longman Publishing Co., Inc., May 1997.

[BVZ+07] Matthew Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, and

David August. Revisiting the sequential programming model for multi-

core. In Proceedings of the 40th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO 40), pages 69–84. IEEE Computer

Society, 2007.

[CCDI09] Bradford L. Chamberlain, Sung-Eun Choi, Steven J. Deitz, and David

Iten. Global HPC challenge benchmarks in Chapel. Technical report,

Cray Inc., November 2009.

[CCZ07] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmabil-

ity and the Chapel language. International Journal of High Performance

Computing, 21:231–312, August 2007.

BIBLIOGRAPHY 175

[CDHW] Bradford L Chamberlain, Steven J Deitz, Mary Beth Hribar, and Wayne A

Wong. Technical report.

[CGS+05] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. Praun, and V. Sarkar. X10: An object-oriented approach to non-

uniform cluster computing. In Proceedings of the 20th Annual Conference

on Object-oriented Programming, Systems, Languages, and Applications

(OOPSLA ’05). ACM, October 2005.

[CHea03] Wei Yu Chen, P. Husbands, and D. Bonachea et. al. A performance anal-

ysis of the Berkeley UPC compiler. In Proceedings of the 17th Annual

International Conference on Supercomputing (ICS ’03). ACM, June 2003.

[cil04] Cilk 5.4.1 – reference manual, 2004.

[CKP+93] D. E. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E.Santos,

R. Subramonian, and T. Eicken. LogP: towards a realistic model of paral-

lel computation. In Proceedings of the 4th Symposium on Principles and

Practice of Parallel Programming (PPOPP ’93). ACM, August 1993.

[CL10] Marcelo Cintra and Diego R Llanos. Preliminary evaluation of chapel

capabilities with nas parallel benchmarks. 2010.

[CLZ+11] Xuhao Chen, Jiawen Li, Zhong Zheng, Li Shen, and Zhiying Wang. Eval-

uating scalability of emerging multithreaded applications on commod-

ity multicore server. International Conference of Information Technology,

Computer Engineering and Management Sciences, pages 332–335, 2011.

[CSG98] David Culler, J. P. Singh, and Anoop Gupta. Parallel Computer Architec-

ture: A Hardware/Software Approach. Morgan Kaufmann, August 1998.

BIBLIOGRAPHY 176

[DDHM08] F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari. Bulk syn-

chronous parallel algorithms for the external memory model. Theory of

Computing Systems, 35, 2008.

[dlTK95] Pilar de la Torre and C. P. Kruskal. A structural theory of recursively de-

composable parallel processor-networks. In Proceedings of the 7th Sympo-

sium on Parallel and Distributed Processing (SPDP ’95). IEEE Computer

Society Press, October 1995.

[dlTK96] Pilar de la Torre and C. P. Kruskal. Submachine locality in the bulk

synchronous setting. In Proceedings of the second International Euro-

Par Conference on Parallel Processing (Euro-Par ’96), pages 352–358.

Springer-Verlag, August 1996.

[DM98] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard

API for shared-memory programming. IEEE Computational Science and

Engineering, 5(1):46–55, January 1998.

[DRJ94] Pushpa Rao Dartmouth, Pushpa Rao, and R. Jagannathan. Developing

scientific applications in GLU. In Proceedings of the Seventh International

Symposium on Lucid and Intensional Programming, pages 45–52, 1994.

[EGC02] T. El-Ghazawi and F. Cantonnet. UPC performance and potential: A NPB

experimental study. In Proceedings of the Supercomputing Conference (SC

’02), pages 1–26. IEEE Computer Society Press, November 2002.

[Fei95] K Feind. Shared memory access (SHMEM) routines. In Proceedings of

Cray User Group (CUG ’95), pages 303–308. Cray Inc., 1995.

[FG06] K. FÃŒrlinger and M. Gerndt. Analyzing overheads and scalability char-

acteristics of OpenMP applications. In Proceedings of International Meet-

ing on High Performance Computing for Computational Science (VECPAR

’06), 2006.

BIBLIOGRAPHY 177

[For94] Message Passing Interface Forum. MPI: A message-passing interface

standard. Technical report, University of Tennessee Knoxville, 1994.

[FPP03] C. Fantozzi, A. Pietracaprina, and G. Pucci. A general PRAM simulation

scheme for clustered machines. International Journal of Foundations of

Computer Science, 14, 2003.

[FPP06] Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci. Translating

submachine locality into locality of reference. Journal of Parallel Dis-

tributed Computing, 66:633–646, May 2006.

[GBT87] J. Gurd, W. Bohm, and Y. M. Teo. Performance issues in dataflow ma-

chines. Future Generation Computer Systems, 3(4):285–297, December

1987.

[GKS94] Ananth Y. Grama, Vipin Kumar, and Ahmed Sameh. Scalable parallel

formulations of the Barnes-Hut method for n-body simulations. In Pro-

ceedings of Supercomputing Conference (SC ’94), pages 439–448. IEEE

Computer Society Press, 1994.

[GS99] E. L. W. Gropp and A. Skjellum. Using MPI-2: Advanced Features of the

Message-Passing Interface. MIT Press, November 1999.

[HMS+98] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau,

Kevin Lang, Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob H.

Bisseling. BSPlib: The BSP programming library. Journal of Parallel

Computing, 24(14):1947–1980, 1998.

[HPP01] Kieran T. Herley, Andrea Pietracaprina, and Geppino Pucci. Implement-

ing shared memory on mesh-connected computers and on the fat-tree.

Journal of Information and Computation, 165, 2001.

BIBLIOGRAPHY 178

[HR91] T. Heywood and S. Ranka. A practical hierarchical model of parallel com-

putation. In Proceedings of the 1991 Third Symposium on Parallel and

Distributed Processing (SPDP ’91). IEEE Computer Society Press, Decem-

ber 1991.

[HSH96] Chris Holt, Jaswinder Pal Singh, and John Hennessy. Application and

architectural bottlenecks in large scale distributed shared memory ma-

chines. In Proceedings of the 23rd annual International Symposium on

Computer Architecture (ISCA ’96), pages 134–145. ACM, 1996.

[Ift98] Liviu Iftode. Home-based shared virtual memory. Princeton University,

Princeton, NJ, 1998.

[Jag95] R. Jagannathan. Coarse-grain dataflow programming of conventional

parallel computers. In Advanced Topics in Dataflow Computing and Mul-

tithreading, pages 113–129. IEEE Computer Society Press, 1995.

[JHRM04] Wesley M. Johnston, J. R. Paul Hanna, Richard, and J. Millar. Advances

in dataflow programming languages. ACM Computing Survey (CSUR),

March 2004.

[JKP+12] Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I.

August. Speculative separation for privatization and reductions. In Pro-

ceedings of the 33rd Conference on Programming Language Design and

Implementation (PLDI ’12), pages 359–370. ACM, June 2012.

[JS99] D. Jiang and J.P. Singh. Scaling application performance on a cache-

coherent multiprocessors. In Proceedings of the 26th annual International

Symposium on Computer Architecture (ISCA ’99, pages 305–316. ACM,

1999.

[JSS97] Dongming Jiang, Hongzhang Shan, and Jaswinder Pal Singh. Application

restructuring and performance portability on shared virtual memory and

BIBLIOGRAPHY 179

hardware-coherent multiprocessors. In Proceedings of the 6th Symposium

on Principles and Practice of Parallel Programming (PPOPP ’97), pages

217–229. ACM, August 1997.

[JW96] Ben H. H. Juurlink and Harry A. G. Wijshoff. The E-BSP model: In-

corporating general locality and unbalanced communication into the BSP

model. In Proceedings of International Euro-Par Conference on Parallel

Processing (Euro-Par ’96). Springer-Verlag, 1996.

[KBB86] K. M. Kavi, B. P. Buckles, and U. N. Bhat. A formal definition of data flow

graph models. IEEE Transactions on Computers, 35:940–948, 1986.

[KL89] Paul Hudak Kai Li. Memory coherence in shared virtual memory systems.

pages 321–359, November 1989.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The c programming language,

1988.

[Kus06] Bradley C. Kuszmaul. A cilk response to the hpc challenge (class 2). Tech-

nical report, Massachusetts Institute of Technology. Boston, MA, 2006.

[Lei85] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient su-

percomputing. IEEE Transactions on Computers, 34(10):892–901, 1985.

[LH94] Ben Lee and A. R. Hurson. Dataflow architectures and multithreading.

Computer, 27(8):27–39, August 1994.

[LLG+90] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta,

and John Hennessy. The directory-based cache coherence protocol for the

dash multiprocessor. In Proceedings of the 17th International Symposium

on Computer Architecture (ISCA ’90), pages 148–159. ACM, 1990.

BIBLIOGRAPHY 180

[MAB94] Richard Alpert Cezary Dubnicki Edward W Felten Jonathan Sandberg

Matthias A Blumrich, Kai Li. Virtual memory mapped network interface

for the shrimp multicomputer. pages 142–153, April 1994.

[MGRG11] Josh Milthorpe, V. Ganesh, Alistair P. Rendell, and David Grove. X10 as

a parallel language for scientific computation: Practice and experience.

In Proceedings of the 25th International Parallel and Distributed Process-

ing Symposium (IPDPS ’11), pages 1080–1088. IEEE Computer Society

Press, May 2011.

[Mor94] J. Paul Morrison. Flow Based Programming: A New Approach to Applica-

tion Development. Van Nostrand Reinhold, 1994.

[MTT+09] Damián A. Mallón, Guillermo L. Taboada, Carlos Teijeiro, Juan Touriño,

Basilio B. Fraguela, Andrés Gómez, Ramón Doallo, and J. Carlos Mouriño.

Performance evaluation of mpi, upc and openmp on multicore architec-

tures. In Proceedings of the 16th European PVM/MPI Users’ Group Meet-

ing on Recent Advances in Parallel Virtual Machine and Message Passing

Interface, pages 174–184. Springer-Verlag, 2009.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, 77(4):541–580, April 1989.

[NC99] Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable remote mem-

ory copy libray for ditributed array libraries and compiler run-time sys-

tems. In Proceedings of the 11th International Parallel Processing Sym-

posium (IPPS/SPDP ’99), 1999.

[NGM97] L. M. Ni, Y. Gui, and S. Moore. Performance evaluation of switch-based

wormhole networks. IEEE Transactions on Parallel and Distributed Sys-

tems, 8(5):462–474, 1997.

BIBLIOGRAPHY 181

[Nic06] Virginia Niculescu. Cost evaluation from specifications for BSP programs.

In Proceedings of the 20th International Conference on Parallel and Dis-

tributed Processing (IPDPS ’06). IEEE Computer Society Press, April

2006.

[Nik93] Rishiyur S. Nikhil. An overview of the parallel language Id (a foundation

for pH, a parallel dialect of Haskell). Technical report, Digital Equipment

Corporation, Cambridge Research Laboratory, 1993.

[NR98] Robert W. Numrich and John Reid. Co-array Fortran for parallel pro-

gramming. SIGPLAN Fortran Forum, 17(2):1–31, August 1998.

[OP] Stephen Olivier and Jan Prins. Comparison of openmp 3.0 and other task

parallel frameworks on unbalanced task graphs. International Journal of

Parallel Programming.

[PG08] I. Patel and J.R. Gilbert. An empirical study of the performance and pro-

ductivity of two parallel programming models. In Proceedings of the 22nd

International Parallel and Distributed Processing Symposium (IPDPS

’08), pages 1–7. IEEE Computer Society Press, April 2008.

[PGZ+11] Prakash Prabhu, Soumyadeep Ghosh, Yun Zhang, Nick P. Johnson, and

David I. August. Commutative set: a language extension for implicit par-

allel programming. In Proceedings of the 32nd Conference on Program-

ming Language Design and Implementation (PLDI ’11), pages 1–11. ACM,

June 2011.

[PL] Karin Petersen and Kai Li. Cache coherence for shared memory multi-

processors based on virtual memory support.

[RLR98] Keith H. Randall, Charles E. Leiserson, and H. Randall. Cilk: Efficient

multithreaded computing. Technical report, Massachusetts Institute of

Technology. Boston, MA, 1998.

BIBLIOGRAPHY 182

[RSG93] Edward Rothberg, Jaswinder Pal Singh, and Anoop Gupta. Working sets,

cache sizes, and node granularity issues for large-scale multiprocessors.

In Proceedings of the 20th annual International Symposium on Computer

Architecture (ISCA ’93), pages 14–26. ACM, 1993.

[SHG95] Jaswinder Pal Singh, John L. Hennessy, and Anoop Gupta. Implications

of hierarchical N-body methods for multiprocessor architectures. Trans-

actions on Computer Systems (TOCS), 13(2):141–202, May 1995.

[SHT+95] Jaswinder Pal Singh, Chris Holt, Takashi Totsuka, Anoop Gupta, and

John L. Hennessy. Load balancing and data locality in adaptive hierarchi-

cal N-body methods: Barnes-Hut, fast multipole, and radiosity. Journal

of Parallel and Distributed Computing, 27:118–141, June 1995.

[SJHG93] J. P. Singh, T. Joe, J. L. Hennessy, and A. Gupta. An empirical compar-

ison of the Kendall Square Research KSR-1 and Stanford DASH multi-

processors. In Proceedings of Supercomputing Conference (SC ’93), pages

214–225. IEEE Computer Society Press, 1993.

[SOW+95] Marc Snir, Steve W. Otto, David W. Walker, Jack Dongarra, and Steven

Huss-Lederman. MPI: The Complete Reference. MIT Press, 1995.

[SRG94] Jaswinder Pal Singh, Edward Rothberg, and Anoop Gupta. Modeling com-

munication in parallel algorithms: a fruitful interaction between theory

and systems? In Proceedings of the 6th Symposium on Parallel Algorithms

and Architectures (SPAA ’94), pages 189–199. ACM, July 1994.

[SS99] Hongzhang Shan and Jaswinder Pal Singh. A comparison of MPI,

SHMEM and cache-coherent shared address space programming models

on the SGI Origin 2000. In Proceedings of the 13th International Confer-

ence on Supercomputing (ICS ’99), pages 329–338. ACM, June 1999.

BIBLIOGRAPHY 183

[SS09] Adrian Soviani and Jaswinder Pal Singh. Optimizing communication

scheduling using dataflow semantics. In Proceedings of the 2009 Interna-

tional Conference on Parallel Processing (ICPP ’09), pages 301–308. IEEE

Computer Society Press, 2009.

[SS10] Caitlin Sadowski and Andrew Shewmaker. The last mile: Parallel pro-

gramming and usability. In Proceedings of the FSE/SDP Workshop on

Future of Software Engineering Research (FoSER ’10), pages 309–314.

ACM, 2010.

[SS12] Adrian Soviani and Jaswinder Pal Singh. Estimating application hierar-

chical bandwidth requirements using BSP family models. In Proceedings

of the 26th International Parallel and Distributed Processing Symposium

Workshops (IPDPSW ’12), pages 914 – 923. IEEE Computer Society Press,

2012.

[SSOB00] Hongzhang Shan, Jaswinder Pal Singh, Leonid Oliker, and Rupak Biwas.

A comparison of three programming models for adaptive applications on

the Origin 2000. Journal of Parallel and Distributed Computing, June

2000.

[SSOB03] Hongzhang Shan, Jaswinder P. Singh, Leonid Oliker, and Rupak Biswas.

Message passing and shared address space parallelism on an SMP cluster.

Parallel Computing, 29(2):167–186, February 2003.

[SSOG93] Jaspal Subhlok, James M. Stichnoth, David R. O’hallaron, and Thomas

Gross. Exploiting task and data parallelism on a multicomputer. In Pro-

ceedings of the 4th Symposium on Principles and Practice of Parallel Pro-

gramming (PPOPP ’93), pages 13–22. ACM, August 1993.

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Communi-

cations of the ACM, 33(8):103–111, August 1990.

BIBLIOGRAPHY 184

[VECGS92] T. Von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active Mes-

sages: a mechanism for integrated communication and computation, vol-

ume 20. ACM, 1992.

[WMT08] Kyle B. Wheeler, Richard C. Murphy, and Douglas Thain. Qthreads: An

api for programming with millions of lightweight threads. In Proceedings

of the 22nd International Parallel and Distributed Processing Symposium

(IPDPS ’08), pages 1–8. IEEE Computer Society Press, 2008.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal

Singh, and Anoop Gupta. The SPLASH-2 programs: characterization and

methodological considerations. In Proceedings of the 22nd Annual Inter-

national Symposium on Computer Architecture (ISCA ’95), pages 24–36.

ACM, 1995.

