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Abstract

Cloud tenants experience performance problems due to is-
sues within their virtual machines (VMs) or within the cloud
infrastructure. To offer good and predictable performance,
cloud providers must be able to detect and diagnose per-
formance problems in real time. However, existing cloud
diagnosis techniques are either unable to detect problems
in the tenant’s VMs or are too costly. We argue that rather
than collecting all statistics, cloud diagnosis should proceed
in phases, with each phase selectively collecting heavier
weight measurements. To this end, we introduce a set of
novel techniques for inferring the internal state of a VM’s
midstream network connections which allows us to accu-
rately collect measurements at any point during a connec-
tion. Our framework, RINC, runs within the hypervisor,
using these techniques to selectively monitor a tenant’s con-
nections.

RINC provides a simple query interface to its cloud-wide
platform that allows cloud operators to easily write diagno-
sis applications. We evaluate RINC on a testbed and with
a simulator using a combination of real data center traces
and synthetic workloads. Our evaluations validate RINC’s
accuracy and show that, by being selective, RINC is able
to scale to a cloud with 100K physical servers or 1Million
VMs. Moreover we demonstrate RINC’s flexibility and ex-
pressibility by implementing five diagnosis applications.

1 Introduction

Diagnosing network performance problems in real time is
essential for offering good, predictable service in the cloud.
Performance problems can be caused by many different
components across the cloud’s networking stack (e.g., the
sender or receiver virtual machine (VM), the hypervisor,
or the network). Therefore, solely collecting network-level
statistics, e.g., link utilization, is not sufficient to diagnose
performance problems. Unfortunately, the alternative, in-
strumenting the tenant VMs to collect statistics, can be
rather invasive and cumbersome. Instead, in this paper,
we argue for an orthogonal approach wherein the hypervi-
sor passively collects lightweight statistics about each ten-
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ant’s connections. Upon detecting anomalous behavior, the
provider can selectively enable heavier-weight monitoring
to pin-point the root cause of problems.

1.1 Performance Diagnosis in the Clouds

Public Infrastructure as a Service (IaaS) clouds provide ten-
ants with virtual machines. Unfortunately, the sharing of
resources in the cloud often leads to performance prob-
lems [34] [31]. Diagnosing and detecting these problems
is complicated by the fact that performance anomalies are
sometimes caused by tenant-specific problems, such as the
configuration of the tenant’s operating system or applica-
tion [[14]. Furthermore, server virtualization complicates
performance diagnosis because the information needed to
accurately diagnosis performance problems resides par-
tially within the tenant VM’s networking stack.

Traditional approaches to diagnosing performance prob-
lems often collect statistics inside the network, including
packet traces [37, [11]] or link utilization from network de-
vices. To be effective, these approaches require continuous,
fine-grained monitoring from all network devices, leading
to significant scalability challenges. In addition, in-network
monitoring does not offer visibility into end-to-end metrics
(e.g., round-trip times) and application behavior, making it
difficult to detect problems within the tenant’s VM.

In response to these issues, recent diagnosis techniques
collect richer traffic statistics from the end hosts. Un-
fortunately, these introduce trust and scalability chal-
lenges. Some solutions, like Web10G [7]], HONE [30] and
SNAP [35] address scalability and precision by deploying
a kernel-module within the VM. While appropriate in pri-
vate clouds, these techniques are intrusive in IaaS clouds
since they interfere with a tenant’s ability to manage his
own VM. In addition, they make the cloud provider rely on
tenants for updates of the system (e.g., to install patches)
and complicate billing by using a tenant’s resources for
measurement. Other approaches side-step these trust is-
sues by collecting packet traces in the hypervisor. For ex-
ample, VND [33] stores packet headers in a SQL-database
and executes SQL queries to detect problems. However, the
database introduces significant scalability challenges due to
the large amount of storage, and the approach is limited to



diagnosing problems that can be detected using queries on
information stored in packet headers, e.g., RTT and loss rate
but not sender or receiver side problems.

1.2 Light-weight, Selective Measurement

Detecting performance problems is much easier than diag-
nosing them. As such, we believe that measurement should
proceed in multiple phases, with each phase narrowing in on
the root cause through heavier-weight monitoring and anal-
ysis on a smaller subset of the connections. For example,
in the first phase, the provider could collect simple statistics
(e.g., throughput) to identify troubled connections. Then, in
successive steps, the provider could enable heavier-weight
measurement of these connections, e.g., tracking the evo-
lution of the TCP state machine and collecting round-trip
time (RTT), congestion window (CWND), receiver window
(RWND), and maximum segment size (MSS). Finally, this
detailed information can be used to pin-point the location
of the problem. For example, the provider could deter-
mine if an application has data waiting in the TCP send
buffer. If the application is back-logged, the provider can
collect more detailed statistics for the paths carrying these
flows, to detect (possibly intermittent) congestion; if not,
the provider could infer that performance is constrained by
the sending VM or application.

This simple example highlights the challenges involved
in diagnosing and pin-pointing the root cause of perfor-
mance problems. These challenges arise because perfor-
mance problems can occur either due to problems in the
provider’s infrastructure or tenant’s VM, thus there is a need
to collect state both about the provider’s domain, e.g., the
network, and the tenant’s domain, e.g., TCP state-machine.
However, if not done wisely, collecting all statistics from
both domains can be cumbersome, thus limiting the adop-
tion of the system.

We argue that a scalable and effective cloud diagnosis
system must provide:

o Connection-level statistics: Since performance prob-
lems may be caused by the provider or the tenant, we
must efficiently and accurately infer the internal state
of each of the tenant’s connection.

e Cloud-wide measurement and analysis: Cloud net-
working infrastructure spans both the network devices
and the end hosts, so we must be able to collect and
correlate measurements across the entire infrastruc-
ture. To avoid low-level manual configuration, we
should give cloud operators a high-level query inter-
face to control when and how to perform more heavy-
weight monitoring.

e Monitoring midstream connections: Since heavy-
weight monitoring could be enabled at any time, our
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solution must be able to quickly infer the state of a
connection without seeing all its packets from the be-
ginning.

To that end, we present RINC (Real-Time Inference-based
Network diagnosis in the Cloud), a framework that enables
cloud operators to diagnose problems in real time.

1.3 RINC

RINC’s architecture, displayed in Figure |1} consists of a
Local Agent which runs in the hypervisor of each server,
and a Global Coordinator that aggregates and coordinates
measurements across the agents.

Local agent: The Local Agent contains two components.
First, the measurement module, which inspects packets, cal-
culates statistics, and reconstructs each TCP connection’s
internal state, obviating the need to patch the tenant’s VMs.
Second, the communication module manages communica-
tion with the Global Coordinator, by translating queries
into instructions for enabling data collection and returning
the results.

Global coordinator: The Global Coordinator aggre-
gates information from the Local Agents and, more impor-
tantly, hides the details of RINC’s distributed implementa-
tion. To enable scaling, the Global Coordinator provides a
flexible interface that provides the cloud operator with a set
of mechanisms to minimize the Local Agent’s overhead: the
first allows operator to directly specify which statistics are
important, thus implicitly limiting the set of statistics be-
ing collection; and the second automatically determines the
minimum set of connections to monitor in order to accu-
rately identify problems with a specific network predicate,
e.g., switch, link, hypervisor, or VM.

Roadmap: The next section presents a brief overview
of TCP and the challenges of reconstructing the internal
state. Section [3| motivates, discusses the challenges of, and
presents solutions to monitoring midstream connections.
SectionE]presents the distributed architecture of RINC, in-
cluding the query interface used by operators to control
RINC. We present our prototype in Section [5] and evalua-
tion in Section [l Section [7] discusses related work. Sec-



tion [§] discusses generalizing RINC to arbitrary versions of
TCP. We conclude the paper in Section [0}

2 Background on TCP Monitoring

The transport protocol employed by an application signifi-
cantly impacts its performance. Although there a number of
transport protocols, most cloud applications are designed to
use TCP, with TCP accounting for 99.91% of the traffic [9].
As such, we focus on developing techniques for inferring
TCP connection statistics. In this section, we describe the
life of a TCP connection, map this behavior to the TCP state
machine, and discuss the challenges in inferring the statis-
tics of a midstream connection, particularly the connection
state.

2.1 The Life of a TCP Connection

A TCP connection starts with a three-way handshake where
the end-points exchange options to agree on various param-
eters for the connection, such as the maximum number of
bytes a packet can contain (maximum segment size (MSS)).

After set-up, the connection begins in the slow-start state
(SS in Figure [J(a)), where the connection initially sends
packets very slowly but tries to learn the available band-
width by transmitting at an exponentially increasing rate.
Upon receiving each packet, the receiver sends back an ACK
packet. Upon receiving the ACK, the sender sends out more
packets. TCP remains in slow start until either a loss hap-
pens (indicated by receiving three duplicate-ACKs or by
receiving no ACKs before a retransmission timer expires
(RTO)), or the sender sends a predefined number, SSThresh,
of bytes (indicated by the red dashed lines in Figure[2{a)).

At this point, the TCP sender assumes it has discovered
its fair share of the bandwidth and transitions into the con-
gestion avoidance (CA) state. In this state, TCP increases
its sending rate linearly (indicated as CA in Figure 2[a)). A
packet loss can trigger one of two transitions, depending on
how the loss was detected. If a coarse-grained loss is in-
ferred from RTO, the connection resets the window size to
initial window (usually one MSS) and returns to the slow-
start state. Otherwise, if the loss is detected through three
duplicate-ACKs, the connection transitions into fast recov-
ery (FR), where TCP sets its window size to half the current
value and resends lost segments.

The TCP State Machine (summarized in Figure b)) dic-
tates both the conditions for state transitions and TCP’s
sending behavior in each state. More concretely, the TCP
state machine determines when a TCP sender is eligible to
transmit more packets. The state variable Congestion win-
dow (CWND) determines how much the TCP can send with-
out congesting the network; the CWND is adjusted every
Round Trip Time (RTT) for the duration of a connection’s
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Figure 2: (a) Congestion window, (b) Reno state machine

lifetime.

To this end, TCP randomly picks a packet each RTT and
calculates its RTT. Generally, CWND is increased when a
new ACK is received and it is decreased when a packet is
lost. Figure 2fa) displays the evolution of CWND over the
life time of a sample TCP connection.

2.2 Challenges of Inferring TCP Statistics

Network performance diagnosis can draw upon four main
types of statistics about TCP connections:

e Constants, such as MSS, which are exchanged at the
beginning of the connection.

e Counters, such as the number of bytes sent, which are
updated on every packet.

e Sampled statistics, such as RTT, which are updated
less frequently.

e State variables, such as CWND or current TCP state,
which track the evolution of the connection.

A full list of these statistics are presented in Table |1} RINC
must infer these statistics by analyzing the packets seen at
the hypervisor, without the benefit of having access to the
VM’s network stack.

These statistics are particularly useful for developing di-
agnosis applications. For example, to detect heavy hitters,
that is flows that are larger than a certain number of bytes,
an operator would instruct RINC to collect bytes sent (a
Counter statistic) for each connection. Similarly, to diag-
nose performance problems, such as finding high-latency
flows, the operator would configure RINC to collect RTT (a
Sampled statistic). There are two main challenges in col-
lecting these statistics, namely:

The overhead incurred by RINC for collecting, process-
ing, and storing these statistics. In Figure[3] we present the
memory overhead of collecting all statistics and compare
this against the overhead of selectively collecting data only
for one type of statistic. In Figure[3] we observe that naively
collecting all statistics can result in more than a 75% in-
crease in memory compared to selectively collection only
the required group of statistics. For example, collecting
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Figure 3: Local Agent memory overhead per module (10K
connections per host)

State Sampling Constants Counters

Module Statistics

Constants | SMSS, RMSS, window scale, Initial se-
quence number, creation time(SYN) and
finish time(FIN)

Counters packet and byte counters, number of du-
plicate acks, packet re-transmissions, and
timeout counters

State TCP state (SS, CA, FR, UNKNOWN),

Tracker CWND, ssthresh, RWND, Initial Window,
Restart Window, and flight size

Sampling last update time, SRTT, RTTVAR, RTO,
sending rate, and throughput

Table 1: RINC’s measurement modules, and their major
statistics

statistics for heavy-hitters detection (a Counters statistics)
requires only half of the memory required for collecting all
statistics. Similar trends are observed for processing and
networking overheads. (We elaborate on these in Section[6})

These observations highlight the need for a mechanism
that determines which statistics to monitor and when to col-
lect them. We discuss this mechanism in Section 4]

Detecting TCP version and configuration parameters
is integral to the process of inferring the state of the connec-
tion, as the state machine and the formulae for calculating
these variables depend on the version of TCP and TCP’s
initial configuration parameters (e.g., SSThresh and initial
window). Fortunately, we can determine these parameters
by running a set of techniques to finger-print the OS and
the TCP version [5) 37]. Alternatively, the cloud provider
may have its own internal knowledge about the tenant’s VM
image, often chosen from a menu of options.

3 Tracking Midstream Flows

Data center connections are mostly long-lived [35] flows,
and the number of connections per host can be up to 10K
[35] and increasing. Monitoring all the long-lived connec-
tions at all the times can be expensive and impractical. To
reduce the overhead of collecting and storing their statistics,

a cloud provider can selectively collect a small set of statis-
tics and collect more statistics on demand. However, this
relies on having an effective way to monitor a midstream
connection; that is, a connection where we have missed an
arbitrary number of initial packets.

Counters and Sampled statistics represent cumulative
values or long running averages and, as such, cannot be ac-
curately inferred for midstream flows. Fortunately, sampled
statistics such as smoothed RTT (SRTT) will converge with
the correct values eventually (we will show this in[6.2). In
addition, counter statistics such as packet counts demon-
strate the relative growth in values since the start of mon-
itoring, which can be helpful in diagnosis of performance
problems.

The only way to infer Constants is to monitor a TCP con-
nection during the handshake. Lacking this handshake, we
can leverage the fact that all connections from a specific VM
use the same constants. Thus we can inherit constants from
other connections from the same VM.

Finally for state variables, unfortunately, the existing
techniques [37, [11] for inferring the internal state of a TCP
state-machine are only applicable if the TCP connection is
monitored from the beginning. For connections that are
monitored midstream, inferring the state of the TCP state
machine becomes significantly more difficult, for several
reasons:

e Thresholds change: The thresholds that are generally
considered to be constant actually change as the con-
nection evolves over time. For example, Figure [2] (a)
shows how SSThresh changes with each state transi-
tion.

o Different states can behave identically: TCP be-
haves identically in several different states. For exam-
ple, as shown in Figure 2a), TCP behaves identically
in CA and FR, linearly increasing its sending rate. Fur-
thermore, a connection in S§ that does not have enough
application data to send could incidentally have a lin-
ear sending rate, consistent with the CA or FR state.

e Transitions are often triggered by a sequence of
events: For example, if RINC starts monitoring a con-
nection after the first of the 3-duplicate-ACKs has been
received, it may incorrectly infer the connection is in
CA state even though the connection transitioned to FR
state.

Therefore we need to develop novel techniques that allow us
to accurately and quickly infer the internal state of a mid-
stream TCP connection. These techniques need to detect
new the values for the constants and to disambiguate states
with similar behaviors.

Our algorithms for inferring the internal state of mid-
stream connections builds on the insight that once we can



determine the current state of the TCP state-machine, ex-
isting techniques can be easily applied. However, as stated
before, the challenges in detecting this initial state lie in the
ambiguity of the state-machine. To overcome this ambigu-
ity, we leverage three observations: first, certain states and
transitions are unambiguous (Section@; second, a certain
level of ambiguity is created by the applications behavior,
thus inferring the application’s effect further decreases am-
biguity (Section[3.2)); and finally, when we cannot infer the
state, it is possible to apply an active approach which uses
careful probing to force a connection into one of several
known states (Section [3.3).

3.1 Unambiguous State Transitions and Be-
havior

Our first technique, indicated as H1 and H2 in Figure E],
leverages the unambiguous behavior, namely of exponential
sending in SS, and unambiguous state transitions, namely of
RTO to FR and of three duplicate-ACKs to SS.

The first step, H1, is to determine if we have fully ob-
served any events that unambiguously trigger a state transi-
tion: we check to see if we’ve observed three duplicate-
ACKs or an RTO event (using the estimated RTO calcu-
lated by the sampling module according to Karn’s Algo-
rithm [27]], or using the worst case RTO of the cloud con-
nections if no samples exist for the flow) indicating a loss,
in which case we know TCP will transition into FR and SS
respectively.

By virtue of starting midstream, our approach has missed
certain packets. A subtle implication of this is that we may
be unable to detect these transitions because we may have
missed one or more of the duplicate-ACKs.

Next, H2, checks to see if TCP is in one of the unam-
biguous states: H2 checks to see if TCP has an exponential
sending rate, thus inferring it is in SS. Comparing the re-
lationship between ACKs and the data packets to see how
many packets the sender transmits after a new ACK can do
this.

3.2 Application Sending Behavior

Our second algorithm leverages the insight that further am-
biguity in the TCP’s behavior may be in fact symptomatic
of application limitations. More concretely, a TCP connec-
tion in SS will have a non-exponential sending rate if the
application has less data to send than TCP allows it to send.
We label such connections as “non-backlogged”.

A connection is backlogged if the application has more
data to send than TCP will permit. This implies that the
packets will be sent once CWND permits; when an ACK
triggers an increase in CWND, the TCP connection will im-
mediately send out a new packet. To this end, we define
a TCP connection as backlogged if it sends the maximum-

Hl:Is
there los?

no yes
H2:Is rate
exponential? | 3-Dup ACK? | RTO expired?
no yes lyes ly os
H3:Is app —R _
backlogged? State = SS State State =SS

no yes

For;::tg‘CP State =
Known State FRor CA

Figure 4: Algorithm for inferring the state of midstream
TCP connections

sized packet immediately after receiving an ACK. Immedi-
ately after is defined as an empirically derived threshold.
Thus, if packets are sent within two standard deviations of
this threshold, then we infer that the connection is back-
logged.

The next part of our algorithm, H3, checks to see if a
connection with a non-exponential sending state is back-
logged or not. If back-logged, then TCP is either in fast
recovery or congestion avoidance. However, if the connec-
tion is not backlogged then the connection can be in any of
TCP’s three states.

3.3 Active Approaches: Triggering a Known
State Transition

Finally, in dire situations where the state cannot be inferred
by TCP’s actions or by events, we can actively force TCP
into a known state. The TCP state machine, presented in
Figure[2)(b), shows that regardless of the current state, when
TCP experiences three duplicate-ACKs or a RTO event the
state machine transitions into FR or SS respectively. Thus,
we force TCP into either FR or SS, by having the Local
Agent simulate either event. To actively force TCP into
a known state, RINC employs one of the following algo-
rithms:

Forcing TCP into FR: the Local Agent replays the last
ACK received 3 times, thus forcing TCP to believe that three
duplicate-ACKs have been received and that a transition to
FR is required.

Forcing TCP into SS: the Local Agent temporarily
buffers all ACKs for an RTO amount of time (using the de-
fault value from Karn’s Algorithm [27] or the average RTO
of the cloud connections); therefore, forcing TCP to think
that none of the packets were acknowledged and thus lost.
In response to this, TCP transitions into SS.

Forcing TCP into either FR or SS impacts the perfor-
mance of the connection by forcing it to decrease its CWND
and thus sending rate, as shown in Figure [2| (a). We argue



that this performance cost is manageable because these ac-
tive approaches are only applied if a connection is already
showing signs of performance problem, second, the cloud
provider only picks a handful of connections from a set of
similarly troubled connections (based on service or host)
for active approaches. Furthermore, the cloud provider can
define a timer as the maximum time to wait for one of the
unambiguous events to happen, after that, if the informa-
tion is still not available, the cloud provider can use active
approaches.

4 Cloud-Wide Platform

Modern cloud hypervisors are designed to be minimal and
often restricted in memory and CPU. Unfortunately, exist-
ing cloud and data-center diagnosis frameworks [7, 35 33]]
either collect all measurements for all flows and thus require
extensive CPU and memory, or collect no measurements.
However, in reality, diagnosis may require only a subset of
the available measurements.

To this end, we have developed a selectivity interface that
provides cloud operators with the ability to adjust the scope
of the measurements being collected by the Local Agents
based on the properties of the connections (including the
TCP five-tuple, and other properties such as the tenant, ap-
plication, middleboxes and links associated with the con-
nection which we will refer to as its network predicates) or
the type of statistics. This selectivity interface helps RINC
to manage the CPU and memory consumption of the Local
Agents. Furthermore, to ensure efficiency, RINC employs
a distributed data structure across the cloud with each Lo-
cal Agent storing a hash table of its connections and their
statistics.

This query and selectivity interface is exposed to the
cloud operators by the Global Coordinator as a set of prim-
itives. Next, we identify the requirements for these prim-
itives and exemplify their flexibility by using them to de-
velop five diagnosis applications.

4.1 RINC'’s Selective Measurement

RINC has a selectivity and query interface, as represented in
Table [2| which is an SQL-like interface allowing the cloud
operator to write diagnosis applications. To understand the
various dimensions of selectivity that RINC provides con-
trol over, we return to the earlier example of trying to di-
agnose performance problems. As discussed in section.2}
the first step is to detect connections with performance prob-
lems. Thus the operator needs to find the throughput of the
connections in the cloud and then use that as a criteria. This
highlights the need for having selective collection of statis-
tics, which allows us to express which statistics need to be
collected. This is specified through the keyword Select as

shown in the selectivity and query interface represented in
Table 2] The challenge in specifying selectivity lies in the
fact that there are intricate dependencies between certain
statistics. For example, to calculate the CWND, other statis-
tic such as TCP state, ssthresh and flight size are needed. To
overcome this, RINC allows operators to specify any of the
statistics of their interest without worrying about dependen-
cies, and it automatically gathers the necessary statistics.
Next phase of the example is focusing on the subset of con-
nections that seem problematic (low throughput). Hence,
the operator wishes to focus only on this given set of trou-
bled connections. This highlights the need for having se-
lective monitoring of connections. The set of flows to be
monitored can be specified explicitly through the keyword
On along with an expression that specifies the set of flows
to monitor. The expression language is consistent with tcp-
dump [2].

Finally, to help the cloud provider in discovering poten-
tial problems in the cloud (such as the hypervisor [34], mid-
dleboxes, link failures, or tenant misconfigurations [13])
a fault-localization system is needed to narrow down the
scope to a set of candidate predicates. If a hypervisor, mid-
dlebox, or link is faulty, most connections passing through it
will experience performance problems, so only monitoring
one such flow is enough to tell us if the component is likely
to be faulty. This highlights the need for a light-weight
fault-localization mechanism that provides coverage over
a set of network predicates. (Section{.1.1)

4.1.1 Selectively Covering Network Predicates

RINC automates the coverage problem explained above by
offering an interface (using the keyword cover) for the cloud
operator to have light-weight coverage on a set of network
devices and components. RINC allows the operator to se-
lect network predicates of interest, such as links, middle-
boxes, end-hosts, tenants, or applications. Given this selec-
tion, RINC discovers the minimal set of connections that
needs to be monitored in order to cover that predicate. To
accurately select these connections, the Global Coordina-
tor needs to know the forwarding policy and the network
topology.

Selecting the minimum set of connections that can cover
a predicate is analogous to the minimum set cover problem
which is an NP-hard problem. Motivated by recent work on
localizing faults [36]], we apply a similar greedy heuristic to
solve the set-covering problem.

Unfortunately, running this heuristic once may be inef-
fective as the set of active flows change over time and thus
the set of flows needed to diagnose a network predicate may
change. To account for this, we allow the cloud operator to
specify an update time which determines how frequently the
heuristics are rerun.

Using this mechanism, cloud operator can use RINC’s se-



lectivity interface to find the root cause of problems by first
limiting the problem to a set of candidate predicates using
cover, and then focus more on diagnosis of each potentially
faulty item using selectivity mechanisms explained above.

4.2 Example Diagnosis Applications

In addition to the keywords discussed above as part of the
selectivity, the interface also supports two other keywords:
Every and For. These keywords will free the cloud provider
from having to submit a query again, and will automatically
send updates to the same query for as many times as re-
quested with the provided period. If not explicitly specified,
the query will only get executed once.

To demonstrate the flexibility and generality of RINC as
a diagnosis tool, in this section, we use RINC’s selectivity
and query interface to develop five canonical applications.
In Table 3] we present the instructions used to implement
each of them.

Detecting Long-Lived Connections: The purpose of
this application is to find the connections that have lasted
longer than a threshold value. The Local Agent monitors
all TCP connections, calculating their duration and then re-
turning a list of flow keys that have a duration more than the
threshold (e.g., 10 seconds). RINC’s Global Coordinator
will aggregate responses and present it to cloud operator.

Detecting Heavy Hitters: The purpose of this applica-
tion is to find the connections that have sent more than a
threshold number of bytes (e.g., 5000). The Local Agent
monitors all TCP connections and for each, collects the
number of bytes sent. Finally, the list of connections match-
ing the criterion is created and sent back to Global Coordi-
nator.

Traffic Counter: The purpose of this application is to
find out how many distinct source IPs send traffic to a spe-
cific destination IP (e.g., 1.2.3.4). First, all the connections
to this destination are monitored, then we count the number
of distinct source IPs contacting this IP. Note that no infor-
mation for monitored flows need to be collected and only
flow tuples suffice for answering this query.

Detecting Super Spreaders: The goal of this application
is to find the set of source IPs who contact more than K (a
constant number) distinct destination IPs. To do so, first all
connections in the cloud are monitored to get a list of dis-
tinct source IPs (round 1). Next, for each of these distinct
source IPs, a query is submitted to count the number of dis-
tinct destination IPs (round 2). If this number is more than
the specified threshold, the source IP is a super spreader and
is thus returned.

Root Cause Analysis of Slow Connections: The pur-
pose of this diagnosis application is first, finding troubled
connections and then, performing root cause analysis on
them. The Local Agent monitors all the connections collect-
ing their sending rates to find the subset of troubled connec-

tions with a limited sending rate (round 1). For each of these
these troubled connections, the application collects more
heavy weight statistics such as RTT, CWND and RWND
(round 2) to find out if the limiting factor is network, sender,
or receiver.

S Implementation

In Figure [5] we present RINC’s architecture. We have
implemented an initial prototype of RINC to run in Xen-
hypervisor; our Local Agent can run along side the virtual-
switch in the driver domain.

The Local Agent is implemented in approximately 10K
lines of C code, using the libpcap [2] interface to inter-
cept packets. We implemented the active approaches, us-
ing ipables [1], NetFilter, and netfilter QUEUE APIs [4]
for buffering and duplicating packets. The Local Agent is
implemented in two threads: The first, implementing the
measurement module; and, the second, implementing the
communication module.

The communication module communicates with the
Global Coordinator through a persistent TCP connection.
The communication module interacts with the measurement
module via a shared memory structure, the measurement
module has write access to the connection table, hashing
the packets and updating their corresponding connection’s
statistics, while the communication module only has read
access to the connection table to respond to queries.

The measurement module consists of several submod-
ules: for all connections that have been specified for RINC
to monitor through the selectivity interface, the Basic mod-
ule maintains the base data-structure, tracking information
about the types of statistics being collected for the connec-
tion. Fortunately, collecting these statistics incurs little ad-
ditional overhead as modern hypervisors already perform
per-packet operations like packet forwarding. The Basic
module acts as a manager for the heavier-weight modules.

The heavy-weight modules include those used to col-
lected the statistics described in Table [Tt Counters, Con-
stants, State Tracker, and Sampling; and a module, Initial-
izer, which runs heuristics described in Section [I] for infer-
ring the current state of the TCP state-machine for mid-
stream connections. The Basic module activates the Ini-
tializer when State Tracker is requested for a midstream
connection.

Global Coordinator is implemented in approximately
500 lines of Python. In our current implementation, the
Global Coordinator is assumed to have access to the topol-
ogy. The Global Coordinator contains a Query interface
module which accepts queries in a flexible SQL-like format
from the network operator, coordinates the data collection
across the cloud by determining which Local Agents to dis-
patch measurement instructions to, and aggregates the re-



Query

Stats

Criterion
Filter
Sign
Predicate
ID list

Update
cover

Interval

Times

Select(Stats) » On(Filter) x Where(Criterion) x Every(Interval) x For(Times)
flowKey(srcIP, dstIP, srcPort, dstPort) | Stats from Table

A flowKey query may be proceeded by Distinct and/or Count.

Stats * Sign x Value

tcpdump expression [2] | Cover(Predicate, ID list, Update cover)

Links, Tenants, Applications, Hosts, Middleboxes
Integer list of predicate’s IDs to be covered

Period of checking covered predicates in seconds (Double).

Update time period in seconds (Double).

Number of times the query will get executed (Integer).

Table 2: RINC’s Selectivity and Query Interface

Application Implementation in RINC
Long-Lived Connec- | Select (lowKey) Where (durations > 10) On (tcp)
tions
Heavy Hitter Con- | Select (flowKey) Where (total _bytes_sent >= 5000) On (tcp)
nections
Traffic Counter Count Distinct Select (srcIP) Where (dstIP==1.2.3.4) On (tcp)
Super Spreaders Round 1

list= Distinct Select (srcIP) Where (dstIP==1.2.3.4) On (tcp)
Round 2

for IP in list:

2. Count Distinct Select (dstIP) Where (srcIP == IP)

Root Cause Analysis | Round 1
of Slow Connections | list = Select (flowKey) Where (sending_rate < 10) On (tcp)

Round 2
for flowKey F in list:
Select (RTT, CWND, RWND, state, MSS) Where (flowKey==F)

Table 3: Example Applications Using RINC’s Interface
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Figure 5: RINC Architecture

sults from these Local Agents before returning them to the
operator.

6 Evaluation

In this section, we present our evaluation of RINC on two
small testbeds, in a simulated data center, and with packet
traces from a real data center. In evaluating RINC, we aim
to answer the following questions:

e How accurate are RINC’s algorithms for inferring the
internal state of midstream connections? How long do
these algorithms take to converge on the correct state?

(Section[6.2)

e Does RINC scale to large clouds? Are the net-
work, memory, and CPU overheads acceptable? (Sec-

tion

e How efficient is RINC at calculating various statistics?

(Section[6.4)

e How does RINC compare against related work
(VND [33]))? (Section[6.3))

6.1 Experimental Setup

Testbed1: We evaluate RINC’s accuracy and overheads on
a small testbed with four servers interconnected by 1Gig
links through a Pronto switch. Each server is configured
with 16GBs of memory, twelve 2.0 GHz cores, and runs
Ubuntu 13.10 with TCP Reno congestion control algorithm.
For verification experiments against Web10G, we patched
and recompiled the kernel to run Web10g-2.0.7.

Testbed2: To evaluate RINC’s performance, we use a
small testbed with three servers interconnected by 1Gig.
Each server is configured with 8GBs of memory, eight 2.3
GHz cores, and runs Fedora 14.

Packet Traces: To understand the efficiency of our al-
gorithms, we run RINC against a two-hour data-center
trace [12]. The data center contains 500 servers with an
over-subscription ratio of 2:1; each server is configured with
RHEL 4 and TCP Reno.

Simulation and Simulated Workloads: We developed
a simple simulator that models the resource consumption of
a Local Agent thus allowing us to understand how RINC
scales to large data centers. Guided by observations made
in recent studies on data center characteristic, our simulator
makes the following assumptions:

e Cloud/Data Center Size: We assume the cloud is run
atop a physical data center that has 100K servers [[17]].

e Connections per-VM: We assume each VM has
roughly 10K concurrent connections [35]].

e Percent of Troubled Connections: Related works [[17]]
have studied performance problems in data centers and
observed that 2% and 5% of the connections are trou-
bled.

6.2 Accuracy of RINC

In this section, we validate our inference algorithms against
Web10G by comparing the statistics generated for connec-
tions that have been monitored from start to finish. Then,
we use these as ground truth to evaluate the accuracy of our
midstream algorithms by examining how well RINC’s ini-
tializer converges with the correct values, and how quickly
this convergence happens.

6.2.1 Verification Against Full Stream Connections

We used testbedl to verify the correctness of RINC’s mea-
surements for connections that are monitored from the be-
ginning by comparing the calculated statistics with alter-
native approaches such as Web10G. We observe identical
statistics for constants, counters, and sampling statistics.
However, we observed a small error for certain aspects of
the complex internal variables. The worst we observed was
for CWND values (the estimated values was within the 3%
of the correct values).

6.2.2 Accuracy and Efficiency of Midstream Algo-
rithms

To evaluate the functionality of RINC’s midstream algo-
rithms, we use real data-center packet traces [12]].

For these experiments, we preprocess this trace and elim-
inate connections with less than four packets and flows
where we don’t observe the TCP handshake. We only fo-
cus on connections with the TCP handshake because this
allows us to validate our algorithms by comparing against
the ground truth as discussed earlier. After preprocessing
we are left with 129,480 connections. We convert each con-
nection into a midstream connection by skipping a random
number of packets.

In analyzing our algorithms, we aim to answer the fol-
lowing questions: how close does RINC’s output get to the
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ground truth? (Accuracy), and How long does it take for
RINC to converge with to the ground truth? (Speed)

Accuracy: To understand the accuracy of RINC’s mid-
stream algorithms, we examined different statistics col-
lected for the midstream flows we extracted from the data
center trace. In this section, we focus on CWND as we
showed, in Section [6.2.1] that CWND has the largest error
rate. We also show the accuracy results for RTT since it is
an important metric in performance diagnosis in networks.

In Figure[6] we present CWND estimated values for mid-
stream flows created by skipping 200 (green), 400 (red), and
800 (light blue) packets into a flow. The figure also includes
the ground-truth, O (blue line), the actual CWND as calcu-
lated by monitoring the connection from its inception. From
Figure [6] we observe three main points: First, (from 200
pkts), once our algorithm converges it never diverges, this
occurs because when the initial values are close and both
experience the same transitional events on the same state
machines, then the result of the two will be similar; Sec-
ond, (from 400 pkts), while our initial estimations may be
largely inaccurate, observing events like a loss allows the
H]I heuristic to correctly infer the real value; and Third,
(from 800 pkts), even though initial errors in estimating
CWND are large, by observing the sending patterns and us-
ing H2, RINC’s estimation quickly converges to the actual
value.

Figure[7]shows RINC’s estimation of smoothen RTT val-
ues for a midstream connection in two different situations:
when the initial 100 packets of a flow are assumed to be
lost, and when the initial 300 packets of the connection are
assumed to be lost. It can be shown that in both cases even
when the initial variance is high, the two values will even-
tually converge as long as they follow the same algorithm
for sampling (here both use [27]).

Speed: Next, we examine the speed with which our al-
gorithms are able to converge. In Figure 8] we present a
CDF of the time it takes our algorithms to converge within
10% of the ground truth. Figure[§|shows that for 85% of the
midstream connections, RINC converges within 10% of the
ground truth in less than 100ms. Upon examination of the
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Figure 7: Accuracy of Smoothed RTT estimation in mid-
stream fashion for different starting points
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Figure 8: CDF of the time to reach within 10% of the
CWND value for midstream connections

connections that take longer than 100ms, we observed that
many of these connections do not have any packets in flight
for a long duration of time, and are ultimately resolved by
the H1 heuristic.

6.3 Scalability

Next, we evaluate the overhead imposed by the Local Agent
on the hypervisor, by examining its memory and CPU uti-
lization, and on the network by examining the communica-
tions between the Local Agent and Global Coordinator.

6.3.1 Network Overhead

The network footprint of RINC is a function of the informa-
tion being reported which varies by application (statistics
collected) and by the number of connections being reported
on. In this section, we simulate RINC using the simulator
and simulated workloads (described in Section[6.1)).

In Figure 0] we examine the network utilization for vari-
ous applications and network sizes. We observe that RINC
scales linearly with size and fraction of connections that are
reported on. Furthermore, RINC imposes minimal network
overhead; RINC utilizes only a small fraction, 0.0006%, of
each server’s 1Gig uplink.

When querying all statistics for all connections (labelled
“Worst case” in Figure EI), we observe that the network over-

10
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head increases by two orders of magnitude. However, RINC
still utilizes a small fraction, 0.12%, of each 1Gig server’s
uplink.

6.3.2 Memory Overhead

RINC’s memory overhead consists of two parts: a variable
overhead for the sampling module, and a fixed overhead for
all other modules. We start by understanding the cause of
variability and placing an upper bound on the variability.
Given this upper bound, we are then able to calculate the
memory footprint of RINC.

Upper-Bounding the Variable Overhead: The sam-
pling module calculates the RTT and RTO for all connec-
tions, and this requires the module to maintain multiple
packets in a queue for each connection until their corre-
sponding ACKs are received and they can be freed. Thus,
the memory overhead of this module depends on the num-
ber of un-acknowledged packets a connection has.

To better understand the memory consumption of the
sampling module we used iPerf to generate traffic and Linux
TC [3] to vary the latency, bandwidth, and loss rates. We
observed that 95% of the time all connections in our testbed
have less than four sample packets in their queue. Thus
to evaluate the memory consumption of this module in our
simulator, we assume a sampling queue size of four

Memory Overhead: Using testbed2, we generate vary-
ing number of flows with iPerf (10 to 10K parallel connec-
tions), fix the sampling queue length to 4 to emulate the
worst-case, and use Valgrind [[6] to measure the memory
overhead of RINC. The results are shown in FigurdI0}

From Figure[I0|we observe that RINC scales linearly re-

'Tt is worth mentioning that while several factors affect the average
sampling queue length in a data center (delayed ACKs of the receiver,
back-logged versus non back-logged sender, available bandwidth, and
queuing delays), this number is still bounded by the flight size, which is
bounded by the Delay Bandwidth Product.
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Figure 10: Memory consumption of each measurement
module per different number of concurrent flows

gardless of the statistics being collected. Interestingly we
observe three important characteristics of the system. First,
our midstream heuristics of inferring internal state, embod-
ied in the initializer, incur a 20% overhead over the normal
state-tracking algorithm. This 20% overhead accounts for
the additional processing being performed by the initializer
when using our heuristics to infer statistics. Second, there is
a noticeable memory differences between using Constants,
Counters, Sampling, and the State Tracker for midstream
flows. Thus, we advise that cloud providers develop di-
agnosis applications in phases, and only turn on the most
heavy-weight measurement, State Tracker, for the flows that
show performance problems. Finally, Counters (green) and
Constants (red) require slightly more memory than the Ba-
sic; therefore, we advise the cloud providers to use them as
the initial phase of diagnosis to find the troubled connection
and narrow down the set of connections which need heavier
measurements.

6.3.3 CPU Overhead

RINC’s CPU overhead is composed of three factors: over-
head of capturing packets using the libpcap interface
(pcap); overhead of having the measurement module pro-
cess each packet and update the hash table (connection table
update); and overhead of having the communication mod-
ule query the hash table and return results of executing the
query to the Global Coordinator (query execution) for as
many times as requested.

To evaluate these, we analyze Local Agent in our testbed
using iPerf to generate load. We vary the number of con-
current flows and their average rates to understand the scal-
ing properties. Due to the physical restrictions of the hosts’
NICs, the total bandwidth of all connections on each local
agent cannot exceed 1Gbps.

To decompose the overheads of the different components
we run three independent tests: first, only involving pcap
for (pcap), second, involving only the measurement module
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(flow table update), and third, involving both the measure-
ment module and the communication module (query execu-
tion).

In Figure[ITwe can compare these three components and
observe that RINC’s CPU utilization grows with both the
number and the average rate of connections that need to be
monitored.

To better understand the dominant factor, we examine
each factor independently: number of flows (in Figure[I2}a)
and connection rates (in Figure[I2]b).

We observe that, unlike memory overheads that are
strictly a function of number of connections monitored, the
CPU overhead is a function of both the number of connec-
tions and the sending rate of each connection. This interest-
ing observation highlights a key difference between RINC
and related approaches like VND [33]], whose memory and
CPU overheads are both a function of number of connec-
tions and rate. RINC has a better memory overhead be-
cause it does not store raw packet headers, rather RINC
stores meaningful summarized statistics calculated in real
time. We elaborate more in Section

6.4 Performance

Next, we evaluate the performance of RINC by examin-
ing the Query Execution Time, or the time it takes RINC to
gather the statistics requested by the diagnosis applications
described in Section 4.2] This time is dominated by three
factors: the time for the communication module to gather
statistics, the network latency between the communication
module module and the Global Coordinator, and the time
for the Global Coordinator to concatenate the results.
Given that the time to concatenate the results is negligi-
ble and the network latency is highly dependent on the net-
work characteristics of the cloud, we focus on quantifying
and understanding the scaling properties of the communica-

tion module module. To do this analysis, we run RINC in
testbed1 varying the number of iPerf connections generated
by each server from 1K to 10K.

As discussed in Section [B} the communication module
module performs a lookup into the connection table to find
the connections that match the query criterion, generates
and sends a report of the statistics collected to the Global
Coordinator. An implication of this, is that performance of
the communication module grows linearly with the number
of connections stored in the flow table, the number of con-
nections that match the query (matching rate), and the num-
ber of statistics copied to generate the response to the query.
Figure [T3] confirms that communication module performs
linearly as a function of matching rate, number of flows,
and type of statistics gathered. This linear relationship is
especially evident when ‘appl (10%match)’ is compared
with ‘app2 (10%match)’. Further we observe that in gen-
eral the communication module module response quickly,
responding in less than 2.5 msecs when less than 10% of
the connections match the application’s query.

6.5 Comparison against VND

Finally, we compare RINC against VND [33]] and focus on
the overhead incurred in the hypervisor and in the network.
Recall, VND enables cloud tenants to diagnose problems
in their virtual networks by duplicating packets, processing
them, and sending this raw data to a central entity and al-
lowing the tenants to query this data.

6.5.1 Overhead

Memory: We observe that while VND has a fixed constant
memory overhead, namely ‘1Gbps network traffic dump
costs an extra 59 MB/s of memory’ [33], VND requires sig-
nificantly more memory because it stores raw packet head-
ers at each hop, whereas RINC stores calculated per-flow
statistics, allowing RINC to require 3.5MB in the worst
case.

Network: RINC outperforms VND in network efficiency
by an order of magnitude: RINC uses less than 0.01% of the
server uplink while VND uses 0.1%.

CPU: While both RINC and VND capture and process
packets headers to generate statistics, VND uses delayed
processing; thus, we expect it to have a smaller CPU over-
head but at the cost of larger memory and networking over-
heads.

In summary, our evaluations show that RINC:

e incurs an order of magnitude less overhead than
VND [33].

e imposes minimal overhead and scales to large clouds
with over 100K servers.

12
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e accurately infers the internal state of over 95% of a
data center’s [12] midstream connections in less than
10 seconds.

7 Related Works

The mostly related work, VND [33] enables cloud tenants
to diagnose problems in their virtual networks. Rather than
enabling the tenant, RINC tackles a complementary prob-
lem of enabling the provider to diagnose problems across
the entire cloud stack, including the provider infrastructure
and the tenant’s VM. Furthermore, by selectively and effi-
ciently collecting statistics, RINC has a much lower over-
head than VND.

RINC represents an evolution of a long line of rich
work on end-host based techniques [7] as well as
network-based [37, 11}, 25} [19} 20] for diagnosing TCP con-
nections. Unfortunately, traditional end-host based tech-
niques [29] [7] need to run within the VM and are
thus considered too invasive because they require the cloud
provider to interfere with the tenant’s VM. To overcome this
limitation, RINC runs within the hypervisor and infers the
internal state of the tenant’s VM. Moreover, by inferring
the internal state of tenant’s connections, RINC is able to
diagnose a richer set of problems than network-based sys-
tems 11, 23] [20]. Similarly, recent efforts to em-
ploy programmability of SDN networks [18] focus

on detecting low-level network problems, such as routing
problems, thus limiting the set of problems that can be diag-
nosed. Furthermore, these approaches provide little insight
on how individual tenants are impacted.

Orthogonal to detecting and diagnosing problems, are the
research efforts on scaling applications within the cloud [26),
[28]]. Unlike RINC which focuses on understanding anoma-
lous performance, research on scaling applications focuses
on predicting and understanding the normal or expected be-
havior of an application.

Existing approaches to diagnose problems across the
network and end-host layers are designed for environ-
ments with a single administrative domain, such as, enter-
prise [21} [32]], home-networks [8] and ISP networks,
or require cooperation or collaboration be-
tween the different administrative domains. Unlike these
approaches, RINC enables the cloud provider to diagnose
and pinpoint problems across domains without interacting,
interfering, or impacting the tenant.

8 Discussion

Adapting To Variants of TCP. The current implementa-
tion of RINC assumes that tenants use TCP Reno. However
the general principles behind our inference techniques can
be applied to other variants of TCP; disambiguating state
and forcing TCP into known-states. Most TCP variants are

13



based of off the TCP-Tahoe’s state machine and differ in
what actions trigger state transitions, in the behavior in cer-
tain states, and in the number of states in the state-machine.
Regardless of the differences, similar domain knowledge
about the state machine can be used to develop algorithms
that allow inference of state.

Enabling Problem Resolution. RINC provides the
cloud operators with sufficient information to determine the
cause and location of the problem. This information can be
used to resolve the problem. For example, upon detecting
hypervisor level congestion, an operator may migrate the
affected VMs. To automate problem resolution, we envi-
sion that applications written with RINC can be integrated
with the cloud orchestration frameworks, e.g. OpenStack,
allowing it to detect and react to problems in real-time.

9 Conclusion

In this paper, we present a novel real-time diagnosis cloud
framework called RINC. RINC overcomes drawbacks in-
herent in existing approaches by operating in the hypervisor
and inferring per-connection statistics, thus eliminating the
need to modify tenant VMs. Also by selective collection of
statistics it ensures scalability with respect to the number of
connections in the cloud. We propose a cloud-wide diag-
nosis interface that allows the operators specify, on-demand
and implicitly, the select statistics to monitor along three
dimensions. We identify a set of challenges involved in per-
forming on-demand monitoring of midstream connections
and present a set of novel statistics that allow RINC to infer
the state on midstream connections. Our evaluations show
that RINC imposes minimal overheads, thus allowing it to
scale to large clouds, and that RINC is sufficiently expres-
sive to support the development of a wide range of diagnosis
application
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