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ABSTRACT
Internet service providers rely on load balancers to dis-
tribute client requests for many web services over backend
servers. Dedicated load-balancer appliances are expensive
and do not scale easily with traffic demand. Instead, fu-
ture load balancers should be built from smaller commod-
ity components. Rather than rely exclusively on special-
purpose load-balancing software, we argue that data cen-
ter switches should be programmed to perform most of the
load-balancing function. Commodity switches offer high-
speed packet processing, as well as flexible interfaces for
installing rules that forward packets. However, hardware
switches have small rule tables, and software switches do not
forward packets at high speeds. Our Niagara load-balancing
architecture combines the per-packet performance of hard-
ware and the large rule-space of software switches. The
hardware switches approximate the load-balancing weights
for each service, and the software switches correct for small
errors in the approximation and ensure connection affinity
during weight changes. Our main contributions are algo-
rithms for (i) approximating the weights for each service,
(ii) allocating a limited rule table across many services, and
(iii) computing incremental updates to the rules when the
weights change. Experiments demonstrate that Niagara can
load-balance 10,000 VIPs using only 4000 hardware rules,
while having software switches redirect just 3% of traffic.

1. INTRODUCTION
Cloud providers host many services, each replicated on

multiple servers for greater throughput and reliability. A
load balancer spreads traffic over the backend servers, while
ensuring that all packets from the same request reach the
same server (i.e., connection affinity). While many providers
rely on dedicated load-balancer appliances [1–4], special-
ized equipment can be costly, hard to scale dynamically, and
become a single point of failure. Some providers implement
load balancing in software running on multiple commodity
servers [5–8] for better flexibility and scale-out. However,
load-balancing software on a general-purpose CPU yields
low performance and high power requirements per packet
if compared to silicon, forcing cloud providers to allocate a
large number of servers for a given level of performance.

The emergence of open interfaces to network switches [9,
10] suggests an attractive middle ground—implementing
load balancing directly on the network devices. The switch
chipsets in commodity hardware switches are optimized
for high-speed packet processing at reasonable power and
cost [10], and modern software switches leverage support
in the kernel and network interface cards to achieve good
throughput with large rule tables [11, 12]. While commod-
ity switches cannot support all load-balancing features (e.g.,
matching on URLs or Cookies in application-layer mes-
sages), they are a great fit for the common task of dis-
tributing traffic by IP addresses and TCP/UDP port numbers.
Implementing load balancing on the switches would allow
providers to “ride the wave” of advances in switch perfor-
mance, without the need to provision additional equipment
or create and optimize a custom software solution.

Unfortunately, existing switch-based load-balancing solu-
tions [13, 14] do not scale to handle a large number of ser-
vices, each with many backend servers. A load-balancer ap-
plication could direct the first packet of each request to a
controller, which then installs rules for forwarding the re-
maining packets of the connection [13]. However, this so-
lution incurs extra delay for the first packet of each request,
and controller load and hardware rule-table capacity quickly
become bottlenecks. A more scalable alternative proactively
installs coarse-grained rules that direct each block of client
IP addresses to a server replica [14]. However, this approach
generates a large number of rules (matching on the client
IP prefix and the service’s IP address), still consuming too
much of the limited rule-table space in commodity hardware
switches. Even more rules are needed to ensure connection
affinity across changes in the load-balancing policy.

This paper presents the Niagara load balancer that com-
bines the best features of both hardware switches (high
throughput for a given cost and power consumption) and
software switches (large rule tables and flexible packet pro-
cessing). A small number of hardware switches in a geo-
graphic region use coarse-grained rules to divide large traffic
aggregates over a larger set of software switches that, in turn,
direct finer-grain traffic flows to backend servers. Each ser-
vice has a public IP address and a set of weights—the frac-
tion of requests each backend server should receive. Rather



than simply using the hardware switches for equal-cost mul-
tipath (ECMP) forwarding [8], we propose algorithms that
optimize the use of the limited rule-table space to approx-
imate the weights accurately and minimize imbalance: the
portion of traffic that travels through the “wrong” software
switches (i.e., a switch in a different cluster than the chosen
backend server). Our algorithm divides the hardware rule
table across multiple services, and groups services with sim-
ilar weights, to approximate the weights for many services
using fewer rules.

Any practical load-balancing solution must adapt to
changes in the load-balancing policy, while ensuring con-
nection affinity. Computing new rules from scratch can
cause substantial traffic churn, where a large fraction of traf-
fic is reshuffled or bounced across different clusters. Ide-
ally, churn should be proportional to the required change in
policy. To achieve this, production deployments often use
full-fledged software servers that run algorithms like consis-
tent hashing [15]. To the best of our knowledge, Niagara
is the first solution that achieves the properties of consis-
tent hashing in hardware. Niagara computes an incremental
change to the existing rules to closely approximate the de-
sired traffic distribution, while balancing the transient churn
and long-term imbalance. Moreover, even if the amount
of total churn is proportional to the change in policy, net-
work administrators may prefer to further limit the churn to
a lower acceptable threshold. Niagara automatically creates
an update plan to meet the tight traffic churn objectives by
breaking one large update into multiple smaller updates. Fi-
nally, rather than storing per-flow state in hardware switches,
Niagara ensures connection affinity during policy changes
through a combination of rule cloning [16] in the software
switches and a consistent update [17] mechanism that up-
dates the switches in phases.

This paper makes four main contributions:
Scalable load balancer using commodity switches: Ni-

agara scales to a large number of services and backend
servers, while leveraging the unique strengths of commod-
ity hardware and software switches (§2).

Algorithm for optimizing rule-table space: Niagara
balances load accurately, subject to the rule-table capacity
of the hardware switches. For each service, we approximate
the weights as sums of powers of two and truncate the ap-
proximation to use fewer rules (§3). Then, we pack rules
for multiple services into a single table and allow sharing of
rules across services with similar weights (§4).

Efficient updates: When the policy changes, Niagara
computes an incremental update to the rules that optimizes
short-term churn and long-term traffic imbalance, and en-
sures connection affinity without incurring extra rules in the
hardware switches (§5).

Realistic prototype: The prototype uses iptables on
Linux as its unmodified switch target (§6). Linux is widely-
deployed on data center servers used as software switches,
and runs embedded inside hardware switches.

HW switch

SW switch SW switch SW switch

Backends Backends Backends

cluster 1 cluster2 cluster M

region

requests

controller

Figure 1: Load balancing using commodity switches.

Experiments demonstrate that Niagara can scale to tens
of thousands of services and handle update gracefully (§7).
The paper ends with a discussion of related work (§8) and a
conclusion (§9).

2. NIAGARA LOAD BALANCER
The Niagara hierarchical load balancer combines the high

throughput of hardware with large rule tables of software
switches. In this section, we give a high-level overview of
Niagara’s architecture, formulate the optimization problem
for computing the rules in the switches, and outline the five
main components of our algorithm.

2.1 Load Balancing on Commodity Switches
Niagara performs load balancing over client requests for

multiple replicated services hosted in the same geographic
region. Each hosted service has a single, virtual IP address
(VIP) that corresponds to multiple backend servers, each
with its own dedicated IP address (DIP). For services hosted
in multiple regions, the provider relies on wide-area load
balancing—say, using the Domain Name System (DNS)—
to select a particular region (and associated VIP) for each
client. Within a region, the backend servers are further
grouped into clusters that correspond to a data center, or a
pod or rack within the same data center, as shown in Fig-
ure 1. Backend servers handle client requests and respond
directly to clients (DSR, i.e., direct-server return).

The switches within a region distribute the client requests
over the backend servers in a hierarchical fashion, with high-
speed hardware switches dividing traffic over the flexible
software switches in each cluster. Today’s commodity hard-
ware switches have low-cost chipsets that forward traffic
at hundreds of Gbps by matching packets against a table
of rules. Implemented using Ternary Content Addressable
Memory (TCAM), the table can perform wildcard match-
ing on the five-tuple header fields (source and destination
IP addresses, source and destination transport ports, and the
transport protocol). However, the tables are small, in the
thousands or small tens of thousands of rules, and rule up-
dates are slow [18,19]. In contrast, today’s software switches
can forward about 10-20 Gbps per core with large forward-
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Figure 2: Coefficient of variation of fraction of requests
for different bits of the client IP address.

Match Action
Dest IP (VIP) Src IP (client) Next hop (sw. switch)

63.12.28.34 ∗0 17.12.11.1
63.12.28.34 ∗01 17.12.12.1
63.12.28.34 ∗11 17.12.13.1
63.12.28.42 ∗0 17.12.12.1
63.12.28.42 ∗1 17.12.13.1

Table 1: Approximating weights for two VIPs.

ing tables optimized for exact-match rules, and fast rule up-
dates. Combining a hardware switch with (say) 20 software
switches at the lower level leads to a design with low cost,
high throughput, high rule capacity, and fast updates.

The simplest load-balancing strategy is for the hardware
switches to split all traffic evenly over the clusters using
equal-cost multipath (ECMP) forwarding [8], and then rely
on the software switches to direct requests for each VIP to
the right backends, possibly bouncing flows across clusters.
This can result in a large amount of horizontal traffic , espe-
cially for popular VIPs with uneven target load distributions
(e.g., cluster weights of { 1

2 ,
1
4 ,

1
4}). Instead, the controller

could install rules that match on the destination IP address
(i.e., the VIP) and some portion of the source IP address (i.e.,
the client address) to achieve a target load distribution [14].
For example, the rules in Table 1 split the incoming traffic
for two VIPs. For the first VIP, the table matches on three
different source IP suffixes to approximate the load distribu-
tion of { 1

2 ,
1
4 ,

1
4} among clusters 1, 2, and 3; the traffic of the

second VIP is split evenly between clusters 2 and 3.
Fortunately, commodity chipsets [10] can match on any

bits in the “five tuple", allowing us to implement a “poor
man’s hash function” that offers fine-grained control over the
load-balancing policy. To split the traffic, we match on the
low-order bits of the source IP address, which have higher
entropy, resulting in a nearly proportional split of the traf-
fic. To justify our approach, we analyze one day of traffic
measurements to front-end servers in a commercial cloud
deployment. Figure 2 plots the coefficient of variation (i.e.,
the standard deviation over the mean) for the values of each
of the last 12 bits in the source IP address, and these trends
persist over time. Values less than 1 are considered a low
coefficient of variation. The variation is smallest for the last
several bits, which are essentially uniformly randomly set to
0 or 1. Upper bits start to have higher variation because some
IP subnets are not fully allocated, meaning that a value of 0
is more common than a value of 1. While we could design

Variable Definition
N Number of VIPs (v = 1, . . . ,N)
M Number of clusters ( j = 1, . . . ,M)
C Hardware switch rule-table capacity

wv j Target weight for VIP v, cluster j
tv Traffic volume for VIP v
e Tolerable error |w′v j−wv j| ≤ e

w′v j Actual weight for VIP v, cluster j
wH

w j Actual hardware weight for VIP v, cluster j
cv Hardware rule-table space for VIP v

Table 2: Table of notation, with inputs listed first.
our algorithms to account for this skew, we find the last 6-8
bits have very low variation, making it reasonable to assume
an even division of traffic when we match on these bits.

2.2 Rule Optimization Problem Formulation
The controller needs a good algorithm for computing the

rules in the switches, as a function of the per-VIP weights
and the per-switch rule-table capacities. For a multi-level hi-
erarchy, the recurring problem is to split traffic from one tier
over multiple switches in the next tier; as such, we simplify
the discussion by focusing on how a hardware switch should
split request traffic for multiple VIPs over multiple clusters.
A hardware switch can (at best) approximate the target di-
vision of traffic over the clusters, and rely on the software
switches to “deflect" misdirected packets to the right clus-
ter. The misdirected traffic consumes extra link bandwidth
and experiences longer delay (or higher “stretch”) due to the
longer path through the network. As such, an important chal-
lenge is to minimize the imbalance—the fraction of traffic
that routes through the wrong software switch.

The VIPs vary in the provisioned server capacity in each
cluster, due to differences in the expected request load,
server failures and planned maintenance, and the gradual
build-out of new clusters. Each VIP v has non-negative
weights {wv j} for splitting traffic over the M clusters j =
1,2, . . . ,M, where ∑ j wv j = 1. (Table 2 summarizes the no-
tation.) The traffic split is not always exact, since matching
on header bits inherently discretizes portions of traffic. In
practice, splitting traffic exactly is not necessary, and each
VIP can tolerate a given error bound e, where the actual split
is w′v j such that |w′v j−wv j| ≤ e. Ideally, the hardware switch
could achieve w′v j with wildcard rules. But small TCAM
sizes thwart this, and instead, we settle for the lesser goal of
approximating the weights as well as possible (wH

v j), given a
limited rule capacity C at the switch.

To compute the weights, the controller solves an optimiza-
tion problem that allocates cv rules to each VIP v to achieve
weights {wH

v j} (i.e., cv = numrules({wH
v j})). VIP v has traf-

fic volume tv, where some VIPs receive much more requests
than others. The goal is to minimize the total traffic imbal-
ance 1 while approximating the weights:

1The imbalance only counts the over-approximated weights, which
captures the deflected fraction.
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Match Action
Dest IP Tag
(VIP) (group)

63.12.28.34 1
63.12.28.53 1
63.12.28.27 1
63.12.28.42 2
63.12.28.43 2

=⇒

Match Action
Tag Src IP Next hop

(group) (client) (sw. switch)
1 ∗0 17.12.11.1
1 ∗01 17.12.12.1
1 ∗11 17.12.13.1
2 ∗0 17.12.12.1
2 ∗1 17.12.13.1

Table 3: Sharing rules across VIPs with similar weights.

minimize ∑v(tv×∑ j max(wH
v j−w′v j,0)) s.t.

|w′v j−wv j| ≤ e ∀v, j
w′v j ≥ 0, wH

v j ≥ 0 ∀v, j
∑ j w′v j = 1, ∑ j wH

v j = 1 ∀v
cv = numrules({wH

v j}) ∀v
∑v cv ≤C

given the weights {wv j}, traffic volumes {tv}, rule-table ca-
pacity C, and error tolerance e as inputs.

2.3 Overview of Optimization Algorithm
In solving the optimization problem, we introduce five

main algorithmic contributions, starting with the following
three ideas:

Approximating weights for a single VIP (§3.1): Given
weights {wv j} for VIP v and error tolerance e, we compute
the approximated weights {w′v j} and the associated rules for
each VIP. The algorithm expands each weight wv j in terms
of powers of two (e.g., 1

6 ≈
1
8 +

1
32 ) that can be approximated

using wildcard rules, and decides whether to over or under
approximate each weight to minimize the total number of
rules, given the error tolerance.

Truncating the approximation to use fewer rules
(§3.2): Given approximation {w′v j} and the associated rules,
we can fit a subset of cv rules into the hardware table to
achieve {wH

v j}. However, we find that we can achieve an
even smaller traffic imbalance tv×∑ j |wH

v j −w′v j| by com-
puting the hardware rules and the approximation together.
This results in a trade-off curve of traffic imbalance versus
the number of hardware rules.

Packing multiple VIPs into a single table (§4.1): Once
we know the trade-off curve for each VIP, we can decide how
many hardware rules to devote to each VIP to minimize the
total traffic imbalance. In each step of the packing algorithm,
we devote more rules to the VIP that can achieve the highest
ratio of the benefit (the reduction in traffic imbalance) to the
cost (number of rules), until the hardware table is full with a
total of C = ∑v cv rules.

Together, these three parts allow us to make effective use
of a small hardware table to divide traffic over the clusters.

A region serving tens of thousands of VIPs, each served
by dozen(s) of clusters, can easily overwhelm the small
TCAM in today’s hardware switches. Fortunately, today’s
hardware switches have multiple table stages. For exam-
ple, the popular Broadcom chipset [10] has a table that can
match on destination IP prefix and set a meta-data tag that
can be matched (along with the five-tuple) in the subsequent
TCAM. Niagara can capitalize on this table to map a VIP
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(a) Suffix allocation

Pattern Action
∗000 fwd to 1
∗100 fwd to 2
∗10 fwd to 2
∗1 fwd to 3

(b) Naive approach

Pattern Action Priority
∗000 fwd to 1 high
∗0 fwd to 2 low
∗1 fwd to 3 low

(c) Use subtraction and priority

Figure 3: Naive and subtraction-based rule generation
for weights { 1

6 ,
1
3 ,

1
2} and approximation { 1

8 ,
3
8 ,

4
8}.

to a tag—or, more generally, multiple VIPs to the same tag.
Our fourth algorithmic innovation uses this table:

Sharing rules across VIPs with similar weights (§4.2):
Multiple VIPs may have similar weights. We associate a tag
with a group of VIPs with similar weights. (See Table 3
for an example.) We use k-means clustering to identify the
groups, and then generate one set of rules for each group.
Furthermore, we create a set of default rules (e.g., ECMP
rules) of low priority in TCAM, which are shared by all
groups.

Transitioning to new weights (§5): In practice, weights
change over time, forcing Niagara to compute incremental
changes to the rules to control churn, and transition from one
set of rules to another while preserving connection affinity.

3. OPTIMIZING A SINGLE VIP
We begin with generating rules to approximate the weight

distribution {wv j} of a single VIP v within a tolerable error
e. We then extend the method to account for constrained
hardware rule-table capacity C.

3.1 Approximate: Binary Weight Expansion
Naive approach to generating wildcard rules. A possi-

ble method to approximate the weights is to pick a fixed IP
suffix length k and round every weight to the closest mul-
tiple of 2−k such that the approximated weights still sum
to 1 [14]. For example by fixing k = 3, weights wv1 = 1

6 ,
wv2 =

1
3 , and wv3 =

1
2 are approximated by w′v1 =

1
8 , w′v2 =

3
8 ,

and w′v3 =
4
8 . The visualized suffix tree is presented in Fig-

ure 3(a). To generate the corresponding wildcard rules, an
approximate weight b ∗ 2−k is represented by b k-bit rules.
In practice, these rules may be aggregated by allocating sim-
ilar suffix patterns to the same weight. The corresponding
wildcard rules are listed in Figure 3(b).

Shortcomings of the naive solution. The naive approach
falls short, because it always expresses b as the “sums” of
power of two (for example 3

8 is expressed as 2
8 +

1
8 ) and only

generates non-overlapping rules. In contrast, our algorithm
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wvj approximation w′v j

wv1 =
1
6

1
8 +

1
32

wv2 =
1
3

1
2 −

1
8 −

1
32

wv3 =
1
2

1
2 (pool)

Table 4: Approximations of weights within e = 0.02.

allows subtraction as well as longest-match rule priority.
For example, 3

8 can be expressed as 4
8 −

1
8 which in our ex-

ample achieves the same approximation with one less rule,
as illustrated in Figure 3(c). In this example, the generated
rules overlap and the longest-matching rule is given higher
priority: ∗000 is matched first and “steals" 1

8 of the traffic
from rule ∗0.

The power of subtractive terms and rule priority. Our
algorithm approximates weights using a series of positive
and negative power-of-two terms. Specifically, we compute
the approximation w′v j = ∑k x jk for each weight wv j sub-
ject to |w′v j −wv j| ≤ e. Each term x jk = b jk · 2−a jk , where
b jk ∈ {−1,+1} and a jk is a non-negative integer. Table 4
illustrates the approximations for a VIP with weights 1

6 , 1
3 ,

and 1
2 , under tolerable error e = 0.02. For example, wv2 =

1
3

is approximated using three terms as w′v2 =
1
2 −

1
8 −

1
32 . As

we explain later, each term x jk is mapped to a suffix match-
ing pattern. In what follows, we first show how to compute
the approximations, followed by generating rules based on
the approximations.

3.1.1 Approximate the weights
Pool. When approximating weights, we must ensure

that the sum of approximated weights remains 1. This is
achieved by selecting a special weight called “pool”, whose
approximation is derived from the aggregated approxima-
tions of other weights, i.e., w′pool = 1−∑ j 6=pool w′v j. In Ta-
ble 4, we pick the biggest weight wv3 = 1

2 as the pool, and
approximate wv1 and wv2.

To approximate a single weight wv j, we compute two ex-
pansions of power-of-two terms: a lower bound L j and an
upper bound U j, where L j ≤ wv j ≤U j. Initially, L j = 0 and
U j = 1. These two bounds are then iteratively tightened by
either adding a term to the previous lower bound or sub-
tracting a term from the previous upper bound. During this
process, the differences between the bounds and wv j (called
error) decrease exponentially. Eventually, the computation
stops when the error is within the tolerable error. The iter-
ations of computing expansions for wv2 = 1

6 are shown in
Table 5.

Using this technique, at each iteration we obtain two ap-
proximations for non-pool weights: lower-bound (L) and
upper-bound (U). We then choose one of them as the final
approximation for the weight. The goal is two-fold: 1) min-
imize the number of generated rules, and (2) ensure that the
error of the “pool” is within the tolerable error. To this end,
we introduce two strategies: exhaustive search which eval-

Iteration L U wv1−L U−wv1

0 0 1 0.1667 0.8333

1 1
8

1
4 0.0417 0.0833

2 1
8 +

1
32

1
8 +

1
16 0.0104 0.0208

3 − 1
8 +

1
16 −

1
64 − 0.0052

Table 5: Steps to compute the upper and lower bounds
to approximate wv1 =

1
6 with e = 0.02. Note that the sec-

ond iteration U is obtained by adding 1
16 to first iteration

L; third iteration U is obtained by subtracting 1
64 from

second iteration U .
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Figure 4: Generate rules using a suffix tree.

uates all possible choice combinations (one approximation
per weight) and picks the best set of approximations, and a
greedy heuristic, which chooses one of the two bounds to
approximate each weight, greedily attempting to minimize
the number of rules while always ensuring that the “pool”
error is within the tolerable error.

3.1.2 Generate rules based on approximations
Given an approximation w′v j for a non-pool weight, we

generate its corresponding rules by mapping the power-of-
two terms of the approximation to nodes of a suffix tree.
Each node in the tree represents a 2−k fraction of traffic,
where k is the depth of the node (or, equivalently, the suffix
length). Figure 4 visualizes the rule generation steps for our
example from Table 4 with wv1 =

1
6 , wv2 =

1
3 , and wv3 =

1
2 .

When a term is mapped to a node, we explicitly assign a
color to the node. Initially, the root node is colored with
“pool” (Figure 4(a)). Color j represents that the node be-
longs to w′v j. Each uncolored node implicitly inherits the
color of its closest ancestor. We use dark color for nodes
that are explicitly colored, and light color for the unassigned
nodes.

To find the mapping between the approximation terms
w′v j = ∑k x jk and the suffix tree’s nodes, we first sort the
powers-of-two terms corresponding to non-pool weights in
descending order of their absolute values (|x jk|). In the ex-

5



Pattern Action Corresponding terms

∗00100 fwd to 1 1
32 in w′v1 and − 1

32 in w′v2

∗000 fwd to 1 1
8 in w′v1 and − 1

8 in w′v2

∗0 fwd to 2 1
2 in w′v2

∗ fwd to 3 (pool)

Table 6: Wildcard rules corresponding to Figure 4(d).
ample of Table 4, the sorted terms are 1

2 , 1
8 , − 1

8 , 1
32 , − 1

32 .
Then, one by one, the terms are mapped to nodes as follows.
Let x jk be the current term being considered, then:

• If x jk > 0, we map it to a node representing |x jk| fraction
of traffic with color “pool”. The node is then re-colored to
j. In this way, weight w′v j gets |x jk| fraction of traffic from
the “pool”. In the example, we map the term 1

2 in w′v2 to
∗0 (Figure 4(b)).

• If x jk < 0, we map it to a node representing |x jk| fraction of
traffic with color j. The node is then re-colored to “pool”.
In this way, weight w′v j gives |x jk| fraction of traffic to the
“pool”.

• Whenever there exist a pair of terms 0 < x j1k1 = −x j2k2 ,
instead of transferring a fraction of traffic from wv j2 to the
pool and then again from the pool to wv j1 , we can “cancel”
these terms out by mapping both to a node corresponding
to |x j1k1 | fraction of traffic with color j2 and re-coloring
it with j1. In this way wv j1 gets |x j1k1 | traffic from wv j2 .
In the example, we cancel − 1

8 in w′v2 and 1
8 in w′v1 by

mapping both to node ∗000 (Figure 4(c)) and assigning
color 1 to this node.

Once all terms have been processed, rules are generated
based on the explicitly colored nodes. Table 6 shows the
rules corresponding to the final colored tree in Figure 4(d).

3.2 Truncate: Fit Rules in Hardware Table
Given the restricted hardware rule-table size, some gener-

ated rules might not fit in the hardware. Therefore, we need
to separate the rules into hardware rules PH and software
rules PS. In this sense, PH achieves a coarse-grained approx-
imation of the weights while numrules(PH) stays within the
rule table size C; rules in PS are distributed across software
switches to further approximate the weights until the tolera-
ble error e is met. As a consequence of this truncation, some
packets will hit the “wrong” software switch and need to be
“corrected" by PS. We capture this packet deflection as im-
balance, defined as tv×∑ j max(wH

v j−w′v j,0), where tv is the
expected traffic volume for VIP v and wH

v j is the approxima-
tion of weight wv j given by PH .

Rule-set truncation. A simplistic solution could be to
truncate the rule-set generated in Section 3.1 into two parts:
C lower-priority rules become PH and the rest become PS.
For example, if C = 3 the rules in Table 6 are truncated into
PH containing the last three rules and PS containing the top

,PEDODQFH� ������
��������������3+�������������
�������������IZG�WR��
���������������IZG�WR��
����������������IZG�WR��

��������������36�������������
������������IZG�WR��

Figure 5: Stairstep curve (imbalance v.s. #rules) for VIP
v with weights wv = { 1

6 ,
1
3 ,

1
2} and tv = 1.

rule. Note, however, that this approach does not minimize
imbalance, since the approximation algorithm did not con-
sider the hardware rule-table size when computing the rules;
it is possible that a different set of C rules exists that achieves
a smaller imbalance.

Finding PH for each value of C. Instead of truncating af-
ter the rules have already been computed, we determine the
partition into PH and PS for every possible value of C dur-
ing the computation of weight approximations (having this
information for different C values becomes important when
we pack rules for different VIPs into the same hardware ta-
ble in Section 4.1).

The intuition is that truncating the rule-set is equivalent
to truncating terms from a weight approximation. We can
therefore use “intermediate” lower and upper bound expan-
sions in the iterative computation of approximations de-
scribed in Section 3.1.1. Furthermore, instead of indepen-
dently performing algorithm iterations for each weight, we
perform iterations for all weights together by tightening ei-
ther the upper or the lower bound expansion of a single
weight at each step. We choose the next bound to tighten
to be the one having the maximal error from all currently
available bounds of all non-pool weights. After each tight-
ening step, we use the brute-force or heuristic methods in
Section 3.1.1 to generate a new set of rules PH . Therefore
each step in this process results in a fresh set of rules. The
algorithm completes once both bounds of every weight are
within the tolerable error. Note that during this process we
may obtain multiple rule-sets with identical size. In this
case, we choose the one with smaller imbalance. Hence, the
result is one set of hardware rules PH for each value of C,
and the associated imbalance. For each set PH , we compute
the corresponding set PS by continuing the approximations
in PH . We also optimize PS such that the stretch of packet
deflection is minimized.

Stairstep plot. Figure 5 shows the imbalance as a func-
tion of C. Each point in the plot (r, imb) can be viewed as
a cost for table space r, and the corresponding gain in im-
balance imb. This curve helps us determine the gain a VIP
can have from a certain number of allocated hardware rules,
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VIP Weights Traffic Volume
V IP1 w11 =

1
6 ,w12 =

1
3 ,w13 =

1
2 t1 = 0.55

V IP2 w21 =
1
4 ,w22 =

1
4 ,w23 =

1
2 t2 = 0.45

Table 7: Weights and traffic volume of V IP1 and V IP2.

3DFNLQJ�UHVXOWV�IRU�������
WDEOH�FDSDFLW\�&� ��

9,3������+:�UXOHV
9,3������+:�UXOHV

WRWDO�LPEDODQFH� ������

Figure 6: Packing example for VIPs in Table 7.

which is used in packing rules for multiple VIPs into the
same hardware table (§4.1).

4. CROSS VIP OPTIMIZATION
In this section, we generate rules for multiple VIPs using

two main techniques: (1) packing multiple sets of rules (each
corresponding to a single VIP) into one hardware table and
(2) sharing the same set of rules among VIPs.

4.1 Pack: Divide Rules Across VIPs
The stairstep plot in Section 3.2 presents the tradeoff be-

tween the number of hardware rules assigned to a VIP and
the imbalance the software switches must correct. When di-
viding rule-table space across multiple VIPs, we use their
stairstep plots to determine which VIPs should have more
rules, to minimize the total traffic imbalance. For example,
Table 7 shows the weight distributions and traffic volumes
for two VIPs, with the corresponding stairsteps in Figure 6.

To allocate hardware rules, we greedily sweep through the
stairsteps of VIPs in steps. In each sweeping step, we give
one more rule to the VIP with largest per-step gain by step-
ping down one unit along its stairstep. The allocation repeats
until the table is full.

We illustrate the steps through an example of packing
two VIPs (Figure 6) using five hardware rules. We begin
with giving each VIP one rule, resulting a total imbalance
of 50% (27.5%+ 22.5%). Then, we decide how to allocate
the remaining three rules. Note that V IP1’s per-step gain
is 18.33% (27.5%− 9.17%), which means that giving one
more rule to V IP1 would reduce its imbalance from 27.5% to
9.17%, while V IP2’s gain is 11.25% (22.5%−11.25%). We
therefore give the third rule to V IP1 and climb one step down
along its curve. The per-step gain of V IP1 becomes 6.88%
(9.17%− 2.29%). Using the same approach, we give both
the fourth and fifth rules to V IP2, because its per-step gains
(22.5%− 11.25% = 11.25% and 11.25%− 0% = 11.25%)

Iteration L U

0 − 1
2

1 1
2 −

1
2

1
2 −

1
4

2 1
2 −

1
2 +

1
8

1
2 −

1
4 −

1
16

3 1
2 −

1
2 +

1
8 +

1
32

1
2 −

1
4 −

1
16 −

1
64

Table 8: Approximate wv1 =
1
6 with initial upper bound

1
2 . (Compare with Table 5.)

are greater than V IP1’s. Therefore, V IP1 and V IP2 are given
two and three hardware rules, respectively, and the total im-
balance is 9.17% (9.17%+ 0%). The resulting rule-set is a
combination of rules denoted by point (2,9.17%) in V IP1’s
stairstep and (3,0%) in V IP2’s.

A natural consequence of our packing method is that pop-
ular VIPs are allocated more hardware rules, while VIPs
with lighter volume may be (mostly) load-balanced in soft-
ware. Our evaluation (§7) demonstrates that this way of han-
dling “heavy hitters” leads to significant gains.

4.2 Share: Same Rules for Multiple VIPs
In practice, a region may have tens of thousands of VIPs,

each with multiple clusters. Given the small TCAM in to-
day’s hardware switches, we may not always be able to al-
locate even one rule to each VIP. Thus, we are interested
in sharing hardware rules among multiple VIPs. We em-
ploy sharing on different levels, creating three types of rules
(with decreasing priority): (1) rules specific to a single VIP
(described in §3); (2) rules shared among a group of VIPs,
and (3) rules shared among all VIPs (called default rules). 2

Below, we first discuss default rules and then explain how to
group similar VIPs.

4.2.1 Default rules shared by all VIPs
Default rules are shared by all VIPs, including those with-

out any other hardware rules. These rules have the low-
est priority and match only on the source (client) IP ad-
dress, rather than the destination (VIP) IP address. There are
many ways to create default rules, including approximating
a certain weight distribution using algorithm in Section 3.
Here we focus on the simplest and most natural one—equal-
cost multi-path (ECMP) rules that divide the traffic equally
among clusters. Our evaluation (§7) demonstrates that using
such rules dramatically reduces the total traffic imbalance.

Assuming there are M clusters where 2k ≤M < 2k+1, we
construct 2k ECMP rules matching suffix patterns of length
k and distributing traffic evenly among the first 2k clusters.
These ECMP rules provide an initial approximation wE of
the target weight distribution: wE

i = 2−k for i ≤ 2k and
wE

i = 0 otherwise, which can then be improved using more-
specific rules, such as per-VIP rules described in Section 3.1.
We revisit the example { 1

6 ,
1
3 ,

1
2}. In Table 8, we show how

to improve the approximation for wv1 = 1
6 , starting from

2Default rules do not require extra grouping table.
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Figure 7: Initial(left) and final(right) suffix trees for
w′v1 =

1
2 −

1
2 +

1
8 +

1
32 , w′v2 =

1
2 −

1
8 −

1
32 , w′v3 =

1
2 (pool).

Rules Pattern Action
Rules for V IPv ∗00101 fwd to 1

∗001 fwd to 1
∗0 fwd to 3

Shared ECMP rules ∗0 fwd to 1
∗1 fwd to 2

Table 9: Rules for weight distribution { 1
6 ,

1
3 ,

1
2}.

U = wE
1 = 1

2 (note that the initial lower bound is missing—
intuitively, we must improve upon the initial approximation
given by ECMP rules). The pool is chosen to be the weight
wv j which maximizes wv j−wE

j , i.e., is farthest from its tar-
get weight. The pool in our example is wv3.

Figure 7 shows the corresponding suffix tree. Initially, the
tree is colored according to ECMP rules. 3 Next, we remove
the leading 1/2 terms from w′v1 and w′v2—these terms are
already captured by the initial ECMP coloring of the tree.
We then process the remaining terms (− 1

2 , 1
8 , − 1

8 , 1
32 , − 1

32 )
as explained in Section 3.1.2 and obtain the final rules (Ta-
ble 9). The total number of rules is five, compared to four
rules without using ECMP (Table 6). However, only three
of the five rules are “private” to VIP v, as the two ECMP
rules are shared among all VIPs. This illustrates that default
rules may not save space for one (or even several) VIPs, but
will usually bring significant table space savings when the
number of VIPs is large, as we demonstrate in Section 7.

4.2.2 Grouping VIPs with similar weights
To further conserve table space, we bundle VIPs having

similar weight distributions into groups. We save space by
tagging such VIPs with the same group identifier (Table 3).

We use k-means clustering to group VIPs with similar
weights. The centroid of each group is computed as the aver-
age weight vector of its member VIPs; to prioritize “heavy”
VIPs, the average is weighted using tv (the expected traffic
volume of VIP v). We begin by selecting the top-k VIPs with
highest traffic volume as the initial centroid of the groups
(the choice of k depends on the available hardware table
space). Then, we assign every VIP to the group whose cen-
troid vector is closest to the VIP’s target weight vector (us-
ing Euclidean distance). After assignment, we re-calculate

3The root is not colored with “pool” since it is shadowed by the
default ECMP rules.

group centroids. The procedure is repeated until the overall
distance improvement is below a chosen threshold (e.g., a
threshold of 0.01% in our evaluation).

Putting it all together. Niagara’s full algorithm first (i)
groups similar VIPs, then (ii) creates one set of default rules
(e.g., ECMP) that serve as the initial approximation for all
the groups, (iii) generates per-group stairstep curves, and fi-
nally (iv) packs the groups into a hardware table.

5. SEAMLESS CHANGES TO WEIGHTS
Load-balancing policies change over time, due to servers

failures, service updates, and cluster maintenance. When the
weights for a VIP change, Niagara computes new rules while
minimizing the packet deflections caused by (i) churn dur-
ing the update (to ensure connection affinity) and (ii) traffic
imbalance after the update (due to inaccuracies of approxi-
mation in hardware). Niagara has two update strategies, de-
pending on the frequency of weight changes. When weights
change frequently, Niagara minimizes churn by incremen-
tally computing new rules from the old rules (§5.1). When
weights change infrequently, Niagara minimizes traffic im-
balance by computing the new set of rules from scratch and
installs them in stages to limit churn (§5.2). In both cases,
Niagara pushes new rules on software switches (SWSs) be-
fore updating the hardware switch (HWS), and uses rule ver-
sioning to perform the update consistently. Our approach
applies new rules to new connections as soon as possible,
while ensuring connection affinity (§5.3).

5.1 Compute New Rules Incrementally
When weights change, Niagara computes new rules to ap-

proximate the new set of weights. New rules not only de-
termine the new imbalance, but also the traffic churn during
the transition. We use an example of changing weights from
{ 1

6 ,
1
3 ,

1
2} to { 1

2 ,
1
3 ,

1
6} to illustrate the computation of new

rules. Initial rules are given in Table 6 and the correspond-
ing suffix tree in Figure 4(d). In this example, any solution
must shuffle at least 1

3 of the flow space (assuming a negligi-
ble tolerable error e), which determines the minimal churn.

Minimize imbalance (recompute hardware and soft-
ware rules from scratch). A strawman approach to handle
weight updates is to compute new rules from scratch. In our
example, this means that action “fwd to 1” in Table 6 be-
come “fwd to 3” and vice versa. This approach minimizes
the traffic imbalance by making the best use of hardware
rules. However, it incurs two drawbacks. First, it leads to
heavy churn, since recoloring 1

2 +
1
8 +

1
32 fraction of the suf-

fix tree in Figure 4(d) means that nearly 2
3 of existing con-

nections must be deflected to their “old” clusters to preserve
connection affinity. Second, it requires significant updates
to hardware; this slows down the update process, since hard-
ware switches are much slower than software switches in
responding to changes. As a result, this approach does not
work well when weights change frequently.

Minimize churn (recompute only the software rules).
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Rules Pattern Action
PS ∗00111 fwd to 1

∗0011 fwd to 1
∗01 fwd to 1

PH ∗00100 fwd to 1
∗000 fwd to 1
∗0 fwd to 2
∗ fwd to 3

Figure 8: Update PS only (worst imbalance, least churn).

Rules Pattern Action
PS *00100 fwd to 3
PH ∗001 fwd to 3

∗000 fwd to 1
∗0 fwd to 2
∗ fwd to 1

(a) Target rule-set.

Rules Pattern Action
PS none
PH ∗00100 fwd to 1

∗000 fwd to 1
∗11 fwd to 1
∗0 fwd to 2
∗ fwd to 3

(b) Intermediate rule-set.
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(c) Suffix tree corresp. to (a).
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(d) Suffix tree corresp. to (b).

Figure 9: Rule-sets (and corresponding suffix trees) in-
stalled during the transition from { 1

6 ,
1
3 ,

1
2} to { 1

2 ,
1
3 ,

1
6}.

An alternative strawman is to keep the hardware rules “as
is,” and rely on SWSs to handle the change in weight dis-
tribution. This is done by treating the old rules as default
rules and using the algorithm in Section 4.2. Figure 8 illus-
trates this approach by adding three software rules that shift
1
4 +

1
16 +

1
32 of traffic from wv3 to wv1. This approach min-

imizes churn but results in significant imbalance by putting
the burden of absorbing the weight change permanently and
entirely on software switches. In the example, both the churn
and the new imbalance are roughly 1

3 .
Strike a balance (updating hardware and software

rules). The above two approaches illustrate two extremes
in computing the new rules. Niagara intelligently explores
the tradeoff between churn and imbalance by iterating over
the solution space, varying the number of old rules kept. In
the example, keeping two old rules (∗000 fwd to 1, and ∗0
fwd to 2) leads to the rule-set shown in Figure 9(a) and the
suffix tree in Figure 9(c). In this case, the algorithm achieves
1
32 imbalance and 1

32 +
3
8 churn (only slightly higher than the

minimum of 1
3 ).

5.2 Bound Churn with Multi-stage Updates
Incurring churn during updates is inevitable. Depending

on the deployment, this traffic churn might not be tolerable.
Niagara is able to bound the churn by dividing the update
process into multiple stages. Given a threshold on accept-
able churn, Niagara finds a sequence of intermediate rule-

sets such that the churn generated by transitioning from one
stage to the next is always under the threshold.

Continuing the example from Section 5.1, suppose that
the maximum acceptable churn is 1

4 . In this case, the churn
created by a direct transition from the old rules in Table 6 to
the new rules in Figure 9(a) would be 1

32 +
3
8 , exceeding the

churn threshold. Hence, Niagara finds an intermediate stage
shown in Figure 9(b)(d). Specifically, we pick the pattern
∗11, which is the maximal fraction of the suffix tree that can
be recolored within the churn threshold. The intermediate
tree (Figure 9(d)) is obtained by replacing the subtree ∗11 of
the old one (Figure 4(d)) with the new one’s (Figure 9(c)).
Then, transitioning from the intermediate suffix-tree in Fig-
ure 9(d) to the one in Figure 9(c) recolors only 1

32 +
1
8 of the

flow space (less than the threshold 1
4 ) and therefore we can

transition directly to the rules in Figure 9(a) after the inter-
mediate stage.

We note that performing a multi-stage update naturally re-
sults in lengthy update process for VIPs with frequent weight
changes. To mitigate this, Niagara either demotes such VIPs
entirely to SWSs or rate limits their update frequency.

5.3 Preserve Connection Affinity
When performing updates, we must ensure that ongoing

TCP connections remain pinned to the same backend (“con-
nection affinity”) regardless of where the new policy would
send the flow. We could wait for old flows to terminate be-
fore applying a new policy [14] but this could delay updates
indefinitely. The alternative, storing per-flow state in HWS,
does not scale. Niagara chooses to track the connection-to-
backend mapping at the software layer. Each time a new L4
connection is observed, an SWS maintains its routing deci-
sion in a table whose priority supersedes the load-balancing
policy, thus pining connection mappings across changes in
routing tables. HWS is freed from L4-related tracking tasks.
All state tracking is done in abundant DRAM on SWSs.

Connection tracking. The idea of letting SWSs au-
tomatically generate a new micro-flow rule for each L4
routing choice follows the local-autonomy principle of De-
voFlow [16]. Niagara’s local micro-flows gain global signif-
icance whenever rules are updated as flows may bounce be-
tween switches. At those times, it is important to synchro-
nize local microflows among all SWS. This could be done
either via (i) eager periodic broadcast from the switches, (ii)
controller-initiated poll-and-broadcast when there is a global
policy update, or (iii) lazy schemes in which switches query
upon receiving unexpected packets.

Policy versioning. Large sets of forwarding rules are
tracked and applied atomically using versions. We tie each
packet to the active policy via version tag in the packet.
HWS always holds exactly one policy version and labels
each routed packet accordingly. SWSs match their version
to the routing label on the received packet.

A global policy update consists of the five steps as shown
in Figure 10. We first install the new policy version (both
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POLICY-UPDATE(version_id,PH ,PS)

1 Install PH and PS on SWSs
2 SWSs apply new policy
3 Synchronize connection registry
4 Install PH on HWS
5 Remove unmatched rules on SWSs

Figure 10: Global policy update scheme

hardware and software rules) on all SWSs (Step 1). These
new rules remain shadowed until HWS stamps the new ver-
sion number into forwarded packets; alternatively, we may
instruct SWSs to re-stamp the new version individually (Step
2). Now, new connections are forwarded using the new
version while existing connections remain routed as before.
Note, all new flows are now being deflected to their target
SWS by (another) SWS. Then, we synchronize the connec-
tion registries among all SWSs (Step 3) to ensure that any
existing connection established under an old version is rec-
ognized and forwarded consistently by all SWSs. We then
install new hardware rules at HWS (Step 4), so the “new con-
nections" no longer need to be deflected by SWSs. However,
connections from previous versions need to be deflected un-
til they terminate. Finally, we garbage collect unmatched
rules on SWSs.

In fact, the whole system applies the new policy to incom-
ing packets after Step 2, irrespective of HWS’s forwarding
behavior. We could choose to never update HWS and things
would continue to work. Updating HWS (Step 4) is impor-
tant to reduce deflection. Not updating HWS keeps forward-
ing all packets of pre-existing connections to their “correct”
SWSs per some previous policy version. This becomes less
desirable as old connections die out and traffic churn begins
to consist only of the new connections (established under the
new policy); Once HWS is updated, only old connections
need to be deflected by SWSs. We demonstrate this churn
tradeoff between new and old flows when we evaluate the
update dynamics of our prototype (§7).

6. NIAGARA PROTOTYPE
We prototype Niagara to show how to apply the output

of our algorithm to an actual forwarding system comprising
multiple switches (both stateless hardware and stateful soft-
ware), as well as how to update switches consistently and
ensure connection affinity. The source code and experiment
setup can be accessed from [20].

System design. Figure 11 shows the network of switches
and backends, with a router connecting to clients. All de-
vices attach to a shared L3 network and connect via GRE
tunnels. We configure the router to direct all incoming re-
quests to HWS, which then forwards to SWSs and eventu-
ally BEs. Return traffic is not tunnelled via SWSs but instead
uses direct server return (DSR). We chose to implement both
HWS and SWS atop regular Linux servers using iptables to
reduce our implementation work at the expense of forward-

HWS

SWS SWS

BE

requests

controller

...

BE BE BE

...
Tunnel
Physical Topology

Control Path

Router

Figure 11: Niagara prototype architecture overview.

ing performance. Iptables can be configured remotely via
ssh by the controller. Iptables allows the controller to create
a collection of routing tables that match on arbitrary packet-
header fields and set per-packet metadata. In addition, ipta-
bles can be configured to track L4 connections.

Packet processing. The controller begins by creating one
routing table at each switch for the current policy version.
Each version corresponds to one specific VLAN-tag. Upon
receiving a packet, the switch translates the VLAN tag to a
per-packet internal metadata vmark, and uses it to select the
routing table. The rules inside the routing table, which are
directly translated from the output of the algorithm, set addi-
tional metadata rmark denoting the next-hop for the packet.
At the network ingress, HWS sets the first vmark (a.k.a.
VLAN-tag) on any incoming packet.

Connection tracking. IPConntrack in iptables maintains
a state table of active local flows, where we save the next-hop
information (rmark) for the first packet of the connection.
SWSs are configured to first check for each incoming packet
if it belongs to an existing connection. If so, the packet is
immediately forwarded according to the previously-saved
rmark. Therefore, each flow is routed only once, when
adding the flow to the state table; policy changes do not im-
pact ongoing connections.

Since HWS update can reshuffle flow-to-SWS mappings,
we need to synchronize connection mappings across SWSs.
Conntrackd was built as an iptables add-on exactly for this
purpose. In our prototype, we configured multicast state
replication among SWSs. This multicast group effectively
combines the local state tables into one logically shared
global connection table, ensuring that packets of the same
connection are forwarded to the same BE, even if they tra-
verse different SWSs. To prevent conntrack state from blow-
ing up, we must ensure fast garbage collection as connec-
tions expire. To this end, we set up route-exceptions at
the BEs (also through iptables) to route all SYN-ACK and
FIN packets through SWSs instead of sending them DSR. In
practice there are a few more packets that need this exception
treatment (e.g., ICMP messages, RST, etc.).

Rule updates. We implement the update mechanism
(§5.3) in our prototype. The update first creates the tables
in SWSs that contain the complete rule-set of the new ver-
sion. When all SWSs are primed with the new version, we
change the vmark at HWS. However, we do not to install the
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new rules at HWS immediately (§5.3). Instead, we proceed
with a later HWS update to minimize traffic churn (§7).

Failures. The current prototype keeps an unbounded his-
tory of policy versions to avoid having to deal with wrap-
around version numbers and out-of-sync SWSs.

Practical observations. The HWS rule-set is completely
stateless, matching only on L3 bits and can be mapped to
the tables of a standard packet-forwarding chip like Broad-
com’s. The use of GRE tunnels is not always necessary (e.g.,
L2 fabrics) and GRE causes trouble as it reduces MTU size,
consumes CPU cycles, and often lacks NIC offload support.
In L2 fabrics it may suffice to drive packets to the right SWS
by forwarding the packet to the corresponding destination
MAC address. Finally, we realize that multicasting the con-
nection table is not going to scale. Instead we propose syn-
chronizing each SWS against a few replicas of a sharded
global connection table. Then on policy update, the global
controller would initiate a push of connection-table entries
from this sharded repository to SWSs, as fallback, SWSs
would poll the sharded connection state table on receipt of
unexpected packets.

7. EVALUATION
In this section, we evaluate the rule-generation algorithm

through simulation and the update mechanism in the proto-
type. Our algorithm makes effective use of the constrained
hardware table. With the additional grouping support, we
achieve 2.9% to 11.7% imbalance for 10,000 VIPs us-
ing 4,000 rules, while the approach that only uses ECMP
rules [8] incurs an imbalance as high as 53.3%. Even with-
out grouping, we could load balance 500 VIPs with an im-
balance of 3% using 4,000 rules, much better than 9.7%
to 52.1% imbalance by the ECMP-only approach. By fur-
ther analyzing each technique, we find that our algorithm
(i) uses much fewer rules (median 16) than the naive ap-
proach (median 22) to approximate a single VIP; (ii) priori-
tizes popular VIPs in packing rules; (iii) greatly saves hard-
ware rules through using default rules; and (iv) explores sim-
ilarity among VIPs and can load-balance more VIPs (than
the rule table size) with grouping support.

We present the evaluation of our Niagara prototype in han-
dling policy updates. Our prototype achieves a smooth tran-
sition from the old policy to the new one, while ensuring
connection affinity. Furthermore, we can effectively mini-
mize real-time churn by choosing the timepoint to update the
hardware switch. In our experiment, the churn is reduced by
47.2% compared to updating all switches together.

7.1 Rule-Generation Algorithms
Weight distribution. The cluster weights of a VIP de-

pend on various factors such as size of the cluster, deploy-
ment plans, and backend failures. To reflect this variability
in our evaluation, we use three different distribution models
to generate weights: Gaussian, Bimodal Gaussian, and Pick
Cluster. Weights of a VIP v are drawn from these models and

normalized so that ∑ j wv j = 1. (1) For Gaussian distribu-
tion, weights are chosen from N(4,1). Since σ is small, the
generated weights are close to uniform. It models a setting
where a VIP has equal-sized deployment in all clusters. (2)
For Bimodal Gaussian distribution, each weight is chosen
either from N(4,1) or N(16,1), with equal probability. The
generated weights are non-uniform, but VIPs exhibit certain
similarity. It models a setting where a VIP has bigger de-
ployment in some clusters than others. (3) For Pick Cluster
distribution over M clusters, we pick a subset of clusters uni-
formly at random for one VIP. Then for those clusters, we
draw the weights from the Bimodal Gaussian distribution.
The weights for unchosen clusters are zero. The generated
weights are non-uniform, making it hard to group VIPs. This
distribution models a setting where different VIPs are served
by different subsets of clusters. In the experiment, the num-
ber of clusters M is 8 or 16. We set tolerable error e to 0.1%.

Traffic distribution. We evaluate Niagara using both uni-
form traffic distribution and skewed Zipf traffic distribution
where the k-th most popular VIP receives 1/k fraction of the
total traffic. The traffic is normalized so that ∑v tv = 1.

All-in-one. Figure 14(c) demonstrates the benefit of all
our techniques put together. 4 We load-balance 10,000 VIPs
of different weight distributions with skewed traffic. The
number of weights per VIP is 16. For a given number of
rules, we classify the VIPs into 100, 200, or 300 groups
(picking the option which yields the smallest imbalance).
Even with very few hardware rules, the algorithm achieves
a reasonably small imbalance. With 4,000 hardware rules,
we reach 2.9% and 6.9% imbalance for the Gaussian and
Bimodal Gaussian models respectively, and 11.7% imbal-
ance for Pick Cluster, which is much tougher to group. In
what follows, we analyze the contribution of each technique,
namely single VIP rule generation, packing multiple VIPs,
sharing default rules among VIPs and grouping.

Single VIP rule generation. We first examine the num-
ber of rules needed to approximate the target weight vec-
tor of a single VIP. We randomly generate 100,000 distinct
weight vectors (8 weights per VIP). In Figure 12(a), we
compare three strategies (§3.1.1): exhaustive search, which
gives an optimal solution with exponential time complexity;
greedy heuristic, which solves the problem in linear time,
and naive approach, which only uses positive approximation
terms. The exhaustive search generated much fewer rules
(a median of 16) than the naive one (a median of 22). It
demonstrates that our algorithm greatly reduces the number
of rules by using both positive and negative terms and can-
celing terms through rule priorities. Since the heuristic’s per-
formance closely track the exhaustive search strategy, we use
the heuristic throughout the remainder of this section. We
then repeat the same experiment with a different number of
weights M and compare the number of rules (Figure 12(b)).

4We calculate imbalance as ∑v(tv×∑ j max(wH
v j−wv j,0)) instead

of ∑v(tv×∑ j max(wH
v j−w′v j,0)) to avoid the impact of e in com-

puting w′v j.
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Figure 12: Single VIP rule generation.

Each marker denotes the median, while vertical bars indi-
cate the minimum and maximum values. We can see that the
number of rules increases linearly, suggesting our algorithm
performs steadily well under different M values.

To evaluate our “truncating” technique (§3.2), we take two
weight vectors of size 8, corresponding to the median and
maximum number of rules in Figure 12(b) (16 and 29 rules,
respectively), and plot their stairstep curves in Figure 12(c).
We observe that given 16 hardware rules, the imbalance of
the ‘worst case’ weight vector is very small (2.5%). It sug-
gests that we can get quite close to the targeted weights, even
if C is significantly smaller than the number of rules needed
to reach the tolerable error .

Packing multiple VIPs. Moving on to multiple VIPs, we
first evaluate packing (§4.1) assuming VIPs do not share any
rules. Each VIP therefore gets at least one hardware rule. In
the experiment, we generate weights from Gaussian model
(16 weights per VIP). Figure 13(a) shows the total imbal-
ance achieved after packing, as a function of hardware table
size. The leftmost point on each curve shows the imbalance
when every VIP is given exactly one rule. In all cases, ini-
tial imbalance is close to 90%. Observe that the imbalance
drops linearly for uniform traffic and nearly exponentially
for skewed traffic, suggesting that our packing algorithm
uses hardware rules efficiently. Furthermore, skewed traffic
leads to a much faster drop, as our packing algorithm prior-
itizes “heavy” VIPs in rule allocation. By allocating more
rules to popular VIPs, we minimize traffic imbalance. For
example, packing 100 VIPs with skewed traffic and 2,000
hardware rules, our algorithm achieves a total imbalance of
1.5%. We observed similar results for Bimodal Gaussian
and Pick Cluster weight distributions.

Sharing default rules. Sharing default rules offers a fur-
ther improvement because (i) we no longer need to give
each VIP at least one rule during packing and can allocate
more rules to heavy VIPs, and (ii) default rules provide a
good initial approximation and reduce the number of “pri-
vate” rules for each VIP. We use ECMP default rules in our
experiments. Figure 13(b) compares packing 500 VIPs of
Gaussian weight distribution, with and without default rules.
With the same number of rules, using shared default rules
achieves a significant reduction in imbalance. For example,

the imbalance is reduced from 22% to 4%, when C = 1,000
and M = 8. Moreover, we observe that sharing default rules
performs better for bigger M values and the Gaussian model,
as the weights are closer to uniform. Figure 13(c) compares
the performance of sharing default rules for VIPs of different
weight distribution models. We achieve the smallest imbal-
ance for Gaussian distribution. Yet, even for Pick Cluster,
the imbalance is less than 4% with 4,000 rules.

Grouping similar VIPs. Our grouping technique (§4.2.2)
clusters VIPs with similar weight vectors together. Among
the weight distributions, Pick Cluster is the hardest one to
group. Figure 14(a) presents the result of packing 10,000
VIPs (16 weights per VIP) of Pick Cluster model. When the
traffic distribution is uniform, we cannot pack these VIPs
without grouping (there are fewer available rules than VIPs,
and all VIPs are equally important). ECMP default rules are
not a good initial approximation either (53% initial imbal-
ance). Given 4,000 rules, the imbalance still exceeds 50%.
However, with grouping, the imbalance drops to 26% with
4,000 rules. When the traffic is skewed, the imbalance de-
creases from 20% to 12% with 4,000 rules.

We examine next how the number of VIP groups affects
imbalance. We notice that there is a tradeoff between group-
ing accuracy and approximation accuracy: when the VIPs
are classified into more groups, the distance between each
VIP’s target weight vector and the centroid vector of its
group is reduced, making the grouping more accurate. How-
ever, the approximation is less accurate for a bigger number
of groups. Figure 14(b) illustrates this tradeoff comparing
the imbalance with 100, 300, and 500 groups. When there
are less than 500 rules, classifying the VIPs into 100 groups
performs best since it is easier to pack 100 groups than, e.g.,
300 groups, while the centroids of groups still give a rea-
sonable approximation for VIPs. For larger hardware rule
tables, using more groups becomes advantageous, since the
distance between each VIP and its group’s centroid, which
‘represents’ the VIP during packing, decreases. For exam-
ple, given 1,500 rules, 300-group outperforms 100-group.

Time. We recorded the running time of the algorithm on
a Ubuntu server with Intel Xeon E5620 CPU (2.4 GHz, 4
core, Model 44, 12 MB cache). Our implementation is sin-
gle threaded and written in Python 2.7.3. It takes less than 30
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Figure 13: Packing and sharing ECMP default rules (16 weights per VIP).
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Figure 14: Grouping.

sec. to compute the stairsteps curves of 100 VIPs (e = 0.1%)
and then perform packing using 4000 hardware rules. The
time grows linearly with number of VIPs and is dominated
by the computation of stairsteps, which can be easily par-
allelized. For grouping, k-means clustering takes 30 sec. to
480 sec. to complete, depending on traffic and weight dis-
tributions. Skewed traffic and similar weight distributions
across VIPs lead to faster convergence of the clustering re-
sults and fewer iterations.

7.2 Rule-update Mechanism
We evaluate our rule update mechanism in our prototype.

The setup includes one HWS, two SWSs (SW1 and SW2),
and two BEs (BE1 and BE2) serving a single VIP v. We con-
nect BE1 to SW1 and BE2 to SW2. Thus, BE1 is the only
backend of SW1 and similarly for SW2. Each SWS sends
all requests to its only backend unless the packets should be
deflected. We inject client traffic destined to VIP v into the
network, and monitor the bytes received at BEs as well as
packet deflection.

In the experiment, we transition from weights {wv1 =
3
4 ,wv2 =

1
4} to weights {wv1 =

1
4 ,wv2 =

3
4}. Both the old pol-

icy and the new policy achieve weights using hardware rules.
The old policy map ∗00 to BE2 and the rest to BE1; the new
policy. change the mapping of ∗01 and ∗10 to BE2. During
the update, the existing connections of ∗01 and ∗10 should
be pinned to BE1, but new connections should be directed
to BE2. We start eight TCP connections to VIP v match-

ing patterns 000, 001,..., 111, where connections end asyn-
chronously and new connections of the same pattern start af-
terwards. Then, we update switches and keep recording the
packets received by BEs and traffic churn during the update.

Figure 15 shows three runs of the experiment, where the
only difference is the timing of HWS update:

Update HWS and SWSs together (top): At the begin-
ning, the eight TCP connections create 3 : 1 throughput ratio
at BE1 and BE2. No packets are deflected. At 90 sec. we
update HWS and both SWSs. As a consequence, for active
flows 001, 010, 101, and 110, HWS sends their packets to
SW2 and SW2 directs them to BE1. Therefore, although
the throughput of BEs do not change, we see a sudden in-
crease in traffic churn consisting of old flows. This traffic
churn gradually disappears, as these flows finish. Finally,
the throughput ratio at BE1 and BE2 becomes 1 : 3.

Update HWS after all old flows end (center): If we up-
date HWS after all old flows end, we see no traffic churn
immediately after updating SWSs (at 90 sec.), since packets
from old flows still hit their original SWSs. However, churn
increases as new flows arrive. For example, when a new flow
001 starts, HWS sends its packets to SW1 based on the old
rules; SW1 applies the new rules, and redirects packets to
BE2. Eventually, HWS is updated after old flows end (160
sec.), stopping the deflection of new flows.

Update HWS at an optimized time (bottom): Since new
flows keeps expanding and old flows are shrinking, we can
find a “sweet-spot” that minimizes the traffic churn. In the
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Figure 15: Top: update of SWSs and HWS together;
Center: update HWS after old flows finish; Bottom: up-
date HWS at an optimized time.

example, we update HWS at 125 sec. The churn contains
only new flows before the update and old flows afterwards.

8. RELATED WORK
Hierarchical load balancers: Ananta [8] is a hierarchi-

cal load balancer that uses ECMP in hardware switches to
spread traffic over custom software multiplexers. In con-
trast, Niagara optimizes the rules in the hardware switches
for more accurate load balancing, and leverages commodity
software switches. Niagara also has novel algorithms for in-
cremental rule updates while preserving connection affinity.

Load balancing using coarse-grained rules: Previous
work [14] introduced an algorithm for computing coarse-
grained rules for splitting traffic over multiple backends (the
“naive approach” in Section 3.1). Niagara’s algorithm makes
more effective use of rule-table space by using both positive
and negative terms, and introduces novel techniques for trun-
cating, packing, and sharing, and for incremental updates.

Network support for connection affinity: Niagara en-
sures connection affinity (§5.3) by extending and combin-
ing rule cloning [16] and per-flow consistent updates [17].
The update mechanism, coupled with Niagara’s algorithm
for computing incremental rule changes, results in efficient
and seamless updates to the load-balancing policy.

9. CONCLUSION
Niagara advances the state-of-the art in software-based

load-balancing by demonstrating a new approach that com-
bines hardware and software switches. Hardware is pro-
grammed to closely approximate the desired load distribu-
tion, trading off accuracy for hardware table capacity, while
software switches correct any residual traffic imbalance.

Niagara effectively utilizes limited hardware resources: a
typical 4k rule switch chip can load balance 10k VIPs. This
is 4k rules well-spent, as it reduces the traffic redirection

across switches by 77% compared to previous ECMP-only
plus software solutions. In practical terms, Niagara increases
effective throughput by 37%, or in other words, effective link
utilization increases from 65% to 89%.

Only programming hardware to forward to backend-
servers directly without any detour through software will
produce better link utilization. However, hardware-only
load-balancing suffers from long policy-update delays; to
avoid disrupting existing flows, flows must quiesce before
their routing can be changed. Niagara accepts traffic redirec-
tion during updates as inevitable. Instead of avoiding traffic
reshuffling, Niagara bounds and minimizes it. Compared to
instant policy updates, typical of pure software approaches,
Niagara reduces the amount of traffic redirection during the
update by 47.2%. Unlike pure hardware-rules-only load-
balancing, Niagra can promptly apply updates, without wait-
ing for all old flows to expire.
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APPENDIX
A. UNEVEN TRAFFIC DISTRIBUTION

In the paper, we assume uniform requests distribution over the last octet
of src_ip address, i.e., ∗0 denotes half portion of the total requests. This
is the ideal case. In reality, we often observe unbalanced distribution. For
example, the network receives more requests from src_ip = ∗0 than those
from src_ip = ∗1. We notice, however, this trend is stable thus predictable.
That is, the ratio of number of requests matching 0∗ compared to 1∗ remains
a constant over the time.

In this section, we discuss how to extend Niagara’s single VIP algorithm
to handle the constantly skewed request distribution. 5 Formally, let req(p)
be the proportion of requests received from suffix pattern p (e.g., req(∗0) =
0.6). We should notice that req(p) decreases exponentially in the order the
length of p 6.

Consider an example function req(p) = 0.6a ∗ 0.4b, where a and b are
the number of 0s and 1s in p. We use the recurring example (w1 =

1
6 ,w2 =

1
3 ,w3 =

1
2 ) and e = 0.02 to illustrate how to generate the rules.

Similar to the standard algorithm, we pick w3 as the pool. But for each
non-pool weight, we generate rules along with approximating its values
before proceeding to the next weight. In the example, we approximate w1 =
1
6 (Table 10) by finding two suffixes, whose req(·) values bound w1 closely.
With the given req function, the bounds for w1 is in the form of 0.6a ∗0.4b.
Therefore, the lower bound and upper bound for 1

6 are 0.42 (req(∗11)) and
0.63 (req(∗000)) respectively, i.e.,

req(∗11)≤ 1
6
≤= req(∗000)

As the lower bound already reaches tolerable error, we continue computing
only the upper bound. We could either adding another suffix to the lower
bound (e.g., req(∗11)+ req(∗111100)) or subtracting a suffix from the up-
per bound (e.g., req(∗000)− req(∗11000)). The smaller one becomes the
new upper bound. Therefore, the final approximation for w1 is

req(∗11)≤ w1 ≤ req(∗11)+ req(∗111100)

Here, we pick the upper bound for w1; the rules are (∗111100, fwd to 1)
and (∗11, fwd to 1); the corresponding nodes in the suffix tree are colored
accordingly.

Prior to approximating w2, we update req(·) function to account for the
suffixes already colored with w1, since they cannot be colored to other
weights any more. Specifically, for every positive term req(p), we up-
date p’s ancestor suffix (say q) by doing req(q) = req(q)− req(p). For
req(∗11) in the example, we update req(∗1) = req(∗1)− req(∗11) and
req(∗) = req(∗)−req(∗11). For every negative term req(p), we add req(p)
back to p’s ancestor suffix.

Then, we repeat the similar approximation for w2 = 1
3 to compute the

lower and upper bound. We start with req(∗10) = 0.4∗0.6 and req(∗00) =
0.62−0.62 ∗0.44 (req(∗00) is updated because ∗111100 is colored with w1)
as lower and upper bounds. As the upper bound already reaches tolerable
error, we tighten the lower bound only. We could either adding another
suffix to the lower bound (e.g., req(∗10) + req(∗0001)) or subtracting a
suffix from the upper bound (e.g., req(∗00)− req(∗110100)). The bigger
one becomes the new lower bound. The final result is

req(∗00)− req(∗110100)≤ w2 ≤ req(∗00)

We pick the lower bound; the rules are (∗110100, fwd to pool) and (∗00,
fwd to 2). We then combine the rules for w1 and w2 to get the final rule list
(Figure 11).

B. RULE MINIMIZATION WITH AP-
PROXIMATION

Section 3.1.1 presents how to approximate an arbitrary weight with two
bounds: lower-bound and upper-bound. Each bound consists of a series
of positive and negative powers-of-two terms. To approximate multiple

5We let the infrequent change of request distribution trigger rule
update, thus keeping the loads on backends accurate.
6For any req(q)≤ blen(q), where b = max{ req(p0)

req(p) ,
req(p1)
req(p) ∀p}

Iteration L U wv1−L U−wv1

0 0 1 0.1667 0.8333

1 0.42 0.62 0.0077 0.0493

2 − 0.42 +0.62 ∗0.44 − 0.00205

Table 10: Steps to compute the upper and lower bounds
to approximate wv1 =

1
6 with e = 0.02. Note that the sec-

ond iteration U is obtained by adding 0.62 ∗ 0.44 to first
iteration L.

Pattern Action

∗111100 fwd to 1

∗110100 fwd to 3

∗11 fwd to 1

∗00 fwd to 2

∗ fwd to 3

Table 11: Final rules for 1
6 ,

1
3 and 1

2 with unbalanced re-
quest distribution.

weights, we should pick one bound as the approximation of each non-pool
weight and ensure the approximation error on the pool weight does not ex-
ceed tolerable error. The goal is to minimize the resulting number of rules.
In this section, we fill in the details on the possible picking strategies to
achieve the optimization goal.

There are two picking strategies: exhaustive search and greedy heuris-
tics. An exhaustive search enumerates all combination of lower-bound and
upper-bound approximations for non-pool weights. Among all combina-
tions whose error for pool weight is within tolerable error, it picks the one
with minimum number of rules. Therefore, the brute-force approach gives
optimal solutions, but takes exponential order of time to complete.

In contrast, the greedy heuristics targets at polynomial time complex-
ity with tradeoff in optimality. The algorithm is shown in Figure 16. The
heuristics picks the bound for weights in multiple iterations. In each itera-
tion, it chooses one bound for one non-pool weight to minimize the current
number of rules without exceeding the tolerable error.

Let Li and Ui be the lower-bound and upper-bound for weight wi. Let a j
be the index of weight that is chosen by the j-th iteration. Then wa j and w′a j

are the weight and approximation chosen by j-th iteration. At the beginning
of j-th iteration, the heuristics first decides the current error of pool weight
ep, i.e.,

ep = w′pool −wpool =−∑
i< j

(w′ai
−wai )

Initially, ep = 0. Based on the value of ep, the heuristics decide what bound
can be chosen without exceeding the tolerable error. Specifically, if ep ≥ 0,
meaning pool is over-estimated, then it can pick upper-bounds; if ep ≤ 0,
meaning pool is under-estimated, then it can pick lower-bounds. Then, it
tries on every weight, which are not approximated in previous iterations,
with the allowed bounds. Finally, It picks the weight and bound that mini-
mize the current number of rules. The iterations are repeated until all non-
pool weights are approximated.

C. MINIMIZE OVERALL STRETCH.
In the paper, we focus on the computation of hardware rules to minimize

imbalance – the fraction of traffic that should be deflected. Besides the
volume of traffic to deflect, we are also interested in the total stretch the
misdirected traffic experiences. For example, there are four SW switches
– A, B, C and D, where AB, BC and CD are neighbors. A and D are
most distant. Based on the hardware rules, A and C are overloaded with 1%
requests each, while B and D are underloaded and each can take another 1%
requests. The solution with optimal stretch is to have A forward excessive
requests to B and C forward to D. However, a solution that does not consider
the stretch may ask A to forward request to D and B to C. The overall stretch
is determined by the rules installed on SW switches. In this section, we
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PICK-BOUNDS(bounds, pool)

1 ep← 0
2 approx← []
3 while bounds is not empty
4 pick_upper← ep ≥ 0
5 pick_lower← ep ≤ 0
6 for (Li,Ui,wi) ∈ bounds
7 if pick_lower and min_r > COMPUTE-RULE(approx+[Li])
8 min_r← COMPUTE-RULE(approx+[Li])
9 a,← i,Li

10 if pick_upper and min_r > COMPUTE-RULE(approx+[Ui])
11 min_r← COMPUTE-RULE(approx+[Ui])
12 a,w′← i,Ui
13 approx← approx+[w′]
14 ep← ep−w′+wa
15 Remove (La,Ua,wa) from bounds
16 return approx

Figure 16: Greedy heuristics for picking approximation bounds.

briefly discuss how to compute rules for SW switches so as to minimize the
stretch.

We take two steps to compute the software rules. The first step is to
decide how much fraction of traffic each overloaded SW switch should for-
ward to other software switch, so as to minimize stretch. This problem can
be directly reduced to a Min-Cost Max-Flow problem. Specifically, in the
Max-Flow graph, the overloaded SW switches serve as suppliers and the
underloaded SW switches are the consumers. The amount of supply and
consumption is the imbalance of the corresponding SW switches. Then, we
create weighted edges between suppliers and consumers, where the weight
of edge is the distance between SW switches. The Min-Cost Max-Flow
solution gives the supply between SW switches, i.e., the transferred traffic.

Once we have the amount of traffic to transfer between SW switches, the
second step is to generate rules. As the software rule-table is presumably
infinite, we do not need consider the number of software rules. Hence, we
generate rules for each pair of SW switches with non-zero traffic transfer.
For every pair, we use the algorithm in Section 4.2.1 by regarding the ex-
isting rules as an initial approximation and adding extra rules to deflect the
traffic.
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