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Abstract 

Biological systems have been extensively studied for over a century, however we still only have 

a partial functional and mechanistic understanding of the interplay between genes and pathways. 

Recently, there has been an exponential increase in experimental datasets generated. However, 

the complexity of data types and the ambiguity of dataset relevance to biological processes and 

pathways have limited the integrated usage of this vast knowledge base for directing biological 

discoveries in human and model organisms. In this thesis, I develop several approaches of 

utilizing such public effort to address the challenges of inferring gene function and diverse 

biomolecular interaction networks and of improving the transfer of functional knowledge 

between organisms to facilitate the investigation of understudied biological processes. 

Specifically, in the first part of the thesis, I show that computational functional genomics can be 

used to improve the transfer of gene annotations between organisms. Furthermore, I demonstrate 

that functional knowledge transfer, when coupled with machine learning algorithms, can 

improve the coverage and accuracy of gene function prediction in a diverse set of organisms. In 

the second part of the thesis, I provide a general method for simultaneous prediction of many 

interaction types genome-wide and present the results of applying this methodology in S. 

cerevisiae. By incrementally overlaying different interaction types as suggested by our results, 

investigators can make specific and testable novel hypotheses about new pathways, new pathway 

components, or new interconnections between existing pathways. Finally, I extend our 

interaction inference work in S. cerevisiae to mammalian organisms, by methodologically 

addressing the largest source of biological variation in the metazoan data compendium: tissue 

and cell-lineage heterogeneity. 
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1 Introduction 

1.1 Biological background of computational biology 

Cells are the building blocks of life. Within a cell lies DNA (deoxyribonucleic acid), the genetic 

code that contains all the necessary instructions for building a cell and a living organism. DNA 

takes the form of a double helix, where each strand is a chain of nucleotides of four variations (A, 

G, C, T). The composition and order of these four nucleotides encompasses the genetic 

information of the organism. Specific regions of the DNA are called genes that are transcribed 

into messenger RNA (mRNA) and encode the amino acid sequences for all proteins, the 

functional machinery of the cell. The passing of information from a gene to a mRNA molecule is 

termed transcription, and a protein assembled from amino acids by the ribosome with a mRNA 

template molecule is called translation.  

The amount and collection of proteins required at any given time for the cell can vary drastically. 

Some proteins are required during the different developmental stages of the organisms while 

others are produced in response to the environment (e.g. heat shock or starvation). Also, in multi-

cellular organisms such as mammals, different tissues and cell-types have specialized functions 

and thus the composition of proteins can be drastically different. This regulation of the functional 

machinery unit proteins can happen at all level of the information cascade. Transcription of a 

gene can be regulated by proteins that activate or suppress RNA-polymerases from producing 

mRNA molecules. A transcribed mRNA molecule can be selectively degraded through the 

cellular RNAi machinery and thus preventing the translation process of producing proteins. 
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Finally, post-translational regulation also can occur where a protein can be covalently modified 

to be biologically “active” or “inactive” and even be degraded. 

This complex level of regulation is ultimately required for maintaining the homeostasis of the 

organism, however requires an extensive network of cooperation between multiple proteins. 

Proteins can physically bind and work together as operating units called complexes. Multiple 

complexes and proteins work together to form the cellular circuitry called pathways to provide 

multiple tasks, such as response to stress or signal transduction. Much like electric circuits, 

cellular pathways can execute complex level of logic. The large number of genes and gene 

products (e.g. >20,000 genes in human) allow the capacity to encode such logic, however also 

diverse types of pairwise interactions, ranging from physical protein-protein interactions and 

modifications to indirect regulatory relationships, provide a significant toolbox to carry out the 

pathway’s overarching cellular role. In table 1, I describe the variety of biomolecular interactions 

that occur at multiple level of specificity in the cell. 

 

Interaction type Description 

Complex 

Any macromolecular complex composed of two or more polypeptide 

subunits. 

Covalent 

modification 

Proteins regulated by transfer or remove of a molecule or atom from 

a donor to an amino acid side chain that serves as the acceptor of the 

transferred molecule or regulating an enzyme by altering the amino 

acid sequence itself by proteolytic cleavage.  

Functional group 

transfer Transfer or removal of a functional group. 

Functional 

relationship Two proteins function in same biological process. 

Interaction pathway 

Two genes interact within a pathway level, including post-

transcriptional, transcriptional and post-translational regulation or 

the functional dependency such as synthetic interactions.  

Isoenzyme Enzymes that differ in amino acid sequence but catalyze the same 
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chemical reaction. 

Mediated by small 

molecule 

Two proteins where a small molecule is involved as part of a protein 

modification. 

Metabolic 

interaction Functionally associated at the metabolic level. 

Non covalent 

binding Two proteins interact in a non covalent nature. 

Peptide transfer Transfer peptide to protein. 

Phenotypic 

aggravation 

Mutation or over expression of one gene results in suppression of 

any phenotype (other than lethality/growth defect) associated with 

mutation or over expression of another gene. 

Phenotypic 

alleviation 

Mutation or over expression of one gene results in enhancement of 

any phenotype (other than lethality/growth defect) associated with 

mutation or over expression of another gene. 

Phenotypic 

interaction 

Mutation or over expression of one gene results in alteration of any 

phenotype (other than lethality/growth defect) associated with 

mutation or over expression of another gene. 

Phosphate transfer Addition/removal of a phosphate (PO4) group to/off a protein. 

Phosphorylation Addition of a phosphate (PO4) group to a protein. 

Physical interaction Two proteins physically interact. 

Posttranscriptional 

regulation 

Post-transcriptional regulation is the control of gene expression at 

the RNA level. 

Posttranslational 

regulation 

Post-translational regulation refers to the control of the levels of 

active proteins. 

Regulatory 

interaction 

A gene regulates a gene either at the RNA, protein or transcription 

level.  

Same enzyme class Two enzymes that share the same enzyme class. 

Shared pathway Two proteins are closely involved in a pathway 

Synthetic 

aggravation 

Mutation or deletion of one gene aggravates the effect of a strain 

mutated/deleted for another gene.  

Synthetic alleviation 

Mutation or deletion of one gene alleviates the effect of a strain 

mutated/deleted for another gene.  

Synthetic growth 

defect 

 Interaction is inferred when mutations in separate genes, each of 

which alone causes a minimal phenotype, result in a significant 

growth defect under a given condition when combined in the same 

cell.  

Synthetic interaction 

Interaction in which a combination of mutations in two or more 

genes of a single strain results in a phenotype that is different in 

degree or nature from the phenotypes conferred by the individual 

mutations. 

Synthetic lethal 

Mutations or deletions in separate genes, each of which alone causes 

a minimal phenotype, result in lethality when combined in the same 

cell under a given condition.  

Synthetic rescue 

Mutation or deletion of one gene rescues the lethality or growth 

defect of a strain mutated/deleted for another gene.  
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Transcriptional 

regulation 

Transcriptional regulation is the change in gene expression levels by 

altering transcription rates. 

Ubiquitination 

The post-translational modification of a protein by the covalent 

attachment of one or more ubiquitin monomers. 

Ubiquitin transfer 

The post-translational modification of a protein by the covalent 

attachment or removal of one or more ubiquitin monomers. 

 

Table 1. Description of the variety of biomolecular interactions. 

Here I list the functional and biochemical description of each interaction type commonly 

occurring in biomolecular pathways. 

 

 

Fundamentally, to start unraveling the complexity of a living organism systematic experimental 

effort is required. Ever since the earliest DNA sequencing technology was developed by Sanger 

and colleagues, there has been large advancement in biomolecular technology that allows 

biologist to monitor the cellular state at multiple levels. Sanger sequencing and now next-

generation sequencing allowed researchers to complete human genome project, but now 

investigators can sequence multiple genomes within a week and continue to advance in 

efficiency and cost [1,2]. Also, the invention of gene expression microarrays and recently 

developed RNA-Seq allows biologist to quantitatively measure the transcription level of 

thousands of genes simultaneously from any collection of cells [3].  

In addition, there have been a number of high-throughput assays that have been developed to 

detect variety of interactions such as gene-gene, protein-protein, protein-DNA and protein-RNA 

interactions. Gene-gene interactions, often referred as genetic interactions, have been extensively 

mapped in yeast through SGA technology [4] by creating double-mutant strains of yeast and 

measuring the growth-rate compared to the single mutant. In mammalian organisms, shRNA 

pooled libraries allows the detection of genetic interactions [5] and the recent development of the 
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CRISPR-Cas9 system provides great opportunities for extensive mapping of such interactions 

[6]. Affinity mass spectrometry or yeast two-hybrid methods have allowed biologist to detect 

thousands of protein-protein interactions [7,8]. Also, the development of techniques for cross-

link biochemistry (e.g. formaldehyde and U.V) has allowed biologist to detect interactions 

between protein bound to DNA or RNA, by cross-linking the protein to the substrate molecule 

and conducting follow-up sequencing to identify the exact binding locations of these proteins [9]. 

Such techniques have been applied to multiple cell and tissue samples providing in vivo 

depiction of RNA and DNA bound protein profiles. Overall, with the development of such high-

throughput assays there has been an exponential increase in genomic datasets generated. 

However, biological assays are often very noisy with poor signal-to-noise ratios leading to high 

number of false positive results. Additionally, cell-cultures or clinical specimens that are 

experimentally tested consist of large biological variation and are almost always subject to batch 

effects due to the sample preparation steps. Thus, the high-throughput experiments has 

consistently confronted with the challenge of accurately interoperating this wealth of data. 

 

 

1.2 The challenges of computational biology 

Over the last half-century, biologists have been attempting to unveil the vast complexity of 

biological systems [10,11]. As high-throughput experiments become increasingly common [2-

4,12,13], biologists face substantial challenges effectively leveraging genome-scale data from 

diverse organisms to inform new hypotheses [14,15]. On an individual gene level, functional 

annotations have improved, but still there exist a large gap between our knowledge and 
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biological systems. Most significantly, the interplay of relationship between proteins has 

remained a significant hurdle in understanding complex biological systems [16]. Genes do not 

usually work as a single unit. Proteins, which are encoded by genes, work under a complex 

network of interactions between other genes to maintain the complexity of the living organism. 

Even more dauntingly, genes interact in many different biomolecular and functional manners 

with multiple partners [17]. Thus, one key challenge of computational and systems biology is to 

bridge three aspects of this complexity: the growing body of high-throughput data assaying these 

interactions; the specific interactions in which individual genes participate; and the genome-wide 

patterns of interactions in a system of interest. 

Concretely, as a biologist, in order to navigate the landscape of biological systems for hypothesis 

generating exploration, one would like to know how a gene set of interest fit within the complex 

gene cellular interaction network in the investigating organism. However, due to the vast 

intricacy of the cell, it would be of great benefit that the cell would be presented through 

subdivided functional networks that would each represent a critical slice of the cellular system. 

More specifically, one would like to explore how the query set of genes interacts with each other 

and between other genes through the diverse set of possible interaction types at varying levels of 

biomolecular specificity.  

For instance, lets imagine an investigator studying cyclin proteins in yeast, which are key 

regulators in cell-cycle control[18]. Understanding the full functional context of cyclins would 

require decomposition into many different functional interaction layers with full coverage at 

genome scale. For example, at the post-translational level, cyclins activate cyclin-dependent 

kinases by forming protein complexes that subsequently phosphorylates many key cell cycle 
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proteins [18]. At the transcriptional level, cyclins are regulated by a heterodimeric transcription 

factor complex SBF [19]. Finally, at the repressor and activator level, the inhibition of cyclins is 

through multiple SCF ubiquitin ligase complexes that lead to protein degradation [20]. As 

illustrated, the heterogeneity surrounding the few cyclin proteins is extremely complex. With 

only limited gene function annotations or a simplistic gene physical contact network, it would be 

insufficient for understanding the full interplay of proteins, which together enable many cellular 

processes. Unfortunately, unlike this relatively small network, which has taken over 50 years of 

laborious research to map out, very little is known of most genes functional associations and the 

type of biomolecular interaction. Thus, there is a great need to develop algorithmic and statistical 

approaches to efficiently identify pathways from the burgeoning abundance of data from high-

throughput molecular techniques.  

Another key challenge in computational biology is identifying the functional roles of genes in 

human diseases. Due to technical and ethical challenges many human diseases or biological 

processes are studied in model organisms [21-23]. However, experimental data coverage for a 

model organism can be sparse and prior functional knowledge (i.e. low-throughput experiments 

validating a gene’s function) can be notably limited [24]. These impediments affect the breadth 

and accuracy of bioinformatic methods (e.g. machine-learning algorithms) that apply prior 

knowledge in learning novel biology [25,26]. As a consequence, the applicability of these 

methods is often limited to biological processes and pathways that are already well characterized 

for an organism. 

For example, a common challenge for biological researchers is interpreting the results of a 

genome-wide experiment (e.g. a list of candidate genes from a microarray experiment) and 
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generating hypotheses for experimental follow-up. There are several effective resources, some 

network-based, for researchers to analyze their gene sets [27-33]. These resources cover a wide 

range of organisms and address different needs of biologists by applying a variety of methods: 

from pathway analysis of a gene list to machine learning algorithms that predict a gene’s 

function. All of these resources’ methods require known examples (i.e. pathways with at least a 

few annotated genes) in an organism. For example, the most widely utilized methods Gene Set 

Enrichment Analysis (GSEA) [27] and hypergeometric test based GO term enrichment analysis 

[34] both measure the significance of overlap or rank of known biological gene sets. 

Consequently, the effectiveness of these applications is constrained by the extent of prior 

knowledge and available experimental data in the queried organism. 

Other resources address the problem of disparate data coverage among organisms by focusing on 

methods to transfer high-throughput data (e.g. microarray, physical interaction experiments) 

between organisms [35-38]. However, these efforts are limited to learning gene association 

networks, and none of them solve the problem of making accurate functional predictions and 

associations for biological processes that have not been well studied in a given organism. For 

example, most of the discovered genes involved in neuromuscular process have been in mouse 

(65 known genes according to Gene Ontology [39]). Relatively few genes are definitively known 

in mammalian systems outside of this model organism. Consequently, many existing methods 

will not be able to predict genes to that biological process in rat (where only one such gene is 

experimentally annotated), and a biologist using a rat model system with existing resources will 

not be able to leverage the known biology in mouse. Thus, there is a great need for biologists the 

technology that allows the systematic application of prior functional knowledge from other 
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organisms to their organism of study, at multiple points in an analytic workflow: from 

interpreting experimental results to generating hypotheses for functional assays. 

 

1.3 Contributions 

In this thesis, I tackle the challenges laid out in the previous chapter 1.2. First, I address the 

challenge of transferring discoveries in model organisms back to human or other model 

organisms. Traditional methods for transferring novel gene function annotations have relied on 

finding genes with high sequence similarity believed to share evolutionary ancestry. However, 

sequence similarity does not guarantee a shared functional role in molecular pathways. In chapter 

2, I show that functional genomics can complement traditional sequence similarity measures to 

improve the transfer of gene annotations between organisms. I coupled our knowledge transfer 

method with current state-of-art machine learning algorithms (SVM [40] and Random Forest 

[41]) that enabled us predicted gene functions to 8,091 biological processes currently without 

any experimental annotations across six organisms. In addition, I demonstrate our method can 

help biologists systematically integrate prior knowledge from diverse model organisms to direct 

targeted experiments for understudied processes in their organism of study. In collaboration with 

molecular biologist Dr. Rebecca Burdine at Princeton University, we have experimentally 

demonstrated the power of our method by conducting an in vivo experiment validating our 

predicted role of gene wnt5b in establishing correct heart asymmetry during development in 

zebrafish. Together, our results show that functional knowledge transfer can improve the 

coverage and accuracy of machine learning methods used for gene function prediction in a 
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diverse set of organisms. Such an approach can be applied to additional organisms, and will be 

especially beneficial in organisms that have high-throughput genomic data with sparse 

annotations. In addition, our computational method resulted in an interactive web portal, IMP 

(imp.princeton.edu), which contains the integration results of over 45,000 diverse heterogeneous 

genomic experiments across seven organisms (human, mouse, rat, zebrafish, fly, worm, yeast) 

and enables biologists to analyze their experiments in the functional contexts of sets of genes and 

gene-gene probabilistic functional networks from across these organisms. This work has been 

published at PLoS Computational Biology [42]  and Nucleic Acids Research [43]. 

Next, I address the challenge of inferring biomolecular pathways that are built from diverse types 

of pairwise interactions. In chapter 3, I describe a methodology for simultaneously predicting 

specific types of biomolecular interactions using high-throughput genomic data in the model 

organism Saccharomyces cerevisiae (baker’s yeast). This algorithm uniquely uses a statistical 

model to interrogate the hierarchical information embedded between various types of 

bimolecular interaction types and hidden signals in high-throughput data. This results in a 

comprehensive compendium of whole-genome networks for yeast, derived from ~3,500 

experimental conditions and describing 30 interaction types, which range from general (e.g. 

physical or regulatory) to specific (e.g. phosphorylation or transcriptional regulation). I used 

these networks to investigate molecular pathways in carbon metabolism and cellular transport, 

proposing a novel connection between glycogen breakdown and glucose utilization supported by 

recent publications. Additionally, in collaboration with Dr. David Hess at Santa Clara University, 

we experimentally confirmed the accuracy and capacity of the algorithm by validating 14 out of 
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20 gene pairs predicted to have a synthetically lethal interaction (>100 fold increase over 

baseline discovery rate). This work has been published at PLoS Computational Biology [44]. 

Finally in chapter 4, I extend our work in chapter 3 of predicting Biomolecular interactions in 

unicellular organisms (e.g. yeast), and developed a strategy of inferring such interaction 

networks in metazoan mammalian orgnaisms. Uniquely compared to unicellular orgnaisms, 

tissue-specific expression underlies the development and maintenance of diverse cell types in 

metazoan organisms. Therefore, the biological and technical heterogeneity of the functional 

genomic data originating from the diverse tissues and cell-lineages compounds the difficulty in 

translating the vast amount of human genomic data into specific interaction-level hypotheses. To 

address such challenge, I developed an integrated approach for inferring the individual types of 

human biomolecular interactions, scalable to the whole-genome and robust to any biological 

dataset of diverse tissue contexts (i.e. experimental results drawn from differing tissues). I 

demonstrate that directly incorporating tissue contextual information significantly improves the 

accuracy of our predictions and show that such whole-genome scale predictions can be used to 

highlight active regulatory interactions from condition-specific primary experimental datasets 

(e.g. ChIP-Seq, mass spectrometry). A version of this work will soon be submitted for 

publication. 
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2 Functional knowledge transfer for the 

investigation of under-studied biological 

processes 

 

 

This chapter describes joint work with Aaron Wong and Casey Greene, who together contributed 

in the computational aspects and assembly of related manuscripts. Also, Jessica Rolland 

contributed to this work for the validation experiments. 

 

2.1 Introduction 

Defining the role of proteins in pathways is among the key challenges of human genomics. Many 

successful approaches have been developed for prediction of protein function and pathway 

membership [30,45-49], however they rely on prior knowledge in the organism of interest to 

make new predictions (i.e. at least some genes in the organism already annotated to the pathway) 

[25,50-53]. These approaches rely on identifying characteristic behavioral patterns, in functional 

genomic datasets, phylogenetic profiles, or genomic feature studies of genes that are known to 

participate in a pathway, then use these patterns to predict additional pathway members [54-56]. 
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For example, gene expression and protein interaction profiles can be used by machine learning 

methods to associate novel genes to pathways based on previously known pathway members 

[57,58]. The potential of such computational approaches to direct experiments has been 

demonstrated in studies investigating mitochondrial biogenesis [59] and seed pigmentation [60]. 

Other common exploratory methods, such as hierarchical clustering [61], don’t directly use 

known gene annotations to learn a prediction classifier, however they often use existing 

annotations to interpret the resulting cluster of genes (e.g. gene enrichment analysis) [27].  

However in many organisms including human, pathways and processes where functional 

annotations of genes are most needed often have few or no prior experimentally confirmed 

annotations, making novel predictions of genes that may participate in such a process difficult or 

impossible. Thus, our study describes a method to robustly increase the set of prior gene 

annotations, which has the potential to improve all function prediction methods by increasing the 

accuracy of their predictions and enabling wider coverage of pathways and biological processes. 
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Figure 1. Functional knowledge of biological processes is far from uniform, even among 

closely related organisms. 

Each node represents the number of experimentally annotated biological processes in an 

organism. Each edge value corresponds to the number of experimentally annotated processes in 

the source organism that lack any experimental annotations in the target organism. Thus, the 

directed edges between nodes indicate the direction of potential annotation transfer between 

organisms. For example, 3,245 processes with annotations in mouse have no experimentally 

annotated genes in rat. 

 

 

Many of these processes are well studied in some model organism, but not necessarily in an 

investigator’s organism of interest. Even when applying a conservative examination of only the 

closely related and heavily studied mammalian species human, mouse, and rat, processes 

represented in one species are often not well-characterized in another (summarized in Figure 1). 

For example, the process cellular glucose homeostasis, an increasingly important process due to 
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the role of cellular metabolism in cancer development, has less than 5 gene annotations in human, 

yet has 31 in mouse, a commonly used model organism for cancer studies. These processes 

(referred to in the text as understudied processes) are not well studied in a particular organism of 

interest (i.e. very few genes are annotated) but might be well characterized in some other 

organism. 

A longstanding solution to improving the prediction accuracy of understudied processes has been 

to transfer functional annotations from organisms where the process is better characterized [62]. 

The critical challenge in accurately transferring functional knowledge between organisms is 

identifying the appropriate genes for the transfer: those genes that share not only sequence 

similarity, but also conserved pathway roles. Large-scale automated methods have so far 

exclusively used sequence homology to identify functionally conserved genes [63,64]. However, 

the relationship between sequence similarity and function is not trivial. For example, human 

angiopoietin-4 (ANGPT4), an important angiogenesis growth factor, has been shown to activate 

TEK (tyrosine-protein kinase receptor), while the mouse sequence-ortholog (Angpt4) has been 

shown to inhibit TEK [65].  
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Figure 2. Schematic of the functional knowledge transfer. 

 A. A functional relationship network is constructed for each organism through Bayesian 

integration of heterogeneous genomic data (e.g. expression, TF motif binding, physical 

interaction assays). B. Functionally analogous gene pairs (i.e. functional analogs) are identified 

by computing a gene pairwise functional similarity score introduced in Chikina et. al between all 

sequence homologs. Functional similarity is measured by the statistical significance of the 

number of common TreeFam gene families in the functional relationship network neighbors of 

each homologous gene pair. C. Next, experimentally confirmed biological process annotations 

for each gene are transferred to its functional analogs. D. For each biological process the 

extended set of gene annotations (which include direct gene annotations, if available, and cross-

annotated genes) can be used as training examples for machine learning methods (SVM used in 

this study) to make novel gene membership predictions. E. Top predicted genes are carried over 

for experimental validation. 

 

In our previous work [24], we developed a cross-organism gene functional similarity measure, 

which relied on the concept that functional genomics data can be used to resolve homologous 

relationships among closely related genes. The approach summarizes the compendium of 

genomics data in each organism into functional relationship networks to identify genes that do 

not simply share sequence similarity but also functional behavior in large collections of 
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heterogeneous functional data, and are thus functionally analogous (referred to in text as 

functional analogs). In this current study, we present a novel knowledge transfer method, 

Functional Knowledge Transfer (also referred to in text as FKT and outlined in Figure 2), which 

leverages the mapping of functional analogs to direct cross-organism annotation transfer for 

function prediction. FKT can be especially beneficial for existing and future machine learning 

methods studying biological processes with sparse annotations in any given organism of interest. 

By transferring experimental knowledge between genes that have been identified as functional 

analogs, our method extends beyond simple annotation transfer by sequence similarity. 

Experimental functional annotations are only transferred for genes that are not just similar in 

sequence, but also in their functional behavior derived from a large and relatively comprehensive 

compendium of genomic data.  

In this study, we show that FKT improves the prediction accuracy of machine learning 

algorithms, particularly for biological processes with few existing annotations in an organism of 

study. We compare FKT to annotation transfer by sequence similarity (BLAST) and demonstrate 

the superior performance of our method in improving gene function prediction performance. The 

consistent improvement and high performance across various state-of-the-art classification 

algorithms demonstrates our approach is robust to different learning models, which is crucial for 

wide applicability.  

We apply FKT to gene function (i.e. biological process) prediction in six metazoan organisms 

(Homo sapiens, Mus musculus, Rattus novegicus, Drosophila melanogaster, Danio rerio and 

Caenorhabditis elegans) and show that FKT is robust enough for the automated transfer of 

annotations among these diverse organisms and accurate function prediction. Finally, we 
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demonstrate an application of FKT to discovering novel biology by coupling the knowledge 

transfer with a Support Vector Machine (SVM) to predict proteins involved in left-right 

asymmetry regulation during heart development in Danio rerio. We correctly predict several 

proteins in the pathway and experimentally confirm the first evidence of wnt5b’s role in the 

process. A comprehensive application of FKT to 11,000 biological processes, along with the 

functional relationship networks for all six organisms, are available through the IMP web-server 

portal accessible at http://imp.princeton.edu [43]. 

 

2.2 Results 

In Figure 2, we outline the pipeline for FKT and the subsequent gene function predictions 

(details provided in the Methods section below). Briefly, we first integrated high and low-

throughput experimental data such as gene expression data, protein-protein interaction data, 

protein domain and transcription factor binding motif information into functional networks for 

each of seven organisms (Saccharomyces cerevisiae was also included as an annotation source). 

Next, we calculated a network-based functional similarity score as described in our prior work 

[24] but extended here to additional organisms and data sources, between all ortholog and 

paralog pairs in a Treefam [63] gene family to identify the targets for annotation transfer. 

Homologs with high functional similarity scores were determined to be functional analogs. Next, 

we applied FKT by transferring all gene-process annotations between functional analogs and 

merge these with existing annotations (if available) in an organism. To test the predictive power 

of FKT, the set of transferred and organism-specific annotations were used to train a Support 

http://imp.princeton.edu/
http://imp.princeton.edu/
http://imp.princeton.edu/
http://imp.princeton.edu/
http://imp.princeton.edu/
http://imp.princeton.edu/
http://imp.princeton.edu/
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Vector Machine (SVM) classifier [40] and predict new genes to all biological processes in six 

metazoan organisms. Functional network connection weights (i.e. the inferred probability that 

two genes co-function in the same biological process), were treated as input features to the 

classifier (see Methods). Additional state-of-art machine learning methods (L1-regularized 

logistic regression [66] and Random forest [41]) were trained and evaluated to test the robustness 

of FKT performance improvement. Finally, we demonstrate the power of our approach with an 

in vivo experiment validating the predicted role of wnt5b in establishing correct heart asymmetry 

in Danio rerio. 

 

2.2.1 Functional knowledge transfer enables accurate gene prediction for 

pathways with few or no known genes 

Most modern machine-learning methods that predict novel members of a biological pathway 

require a set of genes already known to participate in the pathway. These approaches are 

therefore limited to predicting genes to biological processes with sufficient prior knowledge in 

an organism [67].  For example, in the MouseFunc competition [25] (a broad competition 

focused on the performance of biological process prediction approaches), terms with less than 

three gene annotations were considered infeasible to predict and not included. 



 

20 

 

 

Figure 3. Cross annotation allows accurate recovery of small and unannotated terms. 

All annotations accumulated after 5/11/2008 are held out from our prediction pipeline (as 

outlined in Figure 2) and are used for evaluation of prediction performance. 3,207 GO biological 

processes terms that acquired new annotations subsequent to our holdout date are grouped by 

organism and by the number of annotations at 5/11/2008 (zero, <=5, <=15, all). Performances at 

recapitulating future annotations are compared for a machine learning method (SVM) without 

(gray) and with (pink) including functional knowledge transfer (FKT) derived examples. For 

processes with zero annotations before 5/11/2008, no predictions can be made without cross-

annotation (shown as absent performance bar).  In all six metazoan organisms and for all process 

sizes, FKT improves prediction performance.  
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We address this constraint by leveraging knowledge across species, which allows us to take 

advantage of known biology from a model organism where the pathway of interest may be better 

studied. We applied our functional cross-annotation strategy (FKT) to biological processes with 

few known genes (annotation sizes of <= 5 and <= 15) in six metazoans and evaluated the 

predictive performance of an SVM trained with these annotations. To evaluate our performance, 

we constructed a three-year temporal holdout of experimental annotations. We used only 

biological process annotations added to Gene Ontology [68] before 5/11/2008 in learning the 

functional networks, transferring annotations across organisms, and predicting gene-process 

participation. New experimental annotations added to Gene Ontology between 5/11/2008 to 

5/11/2011 were held-out and used for evaluation. In total, 3,207 GO biological process terms 

across the six organisms acquired new gene annotations in the subsequent three years. We 

evaluated the accuracy of our predictions with the gene-process assignments made during the 

hold-out time period in Figure 3. We observed substantial improvement using FKT when 

compared with only using the direct annotations for an organism. Improvement was evident 

across all six organisms, suggesting that even well characterized model organisms (e.g. mouse) 

can benefit from genomic-data-driven knowledge transfer. In addition, by holding out gene-

process annotations acquired within the last three years, we could evaluate our ability to predict 

genes to processes which had no known genes in an organism prior to the hold out date (i.e. 

before 5/11/2008). Even though these processes were uncharacterized at that time, they 

subsequently became the focus of a directed experiment and thus were deemed biologically 

relevant and experimentally feasible in the organism. As shown in Figure 3, FKT gene 

predictions to these processes performed competitively even compared to biological processes 

with known gene annotations.  
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Figure 4. Functional knowledge transfer (FKT) improves prediction accuracy for a wide 

range of state-of-the-art classification algorithms. 

The performance change when applying FKT are compared for each of three machine learning 

algorithms: L1-regularized logistic regression, Random forest and SVM (evaluated based on the 

ability to recapitulate held-out annotations accumulated after 5/11/2008). 3,207 GO biological 

process terms are shown, grouped by annotation size at 5/11/2008 (<=5, <=15). The percent 

change in performance (median fold over random) when applying FKT compared to no FKT 

with each machine learning algorithm is shown for six diverse organisms. All bars are to the 
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right of zero, indicating a performance improvement when FKT is applied for each machine 

learning algorithm. 

 

We hypothesized that our transfer method could improve prediction performance for a wide 

range of machine learning methods. Machine learning algorithms are often based on distinct 

learning models and assumptions, thus any widely applicable annotation transfer method must be 

robust to not only the biological variability (e.g. different organisms or pathways) but also to this 

modeling variability. Thus in addition to SVM, we evaluated two widely used state-of-the-art 

learning methods: L1-regularized logistic regression [66] and Random forest [41]. We trained 

both classification methods with and without FKT and evaluated on the held-out set of 

annotations. FKT improved prediction accuracy across each machine-learning algorithm and 

organism (Figure 4). In particular, these improvements were consistent across biological process 

annotation sizes (<=5 and <=15). Altogether, these results indicated that FKT could recover 

biological processes that would be otherwise missed by most prediction methods, and that the 

transfer had wide applicability - improving performance across diverse organisms and machine 

learning algorithms. 

 

2.2.2 Genes predicted to processes with no prior annotations in the study organism 

reflect subsequent experimental findings 

We coupled FKT with an SVM and applied the machine learning classifier to predicting novel 

gene functions in six organisms. These predictions included gene-process membership for 8,091 

GO biological processes currently without experimental annotations in at least one organism. 
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Supervised machine learning methods would be unable to predict novel genes to these biological 

processes without annotation transfer. They represent a wide range of biological pathways and 

processes ranging from development and metabolism to immune response and response to 

various stimuli. 

For example, the biological process regulation of exit from mitosis (GO:0007096) represents a 

crucial mitotic cell cycle process that enables cells to regulate their exit from M phase. This 

process had no experimental annotations in Danio rerio at the time of our study, however had 

been extensively studied in the model organisms Saccharomyces cerevisiae [69], Mus musculus 

[70] and Drosophila melanogaster [71]. Our functional cross-annotation method has identified a 

total of 18 genes in Danio rerio with functional analogs annotated to this process (11 from yeast, 

5 fly, 1 mouse and 1 rat), enabling novel predictions of gene membership to this process.  

Our top gene prediction for this process, cdh2, has been experimentally confirmed in a recent 

study examining cell cycle progression in cdh2 mutant retina cells [72]. Interestingly, cdh2 is not 

only a novel prediction in Danio Rerio (i.e. this gene function was unknown at the time of our 

study), but also no cdh2 homologs are known to be involved in the regulation of exit from 

mitosis in other organisms. Cdh2 is a member of the cadherin protein family, which are 

important transmembrane proteins that play a crucial role in cell adhesion in multi-cellular 

organisms. Methods that employ only sequence similarity would be unable to predict this 

because cdh2 homologs have not been annotated to this process in other model organisms.  

Furthermore, prediction methods without FKT will miss this finding because there are no 

existing Danio rerio annotations to this process. Only methods coupling FKT with a machine 

learning algorithm can take advantage of information from the single cell model organism 
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Saccharomyces cerevisiae, where cell-cycle checkpoints have been extensively studied [73], and 

successfully predict this finding in the multicellular model organism Danio rerio. This in vivo 

experimental result demonstrates FKT’s utility for predicting novel genes to understudied 

processes. In addition, by coupling functional transfer to machine learning methods that leverage 

organism-specific functional data collections, we can make reliable gene-process predictions 

even without an annotated sequence-homolog. 

 

 

Figure 5. Functional knowledge transfer (FKT) improves performance for predicting small 

processes. 

The performance of two knowledge transfer methods (FKT and sequence-only) and a baseline 

method (with no cross-annotation) are compared. Shown here are results of threefold cross-
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validation for small processes (<= 15) that represent specific or understudied pathways. FKT 

paired prediction method shows improved performance compared to both sequence-only transfer 

and the baseline method. 

 

2.2.3 Cross-annotation among functional analogs improves prediction accuracy 

for small processes 

To compare our functional transfer method, which applied a more specific annotation transfer, to 

commonly used methods that used only sequence homology, we evaluated a method that did not 

leverage functional similarity and a baseline method without any cross-annotation. In this 

sequence-only method, all homologous gene pairs (reciprocal BLAST best hit gene pairs) were 

targets for annotation transfer - any biological process annotated to a gene was transferred to its 

reciprocal best-hit gene in all organisms. To obtain a representative set of gene-process 

annotations for evaluation, we conducted a threefold cross-validation on genes that had 

experimental biological process annotations, and evaluated the SVM classifier prediction 

performance on each corresponding held-out set of biological process annotations. The results of 

the comparison showed that although both methods improved performance for small processes, 

FKT showed greater performance gains (Figure 5). In a few organisms, the performance gains 

were substantial - for example, in human and mouse, the median performance (precision at 10% 

recall) increased more than fivefold.  

Upon examining the processes that improved the most when compared to a sequence-only 

method, many pathways and processes with transcriptional based regulatory control showed 

improved performance using FKT. Response to mechanical stimulus, ameboidal cell migration, 

regulation of neuron differentiation and striated muscle cell development were among the top 
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improved processes in all organisms using FKT compared to sequence-only. Unsurprisingly, 

these processes have been well known to be tightly regulated through transcriptional programs 

(e.g. stress response, developmental TF gradients) [74-76] and have multiple datasets measuring 

the transcriptional profiles incorporated in our functional networks [77-79]. 

We expect that FKT will continue to improve as the functional genomics compendia for many 

organisms continue to grow, including expression and other types of measurements across 

multiple perturbations. An additional advantage of a functional genomics similarity approach, as 

shown in [24], is the ability to differentiate functional differences in tissue specificity between 

sequence homologs. The example of mouse RNA polymerase II elongation factor Supt5h and its 

direct sequence-ortholog C. elegans spt-5 highlight this issue. FKT determined these sequence-

orthologs as not being functional analogs. Indeed, mouse Supt5h is predominantly neuronal, 

while C. elegans SPT-5 is non-neuronal and primarily expressed in the intestine and pharynx 

[80-82]. Even though these sequence-orthologs have diverged in tissue specificity, they still 

share high sequence similarity and a sequence-only method would inappropriately transfer all 

functional annotations between them. 
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Figure 6. Knockdown of wnt5b leads to defects in zebrafish heart asymmetry. 

Morpholinos (MO) against wnt5b were injected into zebrafish embryos at the 1-2 cell stage.  

Embryos were evaluated for heart jogging at 27 hour post fertilization and scored as either left 

(C), right (B), or no jog (A). While control MO injected embryos had predominantly left-jogged 

hearts, embryos injected with the wnt5bMO displayed randomized heart jogging with 48% of 

embryos displaying right or midline jog. 

 

2.2.4 In vivo validation of Danio rerio gene wnt5b involvement in the 

establishment of heart asymmetry 

In all vertebrates, the heart develops with a distinct left-right (L-R) asymmetry during embryonic 

morphogenesis. Deviations in left-right heart development can lead to complex congenital heart 

defects that are among the most common human neonatal diseases [83,84]. During cardiac 

morphogenesis in Danio rerio, two distinct stages of cell migrations lead to the final 
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asymmetries of the heart. In the first stage, called “heart jogging”, myocardial cell migration 

within the cardiac cone place the ventricular cells to the left side, while atrial cells remain near 

the midline. In the second stage of “heart looping”, the heart tube bends and forms a loop that 

places the ventricle to the right of the atrium. Although the steps of cell migration progression 

leading to left-right heart asymmetry are beginning to be explored [85-88], an understanding of 

how it is achieved mechanistically is still lacking. 

In Gene Ontology, the biological process term “determination of heart left right asymmetry” 

(GO:0061371) represents the developmental pathways regulating heart jogging and looping. To 

validate our prediction method (FKT coupled with SVM), we investigated the top five predicted 

genes that had not already been annotated to this GO term: sox32, wnt5b, ndr1, tbx1 and lft1. We 

found existing literature evidence confirming the involvement of four of the five genes (sox32 

[89-92], ndr1 [93], tbx1 [94], and lft1 [95-97]). Although there existed experimental results 

confirming the role of these genes in influencing heart asymmetry, these results had not yet been 

curated by GO annotators. For example, in a knock-out experiment of our top predicted gene 

(sox32/casanova), Danio rerio embryos had fewer dorsal forerunner cells which led to defects in 

Kupffer’s vesicle formation and subsequent left-right patterning of the heart, confirming that 

sox32 was required for proper establishment of heart asymmetry. The only gene among the top 

five without existing experimental support was wnt5b, our second ranked prediction after sox32. 

Previous work had shown the involvement of wnt5b in cell migration during gastrulation [98] but 

the gene had not been specifically associated with heart left-right asymmetry regulation. To 

experimentally validate our prediction of wnt5b to left-right heart determination, we knocked 

down its function by means of morpholino antisense oligonucleotides (MO) [99]. 
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A significantly greater proportion of embryos where wnt5b was knocked down with a 

morpholino (Figure 6) had a defective heart jogging phenotype (Fisher’s exact test p-value < 

0.001). In total, 48% of morpholino treated embryos showed either right-sided heart jog or 

midline jog comparable to previous genes known to be involved in this biological process [100-

102].  Only 4% of wild type and control-MO treated embryos exhibited this phenotype. This 

phenotype is likely due to the disruption of asymmetric expression of the TGFbeta member 

Nodal (data not shown), which is typically asymmetrically expressed on the left side of 

vertebrate embryos during somitogenesis. Left-sided Nodal in Danio rerio myocardial cells 

directs their subsequent migration during asymmetric cardiac morphogenesis [85,88]. Further 

investigation would be necessary to understand the mechanistic role of wnt5b in left-right heart 

determination, however our in vivo experiment confirmed the regulatory role of wnt5b in Danio 

rerio left-right asymmetry determination in heart development, as our method predicted. 

 

2.3 Discussion 

This study demonstrates that state-of-the-art machine learning methods coupled with our 

functional knowledge transfer method can accurately prioritize novel genes of understudied 

processes. Previous methods have focused on incorporating functional genomic data primarily as 

input data [103-106]. In contrast, here we demonstrate that the prevalence of understudied 

processes and the abundance of genomic data provide an opportunity to improve the accuracy of 

cross-organism annotation transfer and extend prediction coverage to processes with no prior 

annotations. We now integrate FKT into our IMP web-server [43].  This makes IMP a web 
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interface for exploratory analysis covering all organisms included in this study across 10,653 

biological processes (http://imp.princeton.edu). Functional knowledge transfer allows IMP to 

also include gene predictions for processes currently unannotated in an organism. Although in 

our current study we have experimentally followed up on our top predicted gene, all of our 

predictions in IMP are shown with estimated probabilities allowing biologist to draw a threshold 

dependent on how much the assay costs, and how important it is to find true positives (versus not 

finding false positives). In addition, the website includes the Bayesian functional relationship 

networks that were used for mapping functional analogs and used as input features to the 

machine learning methods. In particular, to the best of our knowledge, we include the first 

zebrafish (Danio rerio) functional relationship network. 

We anticipate that our approach can be extended beyond the six organisms shown in this study, 

as it is especially beneficial in organisms that have high-throughput genomic data with sparse 

annotations (e.g. frog, slime mold). Next-generation sequencing is further increasing the 

diversity of organisms that are measured on the genome-scale, and functional knowledge transfer 

can help us understand and annotate the roles of genes in such emerging model systems. 

Functional knowledge transfer allows for accurate hypothesis generation and experiment 

guidance even for pathways with no previous experimental knowledge in a given organism, thus 

benefiting human biology, broadly studied organisms such as mouse and fly, and newly adopted 

model systems. 

 

2.4 Methods 
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We developed a functional knowledge transfer method and applied this method to predicting 

gene functions in six organisms using a functional network based classification strategy. In 

summary, data integration was performed using a regularized naive Bayes classifier, which 

summarized the data compendium into organism specific function relationship networks. Edges 

in functional relationship networks represented, given all collected data from that organism, the 

posterior probability of a gene pair co-functioning in the same biological process. Next, a 

collection of organism specific experimental annotations supplemented with cross-annotated 

gene annotations (based on both sequence and functional similarity) was used as gold standard 

for each GO biological process to train a GO term specific SVM with the functional relationship 

network as features. To test for robustness across different machine learning algorithms, L1-

regularized logistic regression and Random forest were also evaluated by coupling both 

algorithms with the functional knowledge transfer method. Final predictions were made on a 

total of 10,653 unique biological processes.  We experimentally validated our method’s 

predictions for the determination of heart left-right asymmetry in Danio rerio. Of our top five 

predictions, four were validated via existing but un-curated experiments from the literature. We 

validated the fifth, wnt5b, using a morpholino knock-down assay. 

 

2.4.1 Integration and Summary of Organismal Data Compendia 

Data source and pre-processing 

We collected 2,444 microarray datasets from NCBI Gene Expression Omnibus (GEO) covering 

a total of 43,865 conditions across seven model organisms. Probes were collapsed and 
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normalized according to the procedure described in [106] and the Fisher’s z-transformed pearson 

correlation were calculated for each gene-pair as described in [52]. 

Physical and genetic interaction data from BioGRID [107], IntAct [108], Mint [109], and MIPS 

[110] were processed as counts of experimental assays that support an interaction between two 

genes (e.g. a gene pair with evidence from two-hybrid and western blot would receive two 

counts). Potential transcription factor (TF) to target gene associations were obtained from 

Yeastract [111] and TF binding site motifs retrieved from Jaspar [112]. Yeastract’s predicted TF-

gene relations were treated as pair-wise binary scores. For Jaspar, we searched for possible 

transcription factor binding sites by scanning each TF profile in 1 kb upstream sequence of all 

genes using FIMO [113]. Motif matches were treated as a binary score (present if p-value < .001 

and not-present otherwise) and the final gene pair score was obtained by calculating the pearson 

correlation between the two genes’ binary score vectors. 

Phenotype and disease data from SGD [114], MGI [115], Wormbase [116], Flybase [117], 

GSEA [27], Zfin [118] were incorporated into our functional networks by summing the co-

occurrences of gene pairs in all phenotypes/diseases and normalizing by the size of the 

phenotype/disease. For gene pair, i, j the scoring function is the following: 
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where function Ik(i) and Ik(j) are the indicator functions that have the value 1 when gene i or j is 

annotated to the phenotype or disease, n is the total number of phenotypes/diseases, and Nk is the 

total number of genes associated with the phenotype or disease k. Protein sequence similarity 
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between genes was obtained from Biomart [119], and protein domain data were treated as binary 

evidence from PfamA [120] and Prosite [121]. 

Generating functional relationship networks 

To summarize the processed heterogeneous genomic data, we generated one global functional 

relationship network per organism. We applied Bayesian integration, specifically a naïve Bayes 

classifier, to systematically deal with differences in accuracy and relevance of each data source 

for predicting gene functional relations. Gene pairs co-annotated to a set of 433 expert selected 

Gene Ontology [68] biological process fringe terms were used as known functionally related 

genes (i.e. positive examples) [106,122]. Gene pairs not co-annotated to any terms in the GO 

fringe, KEGG [123], PID [124] or Biocyc [125] were considered as unrelated (i.e. negative 

examples) except in the following cases: 

1. A gene pair was annotated to terms overlapping with a hypergeometric P-value below 

0.05  

2. A gene pair was annotated to a set of ‘negative’ GO terms that define minimal 

relatedness (as described in [106]) 

If a gene pair met either of the two conditions, it was excluded from unrelated pair generation 

(i.e., they were neither related nor unrelated for training). Thus this formed a set of global related 

and unrelated gene pairs to be used for training and evaluation. 

One binary regularized naive Bayes classifier was trained per Gene Ontology fringe term (i.e. 

biological process/context). Each naive Bayes classifier contains one class node determining the 

membership of a gene-pair to the biological process and organism specific dataset nodes 
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conditioned on the class node. When integrating large number of genomic datasets, the naive 

Bayes assumption of conditional independence among datasets can no longer be justified. We 

have shown that a mutual information based parameter regularization for naive Bayes classifiers 

can alleviate the conditional dependency among datasets [106]. In this work, we make 

modifications to our prior method by directly estimating the conditional dependency between a 

dataset by limiting the mutual information calculation between datasets to gene-pairs that are not 

functionally related. This heuristic enables us to estimate the conditional dependency between 

datasets without having to regress out the incomplete functional relation class node information. 

Specifically, the heuristic sum of shared information Uk is now: 
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where Ipairs   negatives is the mutual information between dataset Dk and Di among gene pairs not 

known to have a functional relationship (i.e. negative gene pair examples) and H is the single 

dataset entropy. Then we use the exponential decreased ratio (αk) to weight a given dataset’s 

likelihood function. Finally, the naive Bayes functional relationship posterior probability for 

gene pair i,j is the following: 

      


























ks

k

kks

s

jikkjikk
nDn

n
FRggdDPFRggdDP





 ||

1
1|,1|,*

 



 

36 

 

 
    

 DP

FRggdDPFRP

DFRP

ji

ji

gg

n

k

jikk

gg

,

1

*

,

1|,1

|1






  

where the weighted dataset likelihood function is P
*
, dk(gi, gj) is the experimental value for gene 

pair i,j, |Dk| is the total number of discretization levels and ns is a pseudocount set to 3 in our 

integration based on cross-validation results. 

Finally, with biological process specific functional relation networks predicted by each naive 

Bayes classifier, we averaged the edge probabilities from each process specific functional 

network to generate the final global functional relationship network. 

 

2.4.2 GO biological process gold standard construction through cross-annotation 

In total, 10,653 GO biological process terms were predicted for new gene annotations covering 

six organisms, Homo sapiens, Mus musculus, Rattus novegicus, Drosophila melanogaster, Danio 

rerio and Caenorhabditis elegans. We limited the positive examples for each GO term to 

propagated experimental GO annotations with GO evidence codes EXP, IDA, IPI, IMP, IGI and 

IEP (all “NOT” annotations were removed). In addition, to leverage the research strengths across 

organisms, we transferred gene annotations among six organisms plus yeast, first based on 

sequence similarity and second filtered by function similarity. In detail, we start with all 

sequence paralog and ortholog gene relations within each TreeFam [63] gene family. Next, based 

on our previous algorithm [24], we filtered for functional analogs among all paralog and ortholog 

gene pairs using our functional relationship networks. We define a functional analog to be a gene 

pair that has a significant number of overlapping TreeFam gene families among its closest gene 
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neighbors in the global functional relationship network (a functional network is converted into a 

binary network by using a probability cutoff of 0.5). We defined a gene pair’s score as the 

following: 
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where m and n are the number of TreeFam gene families in each gene G1 and G2’s direct 

neighborhood in the functional network, k is the number of overlapping TreeFam gene families 

between gene G1 and G2 gene neighbors and N is the total number of TreeFam gene families 

around gene G1 and G2. The functional similarity score is the probability of observing greater or 

equal to the number of overlapping gene families by chance, thus can be interpreted as a 

hypergeometric p-value. We used a score cutoff of <= 0.01 to consider a gene pair as functional 

analogs. 

Finally, all experimental annotations are propagated between functional analogs. In total, our 

supervised functional knowledge transfer allowed us to make predictions for 8,091 additional 

GO biological processes, thus extending our predictions beyond simply well-studied and well 

annotated processes and pathways.  

 

2.4.3 Biological process prediction with network based SVM 

We used the augmented gold standard genes by functional knowledge transfer and functional 

relation network as features into state-of-art machine learning algorithm Support Vector Machine 
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(SVM) to predict novel biological process gene annotations. Our functional relation network 

based SVM method has shown to outperform methods that directly input the raw data into the 

SVM or a simplistic sum of the functional networks to the positive examples [126]. 

For each biological process, the feature space was constructed as the weights in the functional 

relation network. Thus for each gene example, all gene edge weights connecting to the example 

gene were used to create the feature vector. Therefore, each organism feature count will be equal 

to the number of genes in the organism. The set of feature vectors for training examples were 

used to train a linear SVM according to the standard formulation: 
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where n is the of training example genes, w is the gene weight vector, yi is the training label of 

gene i and xi is the edge weight vector connecting gene i to all genes in the functional network. 

Finally, the unbounded SVM prediction scores were transformed into probabilities based on a 

maximum likelihood sigmoid fit to the SVM outputs [127]. 

 

2.4.4 Additional machine learning algorithms 

To validate that the observed performance improvement was not specific to any single learning 

algorithm, we applied the functional knowledge transfer to two additional widely used machine 

learning methods: L1-regularized logistic regression and Random forest. Regression analysis 

coupled with regularization has been a broadly used approach to control for the bias-variance 
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trade-off [128]. In particular, L1-regularization has been successfully used in many methods for 

shrinkage and feature selection applications, most famously in the works of LASSO [129]. By 

coupling L1-regularization with a logit link function, conditional probabilities of a gene 

membership to a biological process can be computed based on selected genes of predictive 

power. The predictive gene weight vector w was obtained by the following regression problem: 
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where λ > 0 is the regularization parameter, yi is the training label of gene i and xi is the edge 

weight vector connecting gene i to all genes in the functional network. 

Random forest classifiers are a combination of decision trees that are aggregated to make a final 

prediction. Random forest algorithms have been shown to produce improved prediction accuracy 

compared to a single decision tree by better estimating the contribution of each predictor through 

random sampling [41]. In genomic applications, Random forest has gained interest due to the 

many high-dimensional genomic learning problems [130]. Formally, random forest is defined by 

the following: 

  nidXhRF i ,,1,,   

where the random forest RF is a set of  h  decision tree functions, trained on training examples 

X and a bootstrap sample di from the original feature space of D. For classification, the votes of 

each n decision trees are averaged as shown in the following: 
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where  I  is the indicator function for the prediction class of interest. In our study, for each GO 

term 61 decision trees were trained on independent bootstrap samples of our original genomic 

training data. 

2.4.5 Performance evaluation 

For performance evaluations for GO terms with no prior annotation, we used a three-year 

temporal holdout set of gene annotations for each GO biological process. The held-out gene 

annotations were preserved throughout the prediction pipeline (functional network integration 

and SVM predictions) to avoid any overestimation of performance. Although we train our SVM 

classifiers using the augmented cross-annotated gold standard, only the non-transferred 

experimental GO term annotations were used for evaluation with all transferred annotations 

excluded. 

The GO gene association files used to create our gold standard was downloaded from Gene 

Ontology [68] on 5/11/2011. To generate an accurate temporal three-year holdout we 

downloaded the GO gene association version archived at 5/11/2008. All annotations were 

propagated and only experimental examples newly annotated after 5/11/2008 for each GO term 

was used in the temporal evaluation. Accordingly, any GO term that had no gene annotations on 

5/11/2008, but subsequently accumulated new annotations were used to evaluate our 

performance in predicting terms with no-known prior annotations. 

To compare performance between knowledge transfer methods, we conducted an evaluation by 

performing a threefold cross-validation among genes that had experimental biological process 

annotations. This set of evaluation annotations represents a random sampling of the current 

knowledge base as of 5/11/2011. Identical to our temporal holdout, all evaluation annotations for 
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each holdout were withheld from our prediction pipeline to avoid any performance over-

estimation. 

 

2.4.6 Implementation 

All software used in this study has been implemented in the open source and publicly available 

Sleipnir library [131] available from http://libsleipnir.bitbucket.org, which interfaces with the 

SVMperf library [132] for linear kernel SVM classifiers (the error parameter C was set to 100 for 

these experiments through cross-validation). L1-regularized logistic regression used the 

LIBLINEAR [66] and Random forest used the MILK (Machine Learning Toolkit) python 

package implementation with 61 decision trees per GO term. 

 

2.4.7 Morpholino Microinjections and Scoring of Heart Left-right Asymmetry 

The wnt5b morpholino (MO) and standard control MO were purchased from GeneTools. The 

sequence of the wnt5b MO used is as follows: 5’-GTCCTTGGTTCATTCTCACATCCAT-3’. 

Morpholinos were injected at a concentration of 6ng/uL into the yolk of one-cell stage embryos 

for whole knockdown in the embryonic cells. Initial assessment (Figure 6) was performed via in 

situ hybridizations on fixed embryos using the standard protocol [133] with cmlc2/myl7 used as a 

probe.  Images were captured at 4× or 10× magnification using a ProgressC14 digital camera 

(Jenoptik) on a Leica MZFLIII microscope. 

Heart laterality for each treatment (wnt5b MO, control MO, wild type) was evaluated in live 

Tg(cmlc2::GFP) embryos at 27 hours post fertilization.  Embryos were scored as left/right/no 
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jog based on expression of GFP driven by cmlc2’s heart specific promoter using a Leica SP5 

confocal microscope. 
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3 Simultaneous genome-wide inference of 

physical, genetic, regulatory, and functional 

pathway components 

 

 

This work was conducted with the experimental collaboration with David C. Hess. 

 

3.1 Introduction 

The complexity of cellular activity is driven not only by interactions among genes and gene 

products, but also by the timing and dynamics of these interactions, the conditions under which 

they occur, and the many forms that they can take. Proteins interact in many different functional 

manners with multiple partners - physically in complexes[134] and through 

modifications[135,136], synthetically when employed in parallel pathways[4], and in regulatory 

roles as activators or repressors[137] - and these interaction types combine to form complete 

molecular pathways. Functional assays such as gene expression, localization, and binding each 

capture individual aspects of this molecular activity at a global level, but translating the vast 

amount of resulting genomic data into specific hypotheses at the molecular pathway level has 
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proven challenging. The heterogeneity of gene interactions within each pathway has 

compounded this difficulty by preventing any one assay from providing a complete biological 

picture. It is thus critical to integrate large genomic data collections to describe not only the 

membership of gene products within pathways, but also their construction from the building 

blocks of individual types of biomolecular interactions. 

In this work, we provide the means for investigators to study complete molecular pathways at a 

whole-genome level as generated from integrated functional genomic data. First, we relate 30 

general and specific biomolecular interaction types, such as transcriptional regulation, 

ubiquitination (and other post-translational modifications), or protein complex formation, in an 

ontology of interaction types. This ontology is hierarchical, in that a phosphate transfer is 

perforce a covalent post-translational modification, which is in turn by definition a transient 

physical interaction, and so forth. Next, we combine this ontology with Bayesian hierarchical 

classification methodology [138], enabling the simultaneous prediction of genome-wide 

interaction networks of all of these 30 types from integrated heterogeneous experimental data. 

Finally, we apply this method to a compendium of ~3,500 Saccharomyces cerevisiae 

experimental conditions, experimentally validating several of the resulting predictions in glucose 

utilization, DNA topological maintenance, and protein biosynthesis as described below. This 

methodology ensures that investigators can take advantage of all available data to accurately 

identify the entire range of functional interaction types within specific pathways and across an 

organism's genome. 

It is important to contrast this genome-wide system for predicting diverse biomolecular 

interaction types with previous work predicting specific individual interaction networks. A 
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variety of methodologies have been proposed for inferring regulatory networks [139-142], 

physical interaction networks [35,143], synthetic interaction networks [144,145], and other 

interaction types[146], generally from their respective primary data types (ChIP-chip and -seq, 

proteomics, double knockouts/knockdowns, etc.) Likewise, other methods have been proposed 

for heterogeneous genomic data integration [28,36,106,144,147-151], but these almost uniformly 

focus on either general functional interactions or on specific bimolecular interaction types. This 

work combines the strengths of these two bioinformatic areas, providing a simultaneous platform 

with which all data available for a system can be integrated and focused onto specific interaction 

types, genome-wide and for individual gene products.  

We first applied our yeast network compendium to explore two cellular processes, carbon 

metabolism and cellular transport. This generated many promising interactions involving Snf1, 

Cmk2, Glc7, Adr1 and Gph1 supported by recent published work.  We also suggest several novel 

pathway connections, such as the interplay between the glycogen breakdown and glucose 

utilization pathways, by systematically layering multiple different interaction types. To 

experimentally validate a collection of our predicted yeast interactions, we focused on the 

synthetic lethal interactions, where double knockouts result in lethality, predicted among proteins 

involved in DNA topological change and regulation of protein biosynthesis. Highly ranked 20 

protein pairs, 10 pairs from each pathway, were hypothesized to be synthetically lethal, and we 

experimentally confirmed 14 of these pairs (70%). Furthermore, we evaluated our 

posttranslational modification predictions based on recent experimental results on 173 protein 

pairs, resulting in a prediction AUC over 0.8. In an analysis of the systems-level global and local 

network structures of our interactomes, we observed differential usage of several recurring 
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subgraphs, providing insight into the functional design principles of pathway components. 

Finally, we provide a web-based interface to explore all 30 yeast interaction networks at 

http://function.princeton.edu/bioweaver. This will allow investigators to interactively survey and 

generate hypotheses from the diverse interaction types comprising the S. cerevisiae cellular 

circuitry.  

 

3.2 Results 

We present a general methodology for integrating large, diverse genomic data compendia to 

simultaneously predict multiple biomolecular interaction network types (physical, genetic, 

regulatory, etc.; Figure 7). We applied this methodology to ~3,500 S. cerevisiae experimental 

conditions to generate 30 whole-genome networks describing predicted gene and gene product 

interactions in yeast. We first evaluated these predictions quantitatively using cross-validation, 

achieving AUCs over 0.7 for most interaction types. More qualitatively, we examined a set of 

predicted molecular linkages of diverse types between glycogen breakdown and glucose 

utilization genes, which were validated by recent literature. Finally, we experimentally 

confirmed 14 of 20 predicted novel synthetic lethal interactions in the DNA topological change 

pathway. 
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Figure 7. Overview of our integrated Bayesian hierarchical system for inferring diverse 

interaction networks. 

An interaction ontology was constructed categorizing gene interaction types. A corresponding 

Bayesian network was constructed in which each node represents one interaction type. This 

network's structural parameters, P[parent node label |child node labels], were first determined 

using prior knowledge from GO, KEGG, SGD, and other curated sources. Second, individual 

SVM classifiers were trained to predict each interaction type in isolation using heterogeneous 

data sources. Third, the non-structural Bayesian network parameters, P[true latent node label 

|SVM output], were filled by relating each observed SVM classifier to a latent interaction type 

membership node using cross validation. Finally, to generate new predictions, a gene pair's 

interaction type is first predicted by the SVM classifiers and then hierarchically resolved by 

finding the most probabilistically consistent set of label assignments corresponding to the latent 

nodes in our Bayesian network. 

 

3.2.1 Evaluating the accuracy of predicted S. cerevisiae biological networks 
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We predicted a compendium of biomolecular interaction networks by integrating diverse yeast 

genomic data using a multi-label hierarchical classification system ([138], Figure 8A). As briefly 

outlined in Figure 7, we first independently predict each interaction type using specifically 

trained SVM classifiers. Next, it is desirable to avoid making inconsistent interactome 

predictions due to noisy data, e.g. predicting that two genes share a regulatory relationship 

without occurring within the same pathway. In order to share information among classifiers for 

related interaction types in a principled manner, each SVM's predictions are treated as noisy 

observations. The final set of labels for each gene pair is then derived by finding the maximum 

likelihood assignment of interaction labels by integrating these observations in a Bayesian 

graphical model. 

Based on ~30% heldout test data, our average AUC over all 30 interaction types was 0.79, with 

minimal variations in performance across the interaction ontology (Figure 8A). The most general 

interaction type, functional relationship, also incurred the lowest AUC of 0.63, which remains 

comparable to state-of-the-art functional interaction prediction systems [152]. In order to 

quantify the contribution of our hierarchical Bayesian system relative to predicting disparate 

biomolecular interaction types in isolation, we compared the accuracy of each individual SVM 

classifier to that of the complete system. For all 30 predicted interactomes, the Bayesian 

hierarchy showed increased AUC scores, averaging +0.076 and ranging from a minimum of 

+0.011 to a maximum of +0.166. For example, posttranslational regulation improved from 0.61 

to 0.77, while phosphorylation increased from 0.67 to 0.79. In combination, these two 

evaluations suggest that this methodology can accurately leverage large genomic data collections 

to simultaneously infer a diversity of genome-wide interaction networks. 
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Figure 8. Performance evaluation of inferred networks. 

We predicted 30 S. cerevisiae interaction networks, each representing one interaction type. A) To 

evaluate the overall accuracy of these networks, we withheld ~30% of the genes in our gold 

standard as a test set. Performance on this test set averaged an AUC of 0.79 across all interaction 

types in the ontology. B) To specifically assess the accuracy with which interaction directionality 

was predicted (as opposed to the presence/absence of interactions in part A), we tested the 

frequency with which an interaction's correct direction was ranked above its incorrect direction 

in each of the 12 directed interaction networks. These results are uniformly well above random 

(0.5), supporting our ability to accurately predict both the presence and the directionality of 

many specific types of protein interactions. 



 

50 

 

 

3.2.2 Accurate prediction of directed interaction networks 

Many gene interactions are directional and thus asymmetric, e.g. phosphorylation or 

ubiquitination, in which the two interactors take on distinct source and target roles. It is thus 

important to correctly infer not only the presence or absence of these directed interactions, but 

also the correct directionality. Specifically, for each directed interaction type, we constructed a 

list of all edges ranked by predicted probability; we then compared the rank of the correct 

interaction direction relative to the incorrectly flipped interaction between the same two genes. 

Using this as a true- and false-positive rate criterion, we were able to predict the correct direction 

of gene interactions with average AUC of 0.85 over the 12 directed networks (maximum 0.94, 

minimum 0.70). This indicates that this methodology can accurately recover not only overall 

pathway structure, but also the upstream and downstream effects of individual gene products 

within molecular pathways. 

 

3.2.3 Predicted interactions provide mechanistic insight into the yeast glycolysis 

pathway 

Simultaneous inference of biomolecular networks for many different interaction types allows the 

generation of very specific novel hypotheses. As a first example, we detail a combination of 

transcriptional, genetic, post-translational, and metabolic interactions among gene products 

coordinating glycogen breakdown and glucose utilization in yeast. 
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As shown in Figure 9, Adr1 is an important transcription factor involved in carbon metabolism in 

Saccharomyces cerevisiae. It has many known regulatory inputs [153], one of which is the 

glucose-responsive kinase Snf1, and what proteins transmit this regulatory information has been 

under investigation for some time.  By examining different classes of predicted interactions with 

Adr1 and other proteins not in our gold standard (Figure 9A), we first identified regulatory and 

genetic interactions between the protein phosphatase Glc7 and Adr1. Specifically, our prediction 

of a synthetic alleviating interaction between Glc7 and adr1 mutants places it upstream of Adr1 

in this pathway. This combination of interactions is almost always associated with an upstream 

inhibitory regulator, consistent with the known biological role of Glc7 as a protein phosphatase 

that removes activating phosphorylations [154]. 

 



 

52 

 

 

Figure 9. Examining the mechanisms of protein interactions within the yeast carbon 

metabolism and cellular transport pathways. 

A) Predicted interactions of four specific types combined to assemble B) (arrows in black 

representing our final predicted pathway interactions) a pathway connecting the transcription 

factor Adr1 involved in carbon metabolism process to its regulatory input Snf1. This generates 

two concrete hypotheses suggesting, first, cross-talk between the calmodulin- and Snf1-

dependent pathways via Cmk2 phosphorylating Glc7. Second, we also predict coordinated 

regulation between the glycogen breakdown and glucose utilization pathways through a 
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metabolic interaction between Adr1 and Gph1. C) Previously known and newly predicted  

interactions in yeast protein transport connecting the plasma membrane, vacuole, golgi and ER. 

We propose a regulatory competition between the Arf1 and Vsp1 GTPases for Bch1 

functionality that is likely regulated by GTP availability, which itself is known to be regulated by 

protein sorting events in the cell. These predictions also hypothesize that YDL012c may be 

involved in regulating Vps1 activity. 

 

The predicted yeast networks also hypothesized post-translational regulatory interactions 

between Cmk2 and both Adr1 and Gkc7 (Figure 9A). This three-protein network creates a feed-

forward regulatory motif in which Cmk2 simultaneously activates Adr1 as well as its inhibitor 

Gkc7, creating a time-delayed inactivation of Adr1. These interactions are supported by a 

recently published paper [153] linking the calmodulin- and Snf1-dependent pathways to Adr1 

regulation.  Our predicted pathway takes these results a step further by identifying which of the 

three calmodulin-dependent kinases (Cmk2) is responsible [155].  Finally, a novel metabolic 

interaction was predicted between Adr1 and Gph1, the only high scoring interaction of its type 

for Adr1. Like Adr1, Gph1 is involved in glucose metabolism by glycogen breakdown, and both 

are regulated by the metabolites glucose and cAMP [156]. A metabolic interaction between Adr1 

and Gph1, combined with the known regulation of these genes by glucose and cAMP, suggests 

that coordinated regulation is occurring between the glycogen breakdown and glucose utilization 

pathways and is transcriptionally controlled by Adr1. 

 

3.2.4 An inferred pathway incorporating physical, genetic, and metabolic 

interactions spans cellular compartments in yeast protein transport 
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Protein sorting and trafficking is an essential function of eukaryotes and requires numerous 

multi-subunit complexes to ensure the proper localization and secretion of proteins (Figure 9C, 

[157]).  At the early stages of this process, the two major transport pathways from the 

endoplasmic reticulum (ER) to the Golgi are governed by the SNARE and COPI complexes 

[157]. We predicted synthetic interactions between these pathways (e.g. synthetic aggravation for 

Arf1-Sec18 and synthetic alleviation for Sec27-Uso1) that are supported by known genetic 

interactions[158,159];  Arf1 and Arf2 are a representative example, as they are considered 

functionally redundant GTPases, and each COPI complex contains either Arf1 or Arf2 [160]. 

Later in the pathway, Bch1 is a member of the ChAP family of proteins, which direct cargo 

bound to COPI complexes in the Golgi to their destinations such as the plasma membrane 

[161].  We predict a physical interaction between Bch1 and the COPI complex that is well 

established in the literature but was not part of our gold standard. Likewise, Vps1 serves a 

similar function for vacuole targeting [162], and our predictions of its physical and shared 

pathway interactions with COPI are supported by the literature [161]. 

Novel hypotheses in Figure 9C include the predicted physical interaction between Bch1 and 

Vps1, suggesting competition between the Sec27-Arf1 and Vps1 complexes for the Bch1 sorting 

function (also supported by a metabolic interaction between Sec27-Arf1 and Vps1).  Both Vps1 

and Arf1 are GTPases that must hydrolyze GTP to perform their roles in protein sorting 

[160].  Thus, this predicted pathway hypothesizes a competition between the Arf1 GTPase and 

Vsp1 GTPase for Bch1 that is likely regulated by GTP availability.  Similarly, the 

uncharacterized membrane-bound protein YDL012c is placed in the same pathway as Vps1, 

suggesting that the former may be involved in regulating Vps1 activity. By highlighting just a 
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few of our predicted interactions in the protein sorting pathway, we demonstrate the potential for 

generating hypotheses used to drive novel biological discoveries. 

 

3.2.5 Experimental validation of predicted interactomes 

To experimentally evaluate the accuracy of a subset of our predicted interactions in a directed 

manner, we focused on the DNA topological change and protein biosynthesis regulation 

processes in S. cerevisiae [163]. 20 synthetic lethality interactions predicted with high 

probability were experimentally tested using SGA technology [4,144], with the results 

summarized in Figure 10. 14 gene pairs (70%) were validated, 8 involved in DNA topological 

change and 6 in the regulation of protein biosynthesis. Several of the remaining 6 unconfirmed 

interactions may be synthetic lethal under different conditions. For example, GCS1 and SLT2 

deletions both individually decreased resistance to ethanol stress [164], and similar conditions 

might elicit synthetic lethality. Based on a total of ~100,000 pairs estimated to have been 

synthetically lethal in yeast of a possible ~18 million (0.05%) [144], our predictions are a clear 

improvement over the baseline rate for novel discovery. 
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Figure 10. Experimental validation of predicted synthetic lethal interactions. 

Experimentally tested synthetic lethal hypotheses in the yeast A) DNA topological change and 

B) regulation of protein biosynthesis processes. A total of 20 gene pairs from our predicted 

synthetic lethality networks were experimentally tested using the SGA platform. We confirmed 

14 of these interactions (70%), 8 in DNA topological change and 6 in protein biosynthesis. 

Several of the remaining unconfirmed pairs (e.g. GCS1 and SLT2; see main text) show 

additional evidence of condition-specific synthetic lethality [4,144]. 

 

As an additional evaluation, we collected 24 recent publications containing a total of 173 

experimentally confirmed post-translationally regulated protein pairs. None of these interactions 

was present in our training standard. Evaluating on this set, our Bayesian hierarchical system 

achieved an AUC of 0.802, demonstrating its ability to accurately predict novel, experimentally 

verifiable post-translational regulation interactions on a whole-genome scale. This accuracy is 

comparable to our initial cross-validation AUC of 0.778, indicating that our evaluation provides 

a reasonable estimate of the expected experimental verification rate for novel predictions. 
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3.2.6 Systems level view of cellular interactomes 

This rich compendium of inferred interaction types provided an opportunity to analyze systems-

level network features genome-wide at multiple levels of biomolecular activity. In particular, we 

examined the network structural characteristics that potentially help to define the functional roles 

of each interactome. Biological networks have been proposed to exhibit a scale free topology 

[165], implying a power-law degree distribution. Previous studies have detected such 

distributions based on partial networks and single interactomes [166]. Here (Figure 11A), we 

observe a scale-free degree distribution very robustly in all 30 interaction types. However, the 

high-degree hubs in each interactome do differ, reflecting the distinct functional activities carried 

out by each network type. To verify this, we analyzed the extent of the overlap of high-

connectivity genes (in the top 5% of the degree distribution) between the networks for each pair 

of interactomes (Figure 11B; directed interactomes were divided into separate in- and out-degree 

comparisons). The major clusters show distinct functional similarity, correctly reflecting the 

similarities captured by our interaction ontology: transient and nontransient physical interactions 

each group together, synthetic interactions cluster, and so forth. Beyond confirming the structure 

of the ontology, this also captures relationships such as the sharp divide between regulatory in- 

and out-degree (the most regulated genes are not themselves high-level regulators with many 

targets) and a tendency for regulatory hubs to incur more synthetic interactions than expected. 

Degree distribution captures a global description of each network, while analysis of small 

recurring subgraphs has been proposed to describe local network properties [167,168]. We 

investigated the enrichment of two types of subgraphs, network motifs and graphlets, in our 
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interactomes. First, network motifs are small directed subgraphs that have been found to recur in 

a growing number of organisms [169-171]. In our 12 directed interaction networks, the feed 

forward loop motif showed significant enrichment (relative to a random background) consistent 

with previous studies on the yeast transcription factor network [168]. Feed forward loops are 

known to accelerate or delay the response of a input signal [172], suggesting in this context a 

much wider usage of dynamic information processing than has been previously reported in 

regulatory networks[173-175]. 
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Figure 11. Systems-level analysis of inferred networks. 

In all cases, continuously weighted networks were binarized by choosing an edge cutoff three 

standard deviations above mean, retaining ~1% of all edges. A) The degree distribution for all 30 

of our predicted interactomes agrees strongly with a scale-free network topology. B) Conditional 

probabilities for a gene to appear in the top 5% of each pair of networks' degree distributions. 

Similarity indicates that a pair of networks share the same high-connectivity genes and thus 

represent functional activity carried out by similar sets of proteins. C) Graphlet degree 

distributions compared using the GDD metric between the 13 leaf interactomes in our interaction 
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ontology. Network pairs with greater similarity demonstrate related local network topologies, 

suggesting that comparable functional modules might be employed in the two interactomes (e.g. 

between phosphorylation and synthetic interactions or ubiquitination and post-translational 

regulation). 

 

A second approach to exploring the local structure of biological networks is to examine graphlet 

degree distributions [167]. Graphlets are small non-isomorphic subgraphs, and a graphlet's 

degree for a given node is defined as the number copies of that graphlet to which it is incident. 

For example, the number of triangle motifs touching a particular node represents its 3-node 

graphlet degree. Compared to network motifs, for which enrichment can be difficult to detect due 

to the complexity of the baseline null distribution[176], graphlet analysis may have a higher 

sensitivity towards infrequent subgraphs. Thus, as a complementary analysis, we computed the 

graphlet degree distributions for all two to five node graphlets for the 13 specific leaf node 

interactomes in our interaction ontology (Figure 11C). We compared the graphlet degree 

distributions between these interactomes, demonstrating a clear divergence in the local network 

structure between subclasses of metabolic, regulatory and synthetic interactions. Unlike the 

comparison of high-degree genes, this also captures unexpected similarities between disparate 

interaction types: phosphorylation and ubiquitination, for example, are siblings in the interaction 

ontology and represent comparable mechanisms of post-translational modification. The former's 

local network topology is more similar to that of synthetic interactions, however, while 

ubiquitination is more strongly regulatory. This differentiating pattern between ubiquitination 

and phosphorylation provides a base for intriguing network hypotheses for further investigation. 

One potential explanation could be due to the differing mechanistic activities where 

ubiquitination is most often employed exclusively as a regulatory mechanism to degrade active 
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proteins, whereas phosphorylation serves both regulatory and dynamic information processing 

roles[177]. 

 

3.3 Discussion 

The increasing abundance of genomic data has opened up countless new possibilities for 

systems-level biological perspectives, but its increasing complexity impedes the understanding 

of specific cellular circuitry at a mechanistic level. Here, we provide a method with which very 

large experimental data compendia can be integrated to predict 30 specific biomolecular 

interaction types at a genome-wide scale. By applying this to more than ~3,500 experimental 

conditions in yeast, we have evaluated these predictions at an average AUC of 0.79, validated 

70% of experimentally tested synthetic lethal interactions, and proposed novel transcriptional, 

genetic, post-translational, and metabolic interactions in the yeast carbon metabolism and 

cellular transport pathways.  

As described above, the investigation of specific S. cerevisiae biology in the processes of glucose 

utilization and protein trafficking demonstrates the use of these interactomes to reconstruct 

complete pathways. In many instances, experimental biologists are faced with the task of 

designing experiments to target a specific set of genes. By simultaneously hypothesizing all 

types of biomolecular interactions in which a group of gene products may be involved, this 

methodology can be used to select both the proteins to be assayed and the assays that may be 

most informative. Prior approaches inferring these interaction types in isolation mask this 

information and may even be inconsistent; how might a biologist interpret predictions that two 
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proteins physically interact, but that they are not part of the same pathway? Such inconsistencies 

are avoided by simultaneous ontology-based inference, allowing underlying experimental data to 

be integrated into a consistent description of a cellular system. 

To our knowledge, there has been no other method that simultaneously enables researchers to 

leverage high-throughput data in an interaction-type-specific manner within an ensemble setting. 

Successful focused attempts to predict specific interaction types have shown comparable AUCs 

to our results [178,179], which could be incorporated into a framework like this as base 

classifiers during future work (instead of the SVMs utilized in this study). Recent "functional 

coupling" predictions [36] are also related, but fall short of pathway-level interaction predictions, 

mainly due to a lack of the crucial directional information needed to infer bimolecular pathways. 

These frameworks typically also do not resolve inconsistencies among predicted interaction type 

labels that can hinder pathway reconstruction and experimental follow up. 

 

Ultimately, compendia of inferred interaction networks can be used to explicitly construct and 

understand distinct cellular pathways. By investigating and confirming different interaction types 

suggested by our system, investigators can stitch together both new pathways and new 

interconnections between existing ones. This process can be applied in any organism for which 

diverse genome-scale data is available - a situation that is only becoming more common. We 

believe that our work can leverage this diversity of experimental results that might otherwise be 

underutilized, helping to spur new functional discoveries in organisms beyond yeast. Finally, all 

of our predicted networks are made publicly available through an interactive tool at 
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http://function.princeton.edu/bioweaver for investigators to explore their own biological areas of 

interest.  

 

3.4 Methods 

We developed an integrated method for concurrently predicting multiple protein interaction 

types. This method integrates large and diverse collections of functional genomic data in the 

context of a biomolecular interaction ontology. Each gene interaction type in the ontology is first 

predicted using an SVM classifier by integrating ~3,500 experimental conditions from 

expression, colocalization, regulatory, and other yeast experimental data (withholding data types 

directly related to the interaction type being predicted; see below). These isolated interactomes 

are then reconciled using a hierarchical Bayesian framework to obtain the most probable set of 

consistent labels for each gene pair within the hierarchy of our interaction ontology. Using this 

system, we generated 30 S. cerevisiae interactomes, with which we validated several mechanistic 

interaction predictions in carbon metabolism, cellular transport, and 14 new synthetic lethal 

interactions in DNA topological change and protein biosynthesis.  

 

3.4.1 Interaction ontology construction 

We constructed an interaction ontology focused on categorizing gene pair relationships. This is 

similar in spirit to the Gene Ontology (GO) [163], which curates individual proteins' molecular 

functions, biological roles, and subcellular localizations.  Our interaction ontology contains a 
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total of 124 terms and integrates information from existing interaction catalogs [180,181], the 

EBI [182], and SGD [183]. The ontology's three major branches are metabolic, interaction 

pathway, and physical interactions. Metabolic interactions describe protein pairs linked in 

metabolic pathways, such as isoenzymes or enzymes that catalyze adjacent reactions. Physical 

interactions include covalent or non-covalent binding, e.g. stable complexes or transient post-

translational modifications. Pathway interactions include more conceptual relationships between 

genes in a pathway, such as regulation or synthetic interactions. We selected the 30 nodes in our 

interaction ontology with more than 70 annotations (as described below) to include in this 

evaluation, and the complete ontology with descriptions of each term is provided in Table 1. 

 

3.4.2 Gold standard construction 

There exists no comprehensive curated gold standard repository for all types of gene pair 

interactions. For the 30 interactomes evaluated here, we assembled a gold standard for each type 

from various sources. SGD interaction labels were used for all terms under the physical and 

pathway interaction terms [183]. Additional transcriptional regulation annotations were obtained 

from the high confidence set from [184]. Co-complex annotations were obtained from gene pairs 

in the GO Slim term PROTEIN_COMPLEX [39]. Pairs included in terms under metabolic 

interaction were obtained from reactions in the KEGG database [185]. For the topmost node, 

functional relationships, we used positive examples from the biological process branch of GO 

[122]. When possible, we further manually curated gene pairs to more specific terms based on 

literature examination. Manual curation was performed to annotate ubiquitination interactions 

based on SGD curated interaction publications and also to cross annotate experimentally 
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validated covalent modification branch examples to regulatory interaction branch terms. The 

directionality of the gold standards was derived directly from the inherent high throughput 

experiments (e.g. kinases to targets). All gene pairs annotated to a term were propagated such 

that they were included as positive interactions for all ancestor terms. This resulted in a total of 

1,333,014 unique positive labels across 30 terms. 

This process established positive interactions for each term in our interaction ontology. For 

supervised machine learning (such as our SVM-based method described below), negative 

examples are also required. As protein interactions are sparse, we randomly selected a number of 

negative gene pairs for each term's gold standard equal to the number of positive interactions 

[186]. Additionally, to assess the accuracy of our directed interaction predictions, we used 

negative gene pairs identical to the positive examples but with inverted directionality.  

Evaluation was performed by randomly excluding ~%30 of the genes for each interaction type 

during training. That leads to a group of genes that are not in the training set and established a 

test set of interactions containing at least one gene from this exclusive gene set. The remaining 

pairs were used for SVM training and for parameter estimation in the Bayesian network. We 

used area under the receiver operator characteristic (ROC) curve (AUC) for evaluation. 

 

3.4.3 Data sources and preprocessing 

As training data for each interaction type, we used subsets of a data compendium consisting in 

total of microarray, colocalization, protein domains, transcription factor binding sites, and 

sequence similarity. For each interaction type to be predicted, experimental data closely related 
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to the output was excluded (e.g. TF binding sites for regulatory relationships). 78 yeast 

microarray datasets were included, comprising 3,516 conditions. Missing values in these datasets 

were imputed using KNNImpute [187] with k=10, and genes with more than 30% missing values 

were removed. 

For machine learning, one feature was constructed per expression condition as follows.  For 

directional gene pair interaction types such as phosphorylation, we evaluated various methods 

and found xi-xj to provide optimal performance, where xi and xj are the expression values of gene 

i and j in condition x.  When predicting non-directional interaction types such as physical 

interaction, we used |xi-xj|, the absolute value of the subtracted expression values.  

Colocalization data for 22 different cell compartments [188] and automatically determined 

protein family information from Pfam B [189] were both included as binary features (true if both 

genes in a pairs shared localization or a protein family). TRANSFAC data [190] was 

incorporated using the Euclidian distance between the two gene's binding site profiles across 211 

transcription factors.  Sequence similarity between the two genes in each pair's 1,000bp upstream 

and 1,000bp downstream was scored as the sequence alignment E-values from all-against-all 

BLAST outputs. 

 

3.4.4 Algorithm 

We developed an integrated method for predicting diverse protein interactions, based on a multi-

label hierarchical classification formulation we have previously applied to gene function 

prediction in both yeast and mouse [45,138]. First, for each interaction type, we trained 10 
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separate SVM classifiers. We use bagging (bootstrap aggregation, [191]) to combine these and 

improve generalization, training each individual SVM classifier on a bootstrapped subsample of 

its interaction type's complete gold standard.  We thus begin with a total of 300 SVM classifiers 

for our 30 interaction types in yeast, and each interaction type's group of 10 SVM outputs were 

averaged (bagged) to produce a non-hierarchically-resolved predicted interactome. 

Next, a Bayesian network was constructed based on the structure of the interaction ontology. 

First, we modeled each interaction type's bagged SVM output i as a random event Yi taking 

discrete values binned by five standard deviations above or five below the training set mean. 

Each SVM's predictions in isolation were treated as a noisy observation of a latent event Xi 

representing the true, binary interactions and non-interactions of each type i. Each Yi was 

considered to be dependent only on its corresponding Xi, and each Xi was dependent only on its 

set of children {Xj, ..., Xk} in the interaction ontology, resulting in the "decorated tree" Bayesian 

network structure seen in Figure 7 and in [138]. Given this structure, conditional probability 

table parameters for P(Yi|Xi) were learned using maximum likelihood from interaction type i's 

training data. Finally, parameters for P(Xi|Xj, ..., Xk) were fixed to constrain the hierarchical 

semantics of the ontology. If a pair is annotated to any child in {Xj, ..., Xk} , it must also be of 

interaction type i, making P(Xi=1|Xj=1) = ... = P(Xi=1|Xk=1) = 1. The remaining parameters 

P(Xi=1|Xj=0, ..., Xk=0) were inferred using maximum likelihood by counting the corresponding 

training labels. Finally, Laplace smoothing was used to improve parameter robustness. 

 

3.4.5 System level network analysis 
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All 30 interactomes were converted into binary interaction networks by setting a threshold of 5 

standard deviations above the mean edge probability, retaining ~1% of all edges. The degree of 

each gene was counted in this binarized network. The overlap between each pair of interactomes' 

high-connectivity genes was computed as the probability of a gene g being in the top 5% of 

interactome N1's degree distribution(Qi(Nj), defined as genes in the top i percent degree 

distribution of interactome Nj) given that it was in N2's: P[g in Q0.05(N1)|g in Q0.05(N2)]. For each 

of the 30 interactomes N2, we generated a sorted gene list by edge degree; for directed 

interactomes, separate lists were generated for in- and out-degree. Next, we counted the number 

of shared genes in the top 5% of edge degree in the target interactome N1. Finally, hierarchical 

clustering was used to generate clusters of shared high degree genes. 

Network motif enrichment analysis was carried out using FANMOD [192].  Searches were 

conducted for 3-node motifs using a sampling method with probability parameters of 0.6, 0.5, 

0.4 and compared to 500 random networks generated using an edge swapping process preserving 

each gene's degree. Computational complexity precluded analysis of 4-node motifs. Graphlet 

degree distributions were calculated using GraphCrunch [193]. For each interactome, 73 graphlet 

degree distributions were generated, each representing a unique distribution of 2-5 node 

graphlets. Comparison between graphlet distributions was performed using the GDD agreement 

metric, defined as the average normalized distance to provide robust comparisons [167,193].  

 

3.4.6 Implementation 
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All software was implemented using the Sleipnir library [131], which interfaces with the SVM
perf

 

software [194] for linear kernel SVM classifiers (the error parameter C was set to 20 for these 

experiments).  Bayesian network inference used the Lauritzen algorithm [195] as implemented in 

the University of Pittsburgh SMILE library [196]. 

 

3.4.7 Experimental validation of synthetic lethal pairs 

20 gene pairs predicted to synthetically interact [183] with high probability were selected from 

the DNA topological change and regulation of protein biosynthesis pathways in yeast (as defined 

by GO [163]). Synthetic Genetic Array (SGA) technology [4,144] was applied to these pairs by 

combining either non-essential gene deletion mutants or conditional alleles of essential genes in 

haploid yeast double mutants. The query mutant strain for each pair of genes (harboring SGA-

specific reporters and markers) was crossed to the complementary single mutant strain. Mating to 

the non-essential gene deletion collection was followed by meiotic recombination and selection 

of haploid meiotic progeny, resulting in an output array of double mutants grown in rich medium. 

Fitness was assessed by comparing this double mutant colony size to the sizes of single mutant 

colonies, which were assessed for significance as described in [4,144]. A p-value threshold of 

0.05 was used to determine the final confirmed synthetic lethal pairs. 
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4 Data integration for the inference of 

pathway level interactions in metazoan 

organisms 

 

 

4.1 Introduction 

The molecular activity in a cellular system is maintained by a complex interplay between genes, 

gene products, metabolites and the environment [197]. In particular, diverse types of mechanistic 

pairwise interactions, including physical binding in protein-protein complexes [198] and through 

modifications [135] and regulatory roles as activators or repressors [137], are combined to form 

intricate biomolecular pathways. Mapping out these cellular pathways at a whole-genome level 

is a crucial step for the advancement of human systems biology, aiding at every level from 

deciphering cellular function to understanding the molecular cause of many complex human 

diseases.  

Functional genomic datasets such as gene expression, cellular localization, and DNA/protein 

binding assays each capture distinct aspects of the cellular activity across multiple cell types and 

perturbations, however turning these different instances or “views” of a complex system into an 
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understanding of pathways has proven to be challenging undertaking. Especially in metazoan 

mammalian organisms, tissue and cell type-specific expression underlie the development, 

function, and maintenance of diverse cell types [199,200]. Consequently, the biological and 

technical variation of the functional genomic data, particularly with respect to tissue and cell-

lineage heterogeneity compounds the difficulty in translating the vast amount of genomic data 

into specific pathway-level hypotheses. Thus, it is of great need to develop and apply algorithmic 

and statistical approaches for inferring the individual types of biomolecular interactions, scalable 

to the whole-genome and robust to any biological dataset of diverse tissue contexts (i.e. 

experimental results drawn from differing tissues). 

In this work, we developed an overall strategy for predicting and studying multiple types of 

biomolecular interactions for metazoan mammalian organisms, specifically applying this 

approach to the human data compendium. Our method consists of three operational steps. First, 

we catalog tissue and interaction-type specific gold standards (e.g. phosphorylation interactions 

among brain expressed genes) restricted to protein pairs expressed in total 77 tissues based on 

curated pathway databases and gene-to-tissue expression profiling. Second, we utilize a state-of-

art classifier Support Vector Machine (SVM) [40] to predict each mechanistic interaction type by 

integrating ~1,600 human experimental datasets (each dataset consisting of multiple conditions) 

independently in the context of each tissue. Finally, we aggregate the tissue-context based 

predictions to obtain the most probable set of interaction labels for each gene pair across the set 

of mechanistic interaction types (in this study we predict transcriptional regulation, 

phosphorylation, co-complex and post-translational regulation). Our methodology uniquely 

allows us to harness the wealth of information in high-throughput genomic data collections by 
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simultaneously separating the heterogeneity originated from tissues while predicting for each 

individual interaction types. 

To our knowledge, prediction of such genome-wide mechanistic networks in metazoans is an 

open problem. Many recent studies have begun to address the challenges by inferring physical 

interaction networks [13,143,201,202], synthetic interaction networks [5,144], Bayesian 

integration for functional associations networks [30,106,203-205] or predicting regulatory 

networks from specific primary datasets [206,207]. However, most previous efforts for 

predicting regulatory interactions have been focused on unicellular model organisms (e.g. e. coli 

and yeast) [16,208], while genome-wide integrated analysis in mammalian organisms have been 

often focused on cross-species integration for inferring functional couplings [36]. No prior 

integrative methods to our knowledge utilize one of the most significant sources of biological 

variation in human datasets: tissue context. Our work extends the methodological advancements 

achieved studying regulatory networks in unicellular model organisms and provides a platform 

for applying such methods to human data by addressing the challenge of tissue heterogeneity. 

Ultimately, we envision that our global mechanistic networks can also be leveraged to increase 

the interpretability of each respective primary data types (ChIP-chip and -seq, proteomics on 

double knockouts/knockdowns, disease samples, etc) that captures condition-specific cellular 

states. As a proof of concept, we demonstrate the utility of our networks by overlaying our 

interaction networks to identify direct regulatory targets of transcription factors on all ChIP-seq 

experimental datasets generated by the ENCODE project [209]. In addition, we generated the 

first in vivo derived binding motifs for cancer-associated TANK-binding kinase 1 (TBK1) by 

overlaying our phosphorylation network onto a recent TBK1 knockdown phospho-proteomics 
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study [210]. Finally, we provide a web-based interface for exploring all our interaction networks. 

This allows investigators a unique resource to interactively survey and generates hypotheses 

from the diverse interaction types comprising the mammalian cellular interactome.  

 

 

 

Figure 12. Schematic of our tissue-aware integrative pipeline for inferring metazoan 

biomolecular interactions. 

We collect tissue and interaction-type specific gold standards, restricted to protein pairs that are 

both expressed in the tissue, based on curated databases and expression profiling of total 77 

tissues. This focused gold standard allows us to separate the heterogeneity originated from 

tissues while predicting for each individual interaction types. Next, we infer each interaction type 

network by integrating the genomic data compendium independently in the context of each tissue 

(i.e. with tissue-specific learning examples), resulting in 77 intermediate networks per 

interaction-type. Following, we integrate the tissue-context based predictions to obtain the most 

probable set of labels for each gene pair across the biomolecular interaction types. Finally, our 

predicted networks can be used in multiple applications such as pathway retrieval or aiding the 

interpretation of condition-specific primary datasets. 



 

74 

 

 

 

4.2 Results 

We demonstrate the importance of considering tissue context for predicting multiple pathway-

level bio-molecular interaction types (transcriptional regulation, phosphorylation, co-complex 

and post-translational regulation). Specifically, we compare our tissue-aware learning approach 

with a simpler version that does not use information about tissue heterogeneity among human 

protein coding genes (i.e. tissue-unaware learning). In total, we apply our tissue-aware learning 

methodology integrating ~50,000 genome-scale experiments to generate whole-genome 

networks describing predicted gene-gene interactions across multiple pathway-level interaction 

types (prediction schematic shown in figure 12). We demonstrate the utility of our interaction 

networks in accurately retrieving pathway members across 447 expert-curated pathways. In 

addition, we show our interaction networks can be used to accurately identify false-positive 

regulatory targets in primary user data-sets generated by ChIP-Seq and Mass spectrometry based 

phospho-proteomics. 
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Figure 13. Tissue-aware learning allows accurate recovery of biomolecular interactions. 

Biomolecular interactions are constructed for human biology based on tissue and interaction-type 

specific integration of diverse genomic datasets. The resulting interaction network consists of 

genes as nodes and connections between them representing the probability of two genes 

participating in the biomolecular interaction. Here, we show our threefold cross-validation 

prediction performance for predicting transcriptional regulation, phosphorylation, post-

translational and co-complex interactions. Our tissue-aware learning methodology (black-line) 

significantly outperforms (p-value < 0.01 for all) compare to a simpler method that ignores tissue 

heterogeneity (labeled tissue-unaware learning and represented as salmon-line, x-axis in log-

scale). 
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4.2.1 Tissue-aware learning improves human bio-molecular interaction 

predictions 

To address the challenge of predicting pathway-level biomolecular interactions in metazoans, we 

ask the question if incorporating gene-level tissue contextual information can improve network 

prediction. Specifically, our tissue-aware learning method segments the training process into 77 

diverse human tissue contexts allowing us to systematically separate the heterogeneity originated 

from tissue and interaction types in high-throughput genomic data. To measure the benefits of 

incorporating gene-level tissue context, we conducted a three-fold cross-validation experiment 

on both our tissue-aware learning method and a simpler non-tissue-aware learning method for 

predicting four interaction types (i.e. transcriptional regulation, phosphorylation, co-complex and 

post-translational regulation). For each of interaction type, we conduct a strict gene-wise holdout 

evaluation where at each fold the evaluation gold standard pairs consist of no genes observed 

during the training stage. In addition, identical human data compendium was used for tissue-

aware and non-tissue-aware learning predictions. 

For all four pathway-level interaction types, there was a substantial performance gain when using 

gene-tissue contextual information (figure 13). In total, there was an average of 71% increase in 

area under the precision-recall curve with transcriptional regulation showing the largest boost in 

performance >100%. In addition, our tissue-aware learning method outperforms random bagging 

[191] (random assignment of genes to tissue with matching number of contexts), except in co-

complex that showed comparable performance gains mainly due to the significant portion of 

ubiquitously expressed gene pairs represented in the gold standard ~84%. In combination, these 

evaluations suggest that tissue-context prediction can significantly improve the accuracy when 
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predicting biomolecular interaction, especially when the interaction gold standard is tissue-

heterogeneous.  

 

4.2.2 Accurate retrieval of cellular pathway components 

The concurrent inference of human biomolecular networks for multiple interaction types allows 

the generation of specific pathway level hypothesis. For example, often biologists are left with a 

set of genes that are believed to be functionally associated in a biological process resulting from 

a high-throughput assay (e.g. differential expression analysis of multi-condition RNA-Seq 

experiment). However, understanding the mechanistic connection between a set of functionally 

related genes have been challenging and often extremely time consuming due to the need of 

multiple laborious experiments. Thus, it would be of great value if direct mechanistic predictions 

inferred from the existing genomic data compendium can be made on any set of genes of interest 

to an investigator, allowing a systematic prioritization of hypothesis to be experimentally 

validated. 

 

 



 

78 

 

 

Figure 14. Our biomolecular interaction networks allow accurate human pathway 

component retrieval. 

Pathway interaction networks provide investigators the means to generate pathway level 

hypotheses. In panel A, we detail a combination of transcriptional, post-translational, and 

physical interactions that we accurately prioritize surrounding the human tumor suppressor 

FOXO3 above indirect interactions and incorrect interaction-type labels. In panel B, we expand 

our pathway retrieval evaluation analysis to total 447 human curated pathways. Each dot in the 

box plot represents our accuracy of ranking the direct pathway interactions (with correct 

interaction label) above all incorrect interactions (i.e. direct interaction but with wrong labels or 

indirect interactions) between the constitute genes in a pathway. Overall, our networks show 

accurate performance in retrieval of direct pathway interactions when evaluated for both all 

interactions types combined (“all labels”) and also for each individual interaction type. In 

addition, our performance is significantly better compared to a mega-clustering approach of 

calculating the Pearson correlation over all expression data concatenated together (“all labels 

(meta-correlation)”). 

 

To address the challenge of pathway recovery from functionally related genes, we test our ability 

of prioritizing the direct mechanistic interactions with known curated human pathways. For 

example, human FOXO3 is an important transcription factor involved in cell cycle regulation 

and oxidative stress response along with multiple tumorigenesis [211]. FOXO3 is known to be 
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functionally associated to human kinase Akt1 along with important regulatory genes such as 

BCL6, GADD45a and YWHAB [212-214]. If a researcher were to investigate the biomolecular 

interactions among these four clinically important genes FOXO3, Akt1, BCL6, GADD45a and 

YWHAB, our system can accurately prioritize the direct gene pairs with the confirmed 

mechanistic interaction type (figure 14A). In addition, such overlay provides a mechanistic 

hypothesis of the information flow among this set of genes. Starting with kinase AKT1 

activating the transcriptional complex FOXO3-YWHAB through phosphorylation, next, the 

activated FOXO3-YWHAB complex to regulate the expression of targets BCL6 and GADD45A, 

connecting Akt1 to many downstream cellular processes such as DNA damage and apoptosis. 

Next, to systematically evaluate for a broader set of pathways, we assessed our ability to 

recapitulate the mechanistic gene interactions for 447 expert curated human pathways by 

Pathway Interaction database [124]. For each pathway, we ask how accurate can our network 

predictions prioritize the direct gene pairs with the correct interaction type label compared to all 

indirect interactions and direct pairs but with incorrect interaction type labels. Our evaluation 

results are uniformly well above random (0.5), shown in figure 14B, with a median AUC 

performance of 0.69 across all pathways with minimal variations in performance across different 

interaction types. Specifically, we observe co-complex interactions showing the greatest 

accuracy at median AUC of 0.74 and post-translational regulation performing at a median AUC 

of 0.61. This indicates that our network interactions can accurately recover not only pathway 

structure from random gene pairs, but also can be used to resolve the direct mechanistic 

interactions among the more challenging closely related functional gene sets.  
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4.2.3 Interaction networks help interpret primary experimental datasets 

In addition to pathway recovery, our predicted interactomes can be used to uncover high-

accuracy regulatory targets in individual investigator generated high-throughput datasets. 

Recovery of transcriptional regulatory targets from ChIP-Seq datasets  

Chromatin immunopercipitation (ChIP) followed by high-throughput sequencing (ChIP-Seq) has 

been a prevalent experimental assay when applied to transcription factors to measure potential 

regulatory binding regions across the genome in in vivo settings [12]. Recently, ChIP-Seq data 

has been used to identify potential regulatory targets for an immuno-precipitating transcription 

factor (TF), mainly by identifying genes that have a TF ChIP-Seq binding profile proximally to 

its transcription start site (TSS) [215]. However, like many biological assays, ChIP-Seq is known 

to have a high rate of nonspecific cross-linking due to the usage of formaldehyde (compared to 

precise U.V. cross-linking that is specific to <1 angstrom proximity) that can lead to many false-

positive regulatory candidate targets [9,216]. In addition, even when given a true biding incident 

of a TF, often there can be multiple TSS windows proximal to a binding locus thus obscuring the 

process of identifying the true regulatory target gene. 
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Figure 15. Improving the interpretability of primary experimental data. 

Our biomolecular interaction networks can be used to help investigators increase the 

interpretability of condition-specific primary experimental data. In panel A, ChIP-seq datasets 

generated for the ENCODE project (109 TFs) were processed to identify transcription factor and 

potential regulatory target genes (identified by the existence of a TF ChIP-seq peak within a 

window surrounding the TSS of the putative target gene). We observe a significant increase in 

enrichment of TF associated GO terms among its putative regulator targets, when removing TF-

targets pairs that have low predicted probability in our TF regulatory network (skyblue). Next, 

overlaying multiple data sources through our integrated phosphorylation network identifies 

unlikely direct targets of TBK1, which allows subsequent motif analysis to discover potential 

kinase binding or recognition sites. In panel B, represents our predicted phospho-binding motifs 

that are present in known TBK1 substrates not identified in the phospho-proteomics study. Such 

results support the biological relevance of these motifs and the accuracy of our phosphorylation 

network that enabled the analysis. 

 

With our predicted transcriptional regulatory interaction network constructed from over 50,000 

genome-scale experiments, we could discriminate false positive regulatory targets identified by a 

ChIP-Seq experiment either by the result of a non-specific binding or multiple TSS windows 

proximal to a binding profile. Thus, allowing the researchers to capture a more accurate binding 

landscape at the given experimental condition or tissue of the ChIP-Seq experiment. To test this 
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hypothesis, we overlay our transcriptional regulatory network to identify false-positive 

regulatory targets of transcription factors identified by ChIP-Seq experimental datasets generated 

for the ENCODE project (total 109 TF, 609 ChIP-Seq experiments) [209]. Specifically, for each 

106 TF we identify potential regulatory target genes that have binding-profile peaks located 

within a window surrounding the gene’s TSS. Next, we filter ChIP-Seq identified regulatory 

target genes that have a predicted probability of less than < 0.5 in our transcriptional regulatory 

network. In other words, genes with little experimental evidence in the human genomic data 

compendium of being transcriptionally regulated by the TF are flagged as false-positives. 

To evaluate the accuracy of our ability to identify false-positive regulatory targets from ChIP-

Seq experiments, we test if the regulatory target genes identified for each TF are enriched with 

genes known to be involved in the TF’s functionally associated biological processes (limited to 

only experimentally annotations from Gene Ontology). We hypothesized that if false-positive 

TF-target gene pairs are accurately filtered the enrichment of biological processes with the TF 

annotation should improve. Indeed, the evaluation results shown in figure 15A demonstrate a 

significant increase in enrichment when filtering based on our transcriptional regulatory network 

compared to the original regulatory targets identified only from ChIP-Seq data.  

In addition, the improvement in enrichment is consistent across varying windows (+/- 500, 1,000 

and 2,000 bps) surrounding TSS for identifying regulatory target genes. Interesting, TSS window 

of +/- 1,000 bps have been used heuristically in recent studies [217], such window size showed 

the best performance in our evaluations due to a window of +/- 2,000 bps being too promiscuous 

(i.e. larger increase in false-positive regulatory target genes versus true-positives). However, our 

methodology permits a much larger window of +/- 2,000 bps while improving the overall 
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enrichment. Consequently, this allows investigators to identify larger number of functional 

regulatory profiles from the same ChIP-Seq dataset. 

Phosphorylation network identifies TBK1 targets from phosphoproteomics data  

With the recent advancement of stable isotope labeling techniques (e.g. SILAC), mass 

spectrometry has been the method of choice for high-throughput proteomics studies for many 

investigators. Especially, post-translational modifications (PTMs) such as phosphorylated 

proteins can be identified from mass shifts in the fragmented peptide ions scanned from the 

MS/MS readouts. In addition, coupling RNAi technology with quantitative Mass spectrometry 

has allowed the monitoring of the global alterations of the knock-down or knock-out phenotype 

of a specific gene at the proteome level (e.g. RNAi targeting a kinase) [218].  

Although such global readout of the cellular state provides valuable information, RNAi/MS 

studies cannot distinguish the direct regulatory effect of the knock-down gene compared to the 

indirect effect. For example, the collection of differentially phosphorylated proteins after 

knocking-down a protein kinase will be a mix of direct substrates of the knocked-down kinase 

and also substrates of other de-activated kinases. This is because often signaling pathways 

consists of multiple kinase cascades [219], thus any knock-down of a kinase can lead to many 

de-activated kinases downstream in the pathway. Subsequently, the mixture of direct and indirect 

regulatory target genes complicates the generation of hypothesis generation and any follow-up 

analysis. 

Thus, the investigator would benefit greatly if genes resulting from the differential analysis (e.g. 

differential phosphorylation) can be separated into direct regulated genes and indirect genes, 
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probabilistically classified by summarizing and overlaying the human data compendium. 

Specifically, our phosphorylation interaction network can provide a valuable resource for 

identifying direct regulated genes from an investigator’s phospho-proteomics study. To test the 

applicability of our proposed approach, we applied our methodology to a recent phospho-

proteomics study [210]. In this study, loss of phosphorylated proteins was measured using mass 

spectrometry following the RNAi mediated knock-down of TANK-binding kinase 1 (TBK1). 

TBK1 is an important kinase involved in innate immune response and implicated in multiple 

human cancers including lung cancer [220]. Therefore, the identification of regulatory targets of 

TBK1 and potential binding motifs can provide a great resource for future therapeutic studies. 

In the published study, the researchers were not able to report any potential binding motifs of 

TBK1, most likely due to the mixture of direct and indirect targets among the differentially 

phosphorylated genes. This is especially unfortunate because no known in vivo binding motif has 

been identified for kinase TBK1. In fact, when we ran the state-of-art motif discovery tool FIRE 

[221] on the 2,150 differentially phosphorylated protein sequences, we retrieved many known 

binding motifs (total 4 motifs in the top 10 significant motifs) of other kinases (i.e. not the 

knock-down kinase TBK1). Interestingly, many of the kinases that bind to the identified motifs 

were among the differentially phosphorylated genes. This is consistent with the expectation that 

many of the substrates of these kinases contributing to the collection of differentially 

phosphorylated genes.  

Next, we hypothesized that differentially phosphorylated genes (total 2,150) that have a low 

probability of being regulated by TBK1 in our phosphorylation network should be enriched with 

indirect regulatory targets of TBK1 (i.e. substrates of other kinases). In other words, by 
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overlaying our phosphorylation network, we could filter differentially phosphorylated genes that 

have little experimental evidence of being regulated by TBK1 in the human data compendium, 

and improve subsequent downstream analyses. Thus, we repeated the motif discovery analysis as 

conducted previously, however removing differentially phosphorylated genes with a TBK1 

association probability of <0.5 in our phosphorylation network, resulting in 258 genomic data-

supported substrate protein sequences. As predicted, we no longer retrieved any significant 

binding motifs of other kinases, compared to our previous analysis that resulted in multiple 

known motifs of TBK1 downstream kinase targets. 

Furthermore, due to the lack of proinflammatory stimuli in the experiment [210], seven known 

phosphorylation substrates of TBK1 were not identified to be differentially phosphorylated in 

this study. Interestingly, shown in figure 15B, 4 motifs among the top 10 significant motifs (only 

identified through our integrated approach, phosphorylation network + FIRE) were present in 

these known TBK1 substrates that were not included in the motif discovery analysis (such 

occurrence happening by random chance, p-value < 0.05). Thus, supporting the possibility of 

these motifs being the first in vivo derived motifs identified to be biologically relevant for TBK1 

recognizing its phosphorylation substrates. 

 

4.3 Discussion 

Genomic approaches have provided us with great opportunities in unearthing the complexity of 

human biology and diseases. While increasing amount of human datasets measuring the 

molecular changes at the expression, epigenomic and proteomic level has provided us with an 
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invaluable public recourse, the efficient integration and identification of regulatory pathways and 

processes has been challenging.  In this work, integrating ~1,600 human genomic-scale datasets, 

we provide the means of studying human biomolecular pathway-level interactions at the whole-

genome scale. For each pair of genes in the human genome, thousands of experimental data 

points measuring the behavior of these genes were probabilistically summarized to infer both the 

presence of a functional association and also the most likely biomolecular interaction type. By 

applying our biomolecular interaction networks to primary investigator’s datasets, we were able 

to improve the accuracy of identifying transcription factor regulatory targets from ChIP-Seq data 

compared to traditional methods and also identify novel kinase binding motifs from phospho-

proteomics data.  

In addition, this study demonstrates that directly incorporating tissue contextual information in 

the data integration and inference process of biomoclecular interactions for metazoan 

mammalian organisms can significantly improve the prediction accuracy. Although, we have 

implemented our system utilizing a maximum-margin hyperplane based SVM algorithm, we 

anticipate the overall approach of directly exploiting tissue and cell-lineage heterogeneity in 

human datasets can be readily incorporated into many future and existing methods. We also 

anticipate that the continued effort of curating pathway-level interactions and the wide use of 

next-generation sequencing on a variety of tissue-samples will allow us to extend our approach 

to other metazoan model organisms. Finally, we now have all our predicted whole-genome 

networks publically available at an interactive web-portal for researchers to conduct exploratory 

analysis for future hypothesis generation. 
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4.4 Method 

4.4.1 Tissue-aware integration 

The final output to our new prediction pipeline consists of predicted probabilities of gene pair 

associations for multiple pathway level bimolecular interaction types (e.g. transcriptional 

regulation, phosphorylation). Each gene interaction type network is derived from per-tissue 

based SVM classifiers (total 77 tissues) that capture the tissue-specific reliability variation while 

integrating across ~50,000 genome-scale experiments. Details of construction of gold standard 

interaction pairs, tissue context, SVM classifier and input datasets are described in the following. 

Gold standard construction  

Unfortunately, there exists no comprehensive curated gold standard repository for all human 

pathway level interactions. For each interaction type evaluated here, we assembled a gold 

standard from various sources that have collected experimentally validated interactions. Curated 

transcriptional regulation gene pairs from KEGG [185] and TFactS [222] were collected. 

Phosphorylation interactions curated from Human Protein Reference Database [223] were 

included and Co-complex annotations were obtained from manually curated human protein 

complex database MIPS CORUM [17]. In addition, Nature Pathway Interaction Database [124] 

was used to collect expert curated transcriptional regulation, phosphorylation and other types of 

post-translational regulation gene pairs. This resulted in 51,525 unique experimentally validated 

positive interaction labels across four interaction types. 
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For supervised learning negative gene interactions are required. To obtain high-confidence set of 

negative examples, we repeated the procedure from our previous study [106] that collected gene 

pairs not co-annotated to any terms in a set of 433 expert selected Gene Ontology [39] biological 

processes. Thus this formed a set of global unrelated gene pairs. To obtain interaction type 

specific negative examples, we filtered the set of global unrelated gene pairs by gene property. 

Specifically, transcriptional regulation negative examples were the subset of unrelated gene pairs 

that contained at least one human transcription factor (total 1,321 TFs from annotation study 

[224]). Identically, phosphorylation were the subset that contained at least one of 514 human 

kinases [225] and post-transcriptional regulation the subset that contained at least one of 1,881 

protein modifying enzymes [39]. 

Data sources and preprocessing  

We collected total 1,564 mRNA human expression datasets from NCBI Gene Expression 

Omnibus (GEO) [226]. Expression data was normalized according to the procedure described in 

[42] and final features were generated using the Fisher’s z-transformed Pearson correlation for 

each gene-pair as in our previous study [106].  

For non-expression data, data types that closely related to the output interaction type were 

excluded to avoid any circularity (e.g. no physical interaction data was used in predicting co-

complex or phosphorylation).  To measure shared TF binding site profiles, motifs were obtained 

from JASPAR [112] and DNase I profiling [227]. For each motif, we searched for possible 

transcription factor binding sites by scanning each TF profile in 1 kb upstream sequence of all 

protein coding human genes using FIMO [113]. Motif matches were treated as a binary score 

(present if p-value<.001 and not-present otherwise) and the final gene pair score was obtained by 
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calculating the pearson correlation between the two genes' binary score vectors. Shared miRNA 

motif profile were obtained from MSigDB mir database [27] and EBI MicroCosm database [228] 

and was converted and scored as done with TF motifs. In addition, CISBP-TF database an 

extension of CISBP-RNA [229] has binding preference motifs for 568 human transcription 

factors. CISBP-TF was used to create a binary feature by connecting each TF and gene that 

contain a significant match to the binding motif in its upstream sequence using FIMO as 

described above. Human kinases phosphomotifs were collected from ELM [230] and 

PhosphoSite [231] and a binary feature was created by scanning across all human protein 

sequences with FIMO. Protein domain-domain and motif interactions were obtained from PrePPI 

[232] and DOMINE [233], converted into gene pairwise binary scores based on the existence of 

a protein domain/motif in each of the two genes. Post-translational modifications (PTMs) on a 

wide varied of proteins have been cataloged by UniProt [234] and PTMcode [235]. We created a 

binary feature that captures the potential of a protein to be post-translationally modified by the 

assigning a one to any protein that have been observed of a modification and zero for no 

observed modification (e.g. 7,583 human genes have been observed to have been 

phosphorylated). Also, we created a feature that calculates the correlation of observed PTMs 

between any given protein sequence pair catalogued by PTMcode [235]. To capture the cellular 

component profile similarity between genes, we took the Pearson correlation of Gene Ontology 

[39] cellular component annotation profile for terms that had maximum 100 genes annotations 

between all gene pairs. Finally, chemical and genetic perturbation studies curated by the 

MSigDB [27] were summarized into gene pairwise similarity phenotype profile scores as 

described in [42]. 
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Human tissue context construction  

In order to capture a wide variety of tissues in our study, we cataloged genes that are 

probabilistically identified to be expressed across 77 diverse set of human tissues utilizing the 

Gene Expression Barcode methodology [236,237]. Specifically, tissue terms were selected to 

create a slim cut through the BRENDA Tissue Ontology (BTO) [238]. Next, text-mining of 

sample descriptions and other textual information available in GEO [226] was utilized to 

annotate expression samples to BRENDA Tissue Ontology terms. Next the Barcode 

methodology was applied to each expression sample with a tissue BTO term annotation (total 

14,092 samples) and genes that had an average Barcode probability above 0.7 across tissue 

annotated expression samples were flagged as transcriptionally active in the tissue (resulting in 

transcriptomes of average 7,543 genes)  

Tissue-aware data integration 

The goal of our integration is to harness the information from the genomic data compendium to 

predict accurate pathway level interactions. Specifically, the integration is designed to model and 

exploit the tissue-specific reliability variation across genomic datasets for robust integration in 

metazoan interactome prediction. For each interaction type, one start-of-art Support Vector 

Machine (SVM) [40] classifier was trained per tissue context. The training gold standard for 

each interaction type i and tissue t was define as the following:  

 UbiqggTissuegggsGS mntmn

i

ggti mn
 ,,,,  

where gs is an interaction example for interaction type i, and gene n, m. Tissue contexts t are all 

genes identified by our Barcode analysis to be transcribed in tissue t and Ubiq(ubiquitous) 
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identifies all genes that are transcribed across all tissues. Thus, a gene pair was considered a 

tissue-specific interaction example if both genes were expressed in the tissue, while ubiquitous 

gene interactions were treated separately as an independent context to accurately capture tissue-

specific variation. Predicting for co-complex, we were unable to separate out ubiquitous gene 

pair examples due to the high percentage of such pairs ~84% (transcriptional regulation is ~35%) 

in the gold standard. 

For each training gene interaction example a feature vector was constructed from a total of 1,590 

datasets as listed above. Continuous expression features were binned into 0.2 z-score intervals 

and missing values were set to 0. The set of feature vectors for positive and negative training 

examples were used to train a linear Support Vector Machine (SVM) according to the following 

formulation: 
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where n is the training example gene interactions, w is the weight vector for each dataset, yi is 

the training label of interaction example i and xi is the data vector for all the features for gene 

pair i. All classifiers were trained using the identical gene-wise 3-fold cross validation split and 

tissue-contexts with fewer than 30 gene pair cross-splits were dropped. Finally, we merged the 

tissue-context based intermediate-predictions to obtain the most probable set of labels for each 

gene pair by assigning the mean predicted score of the top quartile of prediction values across 

tissue-contexts for each interaction type (performed best compared to other aggregation methods 
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based on our cross-validation results). In addition, one global tissue-unaware classifier was 

trained for each interaction type using the entire gold standard (i.e. non-tissue segmented). 

 

4.4.2 Transcriptional regulation network applied to ChIP-seq data 

690 ChIP-Seq [12] datasets generated by the ENCODE project was used to identify potential 

transcription factor regulatory targets for total 109 TFs. All ChIP-Seq data was handled as 

“Uniform Peaks” identified based on the ENCODE analysis and normalization pipeline [209]. 

Potential regulatory targets for each transcription factor was determined if the TF’s ChIP-Seq 

peak overlapped within a window surrounding the gene’s transcription start site (TSS). Windows 

of +/- 500, 1,000 and 2,000 bps were used to identify potential regulatory targets. Next, GO 

biological process terms for each TF that have been experimentally annotated and had gene 

annotations of total 5~200 were identified. For each TF, its ChIP-Seq based regulatory targets 

were tested for enrichment of GO biological process term gene list using a hypergeometric test. 

Next our transcriptional regulation network probability scores, predicted from our tissue-aware 

learning method, were overlaid on the ChIP-Seq based identified targets. ChIP-Seq identified 

targets that had a probability of being transcriptionally regulated less than 0.5 were filtered and 

removed. Enrichment analysis of GO biological process terms were repeated for each TF as 

performed before on the network-based high-scoring ChIP-Seq targets. 

 

4.4.3 Phosphorylation network applied to phospho-proteomics data 
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In addition to ChIP-Seq data, we demonstrated the utility of our networks to identify novel 

phospho-binding motifs from mass-spectrometry proteomics data. Altered phosphoproteins were 

measured using stable isotope labeling mass spectrometry (SILAC [239]) following TANK-

binding kinase 1 (TBK1) RNAi-mediated knockdown experiment in a recent publication [210]. 

In this study, total of 1,154 genes were identified for a loss of phosphopeptide (PEP score < 0.5 

and Mass error < 5 ppm). Protein motif discovery tool FIRE [221,240] was applied to these 

differentially phosphorylated protein sequences to find enriched motifs that could potentially be 

binding targets of TBK1. Next, similar to ChIP-Seq data, we filtered and removed differentially 

phosphorylated proteins that had a probability of less than 0.5 association score to TBK1 in our 

predicted phosphorylation network. FIRE was applied on this filtered set of differentially 

phosphorylated proteins for discovery of enriched motifs. 

 

4.4.4 Implementation 

All software was implemented using the open-source Sleipnir library [131], which interfaces 

with SVM
perf

 package [132] for linear kernel SVM classifiers (error parameter C was set to 250 

and error-rate loss function was used). All network predictions and evaluations were conducted 

for the 17,939 genes that were available on the Affymetrix U133A and U133 Plus 2.0 platforms. 
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5 Conclusion and future work 

In this thesis, I have focused on developing scalable and robust computational methods that can 

summarize the large compendium of heterogeneous genomic datasets into a variety of 

hypotheses to direct biological discoveries. In chapter 2, I developed a novel statistical method 

for transferring new experimental discoveries (i.e. gene functional annotations) back to human 

and other model organisms between genes that share functional behavior derived from the 

comprehensive compendium of genomic data. In chapter 3, I developed a machine learning 

methodology for simultaneously predicting diverse types of biomolecular interactions using 

high-throughput genomic data in the model organism Saccharomyces cerevisiae. In chapter 4, I 

extend our methodology in chapter 3 to metazoan organisms, by directing incorporating the 

tissue contextual information during the learning procedure of biomolecular interaction networks. 

Despite our contribution and the tremendous growth in bioinformatics, still many future research 

opportunities exist in developing computational methods that can guide the investigation of 

tissue and cell type specific functional information (e.g. tissue-specific gene regulation). 

Especially, tissue-specific gene regulation has increasingly been appreciated as an important 

aspect of many human complex diseases (e.g. Alzheimer’s disease). Specifically, our future 

research objective builds on our previous research experience with functional genomic data 

integration and analysis, and takes advantage of new computational and statistical methods and 

the continuously increasing genomic and clinical data compendium to address several specific 

challenges: 

Computational inference of tissue-specific pathway components in multicellular organisms 
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In human biology, unlike in the unicellular organism Saccharomyces cerevisiae, many 

biomolecular pathway components are specific to tissue-types or dependent on the 

developmental stage cell types. I hope to extend our methodology from chapter 3 and 4 for 

predicting biomolecular pathway components, to multicellular organisms with a focus on 

inferring tissue specificity of regulatory pathways and human disease related pathways. The 

establishment of these tissue-specific pathway components in mammalian organisms will be 

especially useful to model the effect of genetic diseases since both diseases and drugs often have 

their specific target tissue. 

Classification of tissue-specific post-translational regulation activity 

Elucidating the relationship between post-translational regulation and the target biological 

components is critical for many diseases, because post-translational modification (PTM) events 

alter the property of many proteins (e.g. acitivity, localization) and often proteins with 

unintended modifications can lead to various cancers. Discovery through conventional 

approaches has been an extremely lengthy and expensive process, but recently there has been an 

increase in proteomic data measuring the PTM state of proteins in various cell types and 

conditions. A future research goal is to develop statistical machine learning algorithms to 

leverage the newly available data to address the tissue and cell type specific PTMs unique to 

each E3 ligases and protein kinase that can lead to new tissue specific drug targets. 

Prioritizing experiments from genomic data and electronic medical records 

Most experimental designs are based on the biomedical researcher’s subject knowledge or 

laborious experimental trials. However, the coupling of a large genomic data compendium with 
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newly available electronic medical records can provide a holistic view of data coverage across 

many tissue, biological processes and diseases. A future research goal is to develop novel 

statistical models that can highlight experiments testing biological processes, tissues or diseases 

orthogonal to the existing experimental knowledge base. This research will build on our prior 

work of quantifying the landscape of experimental knowledge in each model organism for 

functional knowledge transfer and will aim to reduce the laborious human effort to characterize 

disease-associated genes. 
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